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Abstract: This study analysed the uncertainty and sensitivity of core and intermediate input variables
of a remote-sensing-data-based Penman–Monteith (PM-Mu) evapotranspiration (ET) model. We de-
rived absolute and relative uncertainties of core measured meteorological and remote-sensing-based
atmospheric and land surface input variables and parameters of the PM-Mu model. Uncertainties of
important intermediate data components (i.e., net radiation and aerodynamic and surface resistances)
were also assessed. To estimate the instrument measurement uncertainties of the in situ meteorologi-
cal input variables, we used the reported accuracies of the manufacturers. Observational accuracies of
the remote sensing input variables (land surface temperature (LST), land surface emissivity (εs), leaf
area index (LAI), land surface albedo (α)) were derived from peer-reviewed satellite sensor validation
reports to compute their uncertainties. The input uncertainties were propagated to the final model’s
evapotranspiration estimation uncertainty. Our analysis indicated relatively high uncertainties as-
sociated with relative humidity (RH), and hence all the intermediate variables associated with RH,
like vapour pressure deficit (VPD) and the surface and aerodynamic resistances. This is in contrast
to other studies, which reported LAI uncertainty as the most influential. The semi-arid conditions
and seasonality of the regional South African climate and high temporal frequency of the variations
in VPD, air and land surface temperatures could explain the uncertainties observed in this study.
The results also showed the ET algorithm to be most sensitive to the air-land surface temperature
difference. An accurate assessment of those in situ and remotely sensed variables is required to
achieve reliable evapotranspiration model estimates in these generally dry regions and climates.
A significant advantage of the remote-sensing-based ET method remains its full area coverage in
contrast to classic-point (station)-based ET estimates.

Keywords: sensitivity analysis; uncertainty analysis; remote sensing; Penman–Monteith; evapotran-
spiration; absolute uncertainty; relative uncertainty

1. Introduction

Evapotranspiration is dependent on meteorological variables such as air temperature
(Tair), solar radiation (Rs), humidity (RH) and wind speed (u) and biophysical character-
istics of the land surface and vegetation. It is considered the most uncertain component
of the hydrological cycle due to its variation both in space and time, and the complex
hydrometeorological processes involved. Hence, it is a challenging process to measure
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and model. The advent of remote sensing technology has made it possible to develop
models of varying complexity to capture this variation [1–6]. However, like any model,
these models propagate varying errors through the final output. Errors are linked either
to: (i) an incomplete understanding and simplified descriptions of modelled processes
compared to reality, or (ii) input variables and parameterisations used in the model [6–9].

While uncertainty analysis (UA) is performed to evaluate the degree of confidence of
the model output and system performance indices by identifying and quantifying possible
model input errors, sensitivity analysis (SA) quantifies how the uncertainty of different
model inputs impacts the overall model output [10]. They rank the importance of input
variable errors in the final result and highlight the need to assess the physical meaning of
model parameters and their relative influence on the output. Sometimes used interchange-
ably, UA and SA are critical steps in model development and calibration, especially in
hydrological, ecological and crop modelling, as they answer questions like where data col-
lection efforts should focus, what degree of care should be taken for parameter estimation
and the relative importance of various parameters [11]. As described in the Guide to the
Expression of Uncertainty in Measurement [12], UA is divided into Type A (UA), which
evaluates measurement uncertainty using a statistical analysis of a series of measurements,
and Type B (UB), which quantifies any uncertainty other than the statistical analysis, in-
cluding the instrument manufacturer’s published accuracy and the quoted accuracies for
remote sensing products. Sensitivity analysis (SA) techniques currently being used range
from the simplest local (LSA) to global SA (GSA) techniques [13,14], from differential to
Monte Carlo analysis [15,16], from measures of importance to sensitivity coefficients and
from regression methods to variance-based techniques [17–21].

Assessing the uncertainty and sensitivity of the different evapotranspiration models
is important to identify which input variables most impact the models and recommend
the improvement of the accuracy of these input variables. In other instances, the analyses
identify the input variables that least impact the models to eliminate them and simplify the
models. Furthermore, these analyses are critical to understanding the possible implications
of climate change on the catchment water balance. Most studies have focused on the
sensitivity of ET model outputs to different inputs, with varying outcomes. For instance,
Talsma, et al. [22] employed the Monte Carlo sensitivity analysis to explore how the input
variable uncertainty affect the output of three global ET models, i.e., the Penman–Monteith
model from the Moderate Resolution Imaging Spectroradiometer (PM-MOD), the Global
Land Evaporation Amsterdam Model (GLEAM) and the Priestley–Taylor Jet Propulsion
Laboratory model (PT-JPL). Numerous sites were investigated, with results showing that
all models were most sensitive to NDVI, RH and net radiation (Rnet) for the three models,
respectively, at 10% input uncertainty. Pérez, et al. [23] showed that the Priestly–Taylor
(PT) model was sensitive to the PT parameter (α) in their study. In a study to analyse the
sensitivity of the FAO-56 Penman–Monteith method, Sharifi and Dinpashoh [24] found this
model to be most sensitive to mean temperature at most sites. In Australia, Guo, et al. [25]
investigated the sensitivity of the PM and PT models to climate variables, air temperature
(Tair), relative humidity (RH), wind speed (u) and solar radiation (Rs). In drier and warmer
regions, they found the two models to be most sensitive to u and least sensitive to RH. Most
of these studies only varied the input variables by fixed percentage bounds without taking
into account the input variable limits and rarely use measurement instrument accuracy
limits as a basis for comparison. Moreover, only a few focused on how input variable
uncertainty is propagated to the final ET uncertainty [26]. Hofreiter and Jirka [27] used the
International Organisation for Standardisation Guides to the expression of Uncertainty in
Measurement (ISO GUM) method to evaluate the uncertainty of the PM associated with net
radiation measurements. Using the same method, Chen, et al. [28] analysed the uncertainty
of the Stanghhellini and Baille ET equations to errors associated with instruments used to
measure input variables. An uncertainty analysis study of the PM model to both climate
variables and land surface parameters is necessary to determine the degree of confidence
of the model in relation to input error and/uncertainty. This will also give an indication
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of how the model reacts to any change in climatic variables, such as air temperature, net
radiation and water availability. Furthermore, through this section, an analysis of how land
use/land cover change impacts on ET variation is provided.

The emergence of RS-based ET modelling presents another opportunity to assess not
only the reaction of the ET models to climatic input variables but also to land surface
parameters, which culminates in how land-use change impacts on ET. Few studies have
investigated the sensitivity of ET models to remote sensing input parameters [29,30]. This
indicates that more work needs to be done to understand the sensitivity of ET models
to remote sensing land surface parameters, especially considering the number of remote
sensing-based ET models that have been extensively evaluated across different bioclimates.

A previous study by Majozi, et al. [31] reported a distinct reasonable performance
of the PM model as modified by Mu, et al. [32], Mu, et al. [33] (PM-Mu) during high ET
periods. Consequently, this study investigated the sensitivity of this model to its input
variables, i.e., both meteorological and land surface characteristics, in situ and remote
sensing. This study also quantified the uncertainty of the input variables and how these
were propagated into the final ET uncertainty. Generally, the PM model is a structurally
complex and data-intensive model presenting a combination of the energy balance and
aerodynamic components. This makes it important to endeavour to understand and
quantify potential errors and uncertainties of the input data and how these impact the final
ET output. This process will, therefore, identify the inputs that are most influential and
correlated with the dependent variable in a semi-arid environment, in order to improve
parameterisations that could eventually improve our results. This study will also highlight
the possible implications of land use/land cover and climate change on the hydrology of
the study areas.

2. Materials and Methods
2.1. Site Description

ET was estimated using data from two eddy covariance flux tower sites located in
savanna and grassland southern African ecoregions (Figure 1). The year 2012 daily data
were selected for both sites and considered in this study:

i. The Skukuza FLUXNET site, located in a savanna ecosystem in the Kruger National
Park, South Africa, sits at 365 m above mean sea level. The site is characterised
by low rainfall averaging 550 ± 160 mm per annum between November and
April, with notable inter-annual variability, and temperatures ranging between 15.6
and 29.6 ◦C, with a mean of 22.6 ◦C. Soils in this part of the park are generally
shallow, comprising coarse sandy to sandy-loam texture. The vegetation is mainly
open woodland, with approximately 30% tree canopy cover of mixed Acacia and
Combretum savanna types. The canopy height is 5–8 m, with occasional trees
(mostly Sclerocarya birrea) reaching 10 m. The grassy and herbaceous understorey
comprises grasses such as Panicum maximum, Digitaria eriantha, Eragrostis rigidor and
Pogonarthria squarrosa. The eddy covariance system, which has been running since
2000, was installed on a vegetation transition characterised by a catenal pattern of
soils and vegetation, with broad-leaved Combretum savanna on the crests dominated
by Combretum apiculatum, and fine-leaved Acacia savanna in the valleys dominated
by Acacia nigrescens [34,35].

ii. Welgegund flux tower site (26◦34′10”S, 26◦56′21”E) is located on a semi-arid, sub-
tropical grazed grassland plain. It is situated approximately 100 km west of Johan-
nesburg, in South Africa. The mean annual rainfall is 540 ± 112 mm, spreading
between October and April. Temperature ranges between 0 and 30 ◦C, with an aver-
age of 18 ◦C. The dominant vegetation comprises grasses, geophytes and herbs. The
dominant grass species are Hyparrhenia hirta and Sporobolus pyramidalis. Non-grassy
forbs include Acacia sieberiana, Rhus rehmanniana, Walafrida densiflora, Spermacoce
natalensis, Kohautia cynanchica and Phyllanthus glaucophyllus Räsänen, et al. [36].
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Figure 1. Skukuza and Welgegund flux tower sites. Welgegund image sourced from https://www.welgegund.org/.

2.2. Remote-Sensing-Based Penman–Monteith Model

The Penman–Monteith model as modified by Mu et al. [32,33] was assessed in this
study. The latent heat flux was estimated as:

λE =
s ∗ A + ρ ∗ Cp ∗ (esat − e)/ra

s + γ ∗
(

1 + rs
ra

) (1)

where λE is the latent heat flux (Wm−2) and λ is the heat of vaporisation (Jkg−1), s is the
slope of the curve relating saturated vapour pressure to temperature (PaK−1), A is available
energy (Wm−2), is the air density (kgm−3), Cp is the specific heat capacity of air (Jkg−1K−1),
γ is the psychrometric constant (PaK−1), esat is the saturation vapour pressure (kPa), e is the
actual vapour pressure (kPa), where esat – e = vapour pressure deficit (VPD, kPa), ra (sm−1)
is the aerodynamic resistance and rs (sm−1) is the canopy resistance, which is the reciprocal
of canopy conductance gc (gc = 1rc−1).

On top of estimating ET as a sum of evaporation from moist soil, interception and tran-
spiration, the daytime and nighttime ET were further computed separately [32,33]. Instead
of using NDVI to compute the fraction of vegetation cover (Fc), they used the Fraction of
Absorbed Photosynthetically Active Radiation (FPAR) as a surrogate of vegetation cover
fraction, with another modification to the derivation of soil heat flux. Moreover, the model
was modified by separating (i) dry and wet (interception) canopy surfaces, (ii) soil surface
into saturated and moist surface, and (iii) improving stomatal conductance, aerodynamic
resistance and boundary layer resistance estimates.

The core input variables used in this model are Tair, RH, land surface temperature
(LST), surface emissivity (εs), leaf area index (LAI) and land surface albedo (α), and were
used to derive intermediate inputs like net solar radiation (Rnet), vapour pressure deficit

https://www.welgegund.org/
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(VPD), the slope of the saturated vapour – air temperature curve (∆), the air and saturated
air vapour pressures (e, esat) and the aerodynamic and surface resistances (ra, rs).

2.3. Uncertainty and Sensitivity Analysis

Uncertainty and sensitivity analyses were performed on the PM-Mu to quantify input
uncertainties and how these are propagated to the final ET uncertainties, and identify the
inputs and parameters that are most important in modelling ET in a semi-arid environment.
We assessed the uncertainty of each input variable, i.e., the direct measured variable
uncertainty (core input), derived input variable uncertainty (intermediate variable) and
remote-sensing-based input variable uncertainty using Type A and Type B uncertainty
methods (see Section 2.3.1). The total uncertainty on the model simulations, i.e., model
output uncertainty, was then evaluated by uncertainty propagation using the Gaussian
uncertainty analysis method.

Based on the PM-Mu model, ET is defined as a function (f ) of meteorological point
measurements of Tair and RH, and spatially explicit remote sensing estimates of LST, and
land surface characteristics such as LAI, fraction of green vegetation cover (Fc)/fraction of
photosynthetically active radiation (FPAR), NDVI/EVI and surface emissivity (εs), which
are biome/or land cover characteristics defining parameters. Table 1 below summarises
the core and intermediate inputs and parameters used in this study.

Table 1. Summary of the core inputs and their intermediate variables used in the equation of the
PM model as modified by Mu, et al. [32], Mu, et al. [33] (PM-Mu). The inputs used to estimate each
variable are marked with an x.

Surface Resistance Aerodynamic Resistance

Core Input Rnet rs
wc rs

t rs
tot ra

wc ra
t ra

s

Tair x x x
LST x x x x

Tmin x
α x

LAI x x x
εs x

RH x x x x x

The generic model can be presented as:

ET = f (x1, . . . , xn) (2)

where x1 to xn represents the n input variables and parameters of the PM-Mu model.
The change in ET, i.e., ∆ET, resulting from errors and/or uncertainties in input vari-

ables (∆xi), is then expressed as:

ET ± ∆ET = (x1 ± ∆x1, . . . , xn ± ∆xn) (3)

The study analysed the uncertainty and sensitivity of the PM-Mu input variables and
outputs aimed at:

i. Estimating the uncertainty of model inputs and parameters, i.e., the meteorological
and land surface characteristics, representing both point- and remote-sensing-
based inputs;

ii. Propagating input uncertainties through to the ET model and computing output un-
certainties;

iii. Estimating the sensitivity coefficients of the model inputs.
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2.3.1. Core Input Variable Uncertainties

The core inputs of the PM-Mu equation include relative humidity (RH) and air tem-
perature (Tair). We estimated the uncertainty of each core input variable as a combination
of Type A and Type B uncertainties. In this study, where each measured input variable was
a daily mean of 30-min recordings, we computed the Type A (UA) standard uncertainty of
the meteorological inputs as the standard deviation of the daily mean:

UA(xi) =

√
∑n

i=1(xi − xi)
2

v
(4)

where xi is the input value of the variable or parameter under consideration, xi is the
average value of the measured values calculated from the n number of independent
observations and v is the degrees of freedom equal to n-1.

Type B standard uncertainty (UB) was also computed for the meteorological input
variables, based on the instrument manufacturer’s published accuracies. The quoted
accuracies of the measurement instruments are summarised in Table 2. They were estimated
using Equation (5):

UB(xi) =
a√
3

(5)

where a is the quoted accuracy specification from the manufacturer and includes calibration
information from calibration certificates.

Table 2. Quoted accuracy of meteorological instruments used to measure air temperature (Tair) and relative humidity (RH)
at the two observation sites.

Skukuza Welgegund

Measurement Sensor Quoted accuracy Sensor Quoted accuracy

Temperature
Campbell Scientific

HMP50

0.4 ◦C at 15 ◦C,

Vaisala WXT510
meteorological station

(Helsinki, Finland)

0.3 ◦C at 20 ◦C,
0.5 ◦C at 40 ◦C, 0.4 ◦C at 40 ◦C,
0.8 ◦C at 60 ◦C 0.7 ◦C at 60 ◦C

Relative humidity
at 20 ◦C at 20 ◦C

±3% 0 to 90% RH, ±3% 0 to 90% RH,
±5% 90 to 98% RH ±5% 90 to 100% RH

For meteorological data inputs, the combined standard uncertainty was then esti-
mated as:

UC(xi) =

√(
U2

A(xi)
+ U2

B(xi)

)
(6)

The combined uncertainty was then converted to relative uncertainty for detailed
comparison and analysis as follows:

Relative uncertainty =
UC(xi)

xi
∗ 100 (7)

2.3.2. Remote-Sensing-Based Input Uncertainties

In this study, we used the Moderate Resolution Imaging Spectroradiometer (MODIS)
Terra/Aqua products as data inputs. The following MODIS products were used as inputs
for this study: MOD11A1 LST and εs, MOD15A2 LAI and MCD43A3 α. These datasets
were downloaded from the NASA Land Processes Distributed Active Archive Centre (LP
DAAC) website using the USGS EarthExplorer platform (https://earthexplorer.usgs.gov/).
These downloaded MODIS products were loaded onto ArcGIS together with the two
flux tower GPS points. The values for the loaded points were then extracted from the
MODIS products using the point extraction feature on ArcGIS software. These remote-
sensing-derived inputs have uncertainties due to several factors, including model algorithm

https://earthexplorer.usgs.gov/
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structure and their input variables. The uncertainties of the remotely sensed input variables
used in this study (LST, εs, LAI, α) were extracted mainly from their published Algorithm
Theoretical Basis Documents (ATBD). Based on the quoted errors (Table 3), the uncertainties
were then estimated using Equation (5). We give a short description of each variable and
associated remote sensor below.

• Land surface temperature (LST) and surface emissivity (εs): these variables are es-
sential in land surface-atmosphere studies, including the estimation of evapotran-
spiration and atmospheric water vapour. In our study, we used the MODIS-derived
MOD11A1 V006 product, which is generated from the thermal infrared channels 31
(10.78 to 11.28 µm) and 32 (11.77 to 12.27 µm) using the physically-based day-night
split-window algorithm by [37]. The uncertainties associated with these products are
extensively discussed in the MODIS Land-Surface Temperature ATBD [38–40]. They
indicate an absolute error of 1 K for LST, which can increase up to 5 K in arid regions.
For surface emissivity, the absolute accuracy is reported to be 0.02.

• Land surface albedo (α): defined as a dimensionless characteristic of the soil–plant
canopy system representing the fraction of total solar energy reflected by the surface,
it is expressed as the ratio of the radiant energy scattered upward by a surface in
all directions to that received from all directions, integrated over the wavelengths
of the solar spectrum. Surface albedo is one of the key geophysical parameters that
control the surface energy budget. The MODIS bi-directional reflectance distribution
function (BRDF) and albedo product (MCD43A3 version VOO6) was used in this
study. This product was derived using a kernel-driven semi-empirical BRDF model
using the RossThick-LiSparse kernel functions for characterising isotropic, volume
and surface scattering [41–43]. Studies have given an absolute accuracy of 0.02 to 0.05
as a requirement for climate modelling [44,45], with other validation studies [46,47]
reporting errors falling within the 0.02 accuracy.

• Leaf Area Index (LAI): defined as the total one-sided green leaf area per unit ground
surface area, it is also dimensionless. This variable measures the total amount of leaf
material in an ecosystem. It is used in the estimation of biogeochemical processes like
photosynthesis, evapotranspiration and net primary production. The MOD15A2 V005
product used in this study was derived using the three-dimensional radiative transfer
(3D RT) model [48,49]. The product ATBD reports the accuracy of the LAI product
at 0.2 [48]. Furthermore, a review by Fang, et al. [50] summarises the uncertainties
of MODIS, CYCLOPES and GLOBCARBON LAI products under different biomes,
showing a relative uncertainty of 0.26 in the savanna biome for the MODIS product.

Table 3. Quoted accuracy of remote sensing inputs at the two observation sites.

Error Values Units Reference

LST ±3.5 K Hulley, et al. [39]
εs ±0.02 - Wan [38]

LAI ±0.2 - Knyazikhin, et al. [48]
α ±0.02 - Strahler, et al. [51]

2.3.3. Intermediate Input Uncertainty

For intermediate inputs that were derived from the core input variables, like net
radiation and surface and aerodynamic resistances, the standard uncertainties were esti-
mated as combined standard uncertainties of their inputs. The Gaussian error propagation
method, which describes how the uncertainties in the variables x and y propagate into a
function f (x, y) and assumes that the model inputs are uncorrelated, was used, as shown in
Equation (8):

UC(Yi) =

√√√√∑n
i=1

((
∂Yi
∂xi

)2
∗ (UC(xi))

2

)
(8)



Remote Sens. 2021, 13, 882 8 of 18

where ∂Yi
∂xi

is the partial derivative of y, which is the output variable, with reference to input
variables xi to xn, also called sensitivity coefficient.

Each estimated input variable uncertainty was also propagated to the final ET output
uncertainty using Equation (8).

2.4. Sensitivity Analysis

One of the aims of SA is to identify and rank input variables according to their
importance in modelling a particular phenomenon. This is done to identify the input
variables that require a more accurate measurement to reduce model output variance to a
minimum. The sensitivity of the PM-Mu estimated daily ET was determined by varying
one input variable at a time within ±20% ranges. First, ET was computed with the initial
input variables, then one variable was perturbed by 5% within ±20% whilst the rest of the
inputs were held constant every day for the whole year of 2012 and the new ET values
were recorded. Then, the sensitivity coefficient, S, was computed using Equation (9), after
which an overall average was calculated:

Si =

(
Yi − Y0

Y0

)
∗ 100 (9)

where Yi is the ET recorded when you vary one variable at a time at each percentage step,
and Y0 is the initial ET value.

3. Results

Uncertainty analysis gives a range of values likely to enclose the true value, and
thus the confidence of the modelled values, and includes all possible sources of error.
Meanwhile, sensitivity analysis ranks the input variables according to their sensitivity to
errors in a model. In our study, we quantified the uncertainty of the PM-Mu ET model
input variables at two FLUXNET sites in semi-arid ecosystems, Skukuza and Welgegund,
and analysed how these propagated through to the model’s final output uncertainty.

3.1. Core Input Variables Uncertainty

Figure 2 illustrates the annual variations of Tair, bound with the absolute uncertainties
for the two study areas. With a mean annual Tair of 24 ± 3.57 ◦C, the absolute standard
uncertainty was 1.5 ± 0.7 ◦C for Skukuza. Welgegund’s mean annual Tair was 20 ± 5.2 ◦C,
with the absolute standard uncertainty similar with that of Skukuza, with an average of
1.5 ± 0.42 ◦C. Meanwhile, this translated to Tair’s relative uncertainty, between 0.5 and
7.6%, with an average of 3.1 ± 1.5% for Skukuza, and it varied between 0.9 and 10.6% with
a mean of 4.0 ± 1.7% for Welgegund.

As shown in Figure 3, the annual daily average RH varied between 34 and 94% during
the same period for Skukuza, and the mean absolute uncertainty was 5 ± 1.5%. This
result was converted to an average relative uncertainty of 10 ± 3.5%. On the other hand,
Welgegund’s annual daily average RH ranged between 13 and 98%, and the mean absolute
uncertainty was 6 ± 1.9%, while the relative uncertainty was 14.2 ± 5.4%.

Relative uncertainties of both Tair and RH have strong seasonal variability, with
relative uncertainties being higher during the drier months of the year, i.e., between April
and September, compared to the wet months. During this period, daily temperatures tend
to be highly variable throughout the day, hence the high Type A standard uncertainty.
Furthermore, there was much less variation in Tair’s relative uncertainty between the two
sites compared to RH’s relative uncertainty.
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3.2. Intermediate Input Uncertainty

This subsection reports how the core input uncertainties estimated above were propa-
gated onto the ET intermediate inputs, i.e., Rnet and the aerodynamic and surface resis-
tances.

3.2.1. Net Radiation Uncertainty

Net radiation (Rnet) estimation depends on a number of atmospheric and land surface
variables, including α, εs, εa, LST and Tair. The overall relative uncertainty of Rnet was
4.0 ± 0.6% of the estimated 558.0± 105.2 Wm−2 daytime Rnet in Skukuza, whereas for Wel-
gegund, a 2.8± 0.8% relative uncertainty was reported for the derived 556.4 ± 127.7 Wm−2

Rnet. As summarised in Table 4, for Skukuza, a mean relative air temperature (Tair) un-
certainty of 3.1% was associated with relative Rnet uncertainties of 23.28 ± 9.85% of the
total Rnet uncertainty, whereas a land surface temperature (LST) error of 3.5 K contributed
59.31 ± 12.87% to the total uncertainty, which was the highest contributor to Rnet uncer-
tainty. The surface emissivity (εs) error of 0.02 contributed an Rnet uncertainty between 4
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and 7 Wm−2, while the albedo (α) uncertainty contributed to an average 2.8 ± 0.42 Wm−2.
Similar results were found for Welgegund, where a mean relative Tair uncertainty of 4%
resulted in an Rnet relative uncertainty of 30.25 ± 10.23%, whereas 89.42 ± 22.07% of
the total Rnet uncertainty was attributed to an LST error of 3.5 K, showing that it was
the highest source of uncertainty in Rnet estimation. εs and α contributed mean relative
uncertainties of 38.81 ± 9.43 and 22.06 ± 10.31%, respectively.

Table 4. Contribution of each input variable uncertainty to the total net radiation (Rnet) uncertainty.

Skukuza Welgegund

Mean Standard Deviation Mean Standard Deviation

Total uncertainty 22.12 5.58 14.73 5.16
% Tair 23.28 9.85 30.25 10.23
% LST 59.31 12.87 89.42 22.07

% α 13.13 0.42 22.06 10.31
% εs 25.76 5.44 38.81 9.43

3.2.2. Aerodynamic and Surface Resistances

In the estimation of wet canopy evaporation, the aerodynamic resistance to evaporated
water on the wet canopy surface (ra

wc) is a function of Tair, LAI and RH (in the form of
wet surface fraction (Fwet)), whereas the surface resistance to evaporated water on the wet
canopy (rs

wc) is a function of LAI and RH. Further, in plant transpiration estimation, the
aerodynamic resistance to water vapour from a dry canopy surface (ra

t) is a function of Tair
only; and the canopy resistance to transpired water (rs

t) is estimated from LST, LAI, Tmin
and RH. In the computation of soil evaporation, both the surface (rs

tot) and aerodynamic
resistances (ra

s) to water vapour from the soil surface are a function of LST and VPD (which
is indirectly RH).

Our results, as illustrated in Table 5 (only the standard uncertainties for resistances are
shown here), show that the mean standard uncertainties for ra

wc were 0.0011 ms−1 ± 6.25%
and 0.001 sm−1 ± 0.17% for Skukuza and Welgegund, respectively. Of the total stan-
dard ra

wc uncertainty, Tair contributed the highest uncertainty of average 91 ± 5.0% and
96.02 ± 16.54%, with low contributions from the LAI and RH uncertainties for Skukuza
and Welgegund, respectively. Meanwhile, rs

wc standard uncertainties were an average
10.34 ± 10.0 sm−1 and 18.02 ± 19.0 sm−1, respectively, with RH uncertainty contributing
most to the total rs

wc uncertainty (approximately 80%), on both sites.

Table 5. Aerodynamic and surface resistance standard uncertainties and contributions to each component of ET uncertainty.

Skukuza Welgegund

Aerodynamic
Resistance

Surface
Resistance

Aerodynamic
Resistance Surface Resistance

Mean Standard
Deviation Mean Standard

Deviation Mean Standard
Deviation Mean Standard

Deviation

Interception
Evaporation 1.1 × 10−3 3.5 × 10−4 10.34 10.07 1 × 10−3 3 × 10−4 18.02 18.96

Transpiration 1.6 × 10−3 7 × 10−4 21.68 19.68 1.5 × 10−3 4.3 × 10−4 30.71 26.92
Soil evaporation 3.8 × 10−3 2.4 × 10−4 0.53 0.04 3.8 × 10−3 2.5 × 10−4 0.51 0.06

In the estimation of ra
t standard uncertainty, the values ranged between 0.00019

and 0.0038 sm−1, and 0.00031 and 0.0032 sm−1 (low average relative uncertainties of
0.81 ± 0.36% and 0.84 ± 0.22%) for Skukuza and Welgegund, respectively. These low
values indicate that Tair uncertainties have the least effect in the estimation of ra

t uncertainty.
Total standard rs

t uncertainty ranged from 0 to 90 sm−1 (mean relative uncertainty of
8.82 ± 2.71%) for Skukuza; whereas for Welgegund, it was between 20 and 146 sm−1,
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(average relative uncertainty of 8.4 ± 1.7%). The ra
s relative uncertainties were on average

around 2% for both sites. Finally, rs
tot standard uncertainty ranged from 0.45 to 0.73 sm−1,

and 0.35 to 0.77 sm−1, for Skukuza and Welgegund, respectively, an average 1% relative
uncertainty for both sites. Of the total uncertainty, LST uncertainty contributed the most of
the two input variables with an average of 58% and 63%, whereas 5.25% of the total rs

tot

uncertainty was attributed to VPD uncertainty, for Skukuza and Welgegund, respectively.

3.2.3. Uncertainty in Evapotranspiration

The final estimate of ET uncertainty is a result of uncertainties propagated from the
measured and remote sensing input variables, through intermediate parameters, up to the
final ET uncertainty. The standard uncertainty was computed for each ET component, i.e.,
evaporation from intercepted rainfall (wet canopy), transpiration and soil evaporation, and
ultimately combined to give the total ET uncertainty.

In Skukuza (Table 6), of the 0.038 mmday−1 wet canopy evaporation standard un-
certainty, rs

wc uncertainty contributed the highest with 21.46 ± 5.97%, with VPD also
having a considerable impact of 6.37 ± 1.45% while the rest of the inputs (ra

wc, Fc and Fwet)
contributed very little. Also, of the 0.33 mmday−1 transpiration uncertainty, 14.63 ± 8.71%
of it was attributed to VPD uncertainty and 9.64 ± % to Fwet uncertainty. Wet soil evapora-
tion uncertainty of 0.11 mm day−2 was made of 12.3% of Fwet uncertainty, 9.7% of VPD
uncertainty, and very low contributions from the rest of the inputs. Lastly, VPD uncertainty
contributed the highest to the potential soil evaporation uncertainty of 21.5%.

Table 6. Contribution of core and intermediate input variable relative uncertainties to each component of ET uncertainty
for Skukuza.

Transpiration Interception Loss Potential Soil
Evaporation

Wet Soil
Evaporation

Mean Standard
Deviation Mean Standard

Deviation Mean Standard
Deviation Mean Standard

Deviation

Total standard uncertainty
(mmday−1) 0.33 0.41 0.038 0.14 0.89 0.34 0.12 0.22

% RH (VPD) 14.63 8.71 6.37 1.45 (21.49) (13.37) (9.71) (2.66)
% Fc (1-Fc) 1.36 1.02 0.67 0.28 (0.85) (0.38)

% Fwet (1-Fwet) 9.64 3.31 0.97 0.05 (2.69) (5.19) 12.92 4.49
% ra

s 1.93 0.8 2.02 0.74
% rs

tot 1.29 0.49 1.25 0.45
% ra

t 0.89 0.08
% rs

t 2.42 5.03
% ra

wc 0.97 0.05
% rs

wc 21.46 5.97

In Welgegund (Table 7), ET estimation was only the sum of the potential soil evapora-
tion and transpiration, and so were the uncertainties, since wet soil evaporation and wet
canopy evaporation gave zero values and did not contribute to the final ET. The potential
soil evaporation standard uncertainty of 1.05 mmday−1 was mainly a result of VPD, which
contributed 46.11%, while other inputs had very low contributions. The transpiration
standard uncertainty of 0.13 mmday−1 mostly resulted from the VPD, that contributed
26.93 ± 15.13%, while other inputs had relatively low contributions.

The total ET mean relative uncertainty for Skukuza was 76.19 ± 30.82%. The total
uncertainty for Welgegund was similar to that of Skukuza, with a mean relative uncertainty
of 81.1 ± 17.57%. In both sites, the highest uncertainty was attributed to soil evapora-
tion, which contributed 76.74 ± 19.13% of the 1.38 ± 0.51 mmday−1 in Skukuza, and
90.93 ± 32.46% of the 1.62 ± 0.36 mmday−1 in Welgegund; subsequently, plant transpira-
tion uncertainty presented a mean of 23.06 ± 18.83% and 18.21 ± 18.62% for Skukuza and
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Welgegund, respectively. On both sites, the wet canopy evaporation uncertainty was very
low, which corresponded with this portion of evapotranspiration.

Table 7. Contribution of core and intermediate input variable relative uncertainties to each component
of evapotranspiration (ET) uncertainty for Welgegund.

Transpiration Potential Soil Evaporation

Mean Standard
Deviation Mean Standard

Deviation

Total Uncertainty 0.13 0.28 1.05 0.29
% RH (VPD) 26.93 15.13 (46.11) (53.05)
% Fc (1-Fc) 3.85 3.10 (1.27) (0.81)

% Fwet (1-Fwet) 0 0 0 0
% ra

s 1.97 0.46
% rs

tot 1.45 0.25
% rs

t 0.87 0.12
% rs 8.98 1.67

3.3. Sensitivity of PM-Mu Model to Core Input Variables

A sensitivity assessment of the ET output to input variables was done on the PM-Mu
model to determine which input variable contributes the most to ET output variation. The
percentage change in ET with respect to a percentage change in input variables at the study
sites is summarised in Table 8 and illustrated in Figure 4.

Table 8. Sensitivity of ET to input variables.

Station Input
Variables

% Change in ET with Respect to % Change in Input Variables

−20 −10 −5 5 10 20

Skukuza

Tair −92.25 −64.80 38.60
LST 55.08 39.56 −50.56 −77.45
RH −0.57 −0.30 −0.16 0.17 0.35 0.75
εa 12.06 6.03 −6.03 −12.06

LAI 1.28 0.47 0.19 −0.12 −0.16 −0.02
α 6.16 3.08 1.54 −1.54 −3.08 −6.16

Welgegund

Tair −84.17 −47.71 51.12 93.29
LST 84.75 44.15 −57.83 −63.15
RH −0.37 −0.19 −0.10 0.10 0.20 0.43
εa 9.42 4.69 −4.69 −9.38

LAI 0.50 0.12 0.03 0.03 0.13 0.48
α 5.00 2.50 1.25 −1.25 −2.50 −5.00

In the savanna biome, the PM-Mu model was mainly sensitive to LST and Tair. A
change of −10% and −5% in Tair resulted in a 92% and 65% ET decrease, respectively,
whereas an increase of 5% increased ET by 39%. In contrast, an LST decrease by the same
values resulted in ET increasing by 55% and 40%, respectively. On the other hand, an LST
increase of 5% and 10% resulted in an ET decrease of 51% and 77%, respectively. εa changes
from −20% to 0% gave an ET increase of +10%, and generated an ET increase and decrease
of 12%, respectively, and α changes of −20% to +20% decreased ET by between 6.16 and
−6.16%. ET had the lowest sensitivities to RH and LAI, with the computed parameter
variations producing ET variations mostly inferior to 3%.

The grassland biome results were quite comparable to the savanna biome results, and
ET was again mostly sensitive to Tair and LST. The percentage change in ET in relation
to Tair decreases of −10% and −5% were −84% and −48%, while an increase of the same
magnitudes showed an increase of 51% and 93%, respectively. Similarly, an LST decrease
of the same magnitudes showed that ET increased by 85% and 44%, respectively, and an
increase of 5% and 10% resulted in an ET decrease of 58% and 63%, respectively. ET was
least sensitive to RH, LAI and α, with ET variations generally below 2.5%.
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4. Discussion

In this study, we evaluated how input variable uncertainty was propagated in the
PM-Mu algorithm to the final ET uncertainty, along with the analysis of the sensitivity of
the ET output to the different input variable uncertainties. Our study only concentrated
on the uncertainty associated with the input variables including uncertainty propagation,
and not on the model algorithms used to compute the intermediate variables and the final
ET product.

The measured meteorological input variable uncertainties were estimated as a com-
bination of Type A and B uncertainties, whereas for the remote-sensing-based inputs,
values from the literature were used to compute Type B uncertainties. Another essential
assumption made was that there is no correlation between the inputs variables. This, in
reality, might not be fully true, an example being the possible relationship between Tair
and RH. A sensitivity analysis of ET to both the measured and remote sensing estimated
input variables was also conducted.

4.1. Input Variable and Parameter Uncertainty
4.1.1. Core Inputs

The mean absolute standard uncertainties for air temperature (Tair) were within simi-
lar ranges for the two sites, i.e., 1.5± 0.7 ◦C and 1.5± 0.42 ◦C, for Skukuza and Welgegund,
respectively, with the variable showing slight seasonal uncertainty variation during the
year. The cooler, drier season exhibited higher relative uncertainties compared with the hot-
ter, wetter season on both sites. This is explained by high diurnal temperature ranges, and
hence the high Type A standard uncertainties during the dry, cooler months. In contrast,
relative humidity’s (RH) absolute standard uncertainty was 5 ± 1.5% for Skukuza, and
6 ± 1.9% for Welgegund, showing a rather lower variability throughout the year compared
to Tair, especially for Skukuza. This was probably due to more stable RH readings through-
out the day, resulting in less variation in the estimated Type A uncertainty. Welgegund’s
RH relative uncertainties were substantially higher than Skukuza’s uncertainties, indicating
a higher diurnal variation of RH measurements at this site compared to the Skukuza site.

Our results are consistent with the ranges reported in other studies that have been
conducted, albeit for different purposes. In most cases, Tair and RH uncertainties have
been evaluated simultaneously. For instance, ascertained Muniz, et al. [52] the standard
uncertainty of air temperature and relative humidity measured by thermography and
found a standard Tair uncertainty of between 0 and 2 ◦C, and 0 and 5% for RH, in their
study to ascertain the uncertainty of air temperature measured by thermography. In their
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case, though, they only considered Type B uncertainties, whereas we took into account
Type A uncertainty, which is the variation of temperature over time. In addition, Lin and
Hubbard [53] reported that the uncertainty of derived dewpoint temperature ranged from
1.8 to 3.3 ◦C. Comparing our results with other studies, like the ones discussed above, is a
challenge because of the different metrics used in each study.

It is important to have an understanding of the uncertainties associated with the
remote sensing products that are used in simulating ET, as shown in this study. These
uncertainties are normally estimated and included in the ATB documents, with further
research being carried out per biome. For example, the absolute quoted accuracy for LST
is 1 K and 0.02 for εs, in the Modis ATBD document [39]. However, these accuracies vary
with land cover type and the type of uncertainties included in the estimations [54] and
should be investigated in detail.

4.1.2. Intermediate Data Components

The core input variable uncertainties had varying effects on the uncertainties of inter-
mediate parameters like net solar radiation, and the aerodynamic and surface resistances.
There was little variation in Rnet uncertainty between the grassland and savanna sites,
with the relative uncertainties modelled at 4% and 3% for Skukuza and Welgegund, re-
spectively. Our results showed that on both sites, LST uncertainty contributed the most
to the Rnet uncertainty, with εs and Tair uncertainties also contributing meaningfully to
the Rnet uncertainty. Contrasting with other studies, our total Rnet uncertainties are much
different. For example, we recorded much lower Rnet uncertainties than those reported by
Mira, et al. [55], who reported overall uncertainties of between 15% and 20% in varying
sites of rainfed to irrigated meadows and crops in the Mediterranean region of the Rhône
Valley, in Southeastern France. They also found that the main contribution to the total
uncertainty was equally distributed between the measured incoming short and longwave
radiations (at 5% and 8%, respectively), with LST contributing the least uncertainty.

The aerodynamic resistance (ra
wc, ra

t, ra
s) relative uncertainties were consistent at an

average of 0.8, 0.5 and 2%, respectively, throughout the year, at both sites. Considering
these low uncertainties, their contribution to the ET uncertainties was also low. These
results concur with the findings of Ershadi, et al. [56], who also showed that aerodynamic
resistances play a relatively minor role in ET estimation in the PM model. Furthermore,
it has been shown that changes in the parameterisation of aerodynamic resistance in
the PM model produce minor improvements to the model output [57,58]. Our results
show that in comparison to the aerodynamic resistance uncertainties, relative surface
resistance uncertainties were quite high. Given that surface resistances (rs

wc, rs
t, rs

tot)
are a critical parameterisation in ET estimation, the corresponding uncertainties also
have a noteworthy impact on standard uncertainties of ET. This was also reported by
Ershadi, et al. [56], who determined that surface resistance parameterisation substantially
affects PM model performance.

4.1.3. Uncertainty in PM-Mu Evapotranspiration Estimation

The final ET uncertainty is a product of all the input variable uncertainties that were
propagated through the PM-Mu model. In our study, we only investigated the uncertainty
associated with the input variables, and not with the algorithms used to compute the
intermediate inputs and the final ET model. Soil evaporation uncertainty contributed
the most to the final ET uncertainty in our study areas, with wet canopy evaporation
uncertainty contributing slightly less.

In both biomes, our results show that RH uncertainty, including input variables and
parameters derived from RH, like VPD, Fwet and the different resistances contributed
the most to the uncertainties of all the ET components. These results are in agreement
with a study by Langensiepen, et al. [59], who reported that VPD is one of the principal
meteorological variables in ET estimation using the PM model. Consequently, any error in
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the humidity and temperature measurement significantly impacts VPD uncertainty, and
hence increases the overall uncertainty.

The overall mean relative ET uncertainty in our study was around 80% for both biomes,
as measured from the propagation of input uncertainties. A similar approach was used to
quantify the propagated ET uncertainty of several ET estimation methods, including the
Penman method, in a riparian area of the Middle Rio Grande Basin, in New Mexico [5].
They used different values of input variable errors and obtained a much lower relative ET
uncertainty, of only 10%, on the Penman method. This notable difference is due to a number
of issues, including the methods and ecoclimates under investigation, the difference in the
determination of the individual input uncertainties and the number of input variables and
parameters considered in the propagation. Our uncertainties were a product of the UA and
UB estimates propagated from the core inputs, through intermediate parameters, through
to the final uncertainty product. In another study, predefined input uncertainty values
from the manufacturers were used, for example, an Rnet uncertainty of 15%, while we
reported a low Rnet uncertainty of 3 and 4% for our sites [5]. Ferguson, et al. [60] evaluated
the uncertainty contributions of input variables to the final ET output. They show that the
overall contributions of α and εs to ET uncertainties were minor, whereas LAI contributed
quite substantially.

4.2. Sensitivity of PM-Mu ET Estimates to Input Variables

It is always a challenge to compare results on sensitivity analysis with other studies
because of the difference between models, input variables and datasets, and the procedures
being used to estimate the sensitivity coefficients. Moreover, these are applied under
different ecoclimatic conditions under investigation. In our study, we used the simple
one-at-a-time local sensitivity analysis method to estimate the sensitivity coefficients. Based
on the maximum value of each input, we perturbed each of the input variables within the
±20% range. Our results show that PM-Mu is most sensitive to Tair and LST, thus making
them the most influential input variables in ET estimation in southern Africa using the
PM-Mu method. This result is explained by the fact that in dry environments the air has
a high capacity to hold water vapour, which can then transfer energy to the land surface.
Meanwhile, our results also show that the land surface parameters, like εa, LAI and α, have
little effect on the PM method in these semi-arid ecoclimates. These results are consistent
with other studies in similar semi-arid/arid regions, where the PM model was reported
to be most sensitive to Tair [61,62]. A comprehensive sensitivity analysis assessment of
the PM and Priestley–Taylor models to various inputs in different climates in Australia,
Guo, et al. [26] showed that these models were most sensitive to Tair.

Other studies in similar dry climates contradict, however, our finding that PM-Mu-
estimated ET is most sensitive to air and land surface temperatures. Tabari and Hossein-
zadeh Talaee [63] observed that ETo was more sensitive to wind speed in a semi-arid
climate, with less sensitivity to Tair and sunshine hours. Garcia, et al. [64] also reported
that wind speed is a critical variable in ETo estimation in arid and semi-arid climates. They
reasoned that this is because of the importance of the aerodynamic term under dry and
high wind speed conditions. Gong, et al. [65] reported that the reference ET was most
sensitive to RH variations, followed by solar radiation, in the Changjiang basin, in China.

5. Conclusions

In this study, we conducted a comprehensive uncertainty and sensitivity assessment
of the PM-Mu model with regard to both meteorological and land surface characteristics in
situ, i.e., air temperature and relative humidity, and remote sensing input variables, i.e.,
LAI, LST, εs and α, in both savanna and grassland biomes of southern Africa. We only
investigated the input variable uncertainties and quantified how these were propagated to
the final ET uncertainty, and not the uncertainties related to the model algorithms used.
With average relative uncertainties of 10 ± 3.5% and 6 ± 1.9% for Skukuza and Welgegund,
respectively, RH, including its derivative, VPD, contributed the highest uncertainty to
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the final ET uncertainty. On the other hand, these results highlight that land surface and
air temperatures and surface emissivity contributed the most to the solar net radiation
uncertainty. Our results showed an overall ET uncertainty of approximately 80% in both
biomes. This final propagated uncertainty is considerably larger than those reported
in other studies. A number of reasons have been highlighted, including the number of
input variables assessed for their uncertainty contribution, the assumption that there is no
correlation between the input variables and the uncertainty analysis method used, that
gives the total uncertainty as a combination of Type A and Type B uncertainties. This
highlights the importance of accurate input data collection in ET estimation, as any errors
are propagated to the final product. In contrast, the PM model was most sensitive to air
and land surface temperatures, indicating the importance of these input variables to ET
estimation using the PM-Mu model in our study areas. However, the sensitivity of the
PM-Mu model to land surface parameters was quite low.
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