Spatio-Temporal Mixed Pixel Analysis of Savanna Ecosystems—A Review

Supplementary Material

Table S1. Full List of Reviewed Research Articles.

Autho	r (s) ,Year	Title	Journal
1.	Hansen et al., 2003	Development of 500 meter vegetation continuous	IEEE International Geoscience and Remote Sensing
		field maps using MODIS data	Symposium
2.	Hansen et al., 2004	The Modis 500 Meter Global Vegetation Continu-	Analysis of Multi-Temporal Remote Sensing Images
		ous Field Products	
3.	Fernandes et al., 2004	Approaches to fractional land cover and continu-	Remote Sensing of Environment
		ous field mapping: A comparative assessment	
		over the BOREAS study region.	
4.	Schwarz and Zimmermann., 2005	A new GLM-based method for mapping tree	Remote Sensing of Environment
		cover continuous fields using regional MODIS re-	
		flectance data	
5.	DeFries et al., 1999	Continuous fields of vegetation characteristics at	Journal of Geophysical Research: Atmospheres
		the global scale at 1-km resolution.	
6.	Hansen et al., 1996	Classification trees: an alternative to traditional	International Journal of Remote Sensing
		land cover classifiers	
7.	Hansen et al., 2002	Towards an operational MODIS continuous field	Remote Sensing of Environment
		of percent tree cover algorithm: examples using	
		AVHRR and MODIS data.	
8.	Zeng et al., 2003	Interannual Variability and Decadal Trend of	Journal of Applied Meteorology
		Global Fractional Vegetation Cover from 1982 to	
		2000	
9.	Hansen et al., 2005	Estimation of tree cover using MODIS data at	International Journal of Remote Sensing
		global, continental and regional/local scales.	
10.	. Hansen et al.,2004	Detecting Long-term Global Forest Change Using	Ecosystems
		Continuous Fields of Tree-Cover Maps from 8-km	•

uthor (s) ,Year	Title	Journal
	Advanced Very High Resolution Radiometer	
	(AVHRR) Data for the Years 1982–99	
11. Defries et al., 2000	Global continuous fields of vegetation character-	International Journal of Remote Sensing
	istics: A linear mixture model applied to multi-	
	year 8 km AVHRR data.	
12. Hansen et al., 2003	Global Percent Tree Cover at a Spatial Resolution	Earth Interactions
	of 500 Meters: First Results of the MODIS Vegeta-	
	tion Continuous Fields Algorithm.	
13. Carroll et al., 2010	MODIS Vegetation Cover Conversion and Vege-	Land Remote Sensing and Global Environmental
	tation Continuous Fields.	Change
14. Jeganathan et al., 2009	Comparison of MODIS vegetation continuous	Journal of the Indian Society of Remote Sensing,
	field — based forest density maps with IRS-LISS	
	III derived maps	
15. Sexton et al., 2013	Global, 30-m resolution continuous fields of tree	International Journal of Digital Earth
	cover: Landsat-based rescaling of MODIS vegeta-	
	tion continuous fields with lidar-based estimates	
	of error.	
16. Hansen et al., 2008	A method for integrating MODIS and Landsat	Remote Sensing of Environment
	data for systematic monitoring of forest cover and	
	change in the Congo Basin.	
17. Hansen et al., 2002	Development of a MODIS tree cover validation	Remote Sensing of Environment
	data set for Western Province, Zambia	
18. Colditz et al., 2011	Land cover classification with coarse spatial reso-	Remote Sensing of Environment
	lution data to derive continuous and discrete	
	maps for complex regions	
19. DeFries et al., 1997	Subpixel forest cover in central Africa from multi-	Remote Sensing of Environment
	sensor, multitemporal data.	
20. Hansen et al., 2011	Continuous fields of land cover for the contermi-	Remote Sensing Letters
	nous United States using Landsat data: first re-	
	sults from the Web-Enabled Landsat Data	
	(WELD) project.	

thor (s) ,Year	Title	Journal
21. Potapov et al., 2019	Annual continuous fields of woody vegetation	Remote Sensing of Environment
	structure in the Lower Mekong region from 2000-	
	2017 Landsat time-series.	
22. Gao et al., 2014	Validation of MODIS vegetation continuous	2014 Third International Workshop on Earth Observa
	fields in two areas in Mexico.	tion and Remote Sensing Applications (EORSA)
23. Amarnathet al., 2017	Evaluating MODIS-vegetation continuous field	The Egyptian Journal of Remote Sensing and Space
	products to assess tree cover change and forest	Science
	fragmentation in India – A multi-scale satellite re-	
	mote sensing approach.	
24. Sarif et al., 2017	MODIS-VCF Based Forest Change Analysis in the	Proceedings of the National Academy of Sciences, In-
	State of Jharkhan	dia Section A: Physical Sciences,
25. White et al., 2005	Accuracy assessment of the vegetation continu-	International Journal of Remote Sensing
	ous field tree cover product using 3954 ground	
	plots in the south-western USA.	
26. Leinenkugel et al., 2014	Sensitivity analysis for predicting continuous	International Journal of Remote Sensing
	fields of tree-cover and fractional land-cover dis-	
	tributions in cloud-prone areas.	
27. Gao et al., 2018	Assessing forest cover change in Mexico from an-	International Journal of Remote Sensing
	nual MODIS VCF data (2000–2010).	
28. Xian et al., 2015	Characterization of shrubland ecosystem compo-	Remote Sensing of Environment
	nents as continuous fields in the northwest	
	United States.	
29. Baumann et al., 2018	Mapping continuous fields of tree and shrub	Remote Sensing of Environment
	cover across the Gran Chaco using Landsat 8 and	
	Sentinel-1 data.	
30. Liu et al., 2016	Assessment of the three factors affecting Myan-	International Journal of Digital Earth
	mar's forest cover change using Landsat and	
	MODIS vegetation continuous fields data.	
31. Hayes et al., 2008	Estimating proportional change in forest cover as	Remote Sensing of Environment
	a continuous variable from multi-year MODIS	
	data.	

Author (s) ,Year		Title	Journal	
32.	Homer et al., 2013	Detecting annual and seasonal changes in a sage- brush ecosystem with remote sensing-derived continuous fields	Journal of Applied Remote Sensing	
33.	Guan et al., 2012	Multi-sensor derivation of regional vegetation fractional cover in Africa.	Remote Sensing of the Environment	
34.	Cartus et al., 2011	Large area forest stem volume mapping in the boreal zone using synergy of ERS-1/2 tandem coherence and MODIS vegetation continuous fields.	Remote Sensing of Environment	
35.	Mathys et al., 2009	Evaluating effects of spectral training data distri- bution on continuous field mapping performance	SPRS Journal of Photogrammetry and Remote Sensing	
36.	Xian et al., 2013	An approach for characterizing the distribution of shrubland ecosystem components as continuous fields as part of NLCD.	ISPRS Journal of Photogrammetry and Remote Sensing	
37.	Reschke and Hüttich, 2014	Continuous field mapping of Mediterranean wet- lands using sub-pixel spectral signatures and multi-temporal Landsat data.	International Journal of Applied Earth Observation and Geoinformation	
38.	Ribeiro et al., 2020	Geographic Object-Based Image Analysis Framework for Mapping Vegetation Physiognomic Types at Fine Scales in Neotropical Savannas	Remote Sensing	
39.	Neto et al., 2017	Assessment Of Texture Features For Brazilian Savanna Classification: A Case Study In Brasília National Park	Revista Brasileira de Cartografia	
40.	Souverijns et al., 2020	Thirty Years of Land Cover and Fraction Cover Changes over the Sudano-Sahel Using Landsat Time Series.	Remote Sensing	
41.	He et al., 2020	Green Vegetation Cover Dynamics in a Heterogeneous Grassland: Spectral Unmixing of Landsat Time Series from 1999 to 2014.	Remote Sensing	
42.	Yang & Crews, 2019	Fractional Woody Cover Mapping of Texas Savanna at Landsat Scale.	Land	
43.	Gessner et al., 2013	Estimating the fractional cover of growth forms and bare surface in savannas. A multi-resolution approach based on regression tree ensembles.	Remote Sensing of Environment	

thor (s) ,Year	Title	Journal
44. Arroyo et al., 2010	Integration of LiDAR and QuickBird imagery for	Forest Ecology and Management
	mapping riparian biophysical parameters and	
	land cover types in Australian tropical savannas	
45. Higginbottom et al., 2018	Mapping fractional woody cover in semi-arid sa-	ISPRS Journal of Photogrammetry and Remote Sens-
	vannahs using multi-seasonal composites from	ing
	Landsat data.	
46. Urbazaev et al., 2015	Assessment of the mapping of fractional woody	Remote Sensing of Environment
	cover in southern African savannas using multi-	
	temporal and polarimetric ALOS PALSAR L-	
	band images.	
47. Borges et al., 2020	Sentinel-1 and Sentinel-2 Data for Savannah Land	Remote Sensing
	Cover Mapping: Optimising the Combination of	
	Sensors and Seasons.	
48. Naidoo et al., 2016	L-band Synthetic Aperture Radar imagery per-	International Journal of Applied Earth Observation
	forms better than optical datasets at retrieving	and Geoinformation
	woody fractional cover in deciduous, dry savan-	
	nahs.	
49. Guerschman et al.,2009	Estimating fractional cover of photosynthetic veg-	Remote Sensing of Environment
	etation, non-photosynthetic vegetation and bare	
	soil in the Australian tropical savanna region up-	
	scaling the EO-1 Hyperion and MODIS sensors.	
50. Meyer & Okin, 2015	Evaluation of spectral unmixing techniques using	Remote Sensing of Environment
	MODIS in a structurally complex savanna envi-	-
	ronment for retrieval of green vegetation, non-	
	photosynthetic vegetation, and soil fractional	
	cover.	
51. Marselis et al., 2018	Distinguishing vegetation types with airborne	Remote Sensing of Environment
	waveform lidar data in a tropical forest-savanna	Ţ
	mosaic: A case study in Lopé National Park	
52. Mishra et al., 2014	Relating spatial patterns of fractional land cover	International Journal of Remote Sensing
	to savanna vegetation morphology using multi-	Ç
	scale remote sensing in the Central Kalahari.	

hor (s) ,Year	Title	Journal
53. Ludwig et al., 2019	Machine learning and multi-sensor based model-	Remote Sensing of Environment
	ling of woody vegetation in the Molopo Area,	
	South Africa.	
54. Wessels et al., 2019	Mapping and Monitoring Fractional Woody Veg-	Remote Sensing
	etation Cover in the Arid Savannas of Namibia	
	Using LiDAR Training Data, Machine Learning,	
	and ALOS PALSAR Data.	
55. Zhang et al., 2019	From woody cover to woody canopies: How Sen-	Remote Sensing of Environment
	tinel-1 and Sentinel-2 data advance the mapping	
	of woody plants in savannas.	
56. Chai et al., 2020	Mapping the fractional cover of non-photosyn-	Geocarto International
	thetic vegetation and its spatiotemporal varia-	
	tions in the Xilingol grassland using MODIS im-	
	agery (2000–2019)	
57. Yang, 2019	Woody Plant Cover Estimation in Texas Savanna	Earth Interactions
	from MODIS Products.	
58. Zhou et al., 2019	A novel Method for Separating Woody and Her-	Photogrammetric Engineering & Remote Sensing
	baceous and Time Series.	
59. Hill et al., 2017	Relationships between vegetation indices, frac-	International Journal of Remote Sensing
	tional cover retrievals and the structure and com-	
	position of Brazilian Cerrado natural vegetation	
60. Li et al., 2020	Deep-learning based high-resolution mapping	Remote Sensing of Environment
	shows woody vegetation densification in greater	
	Maasai Mara ecosystem	
61. Daldegan et al., 2019	Spectral mixture analysis in Google Earth Engine	Remote Sensing of Environment
	to model and delineate fire scars over a large ex-	
	tent and a long time-series in a rainforest-savanna	
	transition zone	
62. Hill et al., 2016	Dynamics of the relationship between NDVI and	International Journal of Remote Sensing
	SWIR32 vegetation indices in southern Africa: im-	_
	plications for retrieval of fractional cover from	
	MODIS data.	

Author (s) ,Year	Title	Journal
63. Zhou et al., 2016	Retrieving understorey dynamics in the Austr	ral- International Journal of Remote Sensing
	ian tropical savannah from time series decomp	po-
	sition and linear unmixing of MODIS data.	
64. Liu et al., 2017	An Improved Estimation of Regional Fraction	al Remote Sensing
	Woody/Herbaceous Cover Using Combined S	
	ellite Data and High-Quality Training Samples	S
65. Ibrahim et al., 2019	Impact of Soil Reflectance Variation Correction	n on Remote Sensing
	Woody Cover Estimation in Kruger National	
	Park Using MODIS Data.	
66. Nagelkirk & Dahlin,	2020 Woody Cover Fractions in African Savannas	Remote Sensing
G	From Landsat and High-Resolution Imagery.	
67. Mayes et al., 2015	Forest cover change in Miombo Woodlands:	Remote Sensing of Environment
,	modeling land cover of African dry tropical fo	
	ests with linear spectral mixture analysis.	
68. Theseira et al., 2002	An evaluation of spectral mixture modelling a	np- International Journal of Remote Sensing
	plied to a semi-arid environment.	
69. Ferreira et al., 2007	Spectral linear mixture modelling approaches	for International Journal of Remote Sensing
	land cover mapping of tropical savanna areas	e e e e e e e e e e e e e e e e e e e
	Brazil.	
70. Ibrahim et al., 2018	Estimating fractional cover of plant functional	I International Journal of Remote Sensing
	types in African savannah from harmonic ana	
	sis of MODIS time-series data.	
71. Gaughan et al., 2013	Using short-term MODIS time-series to quanti	ify International Journal of Remote Sensing
	tree cover in a highly heterogeneous African s	•
	vanna.	
72. Elmore et al., 2000	Quantifying Vegetation Change in Semiarid E	Envi- Remote Sensing of Environment
	ronments: Precision and Accuracy of Spectral	
	Mixture Analysis and the Normalized Differen	nce
	Vegetation Index.	
73. Dawerlbait & Morari	<u> </u>	International Journal of Water Resources and Arid En
	Change Vector Analysis to Monitor Land Cov	
	Degradation in a Savanna Region in Sudan (19	
	1999-2008)	

thor (s) ,Year	Title	Journal
74. Dawelbait et al., 2017	Using Landsat Images and Spectral Mixture Anal-	Land Degradation & Development
	ysis to Assess Drivers of 21-Year LULC Changes	
	in Sudan.	
75. Lopes et al., 2020	Combining optical and radar satellite image time	Remote Sensing in Ecology and Conservation
	series to map natural vegetation: savannas as an	
	example.	
76. Alencar et al., 2020	Mapping Three Decades of Changes in the Brazil-	Remote Sensing
	ian Savanna Native Vegetation Using Landsat	Ţ
	Data Processed in the Google Earth Engine Plat-	
	form	
77. Kaszta et al., 2016	Seasonal Separation of African Savanna Compo-	Remote Sensing
	nents Using Worldview-2 Imagery: A Compari-	Ţ
	son of Pixel- and Object-Based Approaches and	
	Selected Classification Algorithms.	
78. Boggs, 2010	Assessment of SPOT 5 and QuickBird remotely	International Journal of Applied Earth Observation
	sensed imagery for mapping tree cover in savan-	and Geoinformation
	nas.	
79. Whiteside et al., 2011	Comparing object-based and pixel-based classifi-	International Journal of Applied Earth Observation
	cations for mapping savannas	and Geoinformation
80. Ma et al., 2013	Spatial patterns and temporal dynamics in sa-	Remote Sensing of Environment
	vanna vegetation phenology across the North	
	Australian Tropical Transect	
81. Naidoo et al., 2012	Classification of savanna tree species, in the	ISPRS Journal of Photogrammetry and Remote Sens
	Greater Kruger National Park region, by integrat-	ing
	ing hyperspectral and LiDAR data in a Random	
	Forest data mining environment	
82. Clark et al., 2010	A scalable approach to mapping annual land	Remote Sensing of Environment
	cover at 250 m using MODIS time series data: A	
	case study in the Dry Chaco ecoregion of South	
	America.	
83. Anchang et al., 2019	Trends in Woody and Herbaceous Vegetation in	Remote Sensing
,	the Savannas of West Africa.	· ·

thor (s) ,Year	Title	Journal
84. Schwieder et al., 2016	Mapping Brazilian savanna vegetation gradients	International Journal of Applied Earth Observation
	with Landsat time series.	and Geoinformation
85. Mathieu et al., 2013	Toward structural assessment of semi-arid Afri-	Remote Sensing of Environment
	can savannahs and woodlands: The potential of	
	multitemporal polarimetric RADARSAT-2 fine	
	beam images.	
86. Cho et al., 2017	Response of Land Surface Phenology to Variation	Remote Sensing of Environment
	in Tree Cover during Green-Up and Senescence	
	Periods in the Semi-Arid Savanna of Southern Af-	
	rica.	
87. Stuart et al., 2006	Classifying the Neotropical savannas of Belize us-	Journal of Biogeography
	ing remote sensing and ground survey.	
88. Cho et al., 2013	Mapping tree species composition in South Afri-	Remote Sensing of Environment
	can savannas using an integrated airborne spec-	
	tral and LiDAR system.	
89. Hassler et al., 2010	Vegetation pattern divergence between dry and	Journal of Arid Environments
	wet season in a semiarid savanna – Spatio-tem-	
	poral dynamics of plant diversity in northwest	
	Namibia.	
90. van Passel et al., 2020	Monitoring Woody Cover Dynamics in Tropical	Remote Sensing
	Dry Forest Ecosystems Using Sentinel-2 Satellite	
	Imagery.	
91. Madonsela et al., 2017	Multi-phenology WorldView-2 imagery improves	International Journal of Applied Earth Observation
	remote sensing of savannah tree species.	and Geoinformation
92. Tsalyuk et al., 2017	Improving the prediction of African savanna veg-	ISPRS Journal of Photogrammetry and Remote Sens
	etation variables using time series of MODIS	ing
	products	
93. Hüttich et al., 2011	Assessing effects of temporal compositing and	Remote Sensing of Environment
	varying observation periods for large-area land-	
	cover mapping in semi-arid ecosystems: Implica-	
	tions for global monitoring.	

thor (s) ,Year	Title	Journal
94. Müller et al., 2015	Mining dense Landsat time series for separating	Remote Sensing of Environment
	cropland and pasture in a heterogeneous Brazil-	
	ian savanna landscape	
95. Brandt et al., 2016	Woody plant cover estimation in drylands from	Remote Sensing of Environment
	Earth Observation based seasonal metrics.	
96. Jin et al., 2013	Phenology and gross primary production of two	Remote Sensing of Environment
	dominant savanna woodland ecosystems in	
	Southern Africa.	
97. Archibald & Scholes, 2007	Leaf green-up in a semi-arid African savanna -	Journal of Vegetation Science
	separating tree and grass responses to environ-	
	mental cues.	
98. Cho & Ramoelo, 2019	Optimal dates for assessing long-term changes in	International Journal of Applied Earth Observation
	tree-cover in the semi-arid biomes of South Africa	and Geoinformation
	using MODIS NDVI time series (2001–2018).	
99. Hunter et al., 2020	Inter-Seasonal Time Series Imagery Enhances	Remote Sensing
	Classification Accuracy of Grazing Resource and	
	Land Degradation Maps in a Savanna Ecosystem.	
100. Liu et al., 2016	Land Cover Characterization in West Sudanian	Remote Sensing
	Savannas Using Seasonal Features from Annual	
	Landsat Time Series	
101. de Lemos et al., 2020	Parametric Models to Characterize the Phenology	Remote Sensing
	of the Lowveld Savanna at Skukuza, South Africa	
102. Huesca et al., 2019	Discrimination of Canopy Structural Types in the	Remote Sensing
	Sierra Nevada Mountains in Central California.	
103. Ibrahim et al., 2019	Impact of Soil Reflectance Variation Correction on	Remote Sensing
	Woody Cover Estimation in Kruger National	
	Park Using MODIS Data.	
104. Kolarik et al., 2020	A multi-plot assessment of vegetation structure	ISPRS Journal of Photogrammetry and Remote Sen
	using a micro-unmanned aerial system (UAS) in a	ing
	semi-arid savanna environment.	
105. Lewis et al., 2017	Indicators of burn severity at extended temporal	International Journal of Wildland Fire
	scales: a decade of ecosystem response in mixed-	
	conifer forests of western Montana.	

Author (s) ,Year	Title	Journal
106. Silveira et al., 2018	sing Spatial Features to Reduce the Impact of Seasonality for Detecting Tropical Forest Changes from Landsat Time Series.	Remote Sensing
107. Bueno et al., 2019	Object-Based Change Detection in the Cerrado Biome Using Landsat Time Series.	Remote Sensing
108. Symeonakis & Higginbottom, 2014	Bush encroachment monitoring using multi-temporal Landsat data and random forests.	The International Archives of the Photogrammetry, Remote Sensing and Spatial Information
109. Mitchard & Flintrop, 2013	Woody encroachment and forest degradation in sub-Saharan Africa's woodlands and savannas 1982-2006.	Philosophical Transactions of the Royal Society B: Biological Sciences
110. Cho et al., 2009	Spectral variability within species and its effects on Savanna tree species discrimination.	IEEE International Geoscience and Remote Sensing Symposium
111. Levick & Rogers, 2019	Context-dependent vegetation dynamics in an African savanna.	Landscape Ecology
112. Lupo et al.,2007	Categorization of land-cover change processes based on phenological indicators extracted from time series of vegetation index data.	International Journal of Remote Sensing
113. Alves & Pérez-Cabello, 2017	Multiple remote sensing data sources to assess spatio-temporal patterns of fire incidence over Campos Amazônicos Savanna Vegetation Enclave (Brazilian Amazon).	Science of The Total Environment
114. Campo-Bescós et al., 2013	Combined Spatial and Temporal Effects of Environmental Controls on Long-Term Monthly NDVI in the Southern Africa Savanna.	Remote Sensing
115. Levick et al., 2015	Monitoring the Distribution and Dynamics of an Invasive Grass in Tropical Savanna Using Airborne LiDAR.	Remote Sensing
116. LeVine & Crews, 2019	Three-dimensional forest reconstruction and structural parameter retrievals using a terrestrial full-waveform lidar instrument (Echidna®).	International Journal of Applied Earth Observation and Geoinformation
117. Scanlon et al., 2002	Determining land surface fractional cover from NDVI and rainfall time series for a savanna ecosystem.	Remote Sensing of Environment

uthor (s) ,Year	Title	Journal	
118. Ndayisaba et al., 2016	Understanding the Spatial Temporal Vegetation	Land	
	Dynamics in Rwanda.		
119. Parente & Ferreira, 2018	Assessing the Spatial and Occupation Dynamics	Remote Sensing	
	of the Brazilian Pasturelands Based on the Auto-		
	mated Classification of MODIS Images from 2000		
	to 2016		
120. Bucini et al., 2009	Woody cover and heterogeneity in the Savannas	IEEE International Geoscience and Remote Sensing	
	of the Kruger National Park, South Africa.	Symposium	
121. Yang et al., 2012	Landsat remote sensing approaches for monitor-	Remote Sensing of Environment	
	ing long-term tree cover dynamics in semi-arid		
	woodlands: Comparison of vegetation indices		
	and spectral mixture analysis.		
122. Cho et al., 2010	Improving Discrimination of Savanna Tree Spe-	IEEE Transactions on Geoscience and Remote Sensing	
	cies Through a Multiple-Endmember Spectral An-		
	gle Mapper Approach: Canopy-Level Analysis.		
123. Gill & Phinn, 2009	Improvements to ASTER-Derived Fractional Esti-	IEEE Transactions on Geoscience and Remote Sensing	
	mates of Bare Ground in a Savanna Rangeland.		
124. Borini Alves et al., 2018	Fusing Landsat and MODIS data to retrieve mul-	International Journal of Remote Sensing	
	tispectral information from fire-affected areas		
	over tropical savannah environments in the Bra-		
	zilian Amazon.		
125. Yang & Prince, 2000	Remote sensing of savanna vegetation changes in	International Journal of Remote Sensing	
	Eastern Zambia 1972-1989.		
126. Tarimo et al., 2015	Spatial distribution of temporal dynamics in an-	Carbon Balance and Management	
	thropogenic fires in miombo savanna woodlands		
	of Tanzania		
127. Schmidt et al., 2012	Long term data fusion for a dense time series	Journal of Applied Remote Sensing	
	analysis with MODIS and Landsat imagery in an		
	Australian Savanna		
128. Santos et al., 1999	A linear spectral mixture model to estimate forest	IEEE International Geoscience and Remote Sensing	
	and savanna biomass at transition areas in Ama-	Symposium.	
	zonia		

athor (s) ,Year	Title	Journal
129. Carvalho et al., 2003	Spectral mixture analysis of ASTER image in Bra-	IIGARSS 2003-2003 EEE International Geoscience and
	zilian Savanna.	Remote Sensing Symposium
130. Liu et al., 2017	Using data from Landsat, MODIS, VIIRS and	Agricultural and Forest Meteorology
	PhenoCams to monitor the phenology of Califor-	
	nia oak/grass savanna and open grassland across	
	spatial scales.	
131. Hill, 2013	Vegetation index suites as indicators of vegeta-	Remote Sensing of Environment
	tion state in grassland and savanna: An analysis	
	with simulated SENTINEL 2 data for a North	
	American transect.	
132. Munyati & Sinthumule, 2013	Assessing change in woody vegetation cover in	International Journal of Environmental Studies
	the Kruger National Park, South Africa, using	
	spectral mixture analysis of a Landsat TM image	
	time series.	
133. Garcia & Ustin, 2001	Detection of interannual vegetation responses to	IEEE Transactions on Geoscience and Remote Sensing
	climatic variability using AVIRIS data in a coastal	
	savanna in California	
134. Edwards et al., 2018	A comparison and validation of satellite-derived	Remote Sensing of Environment
	fire severity mapping techniques in fire prone	
	north Australian savannas: Extreme fires and tree	
	stem mortality	
135. Ferreira et al., 2013	Biophysical Properties of Cultivated Pastures in	Remote Sensing
	the Brazilian Savanna Biome: An Analysis in the	
	Spatial-Temporal Domains Based on Ground and	
	Satellite Data.	
136. Dennison & Roberts et al., 2003	Endmember selection for multiple endmember	Remote Sensing of Environment
	spectral mixture analysis using endmember aver-	-
	age RMSE.	
137. Roberts et al., 2002	Large area mapping of land-cover change in Ron-	Journal of Geophysical Research: Atmospheres
	dônia using multitemporal spectral mixture anal-	•
	ysis and decision tree classifiers	
138. Mishra & Crews, 2014	Estimating fractional land cover in semi-arid cen-	Geocarto International
	tral Kalahari: the impact of mapping method	

uthor (s) ,Year	Title	Journal
	(spectral unmixing vs. object-based image analy-	
	sis) and vegetation morphology	
139. Yu et al., 2019	Discrimination of Senescent Vegetation Cover	Canadian Journal of Remote Sensing
	from Landsat-8 OLI Imagery by Spectral Unmix-	
	ing in the Northern Mixed Grasslands	
140. Bendini et al., 2020	Combining environmental and Landsat analysis	International Archives of Photogrammetry, Re-
	ready data for vegetation mapping: a case study	mote Sensing and Spatial Information Sciences
	in the Brazilian savanna biome.	
141. Forkuor et al., 2017	Multiscale Remote Sensing to Map the Spatial	Remote Sensing
	Distribution and Extent of Cropland in the Suda-	
	nian Savanna of West Africa.	
142. Duncan & Franklin, 1994	Estimating fractional vegetation cover at the sub-	IEEE International Geoscience and Remote Sensing
	pixel scale in a semiarid region using a statistical	Symposium
	mixture model and remotely sensed data	•
143. Kanniah et al., 2009	Evaluation of Collections 4 and 5 of the MODIS	Remote Sensing of Environment
	Gross Primary Productivity product and algo-	, and the second
	rithm improvement at a tropical savanna site in	
	northern Australia.	
144. Schneibel et al., 2017	Using Annual Landsat Time Series for the Detec-	Remote Sensing
	tion of Dry Forest Degradation Processes in	_
	South-Central Angola	
145. Sá et al., 2003	Assessing the feasibility of sub-pixel burned area	International Journal of Remote Sensing
	mapping in miombo woodlands of northern	
	Mozambique using MODIS imagery.	
146. Okhimamhe, 2003	ERS SAR interferometry for land cover mapping	International Journal of Remote Sensing
,	in a savanna area in Africa	_
147. Amaral et al., 2015	Mapping invasive species and spectral mixture	ISPRS Journal of Photogrammetry and Remote Sens-
Ý	relationships with neotropical woody formations	ing
	in southeastern Brazil.	-
148. Shimabukuro et al., 2020	Discriminating Land Use and Land Cover Classes	IEEE Journal of Selected Topics in Applied Earth Ob-
	in Brazil Based on the Annual PROBA-V 100 m	servations and Remote Sensing
	Time Series.	

uthor (s) ,Year	Title	Journal
149. Sano etal.,2005	Synthetic Aperture Radar (L band) and Optical	Earth Interactions
	Vegetation Indices for Discriminating the Brazil-	
	ian Savanna Physiognomies: A Comparative	
	Analysis.	
150. Abade et al., 2015	Comparative Analysis of MODIS Time-Series	Remote Sensing
	Classification Using Support Vector Machines	
	and Methods Based upon Distance and Similarity	
	Measures in the Brazilian Cerrado-Caatinga	
	Boundary.	
151. Hartfield & van Leeuwen, 2018	Woody Cover Estimates in Oklahoma and Texas	Remote Sensing
	Using a Multi-Sensor Calibration and Validation	
	Approach.	
152. de Souza Mendes et al., 2019	Optical and SAR Remote Sensing Synergism for	Remote Sensing
	Mapping Vegetation Types in the Endangered	
	Cerrado/Amazon Ecotone of Nova Mutum—	
	Mato Grosso	
153. Fisk et al., 2019	Comparison of Hyperspectral Versus Traditional	Remote Sensing
	Field Measurements of Fractional Ground Cover	
	in the Australian Arid Zone	
154. Sow et al., 2013	Estimation of Herbaceous Fuel Moisture Content	Remote sensing
	Using Vegetation Indices and Land Surface Tem-	
	perature from MODIS Data.	
155. Gessner et al., 2015	Multi-sensor mapping of West African land cover	Remote Sensing of Environment
	using MODIS, ASAR and TanDEM-X/TerraSAR-	
	X data	
156. Bobée et al., 2012	Analysis of vegetation seasonality in Sahelian en-	Journal of Arid Environments
	vironments using MODIS LAI, in association with	
	land cover and rainfall.	
157. Cherchali et al., 2000	Retrieval of temporal profiles of reflectances from	International Journal of Remote Sensing
	simulated and real NOAA-AVHRR data over het-	-
	erogeneous landscapes.	

uthor (s) ,Year	Title	Journal
158. Dubovyk et al., 2015	Monitoring vegetation dynamics with medium	International Journal of Applied Earth Observation
	resolution MODIS-EVI time series at sub-regional	and Geoinformation
	scale in southern Africa.	
159. Hill et al., 2013	Use of Vegetation Index "Fingerprints" From Hy-	IEEE Journal of Selected Topics in Applied Earth Ob
	perion Data to Characterize Vegetation States	servations and Remote Sensing
	Within Land Cover/Land Use Types in an Aus-	
	tralian Tropical Savanna.	
160. Johansen et al., 2010	Mapping riparian condition indicators in a sub-	Ecological Indicators
	tropical savanna environment from discrete re-	
	turn LiDAR data using object-based image analy-	
	sis.	
161. Hill et al., 2012	Dynamics of vegetation indices in tropical and	Geocarto International
	subtropical savannas defined by ecoregions and	
	Moderate Resolution Imaging Spectroradiometer	
	(MODIS) land cover	
162. Jamali et al., 2014	Automated mapping of vegetation trends with	Remote Sensing of Environment
	polynomials using NDVI imagery over the Sahel.	
163. Tong et al., 2017	Revisiting the coupling between NDVI trends	Remote Sensing of Environment
	and cropland changes in the Sahel drylands: A	
	case study in western Niger.	
164. Brandt et al., 2016	Woody plant cover estimation in drylands from	Remote Sensing of Environment
	Earth Observation based seasonal metrics.	
165. Bogan et al., 2019	maging spectrometry-derived estimates of re-	Remote Sensing of Environment
	gional ecosystem composition for the Sierra Ne-	
	vada, California.	
166. Karlson et al., 2015	Mapping Tree Canopy Cover and Aboveground	Remote Sensing
	Biomass in Sudano-Sahelian Woodlands Using	
	Landsat 8 and Random Forest.	
167. Awuah et al., 2020	Probabilistic Mapping and Spatial Pattern Analy-	Remote Sensing
	sis of Grazing Lawns in Southern African Savan-	- -
	nahs Using WorldView-3 Imagery and Machine	
	Learning Techniques.	

uthor (s) ,Year	Title	Journal
168. Spiekermann et al., 2015	Woody vegetation and land cover changes in the	International Journal of Applied Earth Observation
	Sahel of Mali (1967–2011).	and Geoinformation
169. Bégué et al., 2011	Can a 25-year trend in Soudano-Sahelian vegeta-	Global Environmental Change
	tion dynamics be interpreted in terms of land use	
	change? A remote sensing approach.	
170. Dardel et al., 2014	Re-greening Sahel: 30 years of remote sensing	Remote Sensing of Environment
	data and field observations (Mali, Niger)	
171. Rian et al., 2009	Analysis of Climate and Vegetation Characteris-	GIScience & Remote Sensing
	tics along the Savanna-Desert Ecotone in Mali Us-	
	ing MODIS Data.	
172. Marston et al., 2017	Scrubbing Up: Multi-Scale Investigation of	Remote Sensing
	Woody Encroachment in a Southern African Sa-	
	vannah.	
173. Verhoeye & de Wulf, 2002	Land cover mapping at sub-pixel scales using lin-	Remote Sensing of Environment
	ear optimization techniques	
174. Camargo et al., 2019	A Comparative Assessment of Machine-Learning	Remote Sensing
	Techniques for Land Use and Land Cover Classi-	
	fication of the Brazilian Tropical Savanna Using	
	ALOS-2/PALSAR-2 Polarimetric Images.	
175. Asner et al., 1997	Unmixing the directional reflectances of AVHRR	IEEE Transactions on Geoscience and Remote Sensing
	sub-pixel landcovers.	
176. Bastin et al., 1997	Comparison of fuzzy c-means classification, lin-	International Journal of Remote Sensing
	ear mixture modelling and MLC probabilities as	
	tools for unmixing coarse pixels	
177. Brandt et al., 2014	Local Vegetation Trends in the Sahel of Mali and	Remote Sensing
	Senegal Using Long Time Series FAPAR Satellite	
	Products and Field Measurement (1982–2010).	
178. Higginbottom & Symeonakis, 2020	Identifying Ecosystem Function Shifts in Africa	Remote Sensing
,	Using Breakpoint Analysis of Long-Term NDVI	•
	and RUE Data.	
179. Herrero et al., 2020	An Evaluation of Vegetation Health in and	Applied Sciences
	around Southern African National Parks during	
	the 21st Century (2000–2016).	

uthor (s) ,Year	Title	Journal
180. Murungweni et al., 2020	Rainfall Trend and Its Relationship with Normal- ized Difference Vegetation Index in a Restored Semi-Arid Wetland of South Africa.	Sustainability
181. Blentlinger & Herrero, 2020	Tale of Grass and Trees: Characterizing Vegetation Change in Payne's Creek National Park, Belize from 1975 to 2019.	Applied Sciences
182. Mbatha & Xulu, 2018	Time Series Analysis of MODIS-Derived NDVI for the Hluhluwe-Imfolozi Park, South Africa: Impact of Recent Intense Drought.	Climate
183. Bunting et al., 2018	Understanding Long-Term Savanna Vegetation Persistence across Three Drainage Basins in Southern Africa.	Remote Sensing
184. Herrero et al., 2019	Integrating Surface-Based Temperature and Vegetation Abundance Estimates into Land Cover Classifications for Conservation Efforts in Savanna Landscapes.	Sensors
185. Sun et al., 2018	Optimizing kNN for Mapping Vegetation Cover of Arid and Semi-Arid Areas Using Landsat Images.	Remote Sensing
186. Cui et al., 2019	A Probability-Based Spectral Unmixing Analysis for Mapping Percentage Vegetation Cover of Arid and Semi-Arid Areas.	Remote Sensing
187. Traore et al., 2014	Assessing Long-Term Trends In Vegetation Productivity Change Over the Bani River Basin in Mali (West Africa)	Journal of Geography and Earth Sciences
188. Palamuleni et al., 2007	Mapping rural savanna woodlands in malawi: a comparison of maximum likelihood and fuzzy classifiers.	IEEE International Geoscience and Remote Sensing Symposium
189. Jia et al., 2015	Global Land Surface Fractional Vegetation Cover Estimation Using General Regression Neural Net- works From MODIS Surface Reflectance.	IEEE Transactions on Geoscience and Remote Sensing

Author (s) ,Year	Title	Journal
190. Li et al., 2014	Improving Estimates of Grassland Fractional Veg-	Remote Sensing
	etation Cover Based on a Pixel Dichotomy Model:	
	A Case Study in Inner Mongolia, China.	
191. Jiménez-Muñozet al., 2009	Comparison Between Fractional Vegetation	Sensors
	Cover Retrievals from Vegetation Indices and	
	Spectral Mixture Analysis: Case Study of	
	PROBA/CHRIS Data Over an Agricultural Area.	
192. Shiferaw et al., 2019	Performances of machine learning algorithms for	Ecology and Evolution
	mapping fractional cover of an invasive plant	
	species in a dryland ecosystem.	
193. Yang et al., 2016	Comparison of Four Machine Learning Methods	Remote Sensing
	for Generating the GLASS Fractional Vegetation	-
	Cover Product from MODIS Data.	
194. van Leeuwen et al., 2013	Trends and ENSO/AAO Driven Variability in	Remote Sensing
	NDVI Derived Productivity and Phenology	Ţ
	alongside the Andes Mountains.	
195. Xiao & Moody, 2005	A comparison of methods for estimating frac-	Remote Sensing
•	tional green vegetation cover within a desert-to-	Ţ
	upland transition zone in central New Mexico,	
	USA. Remote Sensing of Environment	
196. Qi et al., 2000	Spatial and temporal dynamics of vegetation in	Agricultural and Forest Meteorology
	the San Pedro River basin area.	-
197. Jiapaer et al., 2011	A comparison of methods for estimating frac-	Agricultural and Forest Meteorology
•	tional vegetation cover in arid regions.	-