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Abstract

This thesis analyses the performance of the equal weighted portfolio using an ap-
proach from stochastic portfolio theory. This framework allows for the decomposition
of the relative performance of the equal weighted portfolio into four main parts;
the change in the concentration of the cap weighted portfolio, the excess return
generated by a diversification benefit, the difference in dividend rates, and a term
called the leakage effect. In general equal weighted portfolios do outperform their
cap weighted portfolio counterparts, although with varying degrees across different
countries. In South Africa, for example, high levels of leakage over the past ten
years and increasing concentration have led to poor relative performance of the
equal weighted portfolio. In other countries such as the United Kingdom and Japan,
equal weighted portfolios have done very well, with high levels of diversification
benefits and low levels of leakage. Two models are presented in an attempt to
reduce the relative drawdowns of the equal weighted portfolio and to blend the two
weights (equal and cap) in an optimal manner. These models appear to do well in
markets where the equal weighted portfolio has poor performance and large relative
drawdowns.
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Definitions and terms

Cap weighted portfolio This is a short-hand term used for the market capitalisa-
tion weighted portfolio and refers to the portfolio with each stock’s weight
equal to the share of total market capitalisation in the universe of stocks. The
universe of stocks is defined by the respective market index.

Cap weights This refers to the market capitalisation weights of each stock in the
cap weighted portfolio.

Classification and regression tree (CART) A CART model is a supervised learn-
ing model resembling a decision tree, with each node (or split) determined by
the maximisation of the homogeneity of the resulting sub-group.

Concentration Concentration in this thesis refers specifically to the concentration
in the cap weights of the respective market. For example, in South Africa a
handful of stocks account for a very large portion of the cap weighted index
or portfolio by virtue of their significantly larger share of the overall market
capitalisation.

Diversification Diversification in this thesis has a very specific form; the excess
growth rate of the equal weighted portfolio (Equation 3.6). Intuitively, this
measure is a function of the reduction in portfolio volatility due to the covari-
ance structure of the underlying stocks.

Drift process The drift process is defined in Definition A.1.2 and is a contributing
factor to the relative return of a portfolio. In the case of the equal weighted
portfolio the drift process is equal to the excess growth rate.

Entropy Entropy is another measure for concentration used in information theory.
Setting the parameters to the cap weights of an index allows one to calculate
the entropy of an index or market.

Equal weighted portfolio This is a portfolio with equal weights assigned to each
stock. In this thesis the universe of stocks is set to the constituents of the
respective cap weighted portfolio or index.
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Excess growth rate The excess growth rate is defined in Equation (3.6) and is a
measure of diversification. Intuitively, this measure is a function of the reduc-
tion in portfolio volatility due to the covariance structure of the underlying
stocks.

Functionally generated portfolios Functionally generated portfolios are portfo-
lios whose weights can be generated systematically using a function with the
cap weights as inputs (see Section 3.4). The equal weighted portfolio is an
example of a functionally generated portfolio.

Geometric mean of cap weights The geometric mean of cap weights is an impor-
tant measure of concentration as this function also represents the portfolio
generating function of the equal weighted portfolio and, therefore, changes in
the geometric mean of cap weights contributes directly to the relative return
of the equal weighted portfolio (see Section 3.3).

Information Ratio The information ratio of a portfolio is a measure of the active
returns (relative to the cap weighted portfolio in this thesis) scaled by the
volatility of those active returns.

Leakage Leakage is a term from stochastic portfolio theory that describes the
effect of stocks "leaking" out of the respective market index used to define
the universe. This index is, however, only a subset of the overall market and,
therefore, defining a portfolio’s constituents using this subset leads to stock
selection by rank. Given that the equal weighted portfolio has a larger weight
in these stocks moving in and out of the index than the cap weighted portfolio,
its effect on the equal weighted portfolio’s relative return is generally negative.

Market capitalisation weighted portfolio This term refers to the portfolio with
each stock’s weight equal to the share of total market capitalisation in the
universe of stocks. Cap weighted portfolio is used as a short-hand reference,
however, throughout this thesis. Although the respective market capitalisation
index is used to define the constituents in each equity market, cap weighted
portfolios are constructed to ensure that rebalance periods match the equal
weighted portfolio in question.

Portfolio generating function This is the function of the cap weights that gener-
ates a specific portfolio (see Section 3.4). In the case of the equal weighted
portfolio this is the geometric mean of cap weights which is also a measure of
concentration in the cap weighted portfolio. Changes in the portfolio gener-
ating function have a direct impact on the relative returns of a portfolio (see
Section 3.3).
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Random Forest model The Random Forest (RF) model is an extension of the
CART model. Instead of only considering one decision tree, a RF model build
numerous decision trees, with each tree being fit using a random sample of the
available features and only a bootstrap sample of the data. The prediction from
a RF model is then the average prediction across all the individual decision
trees.

Relative return In this thesis the mention of relative return refers to a portfolio’s
return relative to the respective cap weighted portfolio.

Sharpe ratio This represents the ratio of excess return over the risk-free rate to the
volatility of returns.

Sortino ratio This is a modification of the Sharpe ratio, whereby the volatility of
returns is replaced by the volatility of negative returns (downside deviation).

Stochastic portfolio theory Stochastic portfolio theory is a framework for con-
structing and analysing portfolios, specifically against the market capitalisation
weighted index or portfolio.
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List of symbols

Xi(t): Denotes the stock price process for stock i at time t.

γi(t): The geometric growth rate of Xi at time t.

σi(t): Volatility of stock price process Xi at time t.

σij(t): Covariance between Xi and Xj at time t.

dWi(t): Denotes a Brownian motion.

αi(t): Arithmetic growth rate of Xi at time t.

πi(t): The weight of a stock i in a portfolio with weights denoted π(t). Usually
π represents the equal weighted portfolio in this thesis.

µi(t): Exclusively used in this thesis to denote the weight of a stock i in the
market capitalisation weighted portfolio. See Equation (3.12).

Zπ(t): Zπ(t) denotes the portfolio price process for a portfolio with weights
π(t). Zµ(t) exclusively denotes the portfolio price process of the market
capitalisation weighted portfolio.

γπ(t): Denotes the geometric growth rate of the portfolio price process Zπ(t) for
a portfolio with weights π(t). See Equation (3.5).

γ∗
π(t): A part of γπ(t) which acts as a measure of diversification in the portfolio

with weights π(t). This term is referred to as the excess growth rate,
see Equation (3.6), and is also the drift process for the equal weighted
portfolio, see Equation (3.21).

δi(t): The dividend process for stock Xi(t).

δπ(t): The dividend process for a portfolio with weights π. See Equation (3.11).

X̂i(t): The total return process for stock i, including dividends. See Equation
(3.9).

Ẑπ(t): The total return process for a portfolio with weights π, including dividends.
See Equation (3.10).
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S (µ(t)): The portfolio generating function for a portfolio as per Definition 3.16.
S (µ(t)) generates a portfolio as per Equation (A.23) in Theorem A.2.1.
Changes in the portfolio generating function have a direct impact on
relative returns, see Definition A.2.1.

Θ(t): The drift process, see Equation (A.24), of a portfolio with portfolio gener-
ating function S (µ(t)). The drift process has a direct impact on relative
returns, see Definition A.2.1.

τi(t): The relative variance (or tracking error) of stock i, relative to a portfolio
price process, such as the cap weighted portfolio.

τij(t): The relative covariance of stock i and stock j, relative to a portfolio price
process, such as the cap weighted portfolio.

Lπ(t): Denotes the net effect of leakage on a portfolio with weights π relative to
the cap weighted portfolio with weights µ. See Equation (3.25).

ΛX(t): A semi-martingale local time process defined in Equation (3.26).

Dp(µ): A portfolio generating function that uses a parameter p, with 0 < p ≤ 1,
to generate a portfolio with weights between equal weight (as p → 0) and
cap weight (as p → 1). See Equations (5.3) and (5.4).

fi: Denotes the i-th feature used in a decision tree. See Section 5.3.

fS
i : Denotes the split criteria fS

i selected for the feature fi such that the split
maximises the homogeneity of the resulting child nodes. See Section 5.3.

Gi: Denotes the Gini index, used as a determinant of homogeneity in CART
and Random Forest models. See Equation (5.5). Gi represents the Gini
index at node i in a decision tree.
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List of equity indices

A key aim in this thesis is the analysis of market capitalisation weighted (cap
weighted) and equal weighted portfolios among a selection of eight countries. A
cap weighted index is selected to represent the equity universe in each country
and, furthermore, the constituents of the respective indices are used to define the
universe for the construction of the cap weighted and equal weighted portfolios
within each country. The index name and related country are used interchangeably
throughout this thesis. For example, a reference to US equities would, in this thesis,
refer to the universe of US stocks defined by the S&P500 Index. The same would
hold for references to SA equities and the FTSE/JSE Top40 index.

A description of these cap weighted equity indices are provided below.

CAC 40 The CAC 40 represents the 40 largest stocks, by market capitalisation,
listed on the Euronext Paris stock exchange. Index weights are typically
capped at 15% if necessary, although, in this thesis the cap weighted portfolio
is re-constructed without such rules.

DAX The DAX is an index representing the top 40 (expanded from 30 in 2021)
stocks, by market capitalisation, trading on the Frankfurt Stock Exchange.

FTSE 100 The FTSE 100 index represents the top 100 stocks, by market capitalisa-
tion, listed on the London Stock Exchange (UK).

FTSE/JSE Top 40 Index The FTSE/JSE Top 40 Index consists of the 40 largest
companies, by market capitalisation, listed on the Johannesburg Stock Ex-
change (JSE) and is, therefore, representative of the largest stocks in South
Africa (SA). In this thesis the FTSE/JSE Top 40 Index is referred to as the Top
40.

S&P/ASX 200 The S&P/ASX 200 Index represents the 200 largest companies, by
market capitalisation, listed on the Australian Securities Exchange (ASX).

S&P/TSX 60 The S&P/TSX 60 Index represents large-cap stocks listed on the
Toronto Stock Exchange (TSX). Although the index aims to represent the
largest stocks on the TSX, it is also structured to reflect the sector weights of
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the larger S&P/TSX Composite Index which covers the broader listed equity
market in Canada (CA).

S&P500 The S&P500 Index represents the top 500 listed companies in the United
States (US) by market capitalisation.

TOPIX The Tokyo Stock Price Index (TOPIX) is a market capitalisation weighted
index representing all the stocks listed on the Tokyo Stock Exchange (TSE)
and categorised in the so-called First Section. The First Section contains the
largest companies listed on the TSE. The TOPIX represents the largest index
in this thesis by number of constituents with total membership of over 2000
stocks in this index.
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Introduction 1
1.1 The equal weighted portfolio

The market capitalisation weighted index (cap weighted) index remains the most
widely used equity benchmark both in practice and in academia. This is due, in
part at least, to the Capital Asset Pricing Model (CAPM) developed by Sharpe
(1964) which assumes that the cap weighted index will be mean-variance efficient.
Secondly, from a practical perspective, cap weighted portfolios make intuitive sense,
representing the total stock market by market capitalisation (or at least the largest
firms within that market). Cap weighted indices, furthermore, require minimal effort
to maintain beyond typical inclusions and exclusions in the index, implying little
turnover in an underlying portfolio.

A number of studies have, however, challenged the efficiency of the cap weighted
index. Haugen and Baker (1991) discuss the conditions necessary for cap weighted
portfolios to be efficient. Among the conditions investigated are the assumptions
that all investors agree about the risk and expected return for all securities, all
investors can short-sell all securities, all investors have the same investable universe,
and that no investor is subject to taxation. In the absence of these assumptions, the
authors argue that the cap weighted portfolio is inefficient. Furthermore, they show
that an ex-ante efficient portfolio consistently outperforms the Wilshire 5000 index
with lower volatility. Hsu (2004) shows that a cap weighted portfolio suffers from a
“return drag” which is directly proportional to the volatility of the individual stocks.
Therefore, the higher the level of price inefficiency (volatility) in the market, the
higher the return drag. This assumption is equivalent to an assumption of negative
autocorrelation in returns. See also, DeMiguel et al. (2009), Martellini (2009) as
well as Amenc et al. (2012) which question the efficiency of cap weighted indices.

Numerous studies have specifically shown equal weighted portfolios to be more
efficient than cap weighted portfolios. Dash and Loggie (2008) provide empirical
evidence of an equal weighted S&P500 index outperforming the cap weighted
index. Dash and Zeng (2010) confirm similar results for the S&P International 700
index. Bolognesi et al. (2013) examined the outperformance of an equal weighted
Dow Jones Eurostoxx 50 index compared with a cap weighted index. In terms of
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the efficiency of equal weighted portfolios, DeMiguel et al. (2009) evaluated the
performance of optimal asset allocation against a naïve equal weighed portfolio.
They found that none of the 14 models (extensions of the sample based mean
variance optimisation) performed better out-of-sample than the equal weighted
portfolio on a risk-adjusted basis. Plyakha et al. (2015) also show, empirically,
that equal weighted portfolios, rebalanced monthly, outperform the cap weighted
portfolio in terms of total return, alpha (relative to a four-factor model) and Sharpe
ratio.

Table 1.1.: Annualised returns, volatility and risk-adjusted returns of the cap- and equal
weighted portfolios for a selection of countries analysed in this thesis. The
period starts 1 January 2003 and ends 31 May 2021. Portfolios are rebalanced
monthly and transaction costs are excluded.

CAGR (%) Volatility (%) Sharpe ratioa Information ratioa

Country Cap Equal Cap Equal Cap Equal Equal
Australia 12.1 11.5 16.4 17.6 0.57 0.50 -0.01
Canada 9.7 10.6 18.1 18.3 0.52 0.58 0.23
France 8.0 8.2 21.9 23.0 0.42 0.42 0.21
Germany 8.7 9.7 22.5 22.1 0.45 0.49 0.25
Japan 7.1 11.3 21.2 20.0 0.43 0.63 0.60
South Africa 14.7 14.6 20.2 19.4 0.42 0.42 0.00
United Kingdom 7.2 10.0 18.6 19.4 0.36 0.49 0.61
United States 11.3 13.1 19.4 21.6 0.58 0.62 0.41

aRespective risk-free rates used in Sharpe and Information ratio calculations.

Table 1.1 shows the returns (after transaction costs) for the cap- and equal weighted
portfolios for selected equity markets based on analysis conducted in this thesis
(Table 1.1 is a reproduction of Table 2.5 shown here for ease of reference). These
results largely support the literature with the equal weighted portfolio outperforming
the cap weighted portfolio in all but two equity markets (Australia and South Africa)
and doing so with higher risk-adjusted returns as measured by the Sharpe and
Information ratios.

1.1.1 Where does this outperformance come from?

In Malladi and Fabozzi (2017), the authors attempt to find the source of this
outperformance in the US stock market by comparing the alpha of the equal weighted
portfolio over the cap weighted portfolio against various factors. They find that the
equal weighted portfolio has a bias towards small stocks (that is, the size factor) as
expected but also has significant exposure to the reversal factor. This makes intuitive
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sense as the equal weighted portfolio continues to sell outperforming stocks and
buy underperforming stocks through the rebalance process. This leads the authors
to conclude that a significant portion of the excess return over the cap weighted
portfolio is derived from the rebalancing process itself.

The act of rebalancing an equal weighted portfolio is also sometimes referred to as
volatility harvesting or volatility return (see Bouchey, Nemtchinov, Paulsen, et al.,
2012; Bouchey, Nemtchinov, and Wong, 2015; Hallerbach, 2014, for example),
although, the mechanism is similar to the reversal factor studied in Malladi and
Fabozzi (2017). A dynamic rebalancing frequency is, therefore, also an important
decision to make given the analogy with volatility harvesting. That is, at times
volatility may be so low that rebalancing is counterproductive after transaction costs,
and vice versa, when volatility is so high that not rebalancing regularly creates a
drag on performance.

The regular rebalancing to equal weights, while generating a return through rever-
sals in individual stock returns, also has the effect of keeping the equal weighted
portfolio more diversified than a cap weighted portfolio. The higher diversification
generates additional return over the cap weighted portfolio and this leads Booth
and Fama (1992), for example, to refer to the additional return from rebalancing as
diversification return.

Under the assumption of a lognormal model of stock prices and a diversified market,
Fernholz (2002) sets out a framework (stochastic portfolio theory) which allows
for a comparison of expected returns of portfolios generated by some function
against the expected returns of the cap weighted portfolio. Under this framework,
it can be shown that an equal weighted portfolio outperforms a cap weighted
portfolio in the long run under the assumption that the market does not become
overly concentrated in one stock. Stochastic portfolio theory also allows for a
decomposition or attribution of the excess return generated by the equal weighted
portfolio over the cap weighted portfolio. Chapter 3 provides an introduction
to this framework, however, it is interesting to note here that movements in the
geometric mean of cap weights plays an important role in the relative return of the
equal weighted portfolio. As the geometric mean decreases (i.e. as stock weights
become less concentrated), it provides a positive contribution to the equal weighted
portfolio’s relative return. This is a very similar effect to the reversal factor identified
in Malladi and Fabozzi (2017) and related to the "return drag" mentioned in Hsu
(2004) for the cap weighted portfolio.

Stochastic portfolio theory is a key element of this thesis, and its empirical imple-
mentation in the following chapters attempts to provide a complete picture of the
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sources of the equal weighted’s return (or lack thereof). Understanding these drivers
of relative performance for the equal weighted portfolio is important. Many studies
have shown the equal weighted portfolio to outperform the cap weighted portfolio
on both a risk-adjusted and outright return basis on a longer-term basis. In the
short-term, however, the equal weighted portfolio can suffer significant underperfor-
mance relative to the cap weighted portfolio. It may be difficult for investors to hold
equal weighted portfolios during these periods that may affect overall long-term
performance. Understanding where this underperformance is coming from can go
a long way to improve decision making in portfolio construction especially since
the equal weighted portfolio can be viewed as a proxy for contrarian strategies in
general.
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Figure 1.1.: Active returns (CAGR) of equal weighted portfolio relative to the cap weighted
portfolio, pre-2012 and post-2012.

Figure 1.1 highlights one example of this by showing the relative returns of the equal
weighted portfolio across various markets pre- and post-2012. Only in the UK equity
market have relative returns for the equal weighted portfolio been higher after 2012.
In the case of Japan, where the equal weighted portfolio does well overall, relative
returns been significantly lower after 2012. Relative returns for markets such as
South Africa and Australia have been significantly negative (likely due to the high
resource sector exposure), however, relative returns are marginally negative even in
developed markets such as Germany, France, and the US since 2012.

There can be various reasons for short-term underperformance. As mentioned before,
the act of rebalancing an equal weighted portfolio can be viewed as exposure to some
reversal effect, with the portfolio essentially selling stocks that have outperformed
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the average stock and buying those that have underperformed. In the short-term
this would require some form of mean reversion (the reversal effect) in stocks to
outperform the cap weighted portfolio. In momentum driven markets, however, this
is unlikely to be the case and in such instances the equal weighted portfolio is bound
to underperform the cap weighted portfolio. Another source of underperformance
could be the diversification benefits of the equal weighted portfolio. While the act of
rebalancing an equal weighted portfolio is typically thought to generate additional
return through increased diversification, it is possible that the diversification return
is too low, either because individual stock volatilities are low or correlation is high,
and does not warrant rebalancing of the portfolio back to equal weights. This is
analysed further in Taljaard and Maré (2019b) and Cuthbertson et al. (2016).

While the focus of this thesis is on the equal weighted portfolio, stochastic portfolio
theory provides a general framework for analysing portfolios with weights which
are systematically generated (see Theorem A.2.1). Therefore, it is possible to extend
the discussion and analysis to so-called "smart beta" portfolios in general. The equal
weighted portfolio is but one type of "smart-beta" portfolio. A value-based approach
with stocks weighted by some fundamental price ratio, such as price-to-book ratios,
is another example of a smart-beta portfolio where stochastic portfolio framework
may be able to assist with empirical attribution. This is left as one area for further
research.

1.1.2 The equal weighted portfolio as a benchmark?

Typically active equity portfolio managers do not stray too far from their given
benchmark. Petajisto (2013), for example, find that 16% of all so-called active
funds could be classified as closet indexers, and a further 48% of funds could only
be classified as moderately active (with an average tracking error of less than 6%)
for US all-equity funds from 1990 – 2009, using active share and tracking error as
metrics. Taljaard and Maré (2019a) show in the South African equity unit trust
universe that the median tracking error is about 5.5% and nearly half of these unit
trusts have a tracking error of less than 5.5% w.r.t. the FTSE/JSE All Share Index. A
quarter of the unit trusts have a tracking error of less than 4.5% and only 23% of
funds have a tracking error of more than 8%.

Given the evidence that active portfolio managers are typically not benchmark
agnostic, that is, they do not stray too far from their benchmark, and the literature
showing that the cap weighted portfolio is less efficient and underperforms the equal
weighted portfolio, it raises the question of whether an investor would be better
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served by providing active portfolio managers with an equal weighted portfolio or
index as a benchmark. This is a question analysed by Taljaard and Maré (2019a). To
analyse this question the authors in Taljaard and Maré (2019a) generate random
active portfolios with active positions specified by a multiple of the stocks benchmark
weight. This is not too far removed from happens in practice. The authors find that
active portfolios display much higher Sharpe ratios than those using a cap weighted
portfolio. This result is shown in Figure 1.2 as presented in Taljaard and Maré
(2019a).

Figure 1.2.: Sharpe ratio (risk-free rate of 0 used) for random portfolios under a market
cap and equal weight benchmark as presented in Taljaard and Maré (2019a).

The analysis presented in Taljaard and Maré (2019a) considered the FTSE/JSE Top
40 index until 2015. Much has, however, changed in the South African equity market
and specifically with regards to the performance of the equal weighted portfolio in
South Africa (see the results in Chapter 2). Understanding the factors driving this
performance can provide additional information to equity investors about whether
an equal weighted index would be appropriate as a benchmark for active portfolio
managers.

1.2 Thesis Scope

While numerous papers have considered the long-term performance of the equal
weighted portfolio and potential sources thereof, there has been a lack of discussion
and analysis in relation to the empirical short-term relative performance of the
equal weighted portfolio and why the equal weighted portfolio has underperformed
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significantly in certain periods despite its longer-term outperformance. Furthermore,
while the equal weighted portfolio has outperformed the cap weighted portfolio in
most equity markets, there is a large disparity between the performance of the equal
weighted portfolio in different markets.

Stochastic portfolio theory, however, provides a framework that allows one to
understand and analyse the relative performance of an equal weighted portfolio.
Stochastic portfolio theory was first introduced by Robert Fernholz (Fernholz and
Shay, 1982; Fernholz, 1999a; Fernholz and Square, 1998), which culminated in a
book (Fernholz, 2002). This approach allows for an attribution of the equal weighted
portfolio’s return relative to the cap weighted portfolio, providing analysis of when
and why the equal weighted portfolio outperforms or underperforms in certain
periods and markets.

The scope of this thesis is, therefore, to analyse the performance of the equal
weighted portfolio within this framework and to provide an empirical attribution of
the relative performance. This is primarily done for the SA and US equity markets
given that the SA equity market is the local equity market and is a market where the
equal weighted portfolio has struggled (see Section 2.3). The US equity market, and
the S&P500 Index, provides a good comparator to the SA equity market given the
US market’s role as one of the largest and most liquid equity markets in the world.
This analysis is extended to consider a selection of other, primarily developed, equity
markets which is particularly important when comparing the drivers of the equal
weighted portfolio’s relative return within different markets (see Section 4.6).

1.3 Thesis Aims

This thesis aims to analyse the empirical performance of the equal weighted portfolio
in various equity markets, but with a focus on the SA and US markets. This analysis
is performed within the stochastic portfolio theory framework, which allows for an
empirical attribution of the relative performance of the equal weighted portfolio.
Although the main focus is on the S&P500 and the Top 40, other countries are also
included to provide broader context. Table 1.2 displays the list of countries and the
respective indices used. Also included are start dates used for data sourced from
Bloomberg.

A further aim of this thesis is to attempt to utilise this framework and the empirical
analysis of the various drivers of relative performance to understand when holding
the equal weighted portfolio may be sub-optimal, and to attempt to create an
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Table 1.2.: List of countries and indices used for analysis.

Country Index Start Date
Australia (AU) S&P/ASX 200 1 January 2002
Canada (CA) S&P/TSX 60 1 January 2002
France (FR) CAC 40 1 June 2001

Germany (GE) DAX 1 January 2000
Japan (JP) TOPIX 1 January 2000

South Africa (SA) FTSE/JSE Top 40 1 November 2002
United Kingdom (UK) FTSE 100 1 January 1998

United States (US) S&P500 1 January 1996

improved portfolio which benefits from the longer-term outperformance by the
equal weighted portfolio while reducing short-term drawdowns relative to the cap
weighted portfolio.

The core of this thesis is based on four journal articles, three of which are peer
reviewed, and have focused on the importance of the equal weighted portfolio and
the components of its relative performance against the cap weighted portfolio. These
articles are set out in Table 1.3.

Table 1.3.: Published doctoral research: Journal articles and online working papers.

Peer-reviewed publications
1. Taljaard, B. H., & Maré, E. (2019). Considering the use of an equal-weighted

index as a benchmark for South African equity investors. South African Actuarial
Journal, 19(1), 53-70.

2. Taljaard, B. H., & Maré, E. (2021). Why has the equal weight portfolio under-
performed and what can we do about it?. Quantitative Finance, 1-14.

3. Taljaard, B. H., & Maré, E. (2021). If the equal weighted portfolio is so great,
why isn’t it working in South Africa?. Investment Analysts Journal, 50(1), 32-49.

Online working paper (submitted to Journal of Investment Strategies)
1. Taljaard, B., & Mare, E. (2019). Too much rebalancing is not a good thing.

Available at SSRN 3484337.

1.4 Thesis structure

Chapter 2 sets the stage by discussing the historical performance of the equal
weighted portfolio with a focus on both United States (S&P500) and South African
(Top 40) equities over the past 18 and 25 years, respectively. An analysis and
discussion of the performance of the equal weighted portfolio in the remaining
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countries in Table 1.2 is included in this chapter. Chapter 3 then introduces the main
model, based on stochastic portfolio theory, that is used to analyse this performance
and attempts to provide an intuitive explanation for each component. An empirical
analysis and return attribution of the equal weighted portfolio is presented in Chapter
4 using the stochastic portfolio theory framework.

The final chapter aims to develop a forward-looking element to the concepts explored
in the earlier chapters with direct impact on practical portfolio management. Chapter
5 introduces two models; a simplistic regression model to dynamically switch
between the equal weighted and cap weighted portfolios, and a Random Forest
model used to predict the probability of the equal weighted portfolio outperforming
in the next month and setting weights accordingly.

1.5 Data and methodology

The methodology throughout this thesis is kept as consistent as possible with port-
folios constructed using daily stock price and total return data from Bloomberg.
Portfolios are rebalanced monthly, on the following business day’s closing prices.
Dividends and the effect of other capital adjustments are placed in cash until the
next rebalance date. Cash balances between rebalance dates are assumed to earn no
interest. Unless otherwise stated, transaction costs are excluded from the analysis.
The cap weighted portfolio is constructed from market capitalisation weights using
the universe of stocks in the respective index as at the end of the month prior to
the rebalance date. These portfolios will, therefore, differ slightly from the official
indices although the constituents mirror the official indices at all times.

All analysis is conducted on the period ending 30 May 2021, and starting on the
dates provided in Table 1.2.

Important excerpts from the Python code used to perform the analysis in this thesis
are provided in Appendix B.

1.6 Research questions

While the discussion has touched on various aims in this thesis, the main research
question of this thesis is:
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What are the components driving the performance of the equal weighted
portfolio relative to the cap weighted portfolio and is it possible to utilise these
to improve portfolio performance?

The attempt to address this research question is done by addressing the following
specific research questions:

1. How has the equal weighted portfolio performed in various equity markets?

This is discussed in Chapter 2, with performance for the SA and US equity
markets presented in Sections 2.2 and 2.3, respectively. Historical performance is
summarised for other markets in Section 2.5.

2. How can the framework in stochastic portfolio theory assist in analyses of the
relative performance of the equal weighted portfolio?

Chapter 3 provides a brief introduction to stochastic portfolio theory with an
attempt to present an intuitive understanding of the various elements in the
framework as it pertains to the equal weighted portfolio. Mathematical expres-
sions are presented in Appendix A. Chapter 3 identifies the main drivers of the
equal weighted portfolio’s relative returns as per the stochastic portfolio theory
framework in Section 3.5 and Equation 3.28.

3. What are the empirical drivers in performance across these various equity
markets?

Results presented in Chapter 3 are used to present an attribution of the rel-
ative return of the equal weighted portfolio. Again the focus is on the US and SA
equity markets in Sections 4.2 and 4.3, respectively. Results for the other selected
equity markets are presented in Section 4.6.

4. How much does concentration play a role in the relative returns of equal
weighted portfolios?

Section 2.4 touches on the role of concentration in the SA and US market briefly.
The stochastic portfolio framework, however, allows for a more direct analysis
of concentration and this is discussed in Sections 4.2 and 4.3 for the US and SA
equity markets, respectively, and in Section 4.6 for other equity markets. Section
4.5 presents an estimate of the direct impact to growing concentration by specific
stocks in the US and SA.

10 Chapter 1 Introduction



5. How have specific stocks, such as technology stocks, influenced the index
concentration and what is the impact on the equal weighted portfolio?

This is discussed in Section 4.5 where the impact of technology stocks in the
US and Naspers (NPN) in SA are analysed.

6. Is increasing concentration a global phenomenon or is it more specific to each
market?

This is discussed throughout Chapter 4 and Section 4.6. Furthermore, Table
4.3, presents a summarised attribution of the main factors, including concen-
tration, affecting the relative returns of the equal weighted portfolio to aid this
discussion. Table 4.5 presents the correlations of one measure of concentration
specific to the equal weighted portfolio (the portfolio generating function) across
the different equity markets.

7. What role has diversification played and is this factor correlated across various
markets?

The role of diversification is discussed throughout Chapter 4 and in Section
4.6. Table 4.4 presents the correlation of one measure of diversification (the excess
growth rate) across the various equity markets to aid this discussion and analysis.

8. Why has the equal weighted portfolio underperformed in the South African
market? Is this only a matter of concentration or are there other factors?

This is analysed and discussed in Section 4.3 where the empirical contributions to
relative returns for the equal weighted portfolio are presented and analysed.

9. What are the differences in the equal weighted portfolio’s performance across
various equity markets and what has contributed to the equal weighted portfo-
lio performing well in some countries and poorly in others?

This is analysed and discussed in detail in Section 4.6 and Figures 4.20 to
4.27 show the main drivers per country.

10. Is there a way to utilise the main drivers of relative performance to create an
optimal blend of cap and equal weights to generate outperformance but with
lower relative drawdowns?

1.6 Research questions 11



Chapter 5 attempts to use the empirical drivers of the equal weighted port-
folio’s relative return to achieve this using two methods; a rudimentary linear
regression approach and a Random Forest model.
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Performance of the equal
weighted portfolio

2

2.1 Introduction

In this chapter the performance of monthly rebalanced equal and cap weighted
portfolios in both the United States (US) and South African (SA) stock markets are
analysed, making use of the Standard & Poor’s 500 Index (S&P500) and the FT-
SE/JSE Top 40 Index (Top 40) as the universe of stocks in each country, respectively.
Sections 2.2 and 2.3 look at the S&P500 and Top 40, respectively, before comparing
the two and briefly touching on the levels of concentration and how this could
contribute to underperformance. The majority of the analysis and results in Sections
2.2 and 2.3 are updated from Taljaard and Maré (2021b) and Taljaard and Maré
(2021a), respectively. The chapter concludes with a look at the performance of the
equal weighted portfolio within the equity markets of other countries in Table 1.2.
While Taljaard and Maré (2021b) include a brief discussion on the equal weighted
portfolio across these equity markets, Section 2.5 provides a deeper discussion of
the differing performance of the equal weighted portfolio across the selected equity
markets.

In practice, transaction costs are an important contributor to portfolio returns and
are particularly significant when comparing the equal and cap weighted portfolios.
The equal weighted portfolio has to constantly rebalance to bring the weights back to
an equal weight. That is, selling outperforming stocks and buying underperforming
stocks. The cap weighted portfolio, on the other hand, has very little need to
rebalance (beyond corporate action activity and index constituent changes) as the
change in market value has a natural rebalancing effect. This already places the equal
weighted portfolio at a disadvantage and why it is important to include transaction
costs. At the same time, however, it is necessary to get some understanding of the
underlying strategies and their historical performance, and therefore, the analysis in
this chapter assumes no transaction costs to get a better sense of the raw performance
of the equal and cap weighted portfolios. The analysis in Chapter 4, however,
includes costs of 15 bps, and the attribution analysis allows for the distinction
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Figure 2.1.: Log cumulative returns for the S&P500 equal- and cap weighted portfolios with
monthly rebalancing.

between the various factors affecting relative performance, with transaction costs
being one such factor.

2.2 S&P500 performance

Table 2.1.: Risk adjusted performance of the S&P500 equal and cap weighted portfolios,
monthly rebalanced. No transaction costs included.

Portfolio CAGRa Volatility Sharpe ratiob Sortino ratio
Equal weighted 12.1% 20.8% 0.55 0.70
Cap weighted 10.3% 19.7% 0.49 0.62

aCompound annual growth rate.
bOne-month US Treasury bill used as risk free rate for both Sharpe and Sortino ratios.

Figure 2.1 shows the cumulative return (log scale) since 1996 of both the equal
and cap weighted portfolios with monthly rebalancing. Table 2.1 shows the risk
adjusted returns over the entire period. Notwithstanding the underperformance
at the beginning of our sample period, the equal weighted portfolio does indeed
outperform the cap weighted portfolio over the entire period. Although the equal
weighted portfolio has a higher volatility, its higher annualised growth rate leads to
higher Sharpe and Sortino ratios than the cap weighted portfolio.

Figure 2.2 shows the relative cumulative return over time of the equal weighted port-
folio. The relative returns of the equal weighted portfolio on a rolling one-year basis
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are shown in Figure 2.3. Although the equal weighted portfolio does outperform
the cap weighted portfolio over the entire period, the majority of this outperfor-
mance is generated during the period 2000 to 2008. The relative performance being
largely sideways from 2008 onwards and somewhat negative since 2016. There has,
however, been some sign of recovery more recently with relative returns improving
following the low in March 2020.
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Figure 2.2.: Relative cumulative return for the S&P500 equal weighted portfolio.

The lacklustre performance of the equal weighted portfolio relative to the cap
weighted portfolio since 2016 is also evident from Table 2.2, which shows three-year
total returns for the equal and cap weighted portfolios since 1996. Relative returns
are the highest in the early 2000s and degrade slightly for later three-year periods. In
particular, the period 2015 to 2020 has been especially tough for the equal weighted
portfolio which has underperformed by approximately 7%.
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Figure 2.3.: Rolling one year relative return for the S&P500 equal weighted portfolio.

Table 2.2.: Total return over non-overlapping three-year periods for the S&P500 (%).

Period Starta Period End Equal weighted Cap Weighted Relative
1996 1998 69.1 105.5 -17.7
1999 2001 25.6 -2.8 29.1
2002 2004 37.6 11.2 23.7
2005 2007 27.5 28.9 -1.1
2008 2010 9.8 -7.4 18.6
2011 2013 61.6 56.6 3.2
2014 2016 28.6 28.9 -0.3
2017 2019 43.7 53.9 -6.6
2020 2021/05b 34.4 33.5 0.7

aPeriod Starts 1 January and ends 31 December of Period End year
bPeriod ends 30 May 2021
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2.3 Top 40 performance

While the equal weighted portfolio in the US may have disappointed over the last
five to ten years, it has at least outperformed the cap weighted portfolio over a
longer period. The case in South Africa is a little more dire, with the equal weighted
portfolio barely keeping up with the cap weighted portfolio since 2002. Figure 2.4
shows the cumulative return for the Top 40 equal- and cap weighted portfolios.
Much like the S&P500, the performance of the equal weighted portfolio was ahead
of the cap weighted portfolio until 2016. The proceeding period was, however, much
more severe for the Top 40 as illustrated in the relative return in Figure 2.5 and the
rolling one-year relative returns in Figure 2.6.
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Figure 2.4.: Log cumulative returns for the Top 40 equal- and cap weighted portfolios with
monthly rebalancing.

Table 2.3.: Risk adjusted performance of the Top 40 equal and cap weighted portfolios,
monthly rebalanced.

Portfolio CAGRa Volatility Sharpe ratiob Sortino ratio
Equal weighted 14.6% 19.4% 0.42 0.57
Cap weighted 14.7% 20.2% 0.42 0.58

aCompound annual growth rate.
bOne-month JIBAR used as risk free rate for both Sharpe and Sortino ratios.

Table 2.3 highlights the risk-adjusted performance of the two portfolios, indicating
once again that the equal weighted portfolio has only just kept up with the cap
weighted portfolio in South Africa (and bearing in mind that this excludes transaction
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Figure 2.5.: Relative cumulative return for the Top 40 equal weighted portfolio.

costs). The Sharpe and Sortino ratios are very similar with the equal weighted
portfolio showing moderately lower volatility than the cap weighted portfolio.

In comparison to the S&P500 rolling one-year relative returns (Figure 2.3), the
drawdowns in the past five to ten years have been particularly deep for the Top 40
and have regularly breached -10% for the Top 40 equal weighted portfolio. Table
2.4 confirms that the equal weighted portfolio in South Africa has underperformed
significantly over the past five to ten years with relative returns of -8.6% and -13.2%
in the period 2015 - 2017 and 2018 - 2020, respectively. As in the S&P500, the
Top 40 equal weighted portfolio has staged somewhat of a recovery with a 10.6%
relative return in the first five months of 2021.

Table 2.4.: Total return over non-overlapping three-year periods for the Top 40(%).

Period Starta Period End Equal weighted Cap Weighted Relative
2003 2005 134.3 107.6 12.9
2006 2008 25.6 30.7 -3.9
2009 2011 71.7 62.8 5.4
2012 2014 66.0 70.7 -2.7
2015 2017 19.0 30.2 -8.6
2018 2020 -2.6 12.2 -13.2
2021 2021/05b 19.5 8.0 10.6

aPeriod Starts 1 January and ends 31 December of Period End year
bPeriod ends 30 May 2021
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Figure 2.6.: Rolling one year relative return for the Top 40 equal weighted portfolio.

2.4 A matter of concentration?

Despite the more severe drawdowns since 2016 in the SA equal weighted portfolio,
a cursory glance at Figures 2.3 and 2.6 seem to indicate some similarities between
the relative performance in the US and SA equal weighted portfolios. Figure 2.7,
which shows the rolling three year correlation of the relative returns for the equal
weighted portfolios in both the US and SA, confirms a mostly positive relationship
between the two. Generally the relationship is fairly strong, averaging 0.41 over the
entire period, except for the period 2013 to 2017.

In this period, the Top 40 equal weighted portfolio seems to have underperformed
while that of the S&P500 was largely flat (see Tables 2.2 and 2.4). If the cap
weighted portfolio was outperforming the equal weighted portfolio in SA, it would
be likely that stocks with higher cap weights would outperform those with lower
cap weights. One example of this is Naspers (NPN) and the cap weight of NPN over
the period 2012 to 2018 is shown in Figure 2.8. Over this period the cap weight of
NPN increased from about 3% to over 15% in almost a straight line.

While it may be tempting to place all the blame for the equal weighted portfolio’s
performance with NPN, the SA equity market has a long history of battling with
high levels of concentration. This is well documented, for example, in Kruger and
Van Rensburg (2008) and Raubenheimer (2010), and led to the introduction of the
FTSE/JSE Shareholder Weighted Top 40 Index (SWIX40) and the FTSE/JSE Capped
Top 40 Index (CAPI40) as an attempt to reduce the levels of concentration.
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Figure 2.7.: Rolling three year correlation of monthly relative returns for the S&P500 and
Top 40 equal weighted portfolios.

2012 2013 2014 2015 2016 2017 20180.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

M
ar

ke
t c

ap
 w

ei
gh

t

Figure 2.8.: Cap weight of Naspers (NPN) from 2012 to 2018.

Entropy is one way of visualising the changes in concentration. Entropy is a concept
used in information theory and introduced by Shannon (1948). Entropy has also
been used as a measure of diversity in stock markets. See Fernholz (1999a), for
example.
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Mathematically, entropy is defined as,

S(µ(t)) = −
N∑

i=1
µi(t)logµi(t), t ∈ [0, T ], (2.1)

where µi(t) represents the cap weight of stock i (given N stocks in the universe) at
time t.

Figure 2.9 shows the level of entropy for both the S&P500 and the Top 40 since their
respective start dates. Since 2012, entropy has declined in both the S&P500 and Top
40, although the decline has been much more significant in the case of the Top 40.
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Figure 2.9.: Level of entropy normalised to starting entropy for relevant index.

These periods of increasing concentration (decreasing entropy) seem to coincide with
periods of underperformance by the equal weighted portfolio in both the S&P500
and Top 40. In the period 1999 to 2004, for example, the S&P500 equal weighted
portfolio outperformed the cap weighted portfolio by approximately 50% (Table
2.2) while over the same period the entropy for the S&P500 cap weights increased
substantially from its lows in 1999. This points to some relationship between the
level of concentration and the relative return of the equal weighted portfolio as one
would expect.

At this stage, however, this analysis is somewhat anecdotal and lacks any mathemat-
ical rigor. As a result one can only guess about the direct impact these changes in
concentration have on the equal weighted portfolio and ignoring other factors that
may impact the relative returns of the equal weighted portfolio. In the next section,
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however, stochastic portfolio theory is introduced. This is a framework that will
allow for the analysis of the various components driving the relative returns of the
equal weighted portfolio. Our use of stochastic portfolio theory is on the basis that it
requires relatively few assumptions, is based on a widely used model of stocks, and
provides a direct approach to modelling and understanding the drivers of returns of
the equal weighted portfolio relative to the cap weighted portfolio.

2.5 Markets other than the US and SA equity markets

This section takes a brief look at the performance of the equal weighted portfolio
in countries other than the US and SA equity markets, relative to the respective
cap weighted indices or portfolios. The respective cap weighted indices used are
provided in Table 1.2, although as is the case in the US and SA analysis, these
indices are used for membership purposes only and the cap weighted portfolios
are constructed on a monthly basis. This analysis begins in 2003 to align all the
countries to the same start date (this is the SA equal weighted portfolio start date).

Table 2.5 is a reproduction of Table 1.1 showing the annualised returns and risk-
adjusted returns since 2003 for each equity market and shown here for ease of
reference. Generally the equal weighted portfolio performs well relative to the
cap weighted portfolio. Only two equity markets show an underperformance for
the equal weighted portfolio (Australia and South Africa). Risk-adjusted returns
are, furthermore, higher for the equal weighted portfolio except for Australia, and
South Africa and are equal for France and South Africa. Information ratios are also
positive for the equal weighted portfolios, except for Australia which is moderately
negative.

Figure 2.10 shows the log cumulative relative return of the various equal weighted
portfolios. That is, the cumulative return relative to the respective cap weighted
portfolio on a log-scale. Japan, appears to be the best performing country for the
equal weighted portfolio with returns of approximately 2.7% per annum since 2003.
The TOPIX index used here has over 2000 members and is perhaps indicative of
improved performance of the equal weighted portfolio against cap weighted indices
with a large membership.

Conversely, the worst performing country is Australia with relative returns of approx-
imately -1.3% per annum. The majority of this underperformance is, however, due
to the 2012 to 2016 period when the resources sector underperformed the overall
equity market. Relative returns have been largely flat since then. South Africa’s
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Table 2.5.: Annualised returns, volatility and risk-adjusted returns of the cap- and equal
weighted portfolios for a selection of countries analysed in this thesis. All
portfolios start 1 January 2003. No transaction costs included.

CAGR (%) Volatility (%) Sharpe ratioa Information ratioa

Country Cap Equal Cap Equal Cap Equal Equal
Australia 12.1 11.5 16.4 17.6 0.57 0.50 -0.01
Canada 9.7 10.6 18.1 18.3 0.52 0.58 0.23
France 8.0 8.2 21.9 23.0 0.42 0.42 0.21
Germany 8.7 9.7 22.5 22.1 0.45 0.49 0.25
Japan 7.1 11.3 21.2 20.0 0.43 0.63 0.60
South Africa 14.7 14.6 20.2 19.4 0.42 0.42 0.00
United Kingdom 7.2 10.0 18.6 19.4 0.36 0.49 0.61
United Statesb 11.3 13.1 19.4 21.6 0.58 0.62 0.41

aRespective risk-free rates used in Sharpe and Information ratio calculations.
bThese results for the US are slightly different from those in Table 2.1 due to the change in start dates

to align to 1 January 2003.
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Figure 2.10.: Equal weighted portfolio log cumulative return relative to cap weighted
portfolio.

performance on the other hand has been in a steady decline since 2012, somewhat
in line with France’s relative performance. As noted above, the SA equal weighted
portfolio had a poor start to 2020 but recovered well thereafter. Still, the equal
weighted portfolio in South Africa has a poor relative performance overall.

Overall performance is somewhat mixed among the different countries, although
the equal weighted portfolio does outperform the cap weighted portfolio in all but
three equity markets. Furthermore, the equal weighted portfolio has performed
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exceptionally well in some countries (Japan and the UK) and particularly poorly
in others (Australia, France and South Africa). The size of the index membership
was mentioned in relation to the Japanese experience, although it is less clear when
comparing the performance of South Africa (which has 40 members) and Australia
(which has 200 members) and so this explanation is not sufficient to describe all the
disparities in relative performance.

Figure 2.11 highlights the calendar relative returns of the various equal weighted
portfolios. This data is also reflected in Table 2.6. Most countries show a similar
structure in relative returns up until 2012. Positive relative returns are recorded until
2007 for the most part and thereafter almost all equal weighted portfolio experience
negative returns in 2007 and 2008 before recovering in the following two or three
years. Thereafter, some countries (such as France and Germany) experience very
small positive relative returns before a run of underperformance from 2018 onwards.
Canada and Australia, for example, also experience similar relative returns with
negative relative returns since 2012 to 2016 and a brief period of outperformance
before returns become somewhat mixed.
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Figure 2.11.: Annual relative performance of equal weighted portfolio by country.

24 Chapter 2 Performance of the equal weighted portfolio



Table 2.6.: Annual relative performance of equal weighted portfolio by country.

Year AU CA FR GE JP SA UK US
2003 7.8 2.8 3.3 6.2 12.2 2.4 3.4 9.1
2004 4.0 2.8 0.8 0.6 8.7 11.0 2.9 5.0
2005 0.2 -3.6 -1.1 3.8 1.1 -0.7 2.8 3.1
2006 5.8 3.6 1.7 4.2 -14.8 -1.3 6.1 -0.8
2007 -5.5 -4.4 -4.6 -2.1 -5.9 -7.1 -8.8 -5.3
2008 -26.8 -4.3 -8.2 -14.5 13.8 8.7 -10.0 -9.1
2009 18.8 15.2 10.9 14.4 3.9 -0.4 11.3 13.5
2010 5.9 5.2 4.9 2.7 5.0 1.4 6.0 5.2
2011 -5.9 -1.6 -6.9 1.0 10.6 3.7 -2.3 -1.7
2012 -9.0 0.9 1.0 -1.5 -1.3 4.3 5.2 0.3
2013 -12.4 -3.3 1.0 -2.4 -1.3 -5.6 2.2 1.8
2014 -5.8 -5.6 0.6 -1.1 0.5 0.1 1.7 0.1
2015 1.9 -4.9 1.6 0.3 1.2 -11.7 2.8 -4.0
2016 4.3 9.0 1.8 0.4 6.9 5.4 -1.5 3.6
2017 6.0 -0.4 0.7 5.1 8.5 -2.5 -0.2 -2.9
2018 -3.1 -0.5 -7.7 -0.9 -5.5 2.8 -0.8 -1.8
2019 -3.5 -0.5 -3.9 -4.4 3.0 -6.6 2.6 -3.0
2020 2.4 1.6 -4.5 -2.6 -6.7 -9.6 8.0 -5.7
2021a -3.1 1.5 -2.8 -0.9 0.0 12.9 1.0 5.3

aPeriod Starts 1 January and ends 31 May 2021

On the whole, however, most countries, experience a similar trend; the period before
2012 shows high levels of outperformance with some underperforming years, which
is followed by the period from 2012 onwards where positive relative returns are
muted but there are periods of deep underperformance. Although this general trend
can be seen in Figure 2.11, the overall correlation between the different countries is
relatively small. In Figure 2.7, the rolling three-year correlation between the US and
SA equal weighted portfolio is quite high. Figure 2.12, however, shows a much lower
average correlation between the different equal weighted portfolios on a rolling
three-year basis. This has averaged between 15% and 20% since 2006 in contrast to
Figure 2.7 which shows an average of 60% ot 70% between the US and SA equal
weighted portfolio.

At this stage it is difficult to discern where these differences come from. Chapter 3,
however, presents one framework that can help in attributing the relative return of
the equal weighted performance.
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Figure 2.12.: Rolling 12 month average correlation between equal weighted relative perfor-
mances.

2.6 Conclusion

This chapter presented the historical performance of the monthly rebalanced equal
weighted portfolio against the cap weighted portfolio. This was primarily done for
the US and SA equity markets, with the final section discussing the performance in a
handful of other countries.

In terms of the US and SA equity markets, there appears to be a period of strong
positive correlation between the relative returns of the US and SA equal weighted
portfolios with both portfolios performing well in the early 2000s, while under-
performing over the past five to ten years. In the case of the SA equal weighted
portfolio, relative returns have been particularly poor since 2012. This has coincided
with a large increase in concentration in the Top 40. Although the concentration in
the S&P500 had also increased over this period, the increase in the Top 40’s con-
centration was much more pronounced. Relative returns have, however, improved
substantially since March 2020 for both the US and SA equal weighted portfolios.

The relative performance of the other countries analysed is rather mixed. The
standout equal weighted portfolio is that of the TOPIX in Japan. The UK equal
weighted portfolio has also performed well against its cap weighted portfolio. While
the SA equal weighted portfolio performs poorly, its Australian counterpart performs
even worse. The majority of this underperformance comes in the period just after
2012, however, with relative performance flat thereafter. This is in contrast with the
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equal weighted portfolio in SA which has experienced a steady decline in relative
performance since 2012.
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Introduction to stochastic
portfolio theory

3

3.1 Introduction

This chapter provides a brief overview of the necessary expressions from stochastic
portfolio theory, as developed by Fernholz (2002). A more formal, mathematical
treatment is presented in Appendix A. Karatzas (2006) and Fernholz and Karatzas
(2009) are, furthermore, suggested for a complete overview of stochastic portfolio
theory.

Two main parts of stochastic portfolio theory are covered in the following subsections,
namely the portfolio price process and portfolio generating functions. Other topics
of stochastic portfolio theory, such as the capital distribution curve, see Fernholz
(2001b), and stock selection by rank, see Fernholz (2001a), are not considered
here.

The chapter combines an intuitive explanation of the portfolio price process using
the familiar geometric Brownian motion model for the stock price process with the
necessary mathematical expressions. This is extended to consider a portfolio’s return
relative to the cap weighted portfolio and the concept of leakage. This chapter is
structured as follows:

• The stock price process and extending this to a portfolio of stocks and the
resulting portfolio price process.

• Returns relative to the cap weighted portfolio.

• Portfolio generating functions.

• Portfolios on subsets of the market and the concept of leakage.

The intuitive discussion of stochastic portfolio theory and the equal weighted port-
folio’s relative return found in Taljaard and Maré (2021a) form the basis of this
chapter and the more technical expressions found in Appendix A can also be found
in Taljaard and Maré (2021b).
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3.2 The portfolio price process

Consider two stocks, A and B, that are negatively correlated. In each period, a
stock has a 50% chance of a 25% gain, and a 50% chance of a 20% loss. Stock
A, for example, may have a 25% gain in one period, which would mean stock B
has a 20% loss in the same period (and vice versa). The return in each period is
independent of any other period. Consider an equal weighted portfolio between
the two which is rebalanced each period. The geometric growth rate of each stock
is 0% and yet the expected growth rate of the equal weighted portfolio would be
2.5% in each period. This return is a function of the volatility of the two stocks and
the correlation structure between them. In Bouchey, Nemtchinov, Paulsen, et al.
(2012), Bouchey, Nemtchinov, and Wong (2015) and Hallerbach (2014), this is
referred to as volatility harvesting or volatility return. In stochastic portfolio theory,
this return is referred to as the portfolio excess growth rate and represents the
return attributable to diversification in the portfolio. The idea of diversification
directly impacting the return of a portfolio is echoed by Booth and Fama (1992) and
Cuthbertson et al. (2016).

Mathematically, consider a stock i with stock price represented by Xi and assume
that the price process follows the popular logarithmic model for the continuous-time
stock process:

dlogXi(t) = γi(t)dt + σi(t)dWi(t) t ∈ [0, ∞), (3.1)

where σi(t) is the volatility of stock Xi(t) and dWi(t) represent a Brownian motion.
γi(t) is the geometric growth rate of stock Xi(t) related to the arithmetic growth
rate, αi(t), by

γi(t) = αi(t) − 1
2σ2

i (t).

Consider a set of stocks X1, . . . , Xn that each follow the price process as in Equation
(3.1) and construct a long-only portfolio with weights given by π(t) = (π1(t), . . . , πn(t)),
such that

n∑
i=1

πi(t) = 1,

and
πi(t) ≥ 0, ∀i = 1, . . . , n.
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The portfolio price process, denoted Zπ(t), follows:

dZπ(t)
Zπ(t) =

n∑
i=1

πi(t)
dXπ(t)
Xπ(t) . (3.2)

Equation (3.1) can be rewritten as,

dXi(t) = αi(t)dt + σi(t)dWi(t), (3.3)

and substitute it into Equation (3.2) and, after some simplification, obtain

dlogZπ(t) = γπ(t) +
n∑

i=1
πi(t)σidWi(t), (3.4)

where

γπ(t) =
n∑

i=1
πi(t)γi(t) + 1

2

 n∑
i=1

πi(t)σii(t) −
n∑

i,j=1
πi(t)πj(t)σij(t)

 , (3.5)

where σij(t) represents the covariance process for stocks Xi and Xj , and σii(t)
representing the variance process of Xi. See Proposition A.1.1 for a formal proof.

The portfolio’s growth rate, γπ(t), consists of two distinct parts: the weighted growth
rates of the individual stocks and a second term involving the stocks’ weighted
volatilities and covariances. This second term is referred to as the excess growth
rate and is given by

γ∗
π(t) = 1

2

 n∑
i=1

πi(t)σii(t) −
n∑

i,j=1
πi(t)πj(t)σij(t)

 . (3.6)

Intuitively, Equation (3.6) can be thought of as a measure of diversification since it
is the difference between the average stock volatility and the resulting portfolio’s
volatility. Although γ∗

π(t) ≥ 0, its absolute level will vary depending on the individual
stock volatilities and their correlations. If the correlation between stocks is small,
then γ∗

π would be larger leading to a much higher contribution to the overall portfolio
growth rate. Conversely, if correlations are high then there is less diversification and
γ∗

π is lower. Similarly, should individual stock volatilities be low, then γ∗
π would also

be low as there would be less scope for a reduction in portfolio volatility.

This implies, therefore, that there is a direct relationship between a portfolio’s return
and its level of diversification. Returning to the example above, since the individual
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stock growth rates are zero, (1.25)(0.8) − 1 = 0, the portfolio growth rate is equal to
the excess growth rate.

γ∗
π = 1

2
(
π1(1 − π1)σ2

1 + π2(1 − π2)σ2
2 − 2σ1,2π1π2

)
,

where

π1 = π2 = 0.5,

and
σ2

1 = σ2
2 = −σ1,2 = 0.5.

This yields a portfolio growth rate of

γπ = γ∗
π = 0.025,

or 2.5%, as expected.

Note that, by inserting Equation (3.5) into Equation (3.4) and rearranging the terms,
one can rewrite the portfolio price process as,

dlogZπ(t) =
n∑

i=1
πi(t)dlogXi(t) + γ∗

π(t)dt. (3.7)

Again the direct impact of diversification on the portfolio price process is highlighted
with dlogZπ(t) a function of two parts: the weighted price processes of the individual
stocks and the excess growth rate, representing the diversification benefit within the
portfolio.

The above formulae are easily extended to include dividends. Given a dividend
process for stock Xi(t), represented as δi(t), then the total return for stock Xi(t) is

X̂i(t) = Xi(t)exp
(∫ t

0
δi(s)ds

)
, t ∈ [0, ∞). (3.8)

Therefore, Equation (3.1) can be extended for the total return process,

dlogX̂i(t) = dlogXi(t) + δi(t)dt, (3.9)

and the total return process for the portfolio given by weights π(t) becomes,
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dlogẐπ(t) = dlogZπ(t) + δπ(t)dt, (3.10)

where

δπ(t) =
n∑

i=1
πi(t)δi(t). (3.11)

3.3 Relative portfolio returns

Although stand-alone portfolio performance is important to consider, in practice
most portfolio managers must consider portfolio performance relative to some
benchmark. The most often used benchmark for portfolio managers of equities is
the cap weighted portfolio or index.

Consider the cap weighted portfolio price process given by Zµ(t), where the portfolio
weight of stock i at time t, µi(t), is given by

µi(t) = Xi(t)∑n
i=1 Xi(t)

, (3.12)

where Xi(t) is stock i’s market capitalization at time t. Zµ(t) is just like any other
portfolio price process and, therefore, the expressions in Section 3.2 apply to Zµ(t),
with the only difference being the weights themselves.

Equation (3.12) can also be written as,

µi(t) = Xi(t)
Zµ(t) . (3.13)

Although, this portfolio process follows the same structure in Equation (3.4), the
difference is that its weights change given each stock’s relative performance over
a period. Consider the example used in Section 3.2. Of course, each period in the
example is random and independent from the previous period; however, consider
an example where the returns for each of the stocks alternates from one period
to the next. If in period 1, for example, stock A has a return of -20% and stock B
returns 25%, then in period 2 stock A would return 25% and stock B would return
-20%. The equal weighted portfolio would be unaffected, as at each period the
portfolio would be rebalanced. The cap weighted portfolio, however, would become
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concentrated in the stock which had outperformed in the prior period only for that
stock to underperform in the next.

Stock A, in this example, would have a cap weight of 39% after period 1, which
would revert to 50% after period 2, in which it outperforms stock B. In relative
terms, the equal weight outperforms the cap weighted portfolio (by about 5% in this
example), and it does so for two reasons:

• The cap weighted portfolio becomes more concentrated in a single stock (stock
B in this example) after the first period only for that stock to then underperform
the other. In other words, the cap weights become concentrated in period
1 and then less concentrated in period 2 and this directly impacts the cap
weighted portfolio’s return relative to the equal weighted portfolio.

• The cap weighted portfolio has a lower excess growth rate than that of the
equal weighted portfolio since it is more concentrated in a single stock.

The simple example above demonstrates how movements in the cap weights affect
the relative return of the equal weighted portfolio. In the example, the cap weight
of each stock mean reverts, and this benefits the equal weighted portfolio’s relative
return. The reverse can of course occur as well; the cap weights could exhibit
momentum and the stocks with larger cap weights could continue to outperform the
average stock leading to further concentration in the cap weighted portfolio. This
would have the reverse effect on the equal weighted portfolio and create a drag on
relative performance.

Consider Equation (3.7) and subtract dlogZµ(t) on each side:

dlogZπ(t) − dlogZµ(t) =
n∑

i=1
πi(t)dlogXi(t) − dlogZµ(t) + γ∗

π(t)dt.

Noting that the weights πi(t) sum to one, this can be rewritten as:

dlog

(
Zπ(t)
Zµ(t)

)
=

n∑
i=1

πi(t)dlog

(
Xi(t)
Zµ(t)

)
+ γ∗

π(t)dt. (3.14)

Equation (3.14) is true for any two portfolios, however, in the case of the cap
weighted portfolio, and using Equation (3.13), Equation (3.14) can be simplified
into:

dlog

(
Zπ(t)
Zµ(t)

)
=

n∑
i=1

πi(t)dlogµi(t) + γ∗
π(t)dt. (3.15)
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That is, the equal weighted portfolio’s return relative to the cap weighted portfolio is
equal to a term involving the change in the log cap weights and the portfolio’s excess
growth rate. Equation (3.15) holds for any portfolio with weights π(t), although the
focus here is on the equal weighted portfolio.

When considering the equal weighted portfolio, in particular, the first term in
Equation (3.15) can be rewritten as:

n∑
i=1

πi(t)dlogµi(t) = 1
n

n∑
i=1

dlogµi(t)

= 1
n

dlog

(
n∏

i=1
µi(t)

)

= dlog

(
n∏

i=1
µi(t)

) 1
n

.

That is when considering the equal weighted portfolio relative to the cap weighted
portfolio, the first term becomes the change in the log of the geometric mean of the
cap weights. The log of the geometric mean will be negative, given that the cap
weights are less than one. Therefore, as the geometric mean increases, the log of the
geometric mean decreases. That is, as the cap weights become more concentrated,
the log of the geometric mean will decline (become more negative) and cause a drag
on the equal weighted portfolio’s relative performance, through Equation (3.15). In
summary then, the relative return of the equal weighted portfolio is a function of
the change in the geometric mean of cap weights and the excess growth rates.

An important assumption in stochastic portfolio theory is that no one stock can
dominate the market or, alternatively, the maximum cap weight for a stock is
bounded. Under this assumption the geometric mean of cap weights, and the term
containing it in Equation (3.15), is bounded and over the long-term its contribution
to the relative performance of the equal weighted portfolio should be negligible.
In the context of Equation (3.15), this implies that over the long-term the equal
weighted portfolio is likely to outperform the cap weighted portfolio since the excess
growth rate is greater than, or equal to, zero and the geometric mean term is
bounded.

This confirms, theoretically at least, the findings of empirical studies into equal
weighted portfolio performance such as Plyakha et al. (2012), Bolognesi et al.
(2013), and Malladi and Fabozzi (2017). Although the geometric mean term is
bounded over the long-term, in the short-term, this geometric mean term can be a
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significant driver of relative performance, dominating the excess growth rate term
in Equation (3.15).

3.4 Portfolio generating functions

In stochastic portfolio theory the geometric mean of cap weights is called the
portfolio generating function of the equal weighted portfolio. Portfolio generating
functions are functions that generate various portfolio weights using, as an input,
the market capitalization weights, µ(t). They are defined as follows (see Fernholz
(2002), Definition 3.1.1, reproduced below for convenience):

Definition 3.4.1. Let S be a positive continuous function defined on ∆n (the unit
n-simplex) and let π be a portfolio. Then S generates π if there exists a measurable
process of bounded variation Θ such that:

log (Zπ(t)/Zµ(t)) = logS(µ(t)) + Θ(t), t ∈ [0, T ], a.s. (3.16)

The process Θ is called the drift process corresponding to S.

Equation (3.16) can also be expressed in differential form,

dlog (Zπ(t)/Zµ(t)) = dlogS(µ(t)) + dΘ(t), t ∈ [0, T ], a.s. (3.17)

If dividends are included then, using Equation (3.10), the total relative return
process becomes:

dlog
(
Ẑπ(t)/Ẑµ(t)

)
= dlogS(µ(t))+

∫ t

0
(δπ(s)−δµ(s))ds+dΘ(t), t ∈ [0, T ], a.s.

(3.18)

In other words, the relative performance of a portfolio with weights π(t) is a function
of the portfolio generating function S, the difference in dividend rates and the drift
process.
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As mentioned above, the geometric mean of cap weights is the portfolio generating
function of the equal weighted portfolio and one can, therefore, rewrite Equation
(3.15) as follows:

dlog

(
Zπ(t)
Zµ(t)

)
= dlogS(µ(t)) + γ∗

π(t)dt, (3.19)

where,

S(µ(t)) =
(

n∏
i=1

µi

) 1
n

. (3.20)

Comparing this with Equation (3.16), it is clear that the drift term, dΘ(t), for the
equal weighted portfolio should be equal to the excess growth rate of the equal
weighted portfolio. More formally, the drift process of the equal weighted portfolio,
generated by the function in Equation (3.20), is given by

dΘ(t) = γ∗
π(t)dt, (3.21)

where γ∗
π(t) is defined as the excess growth rate in Equation (3.6).

Considering this in the context of Equation (3.17), the relative performance of the
equal weighted portfolio over some time period is given by the addition of the
change in 1

n log (µ1(t) · · · µn(t)) and the rate of diversification, given by γ∗
π(t)dt.

Clearly, γ∗
π(t) is always positive, however, the change in logS(µ) is dependent on

the change of the distribution of weights, µi(t) in the cap weighted portfolio. If the
concentration increases, the change in logS(µ) is negative and detracts from the
equal weight portfolio’s performance relative to the cap weighted portfolio and vice
versa.

In a scenario where the cap weighted portfolio becomes increasingly concentrated,
the change in logS(µ) becomes a short-term, but consistent, drag on relative per-
formance through Equation (3.17). As a result, the excess growth rate will have
to offset this term in order for the equal weighted portfolio to outperform the
cap weighted portfolio. Although always positive, it is not a given that in every
period the excess growth rate will be high enough to offset the growing concen-
tration of market capitalization weights and this can, therefore, lead to short-term
underperformance.

The expressions for the weights, πi(t), as well as the drift process, Θ(t), can be
derived using Theorem 3.1.5 in Fernholz (2002). This theorem and its proof are
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reproduced in Appendix A, Theorem A.2.1. The relevant expressions for the weights
and drift process are reproduced below:

πi(t) =

DilogS(µ(t)) + 1 −
n∑

j=1
µj(t)Dj logS(µ(t))

µi(t), (3.22)

for t ∈ [0, T ] and i = 1, . . . , n and with a drift process Θ such that a.s., for t ∈ [0, T ],

dΘ(t) = −1
2S(µ(t))

n∑
i,j=1

DijS(µ(t))µi(t)µj(t)τij(t)dt. (3.23)

The notation Di represents the partial derivative with respect to the ith variable and
τij(t) represents the relative covariance of stock i and j. That is,

τij(t) = ⟨log (Xi/Zµ) , log (Xj/Zµ)⟩ .

See Appendix A and Equations (A.17) and (A.19) for a formal definition of τij(t).

Using the expressions above one can formally derive the expressions for the portfolio
generating function and drift process of the equal weighted portfolio. This is shown
in Appendix A.3.

3.5 Portfolios on subsets of the whole market

In the previous sections, portfolios formed on the entire equity market were consid-
ered. However, in practice, an index formed on the top stocks is used as a benchmark
and its constituents are used to form active portfolios. So far the S&P500 and Top
40 have been considered, both of which would be a subset of the entire US and SA
equity markets, respectively. As a result, these indices are implicitly selecting stocks
by rank in both the cap weighted and equal weighted portfolios.
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This requires a modification of the drift process, dΘ(t), in Equation (3.23) by
introducing a new term dLπ(t), namely

dΘ(t) = −1
2S(µ(t))

n∑
i,j=1

DijS(µ(t))µi(t)µj(t)τij(t)dt + dLπ(t), (3.24)

where

dLπ(t) = 1
2

n−1∑
k=1

(
π(k+1)(t) − π(k)(t)

)
dΛlogµ(k)−logµ(k+1)

(t), t ∈ [0, T ]. (3.25)

The terms π(k)(t) and µ(k)(t) represent the portfolio weight and the market cap
weight of the k-th largest stock, respectively, where the stocks are ranked by market
cap weights from largest to smallest over the entire market.

Λ is the semi-martingale local time process defined as,

ΛX(t) = 1
2

(
|X(t)| − |X(0)| −

∫ t

0
sgn(X(s))dX(s)

)
, t ∈ [0, T ]. (3.26)

This new term dLπ can be thought of as the shift in weights within the market, and
specifically how that affects portfolio selection both in terms of the equal weighted
portfolio and the benchmark, which is a subset of the whole market. In our case
here, with the S&P500 or any other index, the changes that would affect portfolio
selection occurs at the edges. That is, the 500th stock, for example, becoming the
501st stock and falling out of the index and therefore out of the individual portfolios.
This term is, therefore, defined as leakage, given that its size is determined by stocks
“leaking” out of the portfolio.

As a result, and in the specific case of the equal weighted portfolio, this leakage
term, over small time periods, usually only involves the last position in the index.
That is, in the case of the S&P500, only changes in the 500th position over a small
time period are of interest. This change (the last stock being replaced) is likely to
affect the equal weighted portfolio much more than a cap weighted portfolio, given
that the final few weights are likely to already be small in the case of the cap weight.
The equal weight on the other hand, typically, has larger weights in those last few
stocks and is, therefore, more affected by exclusions.

The leakage term defined in Equation (3.25) is of a portfolio relative to the entire
market. In the case of the equal weighted portfolio with weights π(k)(t) relative to
the cap weighted portfolio with weights ξ(k)(t), where both portfolios are a subset
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of the entire market, the leakage term corresponding to the relative return of the
equal weighted against this cap weighted portfolio can be expressed as:

dLπ/ξ(t) = 1
2

n−1∑
k=1

(
[ξ(k+1)(t) − ξ(k)(t)] − [π(k+1)(t) − π(k)(t)]

)
dΛlogµ(k)−logµ(k+1)

(t).

(3.27)

This is the difference in impact of the leakage term on the cap weighted subset
portfolio and the equal weighted portfolio in our case. As explained above, the
equal weighted portfolio is likely to hold more weight in the stocks exiting the index
and, therefore, Equation (3.27) is a negative drag on the equal weighted portfolio’s
performance relative to the cap weighted portfolio in most cases.

Therefore, rewriting Equation (3.18), the relative return of the equal weighted
portfolio (with weights π(t)) to a cap weighted portfolio (with weights ξ(t)) formed
on a subset of the market can be given by:

dlog (Zπ(t)/Zξ(t)) = dlogS(ξ(t)) + dΘ(t)

+
∫ t

0
(δπ(s) − δµ(s))ds + dLπ/ξ(t), t ∈ [0, T ], a.s.

(3.28)

3.6 Conclusion

This chapter introduced the basic concepts of stochastic portfolio theory as it relates
to the return of functionally generated portfolios relative to the cap weighted
portfolio (a common portfolio benchmark). Stochastic portfolio theory provides
a robust theoretical framework for understanding this relative performance by
considering the drivers of the relative performance, namely, the level of concentration
in cap weights (portfolio generating function), the level of diversification benefits
(the excess growth rate), and the impact of leakage (as stocks move in and out of
the index). This thesis is specifically interested in the equal weighted portfolio and
discussed how the generating function of this portfolio is the geometric mean of
cap weights, how this should be bounded, and what this implies for the long-term
relative return. The concepts discussed in this chapter, and specifically Equation
(3.28) are crucial for the empirical analysis performed in Chapter 4.
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Attribution of the equal
weighted portfolio’s
performance

4

4.1 Introduction

Chapter 3 provided an introduction to stochastic portfolio theory and set out the
necessary theoretical concepts to analyse the performance of the equal weighted
portfolio against a cap weighted portfolio. This chapter makes use of these ex-
pressions, and more specifically Equation (3.28), to provide an attribution of the
performance of the equal weighted portfolio. This chapter extends Chapter 2, where
the empirical performance of the S&P500 and Top 40 equal weighted portfolios
were discussed.

Sections 4.2 and 4.3 look at the S&P500 and Top 40, respectively, on their own
before discussing some similarities between the two markets. Taljaard and Maré
(2021b) and Taljaard and Maré (2021a) form the basis of the results for the S&P500
and Top 40, respectively, in these two sections. The final section of this chapter,
Section 4.6, extends this analysis and presents the attribution of the equal weighted
portfolios in the other selected equity markets noted in Table 1.2.

The four main components to calculate in order to provide an attribution of relative
performance of the equal weighted portfolio are:

A Portfolio generating function, given by Equation (3.20) for the equal weighted
portfolio,

B Portfolio drift process, which in the case of the equal weighted portfolio is
given by the equal weighted portfolio’s excess growth rate, calculated using
Equation (3.6),

C The difference in dividend rates, calculated as the difference in dividends
received for each month, and

D The net impact of leakage, estimated using Equation (3.27).
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The drift process is an instantaneous rate, however, it requires the estimation of
the covariance of the underlying stocks which requires the use of historical rates
of return. The estimate of the covariance used in this analysis is made using the
Exponentially Weighted Moving Average (EWMA) method using a decay factor (λ)
of 0.97 and fit over the preceding three-year period. This is similar to the use of
the EWMA covariance matrix within the JP Morgan RiskMetrics methodology (see
RiskMetrics, 1996). The standard EWMA model was selected given its simplicity
and literature suggesting that it does not perform much worse than a multivariate
generalized autoregressive conditional heteroscedasticity (GARCH) model. See, for
example, Zakamulin (2015), Pantaleo et al. (2011), and Kuang (2021).

The analysis in this chapter, furthermore, includes trading costs of 15 basis points,
applied to both the equal weighted and cap weighted portfolio. This is roughly in
line with analysis done by Frazzini et al. (2018) for stocks over the period 1998 to
2016.

4.2 Attribution of the S&P500

Figure 4.1 highlights the attribution of the relative return for the S&P500 equal
weighted portfolio on a rolling one-year basis. Table 4.1 shows the decomposition of
relative returns for consecutive three-year periods.
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Figure 4.1.: Annual decomposition of S&P500 equal weighted portfolio relative return as
per Equation (3.28) and including transaction cost differentials.

42 Chapter 4 Attribution of the equal weighted portfolio’s performance



As expected, the portfolio generating function displays the highest volatility, with
contribution to relative returns oscillating between 10% and −10% on a regular
basis. In the late 1990s, the portfolio generating function reduced the relative return
of the equal weighted portfolio by over 20% before contributing positively for the
period 2000 to 2005. These changes are related to changes in concentration in
the cap weighted portfolio weights and coincide with periods where concentration
increased in the late 1990s, before concentration declined in the period 2000 to
2005. This is also evident from Figure 2.9, where entropy declines show increasing
levels of concentration until 2000, and vice versa for the following five years.

Table 4.1.: Decomposition of the S&P500 equal weighted portfolio relative return over
consecutive three-year periods.

Period Starta Period End Excess growth rate Port. gen. function Leakage Dividends Costs Residual Total
1996 1998 11.4 -22.5 -6.4 0.1 -0.1 0.0 -19.0
1999 2001 28.4 3.3 -6.2 1.1 -0.2 0.6 26.8
2002 2004 15.2 15.9 -0.8 -0.8 -0.2 -6.5 22.7
2005 2007 7.1 -1.2 -6.1 -0.5 -0.1 -0.4 -1.5
2008 2010 23.9 5.3 -5.4 -0.7 -0.2 -4.4 17.2
2011 2013 6.5 4.3 -6.0 -0.5 -0.1 -1.0 -2.8
2014 2016 6.6 -2.9 -5.9 -0.3 -0.1 2.3 -0.6
2017 2019 6.5 -7.8 -5.5 0.5 -0.1 -0.2 -7.0
2020 2021/05b 7.7 -5.4 -2.6 0.6 -0.1 -1.4 -1.4

aPeriod Starts 1 January and ends 31 December of Period End year
bPeriod ends 30 May 2021

Figure 4.2 shows the portfolio generating function for the equal weighted portfolio
and also highlights the significant increase in concentration until 2000, after which
concentration decreased. There appear to be two further periods of increasing
concentration in cap weights. Firstly, in 2007-2008 during the financial crisis and
then a slow increase in concentration since 2016 until the first half of 2020. Unlike
the first two periods of increased concentration this slow increase in concentration
led to a consistent negative impact on the relative return, with contributions of
-2.9%, -7.8%, and -5.4% for the consecutive three-year periods starting in 2015 and
ending in 2021 (Table 4.1).

The excess growth rate also appears to have declined since 2011, evident in Table
4.1 and evident in the contribution from the excess growth rate of 5.4% per annum
from 1996 to 2010 and only 2.6% per annum from 2011 to 2021. Figure 4.3 shows
the drift process (the excess growth rate for the equal weighted portfolio). There
appears to be three periods of heightened excess growth rates; 2000 to 2003, 2008 to
2011, and 2020 more recently. These periods lead to strong outperformance by the
equal weighted performance and usually coincide with a positive contribution from
the portfolio generating function. Therefore, while the equal weighted portfolio
should outperform the cap weighted portfolio over the long-term, much of the
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Figure 4.2.: Portfolio generating function for the S&P500 equal weighted portfolio.

excess growth rate contribution to this long-term outperformance appears to come
in clusters following a large market dislocation.
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Figure 4.3.: Drift process (excess growth rate) for the S&P500 equal weighted portfolio.

Another large contributor (negatively) and an often unmentioned factor is that of
leakage. As a reminder, leakage was presented in Equation (3.27) and is intuitively
the result of having to replace stocks when they move in and out of the respective
index. Typically, the impact of leakage is higher for the equal weighted portfolio than
for the cap weighted portfolio and is, therefore, a net drag on the equal weighted
portfolio’s relative performance. This is because the equal weighted portfolio holds
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a larger weight in the lower ranked stocks (by cap weight) than the cap weighted
portfolio and, therefore, having to replace stocks as they leave the index has a larger
impact.

1996 2000 2004 2008 2012 2016 2020

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Cu
m

ul
at

iv
e 

im
pa

ct
 o

f l
ea

ka
ge

 (J
an

 1
99

6 
= 

1)

Figure 4.4.: Impact of leakage for the S&P500 equal weighted portfolio.

Table 4.1 seems to suggest that this contribution is a consistent -5% to -6% over
three year periods. While the overall contribution appears to be consistent, Figure
4.1 seems to suggest that the impact of leakage can oscillate on a monthly basis.
Figure 4.4 displays the cumulative impact of leakage on the equal weighted portfolio
since 1996 which highlights the consistent negative contribution leakage makes on
the relative return of the equal weighted performance. Interestingly, there appears
to be a period between 2000 and 2005 when the impact of leakage is small. Figure
4.5 highlights the rolling 12-month change in index membership for the S&P500
which sheds light on this period. During this period the change in index membership
declined from almost 60 stocks in 2001 to a low of 10 in 2004. This has a direct
impact on leakage. Furthermore, during the period 2012 to 2015, the change in
index membership was relatively small at around 25 changes per year. This same
period coincides with a small period of slower than normal declines from leakage in
Figure 4.5.

Dividends and transaction costs appear to be negligible contributors with costs
being a fairly consistent -0.1% impact, as expected, and the impact of dividends
contributing between -1% and 1% over consecutive three-year periods. Finally,
Figure 4.6 shows the monthly residuals from the theoretical attribution of relative
returns against the actual relative returns. The residuals are generally well behaved
with an average of 0% and a standard deviation of 1%. Residuals are generally
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Figure 4.5.: Rolling 12 month change in S&P500 index membership.

higher when a shift in the excess growth rate occurs, which could indicate some
error in the covariance matrix estimation during these periods.
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Figure 4.6.: Histogram of monthly residuals from theoretical attribution of relative returns
and actual relative returns for the S&P500. Average monthly residual is 0.00%
with a standard deviation of 1%.

4.3 Attribution of the Top 40

Figure 4.7 shows the attribution of the relative return for the Top 40 equal weighted
portfolio on a rolling one-year basis. Table 4.2 shows the decomposition of relative
returns for consecutive three-year periods, mirroring the periods in Table 2.4.

Table 4.2.: Decomposition of the Top 40 equal weighted portfolio relative return over
consecutive three-year periods.

Period Starta Period End Excess growth rate Port. gen. function Leakage Dividends Costs Residual Total
2003 2005 8.6 5.4 -5.5 0.8 -0.1 0.6 10.1
2006 2008 14.9 -4.5 -21.0 1.5 -0.1 0.3 -5.3
2009 2011 9.5 -9.0 -2.8 1.2 -0.1 6.1 4.9
2012 2014 5.9 -0.9 1.4 -0.1 -0.1 -9.0 -3.2
2015 2017 8.8 -15.0 -9.5 0.5 -0.2 5.4 -9.7
2018 2020 16.5 -16.1 -17.3 1.0 -0.2 -2.8 -15.7
2021 2021/05b 1.4 3.6 -0.1 0.2 0.0 -1.0 4.2

aPeriod Starts 1 January and ends 31 December of Period End year
bPeriod ends 30 May 2021

The main drivers of relative performance are the excess growth rate, portfolio
generating function, and leakage. Dividends and costs add very little volatility,
although the impact of dividends are moderately positive in most years. As expected,
the portfolio generating function adds the majority of volatility in relative returns
with three-year periods oscillating between 5.4% and -16.1%. Another point to note
is that the impact of the portfolio generating function within the Top 40, is almost
always negative to some degree over consecutive three-year periods. This is evident
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Figure 4.7.: Annual decomposition of Top 40 equal weighted portfolio relative return as
per Equation (3.28) and including transaction cost differentials.

from Table 4.2, although Figure 4.7 highlights that there are annual periods where
the impact of the portfolio generating function is positive. This may be indicative of
constant concentration issues within the Top 40.

Figure 4.8 confirms the consistent negative contribution from the portfolio generat-
ing function. Although there are periods where the impact is positive (an increase in
the portfolio generating function), the trend is a steady decline from 2010 onwards.
It appears, at least from Table 4.2, that positive relative performance in the Top 40
equal weighted portfolio is more a function of the excess growth rate overcoming
the negative contribution from the portfolio generating function.

Figure 4.9 shows the excess growth rate of the Top 40 equal weighted portfolio.
Typically the excess growth rate is relatively low for the Top 40. This could be due
to the high concentration in the cap weighted index leading to higher correlations as
an "indexing" effect takes hold. In this scenario, since relatively few stocks determine
the direction of the cap weighted index, portfolio manager decisions (related to
smaller stocks) are highly influenced by how the larger stocks behave (as that drives
index performance). For example, a large stock declines significantly, leading to the
index as a whole declining and dragging smaller stocks lower as well. In this case,
stocks have less of a beta exposure to the whole market but rather a beta to a very
volatile and small set of stocks.

Figure 4.10 shows the rolling 12-month average correlations and volatilities among
the constituents in the Top 40. Average correlation is fairly high, consistently above
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Figure 4.8.: Portfolio generating function for the Top 40 equal weighted portfolio.
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Figure 4.9.: Drift process (excess growth rate) for the Top 40 equal weighted portfolio.
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30% and routinely as high as 50%. This is higher than the average correlations
present in the S&P500 (see Figure 4.11), where average correlations are usually
between 20% and 30%. Although the excess growth rate does show two periods of
excess contribution to returns (following the 2008 financial crisis and in early 2020),
these periods are offset by the negative impact of leakage, and thereby offsetting
any positive gains from the excess growth rate. As one would expect leakage has
a much bigger impact on the Top 40 index (a smaller index that suffers from high
concentration) than the S&P500.
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Figure 4.10.: Average correlations and volatilities among Top 40 stocks.
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Figure 4.11.: Average correlations and volatilities among S&P500 stocks.
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Figures 4.12 and 4.13 show the cumulative impact of leakage on the equal weighted
portfolio and the rolling 12-month index change, respectively. The impact of leakage
shows a high level of discontinuity (unlike in the case of the S&P500), with periods
of only small changes punctuated by very dramatic declines. These declines coincide
with large shifts in index membership (Figure 4.13). Furthermore, Figure 4.13
implies that index changes have increased since 2015. Although concentration has
increased and contributed to the underperformance of the equal weighted portfolio,
leakage has also played an important role over the past five years. The net impact
of leakage between 2003 and 2011 was -2.1% per annum compared to -8.6% per
annum for the period 2011 to 2021, highlighting the sharp increase in its impact on
the equal weighted portfolio.
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Figure 4.12.: Impact of leakage for the Top 40 equal weighted portfolio.

Figure 4.14 shows the histogram of residuals from this model. Although the residuals
shown in Table 4.2 seem to indicate that overall residuals are a small (further
supported by the average monthly residual of 0%), there are periods where residuals
are significant. This is also evident in Figure 4.7, where in 2008 and 2020 residuals
were large. In 2008, and similar to the observations in the S&P500, this was most
likely due to a sudden shift in the covariance matrix. In 2020 another sudden shift
occurs in the covariance matrix, however, a large decline in the portfolio generating
function also occurs at this time. This is related to capital changes within the index
(Prosus and Naspers) that had a large impact on the index and overall market caps.
This may not be properly captured in the model leading to the model assigning too
much of a negative impact to the portfolio generating function for changes that are
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Figure 4.13.: Rolling 12 month change in Top 40 index membership.

actually structural in nature and whose impact is somewhat smaller on the equal
weighted portfolio.
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Figure 4.14.: Histogram of monthly residuals from theoretical attribution of relative returns
and actual relative returns for the Top 40. Average monthly residual is 0.00%
with a standard deviation of 3%.

4.4 Comparison of the main factors driving relative
returns

A comparison of the Top 40 and S&P500 equal weighted portfolio performance
provides interesting insight into the performance of the equal weighted portfolio in
large and, relatively, smaller equity markets. While the S&P500 does at times display
levels of increasing concentration, these periods pale in comparison to the effects of
concentration in the Top 40. This is evident from the comparison of the portfolio
generating functions for the S&P500 and the Top 40, Figures 4.2 and 4.8, respectively.
The equal weighted Top 40 portfolio’s portfolio generating function shows a steady
decline from about 2005, whereas that of the S&P500 shows a much more bounded
function with periods of both increasing and decreasing concentration.

The excess growth rate, however, appears similar for both markets and, since 2003,
the correlation in monthly excess growth rates is quite high at 86%. Figure 4.15
shows the rolling one-year correlation of the monthly excess growth rates between
the two equal weighted portfolios. Generally, the correlation on a one-year basis is
quite high with correlations reaching almost 100% after the crises in this sample
period (2008 and 2020). There are also three periods where correlations turn
negative. Furthermore, Figure 4.16 shows the scatter plot of the S&P500 which
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Figure 4.15.: Rolling one-year correlations between Top40 and S&P500 excess growth rates
on a monthly basis.

highlights the generally positive relationship. That is, when the excess growth rate
in one market is higher, the other is generally higher as well.

Furthermore, while leakage does create a drag on relative performance in both
equal weighted portfolios, it has a far greater impact on the Top 40. This is largely
expected given that the last stock in the Top 40 has a much larger weight in the
equal weighted portfolio than the last stock in the S&P500 (broadly 1/40 vs. 1/500).
The average annual impact of leakage on the Top 40 is -3.2% since 2003, with the
last ten years being particularly poor at -8.6% per annum. In comparison, leakage
has contributed a steady -1.8% since 2003. This amount of leakage, while not ideal,
could be made up for by the contribution from the excess growth rate in the case of
the S&P500 (3.4% per annum contribution since 2003). In contrast, an impact of
leakage of -3.2% per annum is barely counteracted by the excess growth rate (also
3.4% per annum since 2003 for the Top 40).

4.5 Estimating the impact of specific stocks

The characterisation of the relative performance of the equal weighted portfolio
in to the main components using stochastic portfolio theory allows for a better
indication of the contribution to market concentration from one or more specific
stocks. In the US the focus has been on technology stocks and in particular the set of
stocks referred to as the FAANG stocks or more recently expanded version FAAANM:
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Figure 4.16.: Top40 (x-axis) and S&P500 (y-axis) excess growth rates a monthly basis.

Facebook, Alphabet (Google),Amazon, Apple, Netflix, and Microsoft. In South Africa,
the focus has been on Naspers (NPN) and Prosus (PRX).

To gauge the impact on the equal weighted portfolio’s relative return, these stocks are
removed and their cumulative weight is redistributed proportionate to the remaining
market capitalisation weights. The portfolio generating function as per Equation
(3.20) is recalculated and compared to the actual portfolio generating function. Any
difference in the two would correspond to a difference in the relative performance
of the equal weighted portfolio.

Figures 4.17 and 4.18 show the impact on a rolling five-year basis for the FAAANM
stocks and the Naspers related stocks, respectively. In the case of the FAAANM stocks,
there was only a moderate impact of between 2% and 4% until 2017. Since then
these stocks have had a large impact on the underperformance of the equal weighted
portfolio through the increased concentration. More specifically, over the last five
years these stocks have had a negative contribution of between 10% and 12% to the
equal weight portfolio’s relative performance.

Naspers and Prosus have, however, had a much larger negative drag on the equal
weighted portfolio’s relative performance in the Top 40. Since 2013, Naspers
has had a steady and increasing drag on the relative performance of the equal
weight portfolio. Over the last five-years Naspers and Prosus have led to a drag
of between 20% and 25% on the equal weighted portfolio. As an interesting,
and opposite view Figure 4.19 shows the same impact on the portfolio generating
function when removing the resource stocks Anglo American and BHP Billiton.
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Figure 4.17.: Change in the portfolio generating function of the equal weighted portfolio
(over a rolling five year basis) when removing the stocks: Facebook, Alphabet
(Google), Amazon, Apple, Netflix, and Microsoft and re-distributing their
weight proportionately among the remaining stocks.

Removing these stocks during the period 2012 to 2018 would have had the impact
of increasing concentration by up to 15%. The fact that this impact (on a five-year
rolling basis) becomes increasingly negative over this period is indicative of their
continued underperformance of the Top 40 over this period. That is, these stocks
increasingly reduce concentration as their weights get smaller in the index due to
underperformance. This would have led to some relative underperformance in the
equal weighted portfolio because the portfolio would be overweight these stocks
relative the cap weights.

4.6 Attribution of other countries

Attribution of returns for each country by source is provided in Table 4.3 while
the three main components (portfolio generating function, excess growth rate and
leakage) are shown per country in Figures 4.20 to 4.27. Most of the residual returns
are in line with those found in the US and SA markets, however, residuals for
Australia and Japan are quite significant (3.1% and -5.5% per annum, respectively).
In both cases, the excess growth rates are significantly higher than peers which may
indicate this as a source of the model error (higher residual).
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Figure 4.18.: Change in the portfolio generating function of the equal weighted portfolio
(over a rolling five year basis) when removing Naspers and Prosus, and re-
distributing their weight proportionately among the remaining stocks.
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Figure 4.19.: Change in the portfolio generating function of the equal weighted portfolio
(over a rolling five year basis) when removing Anglo American (AGL) and
BHP Billiton (BHP), and re-distributing their weight proportionately among
the remaining stocks.
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In the case of Japan, the equal weighted portfolio has performed the best with
outperformance of 3.5% per annum over the respective cap weighted portfolio. This
is despite the worst contribution from the portfolio generating function of -3.4% per
annum, double the next worst level of -1.7% in South Africa. The excess growth rate
in the Japanese equal weighted portfolio is, however, one of the highest at 4.7% per
annum and the impact of leakage is the lowest at -0.7% (likely due to the index’s
size). Interestingly the portfolio generating function for Japan has consistently
trended downwards, indicating a continued increase in concentration. The starting
level, however, of the portfolio generating function is much lower (between -8.6
to -9.4) compared to, for example, the US which is in a range of -6.8 to -7.3 (see
Figure 4.27). That is, although the concentration has been consistently increasing,
the base level of concentration is still much lower than other markets (at least by
the geometric mean of cap weights).

Another notable equal weighted portfolio is that of the United Kingdom (UK) which
had the highest relative return after Japan. Furthermore, the residual return is
among the smallest in our sample, indicating a decent fit in this market. The
majority of this outperformance has come from the portfolio generating function
which contributed a positive 1.5% per annum. The top, left panel in Figure 4.21
shows the portfolio generating function of the equal weighted portfolio in the UK in
which, although there is some increase in concentration in the early 2000s and 2008,
has for the most part been a trend of lower concentration. This is especially true
since 2011 in contrast to many other markets, such as SA, which actually showed
the complete opposite. That is, a significant increase in concentration in contrast to
the UK equity market.

Another market where the general trend in the portfolio generating function has
been for lower concentration has been that of Germany (Figure 4.22). This has
also led to a positive contribution in relative returns from the portfolio generating
function in the German equal weighted portfolio. The excess growth rate in this
market is, however, among the lowest (2.5% per annum), with France the only
country showing a lower contribution to relative return. Interestingly the portfolio
generating functions of these two countries are quite different with that of France
remaining very range bound over the sample period, contributing -0.6% per annum
to relative returns (Figure 4.23).

Another point to notice is how similar the excess growth rates across all the equity
markets appear, at least visually. In general, excess growth rates rise substantially
following a crises such as in 2000, 2008, and 2020. This similarity is confirmed
by the high correlation between these excess growth rates, shown in Table 4.4.

58 Chapter 4 Attribution of the equal weighted portfolio’s performance



Table 4.3.: Attribution of relative equal weighted portfolio returns per annum by country
(CAGR).

Country Excess growth rate Generating Func. Leakage Dividends Costs Residual Total
Japan 4.7 -3.4 -0.7 0.0 -0.1 3.1 3.5
United Kingdom 3.0 1.5 -1.6 -0.2 -0.1 -0.4 2.3
United States 3.4 0.3 -1.8 -0.1 0.0 -0.4 1.3
Germany 2.5 0.8 -1.3 -0.2 0.0 -1.5 0.7
Canada 3.7 0.0 -1.6 -0.2 -0.1 -1.6 0.6
France 2.4 -0.6 -0.9 -0.3 0.0 -0.6 0.2
South Africa 3.4 -1.7 -3.2 0.3 -0.1 -0.4 -0.8
Australia 4.9 1.6 -1.3 -0.5 -0.1 -5.5 -0.8
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Figure 4.20.: Japan (JP): Portfolio generating function, excess growth rate and cumulative
leakage for the equal weighted portfolio.
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Figure 4.21.: United Kingdom (UK): Portfolio generating function, excess growth rate and
cumulative leakage for the equal weighted portfolio.
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Figure 4.22.: Germany (GE): Portfolio generating function, excess growth rate and cumula-
tive leakage for the equal weighted portfolio.

60 Chapter 4 Attribution of the equal weighted portfolio’s performance



2004 2008 2012 2016 2020

−4.15

−4.10

−4.05

−4.00

−3.95

−3.90

Ge
ne
ra
tin
g 
fu
nc
tio
n

Generating function

2004 2008 2012 2016 2020

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Ex
ce
ss
 g
ro
 t
h 
ra
te

Excess gro th rate

2004 2008 2012 2016 2020
0.85

0.90

0.95

1.00

Cu
m
ul
at
iv
e 
le
ak
ag
e

Leakage

Figure 4.23.: France (FR): Portfolio generating function, excess growth rate and cumulative
leakage for the equal weighted portfolio.
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Figure 4.24.: Canada (CA): Portfolio generating function, excess growth rate and cumula-
tive leakage for the equal weighted portfolio.
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Figure 4.25.: Australia (AU): Portfolio generating function, excess growth rate and cumula-
tive leakage for the equal weighted portfolio.
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Figure 4.26.: South Africa (SA): Portfolio generating function, excess growth rate and
cumulative leakage for the equal weighted portfolio.
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Figure 4.27.: United States (US): Portfolio generating function, excess growth rate and
cumulative leakage for the equal weighted portfolio.

The average correlation is 85% among the excess growth rates, with the lowest
correlation between Japan and South Africa (70%). This compares to the average
correlation of portfolio generating functions of only 8.5%. The correlations between
the portfolio generating functions are shown in Table 4.5.

Table 4.4.: Correlations between the excess growth rate of equal weighted portfolios in the
different countries.

UK GE FR CA AU JP SA US
UK 1.00 0.88 0.92 0.92 0.91 0.85 0.87 0.94
GE 1.00 0.92 0.85 0.80 0.82 0.76 0.89
FR 1.00 0.84 0.78 0.78 0.84 0.95
CA 1.00 0.89 0.77 0.85 0.90
AU 1.00 0.80 0.78 0.88
JP 1.00 0.70 0.84
SA 1.00 0.85
US 1.00
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Table 4.5.: Correlations between the portfolio generating functions of equal weighted
portfolios in the different countries.

UK GE FR CA AU JP SA US
UK 1.00 0.53 0.48 0.26 0.57 -0.77 -0.74 -0.17
GE 1.00 0.43 0.49 0.65 -0.51 -0.46 0.69
FR 1.00 0.19 0.34 -0.17 -0.07 0.61
CA 1.00 -0.04 -0.15 -0.18 0.26
AU 1.00 -0.52 -0.45 0.16
JP 1.00 0.86 -0.08
SA 1.00 0.21
US 1.00

4.7 Conclusion

This chapter represents an empirical implementation of the model presented in
Chapter 3 and explains the relative performance of the equal weighted portfolio
through the components set out in Equation (3.28). That is, primarily as a function
of the portfolio generating function (a measure of concentration in the case of the
equal weighted portfolio), the drift process (the excess growth rate), and the impact
of leakage (the impact of stocks moving in and out of the index).

Section 4.2 looked at the attribution of US equities. The portfolio generating func-
tion of the S&P500 equal weighted portfolio, while displaying periods of increasing
concentration, appears to be well bounded and this leads to periods of both positive
and negative contributions which should offset themselves for an overall net zero
contribution as stochastic portfolio theory would predict. This is in contrast to the
Top40 in South Africa (Section 4.3) where the portfolio generating function has
contributed negatively to relative performance on a very consistent basis. Further-
more, a visual inspection of the portfolio generating function (Figure 4.8) shows a
function that does not appear at all to be bounded and consequently a stock market
that shows continuously higher levels of concentration.

The excess growth rate for the S&P500 and Top 40 equal weighted portfolios
appears very similar, although there are some periods where they display low levels
of correlation (Figure 4.15). Tables 4.1 and 4.2 show the contribution from each
factor on a rolling three-year basis. In the US, there is a distinct difference in the
contribution from the excess growth rate before and after 2010. Excess growth rates
in the S&P500 equal weighted portfolio appear much higher pre-2010, contributing
an average of 5.4% per annum to the equal weighted portfolio’s relative performance.
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This declines to an average of 2.6% per annum after 2010. The contribution from
the excess growth rate in the SA equity market does not show this decline with the
highest contribution of 16.5% coming in the period 1 January 2018 to 31 December
2020.

Leakage was identified as an important, and in some years a major, negative contrib-
utor to the equal weighted portfolio’s relative performance. In the S&P500 equal
weighted portfolio this contributed -1.8% per annum to the relative performance
of the equal weighted portfolio compared to a much higher -3.2% for the Top 40.
Furthermore, leakage has become an increasingly negative drag on the relative
performance of the equal weighted portfolio in South Africa with an average contri-
bution of -8.6% per annum since 2011 as the rotation of stocks in and out of the
index in the last ten years has increased.

This characterisation of the relative performance of the equal weighted portfolio,
allows for an estimate of the impact of specific stocks on the equal weighted portfolios
performance due to their contribution to the cap weighted portfolio’s concentration
(Section 4.5). For example, the increased concentration from technology stocks in
the S&P500 (Facebook, Alphabet (Google), Amazon, Apple, Netflix, and Microsoft)
is estimated to have contributed negatively to the equal weighted portfolio’s relative
return by 10% to 12% on a rolling five year basis. In a similar manner, Naspers
and Prosus appear to have had a negative impact of between 20% and 25% on
the relative performance of the Top 40 equal weighted portfolio through a direct
increase in concentration over the last five years (Figure 4.18).

This chapter concluded by comparing the attribution between different countries
in Section 4.6. Most countries experienced high contributions to relative returns
for the equal weighted portfolio from the excess growth rate, with rates of 3.0% to
4.9% per annum. France and Germany experienced the lowest contribution from
the excess growth rate with rates of 2.4% and 2.5% per annum, respectively. While
in South Africa the portfolio generating function contributed negatively to relative
returns, for most countries the contribution was relatively small. In some countries,
however, the contribution was actually positive (such as in the UK and Germany) as
the cap weighted portfolio became less concentrated over time. Finally, it was noted
how correlated the excess growth rates were across most markets, with an average
correlation of 85%. The portfolio generating functions, on the other hand, showed
very little correlation among the different equity markets.
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Optimal choice between equal
and cap weighted portfolios

5

5.1 Introduction

As mentioned in Chapter 3, Equation (3.20), the portfolio generating function of
the equal weighted portfolio, implies that logS(µ(t)) is bounded, assuming that the
stock market does not become concentrated in a single stock. Furthermore, the
drift process of the equal weight portfolio, represented by the excess growth rate
in Equation (3.21), is always greater than, or equal to, zero. As a result, Equation
(3.17), the relative return process of the equal weighted portfolio, implies that the
equal weighted portfolio will almost surely outperform the cap weighted portfolio in
the long-run.

A complicating factor, however, is the effect of leakage. That is, the effect of forming
a portfolio or index only on a subset of the market (the top 40 stocks, for example)
and having to completely divest or invest as stocks move in and out of the index.
In a small market, such as South Africa and the Top 40 for example, this effect can
have a large impact as noted in Chapter 4.

In the case of the Top 40, the equal weighted portfolio has underwhelmed, primarily
between 2016 and 2021, largely due to large increases in the concentration (the
negative impacts from the portfolio generating function), and the large impact of
leakage. Although the equal weighted portfolio performs much better in the S&P500,
given a more bounded portfolio generating function and much smaller impact of
leakage, there still appears to be long periods of relative drawdowns.

This chapter presents two models aimed at combining the cap weighted and equal
weighted portfolios in an optimal way to reduce the short-term relative drawdowns
while still benefiting from the longer-term outperformance of the equal weighted
portfolio. These models use the main components in Equation (3.28), in an attempt
to negate some of these periods of steep drawdowns relative to the cap weighted
portfolio. In the first, section the aim is to create as simple a model as possible
and in turn highlight that monitoring the portfolio generating function, as given
by Equation (3.20), the excess growth rate, and the impact of leakage, Equation
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(3.27), are important when improving the short-term performance of the equal
weighted portfolio relative to a cap weighted index. The second model aims at
improving performance by creating an optimal blend of the cap and equal weighted
portfolios.

The first section in this chapter introduces the rudimentary model (see Taljaard and
Maré, 2021b; Taljaard and Maré, 2021a) and provides an analysis of the results for
the S&P500 and Top 40. The results for the other countries are also presented, before
results are compared across different switch thresholds. The second section presents
an alternative approach, using a Random Forest classifier, which seeks to blend
the cap weighted and equal weighted portfolios using the forecasted probability of
either portfolio outperforming the other. Features, used as inputs in the model, are
constructed from the main components in Equation (3.18) and using the Python
library called tsfresh (Christ et al., 2018).

5.2 A rudimentary linear regression approach

The rudimentary approach used here is to make use of the portfolio generating
function, the excess growth rate and leakage to forecast what the relative perfor-
mance of the equal weight will be in the following month and switching between
the cap weight and equal weighted portfolios. This is done given that in the previous
sections it was shown how, theoretically and empirically, the relative return of an
equal weighted portfolio is a combination of the changes in concentration of the cap
weighted portfolio weights (the portfolio generating function), the excess growth
rate (heuristically the benefits of diversification of the equal weighted portfolio) and
the rate of leakage as stocks move out of the cap weighted portfolio. Therefore, this
chapter focuses on optimising the equal weighted portfolio by making use of these
three components.

A rudimentary linear regression model is implemented that looks to forecast the next
month’s relative performance using the average monthly change in the log portfolio
generating function, Equation (3.20), over the past three months, the most recent
estimate of the drift process, and the average of the last three month’s leakage as
defined in Equation (3.27). In this case the drift process is the excess growth rate
of the equal weighted portfolio, Equation (3.6), where volatilities and correlations
are estimated using the EWMA method with a decay factor of 0.97 as in Chapter 4.
The model is fit on the prior three years’ of data and attempt to forecast the next
month’s relative return.
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Mathematically this would be expressed as

ŷt+1 = β0 + β1Xt, t = 3, . . . , n (5.1)

where ŷt+1 is the next month’s relative return of the equal weighted portfolio and
Xt is given by

Xt = 1
12γ∗

π(t) + 1
3

t∑
i=t−2

dlogS(µ(i)) + 1
3

t∑
i=t−2

dLπ/µ(i), (5.2)

where dlogS(µ(i)) is the one-month change in the log of the portfolio generating
function and dLπ/µ(i) represents the net leakage effect, Equation (3.27), for the
equal weighted portfolio at time t = i with µ representing the cap weights of the
S&P500 or Top 40 constituents. The intercept β0 and coefficient β1 are fit using an
ordinary least squares approach. The model is fit over the preceding three years’
monthly data at the beginning of each month prior to any monthly rebalancing in
the portfolios.

Since the dynamic portfolio will be shifting between equal and cap weighted,
turnover is likely to increase and, therefore, trading costs of 15 basis points are in-
cluded. This is roughly in line with analysis done by Frazzini et al. (2018) for stocks
over the period 1998 to 2016. As the analysis in this chapter includes transaction
costs of 15 basis points for all portfolios, the optimal portfolio only switches from
equal weights to cap weights (or vice versa) if the relative return is predicted to, at
least, offset these transaction costs.

Practically, to generate the equal and cap weights for the dynamic portfolio, the
model makes use of the diversity weighted portfolio (see Fernholz, 2002). This
portfolio has the following generating function

Dp(µ) =
(

n∑
i=1

µp
i

) 1
p

. (5.3)

This generates weights given by

πi(t) = µp
i (t)∑n

i=1 µp
i (t) . (5.4)

As p → 0 the portfolio’s weights tend to the equal weight portfolio and as p → 1, the
portfolio’s weights tend to the cap weighted portfolio. There have been attempts to
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Table 5.1.: Risk adjusted performance of S&P500 optimised, equal, and cap weighted
portfolios, monthly rebalanced with 15bps of costs.

Portfolio CAGRa Volatility Sharpe ratiob Information ratioc Sortino ratio
Optimised 11.9% 20.3% 0.547 (0.224) 0.434 (0.520) 0.700
Equal weighted 12.0% 20.9% 0.545 (0.765) 0.321 (–) 0.682
Cap weighted 10.3% 19.7% 0.486 (–) – 0.618

aCompound annual growth rate.
bOne-month US Treasury bill used as risk free rate for both Sharpe and Sortino ratios. P-value for two

sided hypothesis test as per Ledoit and Wolf (2008) shown in brackets. The null hypothesis is that the

Sharpe ratio is equal to that of the cap weighted portfolio.
cInformation ratio relative to the cap weighted portfolio. P-value for two sided hypothesis test as per

Ledoit and Wolf (2008) shown in brackets. The null hypothesis is that the IR is equal to that of the

equal weighted portfolio.

directly optimise this value p (see, for example, Samo and Vervuurt, 2016); although,
this tends to result in portfolios with p < 0. This leads to an inverse cap weighted
portfolio where smaller stocks have much larger weights than the largest stocks in
the market.

In the implementation of the linear model in this chapter p is restricted to either
very close to 0, or equal to 1, to select directly between the equal weighted or cap
weighted portfolios. In the next chapter this analysis is extended to consider a
floating value for p between 0 and 1.

5.2.1 Results for the S&P500

The main results for the S&P500 are highlighted in Table 5.1. A statistical test for
the significance is performed on the difference in the Sharpe ratios of the equal
weighted and optimal portfolios relative to the cap weighted portfolio. This test is
also performed for the Information ratios of the two portfolios. The method used is
that of Ledoit and Wolf (2008), which makes use of a studentised circular bootstrap
approach to construct a confidence interval at a given significance level. This test
can be altered to provide a p-value for the null hypothesis. The hypothesis test is
a two-sided test with the null hypothesis as H0 : the difference in Sharpe ratios is
zero.

The optimised portfolio performs in line with the equal weighted portfolio, with
slightly lower volatility and higher Information and Sortino ratios. Note that in
both cases the p-values are large. It is, however, worth bearing in mind that the
optimal portfolio is a combination of the equal weight and cap weighted portfolio.
Therefore, the bootstrapping approach would cover many areas where both the
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optimal portfolio and cap weighted portfolio have the same return series. The
proportion of time spent in each specific portfolio weighting scheme is shown in
Figure 5.1. The optimal portfolio spends approximately two-thirds of the time within
an equal weighting and reverts to cap weighting the remainder of the time. In this
context one could argue the p-value associated with the difference in the Sharpe
ratios (0.224) is not too extreme considering the proportion of time the optimal
portfolio spends in each weighting methodology.

1996 2000 2004 2008 2012 2016 2020

Equal weight
(64%)

Cap weight
(36%)

Figure 5.1.: Allocation of optimal portfolio between S&P500 cap weighted and equal
weighted portfolios. Proportion of overall time allocated to a specific portfolio
is shown in brackets.

Although outright performance is similar, the optimised portfolio does avoid the steep
drawdowns relative to the cap weighted portfolio. In Table 5.2 the maximum relative
return drawdowns of the optimised and equal weighted portfolios (relative to the cap
weighted portfolio) are shown. This is reduced from a maximum underperformance
of 31.8% for the equal weighted portfolio to 10.9% for the optimised portfolio.
Furthermore, the alpha (over the cap weighted portfolio) per unit of average relative
drawdown shows a marked improvement from 6.44 times to 9.02 for the optimised
portfolio.

This improvement is most evident in a chart of the cumulative returns of the
optimised and equal weighted portfolios (Figure 5.2). The optimised portfolio
does well to switch into the cap weighted portfolio during the three main drawdown
periods: around the 2000s, post-2008, and more recently post-2016. Where the
model does underperform, however, is during each period’s recovery following a
large relative drawdown. For example, the equal weighted portfolio outperforms
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Figure 5.2.: S&P500 optimised and equal weighted portfolio cumulative returns relative to
cap weighted portfolio with monthly rebalancing.

Table 5.2.: Relative return drawdowns of S&P500 optimised and equal weighted portfolios.

Portfolio Maximum relative drawdowna Alpha / Avg DD
Optimised 10.9% 9.02
Equal weighted 31.8% 6.44

aMaximum

relative return drawdown.
bAlpha (relative to cap weighted portfolio) per unit of average relative return drawdown.

the cap weighted portfolio significantly starting in 2000, but the optimised portfolio
only switches to equal weight much later, thereby missing out on at least a year’s
outperformance. That said, given the simplicity of the model, the optimised portfolio
appears to do well to generate a higher return than the equal weighted portfolio
while avoiding large relative drawdowns.

5.2.2 Results for the Top 40

Similar results are presented for the Top 40 with Table 2.3 reflecting the risk
adjusted performance of the three portfolios. The outright performance of the
optimised portfolio is moderately ahead of the equal weighted portfolio (0.3% CAGR
outperformance per annum) but with differences in Sharpe, Information and Sortino
ratios statistically insignificant. This is slightly different from the results in Taljaard
and Maré (2021a) due to the period in 2020, where the optimised portfolio switched
into equal weights as the equal weighted portfolio suffered a significant relative
drawdown. This is most notable in Figure 5.3 which shows the relative performance
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Table 5.3.: Risk adjusted performance of Top 40 optimised, equal, and cap weighted portfo-
lios, monthly rebalanced with 15bps of costs.

Portfolio CAGRa Volatility Sharpe ratiob Information ratioc Sortino ratio
Optimised 14.7% 20.2% 0.417 (0.76) 0.045 (0.78) 0.556
Equal weighted 14.4% 19.3% 0.411 (0.88) -0.016 (–) 0.555
Cap weighted 14.6% 20.1% 0.412 (–) – 0.573

aCompound annual growth rate.
bOne-month JIBAR used as risk free rate for both Sharpe and Sortino ratios. P-value for two sided

hypothesis test as per Ledoit and Wolf (2008) shown in brackets. The null hypothesis is that the

Sharpe ratio is equal to that of the cap weighted portfolio.
cInformation ratio relative to the cap weighted portfolio. P-value for two sided hypothesis test as per

Ledoit and Wolf (2008) shown in brackets. The null hypothesis is that the IR is equal to that of the

equal weighted portfolio.
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Figure 5.3.: Top 40 optimised and equal weighted portfolio cumulative returns relative to
cap weighted portfolio with monthly rebalancing.

of both the optimised and equal weighted portfolio. Another possible issue with the
model are the irregular changes around this period in the generating function that
are due to corporate actions as noted in Section 4.3.

Figure 5.4 highlights the optimal allocation over time with the model spending
less than 50% of the time in the equal weighted portfolio. This contrasts with
the S&P500 portfolio where almost two-thirds of the time was spent in the equal
weighted portfolio. The majority of time spent in cap weights highlights again the
significant underperformance of the equal weighted portfolio in South Africa over
the last decade.
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Table 5.4.: Relative return drawdowns of Top 40 optimised and equal weighted portfolios.

Portfolio Maximum relative drawdowna Alpha / Avg DD
Optimised 23.4% 0.33
Equal weighted 48.0% -0.30

aMaximum relative return drawdown.
bAlpha (relative to cap weighted portfolio) per unit of average relative return drawdown.

While risk adjusted performance is somewhat disappointing in the Top 40 case,
the model does improve the relative drawdown experience of the equal weighted
portfolio. The maximum relative drawdown for the optimal portfolio is lower at
23% compared to the equal weighted portfolio’s 48%, and alpha per unit drawdown
is higher at 0.3 while that of the equal weighted portfolio is negative (-0.3).

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022

Equal weight
(48%)

Cap weight
(52%)

Figure 5.4.: Allocation of optimal portfolio between Top 40 cap weighted and equal
weighted portfolios. Proportion of overall time allocated to a specific portfolio
is shown in brackets.

5.2.3 Results for other countries

The results for other countries are presented in Tables 5.5 and 5.6. In general, the
results follow a similar pattern as that of the US and South Africa. That is, the
optimal portfolio gives up some return over the equal weighted portfolio but does
reduce relative drawdowns. The optimal portfolio does reduce drawdowns relative
to the equal weighted portfolio in all cases except for Japan and South Africa.
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Table 5.5.: CAGR and volatility of the optimised, equal, and cap weighted portfolios for a
selection of countriesa.

CAGR (%) Volatility (%)
Country Cap Equal Optimised Cap Equal Optimised
Australia 11.0 10.0 9.2 16.2 17.3 16.4
Canada 8.6 9.7 8.6 18.1 18.4 18.4
France 4.8 5.5 5.5 23.0 24.0 23.3
Germany 3.5 5.9 4.9 24.0 22.9 22.9
Japan 2.8 8.5 8.4 21.4 19.9 20.5
South Africa 14.6 14.4 14.7 20.1 19.3 20.2
United Kingdom 4.7 7.2 5.1 19.4 19.7 19.5
United States 10.3 12.0 11.9 19.7 20.9 20.3

aPortfolios are rebalanced monthly with 15bps of costs.

Table 5.6.: Risk adjusted performance of the optimised, equal, and cap weighted portfolios
for a selection of countriesa.

Sharpe ratiob Information Ratioc

Country Cap Equal Optimised Equal Optimised
Australia 0.50 0.43 0.40 -0.09 -0.34 (0.164)
Canada 0.46 0.51 0.45 0.15 -0.10 (0.184)
France 0.28 0.30 0.30 0.05 0.05 (0.928)
Germany 0.21 0.31 0.27 0.16 -0.07 (0.004)
Japan 0.23 0.51 0.49 0.58 0.65 (0.556)
South Africa 0.41 0.41 0.42 -0.02 0.05 (0.912)
United Kingdom 0.20 0.32 0.22 0.52 0.16 (0.012)
United States 0.49 0.54 0.56 0.32 0.43 (0.520)

aPortfolios are rebalanced monthly with 15bps of costs.
bRespective risk-free rates used in Sharpe ratio calculations.
cInformation ratio relative to the cap weighted portfolio. P-value for two sided hypothesis test as per

Ledoit and Wolf (2008) shown in brackets. The null hypothesis is that the IR is equal to that of the

equal weighted portfolio.

Table 5.6 contains the Sharpe and Information Ratios for the portfolios, including
the same statistical test for the Information Ratios as used in Table 5.3, for example.
The results for the optimal portfolio are largely mixed, with an improvement in
Information Ratios across France, Japan, South Africa and United States. Information
ratios in the remaining countries are lower than the equal weighted portfolios, largely
due to lower CAGRs.

Table 5.7 shows the relative return drawdowns and average alpha per unit of average
drawdown for the equal weighted and optimal portfolios. This largely mirrors the
results in Table 5.6 with only some countries showing a large improvement in alpha
per unit average drawdown. This is largely a result of lower CAGRs for the optimal
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Table 5.7.: Relative return drawdowns of optimised and equal weighted portfolios.

Maximum relative drawdown (%) Alpha / Avg DD
Country Equal Optimised Equal Optimised
Australia 43.4 44.6 -0.80 -1.12
Canada 19.0 16.0 4.17 0.04
France 24.5 10.7 2.83 3.40
Germany 56.4 55.5 8.88 1.86
Japan 52.1 39.8 17.40 20.18
South Africa 48.0 23.2 -0.30 0.38
United Kingdom 27.3 21.6 15.29 1.06
United States 31.8 10.9 6.44 12.10

portfolios as all countries, except for Australia, show an improvement in drawdowns
relative to the cap weighted portfolio.

Figure 5.5 shows the cumulative relative returns for the equal weighted and optimal
portfolios per country (on a log-scale). The results are largely in line with that of
the US and South Africa. Namely, the model does well generally to avoid the large
drawdown periods but is slow to switch back to the equal weighted portfolio as it
begins to outperform.
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Figure 5.5.: Annual cumulative relative performance (log-scale) of equal weighted and
optimal portfolios by country.

5.2.4 Optimising the model

One of the issues with the rudimentary linear model is that it is slow to switch from
cap weight to equal weight as the equal weighted portfolio begins to outperform.
This could be a result of the threshold imposed in the model to determine whether
a switch is made. Recall that the model only switches if the predicted difference
in returns is greater than the trading costs (15 bps). This is somewhat arbitrary in
this context as it is unlikely that more than half of the portfolio would be churned
as a switch is made from equal to cap weight, or vice versa. The trading activity
would be confined only to the difference in the weights and not the entire portfolio.
Furthermore, a switch to another weighting scheme would likely have a cumula-
tive impact and so checking one month’s expected relative return against the full
transaction cost could be misleading.

In this subsection both the threshold for switching to, or from, cap weights (and vice
versa) and the arbitrary choice of three years of data for the linear regression fit are
optimised for each country.
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The results for SA and US equities are shown in Figures 5.6 and 5.7, respectively.
These figures show CAGR and alpha per unit of average relative drawdown across
various thresholds for switching (in terms of expected alpha) and the length of the
regression lookback window used. In general results for CAGR and alpha per unit
of average relative drawdown are similar with only minor differences. In the case
of SA, it appears that a very short lookback window with a high threshold results
in the best performance. This could, however, be indicative of poor performance
in the model in general as the performance of the model drops off significantly
thereafter.

The best performing combination of parameters for the US also appears to be for a
short regression window, although here the results are fairly similar across threshold
levels. The best combination, however, is very similar to the SA case with a short
regression window and higher threshold levels. There also appears to be a peak
around the 90 month lookback window and a lower threshold level, where results
are also quite strong.

Results for the remaining countries are provided in Figures 5.8 to 5.13 with the best
performing combination summarised in Table 5.8. The optimal regression windows
are largely between 60 and 90 months, with only Japan, South Africa and United
States showing smaller regression windows of 24 to 36 months. Interestingly for
these countries with shorter regression windows, higher thresholds are the most
optimal. Germany and Japan also show relatively higher threshold levels. Australia,
Canada, and France appear to have much lower threshold levels than the other
countries with the optimal threshold in Australia at zero.

Table 5.8.: Optimised threshold and regression window parameters by country.

Country Regression window Threshold (bps) Alpha/Avg DD CAGR (%) Sharpe ratio
Australia 90 0 -0.7 10.1 0.45
Canada 90 3 1.1 8.9 0.47
France 90 3 5.4 5.8 0.32
Germany 90 12 8.3 5.8 0.31
Japan 24 9 23.6 8.6 0.50
South Africa 24 12 0.6 15.0 0.43
United Kingdom 60 12 10.8 6.4 0.28
United States 36 15 12.1 12.2 0.56

The largest improvements in performance after optimisation are for Australia, Japan,
and United Kingdom although, as expected, there is some improvement across all
the countries. Improvement in terms of CAGR is best veiwed using a comparison
between Figures 5.14 and 5.5 which show the cumulative relative performance
against the cap weighted portfolio. In the UK, where the equal weighted portfolio
has performed very well, the optimal model improves to now roughly match this
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performance. This is similar to Japan, although the model does protect its relative
gains during the 2006 to 2008 period in this case.

Other notable improvements are in Australia and South Africa where the model out-
performs the equal weighted portfolio overall in markets where the equal weighted
portfolio generally underperforms the cap weighted portfolio. In South Africa the
optimised model actually generates some outperformance against the cap weighted
portfolio in a market where the equal weighted portfolio has struggled to keep up
with the benchmark.

Regression lookback window

20
40

60
80

100
120

Th
res

ho
ld 

(bp
s)

0
2
4
6
8
10
12
14

CA
GR
 (%
)

13.2
13.4
13.6

13.8

14.0

14.2

14.4

14.6

14.8

SA Opti i%ation: CAGR (%)

Regre%%ion lookback )indo)

20
40

60
80

100
120

Th
re%
ho
ld 
(bp
%)

0
2
4
6
8
10
12
14

Al
ph
a 
pe
r u
ni
t a
(e
ra
ge
 re
la
ti(
e 
dr
a)
do
)n

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

SA Opti i%ation: Alpha per unit a(erage relati(e dra)do)n

Figure 5.6.: CAGR and alpha per unit average relative drawdown by regression lookback
window and threshold for switching for South African equities.
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Figure 5.7.: CAGR and alpha per unit average relative drawdown by regression lookback
window and threshold for switching for United States equities.
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Figure 5.8.: CAGR and alpha per unit average relative drawdown by regression lookback
window and threshold for switching for Australian equities.
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Figure 5.9.: CAGR and alpha per unit average relative drawdown by regression lookback
window and threshold for switching for Canadian equities.
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Figure 5.10.: CAGR and alpha per unit average relative drawdown by regression lookback
window and threshold for switching for French equities.
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Figure 5.11.: CAGR and alpha per unit average relative drawdown by regression lookback
window and threshold for switching for German equities.
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Figure 5.12.: CAGR and alpha per unit average relative drawdown by regression lookback
window and threshold for switching for Japanese equities.
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Figure 5.13.: CAGR and alpha per unit average relative drawdown by regression lookback
window and threshold for switching for British equities.
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Figure 5.14.: Annual cumulative relative performance (log-scale) of equal weighted and
optimal portfolios by country using optimised threshold for switching and
linear regression lookback window.
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5.3 Blending equal and cap weights using a Random
Forest approach

One of the disadvantages of the rudimentary model in Section 5.2 is the abrupt and
large changes in the portfolio weights as the portfolio switching between the cap
weight and equal weight. Secondly, predicting both the direction and size of the
relative performance of the equal weighted portfolio is a very tough task and one
that creates significant risk in a real-world implementation should the regression
model prediction be wrong. An approach which may be much more amenable to
real-world implementation is rather skewing a portfolio towards either the equal
weighted portfolio and thereby creating a blended portfolio based on whether the
equal weighted portfolio is expected to outperform the cap weighted portfolio. In
this case, the aim is to improve the performance of the cap weighted portfolio by
accessing some of the alpha in the equal weighted portfolio, if the expectation is for
the equal weighted portfolio to outperform.

This transforms the problem from one of regression to classification. That is, the
problem to solve is whether or not the equal weighted portfolio is expected to
outperform the cap weighted portfolio in the next period. This approach can
be extended to not only consider whether or not the equal weighted portfolio is
expected to outperform, but what probability can be assigned to this outcome. Let pe

be the probability of the equal weighted portfolio outperforming in the next period.
Equation (5.3) provides a straight-forward way to translate this probability to the
portfolio weight space. Recall that setting the parameter p in Equation (5.3) equal
to 1 generates weights equal to the cap weighted portfolio as per Equation (5.4). As
this parameter p tends towards 0, the weights tend towards an equal weight.

Therefore, setting p equal to 1−pe will generate a portfolio closer to the cap weighted
portfolio when the probability of the equal weighted portfolio outperforming is low,
and therefore pe is low, and vice versa. The next question is how to estimate pe

and how can the portfolio generating function, the drift process and the impact of
leakage for the equal weighted portfolio be used to generate pe? It is fair to assume
that the features and output are likely to be related in a non-linear fashion and that
this lends itself to an implementation of some machine learning (ML) approach.
Secondly, an algorithm that is easy to understand, implement, optimise and interpret
is important. For these reasons, a random forest classifier was selected.

Random forest models tend to perform well against other ML algorithms, are robust
against over-fitting, and are easy to interpret with feature importance readily avail-
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able. The starting point for random forests are classification and regression trees
(CART) (Breiman et al., 1984). A CART model begins with the entire population
and the resulting classes (or states) are already defined (supervised learning essen-
tially). The algorithm begins splitting the population with the aim of increasing or
maximising the homogeneity of the resulting sub-group at each node. An illustrative
example is provided in Figure 5.15.

Figure 5.15.: Example of a node-split in a Classification and Regression Tree. The split
criteria fS

i is selected for the feature fi such that the split maximises the
homogeneity of the resulting child nodes.

The determinant of homogeneity can be any of a number of methods. One popular
method, and the one utilised here, is the Gini index. In this setting, it is represented
as,

Gi =
∑

∀k ̸=j

p(k|i)p(j|i), (5.5)

where k and j represent classes and i represents the node in question. In the
model presented in this section there are only two states: equal weighted portfolio
outperforms or underperforms the cap weighted portfolio. p(k|i) is, therefore, the
probability of being in class k at node i. In this instance, the goal would be to
minimize Gi at each node and, as this is done for each consecutive node, build
a tree such that the ends provide a final classification. As a result, it is possible
to trace the exact determinants of a particular classification. It is also possible to
determine feature importance using the reduction in Gi (or any other measure used)
per feature. The higher the total reduction, the more important that particular
feature is.

CART models represent one decision tree. Breiman (1996) extends this idea by
building numerous trees (using the procedure above) independently with a specific
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classification determined by taking a "vote" among all the constructed classification
trees. Furthermore, these trees are built using different bootstrap samples from
the main sample of data, adding a layer of randomness to them. This is a concept
referred to as "bagging". This was further extended in Breiman (2001) to not only
use random bootstrap samples but also use a random selection of the available
features for each tree. In other words, before building a specific tree, a random
sample of data is bootstrapped and a random selection of the available features are
made. That specific tree is built using only those features and that bootstrap sample
of data. A collection of trees are then used to make predictions through a "voting"
procedure. This results in the Random Forest model.

5.3.1 Methodology

The same data per country is used in these simulations and backtests as in the prior
section and chapters. At the end of each month the portfolio generating function,
drift process (excess growth rate for the equal weighted portfolio) and net impact of
leakage are used as base features. These base features are transformed further by
making use of the tsfresh Python package on the prior six months rolling data. The
tsfresh package uses over 60 time series techniques to transform the base inputs into
almost 800 features. A list of these techniques are provided in Appendix C.

After extracting the features, a basic Random Forest model is built using 100 esti-
mators (trees) and building these to a maximum depth. This model is then fit on
the features extracted, with the objective to classify the next month equal weighted
portfolio performance as outperforming or underperforming the cap weighted port-
folio. This is done using the sklearn package in Python. The purpose of this step is
to filter out some of the features and the bottom 10% of features, ranked by feature
importance (using the Gini index as explained above), are removed.

The final step is to optimize the Random forest model along the parameters number
of estimators (trees) and the maximum depth of the tree (layers of nodes). This is
done using k-fold cross validation by splitting the sample period into three, non-
overlapping, subsamples or folds. Then, for each combination of parameters being
optimized, fit the model on two of the three folds, and hold out the remaining
fold as a pseudo-test set. Each fold is given the opportunity to act as a test set
and an average score or accuracy is taken across all three for each combination of
parameters.

The probability of the equal weighted portfolio underperforming in the next month
is used from this model to set the parameter p in Equation 5.4 to derive weights
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Figure 5.16.: Process for selecting features, optimising model and making prediction at the
end of each month. Target variable is 0: Equal weighted portfolio underper-
forms or 1: Equal weighted portfolio outperforms cap weighted portfolio in
the next month. Probability of target variable being 0 in the next month is
used to derive weights.

for the next month. If this probability is low, then the equal weighted portfolio is
expected to outperform and so p is closer to 0. If the probability is high, then p will
be closer to 1 as the equal weighted portfolio is expected to underperform.

5.3.2 Results

The results for each country are presented in Table 5.9 for the Random Forest
(RF), equal weighted and cap weighted portfolios. These results include 15bps of
transaction costs as before.

Across all the countries, the RF model outperforms the cap weighted portfolio,
especially if the equal weighted portfolio in the respective countries outperform the
cap weighted portfolio. The RF model does, however, do so with lower volatility and
for the countries where the equal weighted portfolio outperforms the cap weighted
portfolio, the RF model portfolio does well to match the cap weighted portfolio. One
example is Australia, where the RF model matches the cap weighted portfolio and
thereby outperforms the equal weighted portfolio.
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Table 5.9.: CAGR and volatility of the Random Forest (RF), equal, and cap weighted
portfolios for a selection of countriesa.

CAGR (%) Volatility (%)
Country Cap Equal RF Cap Equal RF
Australia 11.0 10.0 11.0 16.2 17.3 16.2
Canada 8.6 9.7 9.2 18.1 18.4 18.1
France 4.8 5.5 5.5 23.0 24.0 23.4
Germany 3.5 5.9 5.7 24.0 22.9 22.8
Japan 2.8 8.5 6.3 21.4 19.9 20.3
South Africa 14.6 14.4 14.8 20.1 19.3 19.3
United Kingdom 4.7 7.2 6.3 19.4 19.7 19.4
United States 10.3 12.0 11.2 19.7 20.9 20.1

aPortfolios are rebalanced monthly with 15bps of costs.

Table 5.10 shows the Sharpe ratio for all three portfolios, together with the statistical
test for differences in Sharpe ratios. The test is the same as performed in Section
5.2 and tests the equal weighted and RF model’s Sharpe ratio against that of the
cap weighted portfolio. Across all the countries the RF model portfolio generates a
Sharpe ratio between that of the equal and cap weighted portfolios. That is, better
than the worst of the cap and equal weighted portfolios, but slightly worse than
the best. P-values for the statistical test in differences between Sharpe ratios are
generally still quite high. There are, however, some countries where the p-value is
lower than the average among countries. These countries include Japan and United
Kingdom where blending the equal weighted portfolio weights into the RF model
creates additional alpha over the cap weighted portfolio. Australia also shows a
lower p-value for the Sharpe ratio, where blending equal and cap weights does
seemingly create a somewhat different return profile for the RF model portfolio even
though the equal weighted portfolio does not do well in Australia.

Figure 5.17 presents the performance of the RF model, together with the equal
weighted portfolio, relative to the cap weighted portfolio. In general, the RF model
outperforms the cap weighted portfolio but does lag the equal weighted portfolio in
markets where the equal weighted portfolio does well. In countries such as Australia
and South Africa, where the equal weighted portfolio does poorly relative to the cap
weighted portfolio, the RF model portfolio moderately outperforms the cap weighted
portfolio.

Figure 5.18 shows the optimal p used in Equation 5.4 to generate the weights for
the RF model portfolio in each country. These are not similar across the different
countries but there are some patterns within each country. In the UK for example,
the optimal p is generally below 0.5, with the same pattern occurring in Japan.
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Table 5.10.: Risk adjusted performance of the optimised, equal, and cap weighted portfolios
for a selection of countriesa.

Sharpe ratiob,c

Country Cap Equal RF
Australia 0.502 0.429 0.505 (0.172)
Canada 0.458 0.508 0.488 (0.96)
France 0.278 0.305 0.305 (0.436)
Germany 0.212 0.311 0.304 (0.516)
Japan 0.234 0.506 0.401 (0.176)
South Africa 0.412 0.411 0.431 (0.636)
United Kingdom 0.195 0.315 0.275 (0.192)
United States 0.486 0.545 0.521 (0.652)

aPortfolios are rebalanced monthly with 15bps of costs.
bRespective risk-free rates used in Sharpe ratio calculations.
cP-value for two sided hypothesis test as per Ledoit and Wolf (2008) shown in brackets. The null

hypothesis is that the Sharpe Ratio is equal to that of the cap weighted portfolio.
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Figure 5.17.: Annual cumulative relative performance (log-scale) of equal weighted and
Random Forest (RF) portfolios by country.

Within these countries the equal weighted portfolio has done well and so the model
skewing towards equal weights makes sense.
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In Australia the optimal p is mostly below 0.5 until 2012 where the model switches
to values mostly above 0.5 and towards the cap weights. This coincides with the
period when the Australian equal weighted portfolio underperformed. The US is
also a fairly interesting case, with two distinct periods; pre-2014 when the optimal
p was largely below 0.5, and post-2014 where the optimal p is mostly above 0.5
indicative of the cap weighted portfolio performing well in this latter period. South
Africa shows a stranger pattern, where the optimal p is largely mixed but rising
moderately overall until 2016, that is, skewing towards cap weights, before actually
averaging optimal values below 0.5. Over this former period the RF model, therefore,
underperforms the cap weighted portfolio as the equal weighted portfolio has poor
performance in this period. Performance of the RF model portfolio is, however, still
ahead of the equal weighted portfolio largely due to the increase in the optimal
value in early parts of 2020 and thereby missing most of this underperformance.
The RF model portfolio in SA does, however, skew back towards equal weights in
time to capture most of the recovery post-March 2020.
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Figure 5.18.: Optimal p used to determine weights as per the Random Forest (RF) model
by country. A value closer to 1 results in weights closer to cap weights and a
value closer to 0 results in weights closer to equal weights.
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As mentioned, across countries the optimal values are not very similar and, in fact,
the average rolling 12 month correlation is very small among these optimal values at
3%. There are, however, periods where this correlation spikes such as around 2008
and more recently in early 2020. This could be indicative of shifts in the market
regime and one extension of this work could be to investigate the use of these to
identify turning points in the general market regime.
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Figure 5.19.: Correlations over a rolling 12 month period for the optimal p used to deter-
mine the weights in the Random Forest (RF) model for each country.

5.4 Conclusion

This chapter attempted to use the main components in Equation (3.28), to generate
portfolios that either reduce the relative drawdown of the equal weighted portfolio
or attempt to blend the cap and equal weighted portfolios to achieve improved risk-
adjusted returns. The first section attempted to create as simple a model as possible
by using a rudimentary linear regression and in turn highlight that monitoring the
portfolio generating function, as given by Equation (3.20), the excess growth rate,
and the impact of leakage, Equation (3.27), are important when improving the
short-term performance of the equal weighted portfolio relative to a cap weighted
index. This model largely achieved its aims of reducing relative drawdowns in the US
and SA equal weighted portfolios, but performance was mixed across other countries.
After some optimisation, the model performed reasonably well in countries such as
the US, SA, UK, France, Australia, and Japan. The model generally underperformed
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in countries where the equal weighted portfolio performed very well relative to the
cap weighted portfolio.

The second model aimed at improving performance by creating an optimal blend
of the cap and equal weighted portfolios. In general this model combined the
best of both worlds, generating portfolios which performed in between the cap
and equal weighted portfolios in each market. Therefore, in markets where the
equal weighted portfolio performs very well, this model underperformed the equal
weighted portfolio but outperformed the cap weighted portfolio. The UK and
Japanese equity markets are examples of this. Importantly, in markets where the
equal weighted portfolio struggled, this model outperformed the equal weighted
portfolio with performance not too far from that of the cap weighted portfolio.
Examples include Australian and South African equity markets.

Optimal values in the RF model are generally not correlated across different countries
with a very low average correlation, however there are periods where correlations
spike which might be useful in identifying changes in market regimes.
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Conclusion 6
The equal weighted portfolio has an intuitively appealing portfolio construction
methodology in that it requires no prediction or estimation of any parameters. This
makes it a somewhat unique alternative to the cap weighted portfolio and even
other "risk-aware" portfolios such as the minimum variance portfolio. Risk in the
portfolio tends to be allocated more uniformly (ignoring correlations of course)
across all the constituent stocks as opposed to the cap weighted portfolio which can
sometimes become concentrated in a handful of stocks. This has the intuitive result
of increasing the diversification of the resulting portfolio relative to the cap weighted
portfolio. Although the equal weighted portfolio tends to outperform in many equity
markets over the long-term (see Table 1.1 and Chapter 2) on a risk-adjusted basis,
its performance over the short-term can lead to significant underperformance of the
respective cap weighted index. Furthermore, although most equity markets show
the equal weighted portfolio outperforming, the level of outperformance is very
different across the equity markets.

In order, therefore, to be comfortable in using equal weighted portfolios as alter-
natives to cap weighted approaches in practice, it is important to understand the
drivers of its relative performance over time and across different markets. The
main aim of the thesis, therefore, was to contribute to the existing literature by
broadening the understanding of the equal weighted portfolio relative to the cap
weighted portfolio. This was primarily done for South African and US equities but
also with some insight from a handful of other countries, and, in the process, to
address the research questions set out in Section 1.6.

Chapter 2 focused on the historical performance of the equal weighted portfolio in
the US and SA equity markets, as well as in a selection of other developed equity
markets. In the US markets, the equal weighted portfolio has performed relatively
well against the cap weighted portfolio, however, the case is very different in SA
where the equal weighted portfolio has only just kept up with the cap weighted
portfolio and this has largely been due to the performance since March 2020. Prior
to that, the equal weighted portfolio had been on a long underperformance streak
starting in 2012. Despite this, the performance of the equal weighted portfolio in
SA is highly correlated with that of the US. As one would expect, however, the key
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difference does appear to be in the level of concentration in the cap weights where
SA equities show much higher levels of concentration.

Although the SA and US equal weighted portfolios appear highly correlated, the same
is not true across the selection of countries highlighted in this thesis. Correlations
have largely been low, but have increased substantially since the start of 2020,
although this is still small compared to the correlation between US and SA equal
weighted portfolios. Performance is fairly mixed across the different countries with
seemingly good performance in the Japanese and UK equity markets and particularly
poor performance in the Australian equity market. In fairness, the underperformance
in Australia is largely due to the period 2012 to 2014, and relative performance was
muted thereafter. This is in contrast to the SA market, where underperformance
continued well after 2012.

Chapter 3, provides the basic theoretical understanding for stochastic portfolio
theory with the objective of showing how this framework can be used to analyse the
relative performance of the equal weighted portfolio. Stochastic portfolio theory
looks to understand the various parts of a portfolio’s relative performance against a
cap weighted benchmark or portfolio with a specific focus on functionally generated
portfolios. That is, portfolios that have weights generated by some function of the
cap weights. Stochastic portfolio theory provides a robust theoretical framework for
understanding this relative performance by considering the main drivers, namely,
the level of concentration in cap weights (portfolio generating function), the level
of diversification benefits (the excess growth rate), and the impact of leakage (as
stocks move in and out of the index).

Stochastic portfolio theory and the resulting explanations of relative performance
of functionally generated portfolios allows for an attribution and understanding
of empirical performance, in this case for the equal weighted portfolio. One such
function for generating a portfolio is the geometric mean of the cap weights which is
shown to generate equal weights and using the equations in Chapter 3 allows for a
decomposition of the drivers of relative performance. This framework also confirms
previous research showing that the equal weighted portfolio should outperform
the cap weighted portfolio over the long term. The results in stochastic portfolio
theory show this should be expected as long as the market’s level of concentration
is bounded. Long-term outperformance is generated, in this case, by the positive
effects of diversification.

This empirical analysis and attribution is detailed in Chapter 4. The portfolio
generating function of the S&P500 equal weighted portfolio, while displaying periods
of increasing concentration, appears to be well bounded and this leads to periods
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of both positive and negative contributions which should offset themselves for an
overall net zero contribution as stochastic portfolio theory would predict. This is in
contrast to SA where the portfolio generating function has contributed negatively to
relative performance on a very consistent basis, especially since 2012. In terms of
the benefits of diversification (termed excess growth rate here), in the US, there is a
distinct difference in the contribution from the excess growth rate before and after
2010. Excess growth rates in the S&P500 equal weighted portfolio appear much
higher pre-2010. Excess growth rates do, however, appear to spike during market
turmoil as one might have expected given that volatilities increase and this allows
for a higher impact from diversification.

These two factors, the level of concentration (portfolio generating function) and
the benefits of diversification (excess growth rate) are usually discussed when
analysing the relative performance of the equal weighted portfolio. In the stochastic
portfolio theory framework another factor can also be identified that is usually hard
to quantify or rarely discussed. This is a factor termed leakage in stochastic portfolio
theory and is the result of stocks moving in and out of the benchmark. This usually
affects the equal weighted portfolio negatively as it holds a larger weight in those
lower ranked stocks than the cap weighted portfolio. Therfore, as these stocks
move in and out of the index, the equal weighted portfolio has to churn a larger
portion of the portfolio. Leakage was identified as an important, and in some years
a major, negative contributor to the equal weighted portfolio’s relative performance.
In the S&P500 equal weighted portfolio this contributed -1.8% per annum to the
relative performance of the equal weighted portfolio compared to a much higher
-3.2% for the Top 40. In SA, specifically, leakage has been a major drag on relative
performance with an average contribution of -8.6% per annum since 2011 as the
rotation of stocks in and out of the index in the last ten years has increased.

This approach also allows for an estimate of the increased concentration from various
stocks and their impact on the relative performance of the equal weighted portfolio.
This is done for the technology stocks in the S&P500, with an estimate of 10% to
12% on a rolling five year basis, and for Naspers and Prosus in SA, which appear to
have had a negative impact of between 20% and 25% on the relative performance
of the Top 40 equal weighted portfolio.

This analysis was also applied to a selection of other countries. Most of these
countries experienced high contributions to relative returns for the equal weighted
portfolio from the excess growth rate, with the notable exception of France and
Germany. While in SA the portfolio generating function contributed negatively to
relative returns, for most countries the contribution was relatively small and in some
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countries, the contribution was actually positive (such as in the UK and Germany).
It was noted in Chapter 2 that the Japanese equal weighted portfolio showed the
largest outperformance relative to the cap weighted portfolio. Interestingly, this
outperformance appears to come from a very high excess growth rate and a very
low impact of leakage as the generating function contribution in Japanese equities
is actually the most negative across all the other countries.

An attempt was made in Chapter 5 to use these drivers (excess growth rate, gen-
erating function, and leakage) to build a model to try an improve the relative
performance. Specifically to attempt to reduce the relative drawdowns in the equal
weighted portfolio which can be quite significant. A rudimentary linear regression
model was built that switches between the cap and equal weighted portfolios. This
model largely achieved its aims of reducing relative drawdowns in the US and SA
equal weighted portfolios, but performance was mixed across other countries. After
some optimisation, the model performed reasonably well in countries such as the
US, SA, UK, France, Australia, and Japan.

A second, more complicated, model was also analysed where the aim was to out-
perform the cap weighted portfolio by blending weights across the cap and equal
weight spectrum using the predicted probability of the equal weighted portfolio
outperforming over the following month using a Random Forest model. This model
resulted in combining the best of both worlds, generating portfolios which performed
in between the cap and equal weighted portfolios in each market. Therefore, in
markets where the equal weighted portfolio performs very well, this model underper-
formed the equal weighted portfolio but outperformed the cap weighted portfolio.
The UK and Japanese equity markets are examples of this. In markets where the
equal weighted portfolio struggled (such as Australia and South Africa), this model
outperformed the equal weighted portfolio with performance not too far form that
of the cap weighted portfolio.

There are a few areas of future research that could extend the analysis presented in
this thesis:

• Use of the excess growth rate as a market regime indicator: The excess
growth rates were presented in Chapter 4 for each country. Furthermore, it
appeared as though spikes in the excess growth rates were correlated with
market regime changes, specifically spiking when the euqiyt markets expe-
rienced large declines. Could this be used to identify and pre-empt market
regime changes?
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• Use of models other than Geometric Brownian Motion: The basic stock
price process in Equation (3.1) uses the common Geometric Brownian Motion
model for stocks. It may be of interest to consider other models, such as the
Ornstein-Uhlenbeck model. This could also be of interest in any application to
bond portfolios, or portfolios of other assets.

• Attempting to reduce leakage: Leakage was shown to be a significant com-
ponent of the equal weighted portfolio’s relative return in Chapter 4. Is it
possible to reduce the impact of leakage on the equal weighted portfolio by
systematically reducing the weight of the lowest weighted two or three stocks
in the index?

• Understanding the link between index size (by number of index members)
and performance: In Chapter 4 it was found that Japan had the lowest impact
from leakage and South Africa had the largest. These impacts had a large
effect on the relative performance of the respective equal weighted portfolios.
Is it possible to show this link directly using both different indices in each
market of varying sizes and within a simulated market (using a Monte-Carlo
approach for example)?

• Conditions for which the equal weighted portfolio should outperform:
Is it possible to define a general set of real-world conditions for which to
evaluate whether an equal weighted portfolio in a specific equity market
should perform well (or poorly) relative to the respective cap weighted index?
Given that leakage plays an important role in reducing the expected long-term
outperformance of the equal weighted portfolio, it would likely be beneficial
to thoroughly understand leakage in different market environments to address
this question.

• Optimal capped weights: Some index providers have used "capped" weights
as a way of limiting the concentration of weights in the cap weighted port-
folio/index. These "caps" are usually arbitrarily selected at levels such as
10%, for example, and any weights above this level are redistributed to the
remaining stocks. This is repeated until all stocks have a weight lower than, or
equal to, the "cap" weight. Is it possible to use the stochastic portfolio theory
framework to set an optimal level for these caps?

• Optimal rebalancing for the equal weighted portfolio: In this thesis re-
balancing was performed each month. The rebalancing frequency itself can,
however, have a large impact on portfolio performance. Is it possible, there-
fore, to determine optimal times to rebalance based on levels of diversification
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(the excess growth rate) and movements in the portfolio generating function
(increasing or decreasing concentration)?

• Analysing smart beta portfolios: Could the same empirical analysis be per-
formed on some smart beta portfolios? This would be of particular interest in
the case of "value"-based smart beta portfolios and their underperformance
over recent years. As long as the portfolio can be generated using the expres-
sions in Theorem A.2.1, stochastic portfolio theory should be able to provide a
framework for this analysis.

• Using inputs from other countries in models: In Chapter 5, the models were
fit using only data from within the specific country in question. In Chapter 4,
however, there was some indication of correlations between the excess growth
rates in each country. Could this be used to improve the models in Chapter 5?

• Modelling the portfolio generating function: Is it possible to model and
predict the equal weighted portfolio’s portfolio generating function directly?
This would likely involve modelling the ranked stock weights directly. That
is, modelling the weight of position i in an index (for example, the weight of
position 10 in the index) rather than on a specific stock basis. Achieving this
would likely go a long way to improving the models in Chapter 5.
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Stochastic portfolio theory A
In this appendix a more formal introduction to stochastic portfolio theory than
Chapter 3 is provided. The first section describes the stock price process and the
portfolio price process. The second section describes portfolio generating functions
before deriving the portfolio generating function and drift process for the equal
weighted portfolio.

A.1 Portfolio price process

Definition A.1.1. The price process of a stock X is given by

dX(t)
X(t) = α(t)dt + σ(t)dW (t), t ∈ [0, ∞), (A.1)

where α(t) and σ(t) are the stock’s arithmetic rate of return and volatility, respec-
tively. dW (t) is a Brownian motion.

Using Itô’s lemma on the function F (t) = logX(t) results in the popular logarithmic
model for the continuous-time stock price processes:

dlogX(t) = γ(t)dt + σ(t)dW (t), (A.2)

where σ(t) and dW (t) are defined as before and γ(t) is defined as:

γ(t) = α(t) − 1
2σ2(t). (A.3)

For completeness we present the following definition of the stock price process X(t)
along the lines of the same definition in Fernholz (2002).

Definition A.1.2. A stock price process X is a process that satisfies the stochastic
differential equation

dlogX(t) = γ(t)dt + σ(t)dW (t), t ∈ [0, ∞),
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where W (t) is a Brownian motion, γ is measurable, adapted and satisfies
∫ T

0 |γ(t)| dt < ∞,
for all T ∈ [o, ∞), a.s. Furthermore, the σ(t) is measurable, adapted and satisfies:

1.
∫ T

0 σ2(t)dt < ∞, T ∈ [0, ∞), a.s.,

2. limt→∞ t−1σ2(t)log logt = 0, a.s,

3. σ2(t) > 0, t ∈ [0, ∞), a.s..

Consider a market M of a family of stocks X1, ..., Xn, each defined by Equation
(A.2). A portfolio in the market M is a measurable, adapted vector-valued process
π, with π(t) = (π1(t), ..., πn(t)), for t ∈ [0, ∞) and

n∑
i=1

πi(t) = 1, t ∈ [0, ∞).

We say a market is non-degenerate if there exists a number ϵ1 > 0 such that,

xσ(t)xT ≥ ϵ1∥x∥2, x ∈ ℜn, t ∈ [0, ∞). (A.4)

That is, a market is non-degenerate if the variance of the market portfolio is bounded
away from zero.

Furthermore, if there exists a number ϵ2 > 0 such that,

xσ(t)xT ≤ ϵ2∥x∥2, x ∈ ℜn, t ∈ [0, ∞), (A.5)

we say the market M has bounded variance.

Simply put, we have a market M , which has n stocks. A valid portfolio within this
market is any combination of the stocks in M such that the weights, πi(t), sum to
one.

The process πi(t) therefore represents the proportion of capital invested in the i-th
stock. Now, let Zπ(t) represent the value of some portfolio with weights π at time t.
Obviously, the amount invested in stock Xi is given by,

πi(t)Zπ(t).
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Therefore, if the price Xi changes by dXi(t) then the change in the portfolio value
Zπ(t) is given by

πi(t)Zπ(t)dXi(t)
Xi(t)

.

and the total change in the portfolio can therefore be expressed by,

dZπ(t)
Zπ(t) =

n∑
i=1

πi(t)
dXi(t)
Xi(t)

. (A.6)

The instantaneous rate of change for the portfolio, Zπ(t), is therefore the weighted
sum of instantaneous changes of the stocks in the portfolio.

Let the covariance processes for logXi and logXj be given by σij(t) such that,

σij(t)dt = d ⟨logXi, logXj⟩t , t ∈ [0, ∞). (A.7)

For i = 1, ..., n, the process σii(t) = ⟨logXi⟩ is called the covariance process of Xi.

We can now use Equation (A.6) to derive a price process for the portfolio Zπ(t) in
differential form. To do this we set out the following proposition as in Fernholz
(1999a).

Proposition A.1.1. Let π be a portfolio and let,

dlogZπ(t) = γπ(t)dt +
n∑

i=1
πi(t)σi(t)dWi(t), (A.8)

where

γπ(t) =
n∑

i=1
πi(t)γi(t) + 1

2

 n∑
i=1

πi(t)σii(t) −
n∑

i,j=1
πi(t)πj(t)σij(t)

 . (A.9)

Then, for any initial value Zπ(0) > 0, (A.8) can be integrated directly to obtain

Zπ(t) = Zπ(0)exp

(∫ t

0
γπ(s)ds +

∫ t

0

n∑
i=1

πi(s)σi(t)dWi(s)
)

, (A.10)
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as a solution of (A.6), for t ∈ [0, ∞).

Proof. To prove this proposition we will begin with Equation (A.10) and prove it,
and therefore (A.8), are equivalent to Equation (A.6).

It follows from (A.10) that

dlogZπ(t) = γπ(t)dt +
n∑

i=1
πi(t)σi(t)dWi(t).

We apply Itô’s Lemma to Zπ = exp (logZπ(t)) to obtain

dZπ(t) = Zπ(t)dlogZπ(t) + 1
2d ⟨logZπ⟩t ,

and therefore, by substituting in dlogZπ(t),

dZπ(t)
Zπ(t) = γπ(t)dt + +

n∑
i=1

πi(t)σi(t)dWi(t) + 1
2Zπ(t)d ⟨logZπ⟩t ,

where d ⟨logZπ⟩t is the covariance process of dlogZπ. Since Zπ(t) is a portfolio of
stocks and given the definition of the covariance process before, we have

d ⟨logZπ⟩t =
n∑

i,j=1
πi(t)πj(t)d ⟨logXi, logXj⟩t =

n∑
i,j=1

πi(t)πj(t)σij(t)dt.

Now by definition we have

γπ(t) =
n∑

i=1
πi(t)γi(t) + 1

2

 n∑
i=1

πi(t)σii(t) −
n∑

i,j=1
πi(t)πj(t)σij(t)

 ,

and therefore,

dZπ(t)
Zπ

=
n∑

i=1
πi(t)γi(t)dt + 1

2

n∑
i=1

πi(t)σii(t)dt +
n∑

i=1
πi(t)σi(t)dWi(t).

Furthermore, by Equation (A.2) we have,

dXi(t) =
(

γi(t) + 1
2σii(t)

)
Xi(t)dt + Xi(t)σi(t)dWi(t), for t ∈ [0, ∞).
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This implies that,
dZπ(t)
Zπ(t) =

n∑
i=1

πi(t)
dXi(t)
Xi(t)

.

A.2 Portfolio generating functions

In this section we now focus on portfolio generating functions, that is, functions
that systematically generate portfolio weights. Furthermore, within the context of
stochastic portfolio theory we are able to analyse the behaviour of these functions
and the portfolio’s they generate. In particular we will focus on the implications of
portfolio generating functions which rely on some measure of stock market diversity,
given the importance of diversity as presented in the previous sections.

We begin with a general definition of a portfolio generating function S(x) following
along the lines of Fernholz (2002).

Definition A.2.1. Let S be a continuous function defined on ∆n and let π be a
portfolio. Then S generates π if there exists a measurable process of bounded
variation Θ such that,

log (Zπ/Zµ) = logS(µ(t)) + Θ(t), t ∈ [0, T ]. (A.11)

Where ∆n is the set given by,

{x ∈ ℜn : x1 + ... + xn = 1, 0 < xi < 1, i = 1, ..., n} . (A.12)

The function S in Definition A.11 is called the generating function of π, while Θ
is called the drift process of S. We can also express Equation A.11 in differential
form,

dlog (Zπ/Zµ) = dlogS(µ(t)) + dΘ(t), t ∈ [0, T ]. (A.13)

It is important to notice from (A.13) that S operates in a relative space, in this case
relative to the market portfolio µ. Furthermore, it is not unreasonable to assume
that the portfolio generating function S is bounded on ∆n. This implies that the
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long-term relative performance of the portfolio π generated by S is determined
by the behaviour of Θ(t). In particular, if Θ(t) is increasing the portfolio π will
outperform the market portfolio in the long-run.

Equation (A.13) excludes the impact of dividends. However, if we consider the
definition of the portfolio process including a continuous dividend rate δπ in Equation
(??), (A.13) becomes

dlog
(
Ẑπ/Ẑµ

)
= dlogS(µ(t))+

∫ t

0
(δπ(s) − δµ(s)) ds+dΘ(t), t ∈ [0, T ]. (A.14)

Therefore, including dividends, a functionally generated portfolio’s performance
relative to the market portfolio is dependent on the generating function, drift process
and the difference in dividend rates.

Before continuing, we first consider the relative performance of an individual stock,
Xi versus a portfolio Zη. We define the relative return process of Xi versus Zη as,

log(Xi(t)/Zη(t)), t ∈ [0, ∞). (A.15)

Then the cross-variation (covariance) process for the relative return process for
stocks Xi and Xj is given by,

⟨log(Xi/Zη), log(Xj/Zη)⟩t = ⟨log(Xi), log(Xj)⟩t − ⟨log(Xi), log(Zη)⟩t

− ⟨log(Xi), log(Zη)⟩t + ⟨logZη⟩t . (A.16)

We define τη
ij(t) as the relative covariance process for stocks Xi and Xj as in (A.16)

with

τη(t) =
(
τη

ij(t)
)

1≤i,j≥n
,

the relative covariance process τη(t) in matrix form.

Furthermore, we define the process σiη(t) as,

σiη(t) =
n∑

j=1
ηj(t)σij(t), t ∈ [0, ∞),
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and we therefore have that,

d ⟨log(Xi), log(Zη)⟩t = σiη(t)dt.

Now we can write Equation (A.16) as,

τη
ij(t) = σij(t) − σiη(t) − σjη(t) + σηη(t), t ∈ [0, ∞), (A.17)

for i, j = 1, ..., n with σηη(t) as the variance process of the portfolio η and there-
fore,

σηη(t) = η(t)σ(t)ηT (t), t ∈ [0, ∞). (A.18)

Then for all i and j we have,

d ⟨log(Xi/Zη), log(Xj/Zη)⟩t = τη
ij(t)dt, t ∈ [0, ∞). (A.19)

Equation (A.17) is the relative variance process of two stocks, Xi and Xj , both
relative to the portfolio with weights η(t).

We now extend this to consider the relative covariance process of a portfolio π(t)
versus a portfolio η(t). Consider first that we have the variance process of a portfolio
π(t), which is given by,

σππ(t) = π(t)σ(t)πT (t), t ∈ [0, ∞). (A.20)

Therefore, to get the relative variance of portfolio π(t) versus portfolio η(t) we can
substitute in the relative covariance of each stock i relative to the portfolio η(t). That
is instead of using σ(t), we use τη(t) and we therefore have,

τη
ππ(t) = π(t)τη(t)πT (t). (A.21)

Furthermore,

π(t)τη(t)πT (t) = (π(t) − η(t)) σ(t) (π(t) − η(t))T = η(t)τπ(t)ηT (t). (A.22)
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This implies that,

τη
ππ = τπ

ηη.

Therefore if σ(t) is singular then, the relative variance process of two portfolios is
zero if and only if the two portfolios are equal.

Given the portfolio generating function S, we require firstly the resulting weights
and secondly the drift process Θ(t) to determine the relative performance of the
generated performance. The following theorem characterises these components and
is reproduced from Fernholz (1999b) and Fernholz (2002).

Theorem A.2.1. Let S be a positive C2 function defined on a neighbourhood U of
∆n such that for i = 1, ..., n, xiDi logS(x) is bounded on ∆n. Then S generates the
portfolio π with weights

πi(t) =

DilogS(µ(t)) + 1 −
n∑

j=1
µj(t)Dj logS(µ(t))

µi(t), t ∈ [0, ∞), (A.23)

for i = 1, ..., n, and drift process

dΘ(t) = −1
2S(µ(t))

n∑
i,j=1

DijS(µ(t))µi(t)µj(t)τij(t)dt, t ∈ [0, ∞). (A.24)

Proof. Recall that the weight process µi(t) is given by Xi(t)/Zµ(t), and therefore we
can represent the relative covariance process τij(t) as given in Equation (A.19) as,

d ⟨logµi, logµj⟩t = τij(t)dt, t ∈ [0, ∞).

Now, applying Itô’s Lemma to µi(t) = exp (logµi(t)) we have,

dµi(t) = µi(t)dlogµi(t) + 1
2µi(t)τii(t)dt. (A.25)

and

d ⟨µi, µj⟩t = µi(t)µj(t)τijdt, t ∈ [0, ∞). (A.26)
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Furthermore, if we apply Itô’s Lemma to S and using (A.26), we get,

dlogS(µ(t)) =
n∑

i=1
DilogS(µ(t))dµi(t) + 1

2

n∑
i,j=1

Dij logS(µ(t))µi(t)µj(t)τij(t)dt.

Now,

Dij logS(µ(t)) = DijS(µ(t))
S(µ(t)) − DilogS(µ(t))Dj logS(µ(t)),

so,

dlogS(µ(t)) =
n∑

i=1
DilogS(µ(t))dµi(t)

+ 1
2S(µ(t))

n∑
i,j=1

DijS(µ(t))µi(t)µj(t)τij(t)dt

−1
2

n∑
i,j=1

DiS(µ(t))DjS(µ(t))µi(t)µj(t)τij(t)dt. (A.27)

For (A.13) to hold, the martingale components of logS(µ(t)) and log (Zπ/Zµ) must
be equal. Equation (3.7) implies that,

dlog (Zπ(t)/Zµ(t)) =
n∑

i=1
πi(t)dlog (Xi(t)/Zµ(t)) + γ∗

π(t)dt

=
n∑

i=1
πi(t)dlogµi(t) + γ∗

π(t)dt

=
n∑

i=1

πi(t)
µi(t)

dµi(t) − 1
2

n∑
i,j=1

πi(t)πj(t)τij(t)dt, (A.28)

by Equation (3.6), Equation (A.17) and the fact that τ
µ(t)
ππ = π(t)τµ(t)πT (t) as shown

in Equation (A.21).
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Now suppose that
πi(t) = (DilogS(µ(t)) + φ(t)) µi(t), (A.29)

where φ(t) is chosen such that
∑n

i=1 πi(t) = 1. Then,

n∑
i=1

πi(t)
µi(t)

dµi(t) =
∑n

i=1 DilogS(µ(t))dµi(t) + φ(t)
∑n

i=1 dµi(t)

=
∑n

i=1 DilogS(µ(t))dµi(t), (A.30)

since
∑n

i=1 dµi(t) = 0. Hence the martingale components logS(µ(t)) and log (Zπ/Zµ),
that is in Equations (A.2) and (A.28), respectively are equal.

Furthermore, if we choose φ(t) such that,

φ(t) = 1 −
n∑

i=1
µj(t)Dj logS(µ(t)),

∑n
i=1 πi(t) = 1 is satisfied. Therefore (A.23) is proved and

πi(t) =

DilogS(µ(t)) + 1 −
n∑

j=1
µj(t)Dj logS(µ(t))

µi(t), t ∈ [0, ∞).

If πi(t) satisfies (A.29) then,

n∑
i,j=1

πi(t)πj(t)τij(t) =
n∑

i,j=1
DilogS(µ(t))Dj logS(µ(t))µi(t)µj(t)τij(t)

+2φ(t)
n∑

i,j=1
DilogS(µ(t))µi(t)µj(t)τij(t)

+φ2(t)
n∑

i,j=1
µi(t)µj(t)τij(t)

=
n∑

i,j=1
DilogS(µ(t))Dj logS(µ(t))µi(t)µj(t)τij(t),

since µ(t) is in the null space of τ(t) by Equation (A.22). Hence,

dlog (Zπ/Zµ) =
n∑

i=1
DilogS(µ(t))dµi(t)−

1
2

n∑
i,j=1

DilogS(µ(t))Dj logS(µ(t))µi(t)µj(t)τij(t)dt.
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This equation and (A.2) imply that,

dlog (Zπ/Zµ) = dlogS(µ(t)) − 1
2S(µ(t))

n∑
i,j=1

DijS(µ(t))µi(t)µj(t)τij(t).

Comparing this to Equation (A.13) we see that,

dΘ(t) = −1
2S(µ(t))

n∑
i,j=1

DijS(µ(t))µi(t)µj(t)τij(t), t ∈ [0, ∞),

and therefore, (A.24) is proved.

Theorem A.2.1 allows us to characterise the drift process which, for a given gen-
erating function, allows us to determine long-term behaviour for a corresponding
portfolio relative to the market portfolio.

A.3 Portfolio generating function for the equal weighted
portfolio

Section 3.4 provided an intuitive explanation of the portfolio generating function
and drift process for the equal weighted portfolio. Here, however, we use the
expressions in Theorem A.2.1 to confirm that the geometric mean of cap weights
generates the equal weighted portfolio and its drift process is the excess growth
rate.

Consider first the expression DilogS(µ(t)) which appears in Equation (A.23).

DilogS(µ(t)) = Di

(
1
n

log
n∏

k=1
µk(t)

)

= 1
n

Di

(
n∑

k=1
logµk(t)

)

= 1
nµi(t)

. (A.31)
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If we substitute the expression in (A.31) into Equation (A.23) then,

πi(t) =

 1
nµi(t)

+ 1 −
n∑

j=1
µj(t) 1

nµj(t)

µi(t)

=
( 1

nµi(t)
+ 1 − n

n

)
µi(t)

=
( 1

nµi(t)

)
µi(t)

= 1
n

.

(A.32)

A.4 Drift process for the equal weighted portfolio

In a similar manner, the drift process for the equal weighted portfolio can be derived
using Equation (A.24) in Theorem A.2.1. Firstly DijS(µ(t)) is evaluated before
completing the expression in Equation (A.24). In the derivations below, the time
subscript t is dropped for simplicity. Therefore, µi implies the expression µi(t) for
example.

DiS(µ) = Di

(
µ

1/n
1 · · · µ1/n

n

)
= 1

n
µ

1/n
1 · · · µ

1/n
i−1 · µ

1/n
i · µ−1

i · µ
1/n
i+1 · · · µ1/n

n

= 1
n

1
µi

S(µ).

Similarly then,

DijS(µ) = 1
n

1
n

1
µi

1
µj

S(µ). (A.33)

Substituting Equation (A.33) into Equation (A.24),

dΘ(t) = −1
2S(µ)

n∑
i,j=1

1
n

1
n

1
µi

1
µj

S(µ)µiµjτijdt

= −1
2

n∑
i,j=1

1
n

1
n

τijdt.
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The expression 1
n is an equal weight which is represented here as πi and this can,

therefore be rewritten as,

dΘ(t) = −1
2

n∑
i,j=1

πiπjτijdt

= γ∗
π(t)dt

as a result of Equation (3.6), Equation (A.17) and the fact that τ
µ(t)
ππ = π(t)τµ(t)πT (t)

as shown in Equation (A.21).

A.4 Drift process for the equal weighted portfolio 117



This page has been intentionally left blank



Code extracts B
B.1 Setting up the main portfolio class

At a high level each portfolio, whether cap weighted, equal weighted or optimised,
can be generated using the parameter p from Equation (5.4). Other portfolios can
also be generated easily in the code by modifying the trade object (discussed later).
As such, many of the portfolios share the same need to calculate metrics such as
the covariance matrix or the portfolio generating function. The main starting point,
therefore, is a class called portfolio. This class defines a portfolio, the portfolio type,
holds all the necessary data and the output generated.

Listing B.1 shows the initialisation of this class which involves setting up the param-
eters and building empty Pandas dataframes to hold the output as the simulation is
performed.

1 import pandas as pd
2 import numpy as np
3 from dateutil.relativedelta import relativedelta
4

5 from trade import tradeObject
6 from return_metrics import returns
7 import metric_functions as mfunc
8 from generating_functions import genFunc
9

10

11

12 class portfolio:
13 """
14 Provides interface to simulate and track portfolio performance
15 """
16

17 def __init__(self, stk_data, members, rfr, start_cash=10e6, wgt_method=’equal
’,

18 rebal_period=’monthly’, trade_cost=0, calc_metrics=False, dwp_p
=0.01, cov_lag=60,

19 verbose=False):
20 """
21 @Input:
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22 stk_data: dict with at least PX_LAST, MARKET_CAP and ADJ_PX
dataframes. Each dataframe has dates on rows and stocks on columns

23 members: dataframe with members of index on each date
24 rfr: one column dataframe with risk free rate
25 start_cash: starting cash value of portfolio
26 wgt_method: weighting method- ’equal’, ’mcap’, or ’dwp’ (dwp allows

for a blend of cap and equal)
27 rebal_period: frequency of rebalance - ’weekly’, ’monthly’, ’

quarterly’, ’annually’
28 calc_metrics: should we calculate things like excess growth rate?
29 dwp_p: the p paramter to use which allows for blended portfolio
30 cov_lag: lag of covariance matrix calculation
31 verbose: print statements while processing?
32 """
33

34 self.stk_data = stk_data
35 self.rebal_period = rebal_period
36 self.wgt_method = wgt_method
37 self.calc_metrics = calc_metrics
38 self.members = members
39 self.trade_cost = trade_cost
40 self.verbose = verbose
41

42 # initialize some dfs
43 self.__initialize(start_cash)
44

45 # initialize trade object
46 self.tobj = tradeObject()
47

48 # connect a returns object to this portfolio object
49 self.returns = returns(self, rfr)
50

51 # connect a generating function class
52 self.dwp_p = dwp_p
53 self.genfunc = genFunc(wgt_method, port_obj=self)
54

55 self.stk_cov = None
56 self.cov_lag = cov_lag
57

58

59 def __initialize(self, starting_cash):
60 """
61 Initialize some dfs
62 """
63

64 self.portfolio = pd.DataFrame(0, index = self.stk_data[’PX_LAST’].index,
columns=[’Stocks’, ’Cash’, ’Total’])

65
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66 # initialize portfolio cash balance
67 self.portfolio.loc[self.portfolio.index[0], ’Cash’] = starting_cash
68 self.portfolio.loc[self.portfolio.index[0], ’Total’] = starting_cash
69

70 # df for dividends
71 self.divs = pd.DataFrame(0, index=self.stk_data[’PX_LAST’].index, columns

=[’DIV_CASH’])
72

73 # df for transaction costs
74 self.trans_cost = pd.DataFrame(0, index=self.stk_data[’PX_LAST’].index,

columns=[’TRANS_COST’])
75

76 # dfs for positions and to hold any required trades
77 self.positions = pd.DataFrame(0, index=self.stk_data[’PX_LAST’].index,

columns=self.stk_data[’PX_LAST’].columns)
78 self.req_trades = pd.DataFrame()
79

80 # save target weights
81 self.target_weights = pd.DataFrame(0, index=self.stk_data[’PX_LAST’].

index, columns=self.stk_data[’PX_LAST’].columns)
82

83 # save excess growth rate and portfolio generating function
84 self.eg = pd.DataFrame(columns=[’PORT-EG’, ’EW-EG’, ’AVG-VOL’, ’AVG-CORR’

])
85 self.gen_func = pd.DataFrame(columns=[’GEN-FUNC’])
86 self.optimal_p = pd.DataFrame(columns=[’OPTIMAL-P’])
87

88 # for ranked weights
89 self.mc_weights = pd.DataFrame(np.nan, index=self.stk_data[’PX_LAST’].

index, columns=self.stk_data[’PX_LAST’].columns)
90 self.mc_ranks = pd.DataFrame(np.nan, index=self.stk_data[’PX_LAST’].index

, columns=self.stk_data[’PX_LAST’].columns)
91

92 # storing mc weights by rank
93 self.rank_mcw = pd.DataFrame(np.nan, index=self.stk_data[’PX_LAST’].index

, columns=range(len(self.stk_data[’PX_LAST’].columns)))
94

95 # storing leakage
96 self.leak = pd.DataFrame(columns=[’LEAK’])
97 self.idx_chg = pd.DataFrame(columns=[’CHANGE’])

Listing B.1: Initialisation of portfolio simluation
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B.2 Performing the simulation

Once everything is set up we can start the simulation. The simulation is performed
by stepping one day at a time through the raw stock data (see Listing B.2).

1

2 def simulateAll(self):
3 """
4 Perform entire simulation
5 """
6 if self.verbose:
7 print(’Starting simulation...’)
8 print(’-------------------------’)
9

10

11 N = len(self.stk_data[’PX_LAST’])
12 for row in range(1, N): # simulation starts at 1 not 0
13 self.performSimulationStep(row)
14

15 if self.verbose:
16 print(self.stk_data[’PX_LAST’].index[row])
17

18 self.returns.updateReturns()

Listing B.2: Portfolio simulation loop

The following list shows the necessary steps for each day. Each of these steps is, at a
high level at least, contained in Listing B.3.

1. Execute any trades from the previous day We assume the necessary trades
are identified at the close of each day and the trades themselves are executed
at the close of the following day.

2. Value the portfolio Valuation of the portfolio is done at the close of each day
(after trades for the day are executed).

3. Calculate all the metrics we need This will be metrics such as the excess
growth rate, the portfolio generating function, leakage estimation, and the
ranked weights (weight for each ranked position).

4. Determine if we need to rebalance the portfolio If we do need to rebalance
the portfolio, then we need to work out trades that need to be done the next
day.

Once the full simulation is complete, we calculate the necessary return and risk-
adjusted return metrics.
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1 def performSimulationStep(self, row):
2 """
3 Performs simulation for one time period
4 """
5

6 #--------------------------------------------------------
7 # carry over positions and portfolio value
8 prev_pos = self.positions.iloc[(row-1)]
9 self.positions.iloc[row] = prev_pos

10

11 prev_port = self.portfolio.iloc[row-1]
12 self.portfolio.iloc[row] = prev_port
13

14 #--------------------------------------------------------
15 # execute any trades, essentially done at previous day’s close
16 if len(self.req_trades) > 0:
17

18 if self.verbose:
19 print("Executing trades")
20

21 c_pos = self.positions.iloc[row]
22 hist_px = self.stk_data[’PX_LAST’].iloc[:row+1]
23

24

25 port_cash, pos, self.req_trades, trans_cost = self.tobj.executeTrades(
c_pos, self.req_trades,

26 self.portfolio[’Cash
’].iloc[row], hist_px,

27 self.trade_cost)
28 if np.isnan(port_cash):
29 raise ValueError("Cash is NaN after trade execution")
30

31 # adjust portfolio
32 self.positions.iloc[row] = 0
33 self.positions.update(pd.DataFrame(pos).T)
34 self.portfolio[’Cash’].iloc[row] = port_cash
35

36 # save transaction costs
37 self.trans_cost.iloc[row][’TRANS_COST’] = trans_cost
38

39

40 #--------------------------------------------------------
41 # value the portfolio with new holdings
42 port_cash, port_divs, port_stk, del_pos = self.__valuePortfolio(self.

positions.iloc[row], self.stk_data[’PX_LAST’].iloc[:(row+1)],
43 self.stk_data[’ADJ_PX’].

iloc[:(row+1)])
44 if np.isnan(port_cash):
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45 raise ValueError("Cash is NaN after valuation")
46

47 # remove any delistings from positiosn -- would have been added to cash in
valuePortfolio method

48 for d in del_pos:
49 self.positions[d].iloc[row] = 0
50

51 # adjust cash and stock value
52 self.portfolio[’Cash’].iloc[row] += port_cash
53 self.portfolio[’Stocks’].iloc[row] = port_stk
54 self.portfolio[’Total’].iloc[row] = self.portfolio[’Cash’].iloc[row] + self.

portfolio[’Stocks’].iloc[row]
55

56 # add dividends
57 self.divs[’DIV_CASH’].iloc[row] = port_divs
58

59 # -----------------------------------------------------
60 # work out excess growth rate
61 current_date = self.stk_data[’PX_LAST’].index[row]
62 prev_date = self.stk_data[’PX_LAST’].index[row-1]
63 current_members = self.__getMembers(current_date)
64

65 # -------------------------------------------
66 # Calculate ranked weights
67 hist_mkt_cap = self.stk_data[’MARKET_CAP’].iloc[:row]
68 self.__calcRankedWeights(hist_mkt_cap, current_members, current_date)
69

70 if self.calc_metrics and (current_date.month != prev_date.month):
71

72

73 c_pos = self.positions.iloc[row]
74 hist_data = self.stk_data[’ADJ_PX’].iloc[:row]
75 hist_px = self.stk_data[’PX_LAST’].iloc[:row]
76

77 # calculate covariance matrix
78 self.__calcCovar(row, c_pos, hist_data, hist_px, lag=self.cov_lag)
79

80 # excess growth rate
81 eg, eg_ew, avg_vol, avg_corr = self.__calcMetrics(row, c_pos, hist_data,

hist_px, lag=self.cov_lag)
82 self.eg = self.eg.append(pd.DataFrame(np.asarray([eg, eg_ew, avg_vol,

avg_corr]).reshape(1,4),
83 index=[self.stk_data[’PX_LAST’].

index[row]],
84 columns=[’PORT-EG’, ’EW-EG’, ’AVG-

VOL’, ’AVG-CORR’]))
85

86 # -------------------------------------------
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87 # Calculate portfolio generating function
88 port_gen_func = self.__calcPortGenFunc(hist_mkt_cap, current_members,

current_date)
89 self.gen_func = self.gen_func.append(pd.DataFrame(np.asarray([

port_gen_func]),
90 index=[self.stk_data[’PX_LAST’].index[row

]],
91 columns=[’GEN-FUNC’]))
92

93

94 # get leakage
95 if len(self.gen_func.index) >= 2:
96 prev_date = self.gen_func.index[-2]
97 prev_memb = self.__getMembers(prev_date)
98 old_port_gen_t = self.__calcPortGenFunc(hist_mkt_cap, prev_memb,

prev_date, save=False)
99 old_port_gen_0 = self.__calcPortGenFunc(hist_mkt_cap.loc[hist_mkt_cap.

index<=prev_date], prev_memb, prev_date, save=False)
100

101 new_port_gen_0 = self.__calcPortGenFunc(hist_mkt_cap.loc[hist_mkt_cap.
index<=prev_date], current_members, current_date, save=False)

102

103

104 leak = (old_port_gen_0-old_port_gen_t) - (new_port_gen_0-
port_gen_func)

105 self.leak = self.leak.append(pd.DataFrame(np.asarray([leak]),
106 index=[self.stk_data[’PX_LAST’].index[row]],
107 columns=[’LEAK’]))
108

109 # save changes in number of members
110 chg = len(set(prev_memb).symmetric_difference(set(current_members)))

/2
111 self.idx_chg = self.idx_chg.append(pd.DataFrame(np.asarray([chg]),
112 index=[self.stk_data[’PX_LAST’].index[row]],
113 columns=[’CHANGE’]))
114

115

116 #--------------------------------------------------------
117 # check if we need to rebalance
118 rebal = self.__needRebalance(row)
119

120 #--------------------------------------------------------
121 # work out trades if we need to rebalance
122

123 if rebal:
124

125

126 if self.verbose:
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127 print("Rebalancing")
128

129 # need to rebalance so get members
130 active_date = self.stk_data[’PX_LAST’].index[row]
131 index_memb = self.__getMembers(active_date)
132

133 weight_metric = self.stk_data[’MARKET_CAP’].iloc[row]
134

135 # determine required trades
136 c_pos = self.positions.iloc[row]
137 self.req_trades, t_wgt = self.tobj.detPortfolioTrades(index_memb, c_pos,
138 self.portfolio[’Total’].iloc

[row],
139 self.stk_data[’PX_LAST’].

iloc[row],
140 method=self.wgt_method,
141 weight_metric=weight_metric,
142 dwp_p=self.dwp_p,
143 reduce_leakage_stocks=self.

reduce_leakage_stocks,
144 cov_mat = self.stk_cov,

prev_w = self.prev_w)
145

146 # save target weights
147 t_wgt = pd.DataFrame(t_wgt).T
148 t_wgt.index = [c_pos.name]
149 self.target_weights.update(t_wgt)
150 self.prev_w = t_wgt

Listing B.3: Portfolio simulation

Listing B.4 shows the functions that calculate the excess growth rate and stores the
ranked weights for each position in the index. The covariance matrix is simply the
EWMA covariance calculated using the Pandas EWM function (not shown in the
listing).

1

2

3 def __calcMetrics(self, row, current_positions, hist_data, hist_px, lag=3*260):
4 """
5 Function to calculate various metrics such as excess growth rate, etc
6 """
7

8 if row <= lag+1:
9 return np.nan, np.nan, np.nan, np.nan

10

11

12 port_members = current_positions[current_positions>0].index
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13

14 # ----------------------------------------------------------
15 # get returns -- select lag+1 since first pct_change will be NA and be

dropped
16 stk_rets = hist_data.iloc[(-lag-2):][port_members].pct_change()
17

18 # drop any na columns
19 stk_rets.dropna(axis=0, how=’all’, inplace=True)
20 stk_rets.dropna(axis=1, how=’any’, inplace=True)
21

22 # anything over +-50% in one day becomes zero
23 stk_rets[abs(stk_rets) >= 0.5] = 0
24

25 # drop columns where more than half of returns are zero
26 prop_zero = stk_rets.apply(lambda x: len(x[x==0])/len(x), axis=0)
27 prop_zero = prop_zero[prop_zero <= 0.5]
28 stk_rets = stk_rets[prop_zero.index]
29

30 N = len(stk_rets.columns)
31

32 # ----------------------------------------------------------
33 # work out current weights
34 pos_val = current_positions[port_members]*hist_data.iloc[-1][port_members

]/100
35 port_wgts = pos_val/pos_val.sum()
36

37

38 # work out equal weight excess growth rate
39 wgts = np.ones((1,N))/N
40 X1 = np.dot(self.vol.T,wgts.T)
41 X2 = np.dot(np.dot(wgts,self.stk_cov),wgts.T)
42 ew_eg = 0.5*(X1-X2)
43

44

45 # convert to np array
46 port_wgts = port_wgts[stk_rets.columns] # some columns may have been dropped
47 port_wgts = port_wgts.values.reshape(1,-1)
48

49 # some portfolio weights may be NaN if delisted for example
50 port_wgts[np.isnan(port_wgts)] = 0
51 port_wgts = port_wgts/port_wgts.sum()
52

53 X1 = np.dot(self.vol.T,port_wgts.T)
54 X2 = np.dot(np.dot(port_wgts,self.stk_cov),port_wgts.T)
55 port_eg = 0.5*(X1-X2)
56

57 # work out average volatility and correlations
58 avg_vol = self.vol.mean()
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59

60 stk_corr = mfunc.calcCorr(stk_rets, lag=lag)
61 triu_corr = np.triu(stk_corr,1) # take only one diagonal
62 triu_corr[triu_corr==0] = np.nan # set zeros to nan
63 avg_corr = np.nanmean(triu_corr) # ave ignoring nan
64

65 return port_eg[0][0], ew_eg[0][0], avg_vol, avg_corr
66

67

68 def __calcRankedWeights(self, mkt_data, current_members, current_date):
69

70

71 # work out market cap weights
72 mkt_cap = mkt_data.iloc[-1]
73 mkt_cap = mkt_cap[current_members] # only for those in index
74 mkt_cap.dropna(inplace=True)
75 mc_wgts = mkt_cap/mkt_cap.sum()
76

77 # save mkt cap weights
78 self.mc_weights.loc[current_date, mc_wgts.index] = mc_wgts
79

80 # save ranks
81 mc_wgts_rank = mc_wgts.rank(ascending=False, method=’first’)
82 self.mc_ranks.loc[current_date, mc_wgts_rank.index] = mc_wgts_rank
83

84 # ranked market cap weights
85 temp = mc_wgts_rank.dropna()
86 temp = temp.apply(lambda x: int(x-1)).to_dict() # change to int and rebase to

start at 0
87 rank_wgts = mc_wgts.rename(index=temp).dropna()
88

89 # some stocks may have come in and don’t have ranking from prior day
90 rank_wgts = rank_wgts.loc[set(rank_wgts.index) & set(self.rank_mcw.columns)]
91

92 self.rank_mcw.loc[current_date, rank_wgts.index] = rank_wgts
93

94

95

96

97 def __calcCovar(self, row, current_positions, hist_data, hist_px, lag=3*260):
98 """
99 Calculate covariance matrix

100 """
101

102 if row <= lag+1:
103 return
104

105 port_members = current_positions[current_positions>0].index
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106

107 # ----------------------------------------------------------
108 # get returns -- select lag+1 since first pct_change will be NA and be

dropped
109 stk_rets = hist_data.iloc[(-lag-2):][port_members].pct_change()
110

111 # drop any na columns
112 stk_rets.dropna(axis=0, how=’all’, inplace=True)
113 stk_rets.dropna(axis=1, how=’any’, inplace=True)
114

115 # anything over +-50% in one day becomes zero
116 stk_rets[abs(stk_rets) >= 0.5] = 0
117

118 # drop columns where more than half of returns are zero
119 prop_zero = stk_rets.apply(lambda x: len(x[x==0])/len(x), axis=0)
120 prop_zero = prop_zero[prop_zero <= 0.5]
121 stk_rets = stk_rets[prop_zero.index]
122

123

124 # ----------------------------------------------------------
125 # work out annualized stk vol and covar
126 self.stk_cov = mfunc.calcCovar(stk_rets, lag=lag)
127

128 self.vol = np.diag(self.stk_cov)

Listing B.4: Function that calculates excess growth rate and ranked cap weights

The portfolio valuation is performed in a separate function, shown in Listing B.5.

1 def __valuePortfolio(self, positions, prices, adj_prices):
2

3 # work out impact of any corporate actions
4

5 # delistings
6 latest_px = prices.iloc[-1]
7 na_px = latest_px[latest_px.isnull()].index
8 na_pos = set(positions[positions>0].index) & set(na_px)
9

10 del_cash = 0
11 del_pos = []
12 for p in list(na_pos):
13 del_cash += prices[p].iloc[-2]*positions[p]/100
14 del_pos.append(p)
15 positions[p] = 0
16

17 # general
18 price_chg = prices.iloc[-1]/prices.iloc[-2]
19 adjprice_chg = adj_prices.iloc[-1]/adj_prices.iloc[-2]
20
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21 # work out residual and assign as dividend cash
22 resid = round(adjprice_chg/price_chg - 1,4)
23 p = positions[positions>0].index
24 div_cash = prices[p].iloc[-2]*positions[p]*resid[p]/100
25 div_cash = div_cash.sum()
26

27

28 # work out stock value
29 stk_val = positions.multiply(prices[positions.index].iloc[-1]/100).sum()
30

31 ca_cash = div_cash + del_cash
32

33 return ca_cash, div_cash, stk_val, del_pos

Listing B.5: Portfolio valuation function

The function in Listing B.6 takes in a date and returns the list of stocks in the index
on the the latest date prior to the given date.

1 def __getMembers(self, active_date):
2

3 """
4 Gets the spy members for active month
5 """
6

7 # need previous months month and year
8 mem_date = active_date.replace(day=1)+relativedelta(days=-1)
9 m = mem_date.month

10 y = mem_date.year
11

12 cols = pd.DataFrame(self.members.columns)
13 cols[’month’] = cols[0].apply(lambda x: x.month)
14 cols[’year’] = cols[0].apply(lambda x: x.year)
15

16 spx_col = cols[(cols[’month’]==m) & (cols[’year’]==y)][0].iloc[0]
17 mems = self.members[spx_col].dropna().tolist()
18

19 return mems

Listing B.6: Function that returns a list of index constituents on a specific date

The function in Listing B.7 calculates the portfolio generating function.

1

2 def __calcEWPgenFunc(self, mkt_data, current_members):
3 """
4 Calculate the portfolio log generating function for equal weight portfolio
5 """
6 # get mkt cap of index members
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7 mkt_cap = mkt_data.iloc[-1]
8 mkt_cap = mkt_cap[current_members] # only for those in index
9 mc_wgts = mkt_cap/mkt_cap.sum()

10

11 # calculate the portfolio generating function for ew portfolio
12 port_gen_func = sum(np.log(mc_wgts).dropna())*(1/len(mc_wgts.dropna()))
13

14 return port_gen_func

Listing B.7: Portfolio generating function calculation

B.3 Determining trades and executing

Listing B.8 shows the trade class. Each portfolio has a trade object that: (1)
determines what trades are necessary, and (2) executes a given set of trades. When
determining trades, the function is given the current nominal positions for all the
stocks and the weight methodology (cap weight, equal weight, etc.). The function
then works out the target weights based on the methodology (here is where any
other methodology can be included), and then determines the nominal positions
resulting from those weights and the trades necessary to transform the portfolio.

In the main portfolio object these trades can be checked and on the following day the
execute trades function can be called and the trade object returns the new positions
and the net cash position after execution. Including bid/offer prices can be done at
this step.

1 import pandas as pd
2 import numpy as np
3 from scipy.optimize import minimize, LinearConstraint
4

5 class tradeObject():
6 """
7 Handles execution of trades
8 Determines if a rebalance required
9 """

10

11 def __init__(self):
12 pass
13

14 def detPortfolioTrades(self, ticker_list, current_positions, portfolio_value,
current_px, method=’equal’,

15 weight_metric=’None’, dwp_p=0.01,
reduce_leakage_stocks=10, cov_mat=None,

16 prev_w=None):
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17 """
18 Determines trades required
19 @Input:
20 ticker_list: list of tickers
21 current_positions: pandas Series objects with positions (nominal)
22 current_px: pandas Series object with current prices -- assumes in

cents per share
23 portfolio_value: value of portfolio in ZAR
24 method: method to weight tickers by (equal, mc, dwp)
25 weight_metric: must be provided if method not equal and must be

pandas Series object with weights
26 apply_active: randomly apply active weights
27 active_max: maximum multiple to apply to for active weight
28 active_min: minimum multiple to apply to for active weight
29 is_never: only allocate for new members leave existing members as is
30 @Output:
31 trades: list of required trades
32 wgt: target weights for tracking
33 """
34

35

36 ticker_list = list(set(ticker_list))
37

38 # mc wgts is default
39 # drop nans in mc wgts
40 weight_metric = weight_metric[ticker_list]
41 wgt = pd.Series(weight_metric/weight_metric.sum())
42 wgt = wgt.loc[~np.isnan(wgt)]
43

44 # refresh ticker list in case any changes
45 ticker_list = wgt.index
46

47 # work out desired weights
48 if method == ’equal’:
49 wgt = pd.Series(1/len(ticker_list), name=’Weights’, index=ticker_list

)
50 elif method == ’dwp’:
51 wgt = wgt**dwp_p
52 wgt = wgt/wgt.sum()
53 elif method == ’mcap’:
54 pass
55 else:
56 raise ValueError("Weighting method {0} not recognised".format(method)

)
57

58

59 if len(wgt[wgt<0]) > 0:
60 raise ValueError("Some weights are negative!")
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61

62 # some checks
63 if wgt.sum() < 0.98 or wgt.sum() > 1.01:
64 raise ValueError("Weights deviate from 1 significantly",wgt.sum())
65

66 # workout desired nominal
67 target_nom = pd.Series(0, index=current_positions.index, name=

current_positions.name)
68 target_nom[ticker_list] = 100*(wgt*portfolio_value).divide(current_px[

ticker_list])
69 target_nom = np.floor(target_nom)
70

71 # determine trades required
72

73 trades = pd.DataFrame(columns=[’ticker’, ’side’, ’size’])
74

75 # get difference in nominals
76 nom_diff = target_nom[current_positions.index] - current_positions
77 nom_diff = nom_diff[nom_diff!=0]
78

79 # add to trades df
80 trades[’ticker’] = nom_diff.index
81 trades[’size’] = nom_diff[trades[’ticker’]].values
82 trades.loc[trades[’size’]>0, ’side’]= ’L’
83 trades.loc[trades[’size’]<0, ’side’]= ’S’
84 trades[’size’] = abs(trades[’size’])
85

86 return trades, wgt
87

88

89

90 def executeTrades(self, current_positions, trades, port_cash, prices, costs
=0):

91 """
92 Executes a list of trades
93 @Input:
94 current_positions: pd Series of current positions in portfolio
95 trades: pd dataframe of trades, columns must include ticker, side and

size
96 port_cash: current portfolio cash position in ZAR
97 prices: pd dataframe of all price history up until this point in

cents per share
98 @Output:
99 net_cash: net cash position after trades

100 new_positions: positions after all trades executed
101 trades: pd dataframe of any leftover trades -- for now assume none

leftover
102 """
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103

104 new_positions = current_positions.copy()
105

106 trade_prices = prices[trades[’ticker’]].iloc[-1]
107

108 # any trades with nan prices gets removed
109 isnan = trade_prices.loc[trade_prices.isna()]
110 if len(isnan) > 0:
111 trades = trades[~trades[’ticker’].isin(isnan.index)]
112

113 # sales
114 sales = trades.loc[trades[’side’]==’S’]
115 if len(sales) > 0:
116 new_positions[sales[’ticker’]] -= sales[’size’].values
117 port_cash += (1-costs/100)*sum(trade_prices[sales[’ticker’]]*sales[’

size’].values/100)
118 trans_cost = (costs/100)*sum(trade_prices[sales[’ticker’]]*sales[’

size’].values/100)
119

120 # buys
121 buys = trades.loc[trades[’side’]==’L’]
122 if len(buys) > 0:
123 new_positions[buys[’ticker’]] += buys[’size’].values
124 port_cash -= (1+costs/100)*sum(trade_prices[buys[’ticker’]]*buys[’

size’].values/100)
125 trans_cost = (costs/100)*sum(trade_prices[sales[’ticker’]]*sales[’

size’].values/100)
126

127

128 return port_cash, new_positions, pd.DataFrame(), trans_cost

Listing B.8: The trade class

B.4 Optimising the portfolio

To optimise the portfolio, no other modifications need to be made to any of the
objects or functions shown previously (the portfolio class in particular). Instead
we need only change the parameter dwp_p shown in Listing B.3 just before any
rebalance. The trade object will then receive this new parameter and work out the
necessary trades.

Therefore, instead of running the full simulation (Listing B.2), we call each day’s
simulation step individually (Listing B.3) and determine the parameter dwp_p (and
passing it) just before calling the simulation step.
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This can obviously be done in any number of ways and for any number of portfolios
with some small modifications. That is, the structure presented here is not limited to
the analysis we did in this thesis, one could modify the trade object to achieve any
kind of portfolio. Listing B.9 shows our implementation. There are three portfolio
objects (implementation of the portfolio class): cap weight, equal weight, and
optimal. We step through each day and for the equal and cap weighted portfolios
we can just perform the simulation step (lines 19 and 20).

For the optimised portfolio, however, we need to first work out our prediction,
determine the optimal dwp_p parameter, and pass this to the portfolio object before
performing the simulation step for the optimised portfolio. The prediction itself can
be a separate function or class and any data necessary can just be passed from the
portfolio objects to this prediction object or function.

1 def simulate(self, opt_p_method, verbose=True):
2

3 """
4 opt_p_method = ’0-1’, ’std_dev’, ’none’
5 """
6

7 start_time = time.time()
8 N = len(self.ew_port.stk_data[’PX_LAST’])
9 prev_date = None

10 self.p_df = pd.DataFrame(columns=[’p’])
11 for row in range(1, N): # simulation starts at 1 not 0
12

13 active_date = self.ew_port.stk_data[’PX_LAST’].index[row]
14 if verbose:
15 print(active_date)
16

17 # ----------------------------------------------------------------------
18 # perform simulation steps
19 self.ew_port.performSimulationStep(row)
20 self.mc_port.performSimulationStep(row)
21

22 # ----------------------------------------------------------------------
23 # if new month then work out new prediction
24 if prev_date is None or prev_date.month != active_date.month:
25

26 # make predicton
27 pred_rel, pred_err = self.pred_obj.predict(row)
28

29 if pred_rel is not None:
30

31 optimal_p = self._get_opt_p(opt_p_method, pred_rel, pred_err, row
, period_actual=3,
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32 current_p=self.optimal_port.dwp_p)
33

34

35 # only switch if difference more than trade cost
36 if opt_p_method == ’0-1’:
37 if optimal_p != self.optimal_port.dwp_p and abs(pred_rel) >=

(self.threshold*self.trade_cost+0)/100:
38 self.optimal_port.dwp_p = optimal_p
39 else:
40 self.optimal_port.dwp_p = optimal_p
41

42 print(f"Optimal p: {self.optimal_port.dwp_p}")
43

44 self.optimal_port.performSimulationStep(row)
45

46 # save optimal p
47 temp_df = pd.DataFrame([self.optimal_port.dwp_p], index=[’p’],
48 columns=[active_date]).T
49 self.p_df = self.p_df.append(temp_df)
50

51 prev_date = active_date
52

53 # ----------------------------------------------------------------------
54 self.ew_port.returns.updateReturns()
55 self.mc_port.returns.updateReturns()
56 self.optimal_port.returns.updateReturns()
57

58 self._get_return_df()
59

60 run_time = time.time()
61 sim_time = run_time-start_time
62 print(f"Simulation complete: {round(sim_time/60,2)} minutes")

Listing B.9: Optimised portfolios
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List of tsfresh features C
The list of features extracted using tsfresh are provided in Tables C.1 to C.4 and
can also be found at https://tsfresh.readthedocs.io/en/latest/text/list_
of_features.html.

Table C.1.: List of features extracted using tsfresha.

Short Code Description
abs_energy(x) Returns the absolute energy of the time series

which is the sum over the squared values.
absolute_maximum(x) Calculates the highest absolute value of the time

series x.
absolute_sum_of_changes(x) Returns the sum over the absolute value of consec-

utive changes in the series x.
agg_autocorrelation(x, param) Descriptive statistics on the autocorrelation of the

time series.
agg_linear_trend(x, param) Calculates a linear least-squares regression for val-

ues of the time series that were aggregated over
chunks versus the sequence from 0 up to the num-
ber of chunks minus one.

approximate_entropy(x, m, r) Implements a vectorized Approximate entropy al-
gorithm.

ar_coefficient(x, param) This feature calculator fits the unconditional max-
imum likelihood of an autoregressive AR(k) pro-
cess.

augmented_dickey_fuller(x, param) Does the time series have a unit root?
autocorrelation(x, lag) Calculates the autocorrelation of the specified lag.
benford_correlation(x) Useful for anomaly detection applications.
binned_entropy(x, max_bins) First bins the values of x into max_bins equidistant

bins.
c3(x, lag) Uses c3 statistics to measure non linearity in the

time series.
change_quantiles(x, ql, qh, is-
abs, f_agg)

First fixes a corridor given by the quantiles ql and
qh of the distribution of x.

cid_ce(x, normalize) This function calculator is an estimate for a time
series complexity. (A more complex time series has
more peaks, valleys etc.).

count_above(x, t) Returns the percentage of values in x that are
higher than t.

aSource: https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
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Table C.2.: List of features extracted using tsfresha (Continued).

Short Code Description
count_above_mean(x) Returns the number of values in x that are higher

than the mean of x
count_below(x, t) Returns the percentage of values in x that are lower

than t.
count_below_mean(x) Returns the number of values in x that are lower

than the mean of x.
cwt_coefficients(x, param) Calculates a Continuous wavelet transform for the

Ricker wavelet, also known as the “Mexican hat
wavelet”.

energy_ratio_by_chunks(x, param) Calculates the sum of squares of chunk i out of
N chunks expressed as a ratio with the sum of
squares over the whole series.

fft_aggregated(x, param) Returns the spectral centroid (mean), variance,
skew, and kurtosis of the absolute fourier transform
spectrum.

fft_coefficient(x, param) Calculates the fourier coefficients of the one-
dimensional discrete Fourier Transform for real
input by fast fourier transform.

first_location_of_maximum(x) Returns the first location of the maximum value of
x.

first_location_of_minimum(x) Returns the first location of the minimal value of
x.

fourier_entropy(x, bins) Calculate the binned entropy of the power spec-
tral density of the time series (using the welch
method).

friedrich_coefficients(x, param) Coefficients of polynomial h(x), which has been
fitted to the time series.

has_duplicate(x) Checks if any value in x occurs more than once.
has_duplicate_max(x) Checks if the maximum value of x is observed more

than once.
has_duplicate_min(x) Checks if the minimal value of x is observed more

than once.
index_mass_quantile(x, param) Calculates the relative index i of time series x

where q% of the mass of x lies left of i.
kurtosis(x) Returns the kurtosis of x (calculated with the ad-

justed Fisher-Pearson standardized moment coeffi-
cient G2).

large_standard_deviation(x, r) Does time series have large standard deviation?
last_location_of_maximum(x) Returns the relative last location of the maximum

value of x.
last_location_of_minimum(x) Returns the last location of the minimal value of x.
lempel_ziv_complexity(x, bins) Calculate a complexity estimate based on the

Lempel-Ziv compression algorithm.
aSource: https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
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Table C.3.: List of features extracted using tsfresha (Continued).

Short Code Description
length(x) Returns the length of x.
linear_trend(x, param) Calculate a linear least-squares regression for the

values of the time series versus the sequence from
0 to length of the time series minus one.

linear_trend_timewise(x, param) Calculate a linear least-squares regression for the
values of the time series versus the sequence from
0 to length of the time series minus one.

longest_strike_above_mean(x) Returns the length of the longest consecutive sub-
sequence in x that is bigger than the mean of x.

longest_strike_below_mean(x) Returns the length of the longest consecutive sub-
sequence in x that is smaller than the mean of
x.

matrix_profile(x, param) Calculates the 1-D Matrix Profile and returns
Tukey’s Five Number Set plus the mean of that
Matrix Profile.

max_langevin_fixed_point(x, r, m) Largest fixed point of dynamics
argmax_xh(x) = 0 estimated from polyno-
mial h(x).

maximum(x) Calculates the highest value of the time series x.
maximum(x) Calculates the highest value of the time series x.
mean(x) Returns the mean of x
mean_abs_change(x) Average over first differences.
mean_change(x) Average over time series differences.
mean_n_absolute_max(x, num-
ber_of_maxima)

Calculates the arithmetic mean of the n absolute
maximum values of the time series.

mean_second_derivative_central(x) Returns the mean value of a central approximation
of the second derivative.

median(x) Returns the median of x.
minimum(x) Calculates the lowest value of the time series x.
number_crossing_m(x, m) Calculates the number of crossings of x on m.
number_cwt_peaks(x, n) Number of different peaks in x.
number_peaks(x, n) Calculates the number of peaks of at least support

n in the time series x.
partial_autocorrelation(x, param) Calculates the value of the partial autocorrelation

function at the given lag.
percentage_of_reoccurring _data-
points_to_all_datapoints(x)

Returns the percentage of non-unique data points.

percentage_of_reoccurring _val-
ues_to_all_values(x)

Returns the percentage of values that are present
in the time series more than once.

permutation_entropy(x, tau, dimen-
sion)

Calculate the permutation entropy.

aSource: https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
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Table C.4.: List of features extracted using tsfresha (Continued).

Short Code Description
quantile(x, q) Calculates the q quantile of x.
query_similarity_count(x, param) This feature calculator accepts an input query

subsequence parameter, compares the query (un-
der z-normalized Euclidean distance) to all subse-
quences within the time series, and returns a count
of the number of times the query was found in
the time series (within some predefined maximum
distance threshold).

range_count(x, min, max) Count observed values within the interval [min,
max).

ratio_beyond_r_sigma(x, r) Ratio of values that are more than r * std(x) (so r
times sigma) away from the mean of x.

ratio_value_number_to
_time_series_length(x)

Returns a factor which is 1 if all values in the time
series occur only once, and below one if this is not
the case.

root_mean_square(x) Returns the root mean square (rms) of the time
series.

sample_entropy(x) Calculate and return sample entropy of x.
set_property(key, value) This method returns a decorator that sets the prop-

erty key of the function to value.
skewness(x) Returns the sample skewness of x (calculated with

the adjusted Fisher-Pearson standardized moment
coefficient G1).

spkt_welch_density(x, param) This feature calculator estimates the cross power
spectral density of the time series x at different
frequencies.

standard_deviation(x) Returns the standard deviation of x.
sum_of_reoccurring_data_points(x) Returns the sum of all data points, that are present

in the time series more than once.
sum_of_reoccurring_values(x) Returns the sum of all values, that are present in

the time series more than once.
sum_values(x) Calculates the sum over the time series values.
symmetry_looking(x, param) Boolean variable denoting if the distribution of

x looks symmetric.
time_reversal_asymmetry _statis-
tic(x, lag)

Returns the time reversal asymmetry statistic.

value_count(x, value) Count occurrences of value in time series x.
variance(x) Returns the variance of x.
variance_larger_than _stan-
dard_deviation(x)

Is variance higher than the standard deviation?

variation_coefficient(x) Returns the variation coefficient (standard error
/ mean, give relative value of variation around
mean) of x.

aSource: https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
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