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Abstract
In this note we provide a new proof of the Tikhonov theorem for the infinite time interval
and discuss some of its applications.
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1 Introduction

Modern modelling dynamical processes with ordinary differential equations usually leads to
very large and complex systems with the coefficients that often widely differ in magnitude.
These features make any robust analysis of them close to impossible. In particular, the pres-
ence of very small and very large coefficients creates a stiffness in the system that renders
standard numerical methods unreliable. At the same time, the presence of such coefficients
indicates that the process is driven by mechanisms acting on very different time scales. Then
one can hope that there is a dominant time scale; that is, the time scale at which the system,
obtained by an appropriate aggregation of much faster and/or much slower processes, will
have the same main dynamical features as the original one.

The presence of different time scales in a system is revealed if the nondimensionalization
with respect to the chosen reference time unit produces coefficients that are significantly
larger (or smaller) than the others. In this paper we will be dealing with systems that can be
written in the so-called canonical, or Tikhonov, form

uε,t = f (uε, vε, t, ε), uε(0) = ů,

εvε,t = g(uε, vε, t, ε), vε(0) = v̊, (1)
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where ,t denotes the time derivative, f and g are sufficiently smooth functions acting from
an open subset of Rn × R

m into, respectively, Rn and R
m, and ε is a small parameter. As

we shall see below, many more complex systems can be brought to such a form, see e.g.
[4] for a systematic approach to a class of such systems. The interpretation of (1) is that
the processes described by g happen much faster than those described by f and thus, if we
are interested in larger times, it is plausible to assume that the former reach an equilibrium
before any significant change occurs in the latter. Hence, for small ε, the solution to (1)
should be close to the pair consisting of the solution t �→ v̄(t) = φ(u, t) to the algebraic
equation

g(u, v, t, 0) = 0, (2)
called the quasi steady state, and the solution ū(t) of the reduced equation

u,t = f (u,φ(u, t), t, 0), u(0) = ů. (3)

The validity of such an approximation is the subject of the Tikhonov theorem, see e.g. [14,
15], that was also proven by other methods, such as the Center Manifold Theory, see e.g.
[5, 7]. The two main assumptions of the Tikhonov theorem are that: a) (2) admits a single
isolated solution and, noting that for any fixed (u, t), φ(u, t) is an equilibrium of the initial
layer equation

ṽε,τ = g(u, ṽ, t, 0),

where τ = t/ε but (u, t) are treated as parameters, and b) φ(u, t) is uniformly asymp-
totically stable in (u, t). The latter assumption is a mathematical expression of the fact
that the quasi steady state is indeed practically reached in the fast time t/ε; that is, almost
immediately in terms of the slow time t .

A problem with the Tikhonov theorem is that the adopted assumptions only ensure that
the convergence is valid on finite intervals of time t and thus the approximation (2), (3) is
useless if one wants to investigate the long term dynamics of (1). In other words, within
the framework of the Tikhonov theorem, one cannot substitute the quasi steady state into
(1) and draw any valid conclusions about the long term dynamics of (1) from the resulting
reduced equation. We shall present an example of such a situation in Section 2.

This problem was first addressed in [8] where, assuming additionally that the relevant
equilibrium of (3) is uniformly asymptotically stable, the author used the reverse Lyapunov
theorem of [11] to construct appropriate Lyapunov functions to push the estimates of the
original Tikhonov’s proof to infinity. Recently the problem was again picked in [10], where
the authors used the ideas of [5] to localize the equations along the quasi steady state and
then proved the uniform in time estimates by directly using differential inequalities. The
tricky part of this method is that the localization must preserve the properties of g that
allow for solving (2) and keep the stability of the localized version of (3). Moreover, the
localization must be extended close to t = 0 to a funnel-like domain to encompass initial
conditions ẙ that may be far away from the quasi steady state. These, together with the
specific form of localization, forced the authors of [10] to consider a restricted form of g

which is one-dimensional with a dominant constant coefficient linear part.
The main aim of this paper is to address the restrictions mentioned above. We fol-

low the ideas of [10] but use a different form of the localization that preserves the linear
part of f and g. Moreover, to avoid extending the localization to the funnel-like domain
(which requires an additional assumption), we use the estimates of the original proof of the
Tikhonov theorem close to t = 0 and then employ the differential inequalities only for small
initial conditions.

In the present paper we only prove the Tikhonov type result without addressing the
order of the convergence, as was done in [10]. The higher order estimates, that can be
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done using the same approach, are the subject of the follow-up paper [3]. We also note
that our assumptions, while being in line with that of [10], are stronger than in the origi-
nal Tikhonov theorem but they are satisfied in most applications and make the proofs more
straightforward.

2 Example

In this section, following [4, Section 4.3] and [1], we present an example showing that the
Tikhonov approximation, being valid on finite time intervals, may not provide any reliable
information on the long term dynamics of the original system.

Example 1 We assume that we have the populations of prey and predators, where the prey
can move between two locations, say, grazing grounds and some refuge, while the preda-
tors only hunt in the grazing area. The interactions between the predators and the prey are
modelled by the mass-action law. We denote by (n1, n2) and p, respectively, the prey and
the predator populations, and assume that the migrations are fast if compared to the vital
processes. Then

n1,t = n1(r1 − ap) + 1

ε
(m2n2 − m1n1),

n2,t = n2r2 + 1

ε
(m1n1 − m2n2),

p,t = p(bn1 − d), (4)

where, for i = 1, 2, ni denotes the prey density in patch i, mi denotes the migration rate
from patch i, ri is the prey population growth rate in patch i, d is the predator death rate, a

is the predation rate in patch 1 and b is the biomass conversion rate.
We note that (4) is not in the typical Tikhonov form as letting ε = 0 in the first two

equations yields two identical equation and the assumptions of the Tikhonov theorem are not
satisfied. However, adding the first two equation and introducing the total prey population
n := n1 + n2, we obtain

n,t = n(r1 − ap) + n2(r2 − r1 + ap),

εn2,t = εn2r2 + (m1n − n2(m1 + m2)),

p,t = p(bn − bn2 − d).

Denoting Mi = mi

m1+m2
, i = 1, 2, we get the quasi steady state n̄2 = M1n̄ and the reduced

system

n̄,t = n̄(r̄ − aM2p̄),

p̄,t = p̄(bM2n̄ − d), (5)

which we recognize as the Lotka–Volterra model with the aggregated birth rate for the prey
r̄ = M2r1+M1r2 and similarly adjusted predation and biomass conversion rates. We see that
the assumptions of the Tikhonov theorem are satisfied as the quasi steady state n̄2 = M1n̄

is a uniformly asymptotically stable equilibrium of the initial layer equation

ñ2,τ = m1n − ñ2(m1 + m2).
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Thus the solution (n̄, p̄) (augmented by the initial layer) approximates the solution
(n1 + n2, p) of (4) on finite time intervals. On the other hand, the equilibria of (4) are
(0, 0, 0) and, for small ε,(

n∗
1, n

∗
2, p

∗) =
(

d

b
,

m1d

b(m2 − εr2)
,
r1

a
+ m1r2

a(m2 − εr2)

)
.

The Jacobi matrix of (4), evaluated at (n∗
1, n

∗
2, p

∗), gives

J ∗ = ε−1

⎛
⎜⎝

− m1m2
(m2−εr2)

m2 − εad
b

m1 εr2 − m2 0

εb
(

r1
a

+ m1r2
a(m2−εr2)

)
0 0

⎞
⎟⎠ .

Denoting α = m1m2/(m2 − εr2), β = ad/b, γ = bp∗ and using αm2 − m1m2 = εαr2, we
get the characteristic equation

λ3 + λ2(α + m2 − εr2) + λε2βγ + ε2βγ (m2 − εr2) = 0.

For small ε > 0 all coefficients are positive and hence e.g. the Hurwitz criterion ensures that
real parts of all eigenvalues of J ∗ are negative. Thus the positive equilibrium of the system
(4) is asymptotically stable. This is in contrast to (5), for which the positive equilibrium is a
centre.

On Fig. 1, where we use m1 = 2, m2 = 1, r1 = 1, r2 = 2, a = 1, d = 1, b = 0.9 and
ε = 0.05, we see that the approximation is initially good but loses accuracy for larger times.

3 Notation and Assumptions

As mentioned in the introduction, we consider an n × m dimensional system

uε,t = f (uε, vε, t, ε), uε(0) = ů,

εvε,t = g(uε, vε, t, ε), vε(0) = v̊.

To be consistent with writing systems of equations in the column form, we adopt the conven-
tion that any vector x is a column vector and thus for a function t �→ x(t), x,t is a column
vector. Then, for a scalar function x �→ h(x), h,x is the row vector of the first derivatives
of h and, for an R

m valued vector function R
n � x �→ h(x) = (h1(x), . . . , hm(x)), h,x the

matrix having hi,x, i = 1, . . . , m, as its rows, or

h,x = (
hi,xj

)
1≤i≤m, 1≤j≤n

. (6)

The estimates for the nonlinear problems depend to large extent on the estimates for their
time dependent linearizations. For this we recall some relevant results. Consider an r × r

system on R+,
x,t (t) = A(t)x(t), x(t0) = x̊, (7)

where A is a continuous matrix function, and let R+ � t → YA(t) be the fundamen-
tal matrix for (7). We say that A satisfies the exponential dichotomy property if there are
positive constants K , α such that

‖YA(t)Y−1
A (s)‖ ≤ Ke−α(t−s), t0 ≤ s ≤ t < ∞. (8)

We note that this is a simplified case of the exponential dichotomy discussed in e.g.
[9, Section 2.1]. It is equivalent to the uniform exponential stability of (7), see [6, Theo-
rem III.1]. By [6, Corollary (I) to Theorem III.9] and [9, Theorem 2.6], this property is
stable under small, or vanishing at infinity, continuous perturbations.
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Fig. 1 Comparisons of the prey n (top) and predator p (bottom) populations given by (4) (dashed line) with
the approximating populations given by (5) (solid line)

Let us introduce assumptions on (6).

(A1) We assume that f : Rn+m ×R+ × Ie �→ R
n and g : Rn+m ×R+ × Ie �→ R

m, where
Ie = [0, e], e > 0, are C3 functions with respect to u and v and C1 with respect to
t and ε, that are bounded together with all existing derivatives on [0,∞) uniformly
for u, v in bounded subsets of Rn+m and ε ∈ Ie.

As in the classical Tikhonov theorem, we assume that

(A2)
0 = g(u, v, t, 0)

admits an isolated solution v(t) = φ(u, t) for any (u, t) ∈ R
n × [0, ∞) and we

denote by ū the solution to

u,t = f (u,φ(u, t), t, 0), u(0) = ů. (9)
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We assume that
t �→ ῡ(t) := (ū(t),φ(ū(t), t)) (10)

is a bounded differentiable function on [0, ∞).

For any matrix A we denote by σ(A) the spectrum of A and by s(A) := max{
λ; λ ∈
σ(A)} the spectral bound of A.

(A3) For the matrix g,v evaluated along ῡ(t), see (10), we assume that

sup
t∈[0,∞)

s
(
g,v(ῡ(t), 0)

) =: −κ ′ < 0. (11)

Remark 1 Thanks to the assumption that g is a C3 function with respect to (u, v) and to the
continuity of eigenvalues, see e.g. [12, Section 3.1], there is δ > 0, κ > 0 and ε0 > 0 such
that

sup
(u,v)∈Tδ, ε∈Iε0

s
(
g,v(u, v, t, ε)

) =: −κ < 0, (12)

where
Tδ =

⋃
0≤t<∞

Eδ(ῡ(t)),

and

Eδ(ῡ(t)) :=Eδ(ū(t), t)×Eδ(φ(ū(t), t)) := {(u, v); ‖u−ū(t)‖≤ δ, ‖v−φ(ū(t), t)‖ ≤ δ}.

Next, consider the auxiliary equation

v̂0,τ (τ ) = g(ů, v̂0(τ ), 0, 0), v̂0(0) = v̊, (13)

(A4) We assume that v̊ belongs to the basin of attraction of the root φ(ů, 0); that is, the
solution v̂0 of (13) satisfies

lim
τ→∞ v̂0(τ ) = φ(ů, 0). (14)

Remark 2 As in the classical Tikhonov theorem, it follows then that, under (11), there is a
constant C > 0 such that

‖v̂0(τ ) − φ(ů, 0)‖ ≤ Ce−κτ , τ ≥ 0.

Indeed, defining
ṽ0(τ ) = v̂0(τ ) − φ(ů, 0), (15)

we have
ṽ0,τ (τ ) = g(ů,φ(ů, 0) + ṽ0(τ ), 0, 0), ṽ0(0) = v̊ − φ(ů, 0)

and, linearizing, for some 0 ≤ θ ≤ 1,

ṽ0,τ (τ ) = g,v(ů, φ(ů, 0) + θ (̃v0(τ ) − φ(ů, 0)), 0, 0)̃v0(τ ),

ṽ0(0) = v̊ − φ(ů, 0).

Now, by (11), s(g,v(ů,φ(ů, 0), 0, 0)) ≤ −κ ′, so that g,v(ů,φ(ů, 0), 0, 0) satisfies the
exponential dichotomy, as a constant matrix. Then, using (14) and [9, Theorem 2.6], we see
that there is τ0 such that g,v(ů, φ(ů, 0)+ θ (̃v0(τ )−φ(ů, 0)), 0, 0) satisfies the exponential
dichotomy for τ ≥ τ0 (we can use the constant κ from (12)). Thus

‖̃v0(τ )‖ ≤ c1‖̃v0(τ0)‖e−κ(τ−τ0) ≤ Ce−κτ

for some constants c1, C.
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Finally, we adopt assumption that will ensure that the estimates are valid uniformly on
R+.

(A5) We assume that the matrix

Jf (ū(t)) := f ,u(ῡ(t), 0) + f ,v(ῡ(t), 0)φ,u(ū(t), t), t ∈ [0,∞) (16)

has the exponential dichotomy property (8) with constants, say, K1, α1.

Remark 3 Direct verification of (16) is usually quite difficult. It simplifies, however, if
(6) is autonomous. Then φ is independent of time and thus (9) is also autonomous. If
ū(t) → ū∗ as t → ∞, then ū∗ is an equilibrium of (9). Denote ῡ∗ = (ū∗,φ(ū∗)). If the
real parts of all eigenvalues of the Jacobian Jf (ū∗) = f ,u(ῡ∗, 0) + f ,v(ῡ

∗, 0)φ,u(ū∗)
are negative, then Jf (ū∗), being a constant matrix, has the exponential dichotomy
property. Then, arguing as in Remark 2, Jf (ū(t)) also has the exponential dichotomy
property.

4 Error Estimates

As in the classical proof of the Tikhonov theorem, the estimates are split into estimates
in the initial layer and in the bulk part. The first part is done as in [15, Theorem 2.3] or
[4, Theorem 3.3.1]. In the second part we borrow some ideas from [10] but simplify and
extend them.

4.1 Estimates in the Initial Layer

Let (uε, vε) be the solution to (6).

Lemma 1 For any ρ > 0 there is τρ and ερ > 0 such that for any 0 < ε < ερ and tρ = ετρ

we have

‖uε(tρ) − ū(tρ)‖ ≤ ρ, (17a)

‖vε(tρ) − φ(ū(tρ), tρ)‖ ≤ ρ. (17b)

Proof Consider the auxiliary function v̂0 defined by (13). Then, by (14), for any ρ > 0
there is τρ such that

‖v̂0(τ ) − φ(ů, 0)‖ ≤ ρ

6
(18)

for any τ ≥ τρ . With the change of the variables ûε(τ ) = uε(t), v̂ε(τ ) = vε(t), where
t = ετ , (6) becomes

ûε,τ = εf (ûε, v̂ε, ετ, ε), ûε(0) = ů,

v̂ε,τ = g(ûε, v̂ε, ετ, ε), v̂ε(0) = v̊,

which is a regular perturbation of

ûτ = 0, û(0) = ů,

v̂τ = g(û, v̂, 0, 0), v̂(0) = v̊.
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Note that the solution of the last equation is v̂0(τ ). Thus there is ερ such that for any 0 <

ε < ερ and τ ∈ [0, τρ] we have

‖ûε(τ ) − ů‖ ≤ ρ

6
, ‖v̂ε(τ ) − v̂0(τ )‖ ≤ ρ

6
,

or, returning to the original variable,

‖uε(t) − ů‖ ≤ ρ

6
, (19a)∥∥∥∥vε(t) − v̂0

(
t

ε

)∥∥∥∥ ≤ ρ

6
, (19b)

uniformly for t ∈ [0, ετρ]. Using (19a) and the continuity of φ, we may take ε0 small
enough to ensure that

‖φ(uε(t), t) − φ(ů, 0)‖ ≤ ρ

6
(20)

on [0, ετρ]. Hence, for tρ := ετρ ,

‖vε(tρ) − φ(uε(tρ), tρ)‖ ≤ ∥∥vε(tρ) − v̂0
(
τρ

)∥∥ + ‖v̂0
(
τρ

) − φ(ů, 0)‖
+‖φ(ů, 0) − φ(uε(tρ), tρ)‖ ≤ ρ

2
. (21)

Next, since ū clearly is a continuous function, for sufficiently small ε we have

‖ū(tρ) − ů‖ ≤ 5ρ

6

and hence, by (19a),

‖uε(tρ) − ū(tρ)‖ ≤ ‖uε(tρ) − ů‖ + ‖ū(tρ) − ů‖ ≤ ρ. (22)

Using again (19a) and the continuity of φ, for sufficiently small ε we have

‖φ(uε(t), t) − φ(ū(t), t)‖ ≤ ρ

2
on [0, ετρ] and hence, by (21),

‖vε(tρ) − φ(ū(tρ), tρ)‖ ≤ ‖vε(tρ) − φ(uε(tρ), tρ)‖ + ‖φ(ū(tρ), tρ) − φ(uε(tρ), tρ)‖ ≤ ρ.

Corollary 1 For any ρ > 0 there are ερ and τρ , such that∥∥∥∥vε(t) − φ(ū(t), t) − ṽ0

(
t

ε

)∥∥∥∥ ≤ ρ (23)

for t ∈ [0, ετρ] and ε < ερ .

Proof Using (15) and the fact that (19b) and (20) are valid on [0, tρ] = [0, ετρ], we obtain
as in (21)∥∥∥∥vε(t) − φ(uε(t), t) − ṽ0

(
t

ε

)∥∥∥∥ ≤
∥∥∥∥vε(t) − v̂0

(
t

ε

)∥∥∥∥ +
∥∥∥∥v̂0

(
t

ε

)
− φ(ů, 0) − ṽ0

(
t

ε

)∥∥∥∥
+‖φ(ů, 0) − φ(uε(t), t)‖ ≤ ρ

3
,

as the middle term on the right hand side of the inequality is 0 by (15).
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4.2 Large Time Estimates

By the results of the previous section, we see that we can focus on some neighbourhood of
ῡ(t), t ∈ [0, ∞). Following some ideas from [10] (based on [5]), we localize the system
around ῡ(t), using, however, a different localization that allows for a better control of the
linear part of the problem.

Let x �→ ψ(x) be a C∞
0 (R+) function equal to 1 for x ∈ [

0, 1
4

)
and 0 for x ≥ 1. Then

the functions ψδ(u, t) = ψ(δ−2‖u − ū(t)‖2) and χδ(v, t) = ψ(δ−2‖v − φ(ū(t), t)‖2)

are C∞ functions (we use the Euclidean norms) in u and v, with ψδ(u, t) equal to 1 on
Eδ/2(ū(t), t) and 0 outside Eδ(ū(t), t) and χδ(u, t) equal to 1 on Eδ/2(φ(ū(t), t)) and 0
outside Eδ(φ(ū(t), t)). Then

�δ(u, v, t) := ψδ(u, t)χδ(v, t)

is a C∞ function of u and v that satisfies �δ(u, v, t) = 1 on Eδ/2(ῡ(t)) and �δ(u, v, t) = 0
outside Eδ(ῡ(t)). By construction,

‖�δ,u‖ ≤ Cδ−1, ‖�δ,v‖ ≤ Cδ−1, (24)

with a constant C independent of t , see also [16, Section 1.2]. Furthermore,

ψδ,t (u, t) = − 2

δ2
ψ,x(δ

−2‖u − ū(t)‖2)(u − ū(t)) · ū,t (t)

= − 2

δ2
ψ,x(δ

−2‖u − ū(t)‖2)(u − ū(t)) · f (ῡ(t), 0),

χδ,t (v, t) = − 2

δ2
ψ,x(δ

−2‖v − φ(ū(t), t)‖2)(v − φ(ū(t), t)) · [φ(ū(t), t)],t
and, due to

[φ(ū(t), t)],t = φ,u(ū(t), t)ū,t (t) + φ,t (ū(t), t)

= −g−1
,v (ῡ(t), 0)(g,u(ῡ(t), 0)f (ῡ(t), 0) + g,t (ῡ(t), 0)),

we see, by (11), the assumptions on ῡ(t) and on the derivatives of g, that also

‖ψδ,t (u, t)‖ ≤ Cδ−1, ‖χδ,t (v, t)‖ ≤ Cδ−1

independently of t ∈ [0, ∞). Then we define

ğ(u, v, t, ε) = ψδ(u, t)g,u(ῡ(t), 0)(u − ū(t)) + g,v(ῡ(t), 0)(v − φ(ū(t), t))

+�δ(u, v, t)H#
g(u, v, ū(t), φ(ū(t), t), t, ε).

Here H#
g = Hg + Jg , where Hg is the second order reminder of the expansion of

g(u, v, t, 0) with respect to (u, v) around ῡ(t) (see e.g. [2, Proof of Theorem 4.17]) and Jg

the first order reminder of the expansion of g(u, v, t, ε) in ε around ε = 0. In particular, by
op. cit, Hg is of order of δ2, while Jg is of order of ε.

We show that there is δ̆ < δ such that

sup
(u,v)∈Rn+m,t∈[0,∞)

s
(
ğ,v(u, v, t, 0)

)
< −κ̆, (25)

for some κ̆ > 0. Indeed, for a given δ > 0

ğ,v(u, v, t, 0) = g,v(ῡ(t), 0) + �δ,v(u, v, t)Hg(u, v, ū(t),φ(ū(t), t), t)

+�δ(u, v, t)
[
Hg(u, v, ū(t), φ(ū(t), t), t)

]
,v

.
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Then, if (u, v) ∈ Iδ/2, then ğ(u, v, t, 0) = g(u, v, t, 0) and (25) follows from (12), while
if (u, v) /∈ Iδ we have ğ,v(u, v, t, 0) = g,v(ῡ(t), 0) and (25) is the assumption. Finally, if
(u, v) ∈ Iδ \ Iδ/2, then, by (24) and the properties of Hg ,∥∥∥�δ,v(u, v, t)Hg(u, v, ū(t),φ(ū(t), t), t)+�δ(u, v, t)

[
Hg(u, v, ū(t),φ(ū(t), t), t)

]
,v

∥∥∥
≤ C

δ
M1

δ2

2
+ M2δ

2 + M3δ,

where Mi , i = 1, 2, 3, only depend on the suprema of, respectively, third and second order
derivatives of g with respect to u and v in Iδ . Hence we see that by taking a sufficiently
small δ̆ < δ (and the corresponding �δ̆) we obtain (25). Thus

ğ(u, v, t, 0) = 0

is solvable for any t ≥ 0 with v(t) = φ̆(u, t) having a global Lipschitz constant L̆. Clearly,

φ(ū(t), t) = φ̆(ū(t), t). (26)

Also, by continuity, for some ε̆ > 0,

sup
(u,v)∈Rn+m, t∈[0,∞), ε∈Iε̆

s
(
ğ,v(u, v, t, ε)

)
< −κ̆ ′ < 0. (27)

To localize f we re-write it in the form more suited for further calculations, namely

f (u, v, t, ε) = f (ū(t) + ζ (t), φ̆(ū(t) + ζ (t), t) + η(t), t, ε),

where

ζ (t) = u − ū(t), η(t) = v − φ̆(ū(t) + ζ (t), t).

Then, using (6), we define

f̆ (u, v, t, ε) = f (ῡ(t), 0) + (f ,u(ῡ(t), 0) + f ,v(ῡ(t), 0)φ,u(ū(t), t))ζ (t)

+�δ(u, v, t)
(
f ,v(ῡ(t), 0)η(t) + H#

f (ζ (t), η(t), ū(t),φ(ū(t), t), t, ε)
)

= f (ῡ(t), 0) + (f ,u(ῡ(t), 0) + f ,v(ῡ(t), 0)φ,u(ū(t), t))ζ (t)

+M1η(t) + M2(ζ (t), η(t)) + εM3(ζ (t), η(t)), (28)

where, as before, H#
f = Hf + Jε , Hf is the second order reminder with respect to ζ and

η evaluated at ε = 0, while Jf is the first order reminder with respect to ε. Thus, M i ,
i = 1, 2, 3, depend only on the derivatives of f , g in Eδ(ῡ(t)) up to second order and are
finite irrespectively of u, v, ε, t ; in particular, M2 = O(δ2 + δ‖η‖ + ‖η‖2).

Then we consider the localized problem

uε,t = f̆ (uε, vε, t, ε), ŭ(t0) = ŭ0,

εvε,t = ğ(uε, vε, t, ε), v̆(t0) = v̆0, (29)

for some t0 ≥ 0. We have the following lemma.

Lemma 2 a) Let (ŭε, v̆ε) be the solution to (29). Then, (ŭε(t), v̆ε(t)) = (uε(t), vε(t)) as
long as (ŭε(t), v̆ε(t)) ∈ Eδ̆/2(ū(t), φ(ū(t), t));

b) Solutions to (29) are bounded uniformly with respect to ε and t;

Proof a) The statement is obvious as all the cut-off functions are equal to one if
(ŭε(t), v̆ε(t)) ∈ Eδ̆/2(ū(t), φ(ū(t), t)) and then (29) coincides with (6).
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b) The equation for v̆ε can be written as

v̆ε,t = 1

ε
g,v(ῡ(t), 0)v̆ε + 1

ε
hε(t), v(0) = v̊

where, by the definition of ğ, ‖hε(t)‖ ≤ M for some M independent of t and ε. Hence, by
Lemma 4,

‖v̆ε(t)‖ ≤ ce− κ̆ ′
2ε

(t−t0)‖v̆0‖ + ce− κ̆ ′
2ε

t

ε

∫ t

t0

e
κ̆ ′
2ε

s‖hε(s)‖ds

≤ ce− κ̆ ′
2ε

(t−t0)‖v̆0‖ + cMe− κ̆ ′
2ε

t

∫ t/ε

0
e

κ̆ ′
2 σ dσ

≤ ce− κ̆ ′
2ε

(t−t0)‖v̆0‖ + 2cM

κ̆ ′

(
1 − e− κ̆ ′

2ε
t

)
≤ c‖v̆0‖ + 2cM

κ̆ ′ . (30)

Similarly, by (28) and the definition of ζ , we find that

ζ ε,t = (f ,u(ῡ(t), 0) + f ,v(ῡ(t), 0)φ,u(ū(t), t))ζ ε + M1ηε(t) + M2(ζ ε(t), ηε(t))

+εM3(ζ ε(t), ηε(t)),

ζ (t0) = ζ̆ 0.

Thus, using assumption (A5), for some constants C1, C2, C3

‖ζ ε(t)‖ ≤ K1e
−α1(t−t0)‖ζ̆ 0‖ + C1η∞ + C2(δ

2 + δη∞ + η2∞) + C3ε,

where η∞ = sup0<ε<ερ, t≥t0
‖ηε(t)‖ < ∞. Thus, ŭε(t) is bounded uniformly in t and ε.

Lemma 3 There is ρ0 such that for any 0 < ρ < ρ0 there is ε� > 0 and constants c, C,
C4, C5 such that for any ε ∈ (0, ερ) we have

‖vε(t) − φ(ū(t), t)‖ ≤ cρ + Cε, (31a)

‖uε(t) − ū(t)‖ ≤ C4ρ + C5ε, (31b)

for t ∈ [ετρ, ∞).

Proof Using Lemma 1 with arbitrary ρ < δ̆
2 we consider (29) on [tρ,∞); that is, with the

initial conditions ŭ(tρ) = uε(tρ) and v̆(tρ) = vε(tρ) for arbitrary fixed ε < ερ . The initial
conditions belong to Tρ ⊂ Tδ̆/2. As the first step, we consider a modified approximation for
v̆ε whose error is defined by

η̆ε(t) = v̆ε(t) − φ̆(ŭε(t), t), t ≥ tρ,

where ŭε is the exact solution. We have,

‖η̆ε(tρ)‖ ≤ ρ.
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Then

εη̆ε,τ (t) = ğ(ŭε(t), η̆ε + φ̆(ŭε(t), t), t, ε) − ε[φ̆(ŭε(t), t)],t
= ğ,v(ŭε(t),v

∗(t), t,0)η̆ε(t)−ε[φ̆(ŭε(t), t)],t +εğε(ŭε(t), η̆ε +φ̆(ŭε(t), t), t, ε
∗),

where v∗ is some point between v̆ε and the approximation, ε∗ is an intermediate point
between 0 and ε and we used

ğ(ŭε(t), φ̆(ŭε(t), t), t, 0) ≡ 0.

Next we observe that

[φ̆(ŭε(t), t)],t = ğ−1
,v

(
ŭε(t), φ̆(ŭε(t), t), t, 0

)(
ğ,u(ŭε(t), φ̆(ŭε(t), t), t, 0)f̆ (ŭε(t), v̆ε(t), t, 0)

+ğ,t (ŭε(t), φ̆(ŭε(t), t), t, 0)
)

is bounded in t and ε by Lemma 2 (since the solutions are bounded) and (27). Also
ğε(ŭε(t), η̆ε + φ̆(ŭε(t), t), t, ε

∗) is bounded on solutions. Using again (27) and integrating
as in (30), we obtain that

‖η̆ε(t)‖ ≤ cρ + Cε. (32)

Before we move on, we observe that by, say [9, Theorem 2.6], the exponential dichotomy
(16) is satisfied in some Tδ′ , possibly with different constants K2, α2. Then, noting that we
can decrease the tube Tδ̆ without changing the constants (that can be left as they were for
the larger set), we take ρ, ερ and δ̆ small enough that for ε < ερ

K1‖ζ̆ 0‖ + C1η∞ + C2(δ
2 + δη∞ + η2∞) + C3ε

≤ K1ρ + C1(cρ + Cε) + C2(δ̆
2 + δ̆ + (cρ + Cε)2) + C3ε < δ′;

that is, ζ̆ ε stays in the region where f̆ ,u + f̆ ,vφ̆,u has the exponential dichotomy property.
Then, for

ζ̆ ε(t) = ŭε(t) − ū(t),

we have, by f (ū(t),φ(ū(t), t), t, 0) = f̆ (ū(t),φ(ū(t), t), t, 0),

ζ̆ ε,t (t) = ŭε,t (t) − ūt (t)

= f̆ (ŭε(t), v̆ε(t), t, 0) − f̆ (ū(t) + φ(ū(t), t), t, 0) + εf̆ ε(ŭε(t), v̆ε(t), t, ε
∗)

= f̆ (ū(t) + ζ̆ ε(t), φ̆(ū(t) + ζ̆ ε(t), t, 0) + η̆ε(t), t, 0) − f̆ (ū(t),φ(ū(t), t), t)

+εf̆ ε(ŭε(t), v̆ε(t), t, ε
∗)

= (f̆ ,u(u∗(t), v∗(t), t, 0) + f̆ ,v(u
∗(t), v∗(t), t, 0)φ̆,u(u∗(t), t))ζ̆ ε(t)

+f̆ ,v(u
∗(t), v∗(t), t, 0)η̆ε(t) + εf̆ ε(ŭε(t), v̆ε(t), t, ε

∗),
where again u∗, v∗ and ε∗ are some intermediate values. Taking into account (17a)
and (32) and the fact that f̆ ,u + f̆ ,vφ̆,u satisfies the exponential dichotomy property on
(u∗(t), v∗(t), t, 0), we obtain

‖ζ ε(t)‖ ≤ C4ρ + C5ε, t ∈ [ετρ,∞), ε ∈ [0, ερ], (33)

for some constants C4, C5. Then, using (26) and the Lipschitz continuity of φ̆,

‖v̆ε(t) − φ(ū(t), t)‖ ≤ ‖η̆ε(t)‖ + ‖φ̆(ū(t), t) − φ̆(ŭε(t), t)‖
≤ cρ + Cε + L̆(C4ρ + C5ε) = C6ρ + C7ε.

Finally, selecting ρ0 and the corresponding ερ0 so that C6ρ + C7ε < δ̆/2 and C4ρ + C5ε <

δ̆/2, we obtain ŭε(t) = uε(t) and v̆ε(t) = vε(t) and hence (31) follows.
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Theorem 1 There is �0 > 0 such that for any 0 < � < �0 there is ε� such that for any
ε ∈ [0, ε�] and t ∈ [0, ∞)∥∥∥∥vε(t) − φ(ū(t), t) − ṽ0

(
t

ε

)∥∥∥∥ ≤ �, (34a)

‖uε(t) − ū(t)‖ ≤ �. (34b)

Proof Let us take arbitrary ρ > 0 and let τρ and ερ be the corresponding values of τ and
ε determined in Lemma 1. Let us take any ε < ερ . Then noting that, by (19a), inquality
(22) holds uniformly on [0, ετρ], we see that (34b) holds on [0, ετρ] as long as ρ < �.
Then (33) implies (34b) on [ετρ,∞) for ε ∈ [0, ε�], provided ρ and ερ are such that
C4ρ + C5ερ ≤ � ≤ δ̆/2.

Further, by (18), for any ρ′ > 0 and appropriate τρ′ and ερ′ we have

∥∥∥∥̃v0

(
t

ε

)∥∥∥∥ ≤ ρ′

6

for t ≥ ετρ′ , ε < ερ′ , and thus, by (32), for this range of t and ε we have

∥∥∥∥vε(t) − φ(ū(t), t) − ṽ0

(
t

ε

)∥∥∥∥ ≤ cρ′ + Cε + ρ′

6
.

Combining the above with (23) and selecting ρ′ ≤ � and ερ′ such that c
ρ′
2 + Cε ≤ δ̆/2 and

c
ρ′
2 +Cε+ ρ′

6 ≤ � for ε ∈ [0, ερ′ ] we obtain (34a). Thus, (34) holds for ε ∈ [0, min{ερ, ερ′ }].

5 An Application to Derive an Allee Type Dynamics

A population displays the so-called Allee type dynamics if it has some carrying capac-
ity to which it monotonically increases if it is large enough but goes extinct if it is too
small. Mathematically, the equation describing the evolution of the population should have
three equilibria: asymptotically stable 0 as the extinction equilibrium, the repelling thresh-
old equilibrium and the attractive carrying capacity. One of the ways to derive equations of
this type is to look at populations interacting with each other according to the mass action
law and exploiting multiple time scales occurring in such models. We present an example
introduced in [13] and further analysed in [4]. In this model we consider a population N of
females subdivided into subpopulations N1 of females who recently have mated and N2 of
females who are searching for a mate. We assume that there is an equal number N of males.
If the females reproduce in a very short time after mating, then

N1,t = βN1 − (μ + νN)N1 − σN1 + ξNN2,

N2,t = −(μ + λ + νN)N2 + σN1 − ξNN2,

where β is the reproduction rate of the recently mated females, μ + νN is the mortality
rate of the recently mated females, μ + λ + νN denotes the (increased) mortality rate of
the searching females, σ denotes the rate at which the females switch from the reproductive
stage to the searching stage and ξN denotes the per capita rate at which a searching female
finds one out of N potential mates.
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To nondimensionalize the system, we rescale the time in units of the natural life
expectancy 1/μ, s = μt , and, assuming β − μ > 0, we introduce the carrying capacity

K = β − μ

ν

and setting N1 = xK , N2 = yK and z = x + y, we obtain our system in dimensionless
form,

μx,s = (β − μ)x(1 − z) − σx + ξKyz,

μy,s = −(μ + λ + νKz)y + σx − ξKyz,

where s is the rescaled time. Let us denote ε = μ
σ

; that is, ε is the ratio of the average time
of satiation to the average life span. In many cases it is a small parameter (for instance,
for wild rabbits the average lifespan is 4 years and they breed 6–7 times per year, giving
ε ≈ 0.04). For the population not to become extinct, we can argue that the rate at which a
female finds a mate should be comparable with the rate she switches to a searching mode
after reproduction, see [4] for a discussion of other cases. Thus, writing ξ/μ = ξ̄ /ε and
denoting R0 = β

μ
, we consider

z,s = (z − y)(R0 − 1)(1 − z) −
(

1 + λ + νKz

μ

)
y, z(0) = z̊,

y,s = −
(

1 + λ + νKz

μ

)
y − ξ̄K

ε
yz + 1

ε
(z − y), y(0) = ẙ. (35)

The right-hand side of the first equation can be simplified as

(z − y)(R0 − 1)(1 − z) −
(

1 + λ + νKz

μ

)
y = (R0 − 1)z(1 − z) − β + λ

μ
y

so that we finally consider

z,s = (R0 − 1)z(1 − z) − β + λ

μ
y, z(0) = z̊,

εy,s = −ε

(
1 + λ + νKz

μ

)
y − ξ̄Kyz + z − y, y(0) = ẙ. (36)

We obtain the quasi steady state as

y = φ(z) = z

1 + ξ̄Kz
(37)

and hence the reduced equation is given by

z̄,s = (R0 − 1)z̄(1 − z̄) − β + λ

μ

z̄

1 + ξ̄Kz̄
, z(0) = z̊. (38)

The auxiliary equation (13) here takes the form

d ŷ

dτ
= −ŷ(1 + ξ̄Kz̊) + z̊. (39)

We are interested in z̊ ∈ [0, ∞). Then the only equilibrium of (39) is ŷ = φ(z) ≥ 0 and the
right-hand side is decreasing for z̊ > −1/ξ̄K . So, (11) is satisfied. Further, by the above,
any nonnegative ẙ belongs to the domain of attraction of the equilibrium solution.
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Let us have a closer look at (38) and find out what dynamics it describes. The stationary
points are determined from the equation

0 = z

(
(R0 − 1)(1 − z) − β + λ

μ

1

1 + ξ̄Kz

)
.

This immediately gives z1 = 0. Then the zeroes of the expression in the brackets can be
determined as the solutions to

g(z) := (1 − z)(1 + ξ̄Kz) = β + λ

β − μ
. (40)

The graph of g is a downward parabola with the roots at z = 1 and z = −1/ξ̄K and the

vertical axis intercept at 1. It takes the maximum of 1
4

(
1 + 1

ξ̄K

)2
at zmax = ξ̄K−1

2ξ̄K
. The

model exhibits the Allee effect if and only if (40) has two positive solutions 0 < z2 < z3
(the required stability is ensured by the parabola being downward); that is, if and only if

ξ̄K > 1, 1 <
β + λ

β − μ
<

1

4

(
1 + 1

ξ̄K

)2

. (41)

In particular, we must have R0 > 1.
Thus, under (41), any solution to the limit equation (38) with 0 ≤ z̊ < z2 converges to 0,

while if z2 < z̊ ≤ z3, then the corresponding solution converges to z3. Since the stationary
points 0 and z3 are hyperbolic, Assumption (A5) is satisfied by Remark 3 and we can claim
that the solution (zε(t), yε(t)) of (36) with z̊ ∈ (0, z2) or z̊ ∈ (z2, z3) and ẙ > 0 satisfies

lim
ε→0

zε(t) = z̄(t) on [0,∞),

lim
ε→0

yε(t) = z̄(t)

1 + ξ̄Kz̄(t)
on (0,∞),

where z̄ solves (38). Furthermore, the initial layer correction is given by

ŷ

(
t

ε

)
= ẙe− (1+ξ̄Kz̊)t

ε + z̊

1 + ξ̄Kz̊

(
1 − e− (1+ξ̄Kz̊)t

ε

)
and thus

lim
ε→0

(
yε(t)− z̄(t)

1 + ξ̄Kz̄(t)
−

(
ẙe− (1+ξ̄Kz̊)t

ε + z̊

1 + ξ̄Kz̊

(
1−e− (1+ξ̄Kz̊)t

ε

))
− z̊

1 + ξ̄Kz̊

)
= 0

uniformly on [0,∞). Thus the long term dynamics of (35), (37) and (38) are equivalent as
in Appendix.
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Appendix: Spectral Bound and Exponential Dichotomy

In general, the spectral bound of a time dependent matrix D(t) does not determine whether
it has the exponential dichotomy property. The situation changes fortunately for singularly
perturbed linear equations. We recall the relevant result from [15] together with the proof
that originally is in Russian. Going through the proof is also useful to ascertain that, under
some additional assumptions, the result remains valid on R+.

Lemma 4 [15, Lemma 3.2] Assume that R+ � t �→ D(t) is a bounded, uniformly continu-
ous m × m matrix function with eigenvalues λi(t), 1 ≤ i ≤ n(t), where n(t) is the number
of distinct eigenvalues of D(t), satisfying

sup
t∈R+


λi(t) < −2σ < 0. (42)

Then there is c > 0 and ε0 > 0 such that for any 0 < ε ≤ ε0 the fundamental matrix Y (t, ε)

of the system
εYt = D(t)Y, Y (0, ε) = IRm, (43)

satisfies

‖Y (t, ε)Y−1(s, ε)‖ ≤ ce− σ(t−s)
ε , 0 ≤ s ≤ t < ∞.

Proof Let Y(t, s, ε) = Y (t, ε)Y−1(s, ε). For a given fixed t0 ∈ R+ we write, by (43),

εYt = D(t0)Y + (D(t) − D(t0))Y, Y(s, s, ε) = IRm

and, by the variation of constants formula,

Y(t, s, ε) = e
D(t0)(t−s)

ε +
∫ t

s

1

ε
e

D(t0)(t−q)

ε (D(q) − D(t0))Y(q, s, ε)dq. (44)

Since (44) is valid for any t0, it is valid, in particular, for t0 = t ; that is,

Y(t, s, ε) = e
D(t)(t−s)

ε +
∫ t

s

1

ε
e

D(t)(t−q)
ε (D(q) − D(t))Y(q, s, ε)dq. (45)

Let us define
w(t, s, ε) := ‖Y(t, s, ε)‖e σ(t−s)

ε , 0 ≤ s ≤ t < ∞, (46)

where σ was defined in (42). Then, thanks to the fact that the inequality in (42) is sharp,
‖eD(t)(t−s)‖ ≤ c0e

−2σ(t−s) for some constant c0 (here D(t) is treated as a constant matrix

for a fixed t). Hence, multiplying (45) by e
σ(t−s)

ε and taking norms, we obtain

w(t, s, ε) ≤ c0 + c0

ε

∫ t

s

e− σ(t−q)
ε ‖D(q) − D(t)‖w(q, s, ε)dq.

Now, for any fixed T < ∞ we define M(T, ε) := max0≤s≤t≤T w(t, s, ε) so that

M(T, ε) ≤ c0 + c0M(T, ε)

ε
max

0≤s≤t≤T
J (t, s, ε),

where

J (t, s, ε) :=
∫ t

s

e− σ(t−q)
ε ‖D(q) − D(t)‖dq.

Next, thanks to the uniform continuity of D(t),

δ(ε) := max
0≤t−√

ε≤q≤t<∞
‖D(q) − D(t)‖
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Fig. 2 Comparison of the total female population z, given by (36) with the quasi steady state approximation
z̄ given by (38) for ε = 0.018 (top) and ε = 0.014 (bottom)

satisfies δ(ε) → 0 as ε → 0, uniformly in t . In other words, if t − s ≤ √
ε, then ‖D(q) −

D(t)‖ ≤ δ(ε) whenever q ∈ [s, t], irrespective of s and t . Thus, if t − s ≤ √
ε, then

J (t, s, ε) ≤ δ(ε)

∫ t

s

e− σ(t−q)
ε dq ≤ δ(ε)ε

σ
. (47)

On the other hand, if t − s >
√

ε, then we split J = J1 + J2, where, denoting c1 =
2 supt∈R+ ‖D(t)‖,

J1(t, s, ε) =
∫ t−√

ε

s

e− σ(t−q)
ε ‖D(q) − D(t)‖dq ≤ c1

∫ t−√
ε

s

e− σ(t−q)
ε dq ≤ c1ε

σ
e
− σ√

ε

and J2 satisfies estimate (47). Thus

max
0≤s≤t≤T

J (t, s, ε) ≤ ε

(
δ(ε)

σ
+ c1

σ
e
− σ√

ε

)
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and the expression on the right-hand side is independent of T . We can take ε0 small enough

for δ(ε)
σ

+ c1
σ

e
− σ√

ε ≤ 1
2c0

if 0 < ε ≤ ε0. Thus

M(T, ε) ≤ c0 + M(T, ε)

2
;

that is, M(T, ε) ≤ 2c0 irrespectively of T and 0 < ε ≤ ε0. Thus, by (46),

‖Y(t, s, ε)‖ ≤ 2c0e
− σ(t−s)

ε , 0 ≤ s ≤ t < ∞, 0 < ε ≤ ε0

and the proof is complete.
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