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Summary 

Globally, carnivores face countless threats; and in some cases, these threats are worsened by a lack 

of population data. In South Africa, conservation has become largely confined to small, fenced, 

protected areas. It is well established that large carnivores play a vital role in ecosystems, providing 

valuable ecosystem services, i.e., herbivore regulation and meso-carnivore suppression. If populations 

are not adequately managed within these small, fenced protected areas, carnivores will place 

significant pressure on their favoured prey species, and in extreme cases, cause certain species to 

become locally extinct. For this reason, it is essential for conservation and wildlife managers to 

understand and monitor large carnivore populations, dynamics and the roles they play within the 

ecosystems.  

Estimating population sizes, abundances and densities for species that are difficult to identify 

(hereafter, unidentifiable), is difficult under conventional capture-recapture methods, leading to a 

sparse number of estimates on unidentifiable species. The implementation of camera trap methods 

has been developed and more readily implemented to bridge this knowledge gap, some of which were 

implemented in this study. Here, I estimated the population sizes of two species, leopard (Panthera 

pardus) and brown hyaena (Parahyaena brunnea), using camera trap count data from three camera 

trap projects, analyzed using the package ‘Unmarked’ in R-Studio. Camera trap data was supplied by 

three previously existing camera trap projects, i.e., Snapshot Safari South Africa, Panthera 

Organization, and a private baited and non-baited camera trap project. Data supplied were collected 

across three study sites, namely Madikwe Game Reserve, Pilanesberg National Park, and Atherstone 

Nature Reserve. The objective of this study was to determine the effect of three camera-trap 

deployment techniques on space use and density estimates of two large carnivores in Madikwe Game 

Reserve, Pilanesberg National Park and Atherstone Nature Reserve using unmarked analysis. 

In this study, I investigated the use of N-mixture models to estimate population sizes of leopard and 

brown hyaena and how different camera trap deployments influence the N-mixture model population 

size estimates. I compared N-mixture model population size estimates to pre-existing Bayesian closed-

population capture-recapture estimates. Furthermore, this study aimed to provide empirical evidence 

supporting the use of N-mixture models to estimate the population sizes of both naturally marked and 

unidentifiable species.  

This study found that N-mixture models run using data from the sequential baited and non-baited 

camera trap deployment array and the roadside cluster deployment over-estimated leopard and 

brown hyaena population sizes across all the study sites. The regular deployment array provided 



3 
 

plausible estimates across all three of the fenced protected areas and were closely matched to 

previous population size estimates.  

The two targeted approaches, sequential baited and non-baited deployment, and roadside cluster 

deployment, were more efficient in collecting data. The targeted approaches recorded higher capture 

numbers and species detection probabilities. The evidence from this research cautions against the use 

of N-mixture models to conduct population analysis using camera traps due to the model sensitivity, 

seeing the models are reliant on detection probability and capture numbers. 

Keywords: Population size estimation, camera trapping, count data, unmarked species, Bayesian 

analyses, non-invasive sampling. 
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Dissertation layout  

This study aims to contribute to understanding how camera trap grid deployment techniques and their 

corresponding data impact N-mixture models and estimates. This dissertation is presented as four 

chapters. Chapters 2 and 3 are written as stand-alone manuscripts for publication in peer-reviewed 

journals. Each chapter nonetheless contributes to the theme of the dissertation. The dissertation is 

structured as follows:  

Chapter 1 – General Introduction. This chapter is a general introduction to the history of large 

carnivore population analysis and management, the importance of demographic data and a review of 

current and new methods used to determine population size.  

Chapter 2 - Counting the (un)marked mammals: A case study for leopard and brown hyaena in 

Madikwe Game Reserve. This chapter describes the use of N-mixture models to estimate the 

population sizes of brown hyaena and leopard in Madikwe Game Reserve. It further describes the 

influence of different camera trap deployment arrays have on N-mixture models and their estimates.  

Chapter 3 - Comparison of population size and space use analyses of two carnivore species in two 

protected areas in north-western South Africa. This chapter provides the first leopard and brown 

hyaena population size estimates on Pilanesberg National Park and Atherstone Nature Reserve.  

Chapter 4 – Synthesis. This chapter describes the key research findings of chapters 2 and 3, and 

provides management implications, recommendations, and future research. 
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Chapter 1 

General Introduction 

Introduction 

Globally, the monitoring of wildlife populations has never been more important, considering the 

earth’s changing climate, landscapes and landcover types (Hooper et al. 2012). One of the biggest 

challenges in conservation and ecology today is understanding and reversing the global decline of the 

large carnivore species (Ripple et al. 2014, Rich et al. 2017). This decline is a result of prey depletion, 

disease, habitat and land degradation, climate change, illegal trading of body parts and commercial 

meat markets (Aziz et al. 2013). Important managerial decisions are made and based off scientific 

research data. Scientific research data on many large carnivore populations are deficient, and this 

impacts our ability to make good decisions and implement policies for change (Rich et al. 2017, 

Steenweg et al. 2017). The pressures faced by large carnivores are further enhanced by habitat 

degradation and range-land contraction. Large carnivores such as the red wolf (Canis rufus) have lost 

greater than 99% of their rangelands, Ethiopian wolves (Canis simensis) have lost ~99% of their 

rangelands, tigers (Panthera tigris) and lions (Panthera leo) have lost upwards of ~94% of their 

historical rangelands (Wolf and Ripple 2017). These dramatic range losses coupled with an ever-

increasing human population disturbance will lead to large scale multi-species extinctions worldwide. 

Active population monitoring and conserving critical regions of large carnivore ranges will play a vital 

role in the survival of these carnivore species (Wolf and Ripple 2017).   

Habitat loss brings with it a multitude of challenges. It brings animals into conflict with humans and 

depletes prey resources resulting in fragmented populations being confined to protected areas 

(Weber and Rabinowitz 1996, Hayward et al. 2009, Wolf and Ripple 2017). However, animals within 

protected areas still face threats. One of the biggest threats facing protected areas surrounded by 

rural communities is poaching. Poaching takes place commonly in the form of active hunting and 

snaring (Thorn et al. 2012). For these reasons, monitoring within both protected and non-protected 

areas is needed. A lack of population data is a threat to many large carnivore species (Meiri et al. 2009, 

Rich et al. 2017), and impacts policy and management decisions (Meiri et al. 2009). These decisions 

that influence the way we manage areas and populations as well as how we run operations such as 

animal translocations. However, various methods for data acquisition are becoming available, which 

are allowing the development of more accurate, robust techniques that aid in answering previously 

unanswered questions in a non-invasive manner (Schipper et al. 2008, Ripple et al. 2014, Rich et al. 

2017). 
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The earth’s rapidly changing climate, landscape, landcover and the need to know how the earth’s 

ecosystems and species are responding to these changing dynamics, has resulted in a ‘Big Data’ 

revolution in ecology (Farley et al. 2018). Camera trapping has advanced wildlife ecology and has been 

widely incorporated into ecological studies as a non-invasive research tool (Frey et al. 2017). Methods 

involving the photographic capturing of animals without the researcher being present have been 

around for decades (Kucera and Barrett 1993), with wildlife camera trapping becoming increasingly 

popular since the 1990s (Kucera and Barrett 1993). Camera traps are now considered a standard 

method for monitoring many wildlife populations over large areas of land (Kays et al. 2020). Camera 

trapping provides insight into species’ distributions and occupancies, activity patterns and species 

population densities (Tobler et al. 2008, Steenweg et al. 2017). Data collected by camera traps provide 

a unique opportunity to answer previously unanswered scientific questions, allowing research into 

spatial and temporal patterns in a non-invasive manner (Turner 2014, Swanson et al. 2016).  

Camera traps in conservation 

There are many ways to categorize camera traps. The major difference between the several types of 

camera traps is how they record their images (Cutler and Swann 1999). Camera traps can have 

triggering or non-triggering systems (Cutler and Swann 1999). Camera traps with non-triggering 

systems either record images continuously or at periodic intervals (Kelly 2008, Swann et al. 2011). 

Camera traps with triggering systems remain inactive until an event triggers the camera trap; this is 

usually an animal’s arrival (Kelly 2008, Swann et al. 2011, Meek and Pittet 2012). Triggers are usually 

an infrared light beam but can be mechanical, such as a pressure plate (Swann et al. 2011). Light-

triggered camera traps can be set to be passive or active (Swann et al. 2014). Active light-triggered 

camera traps emit an infrared beam using a transmitter and receiver, the camera trap records an 

image every time the beam is broken (Swann et al. 2014). The more common, passively set camera 

traps use two sensors to monitor background temperatures; the camera trap is triggered by both the 

motion and temperature change of an animal walking in front of the camera trap (Swann et al. 2014). 

Triggered camera traps are favoured in situations where the target is more likely to be captured 

infrequently or discontinuously. Triggered camera traps use less power, making them more applicable 

in remote areas (Swann et al. 2011). However, there are numerous factors which influence a camera 

traps performance (Nichols and Karanth 2011). These broadly range from climatic conditions and 

stochastic events such as fire and flooding, to environmental conditions and the behaviour of the study 

species (Nichols and Karanth 2011, Swann et al. 2011). The likelihood of remote-sensing camera trap 

malfunction or underperformance increases with longer periods of deployment (Nichols and Karanth 

2011). When only serviced periodically, months of data may be lost (Nichols and Karanth 2011). 
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Triggered camera traps are also known to have false triggers i.e., taking multiple photographs with no 

animals being captured (Jumeau et al. 2017). Additionally, camera traps have differing sensitivities, 

detection zones and operational functionalities (Swann et al. 2014). Many of these issues may be 

avoided by selecting camera trap models suited to the deployment conditions and the data 

requirements for the study (Swann et al. 2011). It is, however, still expensive and time consuming to 

run camera trap projects over extended periods of time (Swann et al. 2011). Weather, user experience 

and skill, field conditions such as damage by animals, and low-quality equipment are common causes 

for deficient performance (Swann et al. 2011). Camera traps also vary in terms of their sensitivities, 

detection zones and performance in different climatic conditions (Swann et al. 2004). Many of these 

factors can be alleviated, however, others such as weather are out of a researcher’s control. This 

highlights the importance of knowing the potential problems of selected equipment and selecting 

equipment and camera traps suitable for the chosen application.  

Camera trap analyses 

The development of camera trap technology has allowed the collection of several types of data. These 

data types provided opportunities and methods to analyze broad ecological concepts and processes 

on spatial and temporal scales (Morant et al. 2020). Long term monitoring projects provide valuable 

information on the magnitude and direction temporal trends are heading (Wintle et al. 2010, Morant 

et al. 2020). Furthermore, these camera trap projects provide information on space use through 

gathering detection and non-detection data, essential for species management (MacKenzie et al. 

2017). With these data, the relationship between environmental conditions and species occurrence 

can be studied (MacKenzie et al. 2006). Many essential fields of conservation biology rely on spatial 

and temporal data (MacKenzie et al. 2006). With these data, the relationship between environmental 

conditions and species occurrence can be studied (MacKenzie et al. 2006). Temporal data are valuable 

as we can analyze niche partitioning, conditional differentiation, co-existence, and guild structures 

(Schoener 1974, Di Bitetti et al. 2010, Monterroso et al. 2014, Frey et al. 2017). Furthermore, temporal 

data allows analyses into proximate environmental drivers and anthropogenic factors that could 

impact guild dynamics and facilitative and competitive interactions (Pereira et al. 2013, Wang et al. 

2015, Frey et al. 2017). It is important to model these variables as these variables also cumulatively 

influence the activity patterns of species, which leads to niche partitioning and structuring 

communities (Brown and Wilson 1956, Frey et al. 2017).  

By analyzing camera-trap datasets and evaluating the results of camera-trap survey designs across 

multiple locations and study species, recommendations can be made on the study design and 

deployment grid structure before projects are initiated (Meek et al. 2014, Kays et al. 2020). The 
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methodology behind a camera-trap study is important. Specific deployment techniques may be more 

appropriate for estimating abundances, whereas other deployments may be more appropriate for 

estimating occupancies, temporal overlaps, and abundances (Rovero et al. 2013, Meek et al. 2015). 

Deployment grids, the number of cameras and the durations the camera-traps are deployed for can 

affect the results generated, and the data can, therefore, be misinterpreted (Kays et al. 2020). The 

different deployment requirements for camera traps are dependent on what they are being used for. 

Remote detection of rare species requires a rugged, reliable, robust camera trap that will last several 

weeks of deployment whilst constantly taking photographs of its target (Nichols and Karanth 2011). 

The deployment conditions and target species determine the camera trap model to be used (Swann 

et al. 2011). Whether that be researching nest ecology of rare bird species in a tropical forest where 

humidity is high, or whether researching habitat use by multiple herbivore species in snowy, wet 

conditions (Swann et al. 2011). 

Commonly, identifying individual animals is a major component of camera trap research (Foster and 

Harmsen 2012). The successful implementation of camera traps has also been seen in mark-resight 

methods used when the number of marked individuals is either known or unknown, and only part of 

the target population is uniquely identifiable (Matthews et al. 2008, McClintock et al. 2009, Foster and 

Harmsen 2012). The use of individual identification in studies has been both reliable (e.g., Kelly et al. 

2008) and less reliable in many different studies (e.g., Meek et al. 2013, Alexander and Gese 2018, van 

Hespen et al. 2019). The development of spatially explicit mark-recapture (SECR) and spatial capture-

recapture (SCR) analyses have provided viable methods in estimating species’ abundances using 

camera trap data (Royle et al. 2009). SECR is a collection of methodologies used for modelling capture-

recapture data collected by various “detectors”, such as passive and live camera traps. In SECR, spatial 

detection histories are fitted with spatial models of the target population and detection process. The 

estimated population densities are unbiased, not influenced by edge effects and incomplete 

detections (Efford 2015). Although SECR, which uses Bayesian closed-population capture-recapture 

methods to estimate species population sizes and abundances, is currently recognized as the most 

efficient and successful method for estimating identifiable animal species (Alexander 2016). Green et 

al. (2020), recorded significant bias in species preference with studies that used SECR methods for 

data analysis. A big focus of the studies researched was on large felid species, specifically rare and 

identifiable species, and associated population densities for these study species (Green et al. 2020). 

Green et al. (2020) recorded ~90.9% of SECR studies reviewed were focused on carnivore species, of 

which 82% were studies on felids with unique markings. However, valuable camera trap data on other 

wildlife species is often not analyzed due to those species being individually unidentifiable (hereafter 

unmarked, Gubbi et al. 2019). Estimating population sizes, abundances, and densities for unmarked 
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species is currently difficult under conventional capture-recapture methods (Green et al. 2020). There 

are many globally significant unmarked species that have not been extensively researched. These 

species could provide robust evidence for, and new insights into, species interrelatedness (Karanth et 

al. 2004, Carbone et al. 2010), trophic interactions (Owen-Smith and Mills 2008), guild structures, 

species interactions (Karanth et al. 2017) and disease (Ramsey et al. 2015). Such information is 

essential for conservation and management of threatened species (Campbell et al. 2002). 

Varying forms of species analyses have been developed to estimate population sizes of unmarked 

individuals (Denes et al. 2015). However, few studies have compared unmarked population size 

estimates to SECR estimates and investigated how study design influences the results of these 

analyses (Allen et al. 2020). Some studies utilize presence-absence data and model detection 

processes to estimate detection probabilities of unmarked animals per camera station, compensating 

for the lack of identifiable animals (Rowcliffe et al. 2008, Fiske and Chandler 2011). New methods that 

record presence–absence data over multiple survey occasions (Royle–Nichols Abundance Induced 

Heterogeneity model, Royle and Nichols 2003), or the species abundance over multiple surveys, 

without marking individuals have been proposed to estimate population size (Royle Repeated Count 

model, Royle 2004). These methods use dedicated statistical software packages (i.e., ‘Unmarked;’ 

Fiske and Chandler 2011) based on Bayesian framework modelling, which account for detection 

probabilities and thus estimate space use/population sizes. Often, detection probability is neglected, 

which leads to potential type II errors (MacKenzie et al. 2017). These multivariable analyses now allow 

researchers to research concepts such as temporal and spatial exclusion, competitive exclusion, 

habitat preference, temporal activity periods and spatial occupancies of both identifiable and 

unmarked species (Wang et al. 2015, Frey et al. 2017, Steenweg et al. 2017). Niche differentiation and 

temporal and spatial exclusion are common between carnivore species (Droge et al. 2017, Karanth et 

al. 2017). Exclusions lead to differences in peak activity periods and influence community structures 

and resource partitioning within the guild, with these mechanisms promoting stable co-existence 

between species (Broekhuis et al. 2013, Vanak et al. 2013, Droge et al. 2017, Karanth et al. 2017). 

Understanding these mechanisms that promote the co-existence of sympatric carnivores is essential 

for the conservation and management of these carnivores and their ecological communities (Sergio 

et al. 2014, Friedemann et al. 2016, Davis et al. 2018). 

Species’ population data are essential in understanding animal ecology and vital for researchers and 

wildlife managers (Andrewartha and Birch 1954). Population size estimates allow researchers and 

wildlife managers to monitor wildlife populations and the populations’ response to variations in 

climate, landscape change and other species’ (Moeller 2017). Inter-species interactions and 
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relationships are also quantified using abundance and spatio-temporal space use estimations 

(Swanson et al. 2016, Moeller 2017). Researchers and managers utilize this information to implement 

management plans and protocols which aim to accurately monitor the species and ensure the 

continued success and conservation of the target species (Williams et al. 2002). Camera traps have 

become a popular method used to estimate population sizes, abundances, and spatio-temporal 

occupancies non-invasively and effective method in capturing rare and elusive species (Nichols and 

Karanth 2011, Rovero et al. 2013, Meek et al. 2014, Gilbert et al. 2020, Kays et al. 2020). However, 

data collected from camera trap studies are often used to estimate abundances and densities of 

cryptic species and naturally marked animals (Foster and Harmsen 2012, Burton et al. 2015, Gubbi et 

al. 2019). Valuable camera trap data on individually unidentifiable wildlife species is often not analysed 

(Gubbi et al. 2019). Obtaining demographic data on and monitoring elusive unidentifiable species 

remains challenging due to their cryptic natures (Pitman et al. 2017). Collecting demographic data can 

be expensive (Morin et al. 2018). However, with the development of new camera trapping technology 

and knowledge, it is now possible to generate the demographic data needed for the population 

analysis of species harder to identify, such as lions. These methods are not commonly used, and this 

provided the motivation for this study. 

Study Rational 

As habitat and range loss continues, species are under threat of becoming extinct. Data on many large 

carnivore populations are deficient, and this impacts our ability to make good decisions and 

implement conservation programs. Population sizes are important data needed to make these 

decisions. Overestimation or underestimation of species population sizes can significantly impact the 

conservation and management of the species. It is important to gain insight into species populations 

within small, protected areas to understand the effects carnivores have on the ecosystem they exist 

in. Carnivores have significant effects on community and guild structures within fenced protected 

areas. Large carnivore species that occur at high densities could potentially cause local extinctions of 

their prey species and severely impact smaller meso-carnivore species spatio-temporal space use 

patterns. These situations often occur as a result of uninformed management influenced by a lack of 

predator and prey population data.  

Camera trap population studies commonly involve unique identification of individual animals. The 

successful implementation of camera traps has also been seen in mark-resight methods used when 

the number of marked individuals is either known or unknown, and only part of the target population 

is uniquely identifiable. Estimating population sizes, abundances, and densities for unidentifiable 

species is difficult under conventional capture-recapture methods.  
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South Africa has many short and long-term camera trap monitoring programs (e.g. Panthera 2021, 

Pardo et al. 2021). The Panthera organization has multiple camera trap monitoring programs across 

the globe (Panthera 2021). Panthera runs surveys annually, prioritizing leopard monitoring amongst 

other species in South Africa (Rogan et al. 2019). The Snapshot Safari South Africa project contributs 

to a national biodiversity project (Pardo et al. 2021). There are also many species-specific studies 

conducted over short periods of time (e.g.  Bracskowski et al. 2016). Reserves such as Pilanesberg 

National Park, North West province, and Atherstone Nature Reserve, Limpopo province, have been 

research sites where both Panthera and Snapshot Safari deployment arrays have been active for some 

time. In this study, I investigated the use of N-mixture models to estimate population sizes of leopard 

(Panthera pardus) and brown hyaena (Parahyaena brunnea). Previous leopard and brown hyaena 

population sizes were estimated using Bayesian closed-population capture-recapture analysis, which 

relies on individual identification. This provided an opportunity to investigate the use of N-mixture 

models to estimate population sizes whilst using previous estimates as a benchmark. The N-mixture 

models do allow population size estimation for camera trap data whilst considering these two 

naturally marked species as unidentifiable. The focus of N-mixture models is to view population sizes 

that are site-specific, as independent random variables that are distributed according to a certain 

mixing distribution, such as a Poisson distribution. Prior parameters are estimated from marginal 

likelihood of the input data, having integrated over the prior distribution for the site-specific 

population sizes. This enables the estimation of a species' population size for a certain study area. 

Therefore, using these n-mixture models potentially provides evidence in support of using N-mixture 

models to analyze and estimate populations of unidentifiable species. Hence, I aimed to compare N-

mixture model population size estimates to pre-existing Bayesian closed-population capture-

recapture estimates. Furthermore, this study aimed to provide empirical evidence supporting the use 

of N-mixture models to estimate the population sizes of both naturally marked and unidentifiable 

species.  
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Aims and objectives 

This study aimed to determine how camera trap grid deployment techniques, and their corresponding 

data, impact carnivore activity measures and N-mixture model abundance estimates. 

General objective 

To provide empirical evidence supporting the use of N-mixture models to estimate the population 

sizes of both naturally marked and unidentifiable species. 

Specific objective 1   

To determine how three different camera trap deployment techniques influence population size 

estimates of two large carnivores in Madikwe Game Reserve using N-mixture models.  

Specific objective 2  

To estimate population sizes and investigate spatial occupancies of brown hyaena  and leopard in 

Pilanesberg National Park and Atherstone Nature Reserve. 

Specific objective 3  

To investigate the influence a targeted roadside cluster deployment and regular deployment array 

have on N-mixture model population size estimates in Pilanesberg National Park and Atherstone 

Nature Reserve. 
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Chapter 2 

Counting the (un)marked mammals: A case study for leopard and 

brown hyaena in Madikwe Game Reserve 

Abstract 

Motion sensing camera traps have become a common tool for estimating species population sizes and 

abundances and conduct spatio-temporal space use analyses. Estimating population sizes, 

abundances and densities for unidentifiable species have been difficult using conventional capture-

recapture methods, leading to little research on unmarked species. I estimated the population sizes 

of two species, leopard (Panthera pardus) and brown hyaena (Parahyaena brunnea), using camera 

trap count data from three camera trap projects deployed in Madikwe Game Reserve, analyzed using 

N-mixture models in the package ‘Unmarked’ in R-Studio. N-mixture model analysis allows researchers 

to estimate population sizes of species without the need for individual identification. Before this study, 

Bayesian closed-population capture-recapture was used to estimate the population size of the same 

species in the same study site. I benchmarked estimates for comparison between N-mixture model 

estimates and Bayesian estimates. The Bayesian estimates were used as benchmark estimates 

because these methods are well developed and established with scientific backing (leopards = 24 ± 

1.17, brown hyaenas = 92 ± 7.13). Results varied per camera trap deployment array. The regular 

Snapshot deployment array (36.85, C.I. 14-97) and the roadside Panthera cluster deployment array 

(19.40, C.I. 12-59) leopard estimates were reasonably close to those of the Bayesian closed population 

capture-recapture. Brown hyaena population sizes estimated from the regular Snapshot deployment 

array were close to benchmark estimates (87.20, C.I. 53-163); however, the roadside Panthera cluster 

deployment population size estimation was an overestimate (167.69, C.I. 105-259). More research is 

needed to determine why there were overestimations of brown hyaena population sizes. This 

research will aid in developing and implementing conservation and management plans for elusive 

unidentifiable species whose population sizes are largely unknown. 

Keywords: Population size estimation, camera trapping, count data, unmarked species, Bayesian 

analyses, non-invasive sampling. 
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Introduction 

Population size estimates are essential to ecology and are important for the conservation 

management of wildlife (Andrewartha and Birch 1954). Continuous assessments and monitoring of 

population sizes assist with determining responses to changes in habitat types and structures, climatic 

conditions, and other species (Dirzo et al. 2014). Wildlife managers use population size and abundance 

estimates to prioritize and implement specific protocols that will have large impacts on a target 

species (Campbell et al. 2002). 

Recently, motion sensor cameras, termed camera traps, have become a widely used tool used to 

collect distinct types of ecologically relevant information, such as population sizes, species 

distributions and richness (Champion 1992, Griffiths and Van Schaik 1993, Garshelis et al. 1999, Wearn 

and Glover-Kapfer 2019, Carvaggi et al. 2020). These information types are commonly used to 

estimate abundances and densities of cryptic species and naturally marked animals (Foster and 

Harmsen 2012, Burton et al. 2015, Gubbi et al. 2019). However, valuable camera trap data on other 

wild mammal species is often not analyzed due to those species being individually unidentifiable 

(hereafter called unmarked, Gubbi et al. 2019). Estimating population sizes, abundances and densities 

for unmarked species is not possible under conventional capture-recapture methods (Green et al. 

2020). Many globally significant unmarked species have, therefore, not been researched. These 

species could provide robust evidence for, and new insights into, species interrelatedness (Karanth et 

al. 2004, Carbone et al. 2010), trophic interactions (Owen-Smith and Mills 2008), guild structures, 

species interactions (Karanth et al. 2017) and diseases (Ramsey et al. 2015). Such information is 

essential for conserving and managing threatened and endangered species (Campbell et al. 2002). 

Traditional capture-recapture and newly developed spatially explicit capture-recapture methods that 

involve individual identification of animals do not estimate population sizes or abundances of 

unmarked species (Green et al. 2020). Trapping rates are commonly used to estimate relative 

abundances (Carbone et al. 2001). However, trapping rates do not account for imperfect detection, 

limiting their use. Chandler and Royle (2013), indicated that individual identification of a species is not 

necessary for estimating population sizes and densities. They used species specific spatially replicated 

count data from multiple sample sites to estimate densities and abundances of unmarked species. 

This model is considered an extension of existing spatial capture-recapture models (Ramsey et al. 

2015). The binomial data used by current capture-recapture methods is replaced by count data 

(Chandler and Royle 2013). This is useful as researchers can now utilize unmarked species data 

collected through camera traps and conduct population analyses (Chandler and Royle 2013). These 

analyses can be performed using statistical software packages (e.g., ‘UNMARKED’; Fiske and Chandler 
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2011). These packages account for imperfect detection using complex modelling (i.e., Bayesian 

framework), allowing for population and space use analysis modelling (MacKenzie et al. 2017). 

Furthermore, conducting multiple surveys (i.e., repeated counts) also helps account for imperfect 

detection probabilities, which improves the performance of statistical models. Multiple surveys are 

also necessary for assessing presences or absences of a species and species abundances (Royle and 

Nichols 2003, Royle 2004, Fiske and Chandler 2011, MacKenzie et al. 2017). 

This study investigated the use of count data to estimate the population sizes of leopard and brown 

hyaena in Madikwe Game Reserve. I aimed to investigate unmarked population size estimates by 

comparing them to pre-existing Bayesian closed-population capture-recapture estimates (Honiball 

2021). Furthermore, this study aimed to provide empirical evidence supporting the use of N-mixture 

models to estimate species population sizes. Spatially replicated count data were provided by three 

different camera trap deployments, namely a regular deployment array (Snapshot Safari, Pardo et al. 

2021), a baited and non-baited sequential deployment (Honiball 2021), and a roadside cluster 

deployment (Panthera, Panthera 2021). Both the roadside cluster and baited/non-baited sequential 

deployments were predicted to overestimate the population sizes of the target species as these 

deployments are targeted. The regular deployment array was predicted to match the previous 

Bayesian estimates due to this deployment being non-targeted. 

Methods and materials 

Study area 

Madikwe Game Reserve (hereafter Madikwe) is approximately 75 000 ha in size and is one of the 

largest game reserves in South Africa (Figure 2.1). Madikwe borders Botswana in the North West 

province (-24.750602, 26.277229; Figure 2.1). Vegetation types on the reserve vary between turf 

thornveld, Kalahari bushveld, mixed bushveld, and arid sweet bushveld (Mucina and Rutherford 2006). 

It is in an area transitioning between Lowveld bushveld and arid Kalahari thornveld (Hudak and 

Wessman 2001). The vegetation structure varies from woodlands to open grassland plains and rocky 

outcrops (Hudak and Wessman 2001). The reserve is enclosed by ~150 km of electrified fencing. There 

are ~66 large mammal species located within Madikwe (Cox 2020). Madikwe’s wet season extends 

from October to April, with average temperatures ranging between 28oC to 32oC and an average 

rainfall of 70.1 mm (Joint Research Centre of the European Commission 2021). During the dry season, 

from May to September, the average rainfall averages 8 mm, with temperatures between 25oC to 28oC 

(Cox 2020). From Bayesian closed-population capture-recapture analysis, Honiball et al. (2021) 

estimated that there are 82 (s.d. = 3.96) spotted hyaenas (Crocuta crocuta), 92 (s.d. = 7.13) brown 
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hyaenas and 24 (s.d. = 1.17) leopards on Madikwe. There are 33 lions (Panthera leo) on Madikwe (July 

2020 estimate; North West Parks and Tourism Board, unpublished data). 

  

Figure 2.1. Three different camera trap deployments (n=140) located within Madikwe Game 

Reserve, North West province, South Africa 

Data Collection 

Leopard and brown hyaena population sizes were estimated using three different pre-existing 

iterations of camera trap deployment techniques. Camera trap data provided by Snapshot Safari – 

South Africa (hereafter regular deployment array), Panthera (hereafter roadside cluster deployment) 

and Nelson Mandela University (hereafter baited and non-baited sequential deployment) was 
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analyzed (Figure 2.1, Honiball 2021, Pardo et al. 2021). Snapshot Safari – South Africa and Panthera 

are ongoing, long term, well-established projects. All data provided were gathered prior to this study. 

I had no role in the data collection process due to the Covid-19 pandemic prohibiting my own data 

collection. 

Regular Deployment Array 

Forty camera traps (Cuddeback model C1279, Non-Typical Inc., Park Falls, USA) were deployed in a 5 

km2 regular grid array (Figure 2.1). Every camera trap was placed approximately 50 cm above the 

ground, facing the nearest game trail (Cusack et al. 2015, Swanson et al. 2015, Pardo et al. 2021). The 

grass surrounding every camera trap was trimmed to less than 30 cm when a camera trap was placed 

or serviced to reduce the number of misfires and reduce the risk of fire (Swanson et al. 2015). Camera 

traps were serviced every 4 to 6 weeks. The data extracted from Snapshot’s cameras for this research 

were from 1 January 2019 to 5 November 2019, recording 12 360 camera trap nights, resulting in a 

total of 63 sampling occasions.  

Roadside Cluster Deployment 

The Panthera project team (Panthera, 2021) placed unbaited camera traps (Pantheracams camera 

traps) in a cluster grid design across Madikwe from 11 October 2019 to 02 December 2019, which 

recorded a total of 2120 camera trap nights, resulting in 11 sampling occasions. Each cluster consisted 

of four stations, each of which comprised two camera traps per station (Figure 2.1). Clusters were 

between 3 km and 8 km apart. Stations were separated by 1 km. The cameras use xenon flash cameras 

with built-in infrared motion sensors. All cameras captured one image per trigger event (Miller et al. 

2018). Cameras were situated primarily along roads and road junctions (Miller et al. 2018). Cameras 

were attached to trees or steel poles and placed about 30-40 cm above the ground. There were 40 

stations with a total of 80 camera traps deployed (Figure 2.1, Pitman et al. 2017, Rogan et al. 2019). 

Baited and Non-Baited Sequential Deployment 

The Nelson Mandela University unbaited, and baited camera trap project (Honiball 2021) involved 

dividing Madikwe into 12 blocks (each 64 km2) to cover the smallest possible home range size of a 

leopard (Figure 2.1, see Honiball 2021). The 12 blocks were sequentially surveyed for 21 days from 26 

August 2019 to 06 May 2020, recording a total of 2673 camera trap nights, resulting in 51 sampling 

occasions. Within each block, 10 camera stations consisting of two camera traps were placed, a total 

of 20 camera traps were used. Of the ten stations, five were baited, and five were unbaited (Figure 

2.1). Baited sites were selected based on suitable tree presence preferred by leopards (predominantly 
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Boscia spp) and signs of leopard activity (i.e., scat, tracks, territorial markings). Madikwe’s reserve 

management provided meat that was used as lures. Ten kilograms of bait was used per baited site. 

Bait was fixed to trees at a minimum height of 3 m above the ground. Bait was not replaced once 

removed, which avoided the animals becoming habituated to the site (see Mills et al. 2019). Infrared 

camera traps (Cuddeback model C1309, Non-Typical Inc., Park Falls, USA) were placed 2 m from the 

base on either side of the tree, with at least one camera trap facing the most likely access point for a 

carnivore, such as leopard, to access the lure (Honiball 2021). 

Data analyses 

I investigated the three deployments, resulting in population size estimates and their 97.5% Bayesian 

confidence intervals (B.C.I). The best performing deployment was assumed to have the smallest 

Bayesian confidence intervals (see Della Rocca et al. 2020). To determine the influence of different 

camera trap grid deployments on unmarked population size estimates, leopard and brown hyaena 

data were collected and extracted from three different camera trap studies on Madikwe from January 

2019 to April 2020. The data were analyzed using N-mixture models (Royle 2004). Bayesian closed-

population capture-recapture estimates for the two species’ population sizes (leopards = 24 ± 1.17, 

brown hyaenas = 92 ± 7.13) were used as benchmark estimates (Honiball 2021).  

Raw, unidentified camera trap data from the regular deployment array were identified using the 

software Wild.ID (Version 1.0.1, Tropical Ecology Assessment and Monitoring Network, 2021). Raw 

camera trap data were identified, classified into species, and counted. Records were exported as an 

excel file and combined with existing data to construct datasets for analysis. Furthermore, processed 

data from the regular deployment array, the roadside cluster deployment and the baited and non-

baited sequential deployment were additionally provided by Snapshot Safari (Pardo et al. 2021), the 

Panthera project team (Panthera 2021) and Nelson Mandela University (Honiball 2021). All camera 

stations were pooled into three datasets, one per deployment array type. Specific covariates were 

used to account for the variation in camera trap deployment methods. For example, “baited or non-

baited” was included as a covariate to account for variation between baited and non-baited camera 

traps for the Nelson Mandela University sequential baited and non-baited project. To ensure capture 

independence, photos taken of the same species within a 60-minute time frame were considered a 

single capture event which was reported to be independent (Yasuda 2004).  A 60-minute time frame 

was used because data received had been previously filtered into 60-minute time frames. 

Leopard and brown hyaena data were converted to count data, the number of independent captures 

in the allocated 5-day sample occasions were assigned to each camera. Camera traps with no 



34 
 

detections for a sampling occasion were assigned a “0”. For example, if three independent leopard 

captures were recorded within one of the 5-day sample occasions, a “3” was recorded. By doing this, 

a species-specific repeated count record was made using detection histories formatted for the same 

time intervals used in the Bayesian closed-population capture-recapture analysis (Honiball 2021).  

Seven covariates that were considered ecologically relevant to the species were considered habitat 

type (n = 16; Mixed Acacia and Combretum veld, Combretum apiculatum with Vitex and Tarchonatus, 

Combretum apiculatum broadleaf mountainveld, Mixed Vachelia and Senegalia Woodland, Senegalia 

erubescens, Senegalia mellifera with Boscia foetida, Senegalia erubescens with Combretum, Old lands 

with Vachelia tortillis and Vachelia gerrardii, Terminalia sericea veld, Combretum imberbe woodland, 

Vachelia tortillis and Vachelia gerrardii on vleis, Sclerocarya caffra and Senegalia erubescens veld, 

Mixed Vachelia (tortillis and nilotica) and Ziziphus mucronate, Senegalia mellifora on red sand, 

Dichrostachys shrubland, Senegalia erubescens infestede with Dichrostachys cinerea, Page and Slotow 

2001) , elevation (m), baited or unbaited cameras, distance to nearest tarred or dirt road (m), distance 

to boundary (m), distance to infrastructure (m; lodges, warehouses, camps, gates, bomas, staff 

accommodations, sub-stations, houses, center and conference rooms, pumps, water towers), and 

distance to water (m). These covariates were then checked for multicollinearity using the ‘Olsrr’ 

package (Hebbali 2020). All seven covariates were retained, all recorded variance inflation factors 

were <4. All covariates were mapped and calculated using ArcMap (Version 10.8.1.14362, ESRI, 2021) 

and Google Earth Pro (Version 7.3.4.8248, Google Earth, 2021).  

The “p-count” function in the ‘Unmarked’ package (Fiske and Chandler 2011) was used in R-program 

(R Core Team 2021, 4.11, www.rstudio.com, accessed 25 February 2021) using R-studio (R Core Team 

2021, Version 1.2.1717, www.rstudio.com, accessed 25 February 2021) to run N-mixture models 

(RRC). Both single and multi-covariate models were run for each camera trap project. The ‘Ranef’ 

function in the ‘Unmarked’ package was used to estimate population sizes along with their confidence 

intervals, using the empirical Bayes methods. Using the formatted repeated count data, N-mixture 

models (RRC – Royle Repeated Count models) were run and selected according to which model 

records the lowest information criterion corrected (AICc) value.  
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Results 

Deployment arrays recorded similar numbers of species-specific independent captures despite 

different levels of sampling effort (Table 2.1). 

Table 2.1. The number of independent captures recorded per species by each deployment array in 

Madikwe Game Reserve. 

Deployment Camera Trap Stations Leopard Captures Brown Hyaena Captures 

Regular Snapshot 20 24 145 

Roadside Panthera 80 21 320 

Baited and non-baited 120 57 164 

 

The regular deployment camera trap data estimated a leopard population size of 36.86 (97.5% B.C.I. 

16 – 95) individuals (Table 2.2). The population size estimates from the three camera trap deployments 

varied. The best ranking model for the regular deployment array data to estimate the leopard 

population size on Madikwe was a single covariate model (Table 2.3). This modelled distance to the 

nearest water source as a site level space use covariate. The best ranking model used to estimate the 

brown hyaena population size was a pair-wise combination of site level space use covariates, habitat 

type and distance to nearest infrastructure (Table 2.3). The regular deployment camera trap data 

generated a brown hyaena population estimate of 87.20 (97.5% B.C.I. 53 – 163) individuals (Table 2.2). 

Table 2.2. The recorded leopard and brown hyaena population sizes per project with 97.5% 
confidence intervals (CI) according to the best ranking models. LPE = Leopard Population Estimate. 
BHPE = Brown Hyaena Population Estimate. GoF = Global model goodness of fit (C-hat). 

Project LPE CI GoF BHPE CI GoF 

Baited/non-baited 
deployment 

186.01 47 – 467 1.80 255.78 113 – 532 1.56 

Regular deployment 36.85 14 – 97 1.90 87.20 53 – 163 1.26 

Roadside cluster 
deployment 

19.40 12 – 59 1.46 167.69 105 – 259 1.45 
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Table 2.3. The regular deployment array recorded population sizes with 97.5% confidence intervals 
(CI) per single covariate model. Additionally, constant space use (--) was modelled as a site space 
use level covariate. ‘*’ = best ranking models. 

Covariates Leopard 
Population 
Estimate 

Confidence 
Intervals 

Brown Hyaena 
Population Estimate 

Confidence 
Intervals 

Elevation 28.46 14 – 97 82.12 49 – 154 

Habitat 28.00 14 – 91 83.81 50 – 154 

Infrastructure 28.36 14 – 91 85.60 51 – 158 

Road 28.29 14 – 97 82.25 49 – 154 

Water* 36.85 14 – 97 83.29 51 – 157 

Boundary 28.26 16 - 96 82.70 50 – 155 

-- 28.27 14 - 97 82.07 49 - 153 

 

The best ranking model for the roadside cluster deployment was a single covariate model, which 

modelled constant space use as a site level space use covariate (Table 2.4).  

Table 2.4. The roadside cluster deployments recorded population sizes with 97.5% confidence 
intervals (CI) per single covariate model. Additionally, constant space use (--) was modelled as a site 
space use level covariate. ‘*’ = best ranking models. 

Covariates Leopard 
Population 
Estimate 

Confidence 
Intervals 

Brown Hyaena 
Population Estimate 

Confidence 
Intervals 

Elevation 19.44 12 – 58 167.63 106 – 258 

Habitat 19.37 12 – 56 167.74 105 – 260 

Infrastructure 19.37 12 – 59 167.56 106 – 260 

Road 19.53 12 – 58 167.91 105 – 260 

Water 20.46 12 – 61 169.52 107 – 263 

Boundary 19.62 12 – 58 167.71 105 – 258 

--* 19.40 12 – 59 167.69 105 – 259 
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The best ranking model was the same for both species. The roadside cluster camera trap deployment 

data estimated a population size of 19.40 (97.5% B.C.I. 12 – 59) for leopards and 167.69 (97.5% B.C.I. 

105 – 259) for brown hyaenas according to the best ranking model (Table 2.2). 

The best ranking model for the baited and non-baited sequential camera trap deployment data was a 

single covariate model, which modelled bait (Yes/No) as a site level space use covariate (Table 2.5). 

The best ranking model was the same for both species. The baited and non-baited camera trap data 

estimated a population size of 186.01 (97.5% B.C.I. 47 – 467) leopards and 255.78 (97.5% B.C.I. 113 – 

532) brown hyaenas according to the best ranking model (Table 2.2). 

Table 2.5. The baited and non-baited sequential deployment recorded population sizes with 97.5% 
confidence intervals (CI) per single covariate model. Additionally, constant space use (--) was 
modelled as a site level covariate. ‘*’ = best ranking models. 

Covariates Leopard 
Population 
Estimate 

Confidence 
Intervals 

Brown Hyaena 
Population Estimate 

Confidence 
Intervals 

Bait* 186.01 47 - 467 255.78 113 - 532 

Elevation 496.53 165 – 942 228.94 111 – 487 

Habitat 249.19 48 – 574 261.02 112 – 533 

Infrastructure 178.69 47 – 450 228.00 110 – 473 

Road 185.45 47 – 466 233.90 110 – 484 

Water 327.91 101 – 686 243.87 111 – 501 

Boundary 145.94 47 – 391 244.20 110 – 503 

-- 185.35 47 – 475 228.20 110 – 471 

 

Discussion 

In this study, I investigated the use of count data from three sampling methods for estimating the 

population size of leopard and brown hyaena in Madikwe Game Reserve. These three sampling 

methods involved different camera trap deployments: Baited and non-baited sequential camera trap 

deployment (Honiball 2021), roadside cluster deployment (Panthera 2021), and regular deployment 

array (Pardo et al. 2021). Recently, N-mixture models have been particularly useful in unmarked 

species conservation and ecology, specifically in population and space use analysis, and have increased 

in use over time with many model extensions having been developed (Kéry and Royle 2016).  
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The Madikwe benchmark estimates for the leopard and brown hyaena population sizes were 24 (s.d. 

= 1.17) and 92 (s.d. = 7.13) individuals (Honiball 2021). The population size estimates reported here in 

this study for each of the three camera trap projects were influenced by the same ecologically relevant 

covariates. The baited and non-baited sequential deployment provided the most leopard data out of 

the three camera trap projects (n = 57 independent captures over 2673 camera trapping nights). 

However, the baited and non-baited deployment did not yield the most brown hyaena data of the 

three projects. This may be due to brown hyaena’s having a highly variable diet. Brown hyaena have 

a well recorded scavenging behaviour and wide dietary breadth (Mills and Mills 1978, Ramnanan et 

al. 2016). The roadside cluster camera trap deployment provided the most brown hyaena data 

compared to the other camera trap projects (n = 320 independent captures over 2120 camera trap 

nights). The roadside cluster camera traps were placed primarily along roads and roadways (Miller et 

al. 2018). It is well documented that large carnivores utilize road networks (Mills 1990, Thorn et al. 

2011, Zimmermann et al. 2014, Welch et al. 2016). This provides a possible explanation as to why the 

roadside cluster camera trap deployment provided the most brown hyaena data of the three camera 

trap projects. 

The regular deployment array did not record the most species-specific independent captures and 

required more deployment time overall (12 360 camera trapping nights), as non-baited and non-

targeted camera traps are often hindered by low capture rates (Joubert et al. 2020). The regular 

camera trap deployment array and data provided population size estimates close to the benchmark 

estimates. The regular deployment brown hyaena population size estimate (n = 87.20, 97.5% B.C.I = 

53-163, Table 2.3) was closest to the benchmark set by the Bayesian closed-population capture-

recapture analysis (n = 92 ± 7.13, Honiball 2021), and recorded the smallest 2.5% and 97.5% 

confidence intervals. The regular deployment array is a non-targeted approach, which reduces the 

likelihood of any potential biases associated with targeted approaches such as baited camera traps 

(Swanson et al. 2015, Pardo et al. 2021). Baited camera traps have been recorded to significantly 

influence detection probabilities (du Preez et al. 2014, Joubert et al. 2020). This reason along with 

camera traps being deployed in short 21-day intervals, is likely why the recorded population size 

estimates from the baited/non-baited deployment are largely overestimated and have large 97.5% 

confidence intervals (Table 2.3). 

The roadside camera trap deployment and data provided the closest leopard population estimate to 

the benchmark set by the Bayesian closed-population capture-recapture analysis (n = 24 ± 1.17, 

Honiball 2021). This estimate showed much smaller 97.5% confidence intervals than those obtained 

from data collected by the other two camera trap deployments (Table 2.3). The recorded global model 
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goodness of fit c-hat values for each population size estimate was the best value recorded per species 

per camera trap project (Roadside cluster leopard data c-hat = 1.46 and regular deployment array 

brown hyaena data c-hat = 1.26). In this study, five-day sample occasions were used, matching that 

used in the Bayesian closed-population capture-recapture analysis. This led to varying goodness of fit 

c-hat values being recorded (Regular deployment array leopard data c-hat = 1.9). Perhaps, if a different 

sampling occasion length was used for the regular deployment leopard data, improving the goodness 

of fit value, an estimate closer to the benchmark estimate could be recorded along with smaller 

confidence intervals. This highlights how much the N-Mixture count models rely on detection 

probability as well as how sensitive these models are to changes in detection probability (Denes et al. 

2015, Duarte et al. 2018). It is important to test whether any covariates being tested influence the 

detection probability of the study species and adjust sampling occasion lengths according to recorded 

goodness of fit values (Duarte et al. 2018).  

The difference between the regular camera trap deployment, the roadside cluster and baited/non-

baited camera trap deployments is data collection. To generate enough data for unmarked analysis, 

Snapshot’s regular deployment array requires more deployment time as camera traps are not baited 

or targeted (Swanson et al. 2015, Pardo et al. 2021). The volumes of data generated by the roadside 

cluster and baited/non-baited camera trap deployments are better suited for SECR analysis, where 

individual identification is necessary, and where more data are required (Allen et al. 2020). In this 

study, camera trap setups that used a structured grid obtained estimates closer to the benchmark 

estimates. Snapshot’s deployment strategy seems best suited out of the three analyzed for studying 

unidentifiable species using unmarked analyses, even though this will require longer deployment 

times. Further analysis is required to determine whether targeted roadside clustered camera traps 

significantly influence the detection probability of the study species. N-Mixture models have been 

used to estimate population sizes of species using different methods for gathering data, such as tree 

surveys and walked transects (Della Rocca et al. 2020).  

Spatially explicit capture-recapture (SECR), which uses Bayesian closed-population capture-recapture 

methods to estimate species population sizes and abundances, is currently recognized as the most 

efficient and successful method for estimating identifiable animal species (Alexander 2016). Green et 

al. (2020), recorded significant bias in species preference with studies having used SECR methods for 

data analysis. The focus of the studies researched was on large felid species, specifically rare and 

identifiable species, and associated population densities for these study species (Green et al. 2020). 

Green et al. (2020) recorded that 90.9% of SECR studies reviewed were focused on carnivore species, 

of which 82% were studies on felids with unique markings. Although there are potential modifications 
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to be made, there is yet a variation in SECR analysis that accommodates unidentifiable species; 

researchers still have to identify individuals (Iijima 2020). Similar to SECR methods, spatially explicit 

mark-resight models can analyze both marked and unmarked species data and estimate the species 

densities (Kelly et al. 2008, McClintock et al. 2009, 2012). However, a portion of the unmarked species 

are still required to be marked for this method. This highlights the possibility of SECR methods 

expanding to include multi-species analyses and unidentifiable species (Green et al. 2020). However, 

until these expansions are made, unidentifiable species will continue to be difficult target species to 

research. 

This study advances our knowledge of population monitoring of unmarked species. The regular 

deployment array produced population size estimates closest to the benchmark estimates. The 

population size estimates are comparable to more traditional approaches (Table 2.2). By analyzing 

how N-Mixture models perform in estimating the population sizes of identifiable species that are 

known, progress can be made towards assessing the feasibility of N-Mixture models for estimating the 

population sizes of unidentifiable species. Gilbert et al. (2020) reviewed unmarked methods and 

showed that mark-resight methods have not been used consistently to estimate population sizes, 

abundances, and densities of unidentifiable animal species. Although, this method is promising and 

becoming more commonly used. Overall, a non-targeted approach appears to produce more accurate 

population size estimates, although further research is needed to investigate the influence roadside 

targeted camera trap deployments have on N-mixture model population size estimates. 

 

 

 

 

  



41 
 

References 

Alexander, P. D. (2016). Comparing conventional and non-invasive monitoring techniques for assessing 

cougar population size in the southern Greater Yellowstone Ecosystem. MSc Dissertation, Utah 

State University. 

Allen, M. L., Wang, S., Olson, L. O., Li, Q., and Krofel, M. (2020). Counting cats for conservation: 

seasonal estimates of leopard density and drivers of distribution in the Serengeti. Biodiversity 

and Conservation, 29(13), 3591-3608. 

Andrewartha, H. G., and Birch, L. C. (1954). The distribution and abundance of animals (Ed 1). 

University of Chicago Press. Illinois, United States. 

Burton, A. C., Neilson, E., Moreira, D., Ladle, A., Steenweg, R., Fisher, J. T., ... and Boutin, S. (2015). 

Wildlife camera trapping: a review and recommendations for linking surveys to ecological 

processes. Journal of Applied Ecology, 52(3), 675-685. 

Campbell, S. P., Clark, J. A., Crampton, L. H., Guerry, A. D., Hatch, L. T., Hosseini, P. R., ... and O'Connor, 

R. J. (2002). An assessment of monitoring efforts in endangered species recovery 

plans. Ecological Applications, 12(3), 674-681. 

Caravaggi, A., Burton, A. C., Clark, D. A., Fisher, J. T., Grass, A., Green, S., ... and Rivet, D. (2020). A 

review of factors to consider when using camera traps to study animal behavior to inform 

wildlife ecology and conservation. Conservation Science and Practice, 2(8), e239. 

Carbone, C., Christie, S., Conforti, K., Coulson, T., Franklin, N., Ginsberg, J. R., ... and Shahruddin, W. 

W. (2001). The use of photographic rates to estimate densities of tigers and other cryptic 

mammals. In Animal Conservation forum, 4, 75-79. Cambridge University Press. 

Carbone, C., Pettorelli, N., and Stephens, P. A. (2010). The bigger they come, the harder they fall: body 

size and prey abundance influence predator prey ratios. Biology Letters, 7(2), 312-315. 

Champion, F. W. (1992). With a camera in tiger-land. Doubleday, Doran, Incorporated, United States. 

Chandler, R. B., and Royle, J. A. (2013). Spatially explicit models for inference about density in 

unmarked or partially marked populations. The Annals of Applied Statistics, 7, 936-954. 

Cox, S. (2020). Madikwe Game Reserve. https://www.madikwegamereserve.co.za/. [Accessed 

31/01/2021.]  



42 
 

Cusack, J. J., Swanson, A., Coulson, T., Packer, C., Carbone, C., Dickman, A. J., ... and Rowcliffe, J. M. 

(2015). Applying a random encounter model to estimate lion density from camera traps in 

Serengeti National Park, Tanzania. The Journal of Wildlife Management, 79(6), 1014-1021. 

Della Rocca, F., Milanesi, P., Magna, F., Mola, L., Bezzicheri, T., Deiaco, C., and Bracco, F. (2020). 

Comparison of two sampling methods to estimate the abundance of Lucanus cervus with 

Application of N-mixture models. Forests, 11(10), 1085. 

Denes, F. V., Silveira, L. F., and Beissinger, S. R. (2015). Estimating abundance of unmarked animal 

populations: accounting for imperfect detection and other sources of zero inflation. Methods 

in Ecology and Evolution, 6(5), 543-556. 

Dirzo, R., Young, H. S., Galetti, M., Ceballos, G., Isaac, N. J., and Collen, B. (2014). Defaunation in the 

Anthropocene. Science, 345(6195), 401-406. 

Duarte, A., Adams, M. J., and Peterson, J. T. (2018). Fitting N-mixture models to count data with 

unmodeled heterogeneity: Bias, diagnostics, and alternative approaches. Ecological 

Modelling, 374, 51-59. 

du Preez, B. D., Loveridge, A. J., and Macdonald, D. W. (2014). To bait or not to bait: a comparison of 

camera trapping methods for estimating leopard (Panthera pardus) density. Biological 

Conservation, 176, 153-161. 

Fiske, I., and Chandler, R. (2011). Unmarked: an R package for fitting hierarchical models of wildlife 

occurrence and abundance. Journal of Statistical Software, 43(10), 1-23.  

Foster, R. J., and Harmsen, B. J. (2012). A critique of density estimation from camera‐trap data. The 

Journal of Wildlife Management, 76(2), 224-236. 

Garshelis, D. L., Joshi, A. R., and Smith, J. L. (1999). Estimating density and relative abundance of sloth 

bears. Ursus, 11, 87-98. 

Gilbert, N. A., Clare, J. D., Stenglein, J. L., and Zuckerberg, B. (2020). Abundance estimation methods 

for unmarked animals with camera traps. Conservation Biology, 35, 88 - 100. 

Green, A. M., Chynoweth, M. W., and Şekercioğlu, Ç. H. (2020). Spatially explicit capture-recapture 

through camera trapping: A review of benchmark analyses for wildlife density 

estimation. Frontiers in Ecology and Evolution, 8, 473. 



43 
 

Griffiths, M. (1993). Camera trapping: a new tool for the study of elusive rain forest animals. Tropical 

Biodiversity, 1, 131-135. 

Gubbi, S., Seshadri, S., and Kumara, V. (2019). Counting the unmarked: Estimating animal population 

using count data. Electronic Journal of Applied Statistical Analysis, 12(3), 604-618. 

Hebbali, A. (2020). olsrr: Tools for building OLS regression models (R package). https://cloud.r-

project.org/web/packages/olsrr. 

Honiball, T. L. (2021). Estimating the population size of three large carnivore species and the diet of 

six large carnivore species, in Madikwe Game Reserve. MSc Dissertation, Nelson Mandela 

University. 

Hudak, A. T., and Wessman, C. A. (2001). Textural analysis of high-resolution imagery to quantify bush 

encroachment in Madikwe Game Reserve, South Africa, 1955-1996. International Journal of 

Remote Sensing, 22(14), 2731-2740.  

Joint Research Centre of the European Commission. (2021). The Digital Observatory for Protected 

Areas (DOPA) Explorer 4.1 online. Ispra, Italy. Available at: http://dopa-

explorer.jrc.ec.europa.eu (Accessed: 19 October 2021). 

Joubert, C. J., Tarugara, A., Clegg, B. W., Gandiwa, E., and Muposhi, V. K. (2020). A baited-camera 

trapping method for estimating the size and sex structure of African leopard (Panthera 

pardus) populations. MethodsX, 7, 101042.  

Karanth, K. U., Nichols, J. D., Kumar, N. S., Link, W. A., and Hines, J. E. (2004). Tigers and their prey: 

Predicting carnivore densities from prey abundance. Proceedings of the National Academy of 

Sciences, 101(14), 4854-4858. 

Karanth, K. U., Srivathsa, A., Vasudev, D., Puri, M., Parameshwaran, R., and Kumar, N. S. (2017). Spatio-

temporal interactions facilitate large carnivore sympatry across a resource 

gradient. Proceedings of the Royal Society B: Biological Sciences, 284(1848), 20161860. 

Kelly, M. J., Noss, A. J., Di Bitetti, M. S., Maffei, L., Arispe, R. L., Paviolo, A., ... and Di Blanco, Y. E. (2008). 

Estimating puma densities from camera trapping across three study sites: Bolivia, Argentina, 

and Belize. Journal of Mammalogy, 89(2), 408-418. 



44 
 

Kéry, M., and Royle, J. A. (2016). Applied hierarchical modelling in ecology modelling distribution, 

abundance and species richness using R and BUGS. In Volume 1: Prelude and Static Models. 

Elsevier/Academic Press. 

Iijima, H. (2020). A review of wildlife abundance estimation models: comparison of models for correct 

application. Mammal Study, 45(3), 177-188. 

MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L., and Hines, J. E. (2017). Space use 

estimation and modeling: inferring patterns and dynamics of species occurrence. Elsevier Inc. 

Amsterdam, Netherlands. 

McClintock, B. T., King, R., Thomas, L., Matthiopoulos, J., McConnell, B. J., and Morales, J. M. (2012). 

A general discrete‐time modeling framework for animal movement using multistate random 

walks. Ecological Monographs, 82(3), 335-349. 

McClintock, B. T., White, G. C., Antolin, M. F., and Tripp, D. W. (2009). Estimating abundance using 

mark–resight when sampling is with replacement, or the number of marked individuals is 

unknown. Biometrics, 65(1), 237-246. 

Miller, J. R., Pitman, R. T., Mann, G. K., Fuller, A. K., and Balme, G. A. (2018). Lions and leopards coexist 

without spatial, temporal or demographic effects of interspecific competition. Journal of 

Animal Ecology, 87(6), 1709-1726. 

Mills, D., Fattebert, J., Hunter, L., and Slotow, R. (2019). Maximising camera trap data: Using 

attractants to improve detection of elusive species in multi-species surveys. PloS One, 14(5), 

e0216447. 

Mills, M. G. L. (1990). Kalahari Hyaenas: Comparative Behavioural Ecology of Two Species. Allen and 

Unwin, London. 

Mills, M. G. L., and Mills, M. E. (1978). The diet of the brown hyaena (Parahyaena brunnea) in the 

southern Kalahari. Koedoe, 21(1), 125-149. 

Mucina, L., and Rutherford, M. C. (2006). The vegetation of South Africa, Lesotho and Swaziland. 

Strelitzia 19. (South African National Biodiversity Institute: Pretoria, South Africa). 

Owen‐Smith, N., and Mills, M. G. (2008). Predator prey size relationships in an African large‐mammal 

food web. Journal of Animal Ecology, 77(1), 173-183. 



45 
 

Page, B., and Slotow, R. (2001). The influence of browsers, particularly elephants, on vegetation 

(diversity) at Madikwe Game Reserve. Preliminary project report. Amarula Elephant Research 

Programme. South Africa. 

Panthera. (2021). Panthera. Available at: https://www.panthera.org/ (Accessed: 11 February 2021). 

Pardo, L. E., Bombaci, S., Huebner, S. E., Somers, M. J., Fritz, H., Downs, C., ... and Venter, J. A. (2021). 

Snapshot Safari: A large-scale collaborative to monitor Africa's remarkable biodiversity. South 

African Journal of Science, 117(1-2), 1-4. 

Pitman, R. T., Fattebert, J., Williams, S. T., Williams, K. S., Hill, R. A., Hunter, L. T., Robinson, H., Power, 

J., Swanepoel, L., Slotow, R., and Balme, G. A. (2017). Cats, connectivity, and conservation: 

incorporating data sets and integrating scales for wildlife management. Journal of Applied 

Ecology, 54(6), 1687-1698. 

Ramnanan, R., Thorn, M., Tambling, C. J., and Somers, M. J. (2016). Resource partitioning between 

black-backed jackal and brown hyaena in Waterberg Biosphere Reserve, South Africa. Canid 

Biology and Conservation, 19, 8-13. 

Ramsey, D. S., Caley, P. A., and Robley, A. (2015). Estimating population density from presence 

absence data using a spatially explicit model. The Journal of Wildlife Management, 79(3), 491-

499. 

Rogan, M. S., Balme, G. A., Distiller, G., Pitman, R. T., Broadfield, J., Mann, G. K., Whittington-Jones, G. 

M., Thomas, L. H., and O'Riain, M. J. (2019). The influence of movement on the space use–

density relationship at small spatial scales. Ecosphere, 10(8), e02807. 

Royle, J. A. (2004). N‐mixture models for estimating population size from spatially replicated 

counts. Biometrics, 60(1), 108-115. 

Royle, J. A., and Nichols, J. D. (2003). Estimating abundance from repeated presence absence data or 

point counts. Ecology, 84(3), 777-790. 

Swanson, A., Kosmala, M., Lintott, C., Simpson, R., Smith, A., and Packer, C. (2015). Snapshot Serengeti, 

high frequency annotated camera trap images of 40 mammalian species in an African savanna. 

Scientific Data, 2, 150026.  



46 
 

Team, R. C. (2021). R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. <https://www.R-project.org/>. Accessed 20 

September 2021. 

Thorn, M., Green, M., Bateman, P. W., Waite, S., and Scott, D. M. (2011). Brown hyaenas on roads: 

estimating carnivore space use and abundance using spatially auto-correlated sign survey 

replicates. Biological Conservation, 144(6), 1799-1807. 

Wearn, O. R., and Glover-Kapfer, P. (2019). Snap happy: camera traps are an effective sampling tool 

when compared with alternative methods. Royal Society Open Science, 6(3), 181748. 

Welch, R. J., Tambling, C. J., Bissett, C., Gaylard, A., Müller, K., Slater, K., ... and Parker, D. M. (2016). 

Brown hyena habitat selection varies among sites in a semi-arid region of southern 

Africa. Journal of Mammalogy, 97(2), 473-482. 

Yasuda, M. (2004). Monitoring diversity and abundance of mammals with camera traps: a case study 

on Mount Tsukuba, central Japan. Mammal Study, 29(1), 37-46. 

Zimmermann, B., Nelson, L., Wabakken, P., Sand, H., and Liberg, O. (2014). Behavioral responses of 

wolves to roads: scale-dependent ambivalence. Behavioral Ecology, 25(6), 1353-1364. 

 

 

 

 

 

 

 

 



47 
 

Chapter 3 

Comparison of population size and space use analyses of two 

carnivore species in two protected areas in north-western South 

Africa 

Abstract 

Worldwide, carnivore populations are decreasing, with some species in danger of extinction. 

Population size estimations and knowledge of geographical distributions are essential tools for wildlife 

conservation and management. Estimating population sizes, abundances and densities for individually 

unidentifiable species are difficult under conventional capture-recapture camera trap methods, 

leading to little research on unidentifiable species. Spatio-temporal space use analyses are commonly 

used to research unidentifiable animal species. In this study, I tested and compared two non-invasive 

camera trap sampling approaches to derive accurate population size estimates by means of N-mixture 

models in a Bayesian framework in two fenced areas. N-mixture model analysis allows researchers to 

estimate population sizes of species without the need for individual identification. Snapshot Safari’s 

regular non-targeted deployment and Panthera’s roadside cluster deployment arrays. There were 

clear differences in detection probabilities and capture numbers between the two sampling 

approaches. The regular deployment array estimated a total of 27.52 (C.I. 12-73) leopard and 70.23 

(C.I. 39-127) brown hyaena on Pilanesberg National Park and 8.29 (C.I. 7-28) leopard and 60.83 (C.I. 

39-105) brown hyaena on Atherstone Nature Reserve. The roadside cluster deployment array 

estimated a total of 87.42 (C.I. 42-167) leopard and 258.86 (C.I. 197-343) brown hyaena on Pilanesberg 

National Park and 128.99 (C.I. 29-274) leopard and 119.66 (C.I. 75-187) brown hyaena on Atherstone 

Nature Reserve. The roadside cluster deployment provided more independent captures and recorded 

higher detection probabilities yet overestimated the population sizes of the two target species. 

Although recording fewer independent species captures and lower detection probabilities, the regular 

deployment array yielded plausible population size estimates for the two target species. The 

sensitivity of N-mixture models needs to be considered when designing a sampling method. However, 

evidence supports N-mixture models being an essential tool for developing and implementing 

conservation and management plans for wildlife species.  

Keywords: Population size estimation, camera trapping, count data, unmarked species, leopard, 

brown hyaena, non-invasive sampling, N-mixture models. 
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Introduction 

Worldwide, carnivore populations are decreasing, with several species in danger of extinction (Rich et 

al. 2017, Wolf and Ripple 2017, Samojlik et al. 2018). Carnivores face many threats, including poaching, 

persecution due to the conflict between humans and carnivores, habitat, and prey loss (Aziz et al. 

2013, Wolf and Ripple 2017). Most carnivores have proven difficult to census due to their elusive and 

cryptic nature (Chutipong et al. 2014, Ripple et al. 2014). For the more visible species such as lions 

(Panthera leo) and cheetah (Acinonyx jubatus), attempts have been made to use species count 

numbers to estimate total population sizes (Bauer et al. 2015, Durant et al. 2017). However, many 

carnivore species lack robust population estimates at a global and local scales do not exist (e.g., for 

the jaguar, Panthera onca, and the leopard, Panthera pardus; Stein et al. 2016, Jędrzejewski et al. 

2018). In South Africa, cryptic and elusive species such as leopard and brown hyaena (Parahyaena 

brunnea) are primarily affected due to these species often ranging beyond fenced protected areas 

(Chapman and Balme 2010, de Blocq 2015, Winterbach et al. 2017). The broad ranging nature of these 

elusive and cryptic species makes accurately estimating population sizes, densities, and abundances a 

constant challenge for conservationists (Nichols and Williams 2006). Wildlife managers estimate 

population sizes to aid in species monitoring and species responses to environmental changes, 

management actions and climatic changes (Moeller 2017). However, these highly elusive and cryptic 

carnivores are difficult to detect, making population estimation challenging (Thorn et al. 2009, 2011, 

Tarugara et al. 2019). These challenges make monitoring these elusive carnivores labor-intensive, 

costly, and time-consuming (Thorn et al. 2009, 2011). There are many different research methods exist 

to estimate population sizes of carnivores (Palencia et al. 2020). These methods include track counts 

(Midlane et al. 2014), road and walked transects (Della Rocca et al. 2020), call-ups (Cozzi et al. 2013) 

and camera trapping (Efford et al. 2013, Carvaggi et al. 2020, Palencia et al. 2020). Camera traps have 

become a widely used and non-labor-intensive tool used to collect several types of ecologically 

relevant information, such as population sizes, species distributions and richness (Champion 1992, 

Griffiths and Van Schaik 1993, Garshelis et al. 1999, Wearn and Glover-Kapfer 2019, Carvaggi et al. 

2020).  

Camera trap studies use varying types of grid deployments and approaches to estimate population 

sizes, abundances and assess spatio-temporal space use patterns (Balme et al.2009, Thorn et al. 2011, 

Kays et al. 2020). These data are then typically used to estimate abundances and densities of cryptic 

and rare species and naturally marked animals (Foster and Harmsen 2012, Burton et al. 2015,  Gubbi 

et al. 2019). Valuable camera trap data on individually unidentifiable wildlife species is often not 

analyzed due to the unavailability of robust analytical methods (Gubbi et al. 2019). A study done by 
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Chandler and Royle (2013), indicated that individual identification of a species is not necessary for 

estimating population sizes and densities. These analyses can be conducted using statistical software 

packages (e.g., ‘Unmarked;’ Fiske and Chandler 2011) and can be applied to camera trap data collected 

from various deployment arrays. Methods that record presence–absence data over multiple survey 

occasions (Royle–Nichols Abundance Induced Heterogeneity model, Royle and Nichols 2003), or the 

species abundance over multiple surveys, without marking individuals have been proposed to 

estimate population size (Royle Repeated Count model, Royle 2004). These modelling approaches 

have been incorporated into the ‘Unmarked’ package (see Fiske and Chandler 2011) and runs complex 

Bayesian framework modelling, which accounts for detection probabilities and thus estimate space 

use/population sizes. Often, detection probability is neglected, which leads to potential type II errors 

(MacKenzie et al. 2017), due to detection probability often being imperfect. Imperfect detection 

probability means that the target species can be considered absent during a survey when the species 

was present but went undetected at a site. Accounting for imperfect detection improves model 

performance, providing robust population size estimates (Royle and Nichols 2003, Royle 2004, 

MacKenzie et al. 2017, Fiske and Chandler 2011, Knaus et al. 2018). 

Two commonly used camera trap deployment designs are regular grid deployment arrays and cluster 

deployment arrays (Clark 2019, Pardo et al. 2021). A regular grid deployment array uses a standard 

grid format with camera traps separated by set, pre-determined distances (Swanson et al. 2015, Clark 

2019, Pardo et al. 2021). A cluster deployment design reduces the number of camera traps used and 

the total trapping effort by grouping camera traps (clusters); the camera trap clusters are deployed 

further apart than camera trap stations in the regular deployment designs (Clark 2019, Murphy et al. 

2019, Panthera 2021). South Africa has many short and long-term camera trap monitoring programs 

(Panthera 2021, Pardo et al. 2021). Panthera organization has multiple camera trap monitoring 

programs across the globe (Panthera 2021). Panthera runs surveys annually, prioritizing leopard 

monitoring amongst other species in South Africa (Rogan et al. 2019). The Snapshot Safari South Africa 

project contributed towards a national biodiversity project (Pardo et al. 2021). There are also many 

species-specific studies conducted over short periods of time such as Bracskowski et al. (2016). 

Reserves such as Pilanesberg National Park, North West province, and Atherstone Nature Reserve, 

Limpopo province, have been research sites where both Panthera and Snapshot Safari deployment 

arrays have been active for some time. Having both monitoring programs run in the same protected 

areas provides an opportunity to compare population size estimates from a targeted (Panthera 2021), 

and non-targeted grid deployment array (Swanson et al. 2015, Pardo et al. 2021), estimated from N-

mixture models (Royle 2004). In Chapter 2 of my thesis, I used N-mixture models to analyze baited 

and non-baited sequential grid deployment array data and found that N-mixture models and the 
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estimates were influenced by the high capture rates, detection probabilities and overestimated 

leopard and brown hyaena population sizes in Madikwe Game Reserve. An investigation into whether 

targeted roadside cluster deployments and regular grid deployment arrays influence population size 

estimates generated from N-mixture models was still needed (Fiske and Chandler 2011). 

I estimated leopard and brown hyaena population sizes from two camera trap grid deployment 

designs (Panthera 2021, Pardo et al. 2021) to investigate the influence targeted and non-targeted 

deployment arrays have on N-mixture model analysis. The two study sites were selected as these sites 

had multiple long term camera trap projects based on the sites, the same projects whose data was 

used in chapter 2 of this thesis. This study aimed to provide empirical evidence supporting N-mixture 

models being implemented to analyze wildlife population sizes. Population size estimates between 

the two study sites were not expected to differ according to the presence or absence of larger 

carnivores. Furthermore, I investigated the space use and detection patterns associated with leopard 

and brown hyena covariates. I predicted that there would be little to no variation in species space use 

in each reserve. I predicted that the N-mixture models would overestimate population sizes estimated 

from targeted grid deployment design data because the targeted roadside cluster deployment design 

increases species detection probabilities and capture numbers. Van Dyk and Slotow (2003), estimated 

a leopard population size of 40 to 60 individuals and a brown hyaena population size of 50 to 100 

individuals on Pilanesberg National Park. Additionally, Williams et al. (2021) estimated a brown hyaena 

population of 61 individuals oi Pilanesberg National Park and 36 individuals in Atherstone Nature 

Reserve. Furthermore, aerial counts conducted on Atherstone Nature Reserve in 2014 counted one 

leopard individual (Johan Kruger, pers comm, 2021). All of which were used as benchmarks and 

reference statistics. 

Methods and materials 

Study areas 

Pilanesberg National Park 

Pilanesberg National Park (hereafter, Pilanesberg; 25.2449° S, 27.0891° E, Figure 3.1), is situated 

within an ancient volcano and is surrounded by a range of large circular hills (Adcock et al. 1998). The 

vegetation types vary between open grasslands, mixed Vachellia and Senegalia species, thick 

woodlands, and broad-leaf and fine-leaf savannah (Mucina and Rutherford 2006). Pilanesberg is 

approximately 55000 hectares (ha), situated in the North West province, South Africa. On average, 

the national park receives 91 millimetres (mm) of rain per month during the wet season, between 
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October and April. Temperatures during this season can fluctuate between 26oC and 30oC. The dry 

season is from May to September, with rainfall averaging 14.4 mm per month and temperatures 

fluctuating between 18oC and 23oC (Joint Research Centre of the European Commission 2021). Water 

sources are situated across the park, including one large central dam and many smaller dams and 

springs scattered throughout. Pilanesberg had roughly 6000 individuals from a range of species 

introduced into the park, after the park was proclaimed in 1979 (van Dyk and Slotow 2003). However, 

Pilanesberg only has two large individual adult spotted hyaena (Crocuta crocuta) to date. Large 

carnivores present in Pilanesberg include cheetah (Acinonyx jubatus), leopard, African wild dog 

(Lycaon pictus), brown hyaena, and lion (Panthera leo). Meso-carnivores present in the park include 

black-backed jackal (Lupulella mesomelas), banded mongoose (Mungos mungo), African wildcat (Felis 

silvestris lybica), small spotted genet (Genetta genetta), slender mongoose (Galerella sanguinea), 

rusty-spotted genet (Genetta maculata), caracal (Caracal caracal), and serval (Leptailurus serval) (van 

Dyk and Slotow 2003). Pilanesberg is fenced off by predator-proof electrified fence (van Dyk and 

Slotow 2003). 

 

Figure 3.1. The locations of Atherstone Nature Reserve and Pilanesberg National Park within the 

Limpopo and North West provinces of South Africa 
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Atherstone Nature Reserve 

Atherstone Nature Reserve (hereafter, Atherstone; 24.5130° S, 26.7732° E, Figure 3.1) is 

approximately 24000 ha in size, situated in the Thabazimbi district of the Limpopo province. The 

Thabazimbi district, in which Atherstone is situated, is dominated by mixed bushveld (Marnewick et 

al. 2008). During the months of May to August, commercial hunting, commonly antelope species, is 

allowed and occurs within Atherstone. In addition, live animal sales take place on the reserve 

throughout the year (Marnewick et al. 2008). Water is supplied by artificial waterholes (Marnewick et 

al. 2008). The composition of carnivore species on the reserve consists primarily of meso-carnivore 

species, with the only large carnivores on the reserve being cheetah, spotted hyaena and leopard 

(Joint Research Centre of the European Commission 2021). The meso-carnivore composition of 

Atherstone is similar to that of Pilanesberg. However, Atherstone has no record of slender mongoose 

and rusty-spotted genet occupying the reserve. Atherstone’s rainy season extends from October to 

April, with average temperatures ranging between 24oC and 28oC and a monthly average rainfall of 71 

mm (Joint Research Centre of the European Commission 2021). During the dry season, from May to 

September, the average monthly rainfall is ~7 mm, and temperatures average between 13oC and 24oC 

(Joint Research Centre of the European Commission 2021). 

Data Collection 

Within Pilanesberg and Atherstone, leopard and brown hyaena population sizes were estimated using 

two different pre-existing iterations of the same sampling technique, namely a regular deployment 

array and roadside cluster deployment array. Camera trap data provided by Snapshot Safari – South 

Africa (hereafter regular deployment array) and Panthera organization (hereafter roadside cluster 

deployment) was analyzed (Figure 3.2 and 3.3, Panthera 2021, Pardo et al. 2021). Due to the design 

of all three of the deployment arrays, camera trap sites were not considered independent, and, 

therefore, space use and space use probability were used to inform on space use (Rovero and 

Zimmermann 2016). 



53 
 

 

Figure 3.2. The camera trap locations (n=101) of the regular Snapshot deployment array (n=21) and 

the roadside cluster Panthera deployment array (n=80 camera traps across 40 camera trap stations) 

on Pilanesberg National Park, North West province, South Africa 
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Figure 3.3. The camera trap locations (n=100) of the regular Snapshot deployment array (n=20) and 

the roadside cluster Panthera deployment array (n=80 camera traps across 40 stations) on 

Atherstone Nature Reserve, Limpopo province, South Africa 

 

Snapshot safari project: Regular Grid Deployment Array 

Twenty-one camera traps (Cuddeback model C1279, Non-Typical Inc., Park Falls, USA) were deployed 

in a 5 km2 regular grid array on Pilanesberg. Twenty camera traps were deployed in a 2 km2 grid array 

on Atherstone (Figure 3.2 and 3.3). All camera traps had the same settings. Every camera trap was 

placed approximately 50 cm above the ground, facing the nearest game trail (Cusack et al. 2015, 

Swanson et al. 2015, Pardo et al. 2021). The grass surrounding every camera trap was trimmed to 

reduce the number of misfires (Swanson et al. 2015). Camera traps were serviced every 4 to 6 weeks, 

storage cards were swapped out and batteries replaced. The data extracted from Snapshots cameras 

deployed on Pilanesberg for this research was from 14 November 2018 to 13 November 2019, 
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recording a total of 4779 camera trap nights. Data were extracted from Snapshots cameras deployed 

on Atherstone from 01 July 2020 to 01 October 2020, which recorded a total of 1860 camera trap 

nights. Population size estimates were recorded from the most recent 3 months’ worth of filtered data 

to avoid violating the closed population assumption (Kendall 1999). However, the full years’ worth of 

data was required to achieve an acceptable goodness of fit value for the global model used to estimate 

leopard population size on Pilanesberg. I relaxed the closed population assumption, which assumes 

no population loss or gain over the course of the study and focus (Otis et al., 1978), to accommodate 

more camera trap nights required for a robust population size estimate (Tobler and Powell 2013).  

Panthera project: Roadside Cluster Deployment 

The Panthera project team (Panthera, 2021) placed 40 unbaited camera trap stations (Pantheracams 

camera traps) in a cluster grid design across Pilanesberg from 16 January 2020 to 05 March 2020, 

which recorded a total of 2000 camera trap nights. The same 40 camera trap cluster grid design was 

followed in Atherstone from 26 August 2020 to 14 October 2020, which recorded 2000 camera trap 

nights. Clusters were between 3 km and 8 km apart. Stations were separated by 1 km. The camera 

traps use xenon flash cameras with built-in infrared motion sensors. All camera traps captured one 

image per trigger event (Miller et al. 2018). Camera traps were situated primarily along roads and road 

junctions (Miller et al. 2018). Camera traps were attached to trees or steel poles and placed 30-40 cm 

above the ground. There were 40 stations, amounting to 80 camera traps deployed per park (Figure 

3.2 and 3.3, Pitman et al. 2017, Rogan et al. 2019). 

Data analyses 

Leopard and brown hyaena data were collected and extracted from two different camera trap studies 

on Pilanesberg National Park and Atherstone Nature Reserve. N-mixture models (Royle 2004), were 

used in the analysis. Nine months of raw, unidentified camera trap data from the regular deployment 

array were identified using the software Wild.ID (Version 1.0.1, Tropical Ecology Assessment and 

Monitoring Network, 2021) between June 2020 and March 2021. I classified camera trap images data 

into species and reported on the number of individuals per picture for Pilanesberg National Park from 

June 2020 to March 2021. Pre-processed data from the regular deployment array, were additionally 

provided by Snapshot Safari (Pardo et al. 2021), and pre-processed data from the roadside cluster 

deployment were provided by the Panthera project team (Panthera 2021). To obtain independence 

between triggers, photos taken of the same species within a 30-minute time frame at the same camera 

station were considered as a single capture event (see Yasuda 2004).  
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Population Size 

Leopard and brown hyaena capture data were converted to count data, the number of independent 

captures per sample occasion was assigned to each camera. Camera traps with no detections for a 

sampling occasion were assigned a “0”. For example, if three independent leopard captures were 

recorded within one of the sample occasions, then a “3” would be recorded. By doing this, a species-

specific repeated count record was made using detection histories. Sample occasion lengths were 

selected according to recorded global model goodness of fit estimates (Table 3.1). The global model 

goodness of fit was assessed using the R-package “nmixgof” (Knape et al. 2018).  

Table 3.1. Independent sample occasion lengths per camera trap project dataset per fenced 
protected area in this study. 

 
Pilanesberg National Park Atherstone Nature Reserve 

Leopard Brown Hyaena Leopard Brown Hyaena 

Regular Grid Deployment Array 4 weeks 1 week 2 weeks 3 days 
Roadside Cluster Deployment Array 1 day 1 day 3 days 1 day 

 

 

Six covariates that were considered ecologically relevant to the target species were considered, these 

were vegetation type (n = 10 for Pilanesberg; Open water point, savannah woodland, grassy 

woodland, riverine area, grass plain, rocky outcrop, sodic site, open savannah, savannah grassland, 

gully; n = 10 for Atherstone; Shrubland, bluethorn thicket (Senegalia erubescens), old lands, sicklebush 

area (Dichrostachys cinerea), Grewia flava shrubland, Sicklebush thicket, dam piosphere, Vachellia 

tortillas area, thornveld, grassy shrubland), elevation (m), distance to nearest tar or dirt road (m), 

distance to fence boundary (m), distance to infrastructure (m; lodges, warehouses, camps, gates, 

bomas, staff accommodations, sub-stations, houses, centres and conference rooms, pumps, water 

towers), and distance to water (m). All covariates were mapped, and distances were calculated using 

ESRI© ArcMap (Version 10.8.1.14362, ESRI, 2021) and Google Earth Pro (Version 7.3.4.8248, Google 

Earth, 2021). Covariates were checked for multicollinearity using the ‘Olsrr’ package (Hebbali 2020). 

All six covariates were retained (VIF < 4, Hebbali 2020). Package ‘Unmarked’ internally creates an 

observation covariate called ‘obsNum’, which was included in the detection part of the models to get 

occasion-specific estimates of detection parameters, similar to mark-recapture studies (Richard 

Chandler, Unmarked Developer, pers comms). 

The “p-count” function in the ‘Unmarked’ package (Fiske and Chandler 2011) was used in R-program 

(R Core Team 2021, 4.11, www.rstudio.com, accessed 25 February 2021) using R-studio (R Core Team 

2021, Version 1.2.1717, www.rstudio.com, accessed 25 February 2021) to run N-mixture models. Both 
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single and multi-covariate models were run using the regular deployment and roadside cluster 

deployment arrays. The ‘Ranef’ function in the ‘Unmarked’ package was used to estimate population 

size estimates along with confidence intervals, using the empirical Bayes methods (Royle 2004). Using 

the formatted repeated count data, N-mixture models (RRC – Royle Repeated Count models) were 

run and selected according to which model records the lowest information criterion corrected (AICc) 

value (Burnham and Anderson 2004, Ramesh et al. 2017).  

Space Use 

Single-species single-season space use models (MacKenzie et al. 2002), were generated using the 

formatted input data from both the regular and roadside cluster deployment arrays, and space use 

analyses were conducted using the ‘Unmarked’ package (Fiske and Chandler 2011, Version 1.0.1) in R-

program using R-studio. Cameras that detected specific species were assigned a “1” and those where 

no detections were made were assigned a “0”. By doing this, a species-specific record was made using 

detection histories. Records were then condensed into the same sample occasion lengths as used in 

the population size analysis (Table 3.1).  

Model generation required transforming the raw input data into matrices. The matrices were then 

formatted into a list which formed part of the space use model. The above-mentioned covariates were 

used in the space use analysis. The best fit model was selected according to the lowest Akaike’s 

Information Criterion (AIC) (Burnham and Anderson 2004, Ramesh et al. 2017). All models run were 

single covariate models; this was due to there being limited numbers of captures per species. The 

same six covariates used in the N-mixture model analysis were used in the space use analysis (Table 

3.2). 

 

 

  

Table 3.2. Space use and detection covariates used in the single-species single-season space use 
models. Distances in metres (m). 

Space use Covariates Detection Covariates 

Vegetation type Vegetation type 
Elevation (m) Nearest distance to infrastructure (m) 
Nearest distance to infrastructure (m) Nearest distance to road (m) 
Nearest distance to road (m) Nearest distance to water (m) 
Nearest distance to water (m) Distance to nearest boundary (m) 
Distance to nearest boundary (m)  
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Results 

Pilanesberg National Park 

Population size 

The regular camera trap deployment array recorded 18 independent leopard captures and 66 

independent brown hyaena captures across 21 sites over the period of November 2018 to November 

2019. The roadside cluster deployment recorded a total of 115 independent leopard captures, and 

1065 independent brown hyaena captures across 40 camera trap stations over the period of January 

2020 to March 2020. The regular Snapshot grid deployment and roadside Panthera cluster 

deployment recorded their highest detection probabilities at camera traps closer to or nearby roads 

(Figures 3.4- 3.7). 

 

Figure 3.4. Effect of distance to road on leopard detection probability estimated from the regular 

Snapshot deployment array data on Pilanesberg National Park, North West province, South Africa 
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Figure 3.5. Effect of distance to road on brown hyaena detection probability estimated from the 

regular Snapshot deployment array data on Pilanesberg National Park, North West province, South 

Africa 

 

Figure 3.6. Effect of distance to road on leopard detection probability estimated from the roadside 

Panthera cluster deployment array data on Pilanesberg National Park, North West province, South 

Africa 
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Figure 3.7. Effect of distance to road on brown hyaena detection probability estimated from the 

roadside Panthera cluster deployment array data on Pilanesberg National Park, North West 

province, South Africa 

The leopard population size was estimated to be 27.52 (97.5% Bayesian confidence interval, B.C.I., 12 

– 73) by the best ranking model for the regular deployment array, the best ranking model for the 

roadside cluster deployment data estimated a leopard population size estimate of 87.42 (97.5% B.C.I. 

42 – 167) individuals (Table 3.3). The brown hyaena population size estimate for the regular 

deployment camera trap data was estimated at 70.23 (97.5% B.C.I. 39 – 123) individuals, and the 

roadside deployment camera trap data estimated a brown hyaena population size estimate of 258.86 

(97.5% B.C.I. 197 – 343) individuals (Table 3.3). 

Table 3.3. The estimated leopard and brown hyaena population sizes per project on Pilanesberg 

National Park with 97.5% confidence intervals (CI) according to the best ranking models. LPE = 

Leopard Population Estimate. BHPE = Brown Hyaena Population Estimate. GoF = Global model 

goodness of fit (C-hat). 

Project LPE CI GoF BHPE CI GoF 

Regular grid deployment 27.52 12 - 73 0.85 70.23 39 – 123 1.48 

Roadside cluster deployment 87.42 42 – 167 0.93 258.86 197 – 343 1.25 
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Space use and Detection – Regular Grid Deployment Array 

Detection probability varied with vegetation type combined with constant space use and presented 

as the best ranking model for the regular deployment data for both study species according to AIC 

values (Table 3.5). Open areas such as rocky outcrops, grassy woodlands and riverine areas recorded 

a significantly higher probability of detecting leopard (p ≥ 0.33, SE ≤ 0.1) and brown hyaena (p ≥ 0.61, 

SE ≤ 0.12), compared to areas with thicker and more dense vegetation such as thick savannah 

grasslands (leopard p ≤ 0.1, SE ≤ 0.1 and brown hyaena p ≤ 0.27, SE ≤ 0.12, see Appendix 1). None of 

the top-ranking space use models were significantly different from each other (ΔAIC < 2, Table 3.4), 

furthermore leopard and brown hyaena space use did not vary significantly according to any of the 

covariates analyzed for the regular grid deployment array (Table 3.4). Certain vegetation types 

significantly affected the estimated detection probabilities of the regular deployment array data 

(Table 3.5, see Appendix 1). Distance to the nearest road did not significantly influence recorded 

detection probabilities for leopard and brown hyaena regular deployment data, even though most 

captures were recorded by camera traps close to roads (Table 3.5, Figure 3.4 and 3.5). Furthermore, 

distance to nearest infrastructure significantly influenced brown hyaena detection (Table 3.5).  

Table 3.4. Space use models from regular deployment array data on Pilanesberg National Park with 
corresponding Akaike Information Criterion values (AIC) and p-values. (p) = Detection probability. (psi) 
= Space use probability. (.) = Constant detection/space use probability. 

Models: (p) (psi) 
Leopard Brown Hyaena 

AIC p-value AIC p-value 

(.) (.) 253.74 0.09 597.20 0.78 
(.) (Vegetation type) 261.36 0.68-0.95 613.20 0.93-1.00 
(.) (Infrastructure) 254.51 0.28 599.20 1.00 
(.) (Road) 255.01 0.48 599.20 1.00 
(.) (Water) 253.51 0.15 599.20 1.00 
(.) (Boundary) 253.21 0.22 599.20 1.00 
(.) (Elevation) 254.17 0.31 599.20 1.00 

 

Table 3.5. Detection models from regular deployment array data on Pilanesberg National Park with 

corresponding Akaike Information Criterion values (AIC) and p-values. (p) = Detection probability. (psi) 

= Space use probability. (.) = Constant detection/space use probability. 

Models: (p) (psi) 
Leopard Brown Hyaena 

AIC p-value AIC p-value 

(.) (.) 253.74 2.29e-27 597.20 4.12e-14 

(Vegetation type) (.) 242.41 0.00-0.99 534.73 0.00-0.87 

(Infrastructure) (.) 258.83 0.22 589.68 0.003 

(Road) (.) 255.59 0.70 595.85 0.07 

(Water) (.) 249.38 0.02 588.12 0.001 

(Boundary) (.) 260.25 0.64 589.66 0.002 
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Space use and Detection – Roadside Cluster Deployment Array 

The top two ranking space use models were concluded to have the same model fit as each other (ΔAIC 

< 2, Table 3.6). Furthermore, leopard and brown hyaena space use did not vary significantly according 

to any of the covariates analyzed for the roadside cluster deployment array (Table 3.6). Three space 

use models recorded similar AIC values but were not of the same model fit, namely (.) (Road), (.) 

(Water), (.) (Boundary). Certain vegetation types significantly affected the estimated brown hyaena 

detection probabilities of the regular deployment array data according to recorded p-values (Table 

3.7, see Appendix 1). Open areas such as rocky outcrops, grassy woodlands and riverine areas 

recorded a significantly higher probability of detecting brown hyaena (p ≥ 0.39, SE ≤ 0.06), compared 

to areas with thicker and more dense vegetation such as thick savannah grasslands (brown hyaena p 

≤ 0.20, SE ≤ 0.06, see Appendix 1). The distance to the nearest road did significantly influence the 

detection probability for both leopard and brown hyaena according to the roadside cluster 

deployment data (Table 3.7, Figure 3.6 and 3.7). Detection probability decreased significantly as the 

distance to the nearest road increased (Figure 3.6 and 3.7). Varying detection probability according to 

distance to road combined with constant space use was the best ranking model for the leopard and 

brown hyaena roadside cluster deployment data according to recorded AIC values (Table 3.7).  

Table 3.6. Space use models from roadside cluster deployment array data on Pilanesberg National 

Park with corresponding Akaike Information Criterion values (AIC) and p-values. (p) = Detection 

probability. (psi) = Space use probability. (.) = Constant detection/space use probability. 

Models: (p) (psi) 
Leopard Brown Hyaena 

AIC p-value AIC p-value 

(.) (.) 217.14 0.003 2607.14 0.82 

(.) (Vegetation type) 221.65 0.94-1.00 2621.14 0.99-1.00 

(.) (Infrastructure) 218.30 0.35 2609.14 1.00 

(.) (Road) 214.22 0.07 2609.14 1.00 

(.) (Water) 216.37 0.37 2609.14 1.00 

(.) (Boundary) 215.11 0.09 2609.14 1.00 

(.) (Elevation) Model did not converge 2609.14 1.00 
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Table 3.7. Detection models from roadside cluster deployment array data on Pilanesberg National 

Park with corresponding Akaike Information Criterion values (AIC) and p-values. (p) = Detection 

probability. (psi) = Space use probability. (.) = Constant detection/space use probability. 

Models: (p) (psi) 
Leopard Brown Hyaena 

AIC p-value AIC p-value 

(.) (.) 217.14 0.65 2607.14 3.74e-37 

(Vegetation type) (.) 221.18 0.36-1.00 2574.10 0.00-0.78 

(Infrastructure) (.) 219.14 0.90 2602.70 0.012 

(Road) (.) 213.17 0.02 2538.98 1.96e-13 

(Water) (.) 218.81 0.54 2608.16 0.32 

(Boundary) (.) 217.34 0.19 2607.05 0.15 

 

Atherstone Nature Reserve 

Population Size 

The regular grid deployment array recorded 14 independent leopard captures and 64 independent 

brown hyaena captures across 20 camera trap sites over the period of July 2020 to October 2020. The 

roadside cluster deployment recorded 39 independent leopard captures, and 332 independent brown 

hyaena captures across 40 camera trap stations over the period of August 2020 to October 2020. The 

regular Snapshot deployment and the roadside Panthera cluster deployment recorded their highest 

detection probabilities at camera traps closer to roads (Figures 3.8 – 3.11). 

 

Figure 3.8. Effect of distance to road on leopard detection probability estimated from the regular 

Snapshot deployment array data on Atherstone Nature Reserve, Limpopo province, South Africa. 
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Figure 3.9. Effect of distance to road on brown hyaena detection probability estimated from the 

regular Snapshot deployment array data on Atherstone Nature Reserve, Limpopo province, South 

Africa. 

 

Figure 3.10. Effect of distance to road on leopard detection probability estimated from the roadside 

Panthera cluster deployment array data on Atherstone Nature Reserve, Limpopo province, South 

Africa. 
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Figure 3.11. Effect of distance to road on brown hyaena detection probability estimated from the 

roadside Panthera cluster deployment array data on Atherstone Nature Reserve, Limpopo province, 

South Africa. 

A leopard population size estimate of 8.29 (97.5% Bayesian confidence interval, B.C.I., 7 – 28) 

individuals was derived from the regular grid deployment array data (Table 3.8). The N-mixture models 

run using the roadside cluster deployment data estimated a leopard population size of 128.99 (97.5% 

B.C.I. 29 – 274) individuals. The brown hyaena population size estimated from the regular deployment 

camera trap data was 60.83 (97.5% B.C.I. 39 – 105) individuals and 119.66 (97.5% B.C.I. 75 – 187) from 

the roadside cluster deployment data (Table 3.8). 

Table 3.8. The recorded leopard and brown hyaena population sizes per project on Atherstone 

Nature Reserve with 97.5% confidence intervals (CI) according to the best ranking models. LPE = 

Leopard Population Estimate. BHPE = Brown Hyaena Population Estimate. GoF = Global model 

goodness of fit (C-hat). 

Project LPE CI GoF BHPE CI GoF 

Regular grid deployment 8.29 7 – 28 1.00 60.83 39 – 105 0.99 

Roadside cluster deployment 128.99 29 – 274 1.12 119.66 75 – 187 1.04 

 

 

Space use and Detection – Regular Deployment Array 

The top three ranking space use models for both species had the same model fit (ΔAIC < 2, Table 3.9). 

Leopard space use varied significantly according to vegetation type for the regular deployment array 
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(Table 3.9). Leopards prefered dense areas such as shrublands and Dichrostachys cinerea thickets (psi 

≥ 0.74, SE ≤ 0.31) to open areas such as open grasslands (psi ≥ 0.1, SE ≤ 0.10). Furthermore, certain 

vegetation types significantly affected the estimated leopard detection probabilities of the regular 

deployment array data (Table 3.10, see Appendix 2). Detection probability varied with vegetation type 

combined with constant space use and presented as the best ranking model for the regular 

deployment data for both study species according to AIC values (Table 3.10). Leopard detection 

probabilities, which corresponded with their space use estimates, were highest in preferred areas of 

space use (p ≥ 0.22, SE ≤ 0.29) compared to areas less occupied (p ≤ 0.1, SE ≤ 0.13). Furthermore, 

distance to nearest infrastructure and water significantly influenced leopard and brown hyaena 

detection (Table 3.10). Camera traps closer to infrastructure and water sources recorded higher 

detection probabilities. Distance to the nearest road did not significantly influence recorded detection 

probabilities for leopard and brown hyaena regular deployment data, even though most captures 

were recorded by camera traps close to roads (Table 3.10, Figure 3.8 and 3.9). 

Table 3.9. Space use models from regular deployment array data on Atherstone Nature Reserve with 

corresponding Akaike Information Criterion values (AIC) and p-values. (p) = Detection probability. (psi) 

= Space use probability. (.) = Constant detection/space use probability. 

Models: (p) (psi) 
Leopard Brown Hyaena 

AIC p-value AIC p-value 

(.) (.) 67.17 0.12 309.50 0.341 

(.) (Vegetation type) 67.27 0.00-0.99 315.18 0.87-0.99 

(.) (Infrastructure) 68.99 0.68 311.47 0.85 

(.) (Road) 67.37 0.34 311.12 0.60 

(.) (Water) 69.12 0.83 311.41 0.76 

(.) (Boundary) 67.30 0.20 310.74 0.39 

(.) (Elevation) 68.11 0.33 309.19 0.15 

 

Table 3.10. Detection models from regular deployment array data on Atherstone Nature Reserve with 

corresponding Akaike Information Criterion values (AIC) and p-values. (p) = Detection probability. (psi) 

= Space use probability. (.) = Constant detection/space use probability. 

Models: (p) (psi) 
Leopard Brown Hyaena 

AIC p-value AIC p-value 

(.) (.) 67.17 0.01 309.50 3.84e-32 

(Vegetation type) (.) 58.13 0.00-0.99 268.49 0.85-1.00 

(Infrastructure) (.) 61.76 0.009 273.17 1.93e-09 

(Road) (.) 64.18 0.05 306.01 0.11 

(Water) (.) 60.68 0.005 306.73 0.03 

(Boundary) (.) 68.24 0.33 311.13 0.54 
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Space use and Detection – Roadside Cluster Deployment Array 

None of the top-ranking space use models recorded better model fits than each other (ΔAIC < 2, Table 

3.11). Furthermore, leopard and brown hyaena space use did not vary significantly (Table 3.11). 

Leopard detection probabilities were not significantly influenced by any of the covariates used in the 

analysis. Distance to nearby water significantly affected the estimated brown hyaena detection 

probability recorded from the roadside cluster deployment array data (Table 3.12, see Appendix 2). 

Varying detection according to distance to nearby water combined with constant space use was the 

best ranking model for the roadside cluster deployment array brown hyaena data according to 

recorded AIC values (Table 3.12). Camera traps closer to water sources recorded higher brown hyaena 

detection probabilities. The distance to road did not significantly influence detection probability for 

both leopard and brown hyaena roadside cluster deployment data (Table 3.12, Figure 3.10 and 3.11). 

This is because there was little variation in the camera trap deployment distances from the nearest 

road. Distances only ranged between 0 and 14 meters (Figure 3.10 and 3.11). 

Table 3.11. Space use models run with roadside cluster deployment array data on Atherstone Nature 

Reserve with corresponding Akaike Information Criterion values (AIC) and p-values. (p) = Detection 

probability. (psi) = Space use probability. (.) = Constant detection/space use probability. 

Models: (p) (psi) 
Leopard Brown Hyaena 

AIC p-value AIC p-value 

(.) (.) 158.31 0.424 537.66 3.11e-05 

(.) (Infrastructure) 158.15 0.23 539.42 0.64 

(.) (Road) Model did not converge 539.64 0.89 

(.) (Water) 156.77 0.31 539.44 0.65 

(.) (Boundary) 158.37 0.31 538.04 0.28 

(.) (Elevation) 156.55 0.18 537.52 0.20 

 

Table 3.12. Detection models run with roadside cluster deployment array data on Atherstone Nature 

Reserve with corresponding Akaike Information Criterion values (AIC) and p-values. (p) = Detection 

probability. (psi) = Space use probability. (.) = Constant detection/space use probability. 

Models: (p) (psi) 
Leopard Brown Hyaena 

AIC p-value AIC p-value 

(.) (.) 158.31 0.0002 537.66 0.48 

(Infrastructure) (.) 158.86 0.25 547.73 0.34 

(Road) (.) 160.04 0.60 538.53 0.29 

(Water) (.) 160.11 0.66 531.51 0.005 

(Boundary) (.) 160.03 0.59 539.24 0.52 
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Discussion 

Camera trap studies have become increasingly popular and regularly use varying types of grid 

deployments and approaches to estimate population sizes, abundances and assess spatio-temporal 

space use patterns of cryptic species (Balme et al.2009, Thorn et al. 2011, Kays et al. 2020). Often 

projects are targeted towards individual species but collect bycatch data on multiple species. This 

bycatch data may be used to generate robust population size estimates of these cryptic species. The 

result from this study indicates that using different deployment approaches may influence N-mixture 

models which has resulted in different population estimates for leopard and brown hyaena on 

Pilanesberg National Park and Atherstone Nature Reserve. The two different deployment arrays 

presented different population estimates for leopard and brown hyaena in the two protected areas 

(Table 3.3 and 3.8). The regular Snapshot grid deployment array performed better than the roadside 

Panthera cluster deployment array in the N-mixture model analysis. The N-mixture model population 

estimates generated from the roadside cluster deployment were overestimated and did not reflect 

the species populations on Pilanesberg and Atherstone when compared to estimates recorded by Van 

Dyk and Slotow (2003) and Williams et al. (2021) (Table 3.3 and 3.8).  

The roadside cluster deployment showed higher overall detection probabilities for both study species 

(Leopard ≥ 0.21 and brown hyaena ≥ 0.42), compared to the detection probabilities recorded by the 

regular deployment array (Figures 3.4-3.11). These detection probabilities are comparable to other 

studies reported for other leopard populations (p = 0.21 ± SE. 0.0, Cristescu et al. 2020), and higher 

than those reported for brown hyaena (p = 0.33 ±SD. 0.06, Bennitt 2020). The roadside Panthera 

cluster deployment array recorded higher numbers of leopard and brown hyaena independent 

captures in a shorter two-month period and detected the two study species better than the regular 

deployment. Although the detection probabilities recorded from the regular grid deployment array of 

the two study species as the camera trap distance nearby roads decreased (Figure 3.4, 3.5, 3.8, 3.9), 

the detection probabilities and independent capture numbers overall were lower than the roadside 

cluster deployment data (Figure 3.6, 3.7, 3.10, 3.11). The lower detection probabilities are likely due 

to inherently low numbers of leopard and brown hyaena, as well as the fact that the regular grid 

deployment camera traps being less targeted (Swanson et al. 2015). The regular grid deployment 

camera traps were also aligned to the nearest game trail, even when close to human tracks or roads, 

and specifically implemented to capture medium to large mammals (Swanson et al. 2015). The lower 

detection probabilities and capture numbers produced reliable estimates through N-mixture model 

analysis (Royle 2004), as these capture numbers and detection probabilities are more representative 

of the two study species. This may explain why the regular deployment array produced reliable 
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population size estimates and much smaller confidence intervals than those obtained by the roadside 

cluster deployment for both fenced protected areas.  

The road associated clustered camera trap deployment led to overestimated population sizes using 

the N-mixture analysis for both study species (Table 3.3 and 3.8), compared to published estimates by 

van Dyk and Slotow (2003) and Williams et al. (2021). Deploying many camera traps in a grid array 

with a small interval distance possibly introduced spatial autocorrelation into the analysis and is a 

likely reason why the estimates were largely aboe expected. Spatial autocorrelation does impact the 

analyses, which do not involve individual identification of species across deployed camera traps, as 

the same individual could be captured at multiple camera traps (Guélat and Kery 2018). Carnivores 

are known to use roads to traverse their territories (Mills 1990, Thorn et al. 2011, Zimmermann et al. 

2014, Welch et al. 2016), and deploying camera traps along nearby roads did increase the roadside 

cluster deployments recorded detection probabilities and independent leopard and brown hyaena 

capture numbers which influenced the N-mixture models. The regular deployment array population 

size estimates (Table 3.3 and 3.8), were comparable to estimates by van Dyk and Slotow (2003), 

estimating between 40 and 60 leopard and between 50 and 100 brown hyaena on Pilanesberg. 

Williams et al. (2021), estimated a brown hyaena density of 11 individuals per 100km2 on Pilanesberg 

National Park and 15 individuals per 100km2 on Atherstone Nature Reserve. Aerial counts conducted 

on Atherstone in 2014 counted one leopard individual (Johan Kruger, pers comm, 2021). However, 

aerial counts are known to underestimate elusive species (Jachmann 2002). The number of 

independent captures and higher detection probabilities recorded by the roadside cluster 

deployments in this study are better suited towards spatially explicit capture-recapture analysis 

(SECR), where individual identification is necessary, and more data are required (Allen et al. 2020). 

SECR methods are commonly used to conduct population size and density analyses, primarily focusing 

on large felid carnivores (Green et al. 2020). However, incorporating individually unidentifiable species 

into a SECR analysis is not possible; this is where N-mixture models are more appropriate (Royle 2004).  

N-mixture models have been widely used in ecology, species conservation and monitoring and have 

increased in usage over the years, with many model extensions having been developed (Kery and 

Royle 2016). N-mixture models deal with imperfect detection. However, N-mixture models running 

data collected using targeted approaches, approaches that result in increased capture numbers and 

detection probabilities, can lead to overestimation due to the sensitive relationship between species 

capture numbers and detection probabilities (Royle 2004, Sollmann 2018). Typically, with camera trap 

projects, especially targeted camera trap projects, high capture numbers and detection probabilities 

are aimed for and more beneficial for species population analysis. However, the application of these 
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targeted approaches to data collection on unidentifiable species is still being developed (Moeller 

2017). My research shows that further development of N-mixture models is needed to accommodate 

the increased counts and detection probabilities associated with targeted approaches. Only when 

camera trap deployment arrays are non-targeted or record low independent captures and detection 

probabilities should N-mixture models be considered for population analysis.  

Space use modelling represents another practical solution for utilizing non-target species data. Space 

use in camera trap studies is defined as the proportion of the total number of camera trap sites 

occupied by a species, estimated whilst adjusting for imperfect detection when camera traps are not 

independent of each other (MacKenzie et al. 2004). It is an important and extensively used concept in 

ecology (MacKenzie and Royle 2005) and is routinely used for modelling of habitat relationships and 

metapopulation studies (Guillera-Arroita, et al. 2010). Space use analysis on the regular Snapshot grid 

deployment array and roadside Panthera cluster deployment array data collected on Pilanesberg and 

Atherstone revealed that both leopard and brown hyaena space use is not dependent on any single 

covariate used (Table 3.4, 3.6, 3.9, 3.12). Leopard and brown hyaena space use is likely due to a 

combination of multiple variables such as prey and predator densities, vegetation types, and distances 

to water (Williams et al. 2021). Constant space use combined with varying detection according to 

vegetation type was the best ranking models for the regular grid deployment array leopard and brown 

hyaena Pilanesberg and Atherstone data (Table 3.5, 3.10). Camera traps deployed in open areas with 

sparse vegetation are more likely to detect leopard and brown hyaena that are in the area compared 

to camera traps deployed in dense vegetation, in which leopard and brown hyaena would be harder 

to detect. Although not the best ranking model, leopard did show some preference for occupying 

denser vegetation types than open areas according to the regular grid deployment array Atherstone 

data (Table 3.9). 

Constant space use combined with varying detection according to distance to road was the best 

ranking models for the roadside cluster deployment array leopard and brown hyaena Pilanesberg data 

(Table 3.7). Capture numbers and the detection probability for each species was highest close to tar 

or dirt roads. Carnivores are known to use roads to traverse their territories, which is why camera 

traps deployed closer to roads recorded higher capture numbers and detection probabilities (Mills 

1990, Thorn et al. 2011, Zimmermann et al. 2014, Welch et al. 2016). Some of the regular grid 

deployment and roadside cluster deployment brown hyaena space use models run using data 

collected on Pilanesberg recorded identical AIC values (Table 3.4 and 3.6). The identical AIC values 

could be due to many reasons, such as brown hyaena density being high enough for each covariate 
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model to record the same amount of variation, all of which recorded little to no variation (see p-values, 

Table 3.4 and 3.6).  

Brown hyaena recorded higher detection probabilities closer to water sources according to the 

Atherstone roadside Panthera cluster deployment (Table 3.12). The data was collected during the dry 

season, during which water in some regions of Atherstone are known to be highly seasonal (Seloana 

et al. 2017). Many carnivore and herbivore species are known to be water dependent during dry 

seasons and are more likely to occupy areas surrounding water sources (Smit et al. 2017). More 

research is needed to infer on leopard and brown hyaena space use drivers, since my analysis was 

limited to single covariate models due to species capture numbers. 

The initial estimate and space use analysis for leopard and brown hyaena in two protected areas in 

northwestern South Africa based on two different deployment arrays presented important findings. 

This study aimed to provide empirical evidence supporting the use of N-mixture models to estimate 

the population sizes of both naturally marked and unidentifiable species. However, further 

development is needed to accommodate the higher count numbers and detection probabilities 

associated with targeted camera trap deployments to accurately estimate an elusive species 

population size using N-mixture models. N-mixture models have a lot of potential and have been 

successfully utilized in previous studies to conduct population analysis (Kidwai et al. 2019, Della Rocca 

et al. 2020). This current study highlights the importance of being aware of the effect of a specific 

deployment design on the estimates produced by an available method such as N-mixture model 

population analysis. Over-estimated population sizes and inconsistent population trends, often due to 

data deficiencies (Groom et al. 2014), influence important managerial decisions, and this study shows 

how easy it is for population over-estimation to occur. 
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Chapter 4 

Synthesis 

Summary 

New methods for data acquisition are becoming available, and these methods allow the development 

of accurate, robust techniques that will aid in answering previously unanswered questions in a non-

invasive manner (Schipper et al. 2008, Ripple et al. 2014, Rich et al. 2017). The development of camera 

trap technology has allowed the non-invasive collection of various types of new data. These new data 

types provided new opportunities and methods to analyze broad ecological concepts and processes 

on spatial and temporal scales (Morant et al. 2020). However, valuable camera trap data on other 

wildlife species are often not analyzed because those species are individually unidentifiable (Gubbi et 

al. 2019). Camera trap studies use different grid deployments and approaches to estimate population 

sizes, abundances and assess spatio-temporal space use patterns (Thorn et al. 2011, Cove et al. 2013, 

Rovero et al. 2014, Kays et al. 2020). However, data collected from camera trap studies are often used 

to estimate abundances and densities of cryptic species and naturally marked animals (Foster and 

Harmsen 2012, Burton et al. 2015, Gubbi et al. 2019). Valuable camera trap data on individually 

unidentifiable wildlife species is often not analyzed (Gubbi et al. 2019). Chandler and Royle (2013) 

indicated that individual identification of a species is not necessary for estimating population sizes and 

densities. These analyses can be conducted using software packages such as ‘Unmarked’ and applied 

to camera trap data collected from various deployment arrays (Fiske and Chandler 2011). Methods 

which use presence-absence data over multiple survey occasions (Royle–Nichols Abundance Induced 

Heterogeneity model, Royle and Nichols 2003), or species abundance over multiple surveys without 

marking individuals, have been used to estimate population size (Royle Repeated Count model, Royle 

2004, Royle et al. 2004, Chandler 2013, Chandler and Royle 2013). 

Obtaining demographic data on and monitoring unidentifiable species, which are also typically elusive, 

remains challenging (Pitman et al. 2017). Collecting demographic data can be expensive (Morin et al. 

2018). However, with the development of camera trapping technology and knowledge, it is now 

possible to generate the demographic data needed for the population analysis of individually 

unidentifiable species, such as the lions (Panthera leo, Cusack et al. 2015). These methods are not 

commonly used, which motivated this study, to provide evidence supporting the use of N-mixture 

models to estimate population sizes as these models can be used to research both identifiable and 

unidentifiable species.  
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Thus, considering camera traps as sampling units, I used N-mixture models to estimate the population 

sizes of leopard and brown hyaena across Madikwe Game Reserve, Pilanesberg National Park and 

Atherstone Nature Reserve. I wanted to better understand the methods and techniques used in 

regions where there are good data and understanding of these regions. For each sampling method 

considered I derived the detection histories of the two target species (detection: 1, non-detection: 0) 

and relative counts of individuals of leopards and brown hyaenas in N-mixture models with Poisson 

error distribution (function ‘pcount’ in the R package ‘Unmarked’). I used the same covariates of 

detection probability and abundance for all three of the sampling methods used in this study. 

Furthermore, for each sampling method, I estimated posterior distributions of the latent abundance 

by using empirical Bayesian methods (function ‘Ranef’ in the R package ‘Unmarked’), which derived 

robust leopard and brown hyaena population sizes.  

My research objectives were centred around comparing population size estimates from N-mixture 

models to known population sizes of two elusive species and investigating the influence different non-

invasive camera trap deployment arrays have on N-mixture models. 

I utilized data from a sequential baited/non-baited clustered camera trap survey, a non-baited cluster 

camera trap survey (run by Panthera, Panthera 2021) and a non-baited regular grid camera trap survey 

(run by Snapshot Safari (Pardo et al. 2021)) to estimate the population size of brown hyaena and 

leopard using N-mixture models across three fenced protected areas, namely Atherstone Nature 

Reserve, Madikwe Game Reserve and Pilanesberg National Park.  

Concluding remarks 

In conclusion, population analysis is an essential tool for conservation management. This study 

focused on population size estimation of two elusive species using N-mixture models. A method that 

can potentially be applied to unidentifiable species population analysis. This study has shown the 

potential N-mixture models can have on future unidentifiable species population analyses and 

management. Using a non-targeted approach, management may be able to analyze populations and 

adjust management strategies for elusive unidentifiable species. 

N-mixture models provided plausible leopard and brown hyaena population size estimates when using 

the regular deployment array data. Leopard and brown hyaena population size estimates generated 

from the targeted baited/non-baited sequential deployment and the roadside cluster deployment 

arrays were overestimated. This is due to the targeted approaches recording higher numbers of 

captures and higher detection probabilities which inflated the population size estimates. This is why 
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the use of N-mixture models should be cautioned because generally, higher capture numbers and 

detection probabilities are favoured when researching a species. N-mixture models can only be 

applied to elusive, cryptic species and capitalize on the relationship between the population size and 

their subsequent detection. This is why targeted camera trap studies inflate population size estimates 

due to increased detection probabilities and count numbers.  

This study highlights the importance of accurate population analysis. Over-estimated population sizes 

and inconsistent population trends (often due to data deficiencies), influence managerial decisions. 

These decisions that are made using these data are likely to negatively impact the species. These 

managerial decisions won’t only affect the species population directly, but also the habitat in which 

the species is found and other species that occupy the same habitat. For this reason, robust methods 

researching, analyzing, and estimating species populations are essential for conservation 

management on a species level.  

Key research findings and management implications 

My research found that N-mixture models run using data from the sequential baited and non-baited 

camera trap deployment array and the roadside cluster deployment over-estimated leopard and 

brown hyaena population sizes across all the study sites (Chapter 2 and Chapter 3). The regular 

deployment array provided plausible estimates across all three of the fenced protected areas and 

were closely matched to previous population size estimates made by van Dyk and Slotow (2003) and 

Williams et al. (2021). 

The two targeted approaches, sequential baited and non-baited deployment, and roadside cluster 

deployment, were more efficient in collecting raw data, recording more independent captures over 

shorter periods of time. The targeted approaches recorded higher capture numbers and species 

detection probabilities. Most researchers aim for higher species capture numbers and detection 

probabilities. My study found that N-mixture models require capture numbers and detection 

probabilities that represent the study species population size in reality. Leopard and brown hyaena 

are often regarded as elusive and cryptic species (Mills 2019), and without a targeted approach such 

as Honiball et al. (2021), capture numbers and detection probabilities will generally be low, which 

favour the use of N-mixture models. This is evident by the regular deployment N-mixture popular size 

estimates that are closer to estimates made by van Dyk and Slotow (2003), Honiball et al. (2021) and 

Williams et al. (2021). Higher capture numbers and detection probabilities favour the use of spatially 

explicit capture-recapture models in estimating population sizes, which are the gold standard for 

population analysis (Green et al. 2020). The only requirement for spatially explicit capture-recapture 
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analysis is that target species be individually identifiable (Green et al. 2020). With appropriate 

equipment, leopards could be individually identifiable, I.e., Panthera camera trap data (Balme et al. 

2009, Chapman and Balme 2010, Strampelli et al. 2020), yet brown hyaena are not often individually 

identifiable and fewer studies represent estimates (Kent and Hill 2015) 

Population sizes and estimates for cryptic species are often overestimated (Gustafsson et al. 1999, du 

Preez 2014, Esteban et al. 2017). This can lead to management decisions which have negative impacts, 

such as over harvesting of species (Gustafsson et al. 1999, Niel and Lebreton 2005). The evidence from 

my research cautions the use of N-mixture models to conduct population analysis using camera traps 

due to the model sensitivity, seeing the models are reliant on detection probability and capture 

numbers. I found the models to be overly sensitive to the different individual camera trap grid 

deployment methods, which reflected in the results of the thesis. If one camera trap records 

significantly more captures than other cameras (i.e., animals denning nearby), this could significantly 

influence the results of the analysis, leading to overestimates of population sizes. The use of N-mixture 

models in analyzing camera trap data should only be considered when capture numbers and detection 

probabilities are too low for other analytical methods (Ficetola et al. 2018). Camera trap deployments 

should rather be targeted towards the study species, deployments that best ensure capture numbers 

and detection probabilities. Further development of analytical methods is needed to accurately 

estimate an unidentifiable species population size using camera trap data. N-mixture models have a 

lot of potential and have been successfully utilized in previous studies to conduct population analysis 

(Kidwai et al. 2019, Della Rocca et al. 2020).  

Future research opportunities 

Opportunities for future research related to this study: 

• Investigating the impact different interval distances between camera traps has on capture 

numbers, detection probabilities and occupancies.  

• A targeted camera trap deployment design with spatially independent camera trap sites could 

be used to conduct long term population analysis and investigate how populations respond 

to different seasonal, climatic, and environmental conditions. 

• The large population sizes of brown hyaena on Pilanesberg National Park and Atherstone 

Nature Reserve provide an opportunity to study how this species exists at high densities in a 

closed system.   

• Investigation into the effect that fence permeability has on species density estimates. Williams 

et al. (2021) recorded significant decreases in density estimates when accounting for fence 

permeabilities of reserves.  
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Supplementary Material 

Appendix 1: P-values for varying detection probabilities according to vegetation type recorded per 

species per grid deployment on Pilanesberg National Park. RGDA = Regular Grid Deployment 

Array. RCDA = Roadside Cluster Deployment Array. 

Vegetation Type 

Leopard Brown Hyaena 

RGDA p-value RCDA p-value RGDA p-value RCDA p-value 

Open water point 0.99 NA 0.10 NA 

Savannah woodland 0.34 1.00 0.83 0.26 

Grassy woodland 0.39 0.68 0.87 0.01 

Riverine area 0.004 0.68 0.002 0.03 

Grass plain 0.0001 NA 0.0007 NA 

Rocky outcrop 0.02 NA 0.00002 NA 

Sodic site 0.20 1.00 0.24 0.00007 

Open savannah 0.058 0.81 0.007 0.004 

Savannah grassland 0.99 0.36 0.17 0.08 

Gully NA 0.94 NA 0.48 
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Appendix 2: P-values for varying detection probabilities according to vegetation type recorded per 

species per grid deployment on Atherstone Nature Reserve. RGDA = Regular Grid Deployment 

Array. 

Vegetation Type 

Leopard Brown Hyaena 

RGDA p-value RGDA p-value 

Shrubland 0.99 0.72 

Bluethorn thicket 0.99 0.78 

Old lands 0.99 0.78 

Sicklebush area (sparse) 0.43 0.82 

Grewia shrubland 0.32 0.68 

Sicklebush thicket 0.68 0.79 

Dam piosphere 0.0003 0.65 

Vachellia tortillas area 0.96 0.66 

Thornveld 0.99 0.74 

Grassy shrubland 0.98 0.99 

 

 


