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Abstract. A subgroup H of a group G is called a power subgroup of G if there exists
a non-negative integer m such that H = ⟨gm : g ∈ G⟩. Any subgroup of G which is
not a power subgroup is called a nonpower subgroup of G. Zhou, Shi and Duan, in a
2006 paper, asked whether for every integer k (k ≥ 3), there exist groups possessing
exactly k nonpower subgroups. We answer this question in the affirmative by giving
an explicit construction that leads to at least one group with exactly k nonpower
subgroups, for all k ≥ 3, and infinitely many such groups when k is composite and
greater than 4. Moreover, we describe the number of nonpower subgroups for the
cases of elementary abelian groups, dihedral groups, and 2-groups of maximal class.
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1. Introduction. A subgroup H of a group G is called a power subgroup of G
if there exists a non-negative integer m such that H = Gm, where Gm := ⟨gm : g ∈
G⟩. The identity subgroup and the whole group are examples of power subgroups
of any group G. If H is a power subgroup of G, then H is normal in G; but
the converse is not necessarily true. For instance, no subgroup of index 2 in the
quaternion group Q8 of order 8 is a power subgroup of Q8, even though they are
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normal subgroups. A subgroup of G which is not a power subgroup is called a
nonpower subgroup of G.

Let k be the number of nonpower subgroups of a group G. The authors (Zhou,
Shi and Duan) of [4] proved the following:

(a) k ∈ (0,∞) if and only if G is a finite noncyclic group;

(b) k = 0 if and only if G is a cyclic group;

(c) k = ∞ if and only if G is an infinite noncyclic group.

They also remarked that neither k = 1 nor k = 2 is possible in any group. With
respect to the case k ≥ 3, they asked (see [4, Problem]):

Question 1. (Zhou, Shi and Duan) For any integer k (k ≥ 3), do there exist
groups possessing exactly k nonpower subgroups?

In this paper, we show that the answer to this question is yes. In fact, we prove
that there is at least one group possessing exactly k nonpower subgroups for each
k ≥ 3 (see Theorem 5). Our method of proof also shows that there are infinitely
many such groups for each k > 4 and k not prime. The constructions we used are
given in Section 2; part of it involves the direct product of a dihedral group with
a carefully chosen cyclic group.

There are further questions one could ask. For example, given a positive integer
n, what is the maximum number of nonpower subgroups in a group of order n?
To supply further examples of the possible numbers of nonpower subgroups in a
group of a given order, we also explore in Section 3 some special cases: elementary
abelian p-groups, dihedral groups, and 2-groups of maximal class. For example, we
observe (see Corollary 10) that the elementary abelian p-group Cp × Cp (p prime)
contains exactly p+ 1 nonpower subgroups, and the generalised quaternion group
Q2n (where n ≥ 3) contains exactly 2n−1 − 1 nonpower subgroups (see Theorem
16). All the groups studied here are finite.

We end this introductory section by briefly establishing the notation we will
use. For a positive integer n, we write Cn for the cyclic group of order n, with D2n

being the dihedral group of order 2n.

Notation. Let G be a group. We write s(G) for the total number of subgroups
in G. Also, we write ps(G) for the number of power subgroups, and nps(G) for
the number of non-power subgroups. For example, in C2 × C2 we have s(G) = 5,
ps(G) = 2 and nps(G) = 3.

2. Groups with exactly k nonpower subgroups. In this section, we give
constructions that supply, for each k ≥ 3, at least one finite group containing
exactly k nonpower subgroups. Moreover, for k ̸= 4 and k not prime, our construc-
tions give infinitely many finite groups containing exactly k nonpower subgroups.

Remark 2. Let G be a finite group. If n is coprime to |G|, then Gn = G as the
map g 7→ gn, while not a homomorphism, is certainly a bijection from G to itself
in this case. More generally, Gmn = Gm for any positive integer m.
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Lemma 3. Let A and B be finite groups such that |A| and |B| are coprime. Then
every subgroup of A×B is of the form U×V , where U ≤ A and V ≤ B. Moreover,
a subgroup of A × B is a power subgroup if and only if it is of the form U × V ,
where U is a power subgroup of A and V is a power subgroup of B. In particular,

s(A×B) = s(A) × s(B);(1)

nps(A×B) = s(A) × s(B) − ps(A) × ps(B).(2)

Proof. Let G = A × B. The fact that the subgroups of G in this case are the
direct products of subgroups of A and B is well-known, but we include the proof for
completeness. Suppose H ≤ G and let (a, b) ∈ H. Since |A| and |B| are coprime,
the orders r and s of a and b respectively are also coprime. Therefore, there exist
integers q and t such that rq + st = 1. Now (a, b)st = (a, 1) and (a, b)rq = (1, b).
Hence, (a, 1) and (1, b) are elements of H. It follows that H = U × V , where U =
{a ∈ A : (a, 1) ∈ H} and V = {b ∈ B : (1, b) ∈ H}. Therefore, s(G) = s(A)×s(B).

Consider the power subgroup Gm of G, for a positive integer m. We have that
Gm = Am ×Bm, because this group is generated by elements (x, y)m = (xm, ym),
and we have observed that (xm, ym) is contained in a subgroup H if and only if
(xm, 1) ∈ H and (1, ym) ∈ H. For the converse, suppose that U = Aℓ and V = Bm,
for some positive integers m and ℓ. We may assume that ℓ divides |A| and m divides
|B|, by Remark 2. Now, let n = ℓm. Since ℓ and m are therefore coprime, we have
that An = Aℓ, and Bn = Bm. Therefore, U ×V = Gn. Thus, a subgroup of G is a
power subgroup if and only if it is of the form U ×V , where U is a power subgroup
of A and V is a power subgroup of B. In particular, ps(G) = ps(A)×ps(B). Hence,
nps(G) = s(G) − ps(G) = s(A) × s(B) − ps(A) × ps(B). 2

Let n be a positive integer. Zhou et al. showed that nps(Cn) = 0. We also note
that s(Cn) = ps(Cn) = τ(n), where τ(n) is the number of divisors of n.

Corollary 4. Suppose G = A×Cn, where n is a positive integer and A is a finite
group whose order is coprime to n. Then nps(G) = τ(n) × nps(A).

Proof. We have that s(Cn) = ps(Cn) = τ(n). Therefore in Equation (2), we have
nps(G) = (s(A) − ps(A))τ(n) = τ(n) × nps(A). 2

Before the next result we note that if p is an odd prime, then nps(D2p) = p.
This is because D2p has exactly p + 3 subgroups; the p cyclic subgroups of order
2 are the nonpower subgroups. The remaining groups (the trivial subgroup, the
cyclic subgroup of index 2, and the whole group) are the power subgroups D2p

2p, D
2
2p

and D1
2p, respectively. For a full description of nonpower subgroups in arbitrary

dihedral groups, see Section 3.

Theorem 5. Let k be a positive integer, with k ≥ 3. Then there exists a finite
group G with exactly k nonpower subgroups. If k is composite and k > 4, then
there are infinitely many such groups.
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Proof. Let k be a positive integer with k ≥ 3. Then either k is divisible by
4, or k is divisible by an odd prime p (or both). Suppose first that k is divisible
by an odd prime p. Let q be any odd prime other than p, and let r = k

p − 1.

Then τ(qr) = k
p . We observe that nps(D2p) = p. Therefore, by Corollary 4,

we get nps(D2p × Cqr ) = k. On the other hand, if k is divisible by 4, then let
r = k

4 − 1, and let q be any prime greater than 3. A quick calculation shows that
nps(C3 × C3) = 4; whence nps((C3 × C3) × Cqr ) = k. We note that, in each case,
if k > 4 and k is composite, then the exponent r is strictly positive. Therefore,
since there are infinitely many choices for q, there are infinitely many finite groups
G with exactly k nonpower subgroups. 2

3. Special cases.

Notation. For a prime p and a positive integer n, we write Cn
p for the elementary

abelian p-group of finite rank n, and denote the number of subgroups of rank r in
Cn

p by Np(n, r).

Theorem 6. ([3, Theorem 1]) Let V be a vector space of dimension n over the
finite field GF (q), where q is a prime power. The number of subspaces of V of
dimension r is (qn − 1

q − 1

)(qn−1 − 1

q2 − 1

)
· · ·
(qn−r+1 − 1

qr − 1

)
.

Remark. (a) The group G = Cn
p can be realised as an n-dimensional vector space

(say V ) over GF (p). Now, the number of subgroups of rank r in Cn
p is equal to

the number of subspaces of dimension r in V . In the light of Theorem 6 therefore,
given any prime p and positive integers n and r, with n > r ≥ 2, we have that

(3) Np(n, r) =
(pn − 1

p− 1

)(pn−1 − 1

p2 − 1

)
· · ·
(pn−r+1 − 1

pr − 1

)
=

r−1∏
k=0

(pn−k − 1

pk+1 − 1

)
.

(b) Np(n, 0) = 1 = Np(n, n) for any prime p and natural number n, and for n > 1,

Np(n, 1) =
pn − 1

p− 1
=

n−1∑
k=0

pk = Np(n, n− 1).

Proposition 7. For prime p and positive integers n and r (with n > r ≥ 2), we
have:

(a) Np(n− 1, r) =
(

pn−r−1
pr−1

)
Np(n− 1, r − 1);

(b) Np(n, r) = prNp(n− 1, r) +Np(n− 1, r − 1).

Proof. Setting n = n− 1 and r = r − 1 in Equation (3), we have that

(4) Np(n− 1, r − 1) =
(pn−1 − 1

p− 1

)
· · ·
(pn−r+1 − 1

pr−1 − 1

)
=

r−2∏
k=0

(pn−(k+1) − 1

pk+1 − 1

)
.
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Setting n = n− 1 in Equation (3), we have that

Np(n− 1, r) =
(pn−1 − 1

p− 1

)
· · ·
(pn−r+1 − 1

pr−1 − 1

)(pn−r − 1

pr − 1

)
=

r−1∏
k=0

(pn−(k+1) − 1

pk+1 − 1

)
=Np(n− 1, r − 1)

(pn−r − 1

pr − 1

) (
from Equation (4)

)
,(5)

which settles the (a) part. For the (b) part, we multiply Equation (5) by pr, add
the result to Equation (4) and regroup the terms to get the desired result. 2

The recurrence relations given in Proposition 7 would be a good source for
OEIS https://oeis.org/. We now turn to the first main result of this study; see
Theorem 8.

Theorem 8. For prime, p and a natural number n > 1,

nps(Cn
p ) = s(Cn

p ) − 2 =
n−1∑
r=1

Np(n, r).

Proof. Let p be a prime and n > 1 be an integer. We write G = Cn
p . For

m ∈ N ∪ {0},

Gm =

{
{1}, if m ≡ 0 mod p

G, if m ̸≡ 0 mod p.

This tells us that the only power subgroups of G are the unique subgroups of ranks
0 and n (viz; the two trivial subgroups). That is, nps(G) = s(G)−2. In particular,
the nonpower subgroups of G are the subgroups of ranks 1, 2, . . . , n− 1. Thus, the
number of nonpower subgroups of G is

∑n−1
r=1 Np(n, r). 2

The following result is an immediate consequence of Theorem 8.

Corollary 9. Let n > 1 and p be prime. Then the elementary abelian p-group
Cn

p contains exactly
∑n−1

r=1 Np(n, r) nonpower subgroups.

In particular, when n = 2, we have the following.

Corollary 10. Let p be prime. The elementary abelian p-group C2
p contains

exactly p+ 1 nonpower subgroups.

Definition. A 2-group of maximal class is a group of order 2n and nilpotency
class n− 1 for n ≥ 3.

Remark. It is known (for instance, see Theorem 1.2 and Corollary 1.7 of [1]) that
any 2-group of maximal class belongs to one of the following three classes:

(i) ⟨x, y| x2n−1

= y2 = 1, xy = yx−1⟩, n ≥ 3 (Dihedral);
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(ii) ⟨x, y | x2n−1

= 1, x2
n−2

= y2, xy = yx−1⟩, n ≥ 3 (Generalised quaternion);

(iii) ⟨x, y | x2n−1

= y2 = 1, xy = yx2
n−2−1⟩, n ≥ 4 (Semidihedral).

Definition. For n ≥ 3, we write

D2n := ⟨x, y | xn = 1 = y2, xy = yx−1⟩

for the dihedral group of order 2n.

Remark. D2n = {1, x, . . . ,xn−1, y,xy,. . . , xn−1y}. In D2n, each element of {y,
xy, . . . , xn−1y} is an involution. In particular, there are n+ 1 involutions in D2n

when n is even.

Theorem 11. ([2]) For n > 2, s(D2n) = τ + u, where τ is the number of positive
divisors of n and u is the sum of the positive divisors of n.

Proposition 12. Let G = D2n, n > 2. Writing u for the sum of positive divisors
of n and r for the number of even proper divisors of n, we have the following: (i)
if n is odd, then nps(G) = u − 1; (ii) if n is even, then nps(G) = s(G) − (r + 2);
(iii) if n is a power of 2, then nps(G) = u; (iv) if n = 2p for an odd prime p, then
nps(G) = s(G) − 3 = 3p+ 4.

Proof. Let τ denote the number of positive divisors of n and u denote the sum of
positive divisors of n. By Theorem 11, s(G) = τ + u.

Let m ∈ N ∪ {0} be arbitrary. Then

G2m+1 = ⟨1, x2m+1, . . . , x−(2m+1), y, xy, . . . , xn−1y⟩.

As {1, y, xy, . . . , xn−1y} ⊆ G2m+1, we see immediately that |G2m+1| > 1
2 |G|. The

fact that G2m+1 is a subgroup of G helps us to conclude that G2m+1 = G.

On the other hand,

G2m = ⟨1, x2m, x4m, . . . , x−4m, x−2m⟩ = ⟨x2m⟩.

(i) Let n be odd. Then ⟨x2m⟩ is of the form ⟨xv⟩, where v is a positive divisor of
n. Therefore the set of all power subgroups of G is given as

{G} ∪ {⟨xv⟩ | v is a positive divisor of n}.

Thus ps(G) = τ + 1, and we conclude that nps(G) = (τ + u) − (τ + 1) = u− 1.

(ii) Let n be even. Then ⟨x2m⟩ is of the form ⟨xµ⟩, where µ is an even proper
divisor of n. Therefore the set of all power subgroups of G is given as

(6) {{1}, G} ∪ {⟨xµ⟩ | µ is an even proper divisor of n}.

So ps(G) = r + 2, where r is the number of even proper divisors of n. Whence,
nps(G) = s(G) − (r + 2).
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(iii) Let n = 2ℓ ≥ 4. In the light of (6), the set of power subgroups of G is

{{1}, G, ⟨x2⟩, ⟨x4⟩, ⟨x8⟩, . . . , ⟨xn/2⟩},

where ⟨x2⟩ ∼= Cn/2, ⟨x4⟩ ∼= Cn/4, ⟨x8⟩ ∼= Cn/8, . . . , ⟨xn/2⟩ ∼= C2. So ps(G) = τ .
Therefore, nps(G) = s(G) − ps(G) = (τ + u) − τ = u.

(iv) Let n = 2p for an odd prime p. In the light of (6), the set of power subgroups
of G is

{{1}, G} ∪ {⟨xµ⟩ | µ is an even proper divisor of 2p} = {{1}, G, ⟨x2⟩},

where ⟨x2⟩ ∼= Cp. Hence, ps(G) = 3, and we conclude that nps(G) = s(G) − 3 =
τ + u− 3 = 4 + (1 + 2 + p+ 2p) − 3 = 3p+ 4. 2

Corollary 13. Given an integer n ≥ 3, s(D2n) = 2n + n − 1 and nps(D2n) =
2n − 1.

Proof. The results follow from a direct application of Theorem 11 and Propo-
sition 12(iii) since the number of positive divisors of 2n−1, which is the same as
the number of subgroups of D2n in ⟨x⟩, is n, and the sum of positive divisors of
2n−1, which is the same as the number of subgroups of D2n not contained in ⟨x⟩,
is 2n − 1. 2

Definition. For n ≥ 3, we write

Q2n := ⟨x, y | x2
n−1

= 1, x2
n−2

= y2, xy = yx−1⟩

for the generalised quaternion group of order 2n.

Remark. Q2n = {1, x, . . . ,x2
n−1−1, y, xy, . . . , x2

n−1−1y}. Each element of {y, xy,

. . . , x2
n−1−1y} has order 4 in Q2n , and the element x2

n−2

is the unique involution
in Q2n .

Definition. For n ≥ 4, we write

SD2n := ⟨x, y | x2
n−1

= y2 = 1, xy = yx2
n−2−1⟩

for the semidihedral group of order 2n.

Remark. SD2n = {1, x, . . . , x2
n−1−1, y, xy, . . . , x2

n−1−1y}. In SD2n , any element

of {xy, x3y, . . . , x2
n−1−1y} ∪{x2n−3

, x−(2n−3)} has order 4 while elements of {y,

x2y, . . . , x2
n−1−2y} ∪ {x2n−2} are involutions. SD2n contains 2n−2 + 1 involutions

and 2n−2 + 2 elements of order 4.

Lemma 14. Let G be any of the three 2-groups of maximal class. If A is a noncyclic
proper normal subgroup of G, then [G : A] = 2.
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Proof. Let G be any of the three 2-groups of maximal class and of order 2n,
and let A be a noncyclic proper normal subgroup of G. Clearly, A ̸⊂ ⟨x⟩. Let

a ∈ A be such that a ∈ {y, xy, . . . , x2n−1−1y}. Now, suppose G is either dihedral
or generalised quaternion. We have that a = xiy for some i ∈ {0, 1, . . . , 2n−1 − 1}.
Using the relation xy = yx−1, we obtain that xax−1 = x2(xiy) = x2a. As A is
normal in G and a ∈ A, we deduce that (xax−1)a−1 = x2 ∈ A. So ⟨x2⟩ ⊆ A.
Let G be a semidihedral group. If a = x2i+1y for some i ∈ {0, 1, . . . , 2n−2 − 1},

then using the relation xy = yx2
n−2−1, we obtain that xax−1 = yx−2i−3. There-

fore a(xax−1) = x2i+1yyx−2i−3 = x−2. As A is normal in G and a ∈ A, we
conclude that x−2 ∈ A; whence ⟨x−2⟩ = ⟨x2⟩ ⊆ A. If a = x2iy for some

i ∈ {0, 1, . . . , 2n−2 − 1}, then using the relation xy = yx2
n−2−1, we obtain that

xax−1 = yx2
n−2−2i−2. So a(xax−1) = x2iyyx2

n−2−2i−2 = x2
n−2−2 ∈ A. But the

order of x2
n−2−2 is the same as the order of x2; whence ⟨x2n−2−2⟩ = ⟨x2⟩ ⊆ A. In

all the cases, we have these three in common: [G : ⟨x2⟩] = 4, ⟨x2⟩ ⊆ A ⊆ G and
⟨x2⟩ ̸= A ̸= G. Therefore [G : A] = 2. 2

Proposition 15. Let G be any of the three 2-groups of maximal class, and of
order 2n for some n ≥ 4. Given k ∈ {1, 2, . . . , n− 2}, the number of subgroups of
order 2n−k is 2k + 1.

Proof. Let G = G2n be any of the three 2-groups of maximal class, and of order 2n

for some n ≥ 4, and let k ∈ {1, 2, . . . , n− 2} be arbitrary. We show that there are
2k + 1 subgroups of size 2n−k. The first case (k = 1) follows from the well-known
fact that there are 3 subgroups of index 2 in G; the subgroups of index 2 in G are

⟨x⟩, ⟨x2, y⟩ and ⟨x2, xy⟩,

where
⟨x⟩ ∼= C2n−1 and ⟨x2, y⟩ ∼= G2n−1

∼= ⟨x2, xy⟩.

Let H be a non-trivial subgroup of G. Recall that every non-trivial subgroup of
a 2-group is contained in an index 2-subgroup of the group. Let k ∈ {1, 2,. . . , n−2},
and suppose H is a subgroup of size 2n−k in G. In the light of Lemma 14, H is
contained in either ⟨x⟩ or one of the noncyclic subgroups of index 2 in any (non-
cyclic) subgroup of G which is isomorphic to G2n−k+1 . But there are 2k noncyclic
subgroups of index 2k in G2n for any k ∈ {1, 2,. . . , n− 2}, where n ≥ 4. Thus, the
subgroups of size 2n−k (i.e., subgroups of index 2k) in G2n are the unique cyclic
subgroup of size 2n−k and the 2k non-cyclic subgroups of index 2k. Therefore there
are 1 + 2k subgroups of size 2n−k in G2n . 2

Theorem 16. Given an integer n ≥ 3, s(Q2n) = 2n−1 + n − 1 and nps(Q2n) =
2n−1 − 1.

Proof. In the light of Proposition 15, the number of subgroups of size 2k in Q2n

and D2n are equal for each k ∈ {2, 3, . . . , n−1}. As the the number of subgroups of
index 2 in both D8 and Q8 is 3, one sees immediately that the assertion is also true
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for both D8 and Q8. The distinction between the number of subgroups of various
sizes in Q2n and D2n (where n ≥ 3) is in the subgroups of size 2. In particular,
we have only one subgroup of size 2 in Q2n as opposed in D2n , where there are
2n−1 + 1 subgroups of size 2. Thus,

s(Q2n) =s(D2n) − (2n−1 + 1) + 1

=2n−1 + n− 1 (by Corollary 13).

For the second part, let m ∈ N ∪ {0} be arbitrary, and G = Q2n for n ≥ 3.

Firstly, G4m+1 = ⟨1, x4m+1, . . . , x−(4m+1), y, xy, . . . , x2
n−1−1y⟩. But {1, y, xy, . . . ,

x2
n−1−1y} ⊆ G4m+1; whence |G4m+1| > 1

2 |G|. As G4m+1 is a subgroup of G,

we conclude that G4m+1 = G. Secondly, G4m+3 = ⟨1, x4m+3, . . . , x−(4m+3), y−1,

(xy)−1, . . . , (x2
n−1−1y)−1⟩. As |{1, y−1, (xy)−1, . . . , (x2

n−1−1y)−1}| > 1
2 |G|, we

deduce that G4m+3 = G. Thirdly, G4m+2 = ⟨1, x4m+2, . . . , x−(4m+2), x2
n−2⟩ =

⟨x2⟩ ∼= C2n−2 . Finally, G4m = ⟨1, x4m, x8m, . . . , x−8m, x−4m⟩ = ⟨x4m⟩. If G = Q8,
then ⟨x4m⟩ ∼= {1}. If G = Q16, then ⟨x4m⟩ ∼= {1} or ⟨x4⟩, where ⟨x4⟩ ∼= C2. Now,
let n ≥ 5, and suppose ⟨x4m⟩ ̸= {1}. Then ⟨x4m⟩ is exactly one of the following
occuring subgroups of Q2n :

⟨x2
n−2

⟩, ⟨x2
n−3

⟩, . . . , ⟨x4⟩,

where
⟨x2

n−2

⟩ ∼= C2, ⟨x2
n−3

⟩ ∼= C4, . . . , ⟨x4⟩ ∼= C2n−3 .

Therefore, ps(Q2n) = n; whence nps(Q2n) = 2n−1 + (n− 1) − n = 2n−1 − 1. 2

Theorem 17. Given an integer n ≥ 4,

s(SD2n) = 3(2n−2) + n− 1 and nps(SD2n) = 3(2n−2) − 1.

Proof. In the light of Proposition 15, the number of subgroups of size 2k in SD2n

and D2n are equal for each k ∈ {2, 3, . . . , n − 1}. The distinction between the
number of subgroups of various sizes in SD2n and D2n is in the subgroups of size
2. In particular, we have only 2n−2 + 1 subgroups of size 2 in SD2n whilst there
are 2n−1 + 1 subgroups of size 2 in D2n . Thus,

s(SD2n) =s(D2n) − (2n−1 + 1) + (2n−2 + 1)

=3(2n−2) + n− 1 (by Corollary 13).

For the second part, let m ∈ N∪ {0} be arbitrary, and G = SD2n for n ≥ 4. Then

G4m+1 = G = G4m+3

follows from similar arguments as in the proof of Theorem 16. On the other
hand, the results for G4m and G4m+2 are also the same with the results for
the generalised quaternion cases. Thus, ps(SD2n) = n; whence nps(SD2n) =
3(2n−2) + (n− 1) − n = 3(2n−2) − 1. 2
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