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Abstract

Background: The prevalence of chronic conditions such as obesity, hypertension, and diabetes is increasing in African countries.
Many chronic diseases have been linked to risk factors such as poor diet and physical inactivity. Data for these behavioral risk
factors are usually obtained from surveys, which can be delayed by years. Behavioral data from digital sources, including social
media and search engines, could be used for timely monitoring of behavioral risk factors.

Objective: The objective of our study was to propose the use of digital data from internet sources for monitoring changes in
behavioral risk factors in Africa.

Methods: We obtained the adjusted volume of search queries submitted to Google for 108 terms related to diet, exercise, and
disease from 2010 to 2016. We also obtained the obesity and overweight prevalence for 52 African countries from the World
Health Organization (WHO) for the same period. Machine learning algorithms (ie, random forest, support vector machine, Bayes
generalized linear model, gradient boosting, and an ensemble of the individual methods) were used to identify search terms and
patterns that correlate with changes in obesity and overweight prevalence across Africa. Out-of-sample predictions were used to
assess and validate the model performance.

Results: The study included 52 African countries. In 2016, the WHO reported an overweight prevalence ranging from 20.9%
(95% credible interval [CI] 17.1%-25.0%) to 66.8% (95% CI 62.4%-71.0%) and an obesity prevalence ranging from 4.5% (95%
CI 2.9%-6.5%) to 32.5% (95% CI 27.2%-38.1%) in Africa. The highest obesity and overweight prevalence were noted in the
northern and southern regions. Google searches for diet-, exercise-, and obesity-related terms explained 97.3% (root-mean-square
error [RMSE] 1.15) of the variation in obesity prevalence across all 52 countries. Similarly, the search data explained 96.6%
(RMSE 2.26) of the variation in the overweight prevalence. The search terms yoga, exercise, and gym were most correlated with
changes in obesity and overweight prevalence in countries with the highest prevalence.

Conclusions: Information-seeking patterns for diet- and exercise-related terms could indicate changes in attitudes toward and
engagement in risk factors or healthy behaviors. These trends could capture population changes in risk factor prevalence, inform
digital and physical interventions, and supplement official data from surveys.

(JMIR Public Health Surveill 2021;7(4):e24348) doi: 10.2196/24348
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Introduction

Globally, obesity and overweight are the fifth leading cause of
death, associated with at least 2.8 million adult deaths each year
[1,2]. In Africa, the burden of obesity and overweight has
increased significantly over the last two decades [3-6]. Among
sub-Saharan African women, the prevalence of obesity increased
by 12% between 1975 and 2016, while the prevalence of
overweight increased by 24% [7-9]. Among men, obesity
prevalence increased by 5%, while overweight prevalence
increased by 15% in the same period [7-9].

Insufficient exercise and unhealthy diets (partly due to a
nutrition transition from nutrient-dense foods to energy-dense
foods) coupled with tobacco use and excessive alcohol
consumption (factors predominantly associated with an urban
lifestyle) are to blame for the increase in noncommunicable
disease burden in Africa [10,11]. Specifically, urbanization and
related economic advancements including higher income, higher
education, and higher socioeconomic status have been associated
with higher obesity prevalence [12-16]. Aging, cultural norms
(eg, in some cultures female fatness symbolizes beauty,
prosperity, and fertility), and television viewing habits have
also correlated with increasing obesity prevalence [16-20].

Persons who are obese or overweight are at a higher risk of
developing other medical conditions including hypertension,
cardiovascular disease, type 2 diabetes, and stroke [21-24].
Joubert et al [25] noted that 68% of hypertensive disease, 38%
of ischemic heart disease, 78% of type 2 diabetes, and 45% of
ischemic stroke among adults in South Africa were due to
obesity. The burden of obesity-associated noncommunicable
diseases is expected to continue to increase in sub-Saharan
African countries. Data suggest that millions of people living
with diabetes in sub-Saharan Africa are unaware of their status
and many lack access to necessary information and medications
[4,26-29]. Furthermore, obesity-related diseases have been
associated with an increased risk of severe COVID-19 disease
[30].

The rise in prevalence of noncommunicable diseases in Africa
creates new challenges that many health care systems are not
currently equipped to manage. Furthermore, the lack of
high-quality data also creates a barrier in quantifying public
health needs and addressing the impact of diseases [31]. This
data limitation includes a substantial gap in the standard and
availability of health data, especially where health information
is not digitized or comprehensive [31].

Usually, data on behavioral risk factors are collected through
surveys, which can be costly and capture only a single time
point. In contrast, digital data from internet sources can capture
timely changes in attitudes toward and engagement in risky
behaviors. While computational and statistical approaches have
been successfully used to process data from digital sources for
monitoring infectious disease reports and chronic disease risk
factors, few studies have focused on Africa [31-43]. As more
people in Africa use internet platforms and mobile phones for
seeking and sharing information, it is important to understand
how behavioral data shared on digital platforms can be used to
support and develop timely disease and risk factor surveillance

platforms. Here, we assess how diet- and exercise-related
searches submitted on an internet search engine can be used for
monitoring information-seeking patterns and obesity prevalence
in 52 African countries.

Methods

Data Collection
Search data were collected for 108 search terms (Multimedia
Appendix 1) from Google application programming interfaces.
The search terms included terms related to chronic diseases,
risk factors, diet, and physical activity. To generate a
comprehensive list of terms, we used the Google Trends website
[44] to identify terms that had similar search trends for chronic
diseases and their associated risk factors. We collected the yearly
search volume for each country from 2010 to 2016 for 52
countries in English [45]. Google normalizes the search volume
for each term relative to the search activity in the country and
the specific time period. Two countries (South Sudan and Sudan)
were excluded because obesity prevalence estimates were
unavailable for these countries.

We also downloaded age-standardized obesity and overweight
prevalence estimates for adults aged 18 years and older from
2010 to 2016 from the World Health Organization (WHO)
website [46,47]. These estimates were obtained using data from
population-based studies on cardiometabolic risk factors,
multicountry and national measurement surveys, as well as the
WHO STEPwise approach to surveillance (STEPS) surveys for
estimating BMI [48]. Overweight was defined as a BMI >25

kg/m2 and obese was defined as a BMI ≥30 kg/m2 [49]. The
reported credible intervals (CIs) for the estimates represented
the 2.5th and 97.5th percentiles of the posterior distributions.

Machine Learning Methods
We used machine learning methods to identify search patterns
that were associated with changes in obesity and overweight
prevalence across African countries. Specifically, we employed
support vector machine (SVM), random forest (RF), gradient
boosting, and Bayes generalized linear model (GLM). The
machine learning methods were selected to assess a broad range
of approaches from decision tree methods, kernel-based
approaches, and least squares regression methods. We
implemented these methods using the SuperLearner package
in R [50,51], which generates estimates for each individual
method and an ensemble of the methods.

RF regression is an extension of bootstrap aggregating
(“bagging”). It involves the construction of de-correlated
decision trees, which are averaged to reduce the variance of the
prediction function. Trees are preferred candidates for bagging
because they capture the complex interaction structures in the
data and have relatively low bias if grown deep. Since each
generated tree in bagging is identically distributed, the average
of B such trees is the same as the likelihood of any one of the
trees. The gradient boosting algorithm also involves the
generation of ensembles of predictive trees. However, trees are
built using the gradient boosting approach, which involves a
sequential iterative fitting procedure to reduce bias by assigning
higher weights to poorly fit samples and optimization via a loss
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function. An advantage of the gradient boosting algorithm is
that nonlinearities and interactions do not need to be explicitly
specified.

In contrast, SVM regression is similar to multiple linear
regression when the relationship between X and y is linear: y
= ƒ(x) = W · X + b. However, SVM regression involves the
application of kernel functions (eg, gaussian, polynomial, radial
basis, and sigmoid kernel) to model nonlinearity between X and
y. The SVM regression model parameters are selected to
minimize an epsilon-insensitive cost function. The model
parameters were selected by applying cross-validation to the
training data.

Lastly, Bayes GLMs are a class of GLMs that are a
generalization of linear regression models such that the
distribution of the dependent variable is of the exponential
family (eg, gaussian, poisson, binomial, categorical,
multinomial, or beta). In the Bayesian approach, inferences are
based on the posterior distribution, prior knowledge is captured
quantitatively through the prior distribution, and the data are
represented through the likelihood function [52,53]. Two
advantages of Bayesian models include the incorporation of
domain knowledge via the prior and uncertainty quantification
via the posterior distribution.

Data Analysis
First, we estimated the Pearson correlation coefficient (r)
between the search data and obesity and overweight prevalence
across Africa from 2010 to 2016. Next, we excluded all search
terms that had zero variance (ie, 20 search terms) and search
terms not significantly correlated with obesity/overweight
prevalence at a significance level of P<.05. Additionally,
because there were zero reported searches for some terms in
some countries, we excluded all terms with less than 50% of
observations greater than zero, implying that only the most
significant and comprehensive variables were used in the
modeling. We then fitted separate models to estimate obesity
and overweight prevalence using the search data. The coefficient

of determination (R2) and root-mean-square error (RMSE) were
used to assess the model fit. The out-of-sample estimation
involved splitting the data into 2 sets: data from 2010 to 2014
were used to train the model, while data from 2015 to 2016
were used to evaluate the model. In machine learning, the data
used to train the model are usually different from the data used
to validate it. The training data are used to fit the model (ie,
train the algorithm to identify patterns) and the evaluation data
are used to assess the predictive performance of the fitted model
by comparing the model estimates to true values. The aim is to
allow the model to be generalizable to future sets of data.
However, in the absence of future data, the evaluation data are
used. We also report the correlation between the out-of-sample

predictions and WHO-estimated obesity and overweight
prevalence. The following R packages were used: SuperLearner,
randomForest, kernlab, and arm [51,54].

Results

Information-Seeking Patterns
Some countries had sparse or no data for some of the search
terms. Search patterns were similar for several of the terms:
lose weight and weight (r=0.93, 95% CI 0.91-0.94), diet and
weight (r=0.92, 95% CI 0.90-0.93), diet and weight loss (r=0.89,
95% CI 0.87-0.91), food and weight (r=0.88, 95% CI 0.85-0.90),
food and weight loss (r=0.86, 95% CI 0.83-0.88), breakfast and
diet (r=0.85, 95% CI 0.82-0.87), weight and ginger (r=0.84,
95% CI 0.81-0.87), weight and breakfast (r=0.83, 95% CI
0.80-0.86), weight loss and weight gain (r=0.83, 95% CI
0.79-0.86), exercise and food (r=0.81, 95% CI 0.77-0.84), ginger
and weight loss (r=0.81, 95% CI 0.77-0.84), weight loss and
fasting (r=0.81, 95% CI 0.77-0.84), gym and diet (r=0.81, 95%
CI 0.77-0.84), lose weight and food (r=0.81, 95% CI 0.77-0.84),
lose weight and gym (r=0.81, 95% CI 0.77-0.84), and food and
ginger (r=0.80, 95% CI 0.75-0.83). Most of these associations
were between terms that capture the same underlying intention.
For instance, someone searching for information on how to lose
weight might also search for gym, diet, or weight loss plans.

Estimated obesity prevalence was lowest for Ethiopia and
highest for Libya during the study period (Figure 1). Obesity
prevalence was most statistically significantly correlated with
similar and different search terms across the countries with
highest obesity and overweight prevalence (Figure 2). For
example, for Libya, statistically significant correlations were
observed between obesity prevalence and searches for yoga
(r=0.95, 95% CI 0.71-0.99), exercise (r=0.89, 95% CI
0.43-0.98), and gym (r=0.91, 95% CI 0.49-0.99). Similarly, for
Egypt, significant correlations were observed between obesity
prevalence and searches for gym (r=0.98, 95% CI 0.83-0.99),
breakfast (r=0.96, 95% CI 0.73-0.99), and yoga (r=0.95, 95%
CI 0.67-0.99). In contrast, significant correlations for South
Africa were between obesity prevalence and searches for how
to exercise (r=0.99, 95% CI 0.91-0.99), green tea (r=0.98, 95%
CI 0.89-0.99), and weight gain (r=0.97, 95% CI 0.83-0.99). For
Algeria, we observed significant correlations between obesity
prevalence and searches for gym (r=0.93, 95% CI 0.58-0.99),
yoga (r=0.92, 95% CI 0.54-0.99), and weight (r=0.89, 95% CI
0.44-0.98). Searches for Fitbit were significantly associated
with obesity prevalence in some countries (eg, Egypt and
Algeria); however, the search volume was much lower than the
search volume of other terms listed, suggesting less interest.
Findings were similar between overweight prevalence and the
search terms.
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Figure 1. Estimated adult obesity prevalence in Africa from the World Health Organization in (A) 2010 and (B) 2016.
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Figure 2. Search trends for the terms most correlated with obesity and overweight prevalence estimates from the World Health Organization for
countries with the highest obesity and overweight prevalence in Africa: (A) Libya, (B) Egypt, (C) South Africa, and (D) Algeria.

Estimating Obesity With Search Trends
Twelve of the terms that were significantly correlated with
obesity prevalence (ie, hypertension, breakfast, diet, nutrition,
obese, green tea, weight gain, lose weight, weight loss, weight,
gym, and malnutrition) were used in modeling to estimate
obesity prevalence. The estimated variances explained by the
various models were 0.97, 0.92, 0.77, and 0.30 for RF (Figure
3), gradient boosting, SVM, and Bayes GLM, respectively; the
corresponding RMSEs were 1.15, 1.87, 3.53, and 5.60,
respectively. Likewise, the correlations between the
out-of-sample estimates (ie, data not used to train the model)

and obesity prevalence were 0.96, 0.94, 0.87, and 0.56 for RF,
gradient boosting, SVM, and Bayes GLM, respectively.

Similarly, 8 search terms (hypertension, breakfast, diet, nutrition,
obese, lose weight, gym, and malnutrition) were used in
modeling to estimate overweight prevalence. The RF model
was also the best performing model for estimating overweight
prevalence (Figure 4). The estimated variances explained by
the various models were 0.96 (RMSE 2.26), 0.91 (RMSE 3.56),
0.62 (RMSE 7.72), and 0.23 (RMSE 9.99) for RF, gradient
boosting, SVM, and Bayes GLM, respectively; the
corresponding correlations between the out-of-sample model
estimates and overweight prevalence were 0.95, 0.94, 0.78, and
0.49, respectively.
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Figure 3. Estimation of obesity prevalence using search data and the random forest algorithm. (A) Association between model-estimated obesity
prevalence and World Health Organization (WHO) obesity prevalence. (B) Association between model-predicted obesity prevalence and WHO obesity
prevalence. The decision tree approaches had the lowest errors in estimating obesity prevalence.

Figure 4. Estimation of overweight prevalence using search data and the random forest algorithm. (A) Association between model-estimated overweight
prevalence and World Health Organization (WHO) overweight prevalence. (B) Association between model-predicted overweight prevalence and WHO
overweight prevalence. The decision tree algorithms had the most accurate estimates of overweight prevalence.
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Discussion

Our study assessed the potential use of information-seeking
trends of obesity- and overweight-related terms for monitoring
these conditions in Africa. Several of the search terms were
correlated with changes in obesity and overweight prevalence
and, when modeled together, produced estimates that were
significantly correlated with data from the WHO. Data from
internet sources, including social media and search engines, can
capture detailed information on individuals' well-being that can
collectively reflect community perceptions of health. Web
searches, unlike social media, can more accurately reflect
information-seeking patterns on sensitive or stigmatized health
topics since individuals tend to consider it private [55].

As African nations become more urbanized, digital data and
tools could be useful for monitoring changes in behavioral risk
factors, which could help public health officers, policy makers,
health providers, and nutritionists to make informed decisions
on chronic disease prevention efforts in Africa. Similarly, health
care professionals can also use digital platforms to seek
information on advances in medical practice, disseminate health
information, and communicate with and support patients [56,57].
However, digital health implementation in some African
countries is constricted by systemic hurdles such as weak health
systems and a lack of coordination of mushrooming pilot
projects [58].

A research agenda around monitoring risk factors for
noncommunicable diseases using digital platforms should focus
on quantifying changes with the intent to participate in
behavioral risk factors, postings of engagement on social media,
and information seeking on poor diet, physical inactivity, and
other risk factors. Interventions can target younger
populations—who tend to use digital platforms and are at
risk—to promote healthy behaviors (eg, to stop smoking or
reduce intake of sugary drinks). By monitoring changes in

discussion trends on digital platforms, interventions designed
for both online and offline targeting could be more beneficial,
thereby avoiding the unintended effects of poorly designed
campaigns. Furthermore, in regions where large data sets are
available, systems can be developed for quantifying the
prevalence of these risk factors at a granular level (ie,
subnational or subregional)—using a combination of digital
data, hospital data, and demographic data—where survey
estimates are unavailable or delayed.

A major limitation of this study is that we did not collect data
in other languages spoken in Africa (including Swahili,
Portuguese, Sesotho, Zulu, Afrikaans, Xhosa, Tswana, Hausa,
Tsonga, Afar, French, Arabic, and Somali). However, other
studies suggest that English is used on the internet in many
African countries [31,45]. Also, the obesity and overweight
data are estimates that might not accurately reflect current
obesity rates due to limitations in data and methods.
Furthermore, the differences in search patterns between
countries suggest a need for country-specific analysis. For
example, there are local dieting fads (such as herbal life in South
Africa) that should be monitored to capture local context.
However, the number of observations was insufficient for fitting
individual models to each country. Additionally, access to the
internet might be influenced by socioeconomic status, which
means that individuals seeking information on Google might
not be representative of the total population [59-61].

However, our approach demonstrates that the adoption of
internet technologies in Africa provides opportunities for
studying and improving health. Obesity and overweight are
health challenges faced by countries in Africa, and population
information-seeking behaviors can inform how we design
interventions. Information-seeking patterns on obesity-related
risk factors could capture changes in attitudes, behaviors, and
risk factor prevalence that could supplement official estimates
from surveys.
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