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Abstract

Whole genome sequencing (WGS) enables complete characterization of bacterial pathogenic isolates at single nucleotide reso-
lution, making it the ultimate tool for routine surveillance and outbreak investigation. The lack of standardization, and the 
variation regarding bioinformatics workflows and parameters, however, complicates interoperability among (inter)national lab-
oratories. We present a validation strategy applied to a bioinformatics workflow for Illumina data that performs complete char-
acterization of Shiga toxin-producing Escherichia coli (STEC) isolates including antimicrobial resistance prediction, virulence 
gene detection, serotype prediction, plasmid replicon detection and sequence typing. The workflow supports three commonly 
used bioinformatics approaches for the detection of genes and alleles: alignment with blast+, kmer-based read mapping with 
KMA, and direct read mapping with SRST2. A collection of 131 STEC isolates collected from food and human sources, exten-
sively characterized with conventional molecular methods, was used as a validation dataset. Using a validation strategy spe-
cifically adopted to WGS, we demonstrated high performance with repeatability, reproducibility, accuracy, precision, sensitivity 
and specificity above 95 % for the majority of all assays. The WGS workflow is publicly available as a ‘push-button’ pipeline at 
https://​galaxy.​sciensano.​be. Our validation strategy and accompanying reference dataset consisting of both conventional and 
WGS data can be used for characterizing the performance of various bioinformatics workflows and assays, facilitating interop-
erability between laboratories with different WGS and bioinformatics set-ups.

DATA SUMMARY

The datasets supporting the conclusions of this study have 
been deposited in the NCBI SRA under accession number 

PRJNA633966 (in-house sequenced data), Zenodo (10.5281/
zenodo.4006065) (results of all bioinformatics analyses), and 
are included within this paper and its Supplementary Files 
(results of the validation). The authors confirm all supporting 
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data and protocols have been provided within the article or 
through supplementary data files.

INTRODUCTION
Whole genome sequencing (WGS) has revolutionized food-
borne outbreak investigation and surveillance of a wide variety 
of microbial pathogens [1]. The characterization of isolates 
using conventional microbiological methods requires several 
different labour-intensive molecular and other assays, and can 
take several days to complete. In contrast, WGS can provide a 
complete overview of an isolate with all required information 
for pathogen typing and characterization, including detec-
tion of genes encoding antimicrobial resistance (AMR) and 
virulence factors, serotype prediction, plasmid detection and 
sequence typing, in a relatively short period (3–5 days) with 
single-nucleotide resolution and at a relatively low cost per 
sample [2]. Moreover, WGS has also enabled novel phylo-
genetic inference methods such as core genome multi-locus 
sequence typing (cgMLST) and whole-genome SNP (wgSNP) 
analysis that provide much more discriminatory power to 
delineate strains compared to conventional methods such 
as PFGE or multiple-locus variable-number tandem repeat 
analysis (MLVA) [3–5], providing added value for quick and 
accurate outbreak resolution. WGS-based methods for relat-
edness investigation can be scaled up from case-by-case appli-
cations to routine surveillance, as illustrated by EnteroBase 
for cgMLST [6], and SnapperDB for wgSNP [7] analysis.

Because of these advantages, the use of WGS for pathogen 
typing in both outbreak situations and routine surveillance 
is becoming more widespread, with many national reference 
centres (NRCs, human) and laboratories (NRLs, food and 
feed) integrating it into their routine activities [1, 8, 9]. This 
is, however, not always straightforward because of, among 
others, lack of sufficient bioinformatics expertise and the 
requirement for validation of WGS-based methods by 
enforcement and other (clinical) laboratories that operate 
according to strict quality systems. The first hurdle can be 
tackled by the increasing availability of web-based tools that 
allow non-expert bioinformaticians to analyse their data 
without the need for command-line experience or special-
ized hardware. The Center for Genomic Epidemiology 
(CGE) provides a widely used set of such tools including, 
among others, AMR characterization [10, 11], virulence gene 
detection [12], plasmid replicon detection [13] and serotype 
determination [14]. The PathoSystems Resource Integration 
Center (PATRIC) website provides a broad array of analyses 
and is applicable to all bacterial species, with a focus on 
pathogens [15]. A multitude of web-based alternatives exists 
for AMR characterization [16], plasmid detection [17] and 
sequence typing [6, 18]. Specialized portals for WGS-based 
analysis of specific species also exists, such as EnteroBase 
[6] and ARIES [19] for Escherichia coli, providing more 
comprehensive solutions for analysing WGS data. The second 
hurdle, i.e. the need for validation of bioinformatics assays 
to demonstrate that they are ‘fit-for-purpose’ and adhere to 
certain predefined quality characteristics, as also specifically 

required to obtain International Organization for Standardi-
zation (ISO) accreditation, should be addressed to facilitate 
the exchange of raw WGS data but also to infer results such 
as isolate characteristics and relatedness. The bioinformatics 
methodology can differ, and multiple algorithmic approaches 
exist to compare WGS data against databases containing 
information on AMR, virulence, cgMLST, etc. Three widely 
used methodologies to search against such databases are: 
(i) de novo assembly followed by alignment with blast+ 
[20]; (ii) kmer-based read mapping with tools such as KMA 
[21]; and (iii) direct read mapping with tools such as SRST2 
[22]. However, performance differences between these three 
approaches have not been extensively evaluated.

As outbreak investigations usually involve several different 
laboratories, often across different countries, harmonization 
of employed methods is essential to link clinical cases to 
suspected food sources. The need for validation of WGS-
based workflows has therefore recently started to receive 
more attention, in particular how to approach this relatively 
novel technology in light of the more traditional concept of 
validation of conventional molecular biology-based methods. 
Consequently, recent studies have showcased validation strat-
egies for end-to-end WGS workflows [23], adaptation of the 
same workflow in different labs [24], the general WGS process 
subdivided into its individual components (library prepara-
tion, sequencing, analysis, etc.) [25], and also specifically the 
bioinformatics component [26]. This is also part of the scope 
of the ISO working group ISO TC34-SC9-WG25, which is 

Impact Statement

Whole genome sequencing (WGS) is rapidly being inte-
grated for routine surveillance for a wide variety of path-
ogens in public health settings. However, its successful 
integration is hindered by a lack of standardized guide-
lines and quality criteria for bioinformatics workflows, 
which complicates collaboration between laboratories. 
We present a bioinformatics workflow for the complete 
characterization of Shiga toxin-producing Escherichia 
coli isolates, developed with the aim of routine usage by 
non-expert bioinformaticians from laboratories oper-
ating under a strict quality system. The performance of 
the workflow was extensively validated on a large set of 
samples, characterized with molecular methods, demon-
strating overall high performance. Both our validation 
strategy and generated reference dataset, including 
metadata confirmed with conventional methods, are 
of particular interest to aid other laboratories with the 
implementation and validation of their WGS workflows. 
Moreover, a ‘push-button’ implementation of our bioin-
formatics workflow has been made available on the 
public Galaxy instance of our institute for non-profit 
usage, coupled with a YouTube tutorial video detailing the 
pipeline usage and interpretation of results.
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preparing general requirements and guidelines for WGS to 
type and genomically characterize foodborne bacteria [27] 
[ISO 23418 : 2018(E)]. However, a widely accepted consensus 
is currently still missing. In particular, the reference standard 
to employ for validation of WGS-based workflows, i.e. a 
dataset for which the ‘ground truth’ is known and can be used 
to evaluate the performance of WGS, remains problematic. 
High-quality reference WGS datasets for which information 
from conventional methods and/or epidemiological links are 
available remain scarce [14, 28]. This information is typically 
lacking in publicly available WGS data for which metadata 
(used here to refer to the intrinsic characteristics of the 
isolate such as the AMR or virulence profile rather than host 
information) often is inconsistent or missing, hampering its 
use for systematic evaluation. This is partly due to the fact 
that constructing such databases requires employing labour- 
and cost-intensive molecular biology-based methods such 
as PCR amplification and/or Sanger sequencing, which is 
considered a gold standard for confirming the absence/pres-
ence of genomic markers of interest (e.g. AMR gene, cgMLST 
allele) [29]. Currently available reference datasets are often 
limited to a single aspect such as the AMR profile [30, 31], the 
presence of virulence factors [12], serotype [14] and known 
epidemiological links of outbreaks [32, 33]. Efforts by organi-
zations such as the Global Microbial Identifier (GMI) and ISO 
therefore aim not only to provide guidelines to standardize 
WGS validation, but also databases with high-quality meta-
data linked to genomic information [34].

Recently, the European Food Safety Authority (EFSA) high-
lighted the necessity of a harmonized and quality-controlled 
WGS-based system for investigation of cross-country 
outbreaks and risk assessment of foodborne pathogens, 
employing Shiga toxin-producing Escherichia coli (STEC) 
as a case study for switching to WGS [35]. STEC is a 
rapidly evolving human enteric pathogen responsible for 
foodborne infections that can lead to gastroenteritis, diar-
rhoea and haemolytic uremic syndrome (HUS), and may 
even be fatal [36]. The added value of WGS was highlighted 
in particular by the German 2011 outbreak of the virulent 
O104:H4 STEC strain resulting in 3816 cases, including 
845 HUS cases and 54 deaths [37]. Conventional molecular 
biology-based assays failed to resolve the outbreak whereas 
WGS managed to provide a complete overview of events 
that had resulted in the emergence of this particularly path-
ogenic outbreak strain. Since then, the benefit of WGS for 
STEC characterization for foodborne outbreaks and routine 
surveillance has been illustrated extensively [8, 12, 38, 39].

Here, we present the validation of a bioinformatics work-
flow to fully characterize STEC and other E. coli isolates, 
exhaustively validated by extending a previously described 
validation framework for the bioinformatics component of 
WGS workflows [26]. A set of 137 isolates for which infor-
mation based on conventional methods was available for 
the AMR profile, presence of virulence genes and serotype 
was sequenced using the Illumina MiSeq to create a high-
quality reference dataset of 131 samples against which the 
performance of the bioinformatics workflow was validated 

for all assays. Moreover, three different bioinformatics 
approaches were evaluated based on (i) de novo assembly 
with SPAdes followed by alignment with blast+; (ii) 
kmer-based read mapping with KMA; and (iii) direct read 
mapping with SRST2.

METHODS
Bioinformatics workflow
Data (pre-)processing and quality control
Fig. 1 provides an overview of the bioinformatics workflow, 
which is compatible with WGS data generated using Illu-
mina sequencers. Data pre-processing and quality control 
are executed as previously described by Bogaerts et al. [26] 
with updates to the most recent tool versions of under-
lying tools during development (only changed options and 
versions are mentioned below). Briefly, first pre-trimming 
quality reports are generated using FastQC 0.11.5 (https://
www.​bioinformatics.​babraham.​ac.​uk/​projects/​fastqc/), 
before reads undergo quality trimming using Trimmomatic 
0.38 [40], and post-trimming quality reports with FastQC 
are created. Genome assembly is done using SPAdes 3.13.0 
[41]. Two specific extra filtering steps are performed in line 
with recommendations of the European Center for Disease 
Prevention and Control [42]. Firstly, the ‘--cov_cutoff ’ 
parameter is set to 10 to filter out contigs with a (kmer) 
coverage lower than 10. Secondly, contigs smaller than 
1000 bases are removed using seqtk seq 1.2 (https://​github.​
com/​lh3/​seqtk) using the ‘-L’ option. Assembly statistics 
are calculated on the filtered assembly with QUAST 4.4 
[43]. The processed reads are mapped against the assembly 
using Bowtie2 2.3.0 [44] with the ‘--end-to-end’, ‘--sensi-
tive’ and ‘--phred33’ options enabled, and used to estimate 
the coverage with SAMtools depth 1.9 [45]. Several quality 
metrics are then computed, for which warning and failure 
thresholds were defined by selecting more and less strin-
gent values for metrics exhibiting less and more variation 
between samples, respectively, for which an overview is 
presented in Table 1. Additionally, Kraken2 2.0.7 [46] is 
used to check against contamination with default param-
eters and a database containing all NCBI RefSeq Genome 
entries (database accessed 18 February 2019) annotated as 
‘complete genome’ with accession prefixes NC, NW, AC, 
NG, NT, NS and NZ of the following taxonomic groups: 
archaea, bacteria, fungi, human, protozoa and viruses.

Genotypic AMR detection
The ResFinder [10] database is used for AMR gene detec-
tion. The database is clustered beforehand at 80 % identity 
using CD-HIT 4.6.8 [47] to limit reported genes to one per 
cluster. The database is automatically pulled in-house and 
updated weekly to ensure up-to-date results (the date of 
the last update is included in the output report). The work-
flow supports alignment-based detection using blast+ 
2.6.0 against the assembly [20], kmer-based detection 
using KMA 1.2.25 [21] and read mapping-based detection 
using SRST2 0.2.0 [22]. For blast+, assembled contigs are 
aligned to the database using blastn with the ‘-task’ option 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/lh3/seqtk
https://github.com/lh3/seqtk
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set to ‘blastn’, and only hits with ≥90 % identity and ≥60 % 
target coverage are retained. The best hit for each cluster is 
determined using the allele scoring method described by 
Larsen et al. [48]. Visualizations of pair-wise alignments are 
extracted from the blast output generated with the pairwise 
output format (‘-outfmt 1’). For KMA, trimmed paired-end 
reads are provided as input with otherwise default settings. 
Only hits with ≥90 % identity and ≥60 % target coverage 
are retained, and the best hit for each cluster is selected 
based on the score calculated by KMA. For SRST2, trimmed 
paired-end reads are provided as input, and the best hits are 
selected by SRST2 with the ‘--min_coverage’ parameter set 
to 60 and ‘--max_divergence’ set to 10. The latter was used 
as an alternative to the percentage sequence identity used 
by the other detection methods, which is not calculated 
by SRST2. A local installation of PointFinder [11] (https://​
bitbucket.​org/​genomicepidemiology/​pointfinder, accessed 
27 February 2019) is used to screen for AMR-associated 
point mutations using the assembly as input and setting 
the ‘--method’ parameter to ‘blastn’. The underlying 
PointFinder database is not automatically updated due to 
potential incompatibilities between the updated database 
format and tool version. Detected mutations, associated 
resistance and PubMed identifiers (when available) are also 
provided in the output report.

Virulence gene detection
Virulence genes are detected using the stx and E. coli data-
bases from VirulenceFinder [12] and using the same work-
flow as described for genotypic AMR detection, but with 

the minimum target coverage set to ≥90 %. The underlying 
databases are pulled in-house and updated weekly with the 
last update date mentioned in the output report.

Serotype determination
Serotype determination is performed by first identifying H- and 
O-type determining genes using the SerotypeFinder database 
[14] through the same methodology as described for genotypic 
AMR detection but with the minimum sequence identity set 
to ≥85 % for blast+ and KMA, and divergence set to ≥85 % for 
SRST2. Databases for the H- and O-type determining genes are 
automatically pulled in-house and updated weekly with the last 
database update date mentioned in the output report. The H- 
and O-types are then determined based on the decision rules 
shown in Fig. S1 (available in the online version of this article). 
The detected serotype is listed in the output report below the 
tables with the detected genes for the O- and H-type.

Plasmid replicon detection
Plasmid replicons are detected using the PlasmidFinder data-
base for Enterobacteriaceae [49], using the same workflow as 
described for genotypic AMR detection but with the following 
changes: minimum percentage identity for blast+ and KMA 
detection set at ≥95 % instead of ≥90 % in accordance with 
default recommendations for plasmid replicon detection. For 
SRST2, a filter is applied to remove hits with ≥5 % divergence. 
The database is automatically pulled in-house and updated 
weekly with the last database update date mentioned in the 
output report.

Fig. 1. Overview of the bioinformatics workflow. Each box represents a component corresponding to a series of tasks that provide 
a certain well-defined functionality (indicated in bold). Major bioinformatics software packages employed in each module are also 
mentioned (indicated in italics). Data processing steps are indicated in yellow, and bioinformatics assays are indicated in red. Data flows 
specific to blast+ are indicated with blue dashed lines, and data flows for KMA and SRST2 with orange dashed lines. PE, paired-end.

https://bitbucket.org/genomicepidemiology/pointfinder
https://bitbucket.org/genomicepidemiology/pointfinder
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Sequence typing
The cgMLST scheme from EnteroBase [6] is used for (geno-
typic) sequence typing using the same workflow as described 
for genotypic AMR detection, typing each locus separately. All 
sequences and profiles are automatically pulled in-house and 
updated weekly with the last database update date mentioned 
in the output report. For blast+, detection is analogous to the 
gene detection workflow, but selection of the best hit is done 
per locus instead of database cluster. If multiple exact matches 
exist, the longest one is reported. For KMA, trimmed paired-
end reads are used as input and the best hit for each locus 
is extracted from the tabular output files. If sequence type 
definitions are available and the detected allele combination 
matches a known sequence type, this is reported in the output. 
Typing with SRST2 using cgMLST schemes is not supported 
because of runtime requirements, but classic MLST typing 
is supported and is performed using the ‘--mlst-db’ option 

with default settings for classical MLST schemes (see section 
below).

Implementation and availability
The workflow is implemented in Python 3.7.5 and runs on 
a (virtualized) Ubuntu 18.04 (64-bit) server. The workflow 
output is provided as an interactive HTML report with the 
most relevant information and links to the full output of the 
different bioinformatics assays, enabling further processing or 
in-depth investigation. A tabular summary file is also provided, 
containing an accumulation of the most relevant statistics 
and results in a tab-separated format that can be useful for 
programmatic processing. The workflow is integrated as a 
stand-alone tool in an in-house Galaxy Workflow Manage-
ment System instance [50], and requires only uploading 
the data, setting the pipeline detection method (blast+, 
KMA or SRST2), and selecting the desired bioinformatics 

Table 1. Quality control metrics of the bioinformatics workflow

Metric Definition Warning threshold Failure threshold

Contamination Percentage of reads classified as highest 
occurring in species other than E. coli

1 % 5 %

Median coverage against assembly Median coverage based on mapping of 
the trimmed reads against the assembled 

contigs

20 10

% cgMLST genes identified Percentage of cgMLST genes identified. 
Only perfect hits (i.e. full length and 
100 % identity) are considered [85]

95 90

Average read quality (Q-score) Q-score of the trimmed reads averaged 
over all reads and positions

30 25

GC-content deviation Deviation of the average GC content of 
the trimmed reads from the expected 

value for E. coli (50.5% [86])

2 % 4 %

N-content Average N-fraction per read position 
of the trimmed reads, expressed as a 

percentage

0.5 % 1 %

Per base sequence content Difference between AT and GC 
frequencies averaged at every read 

position. Since primer artefacts can cause 
fluctuations at the start of reads due to 
the non-random nature of enzymatic 
tagmentation when the Nextera XT 

protocol is used for library preparation, 
the first 20 bases are not included in 

this test. As fluctuations can also exist 
at the end of reads caused by the low 

abundance of very long reads because of 
read trimming, the 0.5 % longest reads are 

similarly excluded

3 % 6 %

Minimum read length Minimum read length after trimming 
(denoted as a percentage of untrimmed 
read length) that a minimum of half of 
all trimmed reads must obtain (e.g. half 

of all trimmed reads should either be 
minimally 120 or 200 bases long when 
raw input reads lengths are 300 bases 

long)

66.67 % 40.00 %
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assays. A ‘push-button’ implementation of this workflow is 
also available as a free resource for academic and non-profit 
usage (registration required) at the public Galaxy instance 
of our institute at https://​galaxy.​sciensano.​be. Usage of the 
workflow through Galaxy is explained in a training video that 
is available on YouTube (https://​youtu.​be/​FLCM-​BbzIBY). 
The sample ‘STEC_DEMO’ in this video corresponds to 
sample EH1380 (SRR11816069) from the validation dataset. 
A screenshot of the interface is provided in Fig. S2. All output 
reports of this workflow on the validation dataset have been 
made available in Zenodo (see data statement). Besides the 
validated assays discussed in this paper, our workflow also 
allows other bioinformatics assays, which were not validated 
for routine purposes but that can nonetheless be used for 
informative purposes, such as resistance gene detection with 
alternative AMR databases (NDARO [30], ARG-ANNOT 
[51] and CARD [16]), sequence typing with the regular 
MLST schemes from Institut Pasteur [52] and the University 
of Warwick [6] and the INNUENDO cgMLST scheme [53], 
and variant calling and filtering using the methodology of 
the CSI phylogeny pipeline [54]. Moreover, the pipeline also 
supports using Ion Torrent data as input files.

Validation dataset and characterization with 
conventional methods
Selection of isolates and WGS
The validation dataset consists out of 137 STEC isolates 
collected from human faeces (n: 43) and various food 

matrices (n: 94) sampled between June 1998 and April 
2014. Genomic DNA of all isolates was prepared between 
2012 and 2014 in the scope of another project using the 
DNeasy Blood and Tissue kit (Qiagen) according to the 
manufacturer’s protocol. Each DNA extract was preserved 
at −20 °C before Nextera XT DNA library preparation 
(Illumina) according to the manufacturer’s instructions, 
and subsequently underwent MiSeq sequencing over seven 
sequencing runs using the MiSeq V3 chemistry (Illumina) 
for the production of 2×250 bp paired-end reads, aiming 
for a theoretical coverage of 60× per sample. All sequencing 
data have been submitted to SRA [55] under BioProject 
PRJNA633966. The dataset was complemented with nega-
tive control samples from species other than E. coli retrieved 
from SRA. An overview of all isolates and corresponding 
accession numbers is provided in Table S1. A schematic 
overview of characterization with conventional methods is 
also provided in Fig. 2. A phylogenomics comparison of all 
samples of the validation dataset was obtained using the 
results of the sequence typing assay for cgMLST, after which 
a minimum spanning tree was constructed using GrapeTree 
2.2 [56] with the ‘method’ option set to ‘MSTreeV2’. The 
resulting phylogenetic tree is provided in Fig. 3, for which 
sample metadata and statistics on the available reference 
information were added as annotations and visualized using 
IToL [57]. Classic MLST sequence type information was 
extracted from the sequence typing results generated with 
blast+-based detection.

Fig. 2. Overview of the characterization of the validation samples. Boxes with blue headers represent different steps in the validation. 
The number of samples, isolates or observations is indicated at the bottom of each box. The top part of the figure represents the 
collection of the validation samples from the Belgian NRC and NRL for STEC. The grey boxes group the different steps of the validation: 
characterization with molecular methods (‘Molecular’), whole genome sequencing (‘WGS’) and in silico characterization for assays 
without reference information from molecular methods (‘In silico’). All detected AMR genes with WGS were confirmed to be present 
with PCR. National Reference Centre (NRC), National Reference Laboratory (NRL), whole genome sequencing (WGS), ampicillin (AMP), 
cefotaxime (CTF). *Does not include observations from 10 negative control samples from species other than E. coli.

https://galaxy.sciensano.be.
https://youtu.be/FLCM-BbzIBY
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AMR susceptibility
All isolates originating from human faeces, except for one, were 
phenotypically tested (n: 42) for susceptibility to ampicillin, 
cefotaxime, chloramphenicol, ciprofloxacin, gentamycin, 
kanamycin, nalidixic acid, streptomycin, sulphonamides, 
tetracycline and trimethoprim (I2A Diagnostics) using the 
Kirby-Bauer Disc Diffusion method, according to Euro-
pean Committee on Antimicrobial Susceptibility Testing 
(EUCAST) recommendations [or on Clinical and Laboratory 
Standards Institute (CLSI) recommendations when no break-
points were available from the former]. Observed phenotypic 

resistance profiles to the 11 antibiotics were combined per 
antibiotic group (see validation strategy), as indicated in Table 
S2. Because only phenotypic data were available, all predicted 
resistance by the bioinformatics workflow was further veri-
fied with conventional methods through PCR amplification 
of the detected AMR genes, and PCR amplification followed 
by Sanger sequencing of the regions containing point muta-
tions associated with AMR. Applied PCR primer sequences, 
primer concentrations and PCR conditions are provided 
in Table S9. The methodology for the Sanger sequencing is 

Fig. 3. Minimum spanning tree containing an overview of the diversity contained within the validation dataset. The scale bar is expressed 
as the number of cgMLST allele differences between isolates. The annotations are (from inner to outer rings): sample name, sample 
origin (human or food according to the colour legend), sequence type determined with the MLST scheme of the University of Warwick 
using blast+-based detection, O-type and H-type as determined with PCR-based methods (absence indicates that the serotyping 
determining genes were not tested with PCR), presence of stx1 and stx2 as determined with PCR-based methods (a blue circle denotes 
presence), the number of virulence genes from the set of 20 virulence genes other than stx1 and stx2 that were detected with PCR-
based methods, the number of AMR genes that were detected with blast+ and confirmed with PCR, and the number of detected plasmid 
replicons by the reference standard (PlasmidFinder). The number of AMR genes, virulence genes and plasmid replicons are indicated 
according to the colour legend. Antimicrobial resistance (AMR). Full detailed information on the metadata for the characteristics of the 
validation dataset is available in the Supplementary Material. *O-types for samples EH1873 and EH1389 were abbreviated to ‘O*‘ from 
‘O17/43/44/77/106’ and ‘O90/127’, respectively; H-type for sample TIAC1419 was H21/H7.
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described in the Supplementary Methods. Note that predicted 
sensitivity could not be further investigated due to the imper-
fect mapping between genotypic features and the resistance 
phenotype (see Discussion).

Detection of virulence genes
The presence or absence of virulence factor encoding genes 
in human isolates (n: 43) was determined according to the 
routine methods performed at the Belgian NRC for STEC 
(NRC-STEC) as described previously [58]. In brief, detection 
of stx1 and/or stx2 in human isolates was performed with 
conventional PCR for strains isolated before 2008 [59–61]. 
Since these primers did not allow detection of stx2f, a multi-
plex PCR was developed and used from 2008 onwards for the 
combined detection of stx1 (a, c, d) and stx2 (a-g) as described 
before [62–64]. Moreover, the presence/absence of eae and 
ehxA was determined with PCR, as described before [63]. All 
food isolates (n: 94) were genotypically characterized in the 
scope of another project using a PCR-based method. The pres-
ence/absence of stx1, stx2 and 20 other virulence genes [aaiC, 
aggR, bfpA, eae, ehxA, ent/espl2, espP, ipaH, katP, lt (ltcA), 
nleA, nleB, nleE, nleF, nleH1-2, saa, sth, stp, subA and terB] 
was determined. The different primer sets, primer concentra-
tions and PCR conditions used are described in Table S3. The 
reference information for genes discrepant with the output of 
the workflow was updated based on retesting with PCR using 
the same primers. An overview of all evaluated and detected 
virulence genes is provided per sample in Table S4.

Serotype determination
Most food (n: 89) and part of the human isolates (n: 27) 
were genotypically serotyped using PCR-based methods 
in the scope of another project. The assay discriminated 16 
O-groups (O25, O26, O45, O55, O90/127, O91, O103, O104, 
O111, O113, O118, O121, O128, O145, O157 and O174) and 
nine H-types (H2, H4, H7, H8, H11, H19, H21, H25 and 
H28). The different primer sets, primer concentrations and 
their PCR conditions are described in Table S5. For some 
samples, only the O- (n: 12) or H-type (n: 3) was determined. 
In case of discrepant results with the bioinformatics workflow, 
the presence/absence of the respective O- and/or H-type 
determining genes was confirmed with conventional PCR, 
for which primer sequences and concentrations and PCR 
conditions are provided in Table S6. The serotype informa-
tion was updated based on these results as shown in Table S7, 
which contains an overview of the determined serotypes for 
the tested samples.

Validation of the bioinformatics workflow
Validation strategy
We built upon a previously described validation framework 
with performance metrics adapted towards our purpose of 
exhaustively validating the bioinformatics workflow: repeat-
ability, reproducibility, accuracy, precision, sensitivity and 
specificity [26]. A full overview of all performance metrics 
and their corresponding definitions and formulas is presented 
in Table 2. Repeatability and reproducibility of the workflow 

were evaluated by running the bioinformatics workflow twice 
on the same dataset on the same and a separate computational 
environment, respectively. The two computational environ-
ments were Python 3.7.5 and Python 3.7.4 on two different 
Ubuntu 18.04.3 LTS (64-bit) servers. Accuracy, precision, 
sensitivity and specificity all require classification of work-
flow results as either true positives (TPs), false positives (FPs), 
true negatives (TNs) or false negatives (FNs), determined 
from comparison against a reference that represents the 
‘ground truth’ (see Table S8). Two approaches were adopted. 
Firstly, if information from conventional wet-lab methods 
was available, this was denoted as ‘database reference’. This 
corresponds to the box ‘Molecular’ in Fig.  2. Secondly, if 
this information was not available or impossible to obtain, 
i.e. for plasmid replicon detection and cgMLST, a ‘tool refer-
ence’ was used where the workflow output was compared to 
results of staple bioinformatics tools widely used within the 
scientific community. This corresponds to the box ‘In silico’ in 
Fig. 2. Only samples that did not have any failures for quality 
control checks (Table 1) were considered for validation of the 
bioinformatics workflow (Table S1). The three bioinformatics 
approaches (blast+, KMA, SRST2) were evaluated for all 
assays unless stated otherwise. Details for individual bioinfor-
matics assays are provided in the next sections. A schematic 
overview of the validation strategy is provided in Fig. 2.

AMR prediction
AMR prediction came out of genotypic AMR detection and 
was evaluated by comparing results of phenotypic testing of 
a database reference with results of our workflow. The valida-
tion was therefore performed at the level of phenotypic AMR 
prediction, even though the workflow only reports AMR 
at the genotypic level (as discussed above). Because AMR 
associations are reported by the workflow at the antibiotics 
group level (beta-lactamases, fluoroquinolones, etc.), the 
validation was also performed on a per-group basis through 
similarly combining the phenotypic data per antibiotic group 
(Table S2). A strain was considered resistant to an antibiotics 
group if it exhibited (intermediate) phenotypic resistance to 
at least one of the tested antibiotics of that group. Samples 
that were not tested phenotypically for AMR were excluded 
from the validation set. A strain was predicted to be resistant 
to an antibiotic group if at least one gene or point mutation 
associated with resistance to the respective antibiotics group 
was detected. Mutations detected by PointFinder without a 
PubMed identifier were not considered. The following defi-
nitions of classification were used to calculate performance 
metrics: TP and FN as cases with phenotypic resistance to an 
antibiotic group where the workflow predicted resistance and 
sensitivity, respectively, and TN and FP as cases with pheno-
typic sensitivity to an antibiotic group where the workflow 
predicted sensitivity and resistance, respectively.

Virulence gene detection
Virulence gene detection was evaluated by comparing PCR 
results for the database reference with results of our workflow. 
The positive test set for this assay corresponded to all viru-
lence genes detected by PCR, and the negative set to the tested 
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virulence genes for which PCR gave negative results. The 
following definitions were then used: TP as genes detected 
by both our workflow and PCR; FN as genes missed by our 
workflow but reported by PCR; FP as genes detected by our 
workflow but not reported by PCR; and TN as genes detected 
by neither our workflow nor PCR. Validation was performed 
separately for stx genes and 20 other virulence genes. For 
stx gene detection, the VirulenceFinder stx database was 
employed. For detection of other virulence genes, since the 
VirulenceFinder E. coli database did not contain all of them, 
a custom database was used with sequences extracted from 
the VirulenceFinder E. coli database complemented with 
sequences retrieved from NCBI. The tested genes were: aaiC, 
aggR, bfpA, eae, ehxA, ent/espL2, espP, ipaH, katP, lt, nleA, 
nleB, nleE, nleF, nleH1-2, saa, sth, stp, subA and terB. A full 
overview and accession numbers are provided in Table S10.

Serotype determination
Serotype determination was evaluated by comparing sero-
types reported by the workflow with results of PCR-based 
assays. Samples for which only the O- (n: 12) or H-type (n: 
3) was tested with PCR-based methods were considered 
matching if the known O- or H-type was predicted correctly 
by the workflow. Samples with O-types that cannot be 
distinguished using WGS [14, 65]: EH1873 (O17/O44/O77), 
EH1389 (O90/O127), EH1641 and EH1766 (O118/O151), 
and EH1757 (O128ab/O128ac) were omitted from the valida-
tion. These O-groups have identical O-antigen coding genes, 
making them impossible to designate based on the detection 
of these genes [65]. The positive test set consisted of STEC 
samples for which the serotype was (partially) determined 
with PCR-based methods, with TP and FN defined as sero-
types where the output of our workflow corresponded, or did 
not correspond, to the PCR results, respectively. The negative 
test set consisted of ten negative control samples from species 
other than E. coli (Table S1), for which no serotype should 
be detected with the workflow, with TN and FP defined as 
correctly unidentified and falsely identified E. coli serotypes, 
respectively.

Plasmid replicon detection
Because no conventional data existed for the presence of 
plasmid replicons in the validation dataset, validation was 
performed using a tool reference. The output of plasmid 
replicon detection by the workflow was compared with the 
online CGE PlasmidFinder tool 2.1 [13] (https://​cge.​cbs.​
dtu.​dk/​services/​PlasmidFinder/) to which assemblies were 
provided as input selecting the ‘Enterobacteriaceae’ data-
base. Other settings were left at default values: a minimum 
percentage identity of 95 % and a minimum target coverage 
of 60 %. The positive test set for the validation corresponded 
to all plasmid replicons detected by the online PlasmidFinder 
tool, with TP defined as plasmid replicons detected by the 
workflow and the online PlasmidFinder and FN as plasmid 
replicons detected by the online PlasmidFinder but not the 
workflow. The negative test corresponded to all plasmid repli-
cons in the database that were not detected (on a per-sample 
basis), with TN defined as plasmid replicons in the database 

not detected by the workflow and online PlasmidFinder and 
FP as plasmid replicons detected by the workflow but not the 
online PlasmidFinder.

Sequence typing
Because no conventional data existed for cgMLST in the 
validation dataset, validation was performed using a tool 
reference for which the sequence query tool from ​PubMLST.​
org was used because it allows querying against the Enter-
oBase E. coli cgMLST scheme. Assemblies were used as input 
for ​PubMLST.​org. Performance evaluation for this assay was 
limited to blast+ and KMA, because SRST2 takes several 
days to finish for a single sample and is therefore infeasible for 
routine typing. The positive and negative set corresponded to 
all loci in the cgMLST scheme typed in the STEC and negative 
control samples, respectively. The following definitions were 
used, considering only perfect hits (i.e. full length and perfect 
identity): TP and FN as alleles of loci where the output of our 
workflow corresponded, or did not correspond, to the tool 
reference. TN and FP were evaluated by analysing negative 
control samples with the sequence typing workflow, with TN 
and FP defined as correctly unidentified and falsely identified 
alleles, respectively.

Benchmarking execution time for the different 
detection types of the bioinformatics workflow
Execution times for the different detection types (blast+, 
KMA, SRST2) for the different assays of the bioinformatics 
workflow were evaluated by running them on ten randomly 
selected samples (EH1389, EH1823, TIAC1185, TIAC1193, 
TIAC1245, TIAC1248, TIAC1400, TIAC1478, TIAC1523 and 
TIAC1947). All analyses were run sequentially using eight 
threads on a virtualized Ubuntu 18.04.4 LTS server (443 GB 
RAM, 4 x Intel Xeon E7-4850 CPUs) with solid-state drives 
where no other analyses were running. All assays were 
executed in triplicate on each sample to account for execution 
time variability. For each assay, the entire execution time was 
measured, including creation of output reports and reformat-
ting of output files. Due to the extremely long execution time 
of cgMLST with SRST2, those benchmarks were limited to the 
first 50 loci of the scheme and afterwards linearly extrapolated 
to estimate the execution time for the full scheme (2513 loci).

RESULTS
Evaluation of dataset quality
Out of 137 sequenced samples, five were discarded because 
their resulting genome assembly size was too small, resulting 
in various failed QC checks. One additional sample was 
discarded, because it failed the ‘percent cgMLST genes iden-
tified’ check, which was due to an approximately equal mix 
of two E. coli strains with a different serotype. One sample 
(EH2038) passed all quality checks, but manual investiga-
tion revealed a low-level contamination of an E. coli with a 
different serotype (see Fig. S4). Because this sample was not 
flagged by our QC checks, it was nevertheless included in 
the performance evaluation. Lastly, in some samples a latent 

https://cge.cbs.dtu.dk/services/PlasmidFinder/
https://cge.cbs.dtu.dk/services/PlasmidFinder/
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presence of Bos taurus was detected, probably originating 
from the original creation of the genomic DNA that was 
not targeted and hence not noticed in the original typing 
by means of conventional methods. Since no impact on the 
performance evaluation was detected and the remaining 
samples had a sufficiently high median coverage of 44×, this 
dataset of 131 samples was used for the validation. See the 
Supplementary Material for a more extended description of 
validation dataset quality. An overview of diversity contained 
within the validation dataset based on cgMLST is presented in 
Fig. 3, and demonstrates overall large diversity of the dataset 
including both more closely and more distantly related 
samples.

Evaluation of validation dataset
AMR prediction
Performance metrics for AMR prediction through geno-
typic AMR characterization are provided in Table 3. Across 
42 human samples that had been phenotypically typed for 
AMR, a total of 283 observations were available, including 
83 resistant and 200 susceptible phenotypes. Out of 83 
resistant observations, 79 were correctly identified by all 
three bioinformatics approaches. The dfrA1 gene associ-
ated with resistance to trimethoprim was missed in sample 
EH1811 by KMA (due to sequence identity filtering), but 
was correctly detected by blast+ and SRST2. The remaining 
three observations were missed (i.e. no genotypic detection 
of resistance whereas the phenotype indicated resistance) by 
all detection methods and were linked to the antibiotic group 
beta-lactamases. For these observations, the phenotypic 
testing had intermediate results for resistance to ampicillin 
(samples EH1858 and EH1923) and were therefore classified 
as resistant to the corresponding group (beta-lactamases). 
Out of 200 susceptible phenotypic observations, 196 were 
correctly predicted by all three bioinformatics approaches. 
The remaining four were FPs detected with all three methods 
(i.e. genotypic detection of resistance whereas the phenotype 
indicated susceptibility) and were limited to aminoglycosides 
(n: 2), fluoroquinolones (n: 1, caused by a point mutation) 
and sulphonamides (n: 1). All genotypic features detected 
by the workflow resulting in AMR predictions were evalu-
ated with PCR for genes (Table S15) and Sanger sequencing 
for point mutations (Table S16), which confirmed that all of 
them were present in the corresponding samples. The large 
majority of resistance predictions were based on the presence 
of genes, and only five point mutations with PubMed identi-
fier were detected across all samples that were all associated 
with fluoroquinolone resistance, resulting in four TPs and 
one FP when compared with the phenotype. This resulted 
in an accuracy, precision, sensitivity and specificity of 97.53, 
95.24, 96.39 and 98.00 %, respectively, for both blast+ 
and SRST2, and 97.17, 95.18, 95.18 and 98.00 % for KMA, 
respectively. Results for all intra- and inter-assay replicates 
were always 100 % concordant, resulting in a repeatability 
and reproducibility of 100 %. This was also the case for all 
other bioinformatics assays, which are therefore not further 
discussed in the following sections.

Virulence gene detection
Performance metrics were evaluated separately for the stx 
genes (stx1 and stx2) and other virulence factor encoding 
genes, and are provided in Table 3. Information for stx1 and 
stx2 from conventional methods was available for all 131 
samples (Table S4), resulting in a total of 262 observations. 
For seven samples, no stx genes were detected, indicating that 
these are technically not STEC isolates (but were still retained 
for the validation). Out of 141 stx-positive observations, 
only three could not be identified with blast+, but all were 
correctly detected with KMA and SRST2. For blast+, in two 
cases the gene was present on a contig that had been filtered 
because it had a kmer-coverage <10, and the other mismatch 
was caused by contig fragmentation in the stx gene sequence 
causing the gene to be filtered out during gene detection. For 
the 121 stx-negative observations, a single FP was reported 
by KMA and SRST2 in sample EH2038 that showed signs of 
contamination with another E. coli. Given the low depth of 
the detected gene, it is likely that the stx2 locus present in 
the contaminant was detected, which was missed by blast+ 
because low-depth contigs were filtered out of the assembly. 
This resulted in an accuracy, precision, sensitivity and speci-
ficity of 98.85, 100, 97.87 and 100 %, respectively, for blast+, 
and 99.62, 99.30, 100 and 99.17 % for KMA and SRST2.

Performance for the detection of the other virulence genes 
was similar. For 903 confirmed positive observations, there 
were 20, zero and one FN observations with blast+, KMA 
and SRST2, respectively. FN results by blast+ were caused 
by contig fragmentation (n: 18), contig length filtering (n: 1), 
and a gene that was not incorporated into the (unfiltered) 
assembly (n: 1). For SRST2, the nleE gene was missed in 
sample MB4093, which was correctly detected by KMA at 
very low depths (kmer coverage <5). For the 718 negative 
observations, only a single FP was reported by KMA, which 
was due to the nleH1-2 gene in sample TIAC1893 being 
detected at a sequence identity of 90.93 %, close to the 90 % 
cutoff. This resulted in an accuracy, precision, sensitivity and 
specificity of 98.77, 100, 97.79 and 100 %, respectively, for 
blast+; 99.94, 99.89, 100 and 99.86 %, respectively, for KMA; 
and 99.94, 100, 99.89 and 100 %, respectively, for SRST2.

Serotype determination
Performance metrics for serotype determination are provided 
in Table 3. Serotype information was available for 111 STEC 
samples (Table S7), and in three and 12 cases only the H-type 
and O-type was determined, respectively. After removing five 
samples with an undistinguishable serotype (see Material and 
methods), 106 samples remained that corresponded to the 
positive test set. The workflow detected the correct serotype 
for 103, 104 and 104 cases with blast+, KMA and SRST2, 
respectively. The remaining cases were considered FN (i.e. a 
mismatch between the workflow and conventional method), 
and were due to different reasons. For samples EH1533 
and EH1846 (both typed as O145:H28 with conventional 
methods), all methods detected the correct O-type, but 
blast+ detected both H28 and H46 for the H-types, KMA 
did not detect an H-type, and SRST2 only detected the correct 
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H-type for sample EH1846. Additionally, blast+ failed to 
detect the H-type in sample TIAC1881 (typed as O26:H11 
with conventional methods), which was correctly identi-
fied by SRST2 and KMA. The serotype for sample EH1733 
(O25:H40) was correctly identified with blast+ and KMA, 
but SRST2 detected H27 instead of H40. The negative test 
set consisted of 10 samples from other species for which no 
serotype should be detected with the workflow, which was 
always the case for all detection methods This resulted in an 
accuracy, precision, sensitivity and specificity of 97.41, 100, 
97.17 and 100 %, respectively, for blast+, and 98.28, 100, 
98.11 and 100 % for KMA and SRST2.

Plasmid replicon detection
Results for the online PlasmidFinder tool for all samples 
are shown in Table S17, and performance metrics for the 
plasmid replicon detection assay are provided in Table 3. In 
total, the online PlasmidFinder tool reported 333 replicons 
across 131 samples that were used as the positive test set. For 
blast+, results corresponded perfectly to the output of the 
tool reference, resulting in 100 % for all performance metrics. 
For KMA, 41 FNs were detected, limited to plasmid repli-
cons IncFIA (n: 28), IncQ1 (n: 6), IncFIB (n: 3), IncFII (n: 
2) and IncI1/IncB/O/K/Z (n: 2). All mismatches for IncFIA 
and IncQ1, and a single mismatch for IncFII and IncI1/
IncB/O/K/Z, were caused by an algorithmic difference in the 
calculation of percentage identity. For blast+, this calcula-
tion is limited to the aligned part of the sequences, whereas 
for KMA the whole sequence is considered, leading to a 
lower identity value and subsequent filtering of the hit. The 
remaining FNs with KMA were also caused by differences 
in the calculation of the percentage identity values, which 
were affected differently by indels in full-length hits. For 
SRST2, 14 FNs were detected, limited to plasmid replicons 
IncFIA (n: 9), IncI1/IncB/O/K/Z (n: 3) and IncFII (n: 2). In 
all of these cases, the replicon variant selected by SRST2 was 
different from the replicon variant selected by the blast+-
based workflow from the PlasmidFinder tool and contained 
more mismatches, resulting in a divergence value above the 
5 % threshold (see example in Table S18). The negative test 
set consisted of 12 505 observations, i.e. the plasmid replicons 
present in the PlasmidFinder database that had not been 
detected using the online PlasmidFinder tool. The detec-
tion with blast+ for the negative test set matched perfectly 
with the online PlasmidFinder tool. This resulted in perfect 
values of 100 % for all performance metrics for blast+. For 
KMA, nine FPs were observed. Eight of these were hits at low 
depth situated on contigs filtered out during the assembly 
because their kmer coverage was below 10, and were there-
fore not detected by the blast+-based detection of both the 
online PlasmidFinder tool and our workflow. The last case 
was caused by contig fragmentation in the IncFIB plasmid 
replicon in sample EH1819, which caused the hit to fail the 
length filtering applied by the online PlasmidFinder tool and 
our blast+-based workflow. This resulted in an accuracy, 
precision, sensitivity and specificity of 99.61, 97.01, 87.69 and 
99.93%, respectively, for KMA. SRST2 detected 15 FP hits that 
were spread across different plasmid replicons, including the 

same nine FP results from KMA-based detection. Fourteen 
FPs were caused by hits not detected due to low depth (n: 
13) and contig fragmentation (n: 1), as explained for KMA. 
The remaining FP (sample TIAC1442, Col440I) was due to 
two different regions similar to Col440 being found on high-
coverage contigs above the 90 % identity threshold of SRST2 
corresponding to a blast+ identity of 88 %, because SRST2 
does not consider indels for divergence calculation. Such FPs 
were consequently also not detected by the blast+-based 
detection of both the online PlasmidFinder tool and our 
workflow. This resulted in an accuracy, precision, sensitivity 
and specificity of 99.77, 95.51, 95.80 and 99.88 %, respectively, 
for SRST2.

However, because this reference standard itself is based on 
blast+, these performance metrics could be perceived as 
biased because several FPs detected with KMA/SRST2 were 
found to be well-supported upon inspection, and could 
therefore be considered as TPs. Performance was therefore 
re-evaluated by assigning cases where SRST2 and/or KMA 
detected a plasmid replicon that was missed by blast+ 
due to algorithmic limitations (i.e. contig fragmentations 
and depth filtering) to the positive instead of the negative 
test set. Updated values for performance metrics are listed 
in Table 3 in parentheses. This resulted in an accuracy, preci-
sion, sensitivity and specificity of 99.88, 100, 95.69 and 100 %, 
respectively, for blast+, 99.62, 100, 85.92 and 100 % for KMA, 
and 99.89, 100, 95.98 and 100 % for SRST2.

Sequence typing
Results for the online PubMLST tool for all samples have 
been deposited in Zenodo (10.5281/zenodo.4006065), 
and performance metrics for the sequence typing assay 
are provided in Table  3. Read mapping-based detection 
(SRST2) was not evaluated for this assay (see Materials and 
methods). For the positive test set, on a total of 329 203 
observations (i.e. 2513 cgMLST loci for 131 samples), 874 
(0.27 %) and 1816 (0.55 %) observations did not correspond 
to the output of the online ​PubMLST.​org tool (i.e. FNs) for 
blast+ and KMA, respectively. The majority of mismatches 
for blast+ (535/874) were due to the workflow reporting 
a multi-hit so that no allele is provided whereas the online 
PubMLST returned multiple hits separately in the output 
(which can be either the same allele on multiple genomic 
locations or different alleles). Sample EH1858 was an outlier 
containing 138 FNs (the median of all E. coli samples was 
six), almost exclusively caused by multi-hits of the same allele 
on different contigs. Further investigation showed that this 
sample contained several highly similar regions in separate 
contigs, resulting in multiple copies of the same allele for 
the duplicated loci in the assembly, therefore most likely 
representing an assembly artefact. In 223 other cases, the 
PubMLST sequence query tool reported multiple alleles, 
with one of them matching the single allele detected by the 
workflow. All other FNs were caused by alleles present in 
the EnteroBase scheme missing from the PubMLST scheme, 
even though both databases were assessed at the same time 
and alleles that were added to EnteroBase more recently 
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than the missing ones from PubMLST were available in 
both. This was verified by running our sequence typing 
workflow with the scheme obtained through the PubMLST 
API, for which all mismatches in the results were caused by 
multi-hits (results not shown). Since all FNs were caused by 
either a different manner of reporting multi-allelic hits and 
absent loci in the PubMLST scheme, the number of true FN 
observations is in fact zero, but 874 FN observations were 
nevertheless retained to provide a conservative performance 
estimate. For KMA, the largest category of mismatches (n: 
854/1816) were single alleles detected by PubMLST that were 
missed by KMA, for which in 118 cases the correct allele was 
detected but not as a perfect hit (i.e. imperfect percentage 
identity and/or percentage coverage). An additional 751 
mismatches constituted loci where PubMLST detected more 
than one allele, whereas KMA can only detect a single allele 
for each locus. The remaining 211 mismatches were caused 
by a different allele detected as a perfect hit (n: 137), and 
perfect hits for loci not detected by PubMLST (n: 74). The 
negative test set was composed of 10 samples comprising 
25 130 observations from the negative control samples, for 
which the workflow should not detect any allele (which 
was also verified by analysing these samples through the ​
PubMLST.​org tool). In total, 535 perfect hits were detected 
in the negative control samples. All perfect hits were limited 
to two Salmonella enterica samples: se_SRR11799638 (n: 
261) and se_SRR11799644 (n: 274), and were identical for 
both detection methods (blast+ and KMA), but were also 
detected by the online PubMLST reference tool. This resulted 
in an accuracy, precision, sensitivity and specificity of 99.60, 
99.84, 99.73 and 97.87 %, respectively, for blast, and 99.34, 
99.84, 99.45 and 97.87 % for KMA.

Execution times of the bioinformatics workflow for 
the three different detection methods
An overview of the benchmarking results is provided in 
Table 4. De novo assembly and sequence typing take up the 
large majority of the total execution time of the workflow, 
with all other steps only contributing slightly to the total 
execution time. Read trimming, de novo assembly and the 
contamination check took 31.76, 847.19 and 77.21 s on 
average per sample, respectively. Execution time for the 
gene detection assays showed only very limited variation 
across different databases and was shortest for KMA (on 
average 5.08 s), followed by blast+ (on average 5.32 s) and 
SRST2 (on average 29.58 s). The same trends were observed 
for serotype determination that is based on the same gene 
detection workflow, with average execution times of 10.72, 
10.09 and 55.63 s per sample for blast+, KMA and SRST2, 
respectively. Detection of point mutations with PointFinder 
took 15.44 s per sample on average. The execution times for 
the sequence typing workflow were extrapolated based on the 
typing of the first 50 loci, resulting in estimates of 1128.84 
(18.81 min), 3798.15 (1.06 h) and 1 006 639.45 (11.65 days) 
seconds per sample, on average, for blast+, KMA and SRST2, 
respectively.

DISCUSSION
In this study, we present an updated validation framework 
to extensively validate a bioinformatics workflow (Fig. 1) for 
the characterization of STEC isolates using WGS data. STEC 
was chosen as a case study because it is a common cause of 
outbreaks, and easily exchanges virulence and AMR genes 
[66]. The validation strategy was applied to several bioinfor-
matics assays of interest for NRCs/NRLs requiring routine 
pathogen typing and characterization: AMR prediction, 
virulence gene detection, serotype determination, plasmid 
replicon detection and sequence typing. In particular, we 
performed this validation using a validation dataset of 131 
isolates extensively characterized by conventional molecular 
biology-based wet-lab methods. Moreover, we evaluated the 
suitability of three detection methods commonly used for 
WGS isolate analysis within this validation framework, i.e. 
alignment via blast+, kmer read mapping via KMA, and 
direct read mapping via SRST2.

Table 4. Average execution times for the different bioinformatics 
assays and detection methods

Workflow step Database Detection 
method

Average 
duration (s)

Read trimming – – 31.76

Assembly – – 847.19

Contamination 
check

– – 77.21

Gene detection ResFinder blast 5.35

KMA 5.03

SRST2 27.19

Virulence genes blast 5.30

KMA 5.14

SRST 36.88

PlasmidFinder blast 5.30

KMA 5.06

SRST2 24.68

PointFinder PointFinder – 15.44

Serotype 
determination

SeroTypeFinder blast 10.72

KMA 10.09

SRST2 55.63

Sequence typing cgMLST* blast 1128.84

KMA 3798.15

SRST2 1 006 639.45

Averages were calculated over ten samples analysed in triplicate 
for each assay, and listed values correspond to the duration of a 
single analysis for a single sample.
*Sequence typing results are based on extrapolation of execution 
time for the first 50 loci of the cgMLST scheme (out of 2513).
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The validation was performed by extending a previously 
described validation framework for the bioinformatics 
component of WGS workflows [26], to which we made 
several adaptations (Table 2). Firstly, performance evalua-
tion was limited to samples that passed QC checks (except 
for the contamination check, see Supplementary Methods). 
This was motivated by the fact that despite performance and 
quality metrics being heavily intertwined, they constitute 
two different aspects. Quality metrics evaluate whether input 
data are of sufficient quality for further analysis. Performance 
metrics evaluate whether a bioinformatics workflow is algo-
rithmically capable of analysing data correctly to deliver 
reliable results. In practice, bioinformatics workflows are 
built to be relatively robust against fluctuations in input data 
quality, but will typically lose performance quickly once 
dataset quality drops below a certain threshold [67, 68]. Here, 
quality metric thresholds were defined by common values 
(Table 1) used by the community and adapted during devel-
opment based on the observed results on internally generated 
datasets. Secondly, reproducibility refers here to analysing the 
same sample twice on separate computational environments, 
in contrast to Bogaerts et al. [26] where reproducibility was 
defined as running the bioinformatics workflow twice on 
the same sample but using datasets generated in different 
sequencing runs. This choice was motivated by the latter 
strategy validating inter-run variability of the sequencing 
process rather than the bioinformatics component, for which 
inter-run variability of separate computational environments 
is a conceptually better approach [69] (ISO 23418). Repeat-
ability and reproducibility were always 100 % for all detection 
methods and all assays, highlighting that the bioinformatics 
component is especially resilient against repeated analyses 
being performed on the same or separate computational 
environments. Thirdly, negative controls for the sequence 
typing and serotype determination assays were changed. In 
the previously described validation framework, these were 
evaluated by running the assay on the validation samples with 
a scheme from an unmatched species. Here, we opted for a set 
of samples from unmatched species also often considered by 
enforcement laboratories, including other foodborne patho-
gens such as Listeria monocytogenes and S. enterica, which we 
analysed with the same workflow as E. coli samples for which 
any generated result (i.e. detection of an allele or serotype) 
should be perceived as an FP. This approach fits conceptu-
ally better with real-world scenarios where an FP result for 
serotype and sequence typing can originate from erroneous 
switching and mislabelling of the input strain in the wet-lab 
(although our workflow already incorporates a contamination 
check by using Kraken2).

The validation focused specifically on the application of 
the strategy to a workflow for characterizing STEC isolates. 
However, parts of the workflow are also applicable to other 
species. Bioinformatics assays using species-agnostic data-
bases such as ResFinder for AMR prediction (all bacteria) 
and/or PlasmidFinder for plasmid replicon detection (Entero-
bacteriaceae) can also be applied to other species. Bioinfor-
matics assays using species-specific databases such as the  

E. coli VirulenceFinder database for virulence gene detection 
and the E. coli Enterobase database for sequence typing would 
be applicable by swapping the underlying databases for the 
relevant species under consideration. For serotyping, both the 
underlying database but also the decision tree depicted in Fig. 
S1 would need to be adapted. However, in all cases, workflow 
performance is expected to exhibit comparable performance 
as documented here for STEC, although in a routine setting 
the workflow would still need to be revalidated using a valida-
tion dataset comprising isolates of the target species to verify 
performance, which is an especially important requirement 
for obtaining ISO accreditation. An important consideration 
for any such validation dataset is that it is extensive enough 
to be representative for isolates typically expected in a routine 
setting by including a wide range of diversity. Fig. 3 provides 
a simplified overview of the validation dataset, showcasing 
large diversity. It also provides more insight into the epide-
miological relationship between samples, taking into account 
that samples were selected to capture as much of the naturally 
occurring variation as possible (the collection therefore does 
not provide an unbiased view on surveillance in Belgium). 
Since mismatches (i.e. FNs, FPs) and location within the 
phylogeny (Fig. S5) were randomly distributed across the 
phylogeny rather than systematic [i.e. not associated with 
specific (sub)clades, which could indicate performance can 
deviate from general trends for certain (sub)clades], workflow 
performance estimates can be considered representative for 
E. coli distantly related to the included validation samples. 
However, in light of the enormous diversity observed within 
the E. coli species, such an analysis remains provisional rather 
than conclusive.

The performance of three commonly used detection 
approaches for the different bioinformatics assays was evalu-
ated: alignment-based detection with blast+, kmer-based 
detection with KMA and read mapping-based detection with 
SRST2. These three approaches are widely used for different 
WGS-based bioinformatics workflows with mapping-based 
approaches considered to be more sensitive, especially at 
lower sequencing depths [22, 70–72], and kmer-mapping 
approaches considered particularly rapid for analysing large 
datasets and databases with only a minor performance cost 
compared to read mapping [21, 73]. Recently, Cooper et al. 
investigated the performance of AMR gene detection using 
various methods (including blast+, SRST2 and KMA) 
[73]. However, to the best of our knowledge, no systematic 
evaluation of their performance across different bioinfor-
matics assays has been documented before. Based on earlier 
research and literature review, an acceptance criterion of 
>95 % for all performance metrics was set to accept the results 
of a bioinformatics assay. This threshold was reached for all 
assays, except for plasmid replicon detection with KMA due 
to algorithmic artefacts. Over all assays combined, we did 
not find substantial performance differences between the 
different detection methods (Table 3), consistent with the 
results obtained by Cooper et al. for AMR gene detection. 
Plasmid replicon detection was an exception where blast+ 
outperformed both SRST2 and KMA, although it should be 
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highlighted that the latter two methods were not designed 
for intergenic regions and that the reference standard also 
used a blast+-based approach, and this therefore does not 
constitute a completely appropriate comparison. However, 
execution time did vary considerably between the different 
detection methods (Table 4). Although the time estimates 
provided in Table 4 are highly dependent on the used compu-
tational architecture and input data size, they do provide a 
rough estimate allowing comparison between different detec-
tion methods. SRST2 takes approximately five or six times 
longer to complete for most assays compared to blast+, but 
its execution time increases substantially as database size 
increases. Consequently, although the additional time invest-
ment for SRST2 compared to blast+ remains at most limited 
to half a minute for most assays and therefore is negligible, its 
execution time for cgMLST rises steeply and takes too long 
to complete in a reasonable timeframe, especially in time-
sensitive situations such as outbreak investigations. Conse-
quently, incorporation of read mapping-based detection via 
SRST2 for cgMLST in the workflow would require algorithmic 
improvements to accelerate the underlying tool processing 
time, although this would also require re-validation of the 
workflow before any tool updates that change algorithmic 
behaviour can be included. KMA execution times for most 
assays are very similar to those of blast+, and despite also 
increasing with database size, remain feasible for cgMLST. 
Moreover, the execution time for KMA can be further opti-
mized by pre-loading databases into shared memory (which 
was not done for this benchmarking), and this benchmarking 
does not take into account that the required assembly step 
for blast+-based detection also takes considerable time and 
is not required for SRST2- and KMA-based detection (but 
was nevertheless performed by default in our workflow as 
it is part of the QC process). There exist two considerations 
for our evaluation of execution time. Firstly, only one tool 
was evaluated for every type of detection method, albeit a 
staple one endorsed by the scientific community, but different 
software packages exist for each type of detection method, 
which consequently can also affect performance and execu-
tion time. Secondly, performance was not evaluated as a 
function of data quality, for instance more sensitive detection 
with mapping-based approaches as reported at low coverages 
[22, 70, 71, 73]. Notwithstanding this, for high-quality data-
sets, overall performance for all three detection methods is 
very similar and execution time differences are limited, except 
when database sizes become too large in which case blast+ 
gains a distinct speed advantage over KMA and especially 
SRST2. Regardless, excluding cgMLST with SRST2, all execu-
tion times for any detection method remain very limited in 
comparison with the overall WGS workflow where sample 
preparation, library construction and sequencing take several 
days.

AMR prediction overall had the lowest performance compared 
to the other assays, but accuracy, precision, sensitivity and 
specificity were always ˃95 %. The number of observations 
was relatively limited, as AMR treatment is generally not 
advised for STEC infections, and was therefore only evaluated 

for isolates of human origin. There are several potential expla-
nations for the slightly lower sensitivity compared to other 
bioinformatics assays, in particular the imperfect genotype-
to-phenotype relationship with the performance being much 
higher if only a genotypic endpoint is considered. Validation 
of any component of the WGS workflow requires comparison 
against a reference standard that serves as the ground truth 
[25]. The preferred reference standard for validating bioinfor-
matics assays is high-quality genotypic information obtained 
from conventional methods. However, in practice, this 
information might not be available and be infeasible or even 
simply impossible to obtain. For this assay, we used a pheno-
typic reference standard instead, which has some intrinsic 
limitations. A genomic AMR feature (gene or SNP) that is 
present but not expressed will be classified as an FP, even 
though it is genotypically correctly identified. We addressed 
this issue by confirming the presence of all AMR genes and 
point mutations detected by the workflow with PCR and 
Sanger sequencing. In all cases, the presence of the respec-
tive genomic features was confirmed, demonstrating that all 
FPs constituted TPs when considering a genotypic endpoint, 
thereby effectively increasing the accuracy and even obtaining 
perfect precision and sensitivity. Systematic confirmation was 
impossible for FN results where no resistance was predicted 
but phenotypic resistance was nevertheless observed, because 
multiple AMR genes exist for every type of antimicrobial 
used, so that a large number of PCRs would be required 
to evaluate all of the underlying potential genes or other 
mechanisms that could have resulted in resistance. Despite 
these limitations, the bioinformatics workflow was still able 
to predict antimicrobial resistance with relatively very high 
performance. Regardless, validating the relationship between 
genomic features and phenotypic characteristics is out-of-
scope for the validation of the bioinformatics assay presented 
here. Genotype-to-phenotype relationships can vary substan-
tially between pathogens and case studies [30, 74] and even 
between different antibiotics within the same pathogen [75]. 
The importance of screening for point mutations was also 
illustrated in this study. Four point mutations associated with 
fluoroquinolone resistance were detected, in congruence with 
the observed phenotype for which no corresponding genes 
were detected. Validation was at the antibiotic group level but 
for some groups only a subset of associated antibiotics was 
tested. For instance, for aminoglycosides, gentamycin, strep-
tomycin and kanamycin were phenotypically tested, but other 
antibiotics such as tobramycin or amikacin were not tested, 
potentially increasing FP observations by wrongly classifying 
results as sensitive to the antibiotics group. This would mainly 
cause issues for antibiotic groups with more members (e.g. 
aminoglycosides, beta-lactamases), which was not observed 
in our results, potentially due to the already relatively small 
number of FP results (n: 4).

Virulence gene detection performance was generally very 
high, although the performance of blast+-based detec-
tion was slightly lower than for mapping based detection 
with either KMA or SRST2. The results of genotypic PCR-
based methods were used as a reference standard, namely 
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for stx and other virulence genes, therefore representing a 
high-quality standard. In contrast to standard PCR-based 
methods, WGS detects specific gene variants that can have 
different biological properties [76]. The stx gene detection 
with KMA and SRST2 matched perfectly with PCR-based 
methods when considering that the one FP was probably 
caused by low-level within-species contamination of sample 
EH2038. Mismatches of blast+-based detection could largely 
be traced back to depth filtering and contig fragmentations. 
Accurate detection of stx is crucial for routine surveillance, 
as it is the defining feature to distinguish commensal E. coli 
or other E. coli pathotypes from STEC. Similar results were 
observed for the detection of the other virulence genes. No 
substantial differences were found between individual genes, 
suggesting high performance for gene detection in general, 
not limited to this specific set of genes.

The performance of serotype determination was slightly lower 
than for virulence gene detection, potentially explained by the 
following factors. Firstly, as it is a composite assay, perfor-
mance is expected to be lower because a single wrong detec-
tion for one of the serotype-determining genes can result in 
a wrong prediction, even when all other genes were correctly 
identified. Secondly, O-type-determining genes are typically 
located in low GC-content regions, for which the yield of 
the Nextera XT kit, used for the preparation of the libraries 
in this study, typically drops [72, 77]. Other studies have 
reported similar results, with lower performance for WGS-
based serotyping [73, 78]. Nevertheless, the performance 
for all metrics for all detection methods was always >95 %, 
indicating that WGS is a suitable alternative to conventional 
methods, especially because all antigen coding genes can be 
screened simultaneously, in contrast to PCR-based methods 
that are typically limited to the most common serotypes.

Performance of the plasmid replicon detection assay showed 
the most variation for the different detection methods. 
Reference information from conventional methods was not 
available, and therefore the online PlasmidFinder webserver 
[13] was used as a tool reference instead, for which the 
performance has been described extensively in the scientific 
literature. Evaluating performance by means of comparison 
with high-quality genomic information is preferred compared 
to the current approach where the output of prediction (i.e. 
our workflow) is compared against another genomic predictor 
(i.e. the online PlasmidFinder tool), but was necessitated 
by the absence and infeasibility to generate such reference 
information (see Bogaerts et al. [26] for more elaborate 
discussion). However, as this reference standard itself is 
based on blast+, performance metrics were biased. This was 
illustrated by some results of SRST2 and KMA being labelled 
as FP that proved to be TP after investigation because they 
could be traced back to contig fragmentation or regions of low 
sequencing depths. Concurrently, SRST2 and KMA missed 
some plasmid replicons detected by blast+ present in the 
tool reference, a large fraction of which could be traced back 
to the IncFIA plasmid replicon (see Supplementary Infor-
mation). Consequently, the overall performance is impacted 
with, in particular, the sensitivity dropping to 87.69 and 

95.80 % for KMA and SRST2, respectively, although both 
are underestimated. blast+ performance was perfect, but is 
biased and overestimated due to the aforementioned reasons. 
A more realistic estimation can be obtained by considering 
cases where blast+ detection failed due to algorithmic arte-
facts as TP results, as indicated with ‘†’ in Table 3. Sensitivity 
then dropped further to 85.92 % for KMA, but increased to 
95.98 % for SRST2. The added value of expressing perfor-
mance in terms of additional performance metrics compared 
to simply congruence with a reference is illustrated here, 
as simply comparing accuracies would provide a distorted 
image of relatively high performance for all methods whereas 
evaluation of sensitivity and specificity indicated that some 
methods suffer from a substantially decreased sensitivity (i.e. 
ability to correctly detect a plasmid replicon) but otherwise 
exhibit high specificity (i.e. ability to not incorrectly detect a 
plasmid replicon).

For sequence typing, the PubMLST sequence query tool [79] 
was used as a standard, as thousands of tests would need to 
have been performed to obtain genotypic information for all 
loci and samples. This limits performance evaluation to a tool 
reference, as highlighted and discussed previously for plasmid 
replicon detection. The large majority of FNs were caused by 
differently handling multi-hits (i.e. multiple alleles or copies 
of the same allele) between our workflow and the PubMLST 
reference standard. Duplicated loci are typically filtered out 
when constructing cgMLST schemes [80], but locus duplica-
tion is relatively common for a rapidly evolving species such as 
E. coli [81], rendering exclusion of all potentially affected loci 
from the scheme impossible. For blast+, all FN mismatches 
were caused by such multi-hits, or differences between the 
PubMLST tool and EnteroBase cgMLST database. For KMA, 
some FN mismatches were found that could not be explained 
as such. In these cases, the detected allele might be the correct 
one that was not detected by the blast+-based tool refer-
ence (e.g. contig depth filtering or assembly fracture), which 
is impossible to discern through the limitations of using a tool 
reference. Although performance for both blast+ and KMA 
was always >97 % for all performance metrics, such algo-
rithmic influences could nevertheless still affect interpreta-
tion of routine results because often thresholds are put on the 
number of different cgMLST loci to define whether isolates 
are related or not [82]. Thresholds should therefore ideally 
also consider the employed detection method and database, as 
opposed to solely using an arbitrary number of allelic differ-
ences. Approximately 10 % of the loci of the cgMLST scheme 
were detected as perfect hits in the S. enterica-negative control 
samples by both blast+ and KMA. As the same alleles were 
detected by both detection methods and the PubMLST tool 
as well, an algorithmic artefact is unlikely to be the cause, and 
more probably these loci are shared across the (core) genome 
of these two closely related species [83]. A limitation of our 
implementation is that novel alleles still need to be submitted 
by the end user to the underlying curated database (in this 
case EnteroBase). However, through the automated weekly 
updates, external database additions are rapidly integrated 
and can consequently be discovered by our workflow. For this 
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assay, and also in general, the validation was limited to the 
characterization of single isolates and consequently phylo-
genetic relationships derived through cgMLST-based phylo-
genetic inference of multiple isolates (e.g. Fig. 3) were not 
validated. While this is of particular relevance for foodborne 
outbreak investigation, this represents an additional layer of 
complexity and would require an entire study on its own using 
datasets with known epidemiological relationships [32, 38].

Many other tools and pipelines for characterization of bacterial 
pathogens based on WGS data exist, both for general bacterial 
WGS analysis and specific to E. coli [78], but have typically not 
been validated, rendering it difficult to compare performance. 
Notwithstanding this, a limited set of validation efforts exist, 
allowing performance comparison for certain assays either 
specifically for E. coli or more generally for bacterial patho-
gens [2, 25, 26, 30]. For AMR prediction, performance was 
comparable (accuracy 97.17–97.53 %) with concordances 
reported by Lindsey et al. (97 %) for E. coli and Feldgarden 
et al. for several species (98.4 %) based on phenotypic data 
[2, 30]. Kozyreva et al. evaluated AMR prediction for several 
bacterial pathogens genotypically through comparison with 
PCR-based methods and reported an accuracy of 100 % [25]. 
For virulence gene detection, Lindsey et al. reported a single 
mismatch between real-time PCR and a WGS bioinformatics 
workflow on a total of 103 observations for detection of the 
stx1, stx2, eae and ehxA genes for E. coli [2]. We found similar 
performance (accuracy 98.85–99.94 % depending on the 
database and detection method). Serotyping was also evalu-
ated by Lindsey et al. for E. coli through comparison with 
conventional serotyping, with 94.2 % of composite serotypes 
predicted correctly [2]. We found a slightly higher accuracy of 
97.41 % for blast+, and 98.28 % for SRST2 and KMA, evalu-
ated at the level of the composite serogroup. In contrast to 
Lindsey et al., our reference information was obtained with 
genotypic testing using PCR-based methods instead of pheno-
typic testing, potentially explaining the higher performance. 
For sequence typing, Kozyreva et al. reported perfect accuracy 
between MLST alleles identified with their bioinformatics 
workflow and in silico MLST for several bacterial pathogens 
[25]. Here, cgMLST was evaluated instead of MLST using 
a tool reference, and similar high performance (accuracy of 
99.60 and 99.34 % for blast+ and KMA, respectively) was 
observed because all misidentified alleles could be traced back 
to algorithmic differences between our workflow and the tool 
reference. Combined, these results demonstrate congruence 
of our validated STEC pipeline with other validation efforts 
in the field, showcasing that WGS constitutes an excellent 
alternative to conventional molecular assays.

Our validation dataset has been made publicly available, 
including both the raw WGS data and all metadata for 
conventional molecular biology-based methods and in silico 
analyses, and can serve as a resource for laboratories wanting 
to validate or benchmark their bioinformatics workflows 
for characterization of STEC isolates (see Supplementary 
Information and data availability statement). Although other 
such datasets exist that include more samples, this is typi-
cally limited to only one assay [84]. Datasets with metadata 

available for a wide diversity of assays, including conventional 
data for AMR, virulence and serotype, such as presented here, 
remain scarce [34]. The bioinformatics workflow is provided 
through an interface in Galaxy, making it easily accessible 
for non-expert bioinformaticians who do not necessarily 
have the technical knowledge or specialized infrastructure 
to perform the analyses, which is also available for non-profit 
usage and to showcase our implementation at https://​galaxy.​
sciensano.​be. The generally high performance of the workflow 
illustrates that it is well suited for pathogen surveillance in 
both a public health and clinical setting, but can also be of 
value for research projects that include STEC isolate WGS 
data. Such resources, coupled with similar validation efforts 
for other species and bioinformatics methodologies, demon-
strate the benefit and feasibility of switching to WGS-based 
routine pathogen typing and surveillance and will ultimately 
be crucial for its successful implementation within applied 
public health settings.
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