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ABSTRACT

In this thesis, we investigate several methods for extracting the forecast distribution from histori-

cal asset returns and market-quoted option prices. Typically, risk-neutral distributions, extracted

from market quoted option prices, are considered biased estimates of the forecast distribution,

and therefore need to be transformed into a real-world distribution. Transformation processes

often require the use of historical data and restrictive assumptions on a representative investor.

Alternatively, the recovery theorem provides a theoretically appealing method to recover the

real-world distribution from the risk-neutral transition probability matrix without the use of his-

torical returns. However, estimating the risk-neutral transition probability matrix has proven

to be a challenging task, as it involves solving an ill-posed problem. Therefore, we propose

a regularised multivariate Markov chain in the estimation of the risk-neutral transition proba-

bility matrix to obtain a more accurate real-world forecast distribution than obtained using the

univariate model.

Comparative studies on the accuracy of real-world forecast distributions are scarce in the

literature. Therefore, we further backtested and compared the accuracy of the extracted distribu-

tions on the South African Top 40 index, where we found that the forward-looking real-world

distribution improved forecasting in certain situations. We also proposed a forward-looking

mixture model of historical and option-implied distributions to improve forecasting.

Furthermore, we implemented the extracted forecast distributions in determining safe re-

tirement withdrawal rates. In our empirical study, we showed that the use of forward-looking

distributions drastically improved the success in retirement withdrawal rates.
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CHAPTER 1

INTRODUCTION

An important part of financial modelling is to forecast the possible return of an underlying

asset. This is arguably one of the most important and fascinating topics for many researchers

and financial practitioners. However, forecasting an accurate and meaningful return distribution

is a challenging task.

A common approach used in the modelling of future asset returns is to use estimates based

on historical data, such as, the mean and standard deviation, which under the assumption that

returns are normally distributed for example, provide a complete specified return distribution

for modelling purposes (see, e.g., Alexander, 2008; Hull, 2006). However, financial markets

are typically quite volatile and estimates based on historical data are unstable and are unlikely

to capture future asset returns accurately (see, e.g., de Vincent-Humphreys and Noss, 2012;

Cont, 2001). This is particularly evident in the higher moments of the estimated distribution,

which has become ever more important in forecasting future returns and assessing risk (see,

e.g., Christoffersen et al., 2013; Conrad et al., 2013).

On the other hand, financial modelling is often emphasised by the pricing of contingent

claims (derivative securities1) whose payoff extends out in time (see, Kienitz and Wetterau,

2012; Venter, 2010). Therefore, financial derivative securities are forward-looking and essen-

tially embed information about investors’ beliefs about the distribution of asset returns (see,

e.g., Christoffersen et al., 2013; Hollstein et al., 2019; Dillschneider and Maurer, 2019). For

this reason, financial derivative securities are frequently used to infer information. In particular,

it is found that the forecasted risk-neutral higher moments (volatility, skewness and kurtosis)

were strongly related to the subsequent returns (see, e.g., Christoffersen et al., 2013; Conrad

et al., 2013; Dobiáš, 2007). However, such risk-neutral distributions do not provide a true re-

1We will use derivative securities interchangeably with contingent claims throughout this thesis.
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INTRODUCTION

flection of the actual probabilities assigned to certain outcomes, as the risk-neutral distribution

is obtained to recover the prices of traded options in a way that avoids arbitrage. In essence,

investors are risk-averse in aggregate, which leads to differences in the probabilities extracted

from option prices to that of the true real-world probabilities (see, e.g., de Vincent-Humphreys

and Noss, 2012; Cuesdeanu and Jackwerth, 2018a). Essentially, risk-averse investors typically

assign higher probabilities to unfavourable scenarios than to favourable scenarios, and therefore

over-weigh the unfavourable scenarios when deciding on the securities future value. However,

an important part of modelling is to generate accurate real-world scenarios for risk and portfolio

management. It is important that these scenarios closely represent economic conditions.Since

derivatives are priced under the risk-neutral measure, where risk-management mostly utilises

the real-world measure for forecasting, it is important that we develop techniques for extracting

the forward-looking real-world distribution.2

While there is often a rich market of traded equity derivative prices available, and an exten-

sive amount of literature devoted to extracting the risk-neutral probabilities from option prices

(see, e.g., Breeden and Litzenberger, 1978; Aı̈t-Sahalia and Lo, 1998; Kienitz and Wetterau,

2012; Christoffersen et al., 2013; Malz, 2014; Barone-Adesi, 2016; Crisóstomo and Couso,

2018), the use of these probabilities to forecast future returns has been hampered by the trans-

formation of these probabilities into real-world probabilities. Real-world probabilities offer

numerous advantages over their risk-neutral counterparts (see, e.g., de Vincent-Humphreys and

Noss, 2012; Shackleton et al., 2010). These advantages range from (i) gaining insight into mar-

ket participants actual views on future asset prices, and (ii) the comparison of the estimated

risk-neutral and real-world probabilities reveals useful information about investors risk prefer-

ences. However, it is typically difficult to recover the real-world distribution of asset returns

from the risk-neutral distribution, which often relies on making use of historical data and re-

strictive assumptions on the representative investor (see, e.g., Cuesdeanu and Jackwerth, 2018b;

Bliss and Panigirtzoglou, 2004; Aı̈t-Sahalia and Lo, 2000; Shackleton et al., 2010).

Recently, Ross (2015) described a method for extracting the real-world distribution using

only risk-neutral information. This is achieved by obtaining the richer risk-neutral transition

probabilities, as opposed to only the risk-neutral distribution. The risk-neutral transition prob-

abilities represent the risk-neutral probabilities of moving from all hypothetical current states

2Other terms often used to describe real-world measure in the literature are: risk-adjusted, actual probability
measure, objective probability measure, physical distribution or subjective distribution.

2



INTRODUCTION

to all future states. This approach, under strict market conditions, is very appealing from a

theoretical point of view. However, implementing this approach requires solving two ill-posed

problems. The first, involves finding the forward-looking state price matrix and the second

involves estimating the risk-neutral transition probability matrix.

The ability to accurately forecast the asset return distribution is an important and valu-

able contribution that can be used in many applications. For example, risk managers use the

forecasted return distribution to measure the market risk, and portfolio managers often use the

forecast return distribution to make optimal portfolio choices. In what follows in this thesis is

the study of extracting historical, risk-neutral and real-world return distributions from market

prices. Since, investors, risk managers, actuaries and policy makers are often required to model

and forecast future returns for making optimal decisions, one needs to select an appropriate

model for the problem at hand. In testing the appropriateness of the models, we also imple-

ment and backtest the forecast models on the South African FTSE/JSE Top 40 (Top40) index.

Thereafter, these forecast models are applied to applications in financial modelling, such as,

determining Value-at-Risk forecasts and determining safe retirement withdrawal rates.

Our empirical findings based on the Top40 index return series indicated that models that

used real-world forward-looking information produced better Value-at-Risk forecasts, espe-

cially during economic uncertain times, than models based on historical data. Furthermore,

we also found that using the estimated moments of the real-world forward-looking distribution

in a tactical asset allocation framework yielded superior portfolio returns when compared to

models based on historical returns, which is vitally important in obtaining safe withdrawal rates

for retirees.

1.1 Research Questions

In order to build a framework for making optimal investment and risk-management decisions, it

is necessary to study the statistical properties of how the underlying asset price evolves. There-

fore, the following three problems form the central aim of this thesis:

3
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Table 1.1: Research Questions.

Research Question Name of paper
1. How are forecasting distributions extracted

from market prices?
Van Appel and Maré (2018)
Van Appel and Maré (2021)

2. Which forecasting distribution model is the
most appropriate for forecasting the South
African equity market dynamics?

Van Appel and Maré (2020a)
Van Appel and Maré (2020b)

3. Do forward-looking forecast distributions pro-
vide meaningful information for decision mak-
ing in risk management, portfolio optimisation
and investment strategies?

Van Appel et al. (2021)
Van Appel and Maré (2022)

1.2 Thesis Contribution and Layout

Part I: The Building of Forecast Distributions

The first part of this thesis is focused on the first two research questions in Table 1.1. In par-

ticular, forecasts of the entire return probability distribution is becoming increasingly popular

among many financial practitioners (see, e.g., Cristóstomo, 2021; Crisóstomo and Couso, 2018;

Ross, 2015; Christoffersen et al., 2013; de Vincent-Humphreys and Noss, 2012; Shackleton

et al., 2010). That is, financial practitioners are not only concerned about forecasting point

estimators, such as, the expected return, but also the uncertainty around the asset return. Essen-

tially, a forecast distribution captures all of the random variable characteristics, including the

tail, which is important for risk managers. Quantifying this uncertainty provides valuable in-

formation pertaining to the risk of a financial portfolio. Therefore, extracting accurate forecast

distributions are vitally important for many risk management activities.

This part is organised as follows:

In Chapter 2, we provide a brief overview of commonly used methods to estimate the his-

torical and forward-looking risk-neutral distribution from market prices. Furthermore, we also

summarise methods used to transform the risk-neutral distribution into a real-world distribution

(see, Van Appel and Maré, 2021). These transformation methods will make use of historical
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data and restrictive assumptions about investor preference. However, using historical data along

with restrictive assumptions about investor preference in the transformation process is likely to

introduce some bias in the estimation of the real-world distribution.

In Chapter 3, we study the recovery theorem introduced by Ross (2015). Although this

approach is theoretically very appealing, as it only makes use of risk-neutral information, it is

hampered by strict market constraints and solving an ill-posed problem in estimating the risk-

neutral transition matrix. However, in this chapter, we propose solving this ill-posed problem

by stabilising the estimation of the risk-neutral transition probability matrix by implementing a

regularised multivariate Markov chain (see, Van Appel and Maré, 2018). In addition, we carry

out a comparison of methods and a robustness check to show the effectiveness of this method.

In Chapter 4, we extract, backtest and compare the weekly one-month historical, risk-

neutral and real-world forecast distributions using the Top40 index through a series of distribu-

tion forecast backtests (see, Van Appel and Maré, 2020b). Comparative studies on the accuracy

of real-world forecasts are scarce in the literature, and therefore is of great value. In particular,

the real-world forecast distribution has many applications in finance, especially in risk man-

agement, where real-world probabilities are preferred. Therefore, it is important to obtain as

accurate forecast distributions as possible. Furthermore, since the tail of the forecast distribu-

tion is vitally important for risk management, we backtest and compare the tail of the forecast

distributions. It is particularly unlikely that a single forecast model will be consistently superior

throughout all time periods as the models can be sensitive to the sample period, asset type, and

the forecasting horizon (see, e.g., Shackleton et al., 2010). Therefore, in order to obtain more

stable and accurate forecasts, we also propose the mixing of historical and forward-looking

distributions using a forward-looking mixing parameter.

Part II: Modelling using the Forecast Distribution

The second part of this thesis is focused on the third research question in Table 1.1, where

we show a novel application of using the forecast distribution in determining safe retirement

withdrawal rates.

The topic of modelling safe retirement withdrawal rates is of considerable value to the

5
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actuarial profession and larger community, as we only get one chance to save for retirement. In

general, there are two risk factors to consider, namely, market risk and longevity risk. Market

risk focusses on the risk of losses caused by the changes is the underlying asset values in a

portfolio, where longevity risk is the uncertainty around the lifespan over which we need to

provide portfolio withdrawals for. It it well-known that people are living longer and therefore,

a retirement withdrawal strategy needs to last at-least 30-years, with substantial probability, to

be viable.

The models that we will build in this part, include transaction fees and longevity. In par-

ticular, we will show that different withdrawal rates and asset allocations can drastically affect

the outcome for a retiree, and therefore it is vitally important to devise optimal withdrawal

strategies.

The aim for a retiree is to draw as much money for as long as possible. This is none

other than an optimisation problem. Obviously, earning higher returns increases the retirement

portfolio’s success rates. To achieve this, Scott (1996) suggested that retirees should increase

their equity allocations in their retirement portfolio. Consequently, this strategy also increases

the volatility in the portfolio returns and time to ruin. Both of these properties are undesirable

for retirees. Therefore, we propose a strategy of using the moments of the forward-looking

forecast distribution in a tactical asset allocation framework to increase the portfolio return

without increasing the volatility in returns. This strategy allows for the possibility of achieving

higher success rates for retirement portfolios.

This part is organised as follows:

In Chapter 5, we consider a problem with significant practical value. In particular, we study

safe retirement fund withdrawal rates for retirees using historical data in a bootstrap simulation

(see, Van Appel et al., 2021). This corresponds to typical studies found in the literature (see,

e.g., Cooley et al., 1998, 1999; Maré, 2016). However, we incorporate transactional costs and

longevity into the simulation for a more realistic determination of the portfolio success rates.

The advantage of this modelling approach is that the correlation structure between the asset

classes is captured; however, the inter-temporal links such as the serial correlation is lost. Fur-

thermore, these traditional methods for determining safe withdrawal rates do not adequately

describe accurate return scenarios, as the assumption that future returns are like past returns is

6
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not necessarily valid.

In Chapter 6, we consider an extension of Chapter 5 by using forward-looking forecast

distributions to determine safe retirement withdrawal rates (see, Van Appel and Maré, 2022).

More specifically, we demonstrate empirically that using the moments of the forward-looking

real-world distribution in a tactical asset allocation framework achieved higher equity returns,

and therefore allows for higher safe spending rates.
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The Building of Forecast Distributions
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CHAPTER 2

ESTIMATION OF FORECAST

DISTRIBUTIONS

This chapter forms part of the working paper Van Appel and Maré (2021) and contributes

partly towards our first research question.

Chapter Synopsis

Estimating the forecast distribution typically involves time-series of asset returns or extracting

the risk-neutral distribution from market-quoted option prices. However, attention has recently

shifted from time-series and risk-neutral forecast distributions to real-world distributions. While

there is a vast literature on methods to extract the forward-looking risk-neutral distribution from

option prices (see, e.g., Crisóstomo and Couso, 2018; Malz, 2014; Christoffersen et al., 2013),

there are fewer studies in transforming the risk-neutral distribution into a real-world distribution,

with even fewer studies investigating the accuracy of the real-world forecasts.

Estimating the real-world forecast distribution typically involves a utility-function trans-

form (see, Bliss and Panigirtzoglou, 2004) or by an empirical study that searches for a calibra-

tion function that best fits the risk-neutral distribution obtained from a given set of observed

future values (see, Liu et al., 2007; de Vincent-Humphreys and Noss, 2012). More recent de-

velopments extended the utility-function transform approach by incorporating a behavioural

framework that uses investor sentiment to obtain a more accurate transformation from the risk-

neutral distribution to the real-world distribution (see, Cristóstomo, 2021). The aim of this

chapter is to study such transformation methods, which will then be applied and compared in

the South African market in Chapter 4.
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2.1 Introduction

The purpose of this chapter is to study some commonly used methods for extracting the forecast

distribution of the underlying future asset price ST (or return). In particular, we will focus

on the two types of forecast distributions used in practice, namely, the real-world distribution

and the risk-neutral distribution. These methods will be implemented using the South African

FTSE/JSE Top 40 (Top40) index data. The forecasts will then be backtested and compared in

Chapter 4. Extracting the entire forecast distribution rather than a single forecast measure, such

as the expected future asset price, has numerous advantages in practice. For example, in risk

management and portfolio asset allocation, the percentiles and higher moments are extremely

valuable (see, e.g., Aı̈t-Sahalia and Lo, 1998; Dobiáš, 2007; de Vincent-Humphreys and Noss,

2012; Audrino et al., 2014; Barone-Adesi, 2016; Flint and Maré, 2017; Van Appel and Maré,

2020b).

We begin this study by firstly defining the real-world distribution extracted from historical

data. This is often referred to as a backward-looking distribution. Thereafter, we study methods

for extracting the forward-looking distribution from European call option prices. These distri-

butions are classified as risk-neutral distributions. Lastly, we consider methods to transform the

forward-looking risk-neutral distributions into real-world distributions.

2.2 The Real-World Distribution

The real-world distribution is the distribution typically obtained from time-series analysis (see,

e.g., Kienitz and Wetterau, 2012, p. 16). For example, suppose that we have identified a market

invariant1, such as the returns of an index. The historical distribution of this market invariant is

often used as an input into some financial model, for example, in calculating measures of risk

(see, e.g., Meucci, 2005). In Figure 2.1, we illustrate such a historical real-world distribution

for a South African index over the period from 1900 to 2020.2

1Moreover market invariants can be found in Meucci (2005)
2Data sourced from Firer and McLeod (1999), Firer and Staunton (2002) and I-Net Bridge.
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Figure 2.1: Monthly returns for a South African index from 1900 to 2020.

From the moments of the distribution shown in Figure 2.1a, we observe that the returns

do not follow a Gaussian distribution, which is commonly assumed in many financial models.

However, Figure 2.1b suggests that the index returns are invariant (see, Meucci, 2005). There-

fore, it is often better to apply probabilistic concepts on the returns rather than the realised prices

of the index.

Typically, securities have return distributions with so-called skewness and fat tails. More-

over, Cont (2001) presented some statistical stylised facts, which emerged in empirical studies

of most asset returns, where he showed that it is particularly difficult to reproduce many of these

properties with a parametric model, requiring at least four parameters in the return distribution

(i.e., a location parameter, scale parameter, a parameter describing the decay of the tails, and an

asymmetry parameter to allow different behaviours between the tails). This occurrence has per-

suaded many risk managers to use historical simulation, rather than using a parametric model

building approach, to extract the return distribution (see, e.g., Pérignon and Smith, 2010).

2.2.1 Historical Simulation

Historical simulation involves creating a database of the daily/weekly/monthly change in the

asset over a period of time. For example, suppose that we have recorded 100 days of daily

returns and we are interested in the 5th percentile of the daily return density (i.e., VaR(0.95)).

11
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This would correspond to the 5th worst change out of the 100 days of asset value returns. This

method will be referred to as the historical simulation method in this thesis. The first drawback

in using past data for simulation is that the forecast density will be slow to react to market shifts.

Therefore, Hull and White (1998a) incorporated a volatility updating approach to adjust the

historical database using the following exponential weighted moving average (EWMA) model:

σ
2
t = ασ

2
t−1 +(1−α)R2

t−1 (2.1)

with α = 0.94. Hence, suppose we are estimating the return density at time N −1 for time N.

Let:

Rt : be the historical return on day t for the period covered by the historical sample (t < N)

σ̂2
t : be the historical EWMA estimate of the variance of the return for period t forecasted at

the end of period t −1

σ̂2
N : is the EWMA estimate of the variance for period N. This estimate is made at the end of

period N −1.

In the Hull and White (1998a) volatility updating approach, the original historical return data,

Rt , are adjusted by multiplying the historical return data by the ratio of the current volatility to

the volatility at the time of the observation, that is,

R∗
t = Rt

σ̂N

σ̂t
. (2.2)

This method will be referred to as the historical-HW method for the remainder of this thesis.

The second drawback with historical simulation methods is that there may not be enough data

available in the market to form a historical database, especially for new securities.

Since historical simulation requires a large database of past returns, which possibly consists

of returns when the market was in a different economic environment, we next consider using a

forward-looking approach to extract the return density forecast.3

3These concerns are also reported in Bliss and Panigirtzoglou (2004) and Cuesdeanu and Jackwerth (2018a)
about using historical data.
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2.3 Forward-Looking Densities

This method uses derivative prices to extract the probability density function of the future asset

price ST from European call option prices. In particular, a European-style call option is a

contract that gives the holder the right (but not the obligation) to purchase a prescribed asset

from the writer, for a prescribed price at a prescribed time, in the future. Therefore, the price

of a call option is determined by its expected future pay-off discounted by the risk-free interest

rate (see, e.g., Hull, 2006; Kienitz and Wetterau, 2012; Björk, 2009):

C(T,K) = e−rTEQ[max(ST −K)] = e−rT
∫

∞

K
(x−K) fQST

(x)dx, (2.3)

where T denotes the time to expiry (tenor), K the predetermined strike price, r the risk-free

interest rate, x the asset price at expiry, and fQST
(x) the probability density function of the future

asset price under the risk-neutral measure Q. These options are typically traded on a number of

official exchanges.

Since the option pay-off extends out in time, it is well-known that option prices capture

some market sentiment based on supply and demand considerations (see, e.g., Christoffersen

et al., 2013; Hollstein et al., 2019; Dillschneider and Maurer, 2019; Shackleton et al., 2010;

Crisóstomo and Couso, 2018). This is known as forward-looking information. Christoffersen

et al. (2013) provided a description of situations when option-implied forecasts are likely to be

most useful, such as, when the option market is highly liquid.

There are various methods of going about extracting the risk-neutral density, fQST
(x) from

option prices.4 In this study, we will consider two such approaches. The first is based on

making use of a continuous stochastic diffusion processes, such as the Black-Scholes, Heston

and Bates models, to model the underlying stock process and the second is based on the model-

free approach proposed by Breeden and Litzenberger (1978).

4Although, in this thesis, we extract the risk-neutral density from call option prices, we can extract the risk-
neutral density from put option prices (see, e.g., Barone-Adesi, 2016) or by making use of the put-call parity.
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2.3.1 The Black-Scholes Model

Black and Scholes (1973) assumed the following real-world stock price process:

dSt = (r+µ)St dt +σSt dWt , 0 ≤ t ≤ T, (2.4)

where r denotes the risk-free rate, µ the equity risk premium, σ the volatility of the stock, and

Wt a standard Brownian motion.

If we let Y = log(St), then by using Ito’s lemma on (2.4), the log stock price process is (see,

e.g., Christoffersen et al., 2013):

d logSt =

(
r+µ − σ2

2

)
dt +σ dWt . (2.5)

Integrating over (2.5) and solving for ST yields the solution to the stochastic differential equa-

tion in (2.4), i.e.,

ST = S0 exp
[(

r+µ − σ2

2

)
T +σWT

]
, (2.6)

which implies that the real-world density for ST , denoted by f PST
(x) is log-normally distributed:

f PST
(x) =

1

x
√

2πσ2T
exp

[
− 1

2σ2T

{
logx− logS0 −

(
r+µ − σ2

2

)
T
}2
]
. (2.7)

While the risk-premium is not directly observable, it can be estimated, which forms the base of

transforming the risk-neutral density into a real-world density. Under the risk-neutral measure,

µ = 0, and we have that ST is also log-normally distributed, but with a different mean. That is,

fQST
(x) =

1

x
√

2πσ2T
exp

[
− 1

2σ2T

{
logx− logS0 −

(
r− σ2

2

)
T
}2
]
. (2.8)

In the Black-Scholes framework, the risk-neutral density will have the correct form and

volatility, but with the mean typically adjusted downward due to the removal of the equity

premium µ . That is, the equity risk premium, µ will be positive if the underlying asset is

positively correlated with overall wealth in the economy, implying that the risk-neutral forecasts

will be a downward biased forecast of the future asset price (see, e.g., Christoffersen et al.,

2013). Since the risk-neutral mean of the asset return is the risk-free rate, option prices provide

no predictive power for the expected return. However, higher order moments have proven to
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be powerful in determining movements in the asset price (see, e.g., Bates, 1991; Conrad et al.,

2013).

Under the risk-neutral measure and the assumption that the future asset price is log-normally

distributed, the closed-form solution of (2.3), known as the Black-Scholes option pricing for-

mula, can be found as:

C(T,K,S0,r,σ2) = S0Φ(d)−Ke−rT
Φ

(
d −σ

√
T
)
, (2.9)

where

d =
log
(

S0
K

)
+T

(
r+ 1

2σ2)
σ
√

T
, (2.10)

and Φ(·) represents the cumulative standard normal distribution function. The Black-Scholes

option pricing formula only has one unknown parameter, namely the volatility, which we im-

ply from the market-quoted option prices. That is, the implied volatility, denoted by σ (IV), is

the volatility that one has to substitute into the Black-Scholes option pricing formula to repro-

duce market option prices. In particular, if one assumes that the given underlying asset is log-

normally distributed, then by the Black and Scholes (1973) framework, the implied volatility,

σ (IV), should be independent of the expiry T and the strike K. Unfortunately, it is well-known

that this is not the case. In reality, the implied volatility is found to be dependent on both

quantities: σ (IV) = σ (IV)(T,K). Therefore, as quoted in Rebonato (2002),

“Thus implied volatility is the wrong number to put in the wrong formula to get the

right price”.

Typically, it is common practice to quote option prices in terms of the implied volatility.

This is done as there is a one-to-one relation between option prices and the implied volatility,

since there is a large agreement of what the other parameters are to be in the Black-Scholes

option pricing formula, such as the risk-free rate. Therefore, the Black-Scholes formula is

simply used as a metric to express prices as volatilities. That is, given the call option price, the

implied volatility can uniquely be determined and vice versa.

In particular, the implied volatility is not only a property of the underlying, but carries

information about the derivative security. Therefore, the option implied volatility will often be
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higher than the volatility of the underlying as it incorporates market risk. (see, e.g., Bakshi and

Kapadia, 2003).

Due to the forward-looking nature of derivative prices and hence implied volatilities, these

measures are often used to encapsulate the markets perception of the underlying asset price in

the future (see, e.g., Shackleton et al., 2010; Christoffersen et al., 2013; Ross, 2015; Crisóstomo

and Couso, 2018; Hollstein et al., 2019).

Since the volatility is not constant as assumed in the Black-Scholes model, we therefore

consider two stochastic volatility models next.

2.3.2 Stochastic Volatility Models

In this section, we consider two stochastic volatility models to extract the risk-neutral density

of the future asset price ST , namely the Heston (1993) model and Bates (1996) model. The

risk-neutral dynamics for the Heston model is given by:

dSt = rSt dt +
√

VtSt dW (1)
t (2.11)

dVt = κ(θ −Vt)dt +ν
√

Vt dW (2)
t , (2.12)

where the parameter r represents the risk-free rate, κ models the speed of mean reversion of the

variance, θ the long term variance, ν to volatility of variance, ρ the correlation between the two

driving Brownian motions W (1)
t and W (2)

t , S0 the spot rate, and V0 the spot variance.

It is well-known that adding jumps to the spot price process could improve the agree-

ment between theoretical and observed option prices, especially in stressed markets (see, e.g.,

Crisóstomo and Couso, 2018). Therefore, the Bates model is simply an extension of the Hes-

ton model with independent jumps added to the security price dynamics in (2.11), giving the

following risk-neutral dynamics:

dSt = rSt dt +
√

VtSt dW (1)
t +(Y −1)St dNt (2.13)

dVt = κ(θ −Vt)dt +ν
√

Vt dW (2)
t , (2.14)

where Nt is a Poisson process, which models the number of jumps with intensity λ > 0 and Y

is the jump size distribution, which, in this case, is a log-normal distribution with average jump

size µJ , and jump volatility σJ .
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Heston (1993) and Bates (1996) provided analytical expressions for the characteristic func-

tion of log(ST ), which is then used to obtain the cumulative distribution function and risk-

neutral density function of ST , denoted by FQ
ST
(x) and fQST

(x) respectively, for positive values of

x (see, e.g., Shackleton et al., 2010):

FQ
ST
(x) =

1
2
− 1

π

∫
∞

0
Re
[

exp(−iu log(x))ψ(u)
iu

]
du (2.15)

fQST
(x) =

1
πx

∫
∞

0
Re [exp(−iu log(x))ψ(u)]du, (2.16)

where ψ(u) = E [exp(iu log(ST ))] denotes the characteristic function of log(ST ).

Furthermore, using the characteristic function, the closed-form solution for the price of a

European call option, C(T,K), can then be derived on an asset with stochastic volatility (see,

e.g., Heston, 1993; Bates, 1996; Kienitz and Wetterau, 2012; Carr and Madan, 1999) and is

given in Appendix A for convenience.

One of the main drawbacks with the model-building approaches above is that the unknown

model parameters needs to be estimated from the market-quoted call option prices in order to

obtain the risk-neutral density function. This processes involves a computationally expensive

process of numerically minimising the difference between market prices and model prices.

2.3.3 Calibration Procedure

In this section, we present methods in estimating model parameters for the Black-Scholes, Hes-

ton and Bates models. In particular, model parameters are typically derived from quoted option

prices.

The calibration procedure estimates the unknown parameters, Θ, by finding the parameter

values that minimise the difference (or error) between market prices and model prices. In order

to find the optimal parameter set, we firstly quantify three commonly used error functions used

in the literature (see, e.g., Kienitz and Wetterau, 2012, p. 435):

1. RMSE (Root-mean-square-error)

RMSE(Θ) =
1√
N

√
N

∑
i=1

(
Ci − Ĉi(Θ)

)2
(2.17)
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2. AAE (Average Absolute error)

AAE(Θ) =
1√
N

N

∑
i=1

∣∣Ci − Ĉi(Θ)
∣∣ (2.18)

3. ARPE (Average Relative Percentage error)

APE(Θ) =
1√
N

N

∑
i=1

∣∣Ci − Ĉi(Θ)
∣∣

Ci
, (2.19)

where N represents the number of quoted option prices, Ci denotes the i-th call option price

obtained from the market, and Ĉi the ith model price obtained with parameter set Θ. This

procedure relies on the condition that there are enough traded option prices available to perform

such a task. Secondly, we need to run an optimisation scheme to determine the parameter values

that minimise the error function. Moreover such optimisation schemes can be found in Kienitz

and Wetterau (2012, Chapter 9) and are readily available in most statistical software packages.

In particular, we found that the RMSE function yielded the best results in the calibration of the

Heston and Bates parameters using the Top40 index call prices, and was therefore used in this

thesis.

2.3.4 Model Free Risk-Neutral Density

Breeden and Litzenberger (1978) showed that the implied risk-neutral probability density func-

tion of the future asset price, ST can be extracted from a set of European-style option prices.

That is, the cumulative distribution function (cdf), denoted by FQ
ST
(x), can be obtained by taking

the first order partial derivative of C(T,K) with respect to the strike K, i.e.,

∂C(T,K)

∂K
=−e−rT

[
1−FQ

ST
(K)
]
. (2.20)

Rearranging (2.20), yields an expression for the implied risk-neutral cdf,

FQ
ST
(x) = 1+ erT ∂C(T,K)

∂K

∣∣∣∣
K=x

. (2.21)

Thereafter, the conditional probability density function (pdf) is obtained by taking the partial

derivative of (2.21) with respect to K, as follows:

fQST
(x) = erT ∂ 2C(T,K)

∂K2

∣∣∣∣
K=x

. (2.22)
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In practice, a continuum of traded strikes is not directly observed in the markets, especially in

South Africa where option price data are sparse and noisy. Therefore, one typically first needs

to interpolate and extrapolate call option prices over a dense strike range (see, e.g., Malz, 2014;

Flint and Maré, 2017). It is typically more desirable to interpolate and extrapolate over the

implied volatility, where the Black-Scholes option pricing formula is used to move between

prices and implied volatility. In this study, we used the so-called stochastic volatility inspired

(SVI) model to extract a dense implied volatility surface, which is then used to compute a dense

set of call option prices across the full strike range for each expiry date (see, e.g., Gatheral

and Jacquier, 2014; Flint and Maré, 2017). Thereafter, we numerically approximated the risk

neutral distribution by taking the second difference along the interpolate and extrapolate call

option price at tenor T (see, e.g., Christoffersen et al., 2013; Figlewski, 2010). The risk-neutral

density forecast extracted using this model-free approach will be referred to as the RND model

for the remainder of this thesis.

Now that we have obtained estimates of the risk-neutral density, we can proceed with trans-

formation methods to estimate the real-world density. Shackleton et al. (2010) found in an

empirical study that the real-world distribution improved forecasting performance for both two-

and four-week horizons.

2.3.5 Risk-Premium Transformation

Real-world probabilities differ from risk-neutral probabilities in that investors require a pre-

mium that compensates them for carrying risk. The transformation from risk-neutral to real-

world densities typically rely on assumptions (see, e.g., Bliss and Panigirtzoglou, 2004; Shack-

leton et al., 2010; Ross, 2015; Dillschneider and Maurer, 2019; Cuesdeanu and Jackwerth,

2018b). Furthermore, the link between option-implied risk-neutral densities and real-world

densities is not unique and a pricing kernel (or stochastic discount factor), MT , must be as-

sumed to link the two densities (see, e.g., Bliss and Panigirtzoglou, 2004). The pricing kernel

is defined as (see, e.g., Christoffersen et al., 2013):

MT = e−rT fQST
(x)

f PST
(x)

, (2.23)
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where fQST
(x) and f PST

(x) represents the risk-neutral and real-world densities, respectively. Then

from (2.3) we have that,

C(T,K) = e−rTEQ[max(ST −K,0)] (2.24)

= EP[MT max(ST −K,0)]. (2.25)

The pricing kernel, MT , describes how, in equilibrium, investors trade off the current (known)

option prices versus the future (stochastic) pay-off (see, Christoffersen et al., 2013).

The literature provides us with guidance on how to estimate the pricing kernel (see, e.g.,

Aı̈t-Sahalia and Lo, 2000; Bliss and Panigirtzoglou, 2004; Bakshi et al., 2003; Ross, 2015;

Cuesdeanu and Jackwerth, 2018b). For example, Aı̈t-Sahalia and Lo (2000) determined the

pricing kernel by separately deriving the risk-neutral density from option prices and the real-

world density from historical prices to infer the pricing kernel. However, Bliss and Panigirt-

zoglou (2004) assumed a constant risk aversion preference and estimated the elasticity param-

eter by comparing the predictions obtained from this with historical data. This method is also

one of the most widely used transformation methods to obtain a real-world density from the

risk-neutral density. The form for the pricing kernel can be motivated by a representative agent

with a particular utility function of terminal wealth, υ(x) (see, e.g., Bliss and Panigirtzoglou,

2004). In particular, the risk-neutral density, real-world density and utility function are linked

by (see, e.g., Christoffersen et al., 2013):

f PST
(x) =

fQST
(x)/υ ′(x)∫

∞

0 fQST
(y)/υ ′(y)dy

, (2.26)

where υ ′(x) is the first derivative of the utility function. That is, when we substitute (2.26) into

(2.23), we have that,

MT ∝ υ
′(x). (2.27)

For example, assuming a power utility with a constant relative risk aversion (CRRA) parameter

γ , we have

υ(x) =
{ 1

1−γ
x1−γ , if γ ≥ 0;γ ̸= 1,

logx, if γ = 1,
(2.28)

so that υ ′(x) = x−γ for γ ̸= 1. Then the pricing kernel becomes e−rT x−γ , and the risk-adjusted

density is:

f PST
(x) =

e−rT fQST
(x)

MT
=

xγ fQST
(x)∫

∞

0 yγ fQST
(y)dy

, (2.29)
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where the denominator in (2.29) ensures that f PST
(x) is a valid density. In addition, Bliss and

Panigirtzoglou (2004) reported the distribution of γ obtained from the S&P500 and FTSE 100

for the power and exponential-utility functions. In particular Bliss and Panigirtzoglou (2004)

found γ = 4.08 as the optimal relative risk aversion parameter for the power utility function.

Following Cuesdeanu and Jackwerth (2018a) and Cristóstomo (2021), we will apply a power

utility function with CRRA coefficients of 0, 2 and 4 in this thesis. Furthermore, Thomas (2016)

found that the power utility family is the most commonly used utility function in practical

applications. The risk aversion parameter is a particularly important economic indicator as it

reflects the subjective feelings of the investor (see, Thomas, 2016). Therefore, methods for

extracting the CRRA estimate from the forward-looking moments instead of using historical

data can improve the predictive power of the forecast density (see e.g., Bakshi and Madan,

2006; Cristóstomo, 2021). However, this is left for further research.

The results above demonstrate that knowing any two of the following three uniquely deter-

mine the third: (i) the physical density, (ii) the risk-neutral density; and (iii) the pricing kernel.

In the next section, we consider an extension of the risk-premium transformation presented

in this section. This approach incorporates investor sentiment into the transformation from risk-

neutral probabilities to real-world probabilities in the aim of obtaining a better estimate of the

real-world density.

2.3.6 A Behavioural Approach

Both Barone-Adesi et al. (2017) and Cristóstomo (2021) studied behavioural approaches in es-

timating the forward-looking real-world return density by incorporating an investor sentiment

function into the transformation. The investor sentiment function aims to summarise investor

biases in particular regions of the return density. Typically, the stochastic discount factor (pric-

ing kernel) incorporates the investor beliefs and preferences about the asset returns. Therefore,

in this section, the stochastic discount factor, presented in Section 2.3.5 is expanded to incor-

porate sentiment effects as outlined in Cristóstomo (2021). In particular, Barone-Adesi et al.

(2017) and Cristóstomo (2021) defined three sentiment-induced factors, namely, excessive op-

timism (which generates biases in the mean returns), overconfidence (which impacts volatility

predictions) and tail sentiment (which is related to non-rational tail expectations).
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In what follows next is a study of these factors, which follows from Cristóstomo (2021).

In particular, sentiment proxies will be obtained from the observed market activity, which then

will be incorporated into the stochastic discount factor, given in (2.23), when transforming the

risk-neutral density to a real-world density.

2.3.6.1 A Measure of Investor Optimism and Overconfidence

Following Cristóstomo (2021), the behavioural transformation due to investor optimism and

overconfidence can be obtained by the linear transformation of the original asset return forecast,

XT , to an adjusted forecast X̂T as follows:

X̂T = θ1,t +XT θ2,t +(1−θ2,t)µ, (2.30)

where θ1 and θ2 denote the location and scale shift parameters, respectively and µ the mean

forecast of XT . More specifically, this linear transformation shifts the mean and variance of the

original forecast to µ̂ = µ +θ1 and σ̂2 = θ 2
2 σ2, respectively, where σ2 represents the variation

in the original return forecast XT . In essence, the linear transformation in (2.30) behaves in the

following way (see, Cristóstomo, 2021):

• When pessimistic investors are driving market prices, the risk-neutral densities tend to

reflect downward bias in average return. Therefore, a behavioural adjustment shift of θ1 >

0 is carried out, which shifts the probability mass to higher returns. Alternatively, when

optimistic investors are driving market prices, the original forecast is adjusted downward

by the behavioural shift, θ1 < 0, which shifts the probability mass to lower returns.

• When under-confident investors are driving market prices, excessive dispersion is typi-

cally embedded in the market forecast, and the behavioural correction for θ2 < 1 reduces

the volatility in the distribution. Alternatively, when over-confident investors are driv-

ing market prices, the market forecast is adjusted by the behavioural correction, θ2 > 1,

which increases the volatility in the market-implied forecast.

Now that we know how investor optimism and overconfidence affects the risk-neutral return

density, we next estimate the investor optimism and overconfidence parameters, namely, θ1 and

θ2, respectively from market data.
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2.3.6.2 Estimation of the Investor Optimism and Overconfidence Parameters

Cristóstomo (2021) proposed using a proxy for investor optimism that is derived directly from

the implied volatility extracted from market option prices. Typically when investors are pes-

simistic about future market returns, they tend to increase their demand for hedging securi-

ties, which raises implied volatility levels (see, e.g., Smales, 2017). Furthermore, Cristóstomo

(2021) proposed using the implied volatility change, defined as the difference between the cur-

rent implied volatility and the average implied volatility over the three previous months, rather

than the implied volatility itself, as the change in implied volatility often yields superior results

in explaining future returns. That is,

∆σ
(IV)
t = σ

(IV)
t − σ̄

(IV)
t−1 , (2.31)

where

σ̄
(IV)
t−1 =

3

∑
s=1

σ
(IV)
t−s /3. (2.32)

Thereafter, the Gaussian kernel is used to transform the set of historical implied volatility

changes until date t,
{

∆σ
(IV)
1 , . . . ,∆σ

(IV)
t−1

}
, into a continuous distribution. Then the α IV

t th

percentile of the new ∆σ
(IV)
t observation is found from the corresponding empirical distribution.

Observations falling below the 5th percentile and above the 95th percentile are associated with

excessive optimism and excessive pessimism, respectively. The behavioural mean shift, θ1, is

then calculated as follows (see, Cristóstomo, 2021):

θ1,t =


(1− ertτ)k1

0.05−α IV
t

0.05 , for 0 ≤ α IV
t < 0.05,

0, for 0.5 ≤ α IV
t ≤ 0.95,

−(1− ertτ)k1
α IV

t −0.95
0.05 , for 0.95 < α IV

t ≤ 1,

(2.33)

where k1 represents a calibration impact factor, rt the risk-free interest rate and τ the forecast

duration. Cristóstomo (2021) suggested k1 = 1 for a low calibration impact factor, which rep-

resents that the investor optimism may lead to a mean shift of up to one times the risk-free rate,

whereas k1 = 2 represents a high impact factor, which represents a behavioural shift of up to

two times the risk-free rate.

Similar to the above, Statman et al. (2006) proposed that investor overconfidence can be

measured by trading volumes. In particular, overconfident investors tend to typically overstate
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their valuation, understating future volatility, and thereby trading more. Cristóstomo (2021),

thereby uses the change in trading volume as a measure of overconfidence as it is often a

preferable measure to the trading volume itself (see also, Statman et al., 2006). Therefore,

at each time-t, Cristóstomo (2021) calculates the change in trading volume as the ratio of the

last months trading volume and the average volume over the previous three months. That is,

∆TVt =
TVt
¯TV t−1

, (2.34)

where

¯TV t−1 =
3

∑
s=1

TVt−s/3. (2.35)

Thereafter, the Gaussian kernel is used to transform the set of historical changes in trading

volume, {∆TV1, . . . ,∆TVt−1} into a continuous distribution. Under-confidence is associated

with ∆TVt observations that fall below the 5th percentile and overconfidence the values that

fall above the 95th percentile. The volatility adjustment factor is then obtained as follows (see,

Cristóstomo, 2021):

θ2,t =


k

αTV
t −0.05

0.05
2 , for 0 ≤ αTV

t < 0.05,
1, for 0.5 ≤ αTV

t ≤ 0.95,

k
αTV

t −0.95
0.05

2 , for 0.95 < αTV
t ≤ 1,

(2.36)

where αTV
t represents the percentile of the new ∆TVt observation in the empirical distribution,

and k2 an impact factor. Furthermore, Cristóstomo (2021) proposed a low impact scenario when

k2 = 1.2, which yields θ2 ∈ [0.83,1.2] and a high impact scenario when k2 = 1.5, which yields

θ2 ∈ [0.67,1.5].

After the linear transformation, Cristóstomo (2021) defined the mean-variance pricing ker-

nel as:

Mmv
T =

f Pt,XT
(xT )

f mv
t,X̂T

(xT )
, (2.37)

where f Pt,XT
(xT ) represents a risk-adjusted density (see, e.g., (2.29)), and f mv

t,X̂T
(xT ) represents

the behavioural density obtained through the mean-variance transformation given in (2.30).

Next, we outline the behavioural shift represented by tail sentiment.
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2.3.6.3 Tail Sentiment

Similar to the above, Cristóstomo (2021) proposes a simple tail adjustment to account for the

tail bias, which shifts the probability mass from the one tail to the other tail. By denoting q(α)

as the quantile that defines the left tail and q(1−α) the quantile that defines the right tail, the

tail shift pricing kernel is given as follows (see, Cristóstomo, 2021):

Mts
T =


eθ3(q(α)−xT ), for xT ∈ (−∞,q(α))
1, for xT ∈ [q(α),q(1−α)]

e−θ3(xT−q(1−α)), for xT ∈ (q(1−α),∞),

(2.38)

where θ3 assigns the direction and intensity of the tail shift. In particular, when investors over-

state the left-tail events, the behavioural transformation θ3 > 0, shifts probability from the left

tail to the right tail. Alternatively, when investors overstate right-tail events, the behavioural

transformation θ3 < 0, shift probability from the right tail to the left tail.

The tail sentiment parameter can then be estimated from the skewness of the risk-neutral

distribution.

2.3.6.4 Estimation of the Tail Sentiment Parameter

The inferred amount of tail risk in the market can be obtained from the risk-neutral distribution.

Typically the risk-neutral distribution becomes more negatively skewed when investors perceive

downside risk. Alternately, the risk-neutral skewness becomes positive when investors perceive

higher returns. Therefore, on each time-t, the risk-neutral skewness is estimated through the

model-free method (see, e.g., Bakshi et al., 2003; Christoffersen et al., 2013):

Skewt =
erτW (t,T )−3µ(t,T )erτV (t,T )+2µ(t,T )3

(erτV (t,T )−µ(t,T )2)3/2 , (2.39)

where

µ(t,T ) = erτ

(
1− e−rτ − 1

2
V (t,T )− 1

6
W (t,T )− 1

24
X(t,T )

)
, (2.40)
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and V (t,T ),W (t,T ) and X(t,T ) represent hypothetical contracts with a quadratic, cubic and

quartic payoff respectively and τ defined as the time to maturity. That is,

V (t,T ) =
∫

∞

St

2
(

1− log
(

K
St

))
K2 C(t,T,K)dK +

∫ St

0

2
(

1+ log
(

St
K

))
K2 P(t,T,K)dK,

W (t,T ) =
∫

∞

St

6log
(

K
St

)
−3
[
log
(

K
St

)]2

K2 C(t,T,K)dK

−
∫ St

0

6log
(

St
K

)
+3
[
log
(

St
K

)]2

K2 P(t,T,K)dK,

and

X(t,T ) =
∫

∞

St

12
[
log
(

K
St

)]2
−4
[
log
(

K
St

)]3

K2 C(t,T,K)dK

+
∫ St

0

12
[
log
(

K
St

)]2
+4
[
log
(

St
K

)]2

K2 P(t,T,K)dK,

where P(t,T,K) represents the market-quoted put option price at time t with expiry T . Han

(2008) and Chen and Gan (2018) examined high skewness levels associated with biases in the

tail expectations. Cristóstomo (2021) proposes that sentiment biases in asset prices occur when

the risk-neutral skewness exceeds a ±1.5 threshold. It is well-known that equity distributions

typically tend to exhibit negatively skewed distributions, which is expected to generate more

frequent over weightings of the left tail compared to the right tail. The tail shift adjustment is

then defined as (see, Cristóstomo, 2021):

θ3,t =


k3(−Skewt −1.5), for Skewt <−1.5
0, for −1.5 ≤ Skewt ≤ 1.5
k3(−Skewt +1.5), for Skewt > 1.5,

(2.41)

where k3 represents an impact factor. In particular, k3 = 1 will be used in a low impact sentiment

calibration, where k3 = 2 will be used in a high impact sentiment calibration.

Next, the behavioural transformation is incorporated into the stochastic discount factor to

obtain a more accurate real-world forecast density estimate.

2.3.6.5 Sentiment Function and Real-World Stochastic Discount Factor

The combined behavioural correction to transform the risk-neutral density into a real-world

density is given by the sentiment function, Ψ(xT ). More specifically, this stochastic discount
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factor represents the combined effects of investor optimism, investor overconfidence and tail

sentiment as follows (see, Cristóstomo, 2021):

Ψ(xT ) = Mmv
T Mts

T . (2.42)

Then, the real-world pricing kernel is given as (see, Cristóstomo, 2021):

Mrw
T = e−rτ

υ
′(xT )Ψ(xT ), (2.43)

which reflects the cumulative impact of investor sentiment and risk-preference. The real-world

density can then be obtained from (2.26) using (2.43) as follows:

f Pt,XT
(xT ) =

fQt,XT
(xT )/ [υ

′(xT )Ψ(xT )]∫
∞

0 fQt,XT
(y)/ [υ ′(y)Ψ(y)]dy

, (2.44)

where
∫

∞

0 fQt,XT
(y)/ [υ ′(y)Ψ(y)]dy represents the integration factor used to ensure that (2.44)

integrates to one. The real-world forward-looking density obtained using this method will be

referred to as the Behavioural real-world density for the remainder of this thesis.

2.3.7 Calibration Transformations

An alternative transformation process to the utility-transformation method is to make use of

the calibration of a misspecified density (see, e.g., Bunn, 1984; Fackler and King, 1990; Liu

et al., 2007; Shackleton et al., 2010). This approach is particularly different to that of the

utility-transformation function approach given in Section 2.3.5, as it does not make use of a

representative agent.

In particular, this approach defines the new random variable, Ui+1 = FQ
i,Si+1

(Si+1), where

0 ≤ i ≤ t−1 and FQ
i,Si+1

(x) denotes the time-i risk-neutral cumulative distribution function of the

terminal index price Si+1. Thereafter, following Bunn (1984), the calibration function, CT (u), is

defined as the real-world cdf of UT . For real-world probabilities, the cdf of ST is then obtained

as follows (see, Liu et al., 2007):

FP
t,ST

(x) = P(ST ≤ x)

= P
(

FQ
t,ST

(ST )≤ FQ
t,ST

(x)
)

= P
(

UT ≤ FQ
t,ST

(x)
)

=CT

(
FQ

t,ST
(x)
)
. (2.45)
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The real-world density is then given by (see, Liu et al., 2007):

f Pt,ST
(x) =

d
dx

CT

(
FQ

t,ST
(x)
)
= fQt,ST

(x)cT

(
FQ

t,ST
(x)
)
, (2.46)

where cT (u) represents the real-world density of UT .

In order to estimate the real-world density in (2.46), the calibration function must first be

estimated. Shackleton et al. (2010) illustrated two specifications of the calibration function,

namely a parametric and a non-parametric specification. Furthermore, the calibration function

is continuously re-estimated at the end of each period t.

2.3.7.1 Parametric Specification

Shackleton et al. (2010) used the cdf of the beta distribution as their parametric specification of

the calibration function. That is, the calibration density is then:

cT (u) =
ua−1(1−u)b−1

B(a,b)
, (2.47)

where B(a,b) = Γ(a)Γ(b)
Γ(a+b) , and the two calibration parameters, a and b depend on the forecast

horizon T . From (2.46) and (2.47), the real-world density of ST is then:

f Pt,ST
(x) = fQt,ST

(x)
FQ

t,ST
(x)a−1

(
1−FQ

t,ST
(x)
)b−1

B(a,b)
. (2.48)

In particular, the special case of the calibration density is when a = b = 1, which defines an

uniform distribution in (2.47). This then implies that the real-world density in (2.48) is the

same as the risk-neutral density.

The parameters in the calibration density function, a and b, are obtained by maximising

the log-likelihood function at time t, where the log-likelihood function is given as (Shackleton

et al., 2010):

ℓ(S1, . . . ,St |a,b) =
t−1

∑
i=0

log
(

f Pi,Si+1
(Si+1|a,b,Θi)

)
, t < T, (2.49)

where Θi represents the risk-neutral parameter set at the end of the i-th day.

In this study, we will use the risk-neutral probability density function obtained by the He-

ston model with the beta parametric specification to obtain the real-world probability density

function. This method will be denoted as the Heston P1 method for the remainder of this thesis.
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2.3.7.2 Non-Parametric Specification

The non-parametric specification function is also calibrated from the historical observations of

Ui+1. Firstly, Shackleton et al. (2010) uses the set of t observed future prices of the underlying

asset to define a set of t cumulative risk-neutral probabilities, Ui+1 = FQ
i,Si+1

(Si+1|Θi), where

0 ≤ i ≤ t −1, and Θi represents the parameter set of the risk-neutral density function at time-i.

It is assumed that these observations are i.i.d. with cdf given by the calibration function CT (u).

Thereafter, the set of U observations are transformed into new variables yi+1 = Φ−1(Ui+1),

where Φ(·) denotes the cdf of the standard normal distribution. This is known as the inverse

probability transformation of the realisations (see, Rosenblatt, 1952). Then, a non-parametric

kernel cdf is fit to the observation set {y1,y2, . . . ,yt}. More specifically, a normal kernel with

bandwidth h is used so to obtain the following kernel density (see, Shackleton et al., 2010):

ĝT (y) =
1
th

t

∑
j=1

φ

(
y− y j

h

)
, (2.50)

and cdf,

ĜT (y) =
1
t

t

∑
j=1

Φ

(
y− y j

h

)
, (2.51)

where the Silverman (1986, Chapter 2) standard optimal bandwidth parameter, h = 0.9σy/t0.2,

is used, where σy represents the standard deviation of the set {y1,y2, . . . ,yt}. The empirical

calibration function is then defined as (see, Shackleton et al., 2010):

ĈT (u) = ĜT
(
Φ

−1(u)
)
. (2.52)

Using (2.45), the real-world cdf for the next future price is (see, Shackleton et al., 2010):

FP
t,ST

(x) = ĈT

(
FQ

t,ST
(x)
)
= ĜT

[
Φ

−1
(

FQ
t,ST

(x)
)]

, (2.53)

with real-world density:

f Pt,ST
(x) =

d
dx

ĜT

[
Φ

−1
(

FQ
t,ST

(x)
)]

=
fQt,ST

(x)ĝT

[
Φ−1

(
FQ

t,ST
(x)
)]

φ

[
Φ−1

(
FQ

t,ST
(x)
)] . (2.54)

Then, the non-parametric calibration density is given as:

ĉT

(
FQ

t,ST
(x)
)
=

ĝT

[
Φ−1

(
FQ

t,ST
(x)
)]

φ

[
Φ−1

(
FQ

t,ST
(x)
)] . (2.55)

This transformation method from risk-neutral to real-world probabilities will be referred to as

the Heston P2 method for the remainder of this thesis.
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2.4 Conclusion

In this chapter, we introduced methods for extracting the forecast distribution. In particular, we

focused on extracting the risk-neutral forward-looking probability density function from option

prices, and then transforming the risk-neutral probability density function into a real-world

probability density function. The methods discussed in this chapter form part of the standard

approaches in transforming risk-neutral probabilities into real-world probabilities, which uses

historical asset returns to estimate the pricing kernel and calibration function.

Although, the risk-neutral distribution is considered biased, the bias may be negligible.

Furthermore, attempting to remove the bias, by transforming the risk-neutral probabilities into

real-world probabilities, may also lead to introducing bias into the distribution as this process

often makes use of historical prices and assumptions on investor preference (see, Christoffersen

et al., 2013).

In contrast, Ross (2015) extracts both the physical and pricing kernel from the risk-neutral

density by placing more strict assumptions on the market. This approach will be discussed, in

the next chapter.
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CHAPTER 3

THE ROSS RECOVERY THEOREM WITH A

REGULARISED MULTIVARIATE MARKOV

CHAIN

This chapter is mostly aligned with Van Appel and Maré (2018) and forms part of our first

research question.

Chapter Synopsis

Recently, Ross (2015) derived a theorem, namely the “Recovery Theorem”, that allows for the

recovery of the pricing kernel and real-world asset distribution, under particular assumptions,

from a forward-looking risk neutral distribution. However, recovering the real-world distribu-

tion involves solving two ill-posed problems. In this chapter, we introduce and test the accuracy

of a regularised multivariate mixture distribution to recover the real-world distribution. In addi-

tion, we show that this method improves the estimation accuracy of the real-world distribution.

Furthermore, we carry out an empirical study, using weekly South African Top40 option trade

data, to show that the recovered distribution is in line with economic theory.

3.1 Introduction

Asset distributions are vitally important to solve financial problems in risk management, portfo-

lio optimisation and optimal trading strategies. A commonly used approach to forecast returns

is to use historical data or opinion polling to estimate asset distributions. However, financial
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markets are quite volatile, and using historical distributions for forecasting are not always desir-

able. An alternative forecasting method is to extract the forward-looking risk-neutral distribu-

tion from the option market data. It is well-known that option prices convey some market risk

forecast as payoffs extend out in time. Therefore, option prices are, by nature, forward-looking.

In a complete market, Black and Scholes (1973) and Merton (1973) proved that the value of

an option is independent of the expected return on the underlying asset. This gave rise to the

risk-neutral valuation framework, where the only unknown parameter affecting the option price

is the asset’s underlying volatility, commonly referred to as the implied volatility. Furthermore,

Breeden and Litzenberger (1978) showed that the forward-looking risk-neutral distribution can

be derived by option prices under the assumption of complete markets. However, the risk-

neutral distribution mostly differs from the real-world distribution, which expresses market par-

ticipants’ consensus. In short, under the risk-neutral measure, the expected return of the asset

is the risk-free rate, since the risk-neutral measure is the real-measure with the risk-premium

removed.

While financial institutions have long used implied volatilities to gauge the market’s per-

ception of risk, there has been a theoretical hurdle in converting the risk-neutral distribution

into the real-world distribution using option prices alone. Recently, Ross (2015) published a re-

markable theorem that recovers the real-world probability distribution and pricing kernel from

option prices under a particular set of assumptions. For example, one of the assumptions is that

markets are complete. This is rarely true in any exchange traded option dataset, especially in

South Africa, where the option price data are sparse and noisy. To satisfy this assumption, it is

necessary to extrapolate forward-looking option price data (see, e.g., Aı̈t-Sahalia and Lo, 1998;

Audrino et al., 2014; Melick and Thomas, 1997; Gatheral and Jacquier, 2014; Flint and Maré,

2017). More specifically, Gatheral and Jacquier (2014) proposed a deterministic SVI volatil-

ity model with a robust fitting algorithm to estimate volatility surfaces, which proved to be a

promising method to estimate the forward-looking risk-neutral distribution (see, also, Flint and

Maré, 2017).

It is well-known that the risk-neutral probability measure is extensively used in derivative

pricing, however, knowledge of the pricing kernel and real-world distribution will be invaluable

for investors regrading risk management, portfolio optimisation and investment strategies. In

short, the recovery theorem differs from other approaches in that it adjusts the risk-neutral
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distribution to a real-world distribution and does not rely on historical returns.

The empirical problem with the recovery theorem is that it is difficult to recover an accurate

real-world distribution (see, e.g., Audrino et al., 2014; Backwell, 2015; Spears, 2013), as it

involves solving two ill-posed problems. The first ill-posed problem involves finding the risk-

neutral distribution by taking the second derivative of the option pricing function and the second

involves calculating the transition matrix that captures the dynamics of the state prices. In

this chapter, we will focus on the second ill-posed problem by implementing a regularised

multivariate Markov chain in an attempt to stabilise the estimation of the real-world transition

distribution matrix. In addition, we will conduct a numerical analysis and a robustness check to

show the effectiveness of this method. Thereafter, we will apply the recovery theorem to weekly

Top40 option trade data, traded on the South African Futures Exchange (SAFEX), to estimate

the real-world distribution. In addition, we compare the first four moments of the real-world

distribution to the risk-neutral distribution.

3.2 The Recovery Theorem

In this section, we start by reviewing the recovery theorem Ross (2015). For simplicity, we

adopt some of the notation and terminology used in Ross (2015). Intuitively, he attempts to

recover the real-world transition probabilities of a Markovian state variable S that determines

aggregate consumption, using market derivative prices on S. Real-world probabilities differ

from risk-neutral probabilities in that investors require a premium that compensates them for

carrying risk. The transformation from risk-neutral to real-world densities rely on assumptions

(see, e.g., Bliss and Panigirtzoglou, 2004; Shackleton et al., 2010; Ross, 2015; Dillschneider

and Maurer, 2019). Moreover, Ross (2015) proposed a model-free method to recover the real-

world transition matrix from a Markovian state variable S, under a particular set of assumptions,

using market-based derivative prices. These assumptions are: (i) the transition state prices are

strictly positive, (ii) the transition state prices are time-homogeneous, and (iii) the pricing kernel

is transition independent. Firstly, he used the method proposed by Breeden and Litzenberger

(1978) (see also Section 2.3.4) to construct a n×m state price matrix, S, by taking the second

derivative with respect to the strike of a European call option at each tenor, t, i.e.,

S(t,K) = ert ∂ 2C(t,K)

∂K2 , t = 1, . . . ,m. (3.1)
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Consider a time-homogeneous process {St}t≥0 on a finite state space with n states. Numer-

ically approximating (3.1) yields the forward-looking state price function for each tenor. This

is done by numerically integrating (3.1) over the discrete grid for each of the n states (see, e.g.,

Chakraborty, 2015). In essence, the discretised S(t,n) represents the price of an Arrow-Debreu

security that agrees to pay one unit of currency if state j is reached at time t and zero in all

other states. Secondly, he constructs a n× n one period ahead irreducible time-homogeneous

state transition probability matrix: Since, calendar time is irrelevant, the transition probability

moving from state i at time t to state j at time t +1 is given by:

Pi, j = P(St+1 = j|St = i), ∀t = 1, . . . ,m−1, (3.2)

where P denotes a n×n, one period ahead, irreducible transition matrix and the elements of P

can easily be estimated by solving the following system of equations:

S⊤t+1 = S⊤t P, t = 1,2, . . . ,m−1. (3.3)

Intuitively, Pi, j denotes the contingent price of a security that pays out one unit of currency

if the security moves from state i to state j in one period, which is known as the contingent

forward prices of a security. That is, P represents the richer set of probabilities of moving from

all hypothetical initial states to all hypothetical future states, where (3.1) only represents the

probabilities of moving from the single known current state to all future states.

If the rows of P sum to one, then we say P is a stochastic matrix; however, for the recovery

theorem, P is sub-stochastic as it captures the dynamics of the discounted risk-neutral distribu-

tion, i.e., state prices. Therefore, the elements, Pi, j, of the transition matrix denote the value of

an Arrow-Debreu security contract that pays one unit of the numeraire if a particular state is

reached in the next time step and zero otherwise. But, by normalising the rows of P to sum to

unity, we define a n×n transition risk-neutral probability matrix Q, with elements:

qi, j =
Pi, j

n
∑

k=1
Pi,k

, ∀i, j = 1,2, . . . ,n. (3.4)

The transition kernel, ψ , in Ross’s framework is defined as the ratio price per unit of probability,

i.e.,

ψi, j =
Pi, j

fi, j
, (3.5)

where fi, j is the real-world transition probabilities. Intuitively, one needs to solve two unknown

quantities in (3.5) in order to recover the real-world probabilities. In order to do this, Ross
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(2015) assumes that the kernel is transition independent. This assumption allows us to write the

pricing kernel as

ψi j = δ
h(S j)

h(Si)
, (3.6)

where h is a positive function of states and δ a positive discount factor. Substituting (3.5) in

(3.6) yields

Pi, j = δ
h(S j)

h(Si)
fi j. (3.7)

Rewriting the state equations (3.7) in matrix form, we have

P = δD−1FD, (3.8)

where P is the n× n transition probability matrix, F is the n× n real-world transition matrix,

and D is the n×n diagonal matrix with the undiscounted kernel, i.e.,

D = diag(h(S1),h(S2), . . . ,h(Sn)). (3.9)

Solving for F in (3.8) yields

F =
1
δ

DPD−1. (3.10)

Since F is a matrix whose rows are transition probabilities, i.e., a stochastic matrix, we have

F1 = 1, where 1 is a vector of ones. Using this condition, with (3.10), we have

PD−11 = δD−11. (3.11)

If we define the vector z ≡ D−11, we obtain

Pz = δz. (3.12)

If one assumes no arbitrage, then P is a non-negative matrix. Note that, if P is a positive

matrix, then by definition, P is irreducible. However, if P is non-negative and all states are

attainable from all other states in k steps, then P is also irreducible. Then from the Perron-

Frobenius theorem (see, e.g., Meyer, 2000) there exists a unique positive eigenvector z and an

associated maximum eigenvalue δ . Intuitively, Ross (2015) solves all three unknowns in (3.8)

using the Perron-Frobenius Theorem. The following theorem guarantees a unique solution of

this problem.
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Theorem 3.1 (Recovery Theorem, Ross (2015)) Assuming no arbitrage, irreducibility of the

pricing matrix P, and that the pricing matrix is generated by a transition independent kernel,

then given any set of state prices there exists a unique positive solution pair: the pricing kernel

and real-world measure.

In short, the recovery theorem allows us to uniquely find F from P. Knowledge of the

real-world distribution will be of great benefit to financial practitioners. Although, many of

the assumptions in the recovery theorem are violated in real life, Audrino et al. (2014), Kiriu

and Hibiki (2019) and Flint and Maré (2017) showed by empirical studies that the real-world

distribution obtained from the recovery theorem added economic value.

3.3 Implementation of the Ross Recovery Theorem

In this section, we describe the three step procedure, outlined in Spears (2013), for implement-

ing the recovery theorem.

Step 1: Use the method proposed by Breeden and Litzenberger (1978) to construct a n×m state

price matrix, S, by taking the second derivative with respect to the strike of a European

call option at each tenor, i.e.,

S(t,K) =
∂ 2C(t,K)

∂K2 , (3.13)

where C(t,K) is the current price of an European call option with strike, K, and tenor,

t. Numerically approximating (3.13) yields the forward-looking state price function. In

reality, a continuum of traded strikes is not directly observed in the markets. This is the

first ill-posed problem. However, a wide range of state price estimation techniques can be

found in the literature (see, e.g., Aı̈t-Sahalia and Lo, 1998; Flint and Maré, 2017; Melick

and Thomas, 1997). More specifically, Flint and Maré (2017) used the stochastic volatil-

ity inspired (SVI) model to produce the implied volatility surface, and thus, the state price

surface. Furthermore, they showed that the deterministic SVI model is a promising can-

didate for modelling implied volatility surfaces and ultimately estimating the underlying

risk-neutral distribution. The SVI model was first introduced by Gatheral (2004) and is

36



THE ROSS RECOVERY THEOREM WITH A REGULARISED MULTIVARIATE MARKOV CHAIN

given by

σ
2(x, t) = a+b

(
ρ(x−m)+

√
(x−m)2 + s2

)
, (3.14)

where x = ln
(K

F

)
is the log-forward-moneyness, and the coefficients a, b, ρ , s, and m

depend on the expiration and have an intuitive geometric interpretation. Furthermore,

the parametrisation of the SVI model makes it relative easy to eliminate calendar spread

arbitrage, making the SVI model desirable Gatheral and Jacquier (2014). In Figure 3.1,

we display an example of the implied volatility surface obtained by using the SVI model,

where we can see that the SVI model provides a good interpolation of implied volatility.
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Figure 3.1: Implied volatility for the South African Top40 index on 15 January 2018: The
mesh (bottom right) represent the quoted implied volatilities across maturity and strikes and the
surface (bottom left) represents the implied volatilities across maturities and strikes using the
SVI model. The top figure represents the overlay of the quoted and fitted implied volatilities.
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After the implied volatility skews are calibrated, we can calculate the call option prices,

using the Black-Scholes formula, across the full strike range for each term of the extrap-

olated implied volatility skews. Thereafter, using (3.13) we estimate the forward state

price matrix. In Figure 3.2, we give an example of the forward state price matrix, using

the extrapolated implied volatilities.
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Figure 3.2: State prices for the South African Top40 index on 15 January 2018.

Step 2: Construct a n×n state transition probability matrix, P. Unfortunately, P is not directly

observed, since a rich forward market for options does not exist. However, Ross (2015)

shows that if m ≥ n, we can estimate P, since it specifies a time-homogeneous transition

from one maturity to the next, as follows:

S⊤t+1 = S⊤t P, t = 1,2, . . . ,m−1. (3.15)

If one denotes A = S⊤i, j and B = S⊤i, j+1, where 1 ≤ i ≤ n and 1 ≤ j ≤ m− 1, then (3.15)

can be rewritten as an ordinary least squares (OLS) problem, as follows:

P = argmin
P

∥AP−B∥2
2 (3.16)

subject to S1 = P⊤
i0 (3.17)

pi, j ≥ 0 (i, j = 1, . . . ,n), (3.18)
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where ∥ · ∥2 denotes the Euclidean norm. Since S1 is the one period ahead state price and

P is a one period state transition matrix, we have by definition a constraint (3.17), where

i0 is the current state (normally defined at the centre row of the transition matrix P, i.e.,

i0 = (n+ 1)/2). In theory, equation (3.16) can easily be solved with standard optimisa-

tion techniques. Therefore, we numerically implement the OLS problem to derive the

transition pricing matrix P.

Step 3: Using the Perron-Frobenius theorem, i.e., (3.12), we can extract a unique positive

eigenvector, z, and eigenvalue, δ . Thereafter, the elements of F can be calculated us-

ing (3.10).

The accuracy of the estimation of the real-world distribution, using the recovery theorem,

largely depends on how accurately the transition matrix, P, is estimated. In the literature, it

has proven to be difficult to accurately estimate (3.16) and furthermore to replicate the results

indicated in Ross (2015). The reason for this, is that it involves solving the second ill-posed

problem, where A is ill-conditioned (i.e., a small change in one of the coefficient values in A,

results in a large relative change in the solution values), which renders active-set optimisation

methods that are dependent on A⊤A infeasible, as in this case. This can be seen in Audrino et al.

(2014), Kiriu and Hibiki (2019), and Spears (2013) suggesting that Ross (2015) placed signif-

icant constraints on the structure of the transition matrix. In an attempt to replicate the results

in Ross (2015), Spears (2013) implemented nine optimisation methods for solving (3.16). Fur-

thermore, Sanford (2018) proposed a mixture transition distribution, where the proposed states

depend on the current state price and its option implied volatilities to stabilise the estimation

of P. More specifically, Sanford (2018) simplifies the original specification of the multivari-

ate model by assuming that contingent state prices are solely defined by the state levels, but

conditioned on the volatility. That is,

S⊤t+1 = S⊤t P+σ
(IV)
t β , t = 1,2, . . . ,m−1, (3.19)

where σ
(IV)
t is the implied volatility state at time t as it is the best representation of the market’s

future volatility state and β is the volatility state regression coefficient. Furthermore, Sanford

(2018) shows that the multivariate method had a significant improvement on the univariate re-

covery theorem as the volatility acts as a proxy for economical uncertainty. Similarly, equation
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(3.19) can be reduced to the following general optimisation problem:

P = argmin
P,β

∥∥∥AP+σ
(IV)

β −B
∥∥∥2

2
, (3.20)

subject to (3.17), (3.18) and β ≥ 0. (3.21)

In theory, the multivariate model gives a third dimension in the Markov chain. Intuitively, more

variables could be added to the regression model. However, this will come at a computational

cost and the more variables added to the regression equation, will result in too few degrees of

freedom to consider the resulting state price matrix, P, reliable.

An alternative method of stabilising the estimation of P is by adding a regularisation pa-

rameter to the estimation process. This has proven to be a successful method in the studies

conducted by Audrino et al. (2014) and Kiriu and Hibiki (2019). Therefore, this chapter con-

tributes in two ways. Firstly, we compare the multivariate method with the regularised methods

(this has not been done to our knowledge) and secondly, due to the success of the regularised

methods in the literature, we extend the multivariate method by adding a regularisation term.

3.3.1 Ridge Regularisation Methods

An effective method in stabilising the estimation of the transition matrix, P, is to introduce

a regularisation term. The use of a regularisation term to solve ill-posed problems was first

introduced by Tikhonov (1963). The Tikhonov method is a standard regularisation method

used in the literature to solve ill-posed problems.

3.3.1.1 Tikhonov Regularisation without Prior Information

In this section, we review two regularisation methods to estimate P, found in the literature,

and extend the multivariate method by adding a regularisation term. Audrino et al. (2014)

first introduced the implementation of the Tikhonov regularisation (ridge regression) method in

estimating P in the recovery theorem, by the following constrained optimisation problem:

P = argmin
P

∥AP−B∥2
2 +ζ ∥P∥2

2 (3.22)

subject to (3.17) and (3.18), (3.23)
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where ζ is a regularisation parameter that controls the trade-off between fitting and stability.

The selection method of ζ is paramount in finding an accurate solution. Therefore, Audrino

et al. (2014) proposed that an optimal ζ can be determined by minimising the discrepancy

between the observable state price matrix (SO) and the unrolled state price matrix (SP) implied

by matrix P, i.e.,

SP⊤
t = ι

⊤
i0 Pt , t = 1,2, . . . ,m, (3.24)

where ιi0 denotes a vector with 1 in the ith0 position and zeros elsewhere, and Pt denotes the

t-steps ahead state approximation. Furthermore, they use the Kullback-Leibler (KL) divergence

as a measure of discrepancy between the two matrices, by solving ζ that minimises:

argmin
ζ

DKL

(
SO||SP

)
, (3.25)

where

DKL

(
SO||SP

)
=

n

∑
i=1

m

∑
t=1

SO
i,t ln

(
SO

i,t

SP
i,t

)
−

n

∑
i=1

m

∑
t=1

SO
i,t +

n

∑
i=1

m

∑
t=1

SP
i,t , (3.26)

and the optimal ζ is derived iteratively.

Note that equation (3.22) can be we rewritten as a constraint OLS problem as follows Au-

drino et al. (2014):

P = argmin
P≥0

∥∥∥∥[ A√
ζ I

]
P−

[
B
O

]∥∥∥∥2

2
, (3.27)

where I denotes an identity matrix and O is a vector of zeros. In an empirical study using daily

closing prices of out-of-the-money call and put options on the S&P 500 for each Wednesday

between 5 January 2000 and 26 December 2012, Audrino et al. (2014) showed that the Tikhonov

regularisation drastically improved the stability of the estimation of the transition matrix and

showed that there is economic value in the recovered distributions.

In the next section, Kiriu and Hibiki (2019) extended the estimation of P by using the

Tikhonov regularisation method with prior information.

3.3.1.2 Tikhonov Regularisation with Prior Information

The second regularisation method we review in this study was introduced by Kiriu and Hibiki

(2019), where they extended the regularisation term above to consider prior information. For
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the prior information, P̄, they suggest that pi, j should be similar to pi+k, j+k for all k ≤ min(n−
i,n− j). Furthermore, they estimated P, using a problem specific error function in an attempt to

balance the relative gain in the objective function from each term in the regularised optimisation

problem, as follows:

P = argmin
P≥0

∥AP−B∥2
2 +ζ ∥P− P̄∥2

2 (3.28)

= argmin
P≥0

yfit(ζ )+ζ yreg(ζ ) (3.29)

subject to (3.17) and (3.18), (3.30)

where

P̄ =



i0
∑

k=1
sk,1 si0+1,1 · · · sn−1,1 sn,1 0 · · · 0 0

...
... · · · ...

...
... · · · ...

...
2
∑

k=1
sk,1 s3,1 · · · si0,1 si0+1,1 si0+2,1 · · · sn,1 0

s1,1 s2,1 · · · si0−1,1 si0,1 si0+1,1 · · · sn−1,1 sn,1

0 s1,1 · · · si0−2,1 si0−1,1 si0,1 · · · sn−2,1
n
∑

k=n−1
sk,1

...
... · · · ...

...
... · · · ...

...

0 0 · · · 0 s1,1 s2,1 · · · si0−1,1
n
∑

k=i0
sk,1



, (3.31)

yfit(ζ ) represents the fitting error and yreg(ζ ) represents the deviation between P and P̄. Fur-

thermore, Kiriu and Hibiki (2019) showed that as ζ increases, yfit decreases and yreg increases

monotonically. Therefore, they selected ζ by minimising the problem specific function:

h(ζ ) =
yfit(ζ )− yfit(0)
yfit(∞)− yfit(0)

+
yreg(ζ )− yreg(∞)

yreg(0)− yreg(∞)
, (3.32)

where the denominators represents the maximum spread in each term and the numerator repre-

sents the spread for a specified ζ value.

In addition, Kiriu and Hibiki (2019) compared the effectiveness of this selection method

with (3.26), where they found that (3.32) yielded better results. Therefore, for the remainder

of this study, we will use (3.32) as the selection method for ζ . Equation (3.28) can also be

formulated as an OLS problem, as follows Kiriu and Hibiki (2019):

P = argmin
P≥0

∥∥∥∥[ A√
ζ I

]
P−

[
B√
ζ P̄

]∥∥∥∥2

2
. (3.33)
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In a simulated study, Kiriu and Hibiki (2019) showed that their method estimated the real-world

distribution more accurately than the Tikhonov method proposed by Audrino et al. (2014). Fur-

thermore, in a similar empirical study to Audrino et al. (2014), Flint and Maré (2017) imple-

mented the regularisation method with prior information to extract the real-world distribution

on a history of implied volatility surfaces for the South African Top40 index, where they showed

that the recovered real-world moments are in line with economic rationale and showed promis-

ing results when used in a simple asset allocation framework.

Since the regularisation methods have proven to be a powerful method in estimating the

real-world distribution in the recovery theorem, we extend the multivariate method to a regu-

larised multivariate method in the next section.

3.3.1.3 The Multivariate Model with a Tikhonov Regularisation

Later, we will show that the addition of the regularisation term in the estimation procedure

improves the estimation of P and ultimately F (see also, e.g., Audrino et al., 2014; Kiriu and

Hibiki, 2019). Therefore, we extend the multivariate Markov chain proposed by Sanford (2018)

to a regularised multivariate Markov chain by adding the regularisation parameter as follows:

P = argmin
P,β

∥∥∥AP+σ
(IV)

β −B
∥∥∥2

2
+ζ∥P∥2

2, ∀t = 1,2, . . . ,m−1 (3.34)

subject to (3.17), (3.18) and β ≥ 0. (3.35)

Furthermore, we also extend the optimisation problem above, with the regularisation of prior

information, as such,

P = argmin
P,β

∥∥∥AP+σ
(IV)

β −B
∥∥∥2

2
+ζ∥P− P̄∥2

2, ∀t = 1,2, . . . ,m−1 (3.36)

subject to (3.17), (3.18) and β ≥ 0, (3.37)

where P̄ is given in (3.31). We found that the regularised method with prior information per-

formed better than the regularised method without prior information. Therefore, we will only

consider (3.36) in the remainder of this chapter.
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3.3.2 Elastic Net Regularisation Method

Elastic net is a regression regularisation method used in statistics, that linearly combines the

L1 and L2 penalties of the lasso and ridge methods. The (L1) penalty achieves sparsity in the

model by setting the irrelevant regression coefficient equal to zero and the (L2) penalty achieves

robustness in the model. Therefore the optimisation problem becomes:

P = argmin
P≥0

∥AP−B∥2
2 +ζ ∥P∥2

2 +λ∥P∥1 (3.38)

subject to (3.17) and (3.18), (3.39)

where the estimation is carried out in a two-stage procedure as follows: for each fixed ζ , it finds

the ridge regression coefficients and then does a lasso shrinkage along the lasso coefficient path

Zou and Hastie (2005). Furthermore, Zou and Hastie (2005) refer to this as the naı̈ve elastic

net criterion, since it appears to amount to double shrinkage, where it was found that the naı̈ve

elastic net regularisation method does not perform well, unless it is close to ridge or lasso. In

our study, we find that λ is small indicating that it is close to ridge. However, to improve

the prediction performance, Zou and Hastie (2005) rescale the coefficients of the naı̈ve version

of elastic net by multiplying the estimated coefficients by (1+ λ2). Next, we add the prior

information to (3.38), yielding

P = argmin
P≥0

∥AP−B∥2
2 +ζ ∥P− P̄∥2

2 +λ∥P∥1 (3.40)

subject to (3.17) and (3.18). (3.41)

The elastic net with prior information yielded better results than without the prior information.

Therefore, for the remainder of this study, we will only show the results for the elastic nets with

prior information.

In the next section, we compare the estimation methods discussed above by estimating the

real-world distribution, where we will show that the regularised multivariate method gives a

better estimate than the methods reviewed by conducting a similar simulation study to Kiriu

and Hibiki (2019).
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3.4 Comparison of Methods

In this section, we compare the accuracy of the estimation of P, using the methods discussed in

Section 3. We will follow the same estimation accuracy procedure and robust check outlined in

Kiriu and Hibiki (2019) as follows:

1. Firstly, a hypothetical real-world matrix (FH) is obtained from the historical daily S&P

500 index price data. More specifically, we set 11 returns (states) in total, placed every

6% symmetrically around 0%. FH is generated by setting a reference date and calculating

12 returns every 30 calendar days, where the S&P 500 logarithmic returns are calculated

as follows:

Return = log
(

ST

S0

)
×100%.

A matrix is generated by calculating the number of state transitions of the return in one

period. This is repeated daily by changing the reference date from 02 January 1986 to

30 December 2016. Thereafter, all matrices are summed up and divided by the summed

matrix row total, giving an 11× 11 probability matrix (see Figure 3.3). Secondly, the
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Figure 3.3: Hypothetical real-world distribution, FH .

pricing kernel matrix (ΦH) is obtained by assuming that the investor has a CRRA utility
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function, U(c) = c1−γR/(1− γR), with relative risk aversion γR, i.e.,

φi, j = δ

(
1+ r j

1+ ri

)−γR

∀i, j = 1, . . . ,n, (3.42)

where γR = 3 and δ = 0.999. These parameters were chosen to be consistent with the

parameters reported in Bliss and Panigirtzoglou (2004), where they estimated the risk

aversion parameter, γ , implied in the S&P 500 option data and historical option price data

from 1993 to 2010, to have a minimum risk aversion parameter value to be 3.37 and a

maximum value of 9.52. The maximum parameter value will be used in the robustness

check in Section 4.2.

2. A hypothetical transition state price matrix PH (see Figure 3.4) is calculated backward

from the matrices FH and ΦH , i.e.,

PH = Φ
HFH . (3.43)
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Figure 3.4: Hypothetical transition state price matrix, PH .

3. A hypothetical current state price matrix SH (see Figure 3.5) is calculated backward from

the matrix PH , i.e.,

SH
j+1 =

(
SH

j
)⊤

PH , ∀ j = 1, . . . ,m, (3.44)

where SH
1 =

(
PH

i0

)⊤
.
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Figure 3.5: Hypothetical current state price matrix, SH .

4. White noise is added to SH to obtain SN , as follows:

SN
i, j = SH

i, j(1+ ei, j), ∀i, j = 1,2, . . . ,n, (3.45)

where ei, j ∼ N(0,σ).

5. Estimate PN from SN , using (3.16), (3.20), (3.27), (3.33), (3.36) and (3.40). In the case

of the multivariate estimation methods, we will use a flat implied volatility, σ (IV), of

10%. We note that more accurate results could be achieved by modelling the behaviour

of volatility and incorporating a forward-looking volatility structure than only looking at

a flat or current volatility.

6. FN is derived by applying the recovery theorem for each of the estimated matrices PN .

7. The closer the estimated real-world distribution matrix FN is to FH , the more accurate

the estimation process is.

Next, in order to measure how close the two distributions are we use the Kullback-Leibler

Divergence test.
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3.4.1 Kullback-Leibler Divergence

Intuitively, we would like to measure how close we can get back to FH using SN . Therefore, we

will follow the same estimation accuracy method outlined in Kiriu and Hibiki (2019), namely,

the Kullback-Leibler (KL) divergence test. The KL divergence test measures the difference

between two distributions and is given as follows:

DKL
(
FN |FH)= n

∑
i=1

n

∑
j=1

f N
i, j log

(
f N
i, j

f H
i, j

)
. (3.46)

Obviously, when the estimated distribution and true distribution are exactly the same, the DKL

will equal zero.

In Figure 3.6, we show the log-log plots of the KL divergence at current state and at full

state for five estimation methods discussed in this study for the regularisation parameter, ζ =

10−8,10−0.75, . . . ,101.75,102 and σ = 5%. In addition, we also show the KL divergence for

the risk-neutral distribution (RND). The RND, Q, is the distribution obtained when using PH in

(3.4). Note that this is the best possible estimate for the RND as PH is used. Therefore, obtaining

a KL divergence less than the KL divergence for the RND will indicate that the estimation of the

real-world distribution is more beneficial than the RND. For the current state (see Figure 3.6a),

we found that both the basic method and the multivariate method provided a worse estimate

of the real-world distribution than the RND. However, this is not the case for the estimation

methods with the regularisation term (see Figure 3.6a).

The regularisation methods clearly outperform the non-regularised methods, where the mul-

tivariate regularisation method, proposed in this chapter, yielded the smallest KL divergence at

current state. Similarly, the two regularisation methods with prior information clearly yield a

lower KL divergence at full state compared with the basic, multivariate, and Tikhonov regulari-

sation methods without prior information. However, the RND yielded the lowest KL divergence

at full state (see Figure 3.6b). In Figure 3.7, we show that h(ζ ) is a smooth and continuous func-

tion, where a minimum value can easily be estimated, making it an appealing selection function.
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Figure 3.6: KL divergence of the real-world transition matrix.
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Figure 3.7: Optimisation of hk.

Next, we examine the effectiveness of the estimation methods and the selection criteria

when the regularisation term is added by carrying out 1000 Monte Carlo simulations. In Table

3.1, we show that the expected KL divergence and standard error for the 1000 Monte Carlo

simulations for the current state, i.e., the ith0 row vector of matrix F . More specifically, E(KL)

represents the expected KL divergence, E(KLminhk) represents the expected KL divergence,

where h(ζ ) is a minimum, and E(minKL) represents the minimum KL divergence across all

ζ . We can see that the RND provides a better estimation, with a lower KL divergence, than the

basic and multivariate estimation methods (as seen in Figure 3.6a). This is a direct consequence

of the ill-posed problem, when solving (3.16).

The regularised methods clearly outperformed the RND, basic, and multivariate methods,

indicating the strength of adding the regularising term when solving ill-posed problems. More

specifically, the multivariate regularised method and the elastic net method, proposed in this

chapter, yielded the best results with the lowest expected KL divergence. In all cases the stan-

dard errors are small indicating the estimation methods provide stable estimates. However, it

must be noted that the elastic net method is significantly more computationally expensive than

the other methods discussed in this study.
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Table 3.1: KL divergence at current state matrix.

Method σ = 5% σ = 10%
RND E(KL) 0.0119 0.0119
Basic E(KL) 0.1931 0.2155
(3.16) SE 0.0067 0.0073

Multivariate E(KL) 0.5908 0.7702
(3.20) SE 0.0038 0.0168

E(KLminhk) 0.0335 (0.5378) 0.0344 (0.4674)
Regularised∗ SE 0.0002 (0.0049) 0.0004 (0.0046)

(3.27) E(minKL) 0.0101 (0.0256) 0.0165 (0.0640)
SE 0.0002 (0.0020) 0.0003 (0.0028)

Regularised E(KLminhk) 0.0124 (0.0179) 0.0494 (0.0154)
with Prior SE 0.0003 (0.0007) 0.0017 (0.0006)

Information∗ E(minKL) 0.0061 (5.9265) 0.0111 (41.3819)
(3.33) SE 0.0001 (0.7453) 0.0001 (1.5536)

Multivariate E(KLminhk) 0.0082 (0.0156) 0.0532 (0.0253)
Regularised with SE 0.0005 (0.0002) 0.0051 (0.0005)

Prior Information∗ E(minKL) 0.0034 (0.0747) 0.0072 (6.7491)
(3.36) SE 0.0001 (0.0020) 0.0002 (0.7843)

Elastic Net∗ E(minKL) 0.0031 (0.0178) 0.0062 (0.0562)
(3.38) SE 0.0001 (0.0000) 0.0001 (0.0000)

∗The E(ζ ) and SEζ are displayed in parenthesis

Similarly, in Table 3.2 we show that the expected KL divergence and standard error for the

entire F matrix. We see that the multivariate method yields a smaller KL divergence than the

basic and regularised method proposed by Audrino et al. (2014). However, the methods that are

regularised with prior information still yielded the lowest KL divergence, with the multivariate

regularised method yielding the lowest expected KL divergence, where h(ζ ) is a minimum.

Furthermore, the elastic net method yielded the lowest KL divergence across all regularisation

parameters. However, the elastic net method is substantially more computationally expensive

than the multivariate regularised method and, therefore, will not be studied any further in this

thesis.
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Table 3.2: KL divergence at full state matrix.

Method σ = 5% σ = 10%
RND E(KL) 0.1779 0.1779
Basic E(KL) 43.7850 58.3776
(3.16) SE 0.2718 0.3417

Multivariate E(KL) 10.3142 10.8718
(3.20) SE 0.0136 0.0580

E(KLminhk) 18.9698 (0.5378) 18.6056 (0.4674)
Regularised∗ SE 0.0229 (0.0049) 0.0268 (0.0046)

(3.27) E(minKL) 11.3012 (0.0055) 12.5754 (0.0162)
SE 0.0270 (0.0002) 0.0308 (0.0005)

Regularised E(KLminhk) 2.3659 (0.0179) 3.7873 (0.0154)
with Prior SE 0.0236 (0.0007) 0.0582 (0.0006)

Information∗ E(minKL) 0.6828 (75.5576) 0.7064 (65.1735)
(3.33) SE 0.0010 (1.1127) 0.0022 (1.2155)

Multivariate E(KLminhk) 2.2282 (0.0156) 3.6187 (0.0253)
Regularised with SE 0.0190 (0.0002) 0.0564 (0.0005)

Prior Information∗ E(minKL) 0.6853 (87.3217) 0.7130 (87.2990)
(3.36) SE 0.0010 (0.6783) 0.0021 (0.6926)

Elastic Net∗ E(minKL) 0.6567 (49.7875) 0.6758 (54.0514)
(3.38) SE 0.0010 (0.9809) 0.0020 (1.2007)

∗The E(ζ ) and SEζ are displayed in parenthesis

It is evident from the above that the multivariate regularised method introduced in this

chapter improved the estimation of the real-world distribution. It must also be noted that the

further the row, in the state transition matrix, is from the current state’s row (i.e., normally

defined as the middle row), the more difficult it is to determine, but also the less influential it is

on the real-world distribution (see, Backwell, 2015). Therefore, the transition from the current

state is of greater interest in this study as we are mostly interested in how the asset would change

over one period given today’s state. In the next section, we conduct a robust check.

3.4.2 Robustness Check

In this section, we conduct a robustness check by using different hypothetical data obtained

from the real-world distribution used above Kiriu and Hibiki (2019). More specifically, Figures

3.8a-3.8b shows the KL divergence where δ = 0.995, Figures 3.8c-3.8d shows the results for
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a large risk aversion parameter, namely, γ = 10 and lastly Figures 3.8e-3.8f shows the KL

divergence using the CARA utility function, i.e.,

φi, j = δe−γ(r j−ri), i, j = 1, . . . ,n (3.47)

with γ = 3, instead of CRRA utility function. The results obtained in Figure 3.8 shows that

the multivariate regularised method, proposed in this chapter, yields a robust estimate of the

real-world distribution. Furthermore, we carry out the robust check on the South African Top40

index, where we obtained similar results (see Figures 3.8g-3.8h).
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Figure 3.8: KL divergence: robust test.
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Figure 3.8: KL divergence: robust test (cont.).

We note that other norms, such as, ∥ · ∥1 and ∥ · ∥∞ could be used to estimate P more

accurately. Chvátal (1983) asserts that when estimating linear functions, ∥ · ∥1 gives the most

robust answer, ∥ ·∥∞, avoids gross discrepancies with the data, and if the errors are known to be

normally distributed then ∥ · ∥2 is the best choice. However, in our analysis, we found that the

Euclidean norm yielded the most accurate and stable results. In the next section, we conduct an

empirical study.
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3.5 Empirical Results

In this section, we compare some distributional properties of the risk-neutral and real-world

distributions by using the weekly Top40 option trade data, traded on the South African Fu-

tures Exchange (SAFEX). We start by using weekly arbitrage-free implied volatility surfaces

to estimate the risk-neutral distribution over the period 5 September 2005 - 15 January 2018.

Furthermore, we used the SVI model to interpolate over the fixed domain ψ ∈ [0.5,1.5], where

ψ is defined as the spot moneyness (i.e., ψ = K/S0) and T ∈ [1,12] as outlined in Flint and

Maré (2017). The evolution of the weekly one-month percentiles and mean of the risk-neutral

distribution is shown in Figure 3.9.
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Figure 3.9: Weekly one-month percentiles of the risk-neutral Top40 distributions, 05 Sep 2005
- 15 Jan 2018.

As expected the risk-neutral distribution widened over the global financial crisis (2008-

2009) and has since narrowed considerably. Next, we estimated the transition probability ma-

trix, P, using the methods proposed by Kiriu and Hibiki (2019) and the regularised multivariate

method with prior information. Thereafter, we applied the recovery theorem. In Figure 3.10, we

show how the risk-neutral and recovered real-world distributions widened during the financial

crises (03 November 2008) compared to the risk-neutral and real-world distributions after the

financial crisis (15 January 2018).
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Figure 3.10: Risk-neutral and real-world distributions.

In Figure 3.11, we show the evolution over time of the weekly one-month first four mo-

ments. We see that the expected returns of the two real-world distributions are mostly above

the risk-neutral distributions expected returns, except during the financial crisis. The volatil-

ity has steadily decreased since the global financial crisis (a peak of approximately 17% down

to 4%). In addition, the real-world distribution obtained by using the regularised multivariate

Markov chain with prior information showed a lower volatility than the distributions obtained

using the univariate regularised method with prior information and risk-neutral (which showed

similar volatility). This is somewhat expected, since controlling the volatility in the multivari-

ate regression model provided us with a better sense of future economical uncertainty (see, e.g.,

Sanford, 2018). The skewness for the risk-neutral distribution became less negative during the

financial crisis along with a drop in kurtosis. The skewness has since reverted to a skewness

around -0.5 along with an increase in kurtosis. In addition, the weekly skewness coefficients for

the real-world distributions showed sharp spikes (became positively skewed) in 2012 and 2016.

In Table 3.3, we show the mean and volatility for the Top40 index with the first four

moments of the risk-neutral and real-world distributions. The recovered moments estimated

from option prices clearly provides insight above the risk-neutral moments. Furthermore, we

found that the recovered kurtosis of the real-world distribution using the Tikhonov regularisation

method with prior information was considerably more volatile over time than the multivariate

regularisation method with prior information and the RND.
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Figure 3.11: Top40 weekly one-month moments.
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Table 3.3: Top40 weekly one-month moments.

Mean Volatility
Top40 Returns∗ 28.87% 20.20%
Risk-Neutral Distribution
Expected Return∗ 4.07% 2.20%
Volatility on Return∗ 22.38% 7.34%
Skewness -0.59 0.32
Kurtosis 6.89 3.67
Real-World Distribution: Tikhonov Regularisation with Prior Information
Expected Return∗ 13.17% 11.09%
Volatility on Return∗ 22.32% 6.98%
Skewness -0.23 0.54
Kurtosis 10.49 8.08
Real-World Distribution: Multivariate Regularisation with Prior Information
Expected Return∗ 15.05% 14.19%
Volatility on Return∗ 20.62% 7.18%
Skewness -0.58 0.46
Kurtosis 4.87 3.32
∗Values are annualised

The predictive information obtained using the recovery theorem along with real-world data

surely yielded some insight into the markets subjective probabilities. However, the true practi-

cality and usefulness of the model remains elusive in the literature.

3.6 Conclusion

The recovery theorem is a remarkable theorem that allows us to estimate the real-world distri-

bution from the risk-neutral distribution. However, the implementation of the recovery theorem

requires the solution of two ill-posed problems.

The first is estimating the state price matrix by calculating the second partial derivative of

the option price with respect to the strike. This is especially problematic in noisy and sparse

markets. Flint and Maré (2017) proposed an algorithm for this first ill-posed problem.

The second entails the estimation of the transition price matrix that captures the state price

dynamics. Audrino et al. (2014) and Kiriu and Hibiki (2019) used a regularisation technique to
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obtain a stable transition matrix. In addition, Audrino et al. (2014) and Flint and Maré (2017)

showed by empirical work that there is information contained in the recovered distributions.

In this study, we investigated several estimation methods to accurately estimate the tran-

sition price matrix. The accuracy of the estimated transition matrix has a significant impact

on the estimation of the real-world distribution implied from option prices using the Ross re-

covery theorem. In addition, we presented a regularised multivariate Markov chain with prior

information to estimate the transition matrix. This is a first attempt to regularise the multi-

variate Markov chain for the recovery theorem. In our analysis, we found that the regularised

multivariate Markov chain method improved upon the estimation of the real-world distribution.

Furthermore, we conducted an empirical study using weekly South African Top40 option trade

data to estimate the risk-neutral and real-world distributions.
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CHAPTER 4

FORWARD-LOOKING DISTRIBUTIONS WITH

APPLICATION TO RISK MANAGEMENT

This chapter is adapted from Van Appel and Maré (2020b) and presents various extensions that

addresses the second research question.

Chapter Synopsis

The forward-looking nature of option prices provides an appealing way to extract risk measures.

In this chapter, we extract forecast distributions, using the methods studied in Chapters 2 and

3, from market-quoted option prices that we then use to forecast risk measures. In addition, we

backtest and compare the predictive power of the real-world return distribution forecasts with

the risk-neutral return distribution forecasts, implied from option prices, and the historical return

distribution forecasts. In an empirical study, using the South African FTSE/JSE Top 40 (Top40)

index, we show that the extracted real-world distribution forecasts, especially the method using

the recovery theorem and the method using the non-parametric calibration transformation func-

tion, yield satisfying forecasts of risk-measures. Furthermore, in order to improve the forecast

accuracy, we introduce the mixing of historical and option-implied distributions.

4.1 Introduction

John Maynard Keynes said that “successful investing is anticipating the anticipations of others”.

In essence, financial derivative securities are forward-looking and essentially embed informa-

tion about investors’ beliefs about the distribution of asset returns (see, e.g., Christoffersen et al.,

2013; Hollstein et al., 2019; Dillschneider and Maurer, 2019). Investors, policy makers, and risk
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managers therefore look at market variables (or derivations thereof) aiming to gauge forecasts

of economic variables or sentiment (or changes thereof) (see, Bliss and Panigirtzoglou, 2004).

Financial derivative securities are frequently used to infer information. The prime exam-

ple is the VIX index, which is derived from the prices of equity index options traded on the

Chicago Board of Options Exchange (CBOE). This index reflects the market’s view of 30-day

index volatility and is used as a risk-sentiment gauge by investors. Bollerslev et al. (2009)

showed that the difference between the VIX and the realised volatility on the S&P500 index

carries significant explanatory power for future equity returns. Moreover, the VIX index is cal-

culated using a model-free approach, illustrating the effectiveness of model-free approaches in

the literature (see, e.g., CBOE, 2009; Christoffersen et al., 2013). A more recent innovation by

the CBOE is the SKEW index, which reflects the index option market’s perceptions of so-called

tail risk (see, e.g., CBOE, 2011; Christoffersen et al., 2013).

The ability to accurately forecast future asset prices is an important and frequently studied

problem in financial economics (see, e.g., Bollerslev et al., 2009; Crisóstomo and Couso, 2018).

The recent global financial crisis highlighted this problem, where many conventional financial

theories were unable to realistically forecast risk measures. Recent studies have shown that

option-implied moments, such as the VIX and SKEW, have predictive power for the realised

variance (see, e.g., Hollstein et al., 2019).

Forecasts of the option-implied return density can provide risk managers with more in-

formation than forecasts of the moments alone (see, Barone-Adesi, 2016). Such measures of

risk include Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR), which are two popular

measures of risk used by financial practitioners and regulators, which is related to a quantile of

the return distribution. More specifically, VaR is a single value summarising the potential loss

of a financial asset (or portfolio). In percentage terms this corresponds to the α-th percentile

of the asset return distribution and CVaR is a measure of tail-risk, which measures “how bad

things could get” (see, e.g., McNeil et al., 2005). That is,

VaR(1−α) = F−1(α) (4.1)

and CVaR for the discrete case is defined as

CVaR(1−α) = E[R|R ≤ VaR(1−α)], (4.2)
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where 1−α is the confidence level, F(R) the return forecasted cumulative distribution function,

and R = ST/S0 the random variable representing the asset return from time zero to time T .

Many traditional strategies of measuring VaR rely on a parametric return density, such as the

normal density, and past (historical) data to make market assumptions (see, e.g., McNeil et al.,

2005). In practice, financial returns exhibit skewness and kurtosis that are not captured in the

normal assumption framework (see, e.g., Cont, 2001). Consequently, this has rekindled great

interest in fat-tail distributions (see, e.g., Hull and White, 1998b). In contrast to using historical

data, one can also make use of market-quoted option prices to extract a forward-looking risk-

neutral return density forecast (see, e.g., Barone-Adesi, 2016; Breeden and Litzenberger, 1978).

The purported forward-looking nature of option prices makes it conceptually better suited for

forecasting than a historical scheme, especially during stressed economic environments.

In particular, historical simulation and risk-neutral methods are the most widely used meth-

ods in financial risk management, where most financial institutions prefer to use historical sim-

ulations to manage risk (see, Pérignon and Smith, 2010). However, Christoffersen et al. (2013)

and Crisóstomo and Couso (2018) found that methods based on option-implied information

generally outperformed historical-based estimates. Similarly, Shackleton et al. (2010) com-

pared the real-world option-implied densities to that of historical densities, where they found

that the real-world option-implied forecasts for two- and four-week horizons were superior to

that of the historical forecasts. The transformation from risk-neutral to real-world return densi-

ties have been studied in several papers (see, e.g., Bakshi et al., 2003; Bliss and Panigirtzoglou,

2004; Shackleton et al., 2010; Ross, 2015). More specifically, the recovery theorem, proposed

by Ross (2015), is a model-free method that extracts a real-world return density forecast from

option prices.

The aim of this chapter is to (i) extract, backtest, and compare the real-world return distri-

bution forecast models to the historical and risk-neutral distribution forecast models studied in

this thesis; and (ii) backtest the tail of the return distribution forecast models for risk manage-

ment purposes and show that one can extract reliable risk measures using option-implied data

and the recovery theorem. Moreover, research into the forecasting ability of real-world return

distributions are scarce in the literature. Furthermore, it is likely that the entire return distri-

bution forecast may be misspecified, but performs better in certain regions of the distribution,

such as the tail, which is often more valuable to risk managers (see, Berkowitz, 2001).
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The remainder of this chapter is structured as follows. Section 4.2 studies some commonly

used backtesting approaches found in the literature. Section 4.3 analyses the forecasts models

studied in in this thesis by carrying out an empirical study using the South African FTSE/JSE

Top 40 (Top40) index. In addition, the performance of five forward-looking real-world re-

turn distribution forecast methods will be backtested and benchmarked, using the Top40 index,

against two historical simulated return distribution forecast methods and three risk-neutral re-

turn distribution forecast models, with a specific focus on risk management. Furthermore, in

Section 4.4, we study the mixture of historical distributions and forward-looking distributions

to obtain a more accurate forecast model. Lastly, in Section 4.5 we extract the risk-premium,

which provides useful information about the market sentiment that can be used in portfolio

management.

4.2 Verification of the Distribution Forecasts

In principle, a good forecast distributions should coincide with the true return distribution of

the asset or portfolio under study (see, Knüppel, 2015). The aim of this section is to introduce

methods to verify the accuracy of the return distribution forecast models introduced in Chapters

2 and 3. In practice, it is highly unlikely that an optimal model will exist as the true distribution

may be too complicated to be represented by a simple mathematical model, or might not be ad-

equately represented over all economic periods. Therefore, each model can only be considered

an approximation of the truth. In order to assess whether (i) the real-world return distribution

forecast models approximate the truth better than the simple historical simulation or risk-neutral

models; and (ii) under which circumstances it can approximate the truth better, we introduce

some commonly used forecast evaluation tests found in the literature, with a specific application

to risk management.

Interval forecasts such as VaR are based on the inverse distribution function,

ȳt = F−1(α), (4.3)

where, for example, α = 0.05 for the VaR(0.95). Christoffersen (1998) asserted that the interval

should be exceeded α% of the time and the violations should be uncorrelated across time.
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Combining these properties, the hit function

It =

{
1 if violation occurs,
0 otherwise, (4.4)

should be an independent and identically distributed (i.i.d.) Bernoulli sequence with parameter

α . In a VaR setting, the Bernoulli variable rarely takes on the value 1, requiring a large number

of sample observations to test the distribution forecast. In contrast, Rosenblatt (1952) proposed

a transformation of the observed realisations into a series of i.i.d. random variables as follows:

xt =
∫ yt

−∞

f̂t(u)du = F̂t(yt), (4.5)

where yt is the ex-post return realisation and f̂ (·) is the ex-ante return distribution forecast1.

More specifically, he showed that xt is i.i.d. uniform on (0,1). This procedure, also commonly

known as the probability integral transform (PIT), allows for a wider variety of tests to be con-

ducted. Furthermore, this result is valid irrespective of the underlying distribution of returns, yt ,

and remains valid even when the forecast model, F̂(·), changes over time. A series of forecast

evaluation tests using graphical displays were proposed by Diebold and Mariano (1995). In

contrast, Berkowitz (2001) proposed a series of likelihood ratio (LR) tests for model evaluation

by generating a sequence zt = Φ−1(xt) for the given model, where Φ−1(·) denotes the inverse

cumulative standard normal distribution function. Then, by definition, zt should be independent

across variables with standard normal distribution. This second transformation allows for con-

venient tests that are associated with the Gaussian likelihood function. In particular, Berkowitz

(2001) jointly assesses the mean (µ), variance (σ2), and serial correlation (ρ) by testing the null

hypothesis that zt are i.i.d. N(0,1) distributed against the following first-order autoregressive

model with mean and variance other than (0,1):

zt −µ = ρ(zt−1 −µ)+ εt . (4.6)

The log-likelihood function of (4.6) is often seen in statistics and is reproduced below for con-

venience (see, Berkowitz, 2001):

ℓ(µ,σ2,ρ|z) =−1
2

log(2π)− 1
2

log
(

σ2

1−ρ2

)
− (z1 −µ/(1−ρ))2

2σ2/(1−ρ2)

− T −1
2

log(2π)− T −1
2

log(σ2)−
T

∑
t=2

[
(zt −µ −ρzt−1)

2

2σ2

]
, (4.7)

1Since the RND, RWD and RWD-M are recovered on a discrete grid, where the future realised returns are not
likely to fall on one of the state grid points, we linearly interpolate the recovered cdf to obtain xt (see, Jackwerth
and Menner, 2020).
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where σ2 is the variance of εt .

Firstly, Berkowitz (2001) uses (4.7) to test for independence by considering the following

LR test statistic:

LRind =−2
[
ℓ
(
µ̂, σ̂2,0

)
− ℓ
(
µ̂, σ̂2, ρ̂

)]
. (4.8)

Under the null hypothesis, (4.8) is distributed χ2(1). More specifically, this test statistic is a

measure of the degree to which the data support a non-zero persistent parameter. Secondly, he

also tests the null hypothesis that not only are the observations independent, but also have mean

and variance equal to 0 and 1 respectively, using the following LR test statistic:

LR =−2
[
ℓ(0,1,0)− ℓ

(
µ̂, σ̂2, ρ̂

)]
. (4.9)

Under the null hypothesis, (4.9) is distributed χ2(3). For multi-step-ahead forecasts, practition-

ers use the following test statistic instead (see, Knüppel, 2015):

LRMS =−2
[
ℓ

(
0,
√

1− ρ̂2,0
)
− ℓ
(
µ̂, σ̂2, ρ̂

)]
, (4.10)

which is distributed χ2(2). More specifically, multi-step-ahead forecasts are complicated with

serial correlation of the outcomes with respect to the density forecast. That is, for example, if

the true return turns out to be higher than our one-month forecast from today, then it is likely that

the true one-month return for the next week’s forecast will also be higher than the forecasted

return. Therefore, (4.10) is particularly useful for density forecast evaluation for practitioners.

It must be noted that a density forecast model may be falsely rejected as it does not forecast

well for particular regions of the distribution. It is possible that a forecast model performs

poorly in forecasting expected returns, but performs better in predicting a certain region of the

distribution, such as the tail of the distribution. Thirdly, cognisant of this, Berkowitz (2001)

introduced a LR test that intentionally ignores model failures in the interior of the distribution

and compares the lower tail of the foretasted density with the observed density by truncating

any observed values that fall outside the tail area. Let this cut-off point be VaR = Φ−1(α). The

new variable of interest, z∗t , is then defined as:

z∗t =
{

VaR if zt ≥ VaR
zt if zt < VaR. (4.11)

65



FORWARD-LOOKING DISTRIBUTIONS WITH APPLICATION TO RISK MANAGEMENT

The log-likelihood function for the lower tail is given as (see, Berkowitz, 2001):

ℓ(µ,σ |z∗) = ∑
z∗t <VaR

(
−1

2
log
(
2πσ

2)− 1
2σ2 (z

∗
t −µ)2

)
+ ∑

z∗t =VaR
log
(

1−Φ

(
VaR−µ

σ

))
, (4.12)

where the first two terms represent the usual Gaussian likelihood of losses and the third term is

a normalisation factor arising from the truncation. As before a LR test is constructed with null

hypothesis µ = 0 and σ2 = 1 against the unrestricted alternative with mean and variance other

than 0 and 1 respectively, i.e.,

LRtail =−2
[
ℓ(0,1)− ℓ

(
µ̂, σ̂2)] . (4.13)

Under the null hypothesis that the model is correct, the test statistic is distributed χ2(2). In

addition, Berkowitz (2001) showed, by using a Monte Carlo simulation, that these LR tests are

powerful, even for samples containing only as few as 100 observations.

In summary, a well-specified model should simultaneously pass as many statistical back-

tests as possible. Therefore, in Appendix A, we briefly list additional backtests, which form

part of the MATLAB Risk Management Toolbox (2018).

4.3 Application

In this section, we used weekly Top40 option trade data and the Top40 index prices to con-

struct weekly one-month return distribution forecasts for the Top40 index over the period 05

September 2005 to 15 January 2018, giving us a total of 646 weekly one-month return distri-

bution forecasts. The Top40 index is particularly useful as the underlying risky asset, as it is

a key risk factor in the economy and is amongst the most liquid traded derivative contracts in

the South African market. In particular, Carr and Madan (2000) showed that a major financial

market index, such as the Top40 index, could be used as a proxy to price options on individual

stocks that are illiquid. This makes the Top40 index an important market factor to illustrate

the accuracy of forecast models. The number of weeks that a return distribution forecast was

made for each subset of the time series considered in this study is shown in Table 4.1. The

extracted distribution forecast models in this study are: (i) historical simulation, (ii) historical
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Table 4.1: Market data.

Panel A: Monthly one-Month returns
Time Period Label Number of weeks (N)

Sep 2005 - Jan 2018 Full-period 161

Panel B: Weekly one-Month returns
Time Period Label Number of weeks (N)

Sep 2005 - Dec 2007 Pre-crisis 122
Jan 2008 - Dec 2009 Crisis 104
Jan 2010 - Jan 2018 Post-crisis 420
Sep 2005 - Jan 2018 Full-period 646

simulation with volatility updating, (iii) model-free risk-neutral density extracted from option

prices (RND), (iv) risk-neutral density extracted using the Heston model, (v) risk-neutral den-

sity extracted using the Bates model, (vi) real-world density extracted using the parametric cal-

ibration specification (Heston P1), (vii) real-world density extracted using the non-parametric

calibration specification (Heston P2), (viii) real-world density extracted using the behavioural

approach (Behavioural), (ix) real-world distribution extracted using the recovery theorem that

is regularised with prior information (see, (3.28)) (RWD), and (x) real-world distribution using

the recovery theorem extracted using the regularised multivariate model with prior information

(see, (3.36)) (RWD-M).

For the historical simulation methods we used a five-year historical period and for the

historical-HW approach we used the EWMA model with α = 0.94 for the volatility updating

process (see, Hull and White, 1998a). For the forecast densities we extracted a 50-150% mon-

eyness range. Similar to Cristóstomo (2021), we found a power utility function with a constant

risk aversion parameter of γ = 2 and high sentiment effects delivered the best results for the

behavioural distribution’s forecasts, and therefore will be reported in this study. For the real-

world forecast distribution using the recovery theorem, we constructed a 51× 51 one-month

ahead transition probability matrix, P, spanning a 50-150% moneyness range, which is placed

every 2% symmetrically around the moneyness of 100%. Recall, the one-month ahead forecast

from today’s state will correspond to the centre row of the real-world transition probability ma-

trix, F . The performance of these distribution forecasts are evaluated using the verification tests

discussed in Section 4.2.

In testing the consistency between the ex-ante return distribution scheme and the observed
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return realisation, we firstly, used Rosenblatt’s PIT to transform the realisation of returns to

a series of i.i.d. uniform random variables. Thereafter, we made the second transformation,

proposed by Berkowitz (2001), to a realisation of i.i.d. standard normal random variables. The

empirical cdf versus the standard normal cdf for each method during the global financial crisis is

shown in Figure 4.1, where it can be seen that the random variable zt deviates from the standard

normal distribution for both historical simulation methods.
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Figure 4.1: Crisis period (Jan 2008 - Dec 2009): empirical cdf and normal cdf (continued on
next page).

68



FORWARD-LOOKING DISTRIBUTIONS WITH APPLICATION TO RISK MANAGEMENT

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(x

)

Bates

Empirical CDF
Standard Normal CDF

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(x

)

Heston P1

Empirical CDF
Standard Normal CDF

-4 -3 -2 -1 0 1 2

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(x

)

Heston P2

Empirical CDF
Standard Normal CDF

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(x

)

Behavioural

Empirical CDF
Standard Normal CDF

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(x

)

RWD

Empirical CDF
Standard Normal CDF

-3 -2 -1 0 1 2 3 4

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(x

)

RWD-M

Empirical CDF
Standard Normal CDF

Figure 4.1: Crisis period (Jan 2008 - Dec 2009): empirical cdf and normal cdf (continued from
previous page).
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In addition, the Kolmogorov-Smirnov (KS) and Jacque-Bera (JB) normality tests are carried

out to test for normality of zt for each of the time periods considered in this study. The results of

these tests are shown in Table 4.2. More specifically, Panel A shows the normality test results for

the monthly one-month return distribution forecast and Panel B shows the normality test results

for the weekly one-month return distribution forecast. The JB test assesses whether the random

variable, zt , has skewness and kurtosis matching the normal distribution, which is not assessed

in Berkowitz’s likelihood ratio tests. Considering the distribution forecasting methods, it is only

the Historical-HW method and the RWD-M method that passed the KS and JB normality tests,

at a 5% significance level, for all time periods considered in this study.

Table 4.2: Goodness-of-fit: normality tests.

Kolmogorov-Smirnov (KS) normality test
Panel A: Monthly Panel B: Weekly

p-values shown
Method Full-period Pre-crises Crises Post-crises Full-period
Historical 0.685 0.365 0.004 0.136 0.323
Historical HW 0.853 0.119 0.050 0.680 0.667
RND 0.132 0.000 0.420 0.000 0.000
Heston 0.243 0.001 0.609 0.000 0.000
Bates 0.456 0.030 0.709 0.001 0.000
Heston P1 0.586 0.070 0.861 0.382 0.130
Heston P2 0.985 0.120 0.904 0.937 0.410
Behavioural 0.648 0.005 0.250 0.016 0.000
RWD 0.817 0.011 0.732 0.074 0.002
RWD-M 0.897 0.071 0.534 0.358 0.058

Jarque-Bera (JB) normality test
Panel A: Monthly Panel B: Weekly

p-values shown
Method Full-period Pre-crises Crises Post-crises Full-period
Historical 0.500 0.172 0.372 0.397 0.500
Historical HW 0.500 0.107 0.426 0.286 0.496
RND 0.222 0.053 0.056 0.500 0.336
Heston 0.232 0.002 0.075 0.500 0.002
Bates 0.456 0.135 0.247 0.500 0.139
Heston P1 0.500 0.420 0.049 0.153 0.500
Heston P2 0.500 0.100 0.029 0.278 0.440
Behavioural 0.001 0.287 0.042 0.001 0.001
RWD 0.226 0.069 0.062 0.470 0.081
RWD-M 0.239 0.202 0.050 0.357 0.082
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In Figure 4.2, we illustrate the estimated calibration functions on 15 January 2018 using the

parametric beta distribution, specified in (2.47), and the non-parametric calibration function,

specified in (2.55), using historical data from 01 August 1996 to 08 January 2018. The esti-

mated parametric and non-parametric calibration densities obtained were similar, except near

the end points.2 Furthermore, Figure 4.2b shows that the risk-neutral distribution over estimates

unfavourable returns and underestimates the favourable returns.
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Figure 4.2: The estimated parametric calibration functions with parameters a = 1.40 and
b = 1.38; and non-parametric calibration functions for the Top40 index on 15 January 2018.

For the forecast methods that make use of historical data in the transformation of the esti-

mated risk-neutral distribution into a real-world distribution (such as the parametric calibration

transformation method) to be practically desirable, we would ideally want the systematic differ-

ence between the risk-neutral and real-world distributions to be stable over time and converge

to some constant value as the sample of price out-turns increases (see, de Vincent-Humphreys

and Noss, 2012). In particular, since the adjustment from risk-neutral to real-world would re-

quire parameter estimates based on past calibrations, it would therefore be desirable to have

stable parameters over time. In Figure 4.3, we show the evolution of the beta parameters for the

duration of this study. It is evident that the beta parameters typically vary over time, where a

was mostly larger than b.

2Similar results were reported in Shackleton et al. (2010).
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Figure 4.3: Evolution of the beta(a,b) parameters for the Top40 index.

In Figure 4.4, we show when the behavioural sentiment parameters, (θ1,t ,θ2,t ,θ3,t), were

activated for the Top40 index over the period 05 September 2005 to 15 January 2018 with their

associated adjustment values. From Figure 4.4 we observed a clustering of the investor opti-

mism sentiment (θ1) effect from 2006 to around 2012 which corresponds to the period of the

global financial crises. In particular, this period covers most of the optimism corrections in

our study period. Similar to Cristóstomo (2021), we observed positive and negative optimism

adjustments during this time, signalling investor confusion. Regarding investor tail fear (θ3),

we found two clusters. The first around the year 2007 and the second over the period 2010 to

2016, which indicated the excessive fear the market had in obtaining substantial losses. There

is no clear clustering of investor confidence (θ2) over the sample period which varied between

under-and-over-confident sentiment adjustments. Furthermore, we notice that the optimism and

confidence sentiment adjustments alternate frequently between negative and positive sentiment

adjustments. Since the sentiment adjustment factors are obtained from forward-looking infor-

mation and weekly updated trading volumes, the behavioural adjustments corresponds to the

weekly changes in investor sentiment and can accommodate market changes.
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Figure 4.4: Sentiment parameters, (θ1,t ,θ2,t ,θ3,t), for the Top40 index.

The results for Berkowitz’s tests for the entire distribution is shown in Table 4.3. Since

we are evaluating our distribution forecasts for more than one period ahead in Panel B, the

evaluation is complicated by serial correlation of the outcomes with respect to the distribution

forecast. Therefore, the distribution forecast evaluation in Panel B will be more distorted by the

serial correlation of the outcomes than the distribution forecasts in Panel A. Due to the serial

correlation, the LRMS yielded the most accurate test results, where the historical-HW obtained

acceptable distribution forecasts, at a 5% level of significance, for all time periods considered in

this study. Interestingly the option-implied models (namely, RND, Heston, Bates, Heston P1,

Heston P2, Behavioural, RWD, and RWD-M) provided superior distribution forecasts during

the global financial crisis, at a 5% level of significance, to the ordinary historical simulation

method, which is a direct consequence of using forward-looking information rather than a his-

torical database.
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Table 4.3: Goodness-of-fit: Berkowitz forecast density test.

Panel A: Monthly one-month returns
p-values shown in parenthesis

Method Berkowitz
µ̂ σ̂2 ρ̂ LR∗

ind LR∗ LR∗
MS

Monthly (Sep 2005 - Jan 2018)
Historical -0.09 1.13 -0.19 4.79 (0.0286) 7.26 (0.0639) 2.94 (0.2290)
Historical HW -0.04 1.16 -0.20 5.19 (0.0227) 7.58 (0.0556) 2.56 (0.2774)
RND 0.17 0.71 -0.23 7.09 (0.0078) 14.44 (0.0024) 9.26 (0.0097)
Heston 0.06 0.62 -0.22 6.30 (0.0121) 16.93 (0.0007) 10.95 (0.0042)
Bates 0.07 0.70 -0.25 8.26 (0.0041) 13.61 (0.0035) 5.90 (0.0524)
Heston P1 0.09 0.89 -0.24 7.75 (0.0053) 8.32 (0.0398) 1.22 (0.5428)
Heston P2 0.00 0.89 -0.25 8.75 (0.0031) 8.61 (0.0350) 0.14 (0.9318)
Behavioural 0.08 0.79 -0.22 6.33 (0.0119) 8.95 (0.0300) 3.12 (0.2097)
RWD 0.02 0.72 -0.23 7.16 (0.0075) 11.28 (0.0103) 4.32 (0.1155)
RWD-M -0.01 0.76 -0.24 7.48 (0.0062) 10.05 (0.0181) 2.76 (0.2517)

Panel B: Weekly one-month returns
p-values shown in parenthesis

Method Berkowitz
µ̂ σ̂2 ρ̂ LR∗

ind LR∗ LR∗
MS

Weekly one-Month returns: Sep 2005 - Dec 2007 (Pre-Crisis)
Historical 0.01 0.53 0.68 103.02 (0.0000) 74.63 (0.0000) 0.05 (0.9764)
Historical HW 0.03 0.61 0.65 88.99 (0.0000) 67.35 (0.0000) 0.37 (0.8316)
RND 0.11 0.39 0.60 75.35 (0.0000) 75.52 (0.0000) 15.31 (0.0005)
Heston 0.08 0.45 0.59 66.79 (0.0000) 63.25 (0.0000) 8.85 (0.0120)
Bates 0.08 0.61 0.59 68.57 (0.0000) 57.72 (0.0000) 1.53 (0.4644)
Heston P1 0.06 0.52 0.60 68.65 (0.0000) 58.76 (0.0000) 3.28 (0.1938)
Heston P2 0.05 0.52 0.61 69.48 (0.0000) 58.33 (0.0000) 2.73 (0.2548)
Behavioural 0.06 0.36 0.60 71.26 (0.0000) 73.55 (0.0000) 16.86 (0.0002)
RWD 0.05 0.40 0.59 66.25 (0.0000) 66.56 (0.0000) 13.13 (0.0014)
RWD-M 0.04 0.42 0.59 64.52 (0.0000) 62.50 (0.0000) 10.40 (0.0055)

Weekly one-Month returns: Jan 2008 - Dec 2009 (Crisis)
Historical -0.08 1.00 0.66 83.53 (0.0000) 85.95 (0.0000) 21.76 (0.0000)
Historical HW -0.08 0.43 0.73 130.43 (0.0000) 88.20 (0.0000) 1.96 (0.3738)
RND 0.00 0.30 0.76 146.88 (0.0000) 95.57 (0.0000) 4.98 (0.0827)
Heston -0.01 0.33 0.75 140.88 (0.0000) 91.34 (0.0000) 3.17 (0.2049)
Bates -0.01 0.37 0.73 124.36 (0.0000) 83.49 (0.0000) 2.45 (0.2939)
Heston P1 -0.02 0.36 0.77 158.83 (0.0000) 96.61 (0.0000) 0.82 (0.6652)
Heston P2 -0.03 0.39 0.77 155.45 (0.0000) 95.05 (0.0000) 0.31 (0.8567)
Behavioural -0.02 0.28 0.77 151.85 (0.0000) 100.10 (0.0000) 7.42 (0.0245)
RWD -0.01 0.40 0.71 105.54 (0.0000) 74.60 (0.0000) 2.32 (0.3123)

Continued on next page
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Table 4.3 – Continued from previous page
RWD-M -0.01 0.57 0.64 73.09 (0.0000) 55.15 (0.0000) 0.05 (0.9735)

Weekly one-Month returns: Jan 2010 - Jan 2018 (Post-Crisis)
Historical -0.02 0.42 0.68 364.77 (0.0000) 273.44 (0.0000) 10.54 (0.0051)
Historical HW 0.00 0.59 0.67 339.99 (0.0000) 249.78 (0.0000) 1.02 (0.5992)
RND 0.05 0.34 0.71 436.95 (0.0000) 332.16 (0.0000) 31.33 (0.0000)
Heston 0.01 0.24 0.70 406.65 (0.0000) 375.84 (0.0000) 91.26 (0.0000)
Bates 0.01 0.27 0.70 399.90 (0.0000) 349.15 (0.0000) 68.70 (0.0000)
Heston P1 0.02 0.47 0.71 420.13 (0.0000) 292.32 (0.0000) 0.78 (0.6775)
Heston P2 0.00 0.46 0.71 412.39 (0.0000) 288.40 (0.0000) 1.32 (0.5168)
Behavioural 0.02 0.38 0.67 340.17 (0.0000) 274.90 (0.0000) 25.40 (0.0000)
RWD 0.01 0.36 0.69 371.23 (0.0000) 293.54 (0.0000) 27.16 (0.0000)
RWD-M 0.00 0.44 0.66 320.34 (0.0000) 250.96 (0.0000) 12.78 (0.0017)

Weekly one-Month returns: Sep 2005 - Jan 2018
Historical -0.02 0.54 0.68 552.41 (0.0000) 400.04 (0.0000) 0.43 (0.8084)
Historical HW -0.01 0.57 0.68 553.86 (0.0000) 400.98 (0.0000) 1.11 (0.5738)
RND 0.05 0.34 0.70 650.03 (0.0000) 499.45 (0.0000) 47.43 (0.0000)
Heston 0.02 0.30 0.69 592.50 (0.0000) 506.51 (0.0000) 85.62 (0.0000)
Bates 0.02 0.36 0.68 534.42 (0.0000) 437.88 (0.0000) 49.42 (0.0000)
Heston P1 0.02 0.47 0.70 627.63 (0.0000) 441.73 (0.0000) 2.55 (0.2796)
Heston P2 0.00 0.46 0.70 622.01 (0.0000) 437.96 (0.0000) 2.39 (0.3031)
Behavioural 0.02 0.36 0.68 545.54 (0.0000) 441.79 (0.0000) 45.72 (0.0000)
RWD 0.02 0.38 0.68 542.34 (0.0000) 433.59 (0.0000) 39.15 (0.0000)
RWD-M 0.01 0.46 0.65 460.81 (0.0000) 365.88 (0.0000) 17.76 (0.0001)

Models, which do not perform well in forecasting the entire return distribution, may per-

form better in forecasting the tail of the return distribution. Since risk managers are often more

concerned about protection against extreme losses (i.e., the lower tail of the return distribution),

the Berkowitz tail test is carried out for the VaR(0.95) and VaR(0.90). In particular, we failed to

use the Berkowitz tail test for the VaR(0.99) as we obtained no realised barrier hits for the option-

implied distributions over the sample period. This may be a direct consequence that options are

often used for protection against large losses that may cause the option-implied distribution to

have a longer lower tail than what is normally expected by the spot market. The Berkowitz tail

verification test results for the VaR(0.95) and VaR(0.90) forecasts are shown in Table 4.4.
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Table 4.4: Goodness-of-fit: Berkowitz tail test.

Panel A: Monthly one-month returns: Berkowitz tail
p-values shown in parenthesis

Method 95% VaR 90% VaR
µ̂ σ̂2 LR∗

tail µ̂ σ̂2 LR∗
tail

Monthly (Sep 2005 - Jan 2018)
Historical -0.73 0.38 2.74 (0.2547) -0.06 1.20 1.94 (0.3791)
Historical HW -0.31 0.75 0.46 (0.7963) 0.14 1.42 1.37 (0.5047)
RND -1.23 0.04 8.21 (0.0165) -0.30 0.41 4.64 (0.0984)
Heston -0.77 0.24 2.93 (0.2309) 0.13 0.84 2.59 (0.2733)
Bates -1.02 0.13 5.26 (0.0719) 0.00 0.69 2.99 (0.2239)
Heston P1 -0.69 0.36 1.81 (0.4045) 0.15 1.03 0.73 (0.6944)
Heston P2 -0.49 0.52 0.83 (0.6615) 0.46 1.40 1.48 (0.4777)
Behavioural -1.21 0.06 7.87 (0.0195) 0.08 0.73 4.03 (0.1330)
RWD -0.81 0.24 3.16 (0.2064) -0.20 0.62 1.27 (0.5298)
RWD-M -0.65 0.38 1.78 (0.4099) 0.15 1.02 0.77 (0.6815)

Panel B: Weekly one-month returns: Berkowitz tail
p-values shown in parenthesis

Method 95% VaR 90% VaR
µ̂ σ̂2 LR∗

tail µ̂ σ̂2 LR∗
tail

Weekly one-Month returns: Sep 2005 - Dec 2007 (Pre-Crisis)
Historical -0.81 0.23 1.36 (0.5064) 0.14 1.31 0.53 (0.7687)
Historical HW 0.15 1.19 1.34 (0.5115) 0.40 1.70 1.33 (0.5132)
RND -0.46 0.36 3.15 (0.2075) 0.45 1.00 5.97 (0.0506)
Heston 0.48 1.50 0.41 (0.8152) 1.56 2.99 5.75 (0.0564)
Bates 0.59 1.65 0.57 (0.7520) 1.60 3.06 5.97 (0.0505)
Heston P1 -0.17 0.73 0.42 (0.8118) 0.29 1.09 1.81 (0.4045)
Heston P2 0.33 1.29 0.26 (0.8768) 0.60 1.56 2.03 (0.3623)
Behavioural -0.74 0.21 4.09 (0.1292) 0.31 0.84 6.15 (0.0432)
RWD 0.10 0.79 2.14 (0.3427) 0.96 1.68 5.79 (0.0553)
RWD-M -0.42 0.44 1.81 (0.4045) 0.83 1.48 5.79 (0.0553)

Weekly one-Month returns: Jan 2008 - Dec 2009 (Crisis)
Historical -0.56 1.15 18.38 (0.0001) -0.31 1.54 18.38 (0.0001)
Historical HW -0.81 0.49 7.73 (0.0210) -0.16 1.15 2.92 (0.2317)
RND -0.38 0.58 0.42 (0.8089) -0.15 0.75 0.29 (0.8653)
Heston -0.22 0.83 0.19 (0.9102) 0.34 1.44 0.48 (0.7854)
Bates -0.43 0.60 0.50 (0.7773) 0.00 0.99 0.01 (0.9956)
Heston P1 -0.23 1.00 1.51 (0.4694) 0.01 1.27 1.31 (0.5195)
Heston P2 -0.04 1.39 3.34 (0.1884) 0.25 1.78 3.18 (0.2035)
Behavioural -0.55 0.48 0.88 (0.6427) 0.10 1.05 0.16 (0.9191)
RWD -0.20 0.85 0.18 (0.9163) -0.15 0.91 0.30 (0.8600)

Continued on next page

76



FORWARD-LOOKING DISTRIBUTIONS WITH APPLICATION TO RISK MANAGEMENT

Table 4.4 – Continued from previous page
RWD-M -0.16 0.99 0.65 (0.7216) 0.04 1.23 0.62 (0.7312)

Weekly one-Month returns: Jan 2010 - Jan 2018 (Post-Crisis)
Historical -0.54 0.37 6.78 (0.0337) 0.25 0.58 4.85 (0.0883)
Historical HW 0.06 0.98 0.50 (0.7795) -0.19 0.76 1.09 (0.5793)
RND -0.41 0.26 27.28 (0.0000) -0.07 0.41 37.31 (0.0000)
Heston -0.68 0.16 28.39 (0.0000) 0.07 0.45 44.81 (0.0000)
Bates -0.47 0.23 27.41 (0.0000) -0.31 0.29 33.97 (0.0000)
Heston P1 -0.25 0.56 5.56 (0.0622) -0.21 0.59 5.50 (0.0640)
Heston P2 -0.38 0.51 3.92 (0.1407) -0.24 0.60 3.83 (0.1471)
Behavioural -0.08 0.45 22.85 (0.0000) -0.35 0.30 27.58 (0.0000)
RWD -0.54 0.27 17.29 (0.0002) -0.28 0.41 16.22 (0.0003)
RWD-M -0.33 0.53 4.37 (0.1123) -0.08 0.72 3.97 (0.1376)

Weekly one-Month returns: Sep 2005 - Jan 2018
Historical -0.17 0.92 1.81 (0.4040) 0.01 1.12 1.40 (0.4954)
Historical HW -0.21 0.85 1.52 (0.4674) -0.07 1.00 1.04 (0.5943)
RND -0.15 0.50 22.26 (0.0000) 0.16 0.70 33.66 (0.0000)
Heston 0.44 1.07 13.71 (0.0011) 0.94 1.55 36.09 (0.0000)
Bates 0.39 1.02 13.90 (0.0010) 0.08 0.81 11.51 (0.0032)
Heston P1 -0.12 0.76 2.21 (0.3317) -0.03 0.84 2.66 (0.2646)
Heston P2 -0.02 0.93 0.26 (0.8761) 0.04 0.99 0.61 (0.7385)
Behavioural -0.26 0.46 18.96 (0.0001) -0.03 0.59 25.95 (0.0000)
RWD -0.09 0.62 12.44 (0.0020) -0.02 0.70 12.98 (0.0015)
RWD-M -0.23 0.66 3.24 (0.1984) 0.09 0.93 4.22 (0.1212)

The Heston P1, Heston P2, and RWD-M model provided an acceptable fit, at a 5% level

of significance, for the VaR(0.95) and the VaR(0.90) forecasts for all time periods considered

in this study, where the historical-HW model provided acceptable VaR forecasts for all time

periods, with exception to the VaR(0.95) forecast during the global financial crisis. The RND,

Heston, Bates and Behavioural models all performed poorly during the post crisis and full

period. Furthermore, the historical-HW, Heston P1, Heston P2, and RWD-M are the more

stable preforming models in this study, outperforming the ordinary historical simulation, RND,

Heston, Bates, Behavioural and RWD models for the Berkowitz tail test. In addition, the results

for several backtests using the MATLAB Risk Management Toolbox (2018) are shown, for

some of the extracted forecast distributions, in Appendix A (see Tables B.1 and B.2).
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In Figure 4.5a, the weekly historical Top40 index prices is shown and in Figure 4.5b the

weekly one-month VaR(0.95) forecasts calculated for the Historical-HW, Heston, and RWD-

M models are shown. It can be seen that during the financial crisis, option-implied methods

were quicker to react to market shifts than historical methods; thus making the option-implied

methods more favourable during stressed (or uncertain) economic times.

For comparison of shorter term VaR estimates, we also applied the commonly used square-

root scaling principle to the option-implied one-month VaR to obtain a one-week VaR forecast.

This is done by multiplying the option-implied one-month VaR forecast by 1/
√

4 (see, e.g.,

McNeil et al., 2005). Furthermore, we also obtained the weekly one-week VaR forecast using

the two historical simulation methods. We have chosen to use the one-week VaR measures as

we used weekly option prices in our dataset, making it easy to compare. The backtest results for

the scaled weekly one-week VaR(0.95) for the option-implied models, and the VaR(0.95) for the

historical models using a weekly return database is shown in Appendix A (see Table B.3). The

results obtained are similar to that of the one-month VaR results where the return distribution

forecasts obtained using option prices yielded better results than the historical simulation meth-

ods during the global financial crisis. In addition, the results for the weekly one-week VaR(0.90)

is shown in Appendix A (see Table B.4).

In Figure 4.5c, the weekly one-month CVaR(0.95) forecasts for the Historical-HW, Heston

and RWD-M methods are shown. The option-implied CVaR forecasts were mostly above the

historical CVaR forecasts. This indicates that the option-implied densities allocate more prob-

ability to significant losses than the historical densities. In addition, the option-implied CVaR

estimates showed a significant increase over the global financial crisis period, whereas the his-

torical methods lagged behind. Furthermore, the option-implied CVaR estimates also displayed

an increase in CVaR during the period 2015-2017 when the index plateaued, indicating higher

market uncertainty during the period, which was not captured by the historical simulation meth-

ods.
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Figure 4.5: Comparison of the weekly Top40 index price with the forecasted weekly one-month
VaR(0.95), and CVaR(0.95).
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A challenging task for risk managers is to put in place the appropriate level of capital to

cover unexpected losses. Unexpected loss is a measure of operational risk and is defined to be

the difference between VaR and expected loss. In short, this is the required capital that a finan-

cial institution should have to cover unexpected losses corresponding to a desired confidence

level. Figure 4.6 shows the evolution of the weekly one-month forecast of unexpected losses per

Top40 index share for a 95% confidence level. Similar to the CVaR forecast, the option-implied

models yielded larger unexpected loss forecasts than the historical methods. This will require

financial institutions to carry more capital to cover unexpected losses under the option-implied

models.
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Figure 4.6: Weekly one-month forecasts of unexpected losses.

In Table 4.5 the mean Sharpe ratio3 and volatility is shown for each time period considered

in this study. We notice that the forward-looking real-world Sharpe ratio is more sensitive and

showed a considerable drop during the financial crisis period, where the other methods did not.

3The Sharpe ratio is calculated as the ratio of excess asset return above the risk-free rate to the standard deviation
of the returns. The Sharpe ratio is a measure of risk-adjusted return and indicates how well the return of an asset
compensates the investor for the risk taken.
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Table 4.5: Additional risk measures.

Sharpe Ratio
Panel A: Monthly Panel B: Weekly

Method Full-period Pre-crisis Crisis Post-crisis Full-period
Historical 0.519 0.675 0.678 0.436 0.520
Historical HW 0.529 0.628 1.009 0.389 0.534
RND -0.147 -0.110 -0.098 -0.168 -0.146
Heston 0.020 -0.007 -0.096 0.071 0.029
Bates -0.100 -0.160 -0.159 -0.072 -0.103
Heston P1 -0.017 0.098 -0.103 -0.026 -0.015
Heston P2 0.204 0.281 0.019 0.229 0.205
Behavioural -0.007 0.083 -0.129 0.037 0.008
RWD 0.271 0.420 0.006 0.309 0.281
RWD-M 0.405 0.628 -0.040 0.504 0.440

Volatility
Panel A: Monthly Panel B: Weekly

Method Full-period Pre-crisis Crisis Post-crisis Full-period
Historical 0.183 0.191 0.209 0.175 0.183
Historical HW 0.169 0.183 0.291 0.137 0.170
RND 0.222 0.239 0.328 0.194 0.224
Heston 0.227 0.239 0.332 0.198 0.228
Bates 0.219 0.232 0.324 0.189 0.219
Heston P1 0.183 0.201 0.281 0.154 0.183
Heston P2 0.182 0.199 0.280 0.153 0.182
Behavioural 0.225 0.238 0.330 0.193 0.224
RWD 0.221 0.237 0.311 0.198 0.223
RWD-M 0.203 0.221 0.299 0.179 0.206

As we have seen, forward-looking distributions improved forecasting in certain situations

(see also, e.g., Shackleton et al., 2010). Therefore, combining historical and forward-looking

information may be an effective approach in obtaining a stable forecast model. The mixture of

distributions was first used to estimate the risk-neutral density in Ritchey (1990), Melick and

Thomas (1997) and Brigo and Mercurio (2002) as a mixture of normal densities. Furthermore,

it was found that the mixture distribution was more flexible in capturing higher moments.

Historical and forward-looking information are both useful for forecasting, and effectively

combining the historical information with the forward-looking information may be a desirable

approach (see, e.g. Christoffersen et al., 2013).
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4.4 The Mixture Distribution

Combinations of density forecast are becoming more popular in improving forecast accuracy

(see, e.g., Kapetanios et al., 2015; Shackleton et al., 2010). In the previous section, we extracted

forecast distributions for the Top40 index using backward-looking (historical based) methods

and forward-looking (option-implied) methods. Intuitively, we are extracting market informa-

tion from different sources. Both option-implied and historical forecast distributions may con-

tain information about the underlying asset at time t for the forecast at time t + 1. Combining

these sources of information leads to evaluating the mixture of two distributions.

The ex-ante mixture distribution for St+1 is then given by (see, e.g., Shackleton et al., 2010):

f mix
t,St+1

(x) = α f hist
t,St+1

(x)+(1−α) f imp
t,St+1

(x), 0 ≤ α ≤ 1, (4.14)

where α represents the mixture parameter, f hist
t,St+1

(x) the historical forecast distribution function

and f imp
t,St+1

(x) the implied forecast distribution function.

In some instances, the option-implied distribution will outperform the historical component

and in other instances the opposite may happen. Therefore, the mixture distribution may be

preferred above the individual components. Finding the ‘optimal’ mixing parameter, α , spec-

ified in (4.14) is therefore vitally important. Shackleton et al. (2010) suggested maximising

the likelihood function of (4.14) over past realisations. Therefore, the maximum log-likelihood

function of α at time t is given by the number α̂ that maximises:

ℓ(S1,S2, . . . ,St |α) =
t−1

∑
i=0

log
(

α f hist
i,Si+1

(Si+1)+(1−α) f imp
i,Si+1

(Si+1)
)
. (4.15)

Obviously, here we are optimally estimating α over the historical sample period. In Table 4.6,

we give the optimal mixture parameter for each period considered in this study obtained by the

maximum likelihood estimation. It is observed in Table 4.6 that more weight is given to the

forward-looking distribution during economic uncertain time periods.
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Table 4.6: Mixing parameter estimate.

Method α̂

Panel A: Monthly one-month returns
Monthly one-Month returns: Sep 2005 - Jan 2018
Historical HW-Heston 0.4600
Historical HW-RWD-M 0.5161

Panel B: Weekly one-month returns
Weekly one-Month returns: Sep 2005 - Dec 2007 (Pre-Crisis)
Historical HW-Heston 0.2670
Historical HW-RWD-M 0.0994
Weekly one-Month returns: Jan 2008 - Dec 2009 (Crisis)
Historical HW-Heston 0.0000
Historical HW-RWD-M 0.1102
Weekly one-Month returns: Jan 2010 - Jan 2018 (Post-Crisis)
Historical HW-Heston 0.6222
Historical HW-RWD-M 0.7328
Weekly one-Month returns: Sep 2005 - Jan 2018
Historical HW-Heston 0.4398
Historical HW-RWD-M 0.5168

On the other hand, letting α optimally vary for each forecast by using forward-looking in-

formation to estimate α will be more favourable. In particular, Barone-Adesi et al. (2019) and

Crisóstomo and Couso (2018) proposed such alternative ways of optimally mixing the distribu-

tions by connecting α to the percentage of deep out the money listed options, or computing α

as a function of the VIX index.4 The aim is therefore for us to choose an α structure in such a

way that it can yield stable forecast results. In this study, we will follow a similar approach and

relate α to the implied volatility, which is observed directly from option prices. The use of the

implied volatility is a desirable choice, as it was used to identify economic uncertainty through

the optimism sentiment parameter in Section 2.3.6. In particular, we will consider two simple

functions related to the implied-volatility to choose α . That is,

Scenario 1: We use the notion that higher implied volatility rates imply higher economic

uncertainty which will favour the use of forward-looking information above backward-looking

4Other approaches, such as, the Bayesian model averaging (BMA) are also useful techniques that can be used
to combine density forecasts (see, e.g., Timmermann, 2006).
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information. Then α is chosen as follows:

α =

{
0.10, for σ

(IV)
t ≥ 20%,

0.75, for σ
(IV)
t < 20%.

(4.16)

Scenario 2: Here we will use the implied volatility change ∆σ
(IV)
t , defined in (2.31), which

represents the difference between the current implied volatility and the average implied volatil-

ity over the three previous months as the proxy to determine α . In particular, we let α be the

percentile of the new ∆σ
(IV)
t observation in the corresponding empirical distribution of ∆σ (IV).

That is, α can be represented as a percentile of the historical distribution of the change in im-

plied volatility:

α = Fn,∆σ (IV)

(
∆σ

(IV)
t

)
, (4.17)

where Fn,∆σ (IV)

(
∆σ

(IV)
t

)
represents the empirical distribution of ∆σ (IV).

The Berkowitz goodness-of-fit likelihood ratio tests for the entire mixture-distribution and

tail is shown in Table 4.7 and Table 4.8, respectively for scenario 1, and in Table 4.9 and Table

4.10, receptively for scenario 2. In particular, we only considered the mixing of the risk-neutral

distribution extracted using the Heston model with the historical simulation with volatility up-

dating (Historical HW) and the mixing of the real-world distribution extracted by the recovery

theorem using the multivariate model (RWD-M) with the Historical HW. We observed that

in most cases the mixed distributions yielded an improvement over the forward-looking dis-

tributions. Therefore, mixing the distributions is a viable way of obtain more stable forecast

distributions. Moreover, the mixing of distributions will be left for further research.
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Table 4.7: Goodness-of-fit (Scenario 1): The Berkowitz test based on the mixture distribution
with mixing parameter based on the implied volatility.

Panel A: Monthly one-month returns
p-values shown in parenthesis

Method Berkowitz
µ̂ σ̂2 ρ̂ LRind LR LRMS

Monthly (Sep 2005 - Jan 2018)
Historical HW-Heston -0.01 0.74 -0.24 7.53 (0.0061) 11.05 (0.0115) 3.72 (0.1560)
Historical HW-RWD-M -0.04 0.80 -0.23 6.81 (0.0091) 8.55 (0.0359) 1.99 (0.3690)

Panel B: Weekly one-month returns
p-values shown in parenthesis

Method Berkowitz
µ̂ σ̂2 ρ̂ LRind LR LRMS

Weekly one-Month returns: Sep 2005 - Dec 2007 (Pre-Crisis)
Historical HW-Heston 0.05 0.40 0.60 71.11 (0.0000) 67.80 (0.0000) 11.36 (0.0034)
Historical HW-RWD-M 0.03 0.44 0.60 68.36 (0.0000) 62.25 (0.0000) 7.79 (0.0204)

Weekly one-Month returns: Jan 2008 - Dec 2009 (Crisis)
Historical HW-Heston -0.02 0.29 0.76 143.45 (0.0000) 96.51 (0.0000) 7.33 (0.0257)
Historical HW-RWD-M -0.02 0.41 0.72 113.88 (0.0000) 77.71 (0.0000) 1.27 (0.5302)

Weekly one-Month returns: Jan 2010 - Jan 2018 (Post-Crisis)
Historical HW-Heston 0.01 0.31 0.70 389.50 (0.0000) 290.15 (0.0000) 14.45 (0.0007)
Historical HW-RWD-M -0.01 0.43 0.67 364.12 (0.0000) 271.35 (0.0000) 9.05 (0.0108)

Weekly one-Month returns: Sep 2005 - Jan 2018
Historical HW-Heston 0.00 0.38 0.69 590.70 (0.0000) 449.02 (0.0000) 29.28 (0.0000)
Historical HW-RWD-M -0.01 0.43 0.68 545.97 (0.0000) 411.25 (0.0000) 15.41 (0.0004)
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Table 4.8: Goodness-of-fit (Scenario 1): The Berkowitz tail test based on the mixture distribu-
tion with mixing parameter based on the implied volatility.

Panel A: Monthly one-month returns: Berkowitz tail
p-values shown in parenthesis

Method 95% VaR 90% VaR
µ̂ σ̂2 LRtail µ̂ σ̂2 LRtail

Monthly (Sep 2005 - Jan 2018)
Historical HW-Heston -0.88 0.20 3.66 (0.1601) -0.21 0.62 1.25 (0.5351)
Historical HW-RWD-M -0.47 0.53 0.75 (0.6869) 0.14 1.08 0.29 (0.8653)

Panel B: Weekly one-month returns: Berkowitz tail
p-values shown in parenthesis

Method 95% VaR 90% VaR
µ̂ σ̂2 LRtail µ̂ σ̂2 LRtail

Weekly one-Month returns: Sep 2005 - Dec 2007 (Pre-Crisis)
Historical HW-Heston 0.34 1.17 0.83 (0.6619) 1.47 2.51 6.43 (0.0402)
Historical HW-RWD-M 0.73 1.67 1.03 (0.5966) 1.75 3.06 7.06 (0.0293)

Weekly one-Month returns: Jan 2008 - Dec 2009 (Crisis)
Historical HW-Heston -0.56 0.48 0.92 (0.6312) -0.08 0.85 0.11 (0.9479)
Historical HW-RWD-M -0.44 0.71 1.50 (0.4713) 0.02 1.20 0.59 (0.7439)

Weekly one-Month returns: Jan 2010 - Jan 2018 (Post-Crisis)
Historical HW-Heston 0.11 0.68 7.64 (0.0220) -0.12 0.62 8.11 (0.0173)
Historical HW-RWD-M -0.32 0.54 3.99 (0.1358) -0.17 0.78 3.33 (0.1892)

Weekly one-Month returns: Sep 2005 - Jan 2018
Historical HW-Heston -0.25 0.58 6.44 (0.0399) 0.08 0.84 9.26 (0.0097)
Historical HW-RWD-M -0.14 0.76 1.80 (0.4064) 0.08 0.96 2.47 (0.2908)
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Table 4.9: Goodness-of-fit (Scenario 2): The Berkowitz test based on the mixture distribution
with mixing parameter based on the implied volatility.

Panel A: Monthly one-month returns
p-values shown in parenthesis

Method Berkowitz
µ̂ σ̂2 ρ̂ LRind LR LRMS

Monthly (Sep 2005 - Jan 2018)
Historical HW-Heston -0.05 0.84 -0.23 7.29 (0.0069) 8.13 (0.0433) 1.15 (0.5636)
Historical HW-RWD-M -0.09 0.90 -0.23 7.06 (0.0079) 7.74 (0.0517) 1.32 (0.5168)

Panel B: Weekly one-month returns
p-values shown in parenthesis

Method Berkowitz
µ̂ σ̂2 ρ̂ LRind LR LRMS

Weekly one-Month returns: Sep 2005 - Dec 2007 (Pre-Crisis)
Historical HW-Heston 0.03 0.46 0.64 82.03 (0.0000) 67.16 (0.0000) 5.48 (0.0647)
Historical HW-RWD-M 0.02 0.48 0.63 77.70 (0.0000) 63.16 (0.0000) 2.10 (0.3496)

Weekly one-Month returns: Jan 2008 - Dec 2009 (Crisis)
Historical HW-Heston -0.06 0.34 0.73 125.39 (0.0000) 87.43 (0.0000) 3.81 (0.1487)
Historical HW-RWD-M -0.06 0.40 0.73 127.19 (0.0000) 85.49 (0.0000) 2.77 (0.2504)

Weekly one-Month returns: Jan 2010 - Jan 2018 (Post-Crisis)
Historical HW-Heston 0.00 0.42 0.68 352.58 (0.0000) 268.27 (0.0000) 12.33 (0.0021)
Historical HW-RWD-M -0.01 0.47 0.67 337.75 (0.0000) 253.68 (0.0000) 5.87 (0.0532)

Weekly one-Month returns: Sep 2005 - Jan 2018
Historical HW-Heston 0.00 0.41 0.68 557.28 (0.0000) 421.89 (0.0000) 19.86 (0.0000)
Historical HW-RWD-M -0.01 0.46 0.68 540.73 (0.0000) 402.79 (0.0000) 9.69 (0.0079)
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Table 4.10: Goodness-of-fit (Scenario 2): The Berkowitz tail test based on the mixture distribu-
tion with mixing parameter based on the implied volatility.

Panel A: Monthly one-month returns: Berkowitz tail
p-values shown in parenthesis

Method 95% VaR 90% VaR
µ̂ σ̂2 LRtail µ̂ σ̂2 LRtail

Monthly (Sep 2005 - Jan 2018)
Historical HW-Heston -0.13 0.87 0.06 (0.9729) 0.06 1.10 0.05 (0.9766)
Historical HW-RWD-M 0.05 1.19 0.45 (0.7969) 0.30 1.53 0.93 (0.6297)

Panel B: Weekly one-month returns: Berkowitz tail
p-values shown in parenthesis

Method 95% VaR 90% VaR
µ̂ σ̂2 LRtail µ̂ σ̂2 LRtail

Weekly one-Month returns: Sep 2005 - Dec 2007 (Pre-Crisis)
Historical HW-Heston 0.46 1.63 0.52 (0.7709) 1.02 2.34 3.40 (0.1830)
Historical HW-RWD-M 0.55 1.77 0.73 (0.6951) 0.78 2.03 2.35 (0.3081)

Weekly one-Month returns: Jan 2008 - Dec 2009 (Crisis)
Historical HW-Heston -0.36 0.68 0.35 (0.8404) -0.17 0.88 0.35 (0.8393)
Historical HW-RWD-M -0.59 0.66 3.87 (0.1444) 0.04 1.35 1.64 (0.4403)

Weekly one-Month returns: Jan 2010 - Jan 2018 (Post-Crisis)
Historical HW-Heston 0.88 1.48 10.97 (0.0041) -0.13 0.63 6.73 (0.0346)
Historical HW-RWD-M -0.09 0.76 2.03 (0.3627) -0.15 0.74 1.65 (0.4374)

Weekly one-Month returns: Sep 2005 - Jan 2018
Historical HW-Heston 0.39 1.20 5.58 (0.0613) 0.01 0.85 4.04 (0.1325)
Historical HW-RWD-M -0.12 0.85 0.28 (0.8684) 0.03 0.99 0.23 (0.8921)
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The risk-premium is an important number in finance as it provides an estimate of the mar-

kets forward looking expectations (see, e.g., Lewis, 2019; Christoffersen et al., 2013). Next, we

outline a simple approach in extracting an estimate of the risk-premium.

4.5 A Measure of the Risk-Premium

The expectations of the risk-neutral and real-world distributions can be used to provide an in-

dication of the risk-premium embedded in the price of a futures contract (see, e.g., de Vincent-

Humphreys and Noss, 2012). In essence, the current price of an asset is written as the discounted

expected future price, under a different probability measures. In particular, the risk-neutral ex-

pectation is discounted by the risk-free rate, where the real-world expectation is discounted by

a premium above the risk-free rate. That is (see, e.g., de Vincent-Humphreys and Noss, 2012),

S0 = e−rTEQ(ST ) = e−(r+µ)TEP(ST ). (4.18)

The risk-premium can then be recovered once the expectations are found under the two mea-

sures. That is,

µ =
1
T

log
(
EP(ST )

EQ(ST )

)
. (4.19)

The evolution of the risk premium, extracted using the Heston P2 and RWD-M distributions

for the real-world expected future price and the Heston model for the risk-neutral expected

future price, is shown in Figure 4.7.5 Furthermore, the mean and volatility of the risk-premium

for the duration of this study is shown in Table 4.11.

Table 4.11: Yearly risk-premium rate.

Mean Volatility
µHestonP2 3.5% 3.7%
µRWD−M 6.3% 14.0%

5Similar results to Figure 4.7 were achieved for the Heston P1 and Behavioural approach.

89



FORWARD-LOOKING DISTRIBUTIONS WITH APPLICATION TO RISK MANAGEMENT

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
-100

-50

0

50

100

R
is

k
 p

re
m

iu
m

 e
s
ti
m

a
te

 (
%

)

Figure 4.7: Evolution of the risk premium for the Top40 index.

We mostly observed a positive risk premium for the duration of the study. Furthermore,

the estimated risk-premium extracted using the RWD-M model is more volatile than the risk-

premium extracted using the Heston P2 model. This is likely a result that the RWD-M does not

make use of historical data to transform the risk-neutral probabilities to real-world probabilities

and is therefore more sensitive to market changes. The estimated equity risk premium is a

very important number in finance. Such information can be useful in a tactical asset allocation

framework for portfolio managers.

4.6 Conclusion

In this study, we implemented several methods for extracting the return distribution forecasts

for the South African Top40 index with application to risk management. More specifically,

two of these methods extracted the return distribution forecast using historical simulation, three

methods extracted the risk-neutral return distribution forecast from option prices, three methods

extracted the real-world distribution from the risk-neutral distribution by making use of trans-

formation methods and two methods used the recovery theorem proposed by Ross (2015) to

extract the real-world return distribution forecast.
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These methods were backtested and their performances over multiple time-periods were

compared. Using a series of likelihood ratio tests, proposed by Berkowitz (2001), we found

that no model proved to be reliable in extracting the entire return distribution forecast in all

tests, where only the Historical-HW, Heston P1 and Heston P2 models proved to be reliable

in extracting the entire return distribution forecast when Berkowitz’s test was relaxed for serial

correlation. However, it is naı̈ve to expect that one can accurately extract the entire true market

return distribution using a simple statistical model. A more realistic expectation is that only a

specific region of the return distribution forecast is accurately extracted. Since risk managers

are often more concerned with experiencing extreme losses, we used the Berkowitz tail test

and other commonly used VaR backtests found in the literature to test whether the tail of the

extracted real-world return distribution forecasts provided us with a more reliable VaR forecast

than the historical simulation and risk-neutral VaR forecast.

In our study using the Top40 index, we found that the option-implied methods provided

information about the potential losses in the Top40 index. More specifically, the extracted dis-

tributions using option prices yielded superior VaR measures to the historical methods during

the global financial crisis. Although the historical methods are well suited during normal eco-

nomic periods, the real-world distribution forecasts can be an effective alternative during crisis

periods. In addition, the RWD-M yielded more stable VaR forecasts over all time periods con-

sidered than the risk-neutral distributions, making the recovery theorem useful in forecasting

VaR. Moreover, using the option-implied distributions will lead to overestimating the required

risk capital during normal market conditions. Therefore, optimally mixing the information ob-

tained from risk-neutral, real-world and historical methods to obtain better risk forecasts can be

valuable.
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CHAPTER 5

QUANTITATIVE GUIDELINES FOR

RETIRING (MORE SAFELY) IN SOUTH

AFRICA

This chapter is adapted from Van Appel et al. (2021) and addresses the third research question.

Chapter Synopsis

In this chapter, we present guidelines for safe withdrawal rates from a living annuity (income

drawdown accounts), periodically, to cover living expenses. In essence, a retiree is faced with

the risk management problem of outliving their retirement fund (withdrawing too much) ver-

sus living below their means (withdrawing too little). The empirical evidence in the literature

advocates for a ‘safe’ 4% annual withdrawal (or spending) rate. Therefore, the object of this

chapter is to examine withdrawal rates for retirees in the South African economy. Furthermore,

we carry out a simulation study using historical data while incorporating longevity and fund

management fees. Our analysis emphasises the risks associated with different withdrawal rates

and asset allocations. We then give an example of how derivative instruments can increase the

success rate of a retirement portfolio.

5.1 Introduction

Retirement planning is an important topic for actuaries and financial advisors as it plays a vital

role in society, especially in an era of increasing longevity. The demographer, James Vaupel,

is reported to have said that “half of the children born in Sweden in 2012 will live to be 104”
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(Ennart, 2012). Moreover, reports of increased longevity abound; see for example, Innovation

Hub (Purdy, 2015) reports, “the first person to live to 150 has already been born.” In Table 5.1,

we illustrate how life expectancy (and conditional life expectancy) has increased globally over

time (see, World Health Organization, 2020).

Table 5.1: Life expectancy at birth, at age 60, for global and South African citizens of all sexes.

Year Region Life expectancy at birth Life expectancy at age 60
Male Female Both sexes Male Female Both sexes

2000 Global 64.4 68.7 66.5 17.2 20.2 18.8
RSA 56.1 62.0 59.0 13.4 17.8 15.7

2005 Global 66.1 70.3 68.2 17.8 20.7 19.3
RSA 52.6 56.2 54.4 13.4 17.8 15.7

2010 Global 68.0 72.3 70.1 18.4 21.3 19.9
RSA 55.6 60.4 58.0 13.6 18.1 16.0

2016 Global 69.8 74.2 72 19 21.9 20.5
RSA 60.2 67.0 63.6 14.0 18.8 16.6

Increased longevity does, however, pose challenges. In a recent study, Allianz (2010) sur-

veyed US adults aged between 44 and 75; of the people surveyed, 61% reported being more

afraid of outliving their financial assets than dying! Similar findings were reported in a recent

survey in the UK (see, Institute and Faculty of Actuaries, 2019), where the majority of the

people surveyed believed they were not currently saving enough for retirement.

To illustrate some of the concerns faced by retirees, we need to look at life expectancy

post-retirement. Richman (2017) studied the mortality of those aged 75 and above in the South

African population, where he found mortality improvement rates of 0.7% and 0.1% per annum

over the period 1985-2011 for males and females respectively. However, mortality rates for the

population can be quite different to that of insured (or pensioner) lives. The most recent report

focusing on mortality rates of insured (or pensioner) lives in a South African context can be

found in CSI (2017) covering the period 2005-2010. Furthermore, Richman and Velcich (2020)

studied insured (or pensioner) lives mortality improvements in South Africa, where they found

that from their sample, that mortality improvements are slowing down at all ages.

It is evident from most recent reports on pensioner mortality in South Africa (CSI, 2017;

Richman, 2017; Richman and Velcich, 2020) that pensioners who reach their retirement years

could face 20 more years of life with substantial probability. The retiree, therefore, needs to
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understand the balance between periodic inflation adjusted payments to sustain living expenses

and avoid running out of capital - all given an inherently volatile investment environment (e.g.,

Scott et al., 2009).

In studies carried out by Butler and van Zyl (2012a,b), it was found that consumption rates

after retirement do not tend to decrease, as popularly believed, and may suggest the need of

an upward adjustment of retirement adequacy goals. Furthermore, they conclude that based on

their analysis, retirement before the age of 67 is unlikely to be affordable for most households.

Cooley et al. (1998) note,

“Most investors who plan for retirement eventually confront the question of how

much money they should plan to withdraw from their investment portfolio. The

dilemma is that if they withdraw too much, they prematurely exhaust the portfolio,

but if they withdraw too little, they unnecessarily lower their standard of living.”

Their conclusions, the so-called “4% safe withdrawal rate”, derived for the US-market are

often used as a rule-of-thumb by advisors to guide to “safe” inflation-adjusted spending by

retirees (see also, Bengen, 1994).

In the South African context, retirees choose between life annuities and living annuities1.

In particular, a life annuity is an insurance contract that provides the retiree with a stipulated

income for life. Alternately, living annuities allow the retiree the freedom to invest in a wide

range of investment product while drawing a monthly amount for pension - this amount is

currently limited, by South African law, to between 2.5% and 17.5% per annum. A life annuity

will typically leave no benefit to the pensioner’s estate, whereas a living annuity could bequeath

a substantial amount to their estate.

The 4% safe withdrawal rate studies by Cooley et al. (1998, 1999) were performed for

retirees in the United States. In 5.2, we demonstrate differences between asset class returns in

the United States and South Africa (over the period 1900 to 2015) using reference returns from

Dimson et al. (2016). Real asset-class returns are similar in both countries, however, we note

that South African inflation is typically significantly higher (and more volatile) than inflation in
1Typically referred to as income drawdown accounts in international markets.
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the United States.

Table 5.2: AM/GM (arithmetic/geometric) mean returns (% p.a.).

Asset class returns
US RSA

Asset Class AM GM StdDev AM GM StdDev
Nominal Equities 11.4% 9.4% 19.9% 14.7% 12.6% 22.9%

Bonds 5.3% 4.9% 9.0% 7.2% 6.8% 9.6%
Cash 3.8% 3.8% 2.9% 6.1% 6.0% 5.5%
Inflation 3.0% 2.9% 4.8% 5.2% 4.9% 7.3%

Real Equities 8.3% 6.4% 20.1% 9.4% 7.3% 22.1%
Bonds 2.5% 2.0% 10.4% 2.3% 1.8% 10.5%
Cash 1.0% 0.8% 4.6% 1.2% 1.0% 6.1%

Given the importance of retirement planning, a number of research papers can be found in

the literature (see, for example, Milevsky and Huang, 2011; Butler and van Zyl, 2012b; Waring

and Siegel, 2015; Maré, 2016; Rusconi, 2020; Klein and Sapra, 2020). Moreover, Maré (2016)

considers safe withdrawal rates in the South African context using different asset allocations

between stocks and bonds, and Rusconi (2020) considers regulatory and government policies

in the South African context.

Although, there have been numerous studies on safe withdrawal rates for different asset

allocations, fewer studies incorporate transactional fees (costs) and longevity into the analysis.

Therefore, the aim of our research is to,

(i) extend the research done by Maré (2016) by examining withdrawal rates (read synony-

mously with spending rates) in living annuities for South African retirees using an ex-

tended dataset of historical asset class returns over the period 1900 to 2020 for equity,

bonds, cash, and inflation. A basic requirement for any statistical analysis is that some

of the statistical properties of the data under study remains stable over time, which corre-

sponds to the stationarity hypothesis (see, Cont, 2001). In the analysis, we also consid-

ered reducing the historical dataset to more recent historical returns, where we found no

difference in the results.

(ii) incorporate transactional fees (costs) and longevity into the analysis. Longevity is a key

component in measuring the success of a portfolio, as a portfolio needs to outlast the indi-
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vidual’s life expectancy and not a predestined time of, for example, 30 years. Therefore, a

typical question would be to ask whether a 5% annual spending rate remains sustainable

for South African retirees. Since life expectancy is a vital part of retirement portfolio

success, we incorporate the conditional probability of surviving into our simulation.

(iii) consider the impact of hedging some of the downside of the equity market on the portfolio

safety.

Furthermore, we concur with Rusconi (2020) that research of this nature is highly relevant

given the well-established markets in South Africa. The data and asset classes used for this

study are primarily based on South African assets.

An outline of the rest of the chapter is as follows. In Section 5.2 we provide detail of

our general simulation methodology, which is based on randomly sampling (with replacement)

returns in a Monte Carlo simulation based on historical returns. We provide results in Section

5.3 with details on probabilities of depleting capital for various periods of investment. We

provide relevant conclusions and areas for further investigation in Section 5.4.

5.2 Methodology

Cooley et al. (1998, 1999) and Bengen (1994) proposed a bootstrap simulation approach for

calculating the end-of-period portfolio values from equities and bond returns for overlapping

periods (known as rolling periods). Furthermore, Cooley et al. (2003) also consider a Monte

Carlo simulation based on the distributional characteristics of the asset classes. In our study

we calculate end-of-period portfolio values from equities, bonds, and cash based on a bootstrap

simulation of the historical monthly asset returns.

5.2.1 Portfolio Make-up

The retirement portfolio process is typically structured as follows: an asset allocation is decided

based on advice from the retiree’s financial advisor, with the portfolio weights updated annually

(typically at the start of each year). In the cash account, we place a forecasted amount to be
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withdrawn from the portfolio for the year based on the particular withdrawal rate at retirement

and the December inflation rate. Thus, the monthly retirement spending is withdrawn from the

cash account. The remaining portfolio value is rebalanced between equity, bonds, and cash

according to the specified weighting structure.

In practice, institutions often demand a fee, such as advisor fees, for managing a retirement

portfolio. These costs could have a significant impact on the success of a retirement portfolio

and should be taken into account in retirement planning. Often there are three costs associated

in the managing of a retirement portfolio, namely fund management fees, platform fees, and

advisor fees. The fund management fees are typically structured as follows:

• Cash: 0.25% p.a.

• Bonds: 0.5% p.a.

• Equity: 0.75% p.a.,

where the platform and advisor fees are 0.5% and 1%, respectively, of the total portfolio value

per annum.

5.2.2 The Data

In this study, we will be making use of historical asset class returns as a guide to future returns.

The data used comprises historical equity, bonds, cash, and inflation total return performances

in South Africa for the period 1900 to 20202. This data consisted of monthly and yearly rates

(see Table 5.3). When only yearly rates were available, we approximated the monthly rates

by using the 12th root function of the yearly return rate and adjusting this rate with a monthly

seasonal adjustment factor based on average corresponding returns so that the monthly returns

match the yearly return.

2Sourced from Firer and McLeod (1999), Firer and Staunton (2002), and I-Net.
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Table 5.3: Data summary.

Yearly data Monthly data
Equity 1900-1959 1925-2020
Bonds 1900-1945 1946-2020
Cash 1900-1928 1929-2020

Inflation 1900-1938 1939-2020

The stylised facts present in the data are generally not easy to exhibit by using stochastic

processes (see, e.g., Cont, 2001), hence the preferred use of historical returns in this simulation

study. Although, historical returns do not necessary reflect future returns, the underlying statis-

tical properties, to some extent, remain stable over time. Figure 5.1a through Figure 5.1c show

the historical monthly returns over the period 1900 to 2020 for a portfolio consisting of equity,

bonds, and cash, in South Africa. While the individual asset-class returns are summarised in Ta-

ble 5.2, portfolios typically consist of a range of asset classes. Therefore, in Figure 5.1, we show

the historical returns for a typical balanced portfolio asset allocation. The sample correlation

matrix, based on total returns, is shown in Table 5.4.

Table 5.4: Correlation matrix.

Equity Bonds Cash Inflation
Equity 1.0000
Bonds 0.2434 1.0000
Cash 0.0455 0.2144 1.0000
Inflation 0.0342 0.0332 0.4391 1.0000

It is worthwhile to note that the South African equity market has witnessed a period of low

growth over the last decade (2008-2018)3, in-line with emerging markets, whereas the USA

has had a tremendous equity bull market over the same period. Withdrawals from a retirement

fund under a bear market are far more costly than withdrawals under a bull market and could

drastically reduce the success of the fund. This is known as sequence risk (see, e.g., Blanchett

et al., 2013).

It is important to note that our analysis is based on index returns; this decision is based

on data limitations - the longest representative dataset at our avail is limited to equity, bond,

3See, for example, Hugo (2017).
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(c) Portfolio (25% equity, 65% bonds and 10% cash) return

Figure 5.1: Annual returns for each asset class from 1900 to 2020.
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and cash returns. Furthermore, growth assets here are represented by equities, while we would

typically add some property exposure in practice as well. In the fixed income investment space

one would typically choose between a variety of bonds, which could alter risk/return ratios

relative to the index-based returns contained in the data.

5.2.3 Simulation by Random Sampling

Our methodology is based on a Monte Carlo simulation using the historical return data for our

asset classes (see Figure 5.1). Our data consist of monthly South African total-returns for each

asset class, i, namely cash, bonds, and equity (i.e., we assume full reinvestment of interest,

dividend proceeds and incidental accruals) over the period January 1900 to April 2020, i.e.,

X (i)
1 ,X (i)

2 , . . . ,X (i)
1444. From these historical returns we assume each X j has equal probability of

being selected. Furthermore, the jth sampled return is then used across all asset classes to keep

the correlation structure intact. Therefore, each path constitutes a random scenario based on the

monthly bootstrapped returns.

We consider an investment portfolio with a yearly rebalanced fixed asset allocation between

equities, bonds, and cash, and draw an income from the cash account on a monthly basis (in-

come is adjusted monthly for inflation, i.e., we look at real spending rates). Firstly, we consider

the Monte Carlo simulation over fixed investment periods of 15, 20, 25 and 30 years, assum-

ing no mortality, indicating the intended holding period of the portfolio for the retiree. It is

important to consider success rates for a fixed investment period, as it gives a retiree a better

understanding for retirement planning as the retiree’s longevity is unknown. Secondly, we con-

sider the simulation incorporating longevity using the South African pensioner mortality tables

(CSI, 2017) covering mortality in the years 2005-2010, and thirdly, we incorporate portfolio

costs into the simulation. The monthly portfolio value is, therefore, a function of the simulated

investment returns less the inflation adjusted amounts withdrawn (inclusive of levied costs) by

the retiree.

We consider a portfolio to be successful if it has capital left at the end of the specific

investment period considered. We report the portfolio success rates, i.e., the percentage of

portfolio values that are non-negative at the end of an investment period based on the simulations

described above (see, Bengen, 1994; Cooley et al., 1998, 1999). It is important to note that
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our analysis does not account for taxes; although, in principle, these can easily be taken into

account.4

5.3 Results

Practically, safe withdrawal rates are heavily dependent on the retiree’s longevity. In Table

5.5, we demonstrate portfolio success rates as a function of spending rates versus varying asset

allocations over a period of 15, 20, 25, and 30 years, ignoring longevity. More specifically, the

full year’s withdrawal amount is placed into a cash account at the beginning of each year, and

the remaining portfolio value is allocated between equity and bonds.

It is evident from the table that higher spending levels result in portfolios that will fail

the retiree within the total investment period, independent of the chosen asset allocation. It

is, however, interesting to note from the results that portfolios with more growth assets, such

as equities, have a higher propensity for success than portfolios that are more fixed-income

oriented.

To measure the extent of ruin, it is also instructive to consider the conditional expected

time to failure of the portfolio - we call this the fugit5. More specifically, in this context, the

fugit is defined to be the expected life of the portfolio given that the portfolio was unsuccessful

before the intended holding period, e.g., 30 years. The fugit is expressed in monthly periods;

200 months would, for example, mean the average failed portfolio lasts 200 months out of the

full intended investment period of 360 months. In Table 5.6, we demonstrate the portfolio fugit

along with the standard deviation in the time to ruin as a function of spending rates versus

varying asset allocations over a period of 30 years.

A key conclusion from Table 5.6 pertains to the spending rate - to sustain higher spending

rates, a retiree needs to be willing to allocate more to risk-bearing assets. This can be seen

by the shaded values in Table 5.6 which represents the largest expected time to ruin for each

withdrawal rate. However, this strategy comes with an increase in the variation in the time to

4Moreover, South African taxation rules on retirement portfolios can be found in Butler et al. (2013), Van Zyl
and Van Zyl (2016) and the Income Tax Act (South African Government, 1962 as amended)

5The term fugit was first introduced by Garman (1989) and was used to represent the optimal date to exercise
an American option.
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ruin. This needs to be clearly understood and forms a key consideration in the financial advisor

discussion process. Asset allocation appears to be of lesser concern when spending is low.

Table 5.5: Portfolio success rate given withdrawal rate vs. asset allocation (equity, bonds &
cash) over 30-year period.

Payout Period 4% 5% 6% 7% 8% 9% 10%
100% Equity
15 Years 100% 99% 96% 88% 80% 67% 54%
20 Years 98% 94% 87% 75% 62% 47% 33%
25 Years 96% 89% 78% 64% 49% 36% 24%
30 Years 94% 84% 70% 56% 42% 29% 19%

75% Equity / 25% Bonds
15 Years 100% 99% 97% 91% 79% 63% 43%
20 Years 99% 96% 86% 71% 53% 36% 21%
25 Years 97% 89% 75% 56% 38% 22% 12%
30 Years 94% 83% 66% 46% 28% 16% 8%

50% Equity / 50% Bonds
15 Years 100% 100% 98% 92% 75% 51% 29%
20 Years 100% 97% 85% 64% 38% 19% 7%
25 Years 98% 88% 66% 40% 19% 7% 2%
30 Years 95% 78% 51% 26% 10% 4% 1%

25% Equity / 75% Bonds
15 Years 100% 100% 99% 90% 63% 30% 9%
20 Years 100% 97% 77% 42% 13% 3% 0%
25 Years 98% 81% 43% 13% 2% 0% 0%
30 Years 91% 59% 22% 4% 1% 0% 0%

100% Bonds
15 Years 100% 100% 97% 74% 34% 8% 1%
20 Years 99% 89% 48% 12% 2% 0% 0%
25 Years 90% 48% 10% 1% 0% 0% 0%
30 Years 66% 20% 2% 0% 0% 0% 0%
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Table 5.6: Fugit given withdrawal rate and asset allocation (equity, bonds & cash) over 30-year
period (shaded values represent the largest expected time to ruin for each withdrawal rate).

Withdrawal rate
Asset allocation 4% 5% 6% 7% 8% 9% 10%
100% Stocks
Mean 272.8 262.4 247.1 230.4 212.7 198.1 181.2
Standard deviation 53.6 56.9 61.1 63.6 64.6 64.5 63.2
75% Stocks/25% Bonds
Mean 291.7 275.0 259.2 241.8 219.7 200.1 178.8
Standard deviation 45.7 50.8 55.7 59.1 59.9 59.7 56.2
50% Stocks/50% Bonds
Mean 306.4 293.3 272.0 245.5 218.4 191.2 165.8
Standard deviation 37.1 44.9 50.1 53.4 53.2 50.0 42.4
25% Stocks/75% Bonds
Mean 318.7 299.5 269.4 232.7 197.2 168.8 147.7
Standard deviation 30.8 39.2 45.2 44.9 38.0 29.0 23.4
100% Bonds
Mean 315.7 283.9 241.9 203.0 173.3 151.5 134.2
Standard deviation 30.3 39.4 39.6 31.9 25.2 20.0 16.2

In Figure 5.2 and Figure 5.3, we show the portfolio success rates across different withdrawal

rates and equity holdings, thus confirming that portfolios with higher success and longevity have

larger equity allocation. In Figure 5.4, we show some descriptive measures calculated from the

10 000 Monte Carlo simulations with a 75% equity ratio and a 5% initial portfolio withdrawal.

Although, we expect, the portfolio to have a positive balance at T = 30 years, it is also evident

from Figure 5.4a that there is a 5% chance that the portfolio will run out of money within 245

months (i.e., approximately 20 years). This is obviously not a desirable outcome for retirees,

even with low probability. In Figure 5.4b, we show the conditional probability of portfolio

success at time, t, given success at time, t − 1, where t ∈ [0,360] months. We note that the

conditional probability of success drastically increases from around 200 months, indicating the

importance of effective early portfolio management.
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Figure 5.2: Portfolio success and fugit over a 30 year period.

(a) Portfolio success (b) Portfolio fugit

Figure 5.3: Portfolio success and fugit over a 30 year period.
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Figure 5.4: Portfolio descriptive measures over time.

Figure 5.5 shows the mean and median drawdown per year (measured as a proportion of the

portfolio value) for the 10000 simulated scenarios. Due to the inflation adjusted withdrawals,

the drawdown increases exponentially over time. Furthermore, we also show the drawdown for

the first five simulations.
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(b) 75% equity with a 10% withdrawal rate

Figure 5.5: Drawdown as a portion of the portfolio capital (the figures also include 5 sample
paths of the 10 000 simulated paths).

Furthermore, the relationship between the mean yearly drawdown (as a proportion of the

portfolio value), and fugit is shown in Figure 5.6. The inverse relationship between the mean

yearly drawdown and fugit is clearly evident in Figure 5.6, where an average yearly drawdown

in excess of 10% is unlikely to last for a 30-year period.
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Figure 5.6: Relationship between the mean yearly drawdown (as a portion of the portfolio value)
and fugit.

In Table 5.7, we incorporate longevity into our simulation. Here we are simulating the

portfolio given the conditional probability of surviving6 between x and x+t. Factoring longevity

into the simulation improved the expected success rates of the portfolio. Furthermore, in Table

5.8, we factor fund management costs into the simulation. In our analysis, costs reduced the

portfolio success by up to 4%. This is obviously not a desirable outcome on an already strained

problem.

Table 5.7: Success rates with longevity.

Withdrawal rate as percentage of
initial investment value

Asset allocation 4% 5% 6% 7% 8% 9% 10%
100%Equity/0%Bonds 99% 96% 92% 87% 79% 72% 63%
75%Equity/25%Bonds 99% 97% 92% 85% 75% 66% 58%
50%Equity/50%Bonds 99% 97% 90% 80% 70% 60% 51%
25%Equity/75%Bonds 99% 94% 84% 72% 61% 52% 45%
0%Equity/100%Bonds 97% 87% 74% 63% 53% 46% 40%

6The conditional survival probabilities for the simulation were obtained from CSI (2017)
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Table 5.8: Success rates with fund costs and longevity.

Withdrawal rate as percentage of
initial investment value

Asset allocation 4% 5% 6% 7% 8% 9% 10%
100%Equity/0%Bonds 98% 95% 89% 82% 75% 67% 58%
75%Equity/25%Bonds 99% 95% 89% 80% 71% 61% 54%
50%Equity/50%Bonds 99% 94% 86% 76% 64% 55% 47%
25%Equity/75%Bonds 98% 91% 79% 66% 56% 48% 42%
0%Equity/100%Bonds 94% 82% 69% 59% 50% 44% 39%

The convergence of the sample mean and variance of portfolio success rates is shown in

Figure 5.7. Qualitatively, we see that the convergence graphs reach a flat region, indicating

convergence of the sample moments.

Retirees are often advised to carry portfolios with lower risk at retirement. That is, they

are advised to hold portfolios that have a larger asset allocation in fixed income and cash-

based securities. In Table 5.9, we show that this could drastically reduce the success rates of a

portfolio.
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Figure 5.7: Convergence of the sample mean and variance of portfolio success rates as functions
of the number of Monte Carlo simulations.
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Table 5.9: Portfolio with larger cash allocation.

Withdrawal rate as percentage of
initial investment value

Asset allocation 4% 5% 6% 7% 8% 9% 10%
85%Equity/0%Bonds/15%Cash 55% 48% 42% 37% 33% 30% 27%
75%Equity/10%Bonds/15%Cash 53% 46% 41% 36% 32% 29% 27%
50%Equity/35%Bonds/15%Cash 50% 44% 38% 35% 31% 28% 26%
25%Equity/60%Bonds/15%Cash 47% 41% 37% 33% 30% 27% 25%
0%Equity/85%Bonds/15%Cash 44% 39% 35% 31% 28% 26% 24%

The results in Table 5.9 indicate that we need to be very conscious of our spending habits.

We also need to ensure that we hold sufficient growth assets; although, these could introduce

more uncertainty to our portfolios. We can, however, mitigate some of the downside risks

associated with growth assets. In Table 5.10, we detail results where we protect equity holdings

against downside moves. To pay for the protection we sacrifice some upside returns, in this case

50% of the return above 4%. This is done as follows:

Protection: floor = -0.03, cap = 0.04, participation = 0.5, cost = 0.001, X = one-month Equity

return. Then the payoff is given as:

payoff = X +max(0,floor−X)−participation×max(0,X − cap)− cost. (5.1)

Table 5.10: Protecting equity returns for 5% and 10% spending rates.

5% 10%
Asset Allocation Protected equity Success Fugit Success Fugit

75% Equities / 25% Bonds No 83% 279.8 8% 179.7
75% Equities / 25% Bonds Yes 95% 312.6 3% 187.0
50% Equities / 50% Bonds No 78% 293.6 1% 166.5
50% Equities / 50% Bonds Yes 88% 315.5 0% 165.5
25% Equities / 75% Bonds No 59% 300.7 0% 148.7
25% Equities / 75% Bonds Yes 61% 310.8 0% 147.8

The results in Table 5.10 are encouraging, with improvements in both the fugit and success

rates in lower withdrawal rates. Moreover, these results further illustrate the main challenge

encountered by retirees is that large withdrawals are not sustainable for the success of a retire-

ment portfolio. The derivative protection strategy illustrated above can easily be implemented
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by buying put options and selling call options on the index on a rolling one-month basis. Our

analysis here is based on long-term average costs.7

5.4 Conclusion

We have presented a simulation-based approach to analyse withdrawal rates for retirement-

based portfolios in a South African setting. In our approach, we examine the distribution of

terminal account balances. Furthermore, we also calculate the probability that a retirees funds

will not be depleted. This corresponds to the notion of a safe withdrawal rate. Our results

show clearly that portfolio success rate is a rapidly decaying function of retirement spending

(measured on an annual inflation adjusted percentage basis). The notion of the portfolio fugit

provides insight into the expected failure time (or extent of ruin) of a portfolio and provides

insight into establishing the effects of path-dependence on portfolio success.

We observe, for low withdrawal rates, that asset allocation does not have a large influence

on the success of the portfolio. When we consider larger withdrawal rates, however, a higher

percentage of growth assets (such as equity) is needed, and even then the portfolio is not neces-

sarily sustainable.

We also detail that there are options to increase investment results, which entail growth as-

set protection by use of derivative instruments; in this chapter, we provided a proof of concept

towards this. However, in Chapter 6, we will further extend the use of derivates for the pro-

tection against large losses by using observed market prices in the analysis for a more accurate

assessment.

Scott et al. (2009) and Waring and Siegel (2015) criticised the framework of withdrawing a

fixed rate from a naturally volatile portfolio. In particular, there is no guarantee that historical

returns would be the same in the future. Therefore, the results obtained in this study indicate

that moderation and caution should be applied.

Cooley et al. (2003) note that “a portfolio is only successful if it lasts as long as required

by the retiree” - this motivates our use of incorporating longevity into the simulation of the

7Small variations in the parameters used in (5.1), resulted in small changes in the results reported in Table 5.10.
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portfolio success rate. It should be noted that other measures could be used and investigated as

well.

In conclusion our results showed that withdrawal rates depend critically on the investor’s

portfolio makeup and life expectancy. Withdrawal rates in excess of 5% is not sustainable over

a 30 year period, regardless of the portfolio makeup. Furthermore, our simulation showed that

the portfolio fugit is often shorter than the retiree’s life expectancy for larger withdrawal rates.

This indicates that retirees need to buy some life annuities in addition to living annuities. The

‘optimal’ incorporation of life annuities into one’s retirement portfolio could safeguard against

a complete loss of income – this reflects an area of future research.

Further research could be carried out in recalculating safe withdrawal rates each year based

on the portfolio value, economic climate, and expected lifetime in order to decrease the like-

lihood of running out of money before end of life. To achieve this, forward looking return

information would be vitally important. Furthermore, longevity risk remains an important and

challenging factor in determining safe retirement withdrawal rates. Therefore, an alternative

method to a hedging strategy is to mitigate the downside financial market risk (and achieve a

given level of portfolio return) by making use of target volatility strategies (see, e.g., Olivieri

et al., 2022). In addition, there is a wealth of stochastic mortality models, either in discrete-time

(see, e.g., Lee and Carter, 1992) or continuous-time (see, e.g., Blackburn and Sherris, 2013),

which may incorporate mortality uncertainties and shocks for the further development of risk

management strategies for retirement income portfolios.
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CHAPTER 6

THE RECOVERY THEOREM IN SAFE

RETIREMENT WITHDRAWAL RATES

This chapter is adapted from Van Appel and Maré (2022) and addresses the third research

question.

Chapter Synopsis

The focus of this chapter is on using forward-looking moments of the risk-neutral and real-

world asset distributions in determining safe withdrawal rates for South African retirees. The

use of forward-looking information, typically derived from traded derivative securities (rather

than historical data), is essential in optimising safe withdrawal rates for retirees. In particular,

we extracted the forward-looking risk-neutral and real-world distributions from option prices

on the South African FTSE/JSE Top 40 (Top40) index, where the moments of the distributions

were used as a signal in a simple tactical asset allocation framework. That is, when we expect

the growth asset to decrease in value, we hold cash (or short the asset) and, alternatively, when

we expect the growth asset to increase in value, we hold the growth asset for the period. Using

this approach, we show that it is possible to sustain withdrawal rates of up to 7% compared to

the commonly quoted 4% safe withdrawal rate obtained by historical simulations.

6.1 Introduction

Studies on safe retirement spending rates typically draw information from historical data (see,

e.g., Cooley et al., 1998, 1999; Bengen, 1994; Maré, 2016; Van Appel et al., 2021). A prime
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example of such a study is the commonly quoted “4% safe withdrawal rate” published in Coo-

ley et al. (1998), where the authors used historical data over the period 1926 to 1995 to assess

safe spending rates for retirees. The assumptions made in these studies are that the statistical

properties of historical returns remain stable over time. However, it is known that historical

(backward-looking) returns do not necessary predict future returns. Furthermore, in these stud-

ies, the authors assume a fixed asset allocation and a constant spending rate. Both assumptions

are heavily criticised in the literature (see, e.g., Van Appel et al., 2021; Scott et al., 2009; War-

ing and Siegel, 2015). It is well reported that people are living longer and face a further 20 to

30 years of life with substantial probability after retirement (see, e.g., World Health Organiza-

tion, 2020; Purdy, 2015; Ennart, 2012). Van Appel et al. (2021) demonstrated in an empirical

study, using historical data, that for higher spending rates, a higher allocation in growth assets is

needed. Even then, the portfolio is unlikely to be successful over a 30-year period (representing

a typical post-retirement investment cycle). Ideally, a retiree would like to draw as much as

possible, with a low probability of depleting the fund before their duration of life, or 30 years.

An important part of modelling is to generate scenarios for financial practitioners. In partic-

ular, it is important that these scenarios are as close as possible to the true representation of what

could happen. In extension of the work presented by Cooley et al. (1998, 1999), Bengen (1994),

and Maré (2016), the focus of this study is to improve the modelling of safe retirement spending

rates by using forward-looking information rather than historical information. It is well-known

that many large financial institutions regularly estimate forward-looking distributions from op-

tion prices in order to gain insights into the weights investors place on different future asset

prices (see, e.g., Shimko, 1993; de Vincent-Humphreys and Noss, 2012). Therefore, modelling

retirement withdrawal rates using forward-looking information should provide a more realistic

assessment of safe withdrawal rates. The main advantage of using forward-looking information

is that it allows for the implementation of a tactical asset allocation framework instead of a fixed

asset allocation structure that is used in the literature. This allows the portfolio to potentially

achieve higher asset returns, which increases the success rates of retirement portfolios. In par-

ticular, we would like to be invested in the risky (or growth) asset, when the return is expected

to be favourable to the portfolio. To assess when returns will be favourable, forward-looking

information should be used rather than historical data. We thereby will show that models based

on historical data do not provide an optimal representation of modelling retirement portfolio

success rates.
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This chapter is organised as follows. Firstly, we start by introducing methods for extracting

the one-month forward-looking risk-neutral and real-world return distributions from the prices

of traded derivative securities. Secondly, we use the extracted moments of the forward-looking

distributions in a simple tactical asset allocation framework, where we show that these forward-

looking distributions are useful in forecasting the movements in the underlying asset’s return.

A test on whether a forecast model is of value to financial practitioners depends on its usability.

Therefore, we thirdly apply the tactical asset allocation framework to determine safe retire-

ment withdrawal rates. Lastly, we carry out a robustness test to show that the forward-looking

moments of the real-world return distribution increases the success of a retirement portfolio

compared to a fixed asset allocation.

6.2 Methodology

Typically, safe retirement withdrawal rates are analysed by using models based on historical

data and Monte Carlo simulation (see, e.g., Cooley et al., 1998, 1999; Bengen, 1994; Maré,

2016; Van Appel et al., 2021; Scott et al., 2009; Scott, 1996; Abuizam, 2009). In particular,

Scott (1996) studied the impact that a portfolio’s rate of return has on safe withdrawal rates,

where she found that increasing the rate of return, by increasing the equity allocation, in the re-

tirement portfolio drastically increases safe withdrawal rates. However, this comes with higher

variability in returns (or risk) (see, e.g., Van Appel et al., 2021). Therefore, the aim of this sec-

tion is to use forward-looking information in a tactical asset allocation framework to maximise

portfolio returns and reduce the variability in returns.

6.2.1 Forward-Looking Return Distributions

To test the usability and practicality of the real-world distribution obtained by the recovery

theorem in determining safe withdrawal rates, we use the forward-looking forecasted moments

in a simple tactical asset allocation framework to obtain higher returns than a model based

purely on historical data with a fixed asset allocation next. In particular, we used the risk-neutral

density function extracted using the model-free approach (RND) and the real-world distribution

extracted using the recovery theorem with the multivariate regularisation approach (RWD-M)
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as the forecast of the future asset return distributions. Furthermore, we also consider a hedging

strategy by buying and selling put and call options, respectively.

6.2.2 Tactical Asset Allocation

In this section, we use the extracted forward-looking risk-neutral and real-world return dis-

tributions to forecast movements in the underlying asset returns. In particular, we extracted

the forward-looking risk-neutral and real-world distributions, at the start of each month, from

market-observed option prices quoted on the FTSE/JSE Top 40 index (Top40) over the period

August 1996 to January 2018 (sourced from the South African FTSE/JSE), giving a total of

259 forecast months (or 259 one-month forecast distributions). The Top40 index was used as it

is a key market factor in South Africa and, along with the exchange-traded derivatives on this

asset, is one of the most liquid in the South African market. Furthermore, the duration of the

sample (i.e., 21.5 years) would typically embrace at least three South African business cycles

(see, Thomson and Van Vuuren, 2016). Thereafter, we will use the extracted risk-neutral and

real-world moments in a simple tactical asset allocation framework to obtain higher returns for

the portfolio.

Investors are normally in search of higher returns, skewness and kurtosis, and lower volatil-

ity. Therefore, as outlined in Audrino et al. (2014) and Flint and Maré (2017), we carried out a

simple tactical asset allocation, where we hold the Top40 for the full month when the forecasted

moments (mean, skewness, and kurtosis) are higher than the previous month’s forecast, or when

the forecasted volatility is lower than the previous month’s forecast. Since trading occurs once

a month, there will be a limited number of trades, resulting in negligible transactional costs

(transactional costs are normally around two basis points). In particular, we found that trading

costs decreased yearly returns on average by no more than 0.2%. For completeness, all results

based on the tactical asset allocation framework reported in this paper will include transaction

costs.

Lastly, we also consider a fixed asset allocation framework by incorporating a hedging

strategy, where instead of selling the Top40 in the tactical asset allocation framework, we protect

the portfolio against large losses by buying put options. This strategy involves purchasing

put options with 6% out the money (OTM) strike with a 30% participation rate. Since put
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options are expensive, we offset the cost by selling call options with 1% OTM strike with a

30% participation rate. Since we are using observed market-quoted prices, these parameter

values were chosen such that it yielded stable and desirable results. That is, our index portfolio

value will evolve as follows:

π(t) = p(put)×π(t −1)×max
(

M(put)−Rt ,0
)

− p(call)×π(t −1)×max
(

Rt −M(call),0
)

+π(t −1)[1−P(t,M(put))× p(put)+C(t,M(call))× p(call)]×Rt , (6.1)

where π(t) represents the portfolio value at time t, p(·) represents the participation rates, M(·)

the moneyness rate, Rt the asset return, and P(t,M(put)) the market-quoted put option price.

The cumulative portfolio value over the period August 1996 to January 2018 for the simple

tactical asset allocation framework using the moments of the risk-neutral and real-world dis-

tributions is shown in Figure 6.1a and Figure 6.1b, respectively, if one unit of currency was

invested in the Top40 on August 1996.

In particular, Figure 6.1a shows the portfolio using the forecasted risk-neutral volatility in

returns as the signal in the tactical asset allocation framework yielded the best results. More-

over, the trading strategy using the risk-neutral kurtosis also outperformed the Top40, where the

trading strategy using the risk-neutral mean return yielded similar results to the Top40. Further-

more, the skewness yielded similar result to around 2005, but thereafter yielded poor results. In

Figure 6.1b, the real-world skewness in the simple tactical asset allocation framework yielded

the best results, where the volatility and mean yielded similar returns to the Top40, while the

kurtosis yielded poor results. Furthermore, Figure 6.1 shows that the tactical asset allocation

based on the real-world skewness significantly outperformed the risk-neutral moments. In both

the risk-neutral and real-world setting, the hedging strategy (with a fixed asset allocation as de-

scribed above) involving the buying and selling of put and call options did not perform as well

as the simple tactical asset allocation method. However, the hedging strategy did outperform

the Top40 throughout the duration of the study.

In Table 6.1, we show some descriptive statistics of the annualised returns using the volatil-

ity in the risk-neutral tactical asset allocation framework (RND TAA), and the skewness in

the real-world tactical asset allocation framework (RWD-M TAA). Furthermore, we also con-

sider the tactical asset allocation of combining both signals from the risk-neutral volatility and
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(a) A simple TAA using the risk-neurtal moments vs the Top 40 index returns.
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(b) A simple TAA using the real-world moments vs the Top40 index returns.

Figure 6.1: Tactical asset allocation with withdrawals returns.
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real-world skewness (RWD-M & RND TAA). That is, we hold the asset when the forecasted

risk-neutral volatility is lower than the previous month’s forecast and the forecasted real-world

skewness is higher than the previous month’s forecast. The hedging strategy, based on the risk-

neutral volatility (RND Hedge) and real-world skewness (RWD-M Hedge), is also shown in

Table 6.1.

Table 6.1: Descriptive statistics.

Mean Volatility Sharpe Ratio Skewness Kurtosis
Top40 13.62% 19.90% 0.23 -0.28 5.75
RND TAA 14.85% 14.63% 0.40 0.62 8.23
RWD-M TAA 17.13% 13.01% 0.63 0.39 6.16
RWD-M & RND TAA 15.73% 8.74% 0.77 2.35 12.79
RND Hedge 13.86% 18.32% 0.27 -0.03 5.02
RWD-M Hedge 14.12% 17.89% 0.29 -0.16 4.25

The tactical asset allocation strategy involving the real-world skewness yielded the highest

mean return over the sample period with a low variation in returns. The strategy involving the

combination of the real-world and risk-neutral moments yielded the lowest variation in returns

with a high expected return over our sample period. Low variation in returns, in conjunction

with high expected returns, is obviously a desirable property for investment managers.

In Table 6.2, we show the number of trades carried out in each tactical asset allocation

strategy shown in Table 6.1 over the total of 259 forecast months (or 21.5 years).

Table 6.2: Number of trades.

RND TAA RWD-M TAA RWD-M & RND TAA
Number of trades 139 167 111

In Figure 6.2 we show the monthly returns of the TAA strategies. Furthermore, the ticker

indicates a cash position. It is evident that RWD-M & RND TAA method is invested in cash

more often than the other methods, which resulted in fewer negative returns over the period of

study.1

1Cash returns has outperformed equity returns for a number of short-term cycles during our study period in
South Africa (see, e.g., Hugo, 2017), which is to the advantage of the RWD-M & RND TAA method.
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(a) TAA Returns: RND
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(b) TAA Returns: RWD-M
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(c) TAA Returns: RND & RWD-M

Figure 6.2: The monthly returns for the tactical asset allocation methods. The blue ticker indi-
cates a cash position and the black dots indicates the true Top40 index return.
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In the next section, we examine safe withdrawal rates in a forward-looking environment

using the tactical asset allocation framework.

6.3 Results

In this section, we will assume that a person retired on 01 August 1996 with one unit in re-

tirement savings. Furthermore, the retiree needs to decide how much to withdraw from the

retirement fund; draw too much and carry the risk of running out of money, or draw too little

and carry the risk of a compromised living standard. Therefore, in this section, we study the life

expectancy of a basic retirement portfolio with three commonly used withdrawal rates used in

the literature, namely 5%, 7%, and 10% per year of the initial portfolio size. Furthermore, these

withdrawals will be adjusted monthly according to inflation rates and historical cash returns

are used in the portfolio, which have been sourced form Firer and McLeod (1999), Firer and

Staunton (2002), and I-Net.

6.3.1 Safe Withdrawal Rates

In Figures 6.3, 6.4, and 6.5, we clearly see that the tactical asset allocation framework us-

ing the moments obtained from the forward-looking distributions outperformed the fixed asset

allocation for the duration of the period under study. In particular, Figure 6.3 shows the ac-

cumulated portfolio value for two different asset allocations (see Figures 6.3a and 6.3b), with

the risk-neutral volatility used in the tactical asset allocation framework described in the sec-

tion above. Similarly, Figures 6.4 and 6.5 show the accumulated portfolio values using the

real-world skewness and the combination of the real-world skewness and risk-neutral volatil-

ity in the tactical asset allocation framework, respectively. Furthermore, combining the signal

from the risk-neutral volatility and the real-world skewness yielded superior fund prospects for

higher withdrawal rates (see Figure 6.5). Although this strategy does not yield the highest mean

return over the sample period (see Table 6.1), it has the least variation in returns. In particular,

Scott et al. (2009), and Waring and Siegel (2015) criticised the notion of withdrawing a fixed

real amount from an inherently volatile portfolio. This is known as sequence risk. Therefore,

reducing the variation in returns is vitally important in determining safe retirement withdrawal
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rates. This is particularly evident in Figure 6.5, where a high withdrawal rate of 10% yielded

higher portfolio prospects than only using the real-world skewness.
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Figure 6.3: The accumulated portfolio value for a fixed asset allocation vs. the risk-neutral tac-
tical asset allocation (RND TAA) framework with withdrawal rates of {5%, 7%, 10%} returns.
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Figure 6.4: The accumulated portfolio value for a fixed asset allocation vs. the real-world
tactical asset allocation (RWD-M TAA) framework with withdrawal rates of {5%, 7%, 10%}
returns.
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Figure 6.5: The accumulated portfolio value for a fixed asset allocation vs. the real-world and
risk-neutral tactical asset allocation (RWD-M & RND TAA) framework with withdrawal rates
of {5%, 7%, 10%} returns.
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Next, we assess the robustness of the tactical asset allocation framework in determining

safe retirement withdrawal rates. In particular, the robust analysis is carried out to determine

how much, if any, of the improvements above the commonly quoted 4% safe withdrawal rate is

attributed to using forward-looking information, rather than the different market or time periods

used in this study.

6.3.2 Robust Analysis

In order to assess the robustness of the forward-looking distributions in modelling safe with-

drawal rates, we carried out a random sampling study. We randomly selected, with replace-

ment, a month from the sample period and used the equity, bonds, and cash returns to generate

a one-month sample path. In the tactical asset allocation framework, we also used the previous

month’s forecasted moments of the randomly selected month to determine the portfolio asset

allocation. We then continue to randomly sample from the period to simulate a 30-year period.

We, therefore, simulate the evolution of the portfolio over a 30-year period and construct 10

000 such sample paths. This approach maintains the correlation structure between the assets,

as we are using the true observed returns for the selected month for all assets. In Table 6.3,

we show the success rates based on the fixed asset allocation versus the tactical asset allocation

framework using the real-world skewness. We found similar results, in our sample, to the com-

monly quoted 4% safe withdrawal rate using historical (backward-looking) returns. However,

by using forward-looking information in a tactical asset allocation framework, we were able to

show significantly improved safe withdrawal rates. Furthermore, in Table 6.4, we calculated the

fugit of the retirement portfolio. In this study, the fugit is defined as the expected duration of

the portfolio given that the portfolio fails before the predefined 30-year duration.

It is evident from Table 6.3 and Table 6.4 that the simple tactical asset allocation framework,

using the forward-looking real-world skewness, yielded superior success and fugit rates to the

strategy that involved the fixed asset allocation. In particular, as the tactical asset allocation is

based on either holding, or selling, the growth asset for a one-month period, the strategy is most

prominent with a large growth asset allocation. Furthermore, these results illustrate that one can

possibly achieve high portfolio success rates when making use of forward-looking information

in the portfolio management.
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Table 6.3: Success rates.

Withdrawal rate
Asset allocation 4% 5% 6% 7% 8% 9% 10%
Fixed asset allocation:
100% Stocks 79% 66% 52% 40% 30% 21% 14%
75% Stocks/25% Bonds 89% 77% 61% 45% 32% 20% 13%
50% Stocks/50% Bonds 96% 86% 70% 50% 31% 18% 10%
25% Stocks/75% Bonds 99% 92% 76% 54% 29% 13% 5%
Real-World TAA:
100% Stocks 100% 98% 95% 86% 72% 59% 41%
75% Stocks/25% Bonds 100% 99% 96% 87% 71% 52% 31%
50% Stocks/50% Bonds 100% 100% 97% 85% 63% 37% 17%
25% Stocks/75% Bonds 100% 99% 93% 73% 44% 19% 6%

Table 6.4: Fugit.

Withdrawal rate
Asset allocation 4% 5% 6% 7% 8% 9% 10%
Fixed asset allocation:
100% Stocks 256 239 223 207 193 178 165
75% Stocks/25% Bonds 276 259 243 226 210 190 175
50% Stocks/50% Bonds 296 281 262 247 226 204 184
25% Stocks/75% Bonds 308 297 281 263 240 213 188
Real-World TAA:
100% Stocks 294 283 268 257 242 226 208
75% Stocks/25% Bonds 322 308 296 276 258 239 218
50% Stocks/50% Bonds 272 313 304 288 268 245 217
25% Stocks/75% Bonds 340 314 303 285 262 235 205

6.4 Conclusion

In this study, we used forward-looking information, extracted from observed market-quoted

derivative prices to determine safe retirement withdrawal rates. In particular, we extracted the

forward-looking risk-neutral and real-world return distribution functions, where the distribution

moments were used as a signal in a simple tactical asset allocation framework. We found

that using forward-looking information in a tactical asset allocation framework yielded higher

portfolio returns with a lower variation in returns compared to the portfolio with a fixed asset

allocation.
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It is well-known that many large financial firms frequently extract forward-looking infor-

mation from derivative securities to infer market sentiment. Therefore, using a forward-looking

modelling approach provided a more market consistent analysis of safe retirement withdrawal

rates. We found that the portfolio based on the forward-looking real-world skewness in a tacti-

cal asset allocation framework supported safe withdrawal rates of up to 7% per annum (inflation

adjusted). This strategy obtained similar success rates to the previously quoted 4% safe with-

drawal rate determined from the fixed asset allocation based on historical returns. Thus, the

performance of the real-world moments, used as a signal in a tactical asset allocation, allows

for the possibility of higher withdrawal rates with high success rates. This confirms the useful-

ness of using forward-looking real-world moments in the management of retirement portfolios

to improve the modelling of safe retirement withdrawal rates.
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CHAPTER 7

SUMMARY AND CONCLUSION

In this thesis, we have studied several methods for extracting the forecast distribution from

market quoted prices for decision making. In particular, we have extracted the historical return

distribution, and the forward-looking risk-neutral and real-world return distributions using the

South African Top40 index. It is well-known that distributions based solely on historical returns

do not typically capture the current market sentiment, as they are backward-looking by nature.

This was particularly evident during high volatility periods in our empirical study, such as,

during the global financial crisis period.

Forward-looking risk-neutral distributions extracted from option prices are popular among

many financial practitioners as they capture some market sentiment, and often provide a bet-

ter forecast than historical based distributions (see, e.g., Shackleton et al., 2010; de Vincent-

Humphreys and Noss, 2012; Christoffersen et al., 2013; Crisóstomo and Couso, 2018). How-

ever, risk-neutral distributions are typically biased estimators of the future asset return distribu-

tion, as it is used to recover traded option prices in a way that avoids arbitrage. Investors are

typically risk-averse, and therefore the risk-neutral distribution does not accurately capture the

true market sentiment of the possible return. However, the existence of bias in the risk-neutral

distribution does not prevent option-implied information from being valuable for decision mak-

ing (see, e.g., Christoffersen et al., 2013). In particular, by removing the bias in the estimator, by

transforming the risk-neutral distribution into a real-world distribution, may also introduce bias

in the distribution, as these methods typically involve making use of historical returns and as-

sumptions on investor preference. This has largely hampered the use of real-world distributions

by many financial practitioners. However, it is important to extract accurate real-world distri-

butions as it contains more information than the risk-neutral distribution, such as the pricing

kernel and risk-premium.
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Extracting real-world forecast distributions is vitally important for forecasting and there-

fore formed part of our first research question. In particular, we firstly introduced the reader

to methods of extracting the risk-neutral distribution from option prices and then transforming

the distribution into a real-world distribution. These transformation methods include a paramet-

ric and non-parametric calibration function proposed by Liu et al. (2007) and Shackleton et al.

(2010), respectively, and a behavioural transformation method proposed by Cristóstomo (2021).

Secondly, we also considered the recovery theorem, proposed by Ross (2015), which recovers

the real-world distribution from the richer risk-neutral transition probability matrix. In order to

obtain a more accurate forecast distribution using the recovery theorem, we proposed a regu-

larised multivariate Markov chain with prior information to estimate the risk-neutral transition

probability matrix more accurately (see, Van Appel and Maré, 2018). Our empirical findings

showed that this method yielded better results than the distribution extracted using the basic

recovery theorem.

Research into the forecasting ability of the real-world return distribution is scarce in the

literature and therefore formed part of our second research question. In our empirical analysis,

we extracted weekly one-month forecast distributions for the South African JSE/FTSE Top 40

index over the period September 2005 to January 2018 for the methods studied in this thesis

(see, Van Appel and Maré, 2021, 2020b). The accuracy of these return distributions were then

evaluated and compared by carrying out several backtests using PIT-based goodness-of-fit tests

and VaR tests. We found that certain models performed better during certain economic condi-

tions. Therefore, we further studied the mixture of historical and option-implied information to

improve the accuracy of the forecast distribution. In order to optimally mix two distributions,

we proposed two mixing parameters that are both functions of the implied volatility, as it is

considered a reliable proxy of the market’s future state. In our empirical study, we found that

the extracted real-world and mixture distributions yielded superior forecasts to the risk-neutral

distribution.

Key features of the real-world distribution, such as the higher order moments, and measures

such as the change in the risk-premium and pricing kernel, have become extremely powerful in

forecasting future returns (see, e.g., Cuesdeanu and Jackwerth, 2018a; de Vincent-Humphreys

and Noss, 2012; Christoffersen et al., 2013). In particular, the pricing kernel, risk-premium

and higher moments are all related to preferences, and thereby identifying the changes in these
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measures provides information about the change in the market’s risk aversion (or sentiment)

(see, eg., Cuesdeanu and Jackwerth, 2018a). Therefore, in this thesis, we applied the extracted

distributions to the problem of modelling safe retirement withdrawal rates. This formed part

of our third research question. Our empirical findings showed that a portfolio with a fixed

asset allocation typically supported a safe inflation adjusted withdrawal rate of 4% per annum

(see, Van Appel et al., 2021). This corresponds to the commonly advised safe withdrawal

rates reported in local and international literature (see, e.g., Cooley et al., 1998, 1999, 2003;

Bengen, 1994; Scott et al., 2009; Maré, 2016; Van Appel et al., 2021). These studies typically

involved bootstrapping from historical returns for each asset class. However, by using forward-

looking information, in a tactical asset allocation framework, we showed that it is possible to

achieve safe withdrawal rates of up to 7% (see, Van Appel and Maré, 2022). This is obviously

more desirable for retirees, as retirees would typically like to draw as much as possible, to not

compromise their living standards, but with a low probability of running out of funds.

We leave as further research a number of extensions. Firstly, the mixing of forward-looking

and historical information is a desirable method of obtaining more accurate forecasts. However,

more research can be done in optimally mixing the historical and forward-looking information

(see, e.g., Kapetanios et al., 2015; Timmermann, 2006). Secondly, further research could be

done in testing the forecasting performance of other forward-looking measures in determining

an optimal safe retirement withdrawal rate. That is, proxies such as the risk-premium and be-

havioural parameters are vitally important when constructing an optimal trading strategy, which

could be used in the management of retirement funds. Furthermore, the use of forward-looking

distributions could also be used to optimally incorporating life annuities into a retirement port-

folio which will also be a valuable contribution (see, e.g., Dus et al., 2005).
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APPENDIX A

THE HESTON AND BATES CLOSED-FORM

EUROPEAN CALL OPTION PRICING

FORMULA

A.1 The Characteristic Function for the Heston Model

The closed-form characteristic function for the Heston model is given as (see, e.g., Heston,

1993; Kienitz and Wetterau, 2012):

ψ(u) = exp[A(u, t,T )+B(u, t,T )Vt + iu{log(St)+(r−d)(T − t)}], (A.1)

where

A(u, t,T ) =
κθ

ν2

[
(κ −ρνui−D)(T − t)−2log

(
Gexp[−D(T − t)]

G−1
−1
)]

, (A.2)

B(u, t,T ) =
κ −ρνui−D

ν2

(
1− exp[−D(T − t)]

1−Gexp[−D(T − t)]

)
, (A.3)

G =
κ −ρνui−D
κ −ρνui+D

, (A.4)

and

D =
√
(κ −ρνui)2 +u(i+u)ν2. (A.5)
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A.2 The Characteristic Function for the Bates Model

The closed-form characteristic function for the Bates model is give as (see, e.g., Bates, 1996;

Kienitz and Wetterau, 2012):

ψ(u) = exp[A(u, t,T )+B(u, t,T )Vt + iu{log(St)+(r−d)(T − t)}+H(u, t,T )], (A.6)

where

A(u, t,T ) =
κθ

ν2

[
(κ −ρνui−D)(T − t)−2log

(
Gexp[−D(T − t)]

G−1
−1
)]

, (A.7)

B(u, t,T ) =
κ −ρνui−D

ν2

(
1− exp[−D(T − t)]

1−Gexp[−D(T − t)]

)
, (A.8)

G =
κ −ρνui−D
κ −ρνui+D

, (A.9)

D =
√

(κ −ρνui)2 +u(i+u)ν2 (A.10)

H(u, t,T ) = λ (T − t)
(
−aiu+

(
exp
(

iu log(1+a)+
1
2

b2iu(iu−1)
)
−1
))

, (A.11)

µJ = log(1+a)− b2

2
, σJ = b, a >−1, and b ≥ 0. (A.12)

A.3 Closed-form European Call Option Pricing Formula

Using the characteristic function, ψ , we can numerically determine the value of a European call

option as follows (see, e.g., Carr and Madan, 1999; Rouah, 2013):

C(T,K) = e−dT S0P1 − e−rT KP2, (A.13)

where the delta of the option, P1, is:

P1 =
1
2
+

1
π

∫
∞

0
Re
[

e−iu logKψ(u− i)
iuψ(−i)

]
du, (A.14)

and the risk-neutral probability of finishing in-the-money, P2, is:

P2 = P(ST > K) =
1
2
+

1
π

∫
∞

0
Re
[

e−iu logKψ(u)
iu

]
du. (A.15)

For optimal numerical methods for solving (A.13), we refer the interested reader to Carr

and Madan (1999), Kienitz and Wetterau (2012, Chapter 5), and Rouah (2013, Chapter 3).
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APPENDIX B

ADDITIONAL VAR BACKTESTING

RESULTS

This appendix formed part of Van Appel and Maré (2020b). The recovery theorem with

application to risk management, South African Statistical Journal, 54(1): 65-91.

In this appendix, we give a short description of the VaR backtests that is part of the MATLAB

Risk Management Toolbox (2018).

• The traffic light (TL) test classifies the number of failures into three zones, namely, green,

yellow, and red using a binomial distribution, F(x|n, p) (see, Basle Committee of Bank-

ing Supervision, 2011). In particular, the test computes the cumulative probability of

observing up to x failures in n trails, with p = α and three zones:

– Green: F(x|n, p)≤ 0.95

– Yellow: 0.95 < F(x|n, p)≤ 0.9999

– Red: F(x|n, p)> 0.9999.

This test is often used as a preliminary VaR accuracy check.

• The binomial (Bin) distribution test is an extension of Christoffersen (1998) Bernoulli

test. It states that if It are i.i.d Bernoulli with parameter p, then the total number of

failures, x, follows a binomial distribution with mean and variance equal to np and np(1−
p) respectively. Under the null hypothesis, H0 : p = α , the test statistic is approximated

by

z =
x−np√
np(1− p)

, (B.1)
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which has a standard normal distribution.

• The proportion of failures (POF) test is a LR test proposed by Kupiec (1995). More specif-

ically, the POF test determines whether the proportion of failures (i.e., number of failures

divided by number of observations) denoted as p̂ is consistent with the VaR confidence

level. Under the null hypothesis, H0 : p = α , the LR test statistics is:

LRPOF =−2log
[
(1− p)n−x px]+2log

[
(1− p̂)n−x(p̂)x]∼ χ

2(1). (B.2)

• The time until first failure (TUFF) test, proposed by Kupiec (1995), is a LR test that

measures the time until the first failure. Under the null hypothesis, H0 : p = 1/v, where v

is the time until the first failure in the sample, the LR test statistic is

LRTUFF =−2log
[

p(1− p)v−1

p̂(1− p̂)v−1

]
∼ χ

2(1). (B.3)

The TUFF test is mostly used as a preliminary test to the POF test. Furthermore, it only

considers the number of failures but not the time dynamics of the failures. The test also

has been shown to have a low power in identifying poor VaR models.

• The conditional coverage independence (CCI) test, also known as the Markov test, as-

sesses whether the probability of VaR failure for any given period is dependent on the

outcome of the previous period (see, Christoffersen, 1998). Using the indicator value in

(4.4) and let Ni, j, i = 0,1, j = 0,1 be the number of periods in which state j occurred

after state i occurred. Then let π0 be the conditional probability of having a failure at

time t, given that there was no failure at time t − 1. Similarly, let π1 be the conditional

probability of having a failure at time t, given that there was a failure at time t −1. Under

H0 : π0 = π1, the LR test statistic is given as:

LRCCI =−2log
[
(1−π)N00+N01π

N01+N11
]

+2log
[
(1−π0)

N00π
N01
0 (1−π1)

N10π
N11
1

]
∼ χ

2(1), (B.4)

where π = π0 +π1.

• The conditional coverage (CC) mixed test is a combination of the CCI test and the POF

test. The CC test assesses whether the failures are independent and whether the correct

failure rate is obtained (see, Christoffersen, 1998). The LR test statistic is

LRCC = LRCCI +LRPOF ∼ χ
2(2). (B.5)
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A VaR model must therefore satisfy both independence and the correct failure rate in this

test, making this test appealing to practitioners.

• The time between failures independence (TBTI) test proposed by Haas (2001) is an ex-

tension of Kupiec’s time until first failure (TUFF) test by not only testing the time until

the first failure, but also the time between all failures. Under the null hypothesis, that

failures are independent from each other, the LR test statistic is

LRT BFI =
x

∑
i=2

[
−2log

(
p(1− p)vi−1

p̂(1− p̂)vi−1

)]
−2log

[
p(1− p)v−1

p̂(1− p̂)v−1

]
∼ χ

2(x), (B.6)

where vi denotes the duration between the ith and (i− 1)th failure, v the time until the

first failure and x the number of failures in the sample.

• The time between failures (TBF) likelihood ratio test, introduces by Haas (2001), is a

mixed LR test. Under the null hypothesis, that the correct failure rate is obtained and that

the failures are independent, the test statistic is

LRTBF = LRPOF +LRTBFI. (B.7)

This test statistics is χ2(x+1) distributed, where x is the number of failures. The advan-

tage to this test is that it is robust, since it identifies problems in dependencies and the

number of failures.

Using the MATLAB Risk Management Toolbox (2018), we show the backtest results obtained

for the monthly one-month VaR(0.95) and VaR(0.90) in Tables B.1 and B.2, respectively. In

addition, Table B.4 shows the weekly one-week VaR(0.90).
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Table B.1: Goodness-of-fit: one-month VaR(0.95) backtests.

Panel A: Monthly one-month returns
Method TL Bin POF TUFF CC CCI TBF TBFI

Monthly (Sep 2005 - Jan 2018)
Historical green accept accept accept reject reject reject reject
Historical HW green accept accept accept accept accept accept accept
RND green reject reject accept reject accept reject accept
Heston green accept accept accept accept accept accept accept
Bates green accept accept accept accept accept accept accept
RWD green accept accept accept accept accept accept accept
RWD-M green accept accept accept accept accept accept accept

Panel B: Weekly one-month returns
Method TL Bin POF TUFF CC CCI TBF TBFI

Weekly one-Month returns: Sep 2005 - Dec 2007 (Pre-Crisis)
Historical green accept accept accept reject reject reject reject
Historical HW green accept accept accept accept reject reject reject
RND green reject reject accept reject accept reject accept
Heston green accept accept accept reject reject reject reject
Bates green accept accept accept reject reject reject reject
RWD green accept accept accept accept accept accept accept
RWD-M green accept reject accept accept accept accept accept

Weekly one-Month returns: Jan 2008 - Dec 2009 (Crisis)
Historical yellow reject reject accept reject reject reject reject
Historical HW yellow accept accept accept reject reject reject reject
RND green accept accept accept reject reject reject reject
Heston green accept accept accept reject reject reject reject
Bates green accept accept accept reject reject reject reject
RWD green accept accept accept reject reject reject reject
RWD-M green accept accept accept reject reject reject reject

Weekly one-Month returns: Jan 2010 - Jan 2018 (Post-Crisis)
Historical green accept accept accept reject reject reject reject
Historical HW green accept accept accept reject reject reject reject
RND green reject reject reject reject accept reject reject
Heston green reject reject reject reject accept reject reject
Bates green reject reject accept reject accept reject reject
RWD green reject reject accept reject accept reject reject
RWD-M green reject reject accept reject accept reject accept

Weekly one-Month returns: Sep 2005 - Jan 2018
Historical green accept accept accept reject reject reject reject
Historical HW green accept accept accept reject reject reject reject
RND green reject reject accept reject reject reject reject
Heston green reject reject accept reject reject reject reject
Bates green reject reject accept reject reject reject reject
RWD green reject reject accept reject reject reject reject
RWD-M green reject reject accept reject reject reject reject
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Table B.2: Goodness-of-fit: one-month VaR(0.90) backtests.

Panel A: Monthly one-month returns
Method TL Bin POF TUFF CC CCI TBF TBFI

Monthly (Sep 2005 - Jan 2018)
Historical green accept accept accept accept accept reject reject
Historical HW green accept accept accept accept accept accept accept
RND green reject reject accept accept accept accept accept
Heston green accept accept accept accept accept accept accept
Bates green accept accept accept accept accept accept accept
RWD green accept accept accept accept accept accept accept
RWD-M green accept accept accept accept accept accept accept

Panel B: Weekly one-month returns
Method TL Bin POF TUFF CC CCI TBF TBFI

Weekly one-Month returns: Sep 2005 - Dec 2007 (Pre-Crisis)
Historical green accept accept accept reject reject reject reject
Historical HW green accept accept accept reject reject reject reject
RND green reject reject accept reject reject reject reject
Heston green accept reject accept reject reject reject reject
Bates green accept reject accept reject reject reject reject
RWD green reject reject accept reject reject reject reject
RWD-M green reject reject accept reject reject reject reject

Weekly one-Month returns: Jan 2008 - Dec 2009 (Crisis)
Historical yellow reject reject accept reject reject reject reject
Historical HW green accept accept accept reject reject reject reject
RND green accept accept accept reject reject reject reject
Heston green accept accept accept reject reject reject reject
Bates green accept accept accept reject reject reject reject
RWD green accept accept accept reject reject reject reject
RWD-M green accept accept accept reject reject reject reject

Weekly one-Month returns: Jan 2010 - Jan 2018 (Post-Crisis)
Historical green reject reject accept reject reject reject reject
Historical HW green accept accept accept reject reject reject reject
RND green reject reject reject reject reject reject reject
Heston green reject reject reject reject reject reject reject
Bates green reject reject reject reject reject reject reject
RWD green reject reject reject reject reject reject reject
RWD-M green reject reject accept reject reject reject reject

Weekly one-Month returns: Sep 2005 - Jan 2018
Historical green reject reject accept reject reject reject reject
Historical HW green accept accept accept reject reject reject reject
RND green reject reject accept reject reject reject reject
Heston green reject reject accept reject reject reject reject
Bates green reject reject accept reject reject reject reject
RWD green reject reject accept reject reject reject reject
RWD-M green reject reject accept reject reject reject reject
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Table B.3: Goodness-of-fit: weekly one-week VaR(0.95) backtests.

Method TL Bin POF TUFF CC CCI TBF TBFI
Weekly one-week returns: Sep 2005 - Dec 2007 (Pre-Crisis)

Historical green accept accept accept accept accept accept accept
Historical HW green accept accept accept accept accept accept accept
RND green accept accept accept accept accept accept accept
Heston green accept accept accept accept accept accept accept
Bates green accept accept accept accept accept accept accept
RWD green accept accept accept accept accept accept accept
RWD-M green accept accept accept accept accept accept accept

Weekly one-week returns: Jan 2008 - Dec 2009 (Crisis)
Historical yellow reject reject reject accept accept reject reject
Historical HW green accept accept reject accept accept reject reject
RND green accept accept accept accept accept accept accept
Heston green accept accept accept accept accept accept accept
Bates green accept accept accept accept accept accept accept
RWD green accept accept accept accept accept accept accept
RWD-M green accept accept accept accept accept accept accept

Weekly one-week returns: Jan 2010 - Jan 2018 (Post-Crisis)
Historical green reject reject accept reject accept reject accept
Historical HW green accept accept accept accept accept accept accept
RND green reject reject accept reject accept reject reject
Heston green reject reject accept reject accept reject reject
Bates green reject reject accept reject accept reject reject
RWD green reject reject accept reject accept reject accept
RWD-M green reject reject accept reject accept accept accept

Weekly one-week returns: Sep 2005 - Jan 2018
Historical green accept accept accept accept accept reject reject
Historical HW green accept accept accept accept accept accept reject
RND green reject reject accept reject accept reject reject
Heston green reject reject accept reject accept reject reject
Bates green reject reject accept reject accept reject reject
RWD green reject reject accept reject accept reject accept
RWD-M green reject reject accept reject accept accept accept
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Table B.4: Goodness-of-fit: weekly one-week VaR(0.90) backtests.

Method TL Bin POF TUFF CC CCI TBF TBFI
Weekly one-week returns: Sep 2005 - Dec 2007 (Pre-Crisis)

Historical green accept accept accept accept accept accept accept
Historical HW green accept accept accept accept accept accept accept
RND green accept reject accept accept accept accept accept
Heston green accept accept accept accept accept accept accept
Bates green accept accept accept accept accept accept accept
RWD green accept reject accept accept accept accept accept
RWD-M green accept accept accept accept accept accept accept

Weekly one-week returns: Jan 2008 - Dec 2009 (Crisis)
Historical yellow reject reject reject reject reject reject reject
Historical HW green accept accept reject accept accept accept accept
RND green accept accept accept accept accept accept accept
Heston green accept accept reject accept accept accept accept
Bates green accept accept reject accept accept accept accept
RWD green accept accept accept accept accept accept accept
RWD-M green accept accept accept accept accept accept accept

Weekly one-week returns: Jan 2010 - Jan 2018 (Post-Crisis)
Historical green accept accept accept accept accept reject reject
Historical HW green accept accept accept accept accept accept accept
RND green reject reject accept reject accept reject reject
Heston green reject reject accept reject accept reject reject
Bates green reject reject accept reject accept reject reject
RWD green reject reject accept reject accept reject reject
RWD-M accept accept accept accept accept accept accept accept

Weekly one-week returns: Sep 2005 - Jan 2018
Historical green accept accept accept reject reject reject reject
Historical HW green accept accept accept accept accept accept reject
RND green reject reject accept reject accept reject reject
Heston green reject reject accept reject accept reject reject
Bates green reject reject accept reject accept reject reject
RWD green reject reject accept reject accept reject accept
RWD-M green reject reject accept accept accept accept accept
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Van Appel, V. and Maré, E. (2020a). Die herwinningstelling met toepassing op risikobestuur.

Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie, 39(1):133.
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