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 The combined effect of serial dependency and measurement errors is known to negatively affect 
the statistical efficiency of any monitoring scheme. However, for the recently proposed 
homogenously weighted moving average (HWMA) scheme, the research that exists concerns 
independent and identically distributed observations and measurement errors only. Thus, in this 
paper, the HWMA scheme for monitoring the process mean under the effect of within-sample 
serial dependence with measurement errors is proposed for both constant and linearly increasing 
measurement system variance. Monte Carlo simulation is used to evaluate the run-length 
distribution of the proposed HWMA scheme. A mixed-𝑠&𝑚 sampling strategy is incorporated 
to the HWMA scheme to reduce the negative effect of serial dependence and measurement errors 
and its performance is compared to the existing Shewhart scheme. An example is given to 
illustrate how to implement the proposed HWMA scheme for use in real-life applications. 
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1. Introduction 

 

Monitoring schemes are efficient tools in statistical process monitoring (SPM) as they aim at efficiently monitoring streaming 
processes and detecting changes in process performance, as early as possible, so that corrective measures can be taken to 
ensure a minimal loss due to a downfall in the quality of whatever process that is monitored. More importantly, the main goal 
of a monitoring scheme is to provide a way to distinguish between two sources of variability, i.e. chance and assignable causes 
of variability. When a process runs only in the presence of chance causes of variation, it is said to be in a state of in-control 
(IC). However, when it runs in the presence of assignable causes (this can be as a result of additional variations that are caused 
by machinery, human and/or material error), the process is said to be out-of-control (OOC). Any efficient monitoring scheme 
needs to respond to changes in the quality characteristic of interest as early as possible to aid in eliminating or reducing 
unwanted waste, see Montgomery (2013).  It has been proven that monitoring schemes like Shewhart-type schemes are more 
efficient in detecting large shifts; while memory-type schemes like the exponentially weighted moving average (EWMA), 
cumulative sum (CUSUM) and the generally weighted moving average (GWMA) tend to be more efficient in detecting small 
shifts. More recently, Abbas (2018) proposed a new memory-type scheme called the homogeneously weighted moving 
average (HWMA) 𝑋ത control chart to monitoring the mean of independent and identically distributed (i.i.d.) observations. 
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Other HWMA schemes are discussed in Nawaz and Han (2020), Adegoke et al. (2020a, b), Abbas et al. (2020), Dawod et al. 
(2020), Raza et al. (2020). Note that the HWMA scheme allocates a specific weight to the current sample and the remaining 
weight is distributed equally (or homogeneously) among all the previous samples. Other extended HWMA schemes for i.i.d. 
observations have been studied in Adeoti and Koleoso (2020), Abid et al. (2020a, b), Malela-Majika et al. (2021) and 
Alevizakos et al. (2021). More recently, Thanwane et al. (2020) studied the effect of measurement errors on the performance 
of the HWMA scheme and here, the focus is on the combined effect of measurement errors and serial dependency (also known 
as autocorrelation). For separate literature reviews on autocorrelated processes and processes with measurement errors in a 
SPM context, see Prajapati and Singh (2012) and Maleki et al. (2017), respectively. 
 
In this paper, the well-known first-order autoregressive model (i.e. AR(1)) is considered as a starting point (other models will 
be discussed in upcoming articles). The AR(1) model with positive autocorrelation is the most commonly used time series 
model in SPM applications due to its simplicity as compared to other stationary time series models. For other discussions on 
AR(1) model in a univariate or multivariate SPM context, see for example: Ahmad et al. (2019), Dargopatil and Ghute (2019), 
Oh and Weiβ (2020). Note that if the process remains in equilibrium around the constant mean then the autocorrelated process 
is IC; however, when there is any statistically significant difference from the constant mean, it implies that the autocorrelated 
process is OOC. To reduce the negative effect of autocorrelation, there are some sampling strategies that exist that are used 
in effectively improving the performance of any monitoring scheme, to count a few: the s-skip (by Costa and Castagliola, 
2011), mixed samples (by Franco et al., 2014) and mixed-s-skip (by Shongwe et al., 2021). In the latter, s denotes the number 
of observations that must be skipped before sampling to form a rational subgroup. The review paper by Maleki et al. (2017) 
stated that, even with highly sophisticated advanced measuring instruments, an exact measurement is a rare phenomenon; 
hence, measurement errors tend to exist in any manufacturing and service environment. To account for measurement errors, 
the additive model (or linear covariate error) model with a constant and linearly increasing variance are used, see for instance 
Linna and Woodall (2001), Maravelakis et al. (2004) and Maravelakis (2012). The most used remedial strategy to reduce the 
negative effect of measurement errors is the m-measurements approach by Linna and Woodall (2001), which entails measuring 
each observation 𝑚 times. Some recent contributions to monitoring schemes under the effect of measurement error are 
provided in Nguyen et al. (2020), Zaidi et al. (2020), Asif et al. (2020) and Arif et al. (2020).  Yang and Yang (2005), Xiaohong 
and Zhaojun (2009), Costa and Castagliola (2011), Shongwe et al. (2020, 2021), Shongwe and Malela-Majika (2020) 
considered some monitoring schemes where the process mean is assumed to be under the combined effect of autocorrelation 
and measurement errors. It has been generally concluded that the combined effect of autocorrelation and measurement errors 
has a higher negative effect on the performance of any monitoring schemes than the latter two factors, individually. Therefore, 
the most important contribution of this paper is to propose a dedicated HWMA 𝑋ത scheme, where autocorrelated observations 
with measurement errors are likely to occur. 
 
The rest of this paper is organised as follows: In Section 2, the main properties of the HWMA scheme for monitoring i.i.d 
observations is discussed. Section 3 introduces the HWMA scheme for monitoring the process mean under the combined 
effect of autocorrelation and measurement errors. The empirical performance of the proposed HWMA scheme is given in 
Section 4. An illustrative example showing how to implement the proposed HWMA scheme is provided in Section 5. Finally, 
some concluding remarks are presented in Section 6.  
 
2. Design of the basic HWMA scheme for i.i.d. observations 
 
Let the sequence of observations 𝑋௧ {𝑡 = 1, 2, …, and 𝑖 = 1, 2, …, 𝑛} be a set of samples of i.i.d. normal random variables, 
i.e. 𝑋௧ ~ 𝑁(𝜇 + 𝛿𝜎,𝜎), where 𝜇 is the IC mean value, 𝜎 is the IC standard deviation and 𝛿 is the magnitude of the shift 
in standard deviation units. When 𝛿 = 0, it implies that 𝑋௧ ~ 𝑁(𝜇,𝜎) and hence, the process is considered to be IC. 
However, when 𝛿 ≠ 0, the process is OOC. Let 𝑋ത௧ = ∑ 𝑋௧ 𝑛⁄ୀଵ  be the sample mean of the 𝑡௧ subgroup; then the plotting 
statistic of the HWMA 𝑋ത scheme (denoted as 𝐻௧) is defined as 𝐻௧ = 𝜆𝑋ത௧ + (1 − 𝜆) 𝑋ധ௧ିଵ = 𝜆𝑋ത௧ + (1 − 𝜆)൭ 1𝑡 − 1𝑋ത௩௧ିଵ

௩ୀଵ ൱. (1) 

Note that 𝜆 is the smoothing constant (where 0 < 𝜆 ≤ 1) and 𝑋ധ௧ିଵ is the mean of the previous 𝑡 − 1 subgroup sample means, 
with 𝑋ധ (i.e. when 𝑡=1) set to be equal to the target mean 𝜇; see Abbas (2018). It is apparent that the charting statistic 𝐻௧ 
assigns a weight 𝜆 to the current sample and a weight (1 − 𝜆) is homogeneously (or equally) distributed to the previous 𝑡 − 1 
samples. Abbas (2018) showed that the mean and standard deviation of 𝐻௧ are given by  𝐸(𝐻௧) = 𝜇 (2) 

and  

𝜎ு =
⎩⎪⎨
⎪⎧ ඨ𝜆ଶ 𝜎ଶ𝑛 ,                                             𝑡 = 1
ඨ𝜆ଶ 𝜎ଶ𝑛 + (1 − 𝜆)ଶ 𝜎ଶ𝑛(𝑡 − 1) ,          𝑡 > 1 (3) 
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respectively. Note that the average run-length (ARL), defined as the mean of the run-length distribution or the average number 
of rational subgroups plotted on a control chart before it gives a signal for the first time, is the most used run-length metric in 
SPM literature. This metric reveals the degree of the sensitivity of a monitoring scheme towards specific shifts. Thereafter, 
Abbas (2018) showed that the time-varying lower and upper control limits (i.e. 𝐿𝐶𝐿௧ and 𝑈𝐶𝐿௧) of the HWMA 𝑋ത monitoring 
scheme are defined by 

𝐿𝐶𝐿௧ =
⎩⎪⎨
⎪⎧𝜇 − 𝐿ඨ𝜆ଶ  𝜎ଶ𝑛 ,                                          𝑡 = 1
𝜇 − 𝐿ඨ𝜆ଶ 𝜎ଶ𝑛 + (1 − 𝜆)ଶ 𝜎ଶ𝑛(𝑡 − 1) ,     𝑡 > 1 (4a) 

and  

𝑈𝐶𝐿௧ =
⎩⎪⎨
⎪⎧𝜇 + 𝐿ඨ𝜆ଶ 𝜎ଶ𝑛 ,                                            𝑡 = 1
𝜇 + 𝐿ඨ𝜆ଶ 𝜎ଶ𝑛 + (1 − 𝜆)ଶ 𝜎ଶ𝑛(𝑡 − 1) ,     𝑡 > 1 (4b) 

respectively; where 𝐿 > 0 is the control limits constant that is set in order to have an IC 𝐴𝑅𝐿 approximately equal to some 
pre-specified nominal IC 𝐴𝑅𝐿 (i.e. 𝐴𝑅𝐿). Thus, the HWMA 𝑋ത scheme gives a signal if 𝐻௧ ≥ 𝑈𝐶𝐿௧ or 𝐻௧ ≤ 𝐿𝐶𝐿௧. In case 
the process has been running for a long time (i.e. 𝑡 → ∞), the term ఙబమ(௧ିଵ) → 0. Therefore, the control limits in (4a) and (4b) 
reduce to the following asymptotic ones: 𝑈𝐶𝐿/𝐿𝐶𝐿 = 𝜇 ± 𝐿ඨ𝜆ଶ 𝜎ଶ𝑛 .   (5) 

 
3. HWMA scheme for monitoring autocorrelated observations with measurement errors 
 
3.1 AR(1) process incorporated in the covariate error model 
 
Let the sequence of observations 𝑋௧#  {𝑡 = 1, 2,…, and 𝑖 = 1, 2, …, 𝑛} be a set of samples of autocorrelated 𝑁(𝜇 + 𝛿𝜎,𝜎) 
distribution that fits a stationary AR(1) model, given by 
 𝑋௧,# − 𝜇 = 𝜙൫𝑋௧ିଵ,# − 𝜇൯ + 𝜀௧, t ≥ 1,   𝑖 = 1, 2, …, 𝑛; (6) 
 
where 𝜙 is the level of serial dependence (or autocorrelation) assumed to satisfy 0 < 𝜙 < 1 and 𝜀௧ are i.i.d. 𝑁(0,𝜎ఌ) random 
variables, with 𝜎 = ఙഄඥଵିథమ and, without loss of generality,  it is assumed that 𝜎ఌ = 1. Let 𝑋ത௧# be the sample mean of the 𝑡௧ 

subgroup and while it is assumed that there is dependence within the computation of 𝑋ത௧#; however, between any 𝑋ത௧# and 𝑋ത௪#  
(𝑡 ≠ 𝑤) there is independence which means no cross-correlation, see Alwan and Radson (1992).  Assume that the true value 
of 𝑋௧,#  defined in (6) is only observed through a value {𝑋௧,,∗ : t = 1,2,…;  i = 1,…, n; j = 1,…, m} described by the expression 𝑋௧,,∗ = 𝐴 + 𝐵𝑋௧,# + 𝜀௧,,, where 𝐴 and 𝐵 are two constants depending on the measurement system location error. It is worth 
mentioning that Costa and Castagliola (2011) and Shongwe et al. (2021) considered the case where 𝐴 = 0 and 𝐵 = 1 only. 
Note that 𝑚 denotes the number of measurements taken in each sampled subgroup unit and 𝜀,,~𝑁(0,𝜎ெଶ ) is a random error 
due to the measurement error that is distributed independently of 𝑋௧,# ; where 𝜎ெଶ  is the variance of the measurement system. 
Based on the discussion in Linna and Woodall (2001), Maravelakis et al (2004) and Maravelakis (2012), it is apparent that 𝑋௧,,∗ ~𝑁(𝐴 + 𝐵𝜇,𝐵ଶ𝜎ଶ + 𝜎ெଶ ). Assuming that 𝑛 observations from the sequence 𝑋௧,,∗  at each sampling point have been 
collected, then using the mixed-𝑠-skip with 𝑚-measurements (denoted as mixed-𝑠&𝑚) strategy, the process mean is 
calculated as follows 𝑋ത௧∗ = 𝐴 + 𝐵 1𝑛ቌ 𝑋௧ିଵ,(௦ାଵ)#షభ

ୀଵ + 𝑋௧,(௦ାଵ)ି௦#
ୀଵ ቍ + 1𝑛𝑚𝜀௧,(௦ାଵ)ି௦,

ୀଵ

ୀଵ ; (7) 

 however, for the no remedy strategy (i.e. 𝑠=0 and 𝑚=1), it is calculated by 𝑋ത௧∗ = 𝐴 + 𝐵 1𝑛𝑋௧,#
ୀଵ + 1𝑛𝑚𝜀௧,,ଵ

ୀଵ

ୀଵ ; (8) 

see for instance Costa and Castagliola (2011) and Shongwe et al. (2021). Since between any 𝑋ത௧# and 𝑋ത௪#  (𝑡 ≠ 𝑤) there is 
independence, it follows that 𝐶𝑜𝑣(𝑋ത௧∗,𝑋ത௪∗ ) = 0,  for any 𝑡 ≠ 𝑤. (9) 
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In the case of constant measurement system variance, let 𝛾 = ఙಾఙబ  represents the standardized ratio of the measurement system 
variability to the process variability. Then, from Costa and Castagliola (2011), it follows that when the ‘no remedy’ strategy 
is implemented, the expected value and variance of 𝑋ത௧∗ are respectively given by  𝐸(𝑋ത௧∗) = 𝐴 + 𝐵𝜇, (10) 
and 𝑉𝑎𝑟(𝑋ത௧∗) = 𝜎ଶ𝑛 ቌ൭1 + 2ቆ𝜙ାଵ − 𝑛𝜙ଶ + (𝑛 − 1)𝜙𝑛(𝜙 − 1)ଶ ቇ൱+ (𝐵ଶ + 𝛾ଶ) − 1ቍ. (11a) 

In some situations, the measurement error 𝜎ெଶ  should no longer be considered as being a constant but it should be considered 
as an increasing function of the mean of the variable 𝑋௧,# , i.e. 𝜎ெଶ = 𝐶 + 𝐷𝜇 and thus, 𝑋௧,,∗ ~𝑁(𝐴 + 𝐵𝜇,𝐵ଶ𝜎ଶ + 𝐶 + 𝐷𝜇), 
where 𝐶 and 𝐷 are two constants. It is worth mentioning that Costa and Castagliola (2011) and Shongwe et al. (2021) did not 
consider the linearly increasing variance scenario. Following similar steps as done for (10) and (11), it follows that for linearly 
increasing measurement system variance, the expected value of 𝑋ത௧∗ for the ‘no remedy’ strategy is given by (10). However, 
the variance of 𝑋ത௧∗ is given by  𝑉𝑎𝑟(𝑋ത௧∗) = 𝜎ଶ𝑛 ቌ൭1 + 2ቆ𝜙ାଵ − 𝑛𝜙ଶ + (𝑛 − 1)𝜙𝑛(𝜙 − 1)ଶ ቇ൱+ ቆ𝐵ଶ + 𝐶 + 𝐷𝜇𝜎ଶ ቇ − 1ቍ. (11b) 

Note that when the mixed-𝑠&𝑚 strategy is implemented, the expected value of 𝑋ത௧∗ is the same as that in (10); however, the 
variance of 𝑋ത௧∗ is given by 𝑉𝑎𝑟(𝑋ത௧∗) = 𝜎ଶ𝑛 𝜑. (12a) 

where 𝜑 for the constant measurement system variance is given by 𝜑 = ൭𝑛௧𝑛 + 2ቆ𝜙(௦ାଵ)(ାଵ) − 𝑛௧𝜙ଶ௦ାଶ + (𝑛௧ − 1)𝜙௦ାଵ𝑛(𝜙௦ାଵ − 1)ଶ ቇ൱
+ ൭𝑛௧ିଵ𝑛 + 2ቆ𝜙(௦ାଵ)(షభାଵ) − 𝑛௧ିଵ𝜙ଶ௦ାଶ + (𝑛௧ିଵ − 1)𝜙௦ାଵ𝑛(𝜙௦ାଵ − 1)ଶ ቇ൱+ ቆ𝐵ଶ + 𝛾ଶ𝑚ቇ − 1, (12b) 

and for the linearly increasing measurement system variance, it is given by 𝜑 = ൭𝑛௧𝑛 + 2ቆ𝜙(௦ାଵ)(ାଵ) − 𝑛௧𝜙ଶ௦ାଶ + (𝑛௧ − 1)𝜙௦ାଵ𝑛(𝜙௦ାଵ − 1)ଶ ቇ + 𝑛௧ିଵ𝑛+ 2ቆ𝜙(௦ାଵ)(షభାଵ) − 𝑛௧ିଵ𝜙ଶ௦ାଶ + (𝑛௧ିଵ − 1)𝜙௦ାଵ𝑛(𝜙௦ାଵ − 1)ଶ ቇ൱ + ቆ𝐵ଶ + 𝐶 + 𝐷𝜇𝑚𝜎ଶ ቇ − 1. (12c) 

 
3.2 Properties and operation of the HWMA 𝑋ത∗ scheme with mixed-𝑠&𝑚 strategy 
 
Based on the discussion in Sections 2 and 3.1, it follows that the plotting statistic of the HWMA 𝑋ത∗ scheme with mixed-𝑠&𝑚 
strategy is defined by  𝐻௧∗ = 𝜆𝑋ത௧∗ + (1 − 𝜆) 𝑋ധ௧ିଵ∗ = 𝜆𝑋ത௧∗ + (1 − 𝜆)൭ 1𝑡 − 1𝑋ത௩∗௧ିଵ

௩ୀଵ ൱,  (13) 

where 𝑋ധ௧ିଵ∗  is the mean of the previous 𝑡 − 1 sample means, with 𝑋ധ∗ (i.e. 𝑡 = 1) set to be equal to the target mean in (10), 
that is,  𝑋ധ∗ = 𝐴 + 𝐵𝜇. (14) 
Using the Eq. (10), it follows that the expected value of 𝐻௧∗ is given by 𝐸(𝐻௧∗) = 𝜆𝐸(𝑋ത௧∗) + 1 − 𝜆𝑡 − 1 𝐸(𝑋ത௩∗)௧ିଵ

௩ୀଵ = 𝜆(𝐴 + 𝐵𝜇) + 1 − 𝜆𝑡 − 1 (𝐴 + 𝐵𝜇)௧ିଵ
௩ୀଵ = 𝐴 + 𝐵𝜇. (15) 

To calculate the variance of Eq. (13), the following need to be determined 𝑉𝑎𝑟(𝐻௧∗) = 𝜆ଶ𝑉𝑎𝑟(𝑋ത௧∗) + (1 − 𝜆)ଶ𝑉𝑎𝑟 ൫𝑋ധ௧ିଵ∗ ൯ + 2𝐶𝑜𝑣൫𝑋ത௧∗,𝑋ധ௧ିଵ∗ ൯. (16) 
Firstly, the expression of the 𝑉𝑎𝑟(𝑋ത௧∗) are provided in (12a) to (12c) for the mixed-𝑠&𝑚 strategy in the case of constant and 
linearly increasing measurement system variance. Secondly, the expressions of 𝑉𝑎𝑟 ൫𝑋ധ௧ିଵ∗ ൯ is determined in two parts, i.e. for 𝑡 = 1 and 𝑡 > 1. That is, for 𝑡 = 1, using Eq. (14), it follows that 
 𝑉𝑎𝑟൫𝑋ധ∗൯ = 𝑉𝑎𝑟(𝐴 + 𝐵𝜇) = 0. (17a) 
 
However, for 𝑡 > 1, using (9) and (12a), it follows that 
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𝑉𝑎𝑟൫𝑋ധ௧ିଵ∗ ൯ = 𝑉𝑎𝑟 ൭ 1𝑡 − 1𝑋ത௩∗௧ିଵ
௩ୀଵ ൱ 

= ൬ 1𝑡 − 1൰ଶ𝑉𝑎𝑟(𝑋ത∗)௧ିଵ
௩ୀଵ + 2𝐶𝑜𝑣(𝑋ത௩∗,𝑋ത∗)௩ழ  

= ൬ 1𝑡 − 1൰ଶ𝑉𝑎𝑟(𝑋ത௩∗)௧ିଵ
௩ୀଵ  

= ൬ 1𝑡 − 1൰ଶ𝜎ଶ𝑛 𝜑௧ିଵ
௩ୀଵ  

= ൬ 1𝑡 − 1൰𝜎ଶ𝑛 𝜑. 
(17b) 

Thirdly, since 𝑋ധ௧ିଵ∗ = ଵ௧ିଵ (𝑋തଵ∗ + 𝑋തଶ∗ + ⋯+ 𝑋ത௧ିଵ∗ ), then from (9), it follows that  2𝐶𝑜𝑣൫𝑋ത௧∗,𝑋ധ௧ିଵ∗ ൯ = 2𝐶𝑜𝑣 ൬𝑋ത௧∗, 1𝑡 − 1 (𝑋തଵ∗ + 𝑋തଶ∗ + ⋯+ 𝑋ത௧ିଵ∗ )൰ = 0. (17c) 

Thus, substituting Eq. (17a) to Eq. (17c) in Eq. (16), when 𝑡 =1 and 𝑡 >1, it follows that  

𝑉𝑎𝑟(𝐻௧∗) = ⎩⎨
⎧ 𝜆ଶ 𝜎ଶ𝑛 𝜑,                                                   when 𝑡 = 1𝜆ଶ 𝜎ଶ𝑛 𝜑 + (1 − 𝜆)ଶ ൬ 1𝑡 − 1൰𝜎ଶ𝑛 𝜑,      when 𝑡 > 1. (18) 

Therefore, using Eq. (15) and Eq. (18), it follows that the time-varying lower and upper control limits (i.e. 𝐿𝐶𝐿௧ and 𝑈𝐶𝐿௧) 
of the HWMA 𝑋ത∗ scheme with mixed-𝑠&𝑚 strategy are defined by 
 

𝐿𝐶𝐿௧ =
⎩⎪⎨
⎪⎧ (𝐴 + 𝐵𝜇) − 𝐿∗ඨ𝜆ଶ 𝜎ଶ𝑛 𝜑,                                                    when  𝑡 = 1

(𝐴 + 𝐵𝜇) − 𝐿∗ඨቆ𝜆ଶ 𝜎ଶ𝑛 + (1 − 𝜆)ଶ 𝜎ଶ𝑛(𝑡 − 1)ቇ𝜑 , when   𝑡 > 1 (19a) 

and  

𝑈𝐶𝐿௧ =
⎩⎪⎨
⎪⎧ (𝐴 + 𝐵𝜇) + 𝐿∗ඨ𝜆ଶ 𝜎ଶ𝑛 𝜑,                                                    when  𝑡 = 1

(𝐴 + 𝐵𝜇) + 𝐿∗ඨቆ𝜆ଶ 𝜎ଶ𝑛 + (1 − 𝜆)ଶ 𝜎ଶ𝑛(𝑡 − 1)ቇ𝜑 , when   𝑡 > 1 (19b) 

respectively; where 𝐿∗ > 0 is the control limits coefficient that is set to have an IC 𝐴𝑅𝐿 approximately equal to some pre-
specified 𝐴𝑅𝐿, and 𝜑 is as given in (12b) and (12c) for the constant and linearly increasing measurement system variance. 
Thus, the HWMA 𝑋ത∗ scheme gives a signal if 𝐻௧∗ ≥ 𝑈𝐶𝐿௧ or 𝐻௧∗ ≤ 𝐿𝐶𝐿௧. When the process has been running for a long time, ఙబమ(௧ିଵ) → 0 and thus, Eq. (19a) and EQ. (19b) reduce to the following asymptotic ones: 

𝑈𝐶𝐿/𝐿𝐶𝐿 = 𝜇 ± 𝐿∗ඨ𝜆ଶ 𝜎ଶ𝑛 𝜑.   (20) 

Consequently, the operational procedure of the HWMA 𝑋ത∗ scheme using the mixed-𝑠&𝑚 strategy is summarized in Fig. 1. 
 
4. Performance of the HWMA 𝑿ഥ∗ scheme 
 
4.1 Run-length characteristics 
 
To compute the run-length properties (i.e. the ARL and the standard deviation of the run-length (SDRL)), in this paper, the 
Monte Carlo simulations approach using SAS v9.4 are used. Note that in addition to the latter, the expected ARL (EARL) 
metric is also used to investigate the performance over a range of shifts. The EARL is mathematically defined by  𝐸𝐴𝑅𝐿(ఋౣ,ఋౣ౮ሿ = 1∆  𝐴𝑅𝐿(𝛿)ఋೌೣ

ఋୀఋ , (21) 

where 𝛿୫୧୬ and 𝛿୫ୟ୶ are the lower and upper bound of the shift (𝛿) parameter, respectively, 𝐴𝑅𝐿(𝛿) is the ARL value for a 
specific shift 𝛿 and ∆ represents the number of increments between 𝛿୫୧୬ and 𝛿୫ୟ୶. Thus, the 𝐸𝐴𝑅𝐿 values denoted by 



  

 

406𝐸𝐴𝑅𝐿(,ଵሿ, 𝐸𝐴𝑅𝐿(,ଶሿ, 𝐸𝐴𝑅𝐿(ଵ,ଷሿ and 𝐸𝐴𝑅𝐿(,ଷሿ are used to investigate the performance of the HWMA 𝑋ത# scheme for small 
(0 < 𝛿 ≤ 1), small-to-moderate (0 < 𝛿 ≤ 2), moderate-to-large (1 < 𝛿 ≤ 3) and small-to-large (0 < 𝛿 ≤ 3) shifts, 
respectively. To investigate to what extent using a certain sampling strategies when 𝜙 > 0 and 𝜎ெଶ > 0 has deteriorated the 
HWMA 𝑋ത∗ scheme’s performance as compared to the i.i.d. case (i.e. 𝜙=0 and 𝜎ெଶ=0), the percentage difference (%Diff) is 
defined as a percentage difference of EARL at some specified value of 𝜙 and 𝛾 (or 𝜙, 𝐶 and 𝐷) from the corresponding i.i.d. 
case, i.e. %Diff(ఋౣ,ఋౣ౮ሿ = 𝐸𝐴𝑅𝐿(ఋౣ,ఋౣ౮ሿ∗ − 𝐸𝐴𝑅𝐿(ఋౣ,ఋౣ౮ሿi.i.d.𝐸𝐴𝑅𝐿(ఋౣ,ఋౣ౮ሿi.i.d. , (22) 

where 𝐸𝐴𝑅𝐿ሾఋౣ,ఋౣ౮ሿ∗  denotes the EARL of the HWMA 𝑋ത∗ scheme for some specified 𝜙 > 0, whereas 𝐸𝐴𝑅𝐿ሾఋౣ,ఋౣ౮ሿi.i.d.  
denotes the EARL of the HWMA 𝑋ത scheme when 𝜙=0 and 𝜎ெଶ=0. Similarly, the expected SDRL is defined as 𝐸𝑆𝐷𝑅𝐿(ఋౣ,ఋౣ౮ሿ = 1∆  𝑆𝐷𝑅𝐿(𝛿)ఋೌೣ

ఋୀఋ , (23) 

and the %Diff of the ESDRL can be defined as in Eq. (22) using Eq. (23). 
 
 

Step 1 
 
 
 

Step 2 

 
 
 
 
 

Step 3 

 
 
 
 
 
 

Step 4 

 
 
 
 
 

Fig. 1. Flow chart illustrating the operational procedure of the HWMA 𝑋ത∗ scheme using mixed-𝑠&𝑚 strategy 
 
 
4.2 Sensitivity of the HWMA 𝑋ത∗ scheme with constant variance 
 
When 𝜙 and 𝛾 are increased, it is observed from Table 1 that the OOC ARLs and SDRLs of the HWMA 𝑋ത∗ scheme also 
increase. Stated differently, for an autocorrelated process with a constant 𝜎ெଶ , the performance of the HWMA 𝑋ത∗ scheme 
deteriorates as the level of autocorrelation and measurement error increase. For instance, when 𝛿=0.5, the OOC ARLs are 
equal to 7.8, 10.3, 16.3 and 29.0 for both (𝜙,𝛾) equal to (0,0), (0.2,0.2), (0.5,0.5) and (0.9,0.9), respectively. Similarly, the 𝐸𝐴𝑅𝐿(,ଶሿ and 𝐸𝑆𝐷𝑅𝐿(,ଶሿ increases as both 𝜙 and 𝛾 increase because %Diff(,ଶሿ becomes significantly higher as compared to 
the corresponding i.i.d. values. For instance, the 𝐸𝐴𝑅𝐿(,ଶሿ of the HWMA 𝑋ത∗ scheme when (𝜙,𝛾)=(0.9,0.9)  is 206.3% 
different from the i.i.d. one. Note that similar patterns are observed for other values of the smoothing parameter. Moreover, 
for a specific value of 𝑠 and 𝑚, the HWMA 𝑋ത∗ scheme (for the mixed-s&m strategy) has a similar pattern when both 𝜙 and 𝛾 are increased. 
 
When designing the HWMA 𝑋ത∗ scheme, a user needs to specify a desired 𝜆 and then calculate the corresponding 𝐿∗ such that 
Step 1 in Figure 1 is satisfied. In Table 2, the effect of 𝜆 on the performance of the HWMA 𝑋ത∗ scheme is illustrated. Except 
for a few cases when 𝛿 > 1, it is observed that as 𝜆 increases, the OOC ARL and SDRL values also increase indicating that 
the HWMA 𝑋ത∗ scheme deteriorates in performance. Overall, as 𝜆 increases, so do the EARL and ESDRL values, indicating 
that, in general, there is a deterioration performance over the majority of shifts. Note that as 𝜆 increases, the design parameter 𝐿∗ increases as well. Stated differently, the control limits of the HWMA 𝑋ത∗ scheme get wider as 𝜆 increases which explains 
the deterioration of the performance. 

Yes 

No 

At the next sampling point, collect a sample of size 𝑛 & calculate 𝐻௧∗ 

Is 𝐻௧∗ above the upper control limit, or 
below the lower control limit? 

Issue an OOC signal; then take corrective action to find and remove 
assignable causes. Thereafter, return to Step 2. 

Specify 𝜇, 𝜎, 𝜆, 𝜙, s, 𝛾, m & 𝑛; use (19a) & (19b) to setup the control limits 
by adjusting 𝐿∗ such that the actual IC ARL is approximately equal to 𝐴𝑅𝐿  
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Table 1  
The ARL and SDRL profiles of the HWMA 𝑋ത∗ scheme (for the no remedy strategy) when 𝜆=0.1, 𝑛=5, 𝐵=1 and 𝐴𝑅𝐿=500 
where (𝜙, 𝛾) ∈{(0.2, 0.2), (0.5,0.5), (0.9,0.9)} 

  ARL SDRL 
 (𝜙, 𝛾) i.i.d. (0.2,0.2) (0.5,0.5) (0.9,0.9) i.i.d. (0.2,0.2) (0.5,0.5) (0.9,0.9) 
 0.0 500.1 502.8 501.0 499.2 407.8 409.6 407.2 409.9 
 0.1 95.4 120.4 171.1 252.5 67.5 88.4 133.2 204.6 
 0.2 34.0 44.4 67.8 111.7 21.3 29.0 46.0 80.7 
 0.3 18.0 23.6 37.0 63.9 10.8 14.6 23.6 43.7 
 0.4 11.1 14.8 23.4 40.8 6.3 8.7 14.3 26.5 
 0.5 7.8 10.3 16.3 29.0 4.2 5.8 9.5 17.9 
 0.6 5.9 7.7 12.0 21.5 3.0 4.2 6.9 13.0 
 0.7 4.6 6.1 9.5 16.9 2.3 3.1 5.2 10.0 
 0.8 3.9 5.0 7.6 13.5 1.8 2.4 4.1 7.8 𝛿 0.9 3.3 4.2 6.3 11.1 1.5 2.0 3.3 6.3 
 1.0 2.9 3.6 5.4 9.5 1.4 1.7 2.7 5.2 
 1.1 2.5 3.2 4.7 8.1 1.2 1.4 2.2 4.4 
 1.2 2.2 2.8 4.1 7.1 1.1 1.3 1.9 3.7 
 1.3 2.0 2.5 3.7 6.3 1.1 1.2 1.7 3.2 
 1.4 1.8 2.3 3.4 5.6 1.0 1.1 1.5 2.8 
 1.5 1.6 2.1 3.1 5.0 0.9 1.1 1.4 2.5 
 1.6 1.4 1.9 2.8 4.5 0.8 1.0 1.3 2.2 
 1.7 1.3 1.7 2.6 4.2 0.7 0.9 1.2 2.0 
 1.8 1.2 1.6 2.4 3.9 0.5 0.9 1.2 1.8 
 1.9 1.1 1.4 2.2 3.6 0.4 0.8 1.1 1.7 
 2.0 1.1 1.3 2.0 3.4 0.4 0.7 1.1 1.6 
 𝐸𝐴𝑅𝐿(,ଶ] / 𝐸𝑆𝐷𝑅𝐿(,ଶ]  10.2 13.0 19.4 31.1 6.4 8.5 13.2 22.1 
 %Diff(,ଶ]   28.5% 90.7% 206.3%  33.0% 105.8% 245.0% 

 
Table 2  
The ARL and SDRL profiles of the HWMA 𝑋ത∗ scheme (for the no remedy strategy) for different values of 𝜆 along with the 
corresponding design parameters when 𝑛=5, 𝐵=1, (𝜙, 𝛾)=(0.5, 0.5) and 𝐴𝑅𝐿=500 

  ARL SDRL 
 (𝜆, 𝐿∗) (0.05,2.609) (0.1,2.938) (0.25,3.074) (0.5,3.089) (0.05,2.609) (0.1,2.938) (0.25,3.074) (0.5,3.089) 
 0.0 500.4 504.0 504.1 498.2 373.8 407.2 486.9 492.8 
 0.1 156.5 171.1 237.6 361.2 118.5 133.2 219.5 358.8 
 0.2 60.7 67.8 91.3 184.6 43.6 46.0 78.7 179.1 
 0.3 32.3 37.0 45.1 94.3 22.6 23.6 35.2 89.7 
 0.4 20.3 23.4 26.8 52.5 13.7 14.3 19.3 48.3 
 0.5 14.1 16.3 18.0 31.4 9.2 9.5 12.0 28.0 
 0.6 10.3 12.0 12.8 20.3 6.4 6.9 8.0 17.7 
 0.7 8.1 9.5 9.8 14.4 4.9 5.2 5.8 11.8 
 0.8 6.6 7.6 7.8 10.5 3.8 4.1 4.4 8.2 𝛿 0.9 5.5 6.3 6.4 8.0 3.0 3.3 3.5 5.9 
 1.0 4.8 5.4 5.4 6.3 2.6 2.7 2.8 4.4 
 1.1 4.2 4.7 4.6 5.2 2.2 2.2 2.4 3.4 
 1.2 3.7 4.1 4.0 4.3 1.9 1.9 2.0 2.7 
 1.3 3.3 3.7 3.6 3.7 1.7 1.7 1.7 2.2 
 1.4 3.0 3.4 3.2 3.2 1.5 1.5 1.5 1.8 
 1.5 2.8 3.1 2.9 2.9 1.4 1.4 1.3 1.6 
 1.6 2.5 2.8 2.7 2.6 1.3 1.3 1.2 1.4 
 1.7 2.3 2.6 2.4 2.3 1.3 1.2 1.1 1.2 
 1.8 2.1 2.4 2.2 2.1 1.2 1.2 1.0 1.0 
 1.9 2.0 2.2 2.1 2.0 1.1 1.1 1.0 0.9 
 2.0 1.8 2.0 1.9 1.8 1.0 1.1 0.9 0.8 
 𝐸𝐴𝑅𝐿(,ଶ] / 𝐸𝑆𝐷𝑅𝐿(,ଶ]  17.33 19.35 24.52 40.69 12.14 13.17 20.16 38.44 

 
Next, the effect of increasing 𝑠 and 𝑚 on the performance of the HWMA 𝑋ത∗ scheme integrated with mixed-s&m sampling 
strategy is illustrated in Table 3. It is observed that as 𝑠 and 𝑚 increase, the ARLs, SDRLs, EARL and ESDRL decrease which 
indicates that the negative effect of autocorrelation and measurement errors is reduced. Thus, it follows that, whenever 𝜙 and 𝛾 are greater than 0, the HWMA 𝑋ത∗ scheme integrated with mixed-s&m sampling strategy has a better performance than the 
HWMA 𝑋ത∗ scheme with no remedy strategy. Note though, it is important to note that the use of the mixed-s&m sampling 
strategy requires more time and effort than the no remedy strategy. Consequently, a balance needs to be struck between 
performance and cost. Based on numerous simulations we conducted, we recommend a value of 𝑠 equal to 1, 2, 3 and 4 for a 𝜙 within (0,0.3], (0.3,0.5], (0.5,0.7] and (0.7,1), respectively. Note though, for large datasets, the value of 𝑠 can be increased 
further when 𝜙 ∈(0.7,1) because the level of autocorrelation has a much larger negative effect on the performance of the 
HWMA 𝑋ത∗ scheme than the level of measurement errors. Next, we recommend a value of 𝑚 equal to 1, 2 and 3 for a 𝛾 within 
(0,0.4], (0.4,0.8] and (0.8,1], respectively. Note that for 𝛾 > 1, a value of 𝑚 = 4 can be used; however, 𝑚 > 4 should never 
be used because the level of measurement errors do not have a significant negative effect on the performance of the HWMA 𝑋ത∗ scheme as compared to the level of autocorrelation. Moreover, the cost and effort of R&R (repeatability & reproducibility) 
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associated with measurement errors is much higher as compared to skipping or mixing samples associated with 
autocorrelation.  
 
Table 3  
The 𝐴𝑅𝐿 and  𝑆𝐷𝑅𝐿 profiles of the HWMA 𝑋ത∗ scheme (for the mixed-s&m strategy) with a constant variance when 𝑛=5, 𝜆=0.1, 𝜙=0.75, 𝛾=0.75, 𝐿∗=2.938, 𝐴𝑅𝐿=500 with 𝑠 ∈{1,2,3,4} and 𝑚 ∈{2,3,4,5} 

  ARL SDRL 
 (𝒔,𝒎) No remedy (1,2) (2,3) (3,4) (4,5) No remedy (1,2) (2,3) (3,4) (4,5) 
 0.1 222.9 155.6 139.2 126.7 121.8 176.0 118.2 104.9 93.2 89.5 
 0.2 93.9 59.9 52.7 47.5 44.8 66.9 39.7 35.2 31.6 29.0 
 0.3 52.4 31.9 28.4 25.5 23.5 34.4 20.1 17.5 15.6 14.3 
 0.4 33.4 20.4 17.8 16.0 15.0 21.0 12.3 10.5 9.5 8.6 
 0.5 23.3 14.2 12.4 11.2 10.4 14.2 8.3 7.2 6.4 5.8 
 0.6 17.7 10.5 9.2 8.3 7.7 10.5 6.0 5.0 4.5 4.2 
 0.7 13.7 8.3 7.2 6.5 6.0 8.0 4.4 3.8 3.3 3.1 𝛿 0.8 11.0 6.6 5.9 5.4 4.9 6.2 3.4 3.0 2.7 2.4 
 0.9 9.1 5.6 4.9 4.5 4.2 4.9 2.8 2.4 2.2 2.0 
 1.0 7.6 4.7 4.2 3.9 3.7 4.0 2.3 2.0 1.8 1.7 
 1.1 6.6 4.1 3.7 3.4 3.2 3.5 2.0 1.7 1.6 1.5 
 1.2 5.7 3.7 3.3 3.0 2.8 2.9 1.7 1.5 1.4 1.3 
 1.3 5.1 3.3 3.0 2.7 2.5 2.5 1.5 1.4 1.3 1.2 
 1.4 4.6 3.0 2.7 2.5 2.3 2.2 1.4 1.3 1.2 1.1 
 1.5 4.1 2.7 2.4 2.2 2.1 2.0 1.3 1.2 1.1 1.1 
 1.6 3.8 2.5 2.2 2.0 1.9 1.7 1.2 1.1 1.1 1.0 
 1.7 3.5 2.3 2.0 1.8 1.7 1.6 1.1 1.1 1.0 0.9 
 1.8 3.2 2.1 1.9 1.7 1.5 1.5 1.1 1.0 0.9 0.8 
 1.9 3.0 1.9 1.7 1.5 1.4 1.4 1.0 0.9 0.8 0.8 
 2.0 2.8 1.8 1.6 1.4 1.3 1.3 1.0 0.9 0.8 0.7 
 𝐸𝐴𝑅𝐿(,ଶ] / 𝐸𝑆𝐷𝑅𝐿(,ଶ] 26.4 17.3 15.3 13.9 13.1 18.3 11.5 10.2 9.1 8.5 

 
Similarly, Fig. 2 shows that increasing the slope coefficient (i.e. 𝐵 in Eq. (12b)) of the covariate error model yields an 
improvement in the performance of the HWMA 𝑋ത∗ scheme with the mixed-s&m strategy (see Eq. (19a) and Eq. (19b)). That 
is, as 𝐵 increases, the corresponding OOC ARL values decrease, for any constant input variables.  
 

  
Fig. 2. The 𝐴𝑅𝐿 profiles of the HWMA 𝑋ത∗ scheme (for the 
mixed-3&4 strategy) with a constant variance when 𝑛=5, 𝜆=0.1, 𝜙=0.75, 𝛾=0.75, 𝐿∗=2.938 and 𝐴𝑅𝐿=500 for 
different values of 𝐵 

Fig. 3. The 𝐴𝑅𝐿 profiles of the HWMA 𝑋ത∗ scheme (for the 
mixed-3&4 strategy) with a constant variance when 𝐵=1, 𝜆=0.1, 𝜙=0.75, 𝛾=0.75, 𝐿∗=2.938 and 𝐴𝑅𝐿=500 for 
different values of 𝑛 

 
Finally, an increase in the sample size yields an improvement in the performance of the HWMA 𝑋ത∗ scheme with the mixed-
s&m strategy, see the illustration in Fig. 3 for 𝑛 ∈{3,5,10}. That is, the higher the sample size, the faster will the proposed 
monitoring scheme yields an OOC when there is actually shift in the process.   

 
4.3 Sensitivity of the HWMA 𝑋ത∗ scheme with linearly increasing variance 
 
For the linearly increasing variance scenario, using Eq. (19a) and Eq. (19b) with the 𝜑 expression given in Eq. (12c), as 𝐶 and 𝐷 increase (with 𝐵 fixed), the OOC ARL values increase indicating that the process deteriorates in performance. The latter is 
illustrated graphically for 𝐶 and 𝐷 in Fig. 4 and Fig. 5, respectively.  
 
Although not shown here, for a fixed 𝐶 and 𝐷, when the values of s and m are increased, the HWMA 𝑋ത∗ scheme with the 
mixed-s&m strategy has an improved OOC performance (this is similar to the pattern in Table 2). Moreover, for a fixed 𝐶 
and 𝐷, when 𝐵 is increased, the HWMA 𝑋ത∗ scheme with the mixed-s&m strategy has an improved OOC performance (this is 
similar to the pattern in Fig. 2). 
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Fig. 4. The 𝐴𝑅𝐿 profiles of the HWMA 𝑋ത∗ scheme (for the 
mixed-3&4 strategy) with a linearly increasing variance 
when 𝐷=0, 𝐶 ∈{1,2,3} 𝑛=5, 𝜆=0.1, 𝜙=0.75, 𝐿∗=2.938 and 𝐴𝑅𝐿=500 

Fig. 5. The 𝐴𝑅𝐿 profiles of the HWMA 𝑋ത∗ scheme (for the 
mixed-3&4 strategy) with a linearly increasing variance 
when 𝐶=0, 𝐷 ∈{1,2,3}, 𝑛=5, 𝜆=0.1, 𝜙=0.75, 𝐿∗=2.938 and 𝐴𝑅𝐿=500 

 
4.4 Comparison of different sampling strategies 
 
For ease in plotting, let s and m be denoted by (𝑖 −1) and 𝑖, respectively; then 𝑖 ∈{1,2,…,10} implies that (𝑠,𝑚)∈{(0,1), (1, 
2),…, (9,10)}, with (0,1) sampling strategy denoting the ‘no remedy’ strategy. From (11a), it is observed that for the no 
remedy strategy, the autocorrelated process with constant measurement errors, its 𝜑 is given by 𝜑 = ൭1 + 2ቆ𝜙ାଵ − 𝑛𝜙ଶ + (𝑛 − 1)𝜙𝑛(𝜙 − 1)ଶ ቇ൱ + (𝐵ଶ + 𝛾ଶ) − 1. (24a) 

However, that of the mixed-𝑠&𝑚 strategy is given in (12b). Two additional methods used to reduce the negative effect of 
measurement errors and autocorrelation are 𝑠&𝑚 and mixed&𝑚 strategies, see Costa and Castagliola (2011) and Shongwe et 
al. (2021). The 𝜑 expressions for the two latter strategies are given by 𝜑 = ൭1 + 2ቆ𝜙(௦ାଵ)(ାଵ) − 𝑛𝜙ଶ௦ାଶ + (𝑛 − 1)𝜙௦ାଵ𝑛(𝜙௦ାଵ − 1)ଶ ቇ൱ + ቆ𝐵ଶ + 𝛾ଶ𝑚ቇ − 1 (24b) 

and  𝜑 = ቌ൭𝑛௧𝑛 + 2ቆ𝜙ଶାଶ − 𝑛௧𝜙ସ + (𝑛௧ − 1)𝜙ଶ𝑛(𝜙ଶ − 1)ଶ ቇ൱+ ൭𝑛௧ିଵ𝑛 + 2ቆ𝜙ଶషభାଶ − 𝑛௧ିଵ𝜙ସ + (𝑛௧ିଵ − 1)𝜙ଶ𝑛(𝜙ଶ − 1)ଶ ቇ൱ቍ
+ ቆ𝐵ଶ + 𝛾ଶ𝑚ቇ − 1 

(24c) 

When 0 < 𝜙, 𝛾 < 1, then using (12b), (24a), (24b) and (24c), it is observed from Figure 6 that the 𝜑 values are greater than 
1. For small values of 𝜙 and 𝛾 (e.g. 𝜙=𝛾=0.25 in Figure 6(a)), the values of 𝜑 for the s&m and mixed-s&m strategies converge 
towards the value of 1; however, 𝜑 does not equal 1 exactly, which implies it is not theoretically possible to get rid of all the 
negative effect of autocorrelation and measurement errors.  

  
(a) 𝜙=0.25 & 𝛾=0.25 (b) 𝜙=0.75 & 𝛾=0.75 

Fig. 6. The effect of different sampling strategies on 𝜑 when (𝜙, 𝛾) ∈{(0.25,0.25), (0.75,0.75)}, 𝑛=10, 𝑖 ∈{2,…,10} or 
(s,m) ∈{(0,1), (1,2),…, (9,10)} 

For large values of 𝜙 and 𝛾 (e.g. 𝜙=𝛾=0.75 in Fig. 6(b)), the values of 𝜑 for the s&m and mixed-s&m strategies only start 
getting close to a value of 1 at slightly higher values of s and m. The value of 𝜑 for the mix&m strategy is lower than the one 
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of the s&m strategy only when s=1 and m=2; otherwise, the converse is true. The no remedy strategy has a significantly large 
value of 𝜑 and should never be implemented as it yields the highest variability than any of the sampling strategies considered 
here; however, the mixed-s&m strategy yields a uniformly lower variability than all the considered strategies. Note that for 
the linearly increasing 𝜎ெଶ  scenario, a similar pattern (with slightly higher magnitudes) is observed for the values of 𝜑. Next, 
in Table 4, the HWMA 𝑋ത∗ scheme using the no remedy, mixed-&m, s&m and mixed-s&m strategies are compared against 
each other for an autocorrelated with constant and linearly increasing variance. It is observed that with respect to ARL and 
EARL, the sampling strategies can be sorted in the following order in terms of better OOC performance:  mixed-s&m > s&m 
> mixed&m > ‘no remedy’. That is, the run-length performance of the HWMA 𝑋ത∗ scheme follows a similar pattern when 
using different sampling strategies as that shown in Fig. 6. 
 
Table 4 
The 𝐴𝑅𝐿 profiles of the HWMA 𝑋ത∗ scheme for different sampling strategies when 𝑛=5, 𝜆=0.1, 𝐿∗=2.938, 𝐵=1, 𝐴𝑅𝐿=500 
with s=3 and m=4  

  𝜙=0.75, 𝛾=0.75 𝜙=0.75, 𝐶=1, 𝐷=1 
 Strategy No remedy Mix&m s&m Mixed-s&m No remedy Mix&m s&m Mixed-s&m 
 0.0 501.4 501.5 499.7 502.0 499.2 502.5 501.7 500.5 
 0.1 223.0 149.9 143.1 129.3 259.9 163.3 158.3 149.5 
 0.2 93.9 55.9 53.7 48.0 116.5 64.4 61.1 56.7 
 0.3 52.1 30.4 28.7 25.6 66.1 34.7 33.4 30.0 
 0.4 33.2 19.2 18.1 16.2 42.4 21.8 20.8 19.0 
 0.5 23.3 13.4 12.4 11.1 30.2 15.4 14.6 13.2 
 0.6 17.4 10.0 9.3 8.3 22.4 11.4 10.9 9.8 
 0.7 13.5 7.7 7.3 6.5 17.6 8.9 8.4 7.7 𝛿 0.8 10.9 6.3 5.9 5.4 14.1 7.2 6.8 6.3 
 0.9 9.1 5.3 5.0 4.5 11.7 6.0 5.7 5.2 
 1.0 7.6 4.5 4.2 3.8 9.9 5.1 4.9 4.4 
 1.1 6.6 3.9 3.7 3.4 8.5 4.4 4.3 3.9 
 1.2 5.8 3.5 3.3 3.0 7.3 3.9 3.8 3.5 
 1.3 5.1 3.1 3.0 2.7 6.5 3.5 3.3 3.1 
 1.4 4.6 2.8 2.7 2.4 5.8 3.2 3.0 2.8 
 1.5 4.1 2.6 2.4 2.2 5.2 2.9 2.8 2.6 
 1.6 3.8 2.4 2.2 2.0 4.8 2.6 2.5 2.3 
 1.7 3.5 2.1 2.1 1.9 4.4 2.4 2.3 2.1 
 1.8 3.2 2.0 1.9 1.7 4.0 2.3 2.1 2.0 
 1.9 3.0 1.8 1.7 1.5 3.7 2.1 2.0 1.8 
 2.0 2.8 1.7 1.6 1.4 3.5 1.9 1.8 1.7 
 𝐸𝐴𝑅𝐿(,ଶ] 26.32 16.42 15.62 14.04 32.22 18.37 17.64 16.37 

 
Table 5  
A comparison of the ARL and EARL profiles of the HWMA 𝑋ത∗ scheme (and Shewhart 𝑋ത∗ scheme in parentheses) with the 
mixed-𝑠&𝑚 strategy when 𝜆=0.1, 𝑘=3.0902 𝑛=5, 𝑠=3, 𝑚=4, 𝐴𝑅𝐿=500 and (𝜙, 𝛾) ∈{(0.1,0.1),(0.3,0.3), (0.5,0.5), (0.7,0.7), 
(0.9,0.9)} 

 (𝜙, 𝛾) (0.1,0.1) (0.3,0.3) (0.5,0.5) (0.7,0.7) (0.9,0.9) 
 0 502.4 (500.0) 501.7 (500.0) 498.5 (500.0) 499.4 (500.0) 502.7 (500.0) 
 0.1 95.4 (394.7) 97.6 (397.2) 106.1 (405.2) 129.6 (421.9) 196.2 (445.7) 
 0.2 34.1 (232.3) 35.0 (236.3) 38.3 (249.8) 48.7 (280.7) 79.3 (332.0) 
 0.3 18.2 (127.6) 18.1 (130.9) 20.1 (142.6) 25.8 (171.4) 43.0 (226.5) 
 0.4 11.1 (71.2) 11.4 (73.6) 12.6 (82.0) 16.3 (103.9) 27.7 (150.5) 
 0.5 7.8 (41.3) 8.1 (42.9) 8.8 (48.6) 11.4 (64.3) 19.6 (100.3) 
 0.6 5.9 (25.0) 6.0 (26.0) 6.6 (29.9) 8.4 (40.9) 14.3 (67.8) 
 0.7 4.7 (15.8) 4.8 (16.5) 5.2 (19.2) 6.6 (26.8) 11.1 (46.7) 𝛿 0.8 3.9 (10.4) 4.0 (10.9) 4.3 (12.7) 5.4 (18.1) 9.0 (32.8) 
 0.9 3.3 (7.1) 3.4 (7.5) 3.7 (8.8) 4.6 (12.6) 7.5 (23.5) 
 1.0 2.9 (5.1) 2.9 (5.4) 3.2 (6.3) 3.9 (9.0) 6.4 (17.2) 
 1.1 2.5 (3.8) 2.6 (4.0) 2.8 (4.6) 3.5 (6.7) 5.5 (12.8) 
 1.2 2.2 (2.9) 2.3 (3.1) 2.5 (3.5) 3.1 (5.1) 4.8 (9.7) 
 1.3 2.0 (2.4) 2.0 (2.4) 2.2 (2.8) 2.7 (3.9) 4.3 (7.5) 
 1.4 1.8 (1.9) 1.8 (2.0) 2.0 (2.3) 2.5 (3.2) 3.9 (5.9) 
 1.5 1.6 (1.7) 1.6 (1.7) 1.8 (1.9) 2.3 (2.6) 3.5 (4.8) 
 1.6 1.4 (1.5) 1.5 (1.5) 1.6 (1.7) 2.0 (2.2) 3.2 (3.9) 
 1.7 1.3 (1.3) 1.3 (1.4) 1.5 (1.5) 1.9 (1.9) 3.0 (3.3) 
 1.8 1.2 (1.2) 1.2 (1.2) 1.4 (1.3) 1.7 (1.7) 2.8 (2.8) 
 1.9 1.1 (1.1) 1.2 (1.2) 1.3 (1.2) 1.6 (1.5) 2.6 (2.4) 
 2.0 1.1 (1.1) 1.1 (1.1) 1.2 (1.2) 1.4 (1.4) 2.4 (2.1) 
 𝐸𝐴𝑅𝐿(,ଵ] 𝑃𝐶𝐼(,ଵ] 18.72 (93.05) 

4.97 
19.13 (94.71) 

4.95 
20.89 (100.49) 

4.81 
26.06 (114.97) 

4.41 
41.39 (144.30) 

3.49 
 𝐸𝐴𝑅𝐿(ଵ,ଶ] 𝑃𝐶𝐼(ଵ,ଶ] 1.62 (1.89) 

1.16 
1.65 (1.95) 

1.18 
1.81 (2.20) 

1.22 
2.26 (2.99) 

1.32 
3.59 (5.52) 

1.54 
 𝐸𝐴𝑅𝐿(,ଶ] 𝑃𝐶𝐼(,ଶ] 10.17 (47.47) 

4.67 
10.39 (48.33) 

4.65 
11.35 (51.35) 

4.53 
14.16 (58.98) 

4.17 
22.49 (74.91) 

3.33 
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4.5 Comparison with the existing k-sigma limits Shewhart 𝑋ത∗ scheme 
 
The ARL and EARL profiles of the HWMA and Shewhart 𝑋ത∗ schemes when (𝜙, 𝛾) ∈{(0,0),(0.2,0.2), (0.5,0.5), (0.9,0.9)} 
specifically for 𝑠=3 and 𝑚=4 are compared to each other in Table 5. For comparison purpose, the performance comparison 
index (PCI) is used to measure the relative effectiveness of two different schemes, which is given by  
 𝑃𝐶𝐼 (ఋౣ,ఋౣ౮] = 𝐸𝐴𝑅𝐿(ఋౣ,ఋౣ౮]Shewhart /𝐸𝐴𝑅𝐿(ఋౣ,ఋౣ౮]HWMA , 
 
where 𝐸𝐴𝑅𝐿(ఋౣ,ఋౣ౮]Shewhart  (𝐸𝐴𝑅𝐿(ఋౣ,ఋౣ౮]HWMA ) is the EARL of Shewhart 𝑋ത# (HWMA 𝑋ത#) scheme over the range of shifts from 𝛿୫୧୬ to 𝛿୫ୟ୶, respectively. When the PCI is equal to 1, greater than 1 or less than 1, it implies that the HWMA 𝑋ത# scheme 
has the same, better or worse performance than the Shewhart 𝑋ത# scheme, respectively. For the majority of the shifts in Table 
5, it is apparent that the HWMA 𝑋ത∗ scheme has a significantly better OOC ARL performance than the Shewhart 𝑋ത∗ scheme. 
In addition, for different values of 𝜙 and 𝛾, when 𝛿 ∈ (0,1], (1,2] and (0,2], the ARL and EARL of the HWMA 𝑋ത∗ scheme 
outperforms those of the Shewhart 𝑋ത∗ scheme since all the PCIs for different ranges of shifts are greater than 1. A similar 
pattern is observed when comparing the corresponding SDRLs and ESDRLs. Although not shown here, a similar pattern is 
also observed for other different values of s and m, as well as when the autocorrelated processes are subjected to linearly 
increasing 𝜎ெଶ . Hence, the HWMA 𝑋ത∗ scheme has a better OOC performance and should be implemented instead of the 
existing Shewhart 𝑋ത∗ scheme. 
 
5. Illustrative example 
 
In this section, the yogurt cup filling process dataset taken from Costa and Castagliola (2011) which shows the weights of 
different yogurt cups taken at different sampling points, is used to demonstrate the application and implementation of the 
HWMA 𝑋ത∗ under the combined effect of measurement and autocorrelation using the mixed-s&m strategy. The dataset 
contains 20 samples each of size 5 taken every hour and each of them weighted two times (i.e. m=2). Historical information 
of this process indicated that the weight of a yogurt cup, denoted as 𝑋௧,,∗ , fits an AR(1) model with parameter 𝜙=0.38, an IC 
mean, 𝜇=124.9𝑔 and an IC standard deviation, 𝜎=0.76𝑔. An R&R study indicates that the measurement system standard 
deviation, 𝜎ெ=0.24𝑔, so that 𝛾=0.316. The aim of this example is to show how to implement the mixed-s&m sampling strategy 
to form rational subgroups of size n=3 (i.e., with 𝑛௧ିଵ=1 and 𝑛௧=2) when 𝑠 ∈{1,2}, 𝑚=2. The plotting statistics at each 
sampling point for the mixed-1&2 and mixed-2&2 sampling strategies are shown in Table 6. For instance, for 𝑠=𝑚=2 and 𝑡=3, the plotting statistic is calculated as follows:   
 𝑋തଷ∗ = ଵଷ ቀమ,భ,భାమ,మ,భଶ ቁ + ଶଷ ቀయ,భ,భାయ,భ,రାయ,మ,భାయ,మ,రସ ቁ= ଵଷ ቀଵଶସ.ଽାଵଶହ.ଶଶ ቁ + ଶଷ ቀଵଶହ.ଵାଵଶଶ.ଽାଵଶହ.ଵାଵଶଶ.ସସ ቁ=124.27, 
with 𝑋ധଶ∗ = 125.03, so that   𝐻ଷ∗ = 𝜆𝑋തଷ∗ + (1 − 𝜆) 𝑋ധଶ∗ = 0.1(124.27) + (1 − 0.1)125.03 = 124.96. 
 
In this example, when 𝑠=𝑚=2, 𝜑 is found to be equal to 1.0322 so that the lower and upper control limits of the HWMA 𝑋ത∗ 
scheme when 𝑡 = 3 are calculated using Eq. (19a) and Eq. (19b) as follows: 
 𝐿𝐶𝐿ଷ = 124.90 − 2.938ඨቆ0.1ଶ  × (0.76)ଶ3 +  (1 − 0.1)ଶ × (0.76)ଶ3 × (2 − 1) ቇ (1.0322) = 124.06,  (25a) 

and   𝑈𝐶𝐿ଷ = 124.90 + 2.938ඨቆ0.1ଶ  × (0.76)ଶ3 +  (1 − 0.1)ଶ × (0.76)ଶ3 × (2 − 1) ቇ (1.0322) = 125.74.  (25b) 

 
Other time-varying control limits for 𝑡 > 1 can also be calculated in a similar way as shown in (25a) and (25b), respectively. 
The plotting statistics and control limits of the HWMA 𝑋ത∗ scheme when (s,m) = (1,2) and (2,2) are displayed in Table 6 and 
Fig. 7. For this specific example, the signal is observed for the first time on the 15th subgroup in both cases.  
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Table 6  
Illustration of the charting statistics of the HWMA 𝑋ത∗ scheme using the yogurt cup filling data when n=3 (i.e., with 𝑛௧ିଵ=1 and 𝑛௧=2) when 𝑠 ∈{1,2} and 𝑚=2 

 First set Second set  s=1,m=2  s=2,m=2 

𝒕 𝑋௧,ଵ,ଵ∗  𝑋௧,ଶ,ଵ∗  𝑋௧,ଷ,ଵ∗  𝑋௧,ସ,ଵ∗  𝑋௧,ହ,ଵ∗  𝑋௧,ଵ,ଶ∗  𝑋௧,ଶ,ଶ∗  𝑋௧,ଷ,ଶ∗  𝑋௧,ସ,ଶ∗  𝑋௧,ହ,ଶ∗  𝑋ത௧∗ 𝑋ധ௧ିଵ∗  𝐻௧∗ 𝐿𝐶𝐿௧ 𝑈𝐶𝐿௧ Signal 𝑋ത௧∗ 𝑋ധ௧ିଵ∗  𝐻௧∗ 𝐿𝐶𝐿௧ 𝑈𝐶𝐿௧ Signal
 

1 124.90 125.90 125.20 124.60 124.80 124.80 125.90 124.80 124.10 124.40    124.77 125.03 No    124.77 125.03 N
2 124.90 125.50 124.10 125.20 125.00 125.20 125.00 123.90 125.20 125.60 124.63 124.90 124.87 123.70 126.10 No 125.03 124.90 124.91 123.71 126.09 N
3 125.10 125.20 125.40 122.90 125.40 125.10 124.80 125.30 122.40 125.40 125.17 124.63 124.69 124.04 125.76 No 124.27 125.03 124.96 124.06 125.74 N
4 126.10 124.60 125.70 126.40 124.90 125.90 124.80 125.50 126.50 125.70 125.57 124.90 124.97 124.20 125.60 No 125.85 124.65 124.77 124.21 125.59 N
5 125.80 122.60 124.10 126.10 124.90 125.70 122.60 123.50 126.30 125.00 125.18 125.12 125.13 124.29 125.51 No 125.98 125.05 125.14 124.30 125.50 N
6 125.00 125.50 124.80 124.90 124.80 125.20 124.80 125.00 124.80 124.20 125.25 125.14 125.15 124.35 125.45 No 125.23 125.28 125.28 124.36 125.44 N
7 124.20 125.80 125.40 126.40 125.10 124.60 125.30 125.50 126.20 125.20 124.98 125.16 125.14 124.39 125.41 No 125.27 125.27 125.27 124.40 125.40 N
8 124.90 123.80 125.10 124.00 124.40 124.90 123.20 125.30 124.50 124.20 124.83 125.13 125.10 124.43 125.37 No 124.52 125.27 125.20 124.44 125.36 N
9 125.90 124.40 126.30 124.90 125.20 125.80 124.80 125.70 125.20 125.10 125.58 125.09 125.14 124.46 125.34 No 125.27 125.16 125.17 124.46 125.34 N
10 124.20 126.20 125.60 124.40 124.10 124.30 125.50 125.00 124.40 124.30 125.13 125.15 125.15 124.48 125.32 No 124.83 125.18 125.14 124.49 125.31 N
11 123.70 123.40 124.70 123.10 123.10 123.60 123.30 124.80 123.10 122.80 124.22 125.15 125.06 124.50 125.30 No 123.67 125.14 124.99 124.50 125.30 N
12 124.00 122.60 123.60 124.40 123.60 124.10 122.40 123.60 124.50 123.10 123.77 125.06 124.93 124.52 125.28 No 124.05 124.99 124.90 124.52 125.28 N
13 122.00 123.90 123.70 124.30 121.90 122.50 124.00 124.10 124.40 122.90 123.40 124.94 124.78 124.53 125.27 No 123.55 124.91 124.77 124.54 125.26 N
14 122.40 122.80 123.70 123.70 122.80 123.00 123.10 124.20 124.10 123.10 122.97 124.81 124.63 124.54 125.26 No 122.95 124.79 124.61 124.55 125.25 N
15 123.90 124.10 123.40 123.10 124.50 123.60 124.50 122.90 123.10 125.10 123.20 124.67 124.52 124.55 125.25 Yes 123.18 124.65 124.50 124.56 125.24 Ye
16 121.90 123.40 123.50 125.30 123.30 122.30 123.30 123.30 125.50 123.60 123.08 124.56 124.42 124.56 125.24 Yes 123.75 124.55 124.47 124.57 125.23 Ye
17 123.30 123.60 124.20 123.40 123.50 122.90 123.50 123.80 123.60 123.40 123.07 124.46 124.32 124.57 125.23 Yes 122.90 124.49 124.33 124.58 125.22 Ye
18 122.00 123.60 124.70 122.60 124.50 122.20 123.40 125.00 122.50 123.90 123.35 124.38 124.27 124.58 125.22 Yes 122.58 124.39 124.21 124.59 125.21 Ye
19 124.00 123.10 123.90 122.60 124.20 123.90 123.40 124.50 122.80 123.50 123.42 124.32 124.23 124.59 125.21 Yes 122.92 124.29 124.15 124.59 125.21 Ye
20 125.50 122.20 123.20 123.20 123.20 124.90 122.30 123.20 123.30 123.20 124.12 124.27 124.25 124.60 125.20 Yes 124.13 124.21 124.20 124.60 125.20 Ye

 

  
(a) (s,m) = (1,2) (b)  

 
Fig. 7. HWMA 𝑋ത∗ scheme using the mixed-s&m strategy for the yogurt cup filling data when n=3 (i.e., with 𝑛௧ିଵ=1 and 𝑛௧=2) when 𝑠 ∈{1,2} and 𝑚=2
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6. Concluding remarks 
A new HWMA scheme to monitor the process means under the effect of within-sample correlation with and 
without measurement errors are proposed. To reduce the negative effect of autocorrelation and measurement 
errors, sampling strategies that involve skipping and mixing different samples are integrated into the HWMA 
scheme’s design. Then, using Monte Carlo simulations, it is shown that the HWMA scheme using the mixed-s&m 
strategy has a uniformly better OOC performance than its competitors when the process is under the combined 
effect of autocorrelation and measurement errors (for both constant and linearly increasing variance). A 
comparison with the only existing basic Shewhart scheme using the mixed-s&m strategy indicates that the new 
HWMA scheme is more efficient in quick detection of shifts. Although the results in this study were illustrated 
for a few different sample sizes, the same conclusion holds for other values of 𝑛 (or, 𝑛௧ and 𝑛௧ିଵ). For future 
research, this study will be conducted by taking into account parameter estimation effect. Also, the use of the 
mixed-s&m strategies needs to be thoroughly studied for other memory-type monitoring schemes (i.e. CUSUM, 
EWMA and GWMA).  
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