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SYMMETRIC 1-DESIGNS FROM PSL2(q), FOR q A POWER OF AN ODD

PRIME

XAVIER MBAALE AND BERNARDO G. RODRIGUES∗

Abstract. Let G = PSL2(q), where q is a power of an odd prime. Let M be a maximal subgroup of G.

Define
{

|M|
|M∩Mg| : g ∈ G

}
to be the set of orbit lengths of the primitive action of G on the conjugates

of a maximal subgroup M of G. By using a method described by Key and Moori in the literature, we

construct all primitive symmetric 1-designs that admit G as a permutation group of automorphisms.

1. Introduction

A program to determine symmetric 1-designs invariant under finite primitive permutation groups

has been considered by Key and Moori in [9]. In [11] (see also [13]), Key and Moori described another

method of construction of designs which considers the action of the groups on the conjugacy classes

of elements and maximal subgroups. In this case the designs are not necessarily symmetric. These

methods have been called Method 1 and Method 2, respectively in the literature [15].

Darafsheh [4] using Method 1 constructed designs from PSL2(q), for q even and a pair of its maximal

subgroups of dihedral type. In [16] Moori and Saeidi using Method 1 and Method 2 constructed

PSL2(q)-invariant designs for q > 2 a power of 2 for the remaining maximal subgroups not considered

in [4]. In [13] and [14], Moori applied Method 2 to construct designs and codes from some maximal

subgroups of PSL2(q), for some prime powers of q.
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In a forthcoming paper, using Method 2 we deal with the remaining classes of maximal subgroups

not considered in [13] and [14] and thus complete the classification of PSL2(q) invariant designs using

both Method 1 and Method 2.

Given that primitive groups of the same class need not have uniform structural properties, the

various classes of groups appear to need to be examined separately, although similar techniques can

be used over various classes. In particular, [12] gives a complete account on the designs constructed

from the primitive action of the projective general linear group PGL2(q) for q = pn a power of an odd

prime p.

In this paper we consider all conjugacy classes of maximal subgroups of PSL2(q) for q = pn, where

p is an odd prime and using Method 1 we construct all primitive, self-dual and symmetric 1-designs

that admit PSL2(q) as a permutation group of automorphisms. When combined with the results in

the literature, our results complete the construction of PSL2(q)-invariant designs using Method 1.

In the theorem given below, we summarize our results; the specific results relating to the designs

are given as lemmas and propositions in the following sections.

Theorem 1.1. Let G be the projective special linear group PSL2(q) for q = pn, p an odd prime and

n ∈ N, n ≥ 1. Let M ≇ Cn
p ⋊ C q−1

2
be a maximal subgroup of G. Let D be a self-dual, symmetric

and primitive 1-([G : M ], |∆|, |∆|)-design invariant under G constructed using Result 3.1. Then D has

parameters v, k and λ as given in Table 1.

Table 1: Non-trivial 1-designs from PSL2(q), q a power of an

odd prime using Method 1

Maximal

Subgroup

l = |M ∩Mg| v = [G : M ] k = λ =
|M |
l

Dq±1

1 q(q∓1)
2 q ± 1

2 q(q∓1)
2

q±1
2

4 if |M | ≡ 0 (mod 4) q(q∓1)
2

q±1
4

PGL2(p)

p p(p2+1)
2 p2 − 1

p− 1 p(p2+1)
2 p(p+ 1)

p+ 1 if p ̸= 5 p(p2+1)
2 p(p− 1)

2(p− 1) if p ≡ 3 (mod 4) p(p2+1)
2

p(p+1)
2

2(p+ 1) if p ≡ 1 (mod 4) p(p2+1)
2

p(p−1)
2
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PSL2(p)

1 pr(pr+1)(pr−1)
p(p2−1)

p(p2−1)
2

p pr(pr+1)(pr−1)
p(p2−1)

p2−1
2

p±1
2

pr(pr+1)(pr−1)
p(p2−1)

p(p∓ 1)

A5

1, if q = p ̸= 11, 19 q(q2−1)
120 60

2, if q = p ̸= 11 q(q2−1)
120 30

3, if q = p ̸= 11 q(q2−1)
120 20

5, if q = p ̸= 11, 19 q(q2−1)
120 12

6, if q = p ≡ ±1 (mod 10) and

p ≡ ±1 (mod 12) or q = p2, p ≡
±3 (mod 10)

q(q2−1)
120 10

10, if q = p ≡ ±1 (mod 10) and

p ≡ ±1 (mod 20)

q(q2−1)
120 6

12, if q = p ≡ ±1 (mod 10) and

p ≡ ±1 (mod 8) or q = p2, p ≡
±3 (mod 10)

q(q2−1)
120 5

A4

1 q3−q
24 12

2 q3−q
24 6

3 q3−q
24 4

S4

1, if q = p ̸= 7 q3−q
48 24

2, if q = p ̸= 7 q3−q
48 12

3, if q = p ̸= 7 q3−q
48 8

4 q3−q
48 6

6, if q = p ≡ ±1 (mod 8) and

p ≡ ±1 (mod 12)

q3−q
48 4

8, if q = p ≡ ±1 (mod 8) and

p ≡ ±1 (mod 16)

q3−q
48 3
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Remark 1.2. (1) The first column of Table 1 describes the structure of the maximal subgroup M

of G, column 2 indicates the value l = |M ∩ Mg|, the cardinality of the intersection of a maximal

subgroup M and its conjugate Mg ̸= M , column 3 indicates the number v of points of D and the last

column gives the block size k of a block ∆ and λ the number of blocks which contain a given point.

(2) Note that Table 1 should be read in conjunction with Theorem 2.4(ii) - (vii). If a prime p is

chosen so that the conditions of Theorem 2.4(ii) - (vii) are satisfied, then using the columns of Table 1

one can determine the corresponding 1-design.

As an example, suppose M ∼= A5 and p = 11. Then the only possibility for l is l = 6 and we obtain

the trivial 1-(11, 10, 10) design. However, for p = 19, we have l = 2, 3, 10 and so we obtain the designs

with parameters 1-(57, 30, 30), 1-(57, 20, 20) and 1-(57, 6, 6), respectively.

The paper is organized as follows: in Section 2 we outline some background results and notation and

give a brief but complete overview on the group PSL2(q). In Section 3 we describe the construction

method used and give our results on all PSL2(q)-invariant self-dual, symmetric and primitive 1-designs.

2. Preliminaries

Our notation for designs is standard and follows that of [1]. Let D = (P,B, I) be an incidence

structure, i.e, a triple with point set P, block set B disjoint to P and incidence relation I ⊆ P × B. If
the ordered pair (p,B) ∈ I we say that p is incident with B ∈ B. It is often convenient to assume that

the blocks in B are subsets of P so (p,B) ∈ D if and only if p ∈ B. For a positive integer t, we say

that D is a t-design if every block B ∈ B is incident with exactly k points and every t distinct points

are together incident with λ blocks. In this case, we write D = t-(v, k, λ) where v = |P|, k = |B|. The
complement of D is the structure D̃ = (P,B, Ĩ), where Ĩ = P × B − I. The dual structure of D is

Dt = (B,P, It), where (B, p) ∈ It if and only if (p,B) ∈ I. Thus the transpose of an incidence matrix

for D is an incidence matrix for Dt. We say that D is symmetric if it has the same number of points

and blocks, and self dual if it is isomorphic to its dual. An isomorphism of t-designs D = (P,B) and
D′ = (P ′,B′) is a permutation of X which sends blocks of D to blocks of D′. An isomorphism from D
to itself is called automorphism. The group of all automorphisms of D is denoted by AutD.

We call a t-design D primitive if there exists an automorphism group G ≤ AutD which acts primi-

tively on the point and block of the designs.

Let GF (q) denote the Galois field with q elements and X := GF (q) ∪ {∞}, where ∞ is a symbol

not in GF (q). Then we can define a fractional linear transformation T : X → X by

T : x 7→ αx+ β

γx+ δ
, α, β, γ, δ ∈ GF (q),

such that αδ − βγ is a non-zero square in GF (q) and T (∞) = α
γ , T (

−δ
γ ) = ∞, if γ ̸= 0, T (∞) = ∞ if

γ = 0 and T (x) ∈ GF (q) for all x ∈ GF (q) such that γx+δ ̸= 0. Let T1 : x 7→ αx+β
γx+δ and T2 : x 7→ ax+b

cx+d
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and define the composition of T2 with T1 by

T2T1 =
α
(
ax+b
cx+d

)
+ β

γ
(
ax+b
cx+d

)
+ δ

=
(αa+ βc)x+ αb+ βd

(γa+ δc)x+ γb+ δd,

then the set of all such fractional linear transformations forms a group under composition known as

the Projective General Linear Group of degree 2 over GF (q) and denoted PGL2(q). In the special case

where αδ − βγ = 1, we obtain the Projective Special Linear Group denoted PSL2(q). Each fractional

linear transformation αx+β
γx+δ has an inverse δx−β

−γx+α . The group PSL2(q) has order
q(q2−1)

2 .

The following result distinguishes the elements of PSL2(q) as follows:

Lemma 2.1. [3, Theorem 2] Let g be a non-trivial element in PSL2(q) of order d and with f fix

points. Then d | pn+1
2 and f = 0, d = p and f = 1, or d | pn−1

2 and f = 2.

A subgroup A of any finite group G satisfying A ∩ Ag = {1G} or A ∩ Ag = A, for every g ∈ G is

called a TI-subgroup, (trivial intersection).

The subgroup structure of PSL2(q) is well known and is given in detail in ([5], [17]). According to

Dickson [5], every element of PSL2(q) belongs to one of the following types of subgroups.

Theorem 2.2. [5, Chapter XII])

(i) Let P be a Sylow p-subgroup of PSL2(q) of order pn. Then every non-trivial element of P has a

single fix point and P is a TI-subgroup.

(ii) Let H be a cyclic subgroup of PSL2(q) of order
pn−1

2 . Then every non-trivial element of H fixes

two points. Further, there is no element of PSL2(q)\H that fixes these points and so H is a

TI-subgroup.

(iii) Let K be a cyclic subgroup of PSL2(q) of order pn+1
2 . Then K contains all elements that have

no fix point in PSL2(q) and K is a TI-subgroup.

Remark 2.3. [5, Chapter XII]. The group G = PSL2(p
n), for p an odd prime, has pn + 1 subgroups

of type P with p2n−1 distinct fractional linear transformations that fix a point, pn(pn+1)
2 subgroups of

type H with pn(pn+1)(pn−3)
4 distinct fractional linear transformations that fix two points and pn(pn−1)

2

subgroups of type K with pn(pn−1)2

4 distinct fractional linear transformations that do not fix any point.

The following theorem from [8] gives the list of all maximal subgroups G = PSL2(q), q = pn for p

an odd prime, up to conjugacy.

Theorem 2.4. [8, Theorem 2.2]. Let q = pn ≥ 5 where p is an odd prime. Then the maximal

subgroups of G = PSL2(q) are:

(i) Cn
p ⋊ C q−1

2
, that is the stabilizer of a point of a projective line,

(ii) Dq−1, for q ≥ 13,

(iii) Dq+1, for q ̸= 7, 9,
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(iv) PGL2(p), for q = p2 (two conjugacy classes),

(v) PSL2(p), for q = pr where r is an odd prime,

(vi) A5, for q ≡ ±1 (mod 10), where either q = p or q = p2 and p ≡ ±3 (mod 10) (two conjugacy

classes),

(vii) A4, for q = p ≡ ±3 (mod 8) and q ̸≡ ±1 (mod 10),

(viii) S4, for q = p ≡ ±1 (mod 8) (two conjugacy classes).

3. The construction of the designs

The designs in this paper come from the following construction, described in [9, Proposition 1],

corrected in [10] and later used in [13].

Result 3.1. Let G be a finite primitive permutation group acting on the set Ω of size n. Let α ∈ Ω,

and let ∆ ̸= {α} be an orbit of the stabilizer Gα of α. If B = {∆g | g ∈ G} and, given δ ∈ ∆,

E = {{α, δ}g | g ∈ G}, then D = (Ω,B) forms a symmetric 1-(n, |∆|, |∆|) design. Further, if ∆ is a

self-paired orbit of Gα then Γ = (Ω, E) is a regular connected graph of valency |∆|, D is self-dual, and

G acts as an automorphism group on each of these structures, primitive on vertices of the graph, and

on points and blocks of the design.

Adopting the designation given in [16], we also call the method of construction described in Re-

sult 3.1 by Method 1.

Let M be a maximal subgroup of G, then G acts by conjugation on the set M of all conjugates

of M in G. We use this action of G on M to construct primitive, self-dual and symmetric 1-designs

invariant under G. This is based on the following result.

Theorem 3.2. [18, Proposition 2.1]. Let G be a finite group with a maximal subgroup M . Then the

action of G by conjugation on the set M of left (right) cosets of M in G is primitive.

For a maximal subgroup M of a group G we adopt the definition of AM given in [15], i.e.,

AM = {|M ∩Mg||g ∈ G} .

Note that AM is non-empty since |M | ∈ AM for all g ∈ M . The following lemma gives the lengths of

the orbits when a finite simple group G acts on M.

Lemma 3.3. [15, Lemma 3.3] Let G be a finite simple group acting on the set of conjugates of a

maximal subgroup M by conjugation. Then the lengths of the orbits of a point stabilizer in G are given

as elements of the set {
|M |
l

: l ∈ AM

}
so that every design constructed using Result 3.1 is a 1-([G : M ], |M |

l , |M |
l ) design for some l ∈ AM .
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Remark 3.4. It follows from Lemma 3.3 that in order to find the orbit lengths of the action given in

Result 3.1, one only needs to determine the set AM .

In what follows, we examine each of the classes of maximal subgroups of PSL2(q), q = pn, where

p is an odd prime and n a positive integer; and for a representative M of each class of maximal

subgroups we determine AM with a view to constructing all PSL2(q)-invariant, self-dual, primitive

and symmetric 1-designs.

It should be noted that when M ∼= Cn
p ⋊ C q−1

2
, the set M has q + 1 points on which G acts 2-

transitively. In this case, the designs constructed from M using Method 1 (i.e., using Result 3.1) are

trivial and of no interest for classification purposes.

Thus, in order to prove Theorem 1.1 we start by considering M ∼= Dq±1, a maximal subgroup of

dihedral type in G. In what follows we assume that M = ⟨a, b : a
q±1
2 = b2 = 1, bab = a−1⟩, A = ⟨a⟩

and B = ⟨b⟩ and prove a number of results related with these maximal subgroups of G.

Lemma 3.5. Let M ∼= Dq±1 be a maximal subgroup of G of dihedral type and g ∈ G. If M ∩Mg ̸= M

and 1G ̸= x ∈ M ∩Mg, then the order of x equals 2.

Proof. Suppose for a contradiction that x ∈ M ∩Mg is a non-trivial element and that o(x) ̸= 2. Then

x, xg
−1 ∈ M . Since A is a normal subgroup and also a trivial intersection subgroup of M we have

x, xg
−1 ∈ A, and so 1G ̸= x ∈ A ∩ Ag = A. From this we obtain g ∈ NG(A) = M . This shows that

M ∩Mg = M , which contradicts the hypothesis. Hence, for all g ∈ G \M and 1G ̸= x ∈ M ∩Mg it

follows that x is of order 2. □

Lemma 3.6. Let M ∼= Dq±1 be a maximal subgroup of G of dihedral type and g ∈ CG(b) \M . Then

M ∩Mg = {1G, b}.

Proof. Suppose A ∩ Ag = A, then Mg = M , since NG(A) = Dq±1 = M (recall that A ⊴M) and so

Mg ∩M = M . Thus, assume A ∩ Ag = {1G} and let 1G ̸= x ∈ M ∩Mg. Then x ∈ M and x ∈ Mg

so that x = aib = (ajb)g = (aj)gbg = (aj)gb (since g ∈ CG(b)). So ai = (aj)g ∈ A ∩ Ag = {1G}. From
this we obtain x = b and M ∩Mg = {1G, b}. □

Lemma 3.7. Let g ∈ G\M such that M ∩ Ag = {1G, x} and A ∩ Ag = {1G}. Then M ∩ Mg =

{a
q±1
4 , x, xa

q±1
4 , 1M}, where x = aib, 1 ≤ i ≤ q±1

2 .

Proof. First we note that involutions in G are in a single conjugacy class. Since a
q±1
4 ∈ A, there must

exist g ∈ G \M such that
(
a

q±1
4

)g
= aib ∈ M ∩Mg, 1 ≤ i ≤ q±1

4 . Note also that a
q±1
4 b is in M and(

a
q±1
4 b

)g
=

(
a

q±1
4

)g
bg = (aib)(ajb) = baibaj = a−iaj , 1 ≤ i, j ≤ q±1

4 which forces j − i = q±1
4 , so that

a−iaj is an involution. Thus
(
a

q±1
4 b

)g
= a

q±1
4 ∈ M ∩ Mg. It now follows that for g ∈ G \ M , such

that M ∩Ag = {1G, aib}, M ∩Mg = {a
q±1
4 , aib, a

2i+q±1
4 b, 1M}, where 1 ≤ i ≤ q±1

4 and 2i+q±1
4 is taken

modulo q±1
2 . □
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Before we prove the next theorem, we need the following result and remark.

Lemma 3.8. Let k ̸= 1 such that k divides q±1
2 . Then the number of elements in G of order k equals

Φ(k)q(q∓1)
2 where Φ is Euler’s Phi-function.

Proof. Let H be a cyclic subgroup of G of order q±1
2 . By [6, pp. 242 – 243], NG(H) = Dq±1. Further,

if S is a subgroup of H, then NG(S) = Dq±1. Let k ̸= 1 such that k divides q±1
2 . Then the number

of elements in G of order k equals [G : NG(S)]Φ(k) =
q(q−1)(q+1)Φ(k)

2(q±1) = Φ(k)q(q∓1)
2 . □

We make the following remark on involutions in a dihedral group D2n.

Remark 3.9. Recall that for a dihedral group D2n, the elements of the form aib, 1 ≤ i ≤ n are

involutions. If n is even, the element a
n
2 is also an involution. Thus D2n has n + 1 involutions for n

is even, and n involutions for n odd.

Theorem 3.10. Let M ∼= Dq±1 be a maximal subgroup of G of dihedral type. Then for all g ∈ G,

|M ∩Mg| ∈ {1, 2, 4, |M |} if |M | ≡ 0 (mod 4) and |M ∩Mg| ∈ {1, 2, |M |} , if |M | ≡ 2 (mod 4).

Proof. From Lemma 3.6 and Lemma 3.7, we see that M ∩Mg is a subgroup of M of order 2 or 4 and

for all 1G ̸= x ∈ M ∩Mg, o(x) = 2. Hence M ∩Mg ∼= V4 or C2, where V4
∼= C2×C2. Therefore, it only

remains to show that there exists some g ∈ G such that M ∩Mg = {1G}. We do this by examining

the possible intersections of conjugates of M and use the fact that these intersections consist only of

involutions. Hence we consider the following two cases:

Case 1: If q ≡ 1 (mod 4), then it follows by Lemma 3.8 that G has q(q+1)
2 involutions. Let

M ∼= Dq+1 where q+1 ≡ 2 (mod 4). Then, using Remark 3.9 we deduce that M has q+1
2 involutions.

Furthermore, the number of distinct conjugates of M in G is q(q−1)(q+1)
2(q+1) = q(q−1)

2 , and each involution

of G is in

(
q(q−1)

2

)
( q+1

2 )
q(q+1)

2

= q−1
2 of these conjugates. For a fixed M , the number of intersections M ∩Mg

of M with its conjugate Mg ( ̸= M) equals q(q−1)
2 − 1 = q(q−1)−2

2 . Of these intersections, those for

which M ∩ Mg is of size two equals
(
q−1
2 − 1

)(
q+1
2

)
. Direct calculations show that the number of

those intersections for |M ∩Mg| = 1 is q(q−1)−2
2 −

(
q−1
2 − 1

)(
q+1
2

)
= q2−1

4 , and this is different from

zero for all q.

Now, consider M ∼= Dq−1 where q − 1 ≡ 0 (mod 4). Then M has q−1
2 + 1 = q+1

2 involutions.

The number of distinct conjugates of M in G is q(q−1)(q+1)
2(q−1) = q(q+1)

2 , and each involution of G is in(
q(q+1)

2

)
( q+1

2 )
q(q+1)

2

= q+1
2 such conjugates. In this case, we obtain that the number of distinct intersections

of a fixed M with its conjugates Mg (̸= M) is q(q+1)
2 − 1 = q(q+1)−2

2 . In addition, the number of such

intersections for which M ∩ Mg has size four equals q+1
2 − 1 = q−1

2 . This follows from the proof of

Lemma 3.7, since there is only one fixed involution, i.e., a
q−1
4 , in all intersections consisting of four

elements. Furthermore, since there are q−1
2 intersections M ∩Mg consisting of four elements, we have

accounted for 2× q−1
2 involutions of M(excluding the involution a

q−1
4 which occurs in all intersections
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M ∩ Mg of size four). Thus, each involution in M occurs in exactly two intersections M ∩ Mg of

size 4. We have thus shown that the number of intersections of M with its conjugates Mg (̸= M) of

size two equals
(
q−1
2 − 2

)(
q−1
2

)
. Similarly, the number of intersections M ∩ Mg with size 1 equals

q(q+1)−2
2 −

(
q−1
2

)
−
(
q−5
2

)(
q−1
2

)
= q2+6q−7

4 . Since this is distinct from zero for all q, the result follows.

Case 2: Consider q ≡ 3 (mod 4). Then G has q(q−1)
2 involutions. Let M ∼= Dq+1 where q + 1 ≡ 0

(mod 4). Then M has q+1
2 + 1 = q+3

2 involutions. The number of distinct conjugates of M in G is

q(q−1)(q+1)
2(q+1) = q(q−1)

2 , and each involution of G is in

(
q(q−1)

2

)
( q+3

2 )
q(q−1)

2

= q+3
2 of the conjugates Mg. For a

fixed M , the number of distinct intersections of M with its conjugates ( ̸= M) is q(q−1)
2 − 1 = q(q−1)−2

2

and the number of these intersections with size four equals q+3
2 −1 = q+1

2 . This follows from Lemma 3.7,

since there is only one fixed involution in all intersections consisting of four elements. Since there

are q+1
2 intersections M ∩ Mg of size 4, these account for 2 × q+1

2 involutions of M (excluding the

involution a
q+1
4 that occurs in all intersections M ∩Mg of size 4). Thus each involution in M occurs

in two intersections M ∩ Mg of size 4. With this we have shown that the number of intersections

M ∩Mg of size two equals
(
q+1
2 − 2

)(
q+1
2

)
and similarly the number of intersections M ∩Mg with

size one equals q(q−1)−2
2 −

(
q+1
2

)
−

(
q−3
2

)(
q+1
2

)
= q2−2q−3

4 , and moreover that this is distinct from

zero for all q.

Finally, let M ∼= Dq−1 where q − 1 ≡ 2 (mod 4). Then M has q−1
2 involutions. Calculating the

number of distinct conjugates of M in G we obtain that there are q(q−1)(q+1)
2(q−1) = q(q+1)

2 , and each

involution of G is in

(
q(q+1)

2

)
( q−1

2 )
q(q−1)

2

= q+1
2 of these conjugates. Similar to the previous cases, for a fixed

M , the number of distinct intersections of M with its conjugates ( ̸= M) is q(q−1)
2 − 1 = q(q−1)−2

2 . The

number of intersections M ∩Mg with |M ∩Mg| = 2 equals
(
q+1
2 − 1

)(
q−1
2

)
. Hence, the number of

intersections M ∩Mg such that |M ∩Mg| = 1 is q(q+1)−2
2 −

(
q+1
2 − 1

)(
q−1
2

)
= q2+4q−5

4 and this is

never zero for all q. □

From Theorem 3.10 we infer the following result on the sizes of the non-trivial orbits of the conju-

gation action of G on the set of conjugates of M ∼= Dq±1.

Corollary 3.11. Let M = Dq±1 be a maximal subgroup of G and M be the set of conjugates of M

in G on which G acts by conjugation.

(i) If q ≡ 1 (mod 4) and |M | = q + 1 ≡ 2 (mod 4) then the primitive action of G on M has the

following non-trivial orbit lengths:

(a) q−3
2 orbits of length q+1

2 , b) q−1
4 orbits of length q + 1.

(ii) If q ≡ 1 (mod 4) and |M | = q − 1 ≡ 0 (mod 4) then the primitive action of G on M has the

following non-trivial orbit lengths:

(a) 2 orbits of length q−1
4 , b) q−5

2 orbits of length q−1
2 , c) q+7

4 orbits of length q − 1.
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(iii) If q ≡ 3 (mod 4) and |M | = q + 1 ≡ 0 (mod 4) then the primitive action of G on M has the

following non-trivial orbit lengths:

(a) 2 orbits of length q+1
4 , b) q−3

2 orbits of length q+1
2 , c) q−3

4 orbits of length q + 1.

(iv) If q ≡ 3 (mod 4) and |M | = q − 1 ≡ 2 (mod 4) then the primitive action of G on M has the

following non-trivial orbit lengths:

(a) q−1
2 orbits of length q−1

2 , b) q+5
4 orbits of length q − 1.

Proof. The orbit lengths are calculated using Theorem 3.10 and Lemma 3.3. Observe that the number

of orbits of a given length is obtained by taking the quotient between the number of intersections

M ∩Mg that give that orbit length and the corresponding orbit length. □

We now consider the case when M is a maximal subgroup of PSL2(p
2) isomorphic to PGL2(p).

Lemma 3.12. Let H be a subgroup of PSL2(p
2) of order p2 generated by elements of the form hµ =1 µ

0 1

 , µ ∈ GF (p2). Then H is an elementary abelian p-group. Moreover, if for some g ∈ G,

g−1hµg = hµ then g is of the form gβ =

1 β

0 1

 , β ∈ GF (p2).

Proof. Let

1 β

0 1

 ,

1 µ

0 1

 ∈ H,β, µ ∈ GF (p2). Then,

p︷ ︸︸ ︷1 µ

0 1


1 µ

0 1

 · · ·

1 µ

0 1

 =

1

p︷ ︸︸ ︷
µ+ µ+ · · ·+ µ

0 1

 =

1 0

0 1



since for every µ ∈ GF (p2),

p︷ ︸︸ ︷
µ+ µ+ · · ·+ µ = pµ = 0 in GF (p2). Hence every element of H has order

p. The subgroup H is abelian since,

1 µ

0 1


1 β

0 1

 =

1 µ+ β

0 1

 =

1 β

0 1


1 µ

0 1

 .
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To prove the other part of the lemma, let v =

α β

γ δ

 ∈ G, then

v−1hµv =

 α −β

−γ δ


1 µ

0 1


α β

γ δ

 =

 α −β

−γ δ


α αµ+ β

γ γµ+ δ



=

δα− γβ − γαµ −βα+ α2µ+ αβ

δγ − γ2µ− γδ −γβ + γαµ+ αδ



=

1− αγµ α2µ

−γ2µ 1 + αγµ



and v−1hµv is in H if and only if γ = 0, when it becomes hα2µ =

1 α2µ

0 1

. Hence H is normalized

by elements in G of the form hλ =

1 λ

0 1

 where λ ∈ GF (p2). □

Corollary 3.13. Let M be a maximal subgroup of PSL2(p
2) isomorphic to PGL2(p). Then there

exists g ∈ G \M , where g is of the form

1 λ

0 1

, λ ∈ GF (p2) such that |M ∩Mg| = p.

Proof. The proof follows from the fact that M has a subgroup of order p which is also a subgroup of

H as given in Lemma 3.12. □

Proposition 3.14. [5, page 267] Let d > 2 such that d|p
2−1
2 with quotient s. If s is even, then

PSL2(p
2) contains dihedral groups D2d which are normalized under the dihedral group D2(2d).

Lemma 3.15. Let d = p ± 1, p an odd prime. Then d|p
2−1
2 . Moreover, the quotient p+1

2 is even if

p ≡ −1 (mod 4), and the quotient p−1
2 is even if p ≡ 1 (mod 4).

Proof. The proof follows using arguments from elementary number theory. So we omit it. □

Corollary 3.16. Let M be a maximal subgroup of G = PSL2(p
2) isomorphic to PGL2(p). If g ∈

D2(2(p±1))\D2(p±1) but g /∈ M , then |M ∩Mg| = 2(p+ 1) if p ≡ 1 (mod 4), and |M ∩Mg| = 2(p− 1)

if p ≡ −1 (mod 4).
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Proof. We show that D2(2(p±1)) is a subgroup of PSL2(p
2) whenever the conditions on p given in the

hypothesis are satisfied. We first note that for D2(2(p±1)) to be a subgroup of PSL2(p
2), its order

4(p± 1) must divide p2(p2−1)(p2+1)
2 i.e., 4(p± 1)|p

2(p±1)(p2+1)
2 . Since p is an odd prime, then p2 +1 ≡ 2

(mod 4). Thus p2(p−1)(p2+1)
8 ≡ 0 (mod 4) if p ≡ 1 (mod 4) and p2(p+1)(p2+1)

8 ≡ 0 (mod 4) if p ≡ −1

(mod 4). Since a subgroupD2(p±1) ofM is also a subgroup ofD2(2(p±1)), the result follows immediately

by Proposition 3.14. □

Lemma 3.17. [5, pages 263 - 264] Let A be a cyclic subgroup of PSL2(p
2) of order p2−1

2 . Then the

dihedral group Dp2−1 is the largest subgroup of PSL2(p
2) in which A is normalized.

Corollary 3.18. Let Cp±1 be a cyclic subgroup of A as given in Lemma 3.17 and M be a maximal

subgroup of PSL2(p
2) isomorphic to PGL2(p). Then there exists some g ∈ Dp2−1 \Cp±1, g /∈ M , such

that |M ∩Mg| = p± 1 for all p ≥ 5, where p is an odd prime except if p = 5 when |M ∩Mg| ≠ p+ 1.

Proof. The proof that |M ∩ Mg| = p ± 1 follows by Lemma 3.17 since Cp±1 is normal in Dp2−1.

However, when p = 5, D52−1
∼= D2(2(5+1)) and by Proposition 3.14, D24 is the normalizer of D12.

Since C6 is a subgroup of D12, it follows that for g ∈ D24 \C6, g /∈ M , |M ∩Mg| = 12 and not 6. □

Theorem 3.19. Let M be a maximal subgroup of PSL2(p
2) isomorphic to PGL2(p), where p ≥ 7.

Then |M ∩Mg| ∈ {p, p± 1, 2(p+ 1), |M |} if p ≡ 1 (mod 4), and |M ∩Mg| ∈ {p, p± 1, 2(p− 1), |M |}
if p ≡ 3 (mod 4). Moreover, these are the only possibilities for |M ∩Mg|.

Further, for p = 5, PSL2(p
2) is rank 4 on its primitive action on 65 points with non-trivial orbits

of lengths 30, 24 and 10.

Proof. For g ∈ M we have |M ∩ Mg| = |M |. For the other possibilities, see Corollary 3.13, Corol-

lary 3.18 and Corollary 3.16, respectively. The number of distinct conjugates of M in PSL2(p
2) is

p2(p2−1)(p2+1)
2p(p+1)(p−1) = p(p2+1)

2 . The number of distinct intersections M ∩Mg ̸= M equals p(p2+1)
2 − 1. For

p ≡ 3 (mod 4) and p ≡ 1 (mod 4), respectively it can be shown that p(p+1)
2 of these intersections are

of size 2(p − 1), (p2 − 1) of size p, (p−3)(p2+p)
4 of size p − 1 and (p−3)(p2−p)

4 of size p + 1, respectively

when p ≡ 3 (mod 4). Furthermore, if p ≡ 1 (mod 4) then p(p−1)
2 of these intersections are of size

2(p+1), (p2−1) are of size p, (p−1)(p2+p)
4 of size p−1 and (p−5)(p2−p)

4 of size p+1, respectively. Direct

calculations show that if p ≡ 3 (mod 4), then

p(p2 + 1)

2
=

p(p+ 1)

2
+ p2 − 1 +

(p− 3)(p2 + p)

4
+

(p− 3)(p2 − p)

4
+ 1,

while if p ≡ 1 (mod 4)

p(p2 + 1)

2
=

p(p− 1)

2
+ p2 − 1 +

(p− 1)(p2 + p)

4
+

(p− 5)(p2 − p)

4
+ 1.

By these calculations we have accounted for all conjugates of M for each of the two congruences given

above.
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It follows from [6, Appendix B, Table B.2] that when p = 5, PSL2(p
2) is rank 4 on its primitive

action on 65 points with non-trivial orbits of lengths 30, 24 and 10. □

The next results gives the lengths of the non-trivial orbits of the action of G on M, for M the set

of conjugates of M ∼= PGL2(q).

Corollary 3.20. Suppose M ∼= PGL2(p) is a maximal subgroup of PSL2(p
2). Let M be the set of

conjugates of M in G on which G acts by conjugation.

(i) If q ≡ 3 (mod 4) then the primitive action of G on M has the following non-trivial orbit

lengths:

(a) one orbit of length p(p+1)
2 , b) one orbit of length p2 − 1, c) p−3

4 orbits of length

p(p+ 1), d) p−3
4 orbits of length p(p− 1).

(ii) If q ≡ 1 (mod 4) then the primitive action of G on M has the following non-trivial orbit

lengths:

(a) one orbit of length p(p−1)
2 , b) one orbit of length p2−1, c)p−1

4 orbits of length p(p+1),

d) p−5
4 orbits of length p(p− 1).

Proof. The proof follows from Theorem 3.19 and Lemma 3.3. □

Next we consider the case where M the maximal subgroup of G is isomorphic to PSL2(p).

Theorem 3.21. Let M ∼= PSL2(p) be a maximal subgroup of PSL2(p
r) where r is an odd prime. Then

for all g ∈ G, |M ∩Mg| ∈
{
1, p, p±1

2 , |M |
}
.

If p = 3 then AM = {1, p, p+1
2 , |M |}.

Proof. If g ∈ M , then M ∩ Mg = M . Let g ∈ G \ M , then by Theorem 2.2, every x ∈ M and

consequently x ∈ G is in one of the subgroups of types P,H or K of G. Since these are all TI-

subgroups in G, there exists some g ∈ G such that |M ∩Mg| ∈ {p, p±1
2 }.

Using Remark 2.3 we obtain that M has p2− 1 elements of order p and by [3, Theorem 3] it follows

that G has p2r−1 elements of order p. Thus each element of order p in G occurs in
pr(pr+1)(pr−1)

p(p−1)(p+1) (p2−1)
p2r−1

= pr−1 of the conjugates of M . Moreover, the number of intersections M ∩Mg such that |M ∩Mg| = p

equals (pr−1−1)(p2−1)
p−1 = (pr−1 − 1)(p + 1). Once again, using Remark 2.3 we find that M has p(p+1)

2

cyclic subgroups of order p−1
2 , so that M also has p(p+1)

2 elements of the form x =

ω 0

0 ω−1

,

where ω is a primitive root in GF (p), and x generates a cyclic group of order p−1
2 . Further, from [3,

Theorem 3(i)] G has pr(pr+1)
2 elements that generate cyclic subgroups of order p−1

2 . Thus each x in G

is in
pr(pr+1)(pr−1)

p(p−1)(p+1)

(
p(p+1)

2

)
pr(pr+1)

2

= pr−1
p−1 conjugates of M . From Remark 2.3, we have that M has p(p+1)(p−3)

4
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elements of order p−1
2 . Hence

(
pr−1
p−1

−1
)(

p(p+1)(p−3)
4

)
p−3
2

= p2(p+1)(pr−1−1)
2(p−1) of the intersections M ∩Mg are

of size p−1
2 .

Using Remark 2.3 and [3, Theorem 3] it can be shown thatM has p(p−1)
2 elements that generate cyclic

subgroups of order p+1
2 while G has pr(pr−1)

2 elements that generate cyclic subgroups of order p+1
2 . Each

of the elements of G that generate cyclic subgroups of order p+1
2 occur in

pr(pr+1)(pr−1)
p(p−1)(p+1)

(
p(p−1)

2

)
pr(pr−1)

2

= pr+1
p+1

distinct conjugates of M . Now, it can be shown using Remark 2.3 that M has p(p−1)2

4 elements of order

p+1
2 . From this we deduce that

(
pr+1
p+1

−1
)(

p(p−1)2

4

)
p−1
2

= p2(p−1)(pr−1−1)
2(p+1) of the intersections M ∩Mg are

such that |M∩Mg| = p+1
2 . Since for a fixed M the number of intersections M∩Mg is pr(pr+1)(pr−1)

p(p−1)(p+1) −1

and since

1 + (pr−1 − 1)(p+ 1) +
p2(p+ 1)(pr−1 − 1)

2(p− 1)
+

p2(p− 1)(pr−1 − 1)

2(p+ 1)

= 1 +
(pr−1 − 1)(p4 + p3 + 2p2 − p− 1)

p2 − 1
<

pr(pr + 1)(pr − 1)

p(p− 1)(p+ 1)
,

there must exists g ∈ G such that M ∩Mg = {1G}.
Since for p = 3 we have p−1

2 = 1, then it follows that AM = {1, p, p+1
2 , |M |}. □

Corollary 3.22. Let M ∼= PSL2(p) be a maximal subgroup of PSL2(p
r), r an odd prime and let M

be the set of conjugates of M in G on which G acts by conjugation. Then the primitive action of G

on M has the following non-trivial orbit lengths.

a) p(pr−1−1)
2(p−1) orbits of length p(p + 1), b) 2(pr−1−1)

p−1 orbits of length p2−1
2 , c) p(pr−1−1)

2(p+1) orbits of

length p(p− 1), d)
2[p3r−2−pr+2−pr+1−2pr+pr−1+p3+p2+p−1]

(p2−1)2
orbits of length p(p2−1)

2 .

Proof. The proof follows az a direct application of Theorem 3.21. □

Now, consider the maximal subgroup of type A5 of G = PSL2(q).

Proposition 3.23. Let M be a maximal subgroup of G = PSL2(q) isomorphic to A5, then for every

g ∈ G, AM is one of the following:

a) {1, 2, 3, 5, 12, 60}, if q = p ≡ ±1 (mod 10) and q = p ≡ ±1 (mod 8) but q = p ̸≡ ±1 (mod 20) and

q = p ̸≡ ±1 (mod 12) ;

b) {1, 2, 3, 5, 6, 12, 60}, if q = p ≡ ±1 (mod 10), q = p ≡ ±1 (mod 8) and q = p ≡ ±1 (mod 12) but

q = p ̸≡ ±1 (mod 20) or q = p2 where p ≡ ±3 (mod 10);

c) {1, 2, 3, 5, 10, 12, 60}, if q = p ≡ ±1 (mod 10), q = p ≡ ±1 (mod 8) and q = p ≡ ±1 (mod 20) but

q = p ̸≡ ±1 (mod 12);

d) {1, 2, 3, 5, 6, 10, 60}, if q = p ≡ ±1 (mod 10), q = p ≡ ±1 (mod 12) and q = p ≡ ±1 (mod 20) but

q = p ̸≡ ±1 (mod 8).
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Proof. Since A5
∼= PSL2(4) ∼= PSL2(5), the fact that the subgroups of orders 1, 2, 3, 5, 60 are in AM is

dealt with in [16, Proposition 2.6] and Theorem 3.21 above. Thus it only remains to prove that 6, 10

and 12 are in AM . Now NG(A4) = S4 whenever q = p2 ≡ 1 (mod 16) and thus 12 ∈ AM if and only

if q = p ≡ ±1 (mod 8). Also NG(S3) = D12, so that 6 ∈ AM if and only if q = p ≡ ±1 (mod 12).

Further, NG(D10) = D20 whenever q = p ≡ ±1 (mod 20), thus 10 ∈ AM if and only q = p ≡ ±1

(mod 20). For q = p2 where p ≡ ±3 (mod 10), p2 ≡ 1 (mod 12) and p2 ≡ 1 (mod 8) and hence for

such q, both subgroups of order 6 and 12 occur together in AM .

To illustrate the argument for the proof we deal with part a) of the proposition. The remaining

cases can be dealt with using a similar approach. Firstly, we note that A4 is a maximal subgroup

in M so that the number of intersections M ∩ Mg of size twelve is 5 (the index of A4 in M). By

Lemma 3.8, G has 4q(q±1)
2 elements of order 5. Thus each element of order 5 in G is in

[
q(q2−1)

120

]
×24

2(q(q±1))

= q∓1
10 conjugates Mg. This means that there are

( q∓1
10

−1)×24

4 = 6
(
q∓1
10 − 1

)
intersections M ∩ Mg

of size five. From Lemma 3.8 we have that G has q(q ± 1) elements of order 3. Thus, each element

of order 3 in G is in

[
q(q2−1)

120

]
×20

q(q±1) = q∓1
6 conjugates Mg. But we note that elements of order 3 in

G also appear in intersections M ∩ Mg of size twelve. Easy calculations show that each element of

order 3 in G is in 5×8
20 = 2 of the intersections M ∩ Mg of size twelve. Thus there are

( q∓1
6

−3)×20

2

= 10
(
q∓1
6 − 3

)
intersections M ∩ Mg of size three. But by Lemma 3.8, G has q(q±1)

2 elements of

order 2. This shows that each element of order 2 in G is in

[
q(q2−1)

120

]
×15

q(q±1)
2

= q∓1
4 conjugates Mg.

Note in addition that each element of order 2 in G is in 5×(3)
15 = 1 intersections M ∩ Mg of size

twelve. Hence, 15
(
q∓1
4 − 2

)
of the intersections M ∩ Mg are of size two. Finally, observe that

1 + 5 + 6
(
q∓1
10 − 1

)
+ 10

(
q∓1
6 − 3

)
+ 15

(
q±1
4 − 2

)
< q(q2−1)

120 for q ≥ 31. Hence there exists g ∈ G

such that M ∩Mg = {1M}. □

Remark 3.24. Notice that the primes 11 and 19 do not fall in any of the cases of Proposition 3.23.

However, it is known that when p = 11, PSL2(11) has rank 2 on its primitive action on 11 points,

while for p = 19, PSL2(19) has rank 4 in its primitive action on 57 points with non-trivial orbits of

lengths 30, 20 and 6, see [6, Appendix B, Table B.2].

Corollary 3.25. Let M be a maximal subgroup of PSL2(q) isomorphic to A5 and M be the set of

conjugates of M in G on which G acts by conjugation. Then the primitive action of G on M has non-

trivial orbits of lengths 5, 6, 10, 12, 20, 30 and 60, respectively. In particular if q = p ≡ ±1 (mod 10)

and q = p ≡ ±1 (mod 8) but q = p ̸≡ ±1 (mod 20) and q = p ̸≡ ±1 (mod 12), then the primitive

action of G on M has the following non-trivial orbit lengths:

a) one orbit of length 5; b) 1
2

(
q∓1
10 − 1

)
orbits of length 12; c) 1

2

(
q∓1
6 − 3

)
orbits of length 20;
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d) 1
2

(
q±1
4 − 2

)
orbits of length 30;

e)

[
q(q2−1)

120
−(1+5+6( q∓1

10
−1)+10( q∓1

6
−3)+15( q±1

4
−2))

]
60 orbits of length 60.

Proof. The proof follows direct from Proposition 3.23 □

We now consider the case where M the maximal subgroup of G is isomorphic to A4. In order to

prove the next theorem, we first give a remark followed by a lemma.

Remark 3.26. A4 is a maximal subgroup of G = PSL2(q) when q = p ≡ ±3 (mod 8) and q ̸≡ ±1

(mod 10). The number of conjugates of A4 in G is q3−q
24 and by Lemma 3.8, G has q(q±1)

2 involutions.

Since A4
∼= (C2 ×C2)⋊C3, then A4 has 3 involutions and 8 elements of order 3 (4 subgroups of order

3).

Lemma 3.27. [7, Theorem 1.3] Let V4
∼= C2×C2 be a subgroup of G = PSL2(p) for p odd. If p ≡ ±1

(mod 8) then NG(V4) ∼= S4 and if p ≡ ±3 (mod 8) and q ̸≡ 1 (mod 10), then NG(V4) ∼= A4.

We now prove the following theorem on the determination of cardinality |M ∩Mg| for M ∼= A4.

Theorem 3.28. Let M be a maximal subgroup of G isomorphic to A4. Then for every g ∈ G,

|M ∩Mg| ∈ {1, 2, 3, |M |}.

Proof. First we note that since the normalizer in G of C2 × C2 is either A4 or S4, then we have that

|A4 ∩ Ag
4| ̸= 4. Therefore, the only non-trivial subgroups of A4 ∩ Ag

4 are C2 and C3. Each involution

of G is in
3×

(
q3−q
24

)
q(q±1)

2

= q∓1
4 conjugates of M . Hence there are 3

(
q∓1
4 − 1

)
intersections M ∩ Mg

of order 2. It follows by Lemma 3.8 that the number of elements of order 3 in PSL2(q) is either

q(q + 1) or q(q − 1). Each element of order 3 in PSL2(q) is in
8×

(
q3−q
24

)
q(q ± 1)

= q∓1
3 conjugates of A4.

The number of distinct intersections of M with its conjugates (̸= M) such that |M ∩Mg| = 3 equals
8×( q∓1

3
−1)

2 = 4
(
q∓1
3 − 1

)
. Since 1 + 3

(
q∓1
4 − 1

)
+ 4

(
q∓1
3 − 1

)
< q3−q

24 , then there exist g ∈ G such

that A4 ∩Ag
4 = {1G}. □

Corollary 3.29. Let M ∼= A4 be a maximal subgroup of G and M be the set of conjugates of M in G

on which G acts by conjugation. Then the primitive action of G on M has the following non-trivial

orbit lengths;

a)
(
q∓1
3 − 1

)
orbits of length 4; b) 1

2

(
q∓1
4 − 1

)
orbits of length 6;

c)
q3−q
24

−[4( q∓1
3

−1)+3( q∓1
4

−1)+1]
12 orbits of length 12;

Proof. The proof follows directly from Theorem 3.28. □

Lastly, we consider the maximal subgroups of type S4 in PSL2(q).
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Proposition 3.30. Let M be a maximal subgroup of G = PSL2(q) isomorphic to S4. Then for every

g ∈ G, AM is one of the following:

a) {1, 2, 3, 4, 8, 24} if q = p ≡ ±1 (mod 8) and q = p ≡ ±1 (mod 16) but q = p ̸≡ ±1 (mod 12);

b) {1, 2, 3, 4, 6, 24} if q = p ≡ ±1 (mod 8) and q = p ≡ ±1 (mod 12) but q = p ̸≡ ±1 (mod 16);

c) {1, 2, 3, 4, 24} if q = p ≡ ±1 (mod 8) but q = p ̸= 7, q = p ̸≡ ±1 (mod 12) and q = p ̸≡ ±1

(mod 16);

d) {1, 2, 3, 4, 6, 8, 24} if q = p ≡ ±1 (mod 8), q = p ≡ ±1 (mod 12) and q = p ≡ ±1 (mod 16).

Proof. First we note that NG(A4) = S4 and hence A4 /∈ M ∩Mg for all g ∈ G. But NG(S3) = D12 so

that 6 ∈ AM if and only if q = p ≡ ±1 (mod 12). Further, NG(D8) = D16 and thus 8 ∈ AM if and

only if q = p ≡ ±1 (mod 16).

As an illustration, we prove case c) of the proposition. The other cases can be proven using

a similar approach. We begin by observing that the elements of order 3 in G lie in
8×

(
q3−q
48

)
q(q±1) =

q∓1
6 conjugates of M . There are

8×( q∓1
6

−1)
2 = 4

(
q∓1
6 − 1

)
conjugates of M not equal to M whose

intersection with M is of order 3. Similarly, for elements of order 4, there are 3
(
q∓1
8 − 1

)
conjugates

of M not equal to M whose intersection with M has size 4. Since, by Lemma 3.27, NG(V4) ∼= S4,

then S4 ∩Sg
4 ̸= V4, for g ∈ G. Of the nine elements of order 2 in S4, three are in V4 and the remaining

six form a single conjugacy class in S4. Since all the involutions in G form a single conjugacy class,

each of the six involution of S4 not in V4 is conjugate to a non-trivial element of V4 in G. Let x, y, z

be in involutions in S4 and x, z ∈ S4 \ V4. Without loss of generality, we can find an involution

g ∈ CG(z) such that xg = y, where 1V4 ̸= y ∈ V4. Observe that yg = (xg)g = x, so that for such

a g ∈ G, Sg
4 ∩ S4 = {1S4 , x, y, z} which is isomorphic to a subgroup containing elements such as

those in the set {1, (a, b), (c, d), (a, b)(c, d)} in S4. Since there are six elements of type x in S4 then

there are six more intersections M ∩ Mg with g ∈ G such that |M ∩ Mg| = 4. Now, since each

involution in G is in

(
q3−q
48

)
×9

q(q±1
2

= 3(q∓1)
8 of the conjugates Mg it follows that there are 9

(
3(q∓1)

8 − 1
)

intersections M ∩ Mg that contain an involution. But involutions are also in intersections M ∩ Mg

such that |M ∩Mg| = 4. Then we have to subtract those cases from 9
(
3(q∓1)

8 − 1
)
. This accounts for

9
(
3(q∓1)

8 − 1
)
−3

(
q∓1
8 − 1

)
− 18 intersections M ∩Mg for which |M ∩Mg| = 2. This in turn shows

that for q ≥ 41, 1+ 4
(
q±1
6 − 1

)
+3

(
q∓1
8 − 1

)
+6+ 9

(
3(q∓1)

8 − 1
)
−3

(
q∓1
8 − 1

)
− 18 < q3−q

48 . Hence

there must exist some g ∈ G such that |M ∩Mg| = 1 ∈ AM . Thus AM = {1, 2, 3, 4, 24}, if q = p ≡ ±1

(mod 8) but q = p ̸≡ ±1 (mod 12) and q = p ̸≡ ±1 (mod 16). □

Remark 3.31. The only exception to Proposition 3.30 occurs when p = 7 where PSL2(p) has rank 2

on its primitive action on 7 points.

Corollary 3.32. Let M be a maximal subgroup of G = PSL2(q) isomorphic to S4 and M be the set

of conjugates of M in G on which G acts by conjugation. Then the primitive action of G on M has
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non-trivial orbits of lengths 3, 4, 6, 8, 12 and 24, respectively. In the case where q = p ≡ ±1 (mod 8)

but q = p ̸≡ ±1 (mod 12) and q = p ̸≡ ±1 (mod 16). Then the primitive action of G on M has the

following non-trivial orbit lengths:

a) 1
2

(
q∓1
8 − 1

)
+ 1 orbits of length 6; b) 1

2

(
q±1
6 − 1

)
orbits of length 8;

c)
3
(

3(q∓1)
8

−1
)
−( q∓1

8
−1)−6

4 orbits of length 12;

d)
q3−q
48

−
[
1+4( q±1

6
−1)+3( q∓1

8
−1)+6+9

(
3(q∓1)

8
−1

)
−3( q∓1

8
−1)−18

]
24 orbits of length 24.

The proof of Theorem 1.1 stated in Section 1 follows from Corollaries 3.11, 3.20, 3.22, 3.25, 3.29

and 3.32.
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