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Abstract

The output feedback H∞ consensus control problem of multi-agent systems is studied
using an event-triggered control strategy. Two types of transmission delays, one from the
system output to the output feedback controller (OFC) and the other from the OFC to
the zero-order holder, are considered. This causes the OFC and the system not to be
updated in the same time intervals. An interval dividing approach is applied to such that
the whole system can be updated in the same time intervals. An event-triggered OFC with
H∞ performance is proposed for multi-agent systems to achieve consensus. By construct-
ing an appropriate Lyapunov–Krasovskii functional, sufficient conditions based on linear
matrix inequality are derived to guarantee the consensus achievement. Finally, the theoret-
ical results are validated using computer simulation.

1 Introduction

Multi-agent systems have aroused extensive attention due to
their autonomy, fault tolerance, flexibility, extensibility and col-
laboration. In recent decades, coordination of MASs has been
extensively applied in different fields such as formation control,
flocking, software development, multi-robot coordination and
smart grids [1–4]. Consensus means that all the agents can reach
a common value by only local information exchange. Many
scholars have carried out a series of researches on the related
issues of consensus from different aspects, such as the prob-
lem of finite-time consensus [5–8], consensus with time-varying
delays [9–11], and consensus with different topologies [12–14],
to name just a few.

The main idea of ETC strategy is to use the opportunistic
aperiodic sampling instead of the classic periodic sampling to
improve the efficiency. The ETC method uses a trigger func-
tion to replace the time constant in classic periodic sampling.
When system is still running under the ideal state, the event will
not be triggered. Otherwise, it will be triggered. As a result, ETC
method can reduce the frequency of information transmission
between agents to save energy. Therefore, how to accurately
determine the updating time instants of control signals is the
key to study this kind of problems. In 1999, [15] and [16] first
proposed the ETC method. In 2012, [17] adopted centralized
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and distributed ETC method to analyze the consensus prob-
lem of MASs, respectively. Since then, more and more scholars
have applied event-triggered strategies to MASs with different
topologies [18–20], such as output feedback control [20–24],
H∞ control [25–30] etc, and have achieved fruitful research
results in this field.

Event-triggered H∞ consensus control is an important
aspect for MASs, which has been deeply studied by a large num-
ber of literatures so far. In [25], the consensus control of MASs
with switched topologies is investigated. Considering the uncer-
tainty of communication networks in practical application, an
event-triggered H∞ consensus controller is proposed in switch-
ing networks subject to Markov chains using local informa-
tion exchange via state-feedback. A sufficient condition based
LMI for H∞ consensus is given. In [26], aperiodic and peri-
odic ETC methods are proposed for MASs to achieve H∞

consensus. The event-triggered method is combined with the
time-triggered method, and a fixed lower limit of sampling
time interval is given to guarantee the avoidance of the Zeno
behaviour. In [27], H∞ control of MASs is investigated in
directed networks via ETC method. In the case with exter-
nal disturbances, a new distributed sampling method is pro-
posed, and the Zeno-behaviour is completely excluded. In [28],
the H∞ consensus problem of MASs with missing measure-
ments and external disturbance is considered, in which the
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considered system is in discrete-time and time-varying. Redun-
dant channels are introduced to enhance the reliability of infor-
mation transmission. An observer-based ETC method is pro-
posed to reach consensus with H∞ performance in a limited
range. In [29], the H∞ consensus control for discrete-time
MASs with Markov switching topology is studied. An ETC
strategy is proposed, which takes into account the influence
of information exchange between neighbors and the channel
noise due to environmental uncertainty. In [30], the consen-
sus problem for MASs with external disturbance is investigated
based on event-triggered scheme. A control algorithm is pre-
sented to achieve the control object by defining a control out-
put to turn the consensus problem into H∞ one. Time-delay
is also a key factor in information transmission in practical
applications. In the literatures mentioned above, only part of
them consider the information transmission delay and the oth-
ers do not. The above literature analysis inspires us to do the
work in this paper, in which two kind of transmission delay are
considered.

The output feedback H∞ consensus problem of MASs is
considered in this paper based on ETC strategy. Using the
ETC method, the output signal is sampled and transmitted to
the OFC side, and then sampled and transmitted to the ZOH.
There are two kinds of transmission delays in this process, one
from the output of system to the OFC and the other from
the OFC to the ZOH. This causes the output feedback con-
troller and system to be updated in different time intervals. By
using interval decomposition method, the output feedback con-
troller and system are unified into identical time intervals, and
then the closed-loop system (CLS) of whole system is obtained.
Since the system states are not measurable, an observer-based
event-triggered OFC is presented for the followers to follow
the leader. By constructing a Lyapunov–Krasovsky functional,
sufficient conditions for consensus convergence and H∞ per-
formance are obtained in the form of LMI. The contributions
of this work are summarized as follows. First, a novel event-
triggered distributed output feedback controller is proposed for
MAS to achieve leader-following consensus. In the proposed
algorithm, both the controller and the trigger function are dis-
tributed only depending on the local information of the neigh-
boring agents. Second, sufficient conditions based on LMI are
derived to guarantee asymptotic stability and H∞ performance
of the considered system. The algorithms based on LMI to solve
ETC problem were also proposed in [31–34], however, only
one kind of transmission delay is considered in these literatures.
Third, compared with [25–31, 35, 36], two kinds of transmission
delay are considered in this paper. As far as we know, the work
in this paper has rarely appeared in the literature except for [32].
In [32], the ETC problem via output feedback is applied to net-
work control systems to achieve H∞ performance. Two kinds of
transmission delay are also considered and then a kind of inter-
val decomposition method is applied to acquire a unified closed-
loop system. However, due to the distributed requirement of
MASs for controller and trigger function, the method proposed
in [32] cannot be applied directly and the interval decomposi-
tion for MASs is more challenging.

The structure of this work is given below. In Section 2,
we introduce some needed lemmas and concepts on algebraic
graphic theory. The system model and problem are specified in
Section 3. In Section 4, we propose the output feedback con-
troller and analyze its stability. In Section 5, two instances of
simulations are given to verify the feasibility of the results. We
conclude this article in Section 6.

2 PRELIMINARIES

In multi-agent systems, a directed graph denoted by ( ,  ,)
is used to represent the communication relationship between
agents, where vertex set  = {𝜐1, 𝜐2, … , 𝜐N } represents N

agents, and  ⊂  ×  is the edge set. A directed edge
(𝜐 j , 𝜐i ) ∈  means that agent i can sense information from
agent j , in other words, agent i can receive information
from agent j . For the weighted adjacency matrix  = [ai j ] ∈N×N , if (𝜐 j , 𝜐i ) ∈  , then ai j > 0, otherwise ai j = 0. The
set of all adjacent agents of agent i is denoted by i =
{𝜐 j ∈  ∶ (𝜐 j , 𝜐i ) ∈  , 𝜐 j ≠ 𝜐i}. The in-degree matrix  =
[di j ]N×N

is a diagonal matrix with dii =
∑

j∈i
ai j . The Lapla-

cian matrix of graph  is defined as  =  − = [li j ]N×N
where {

lii = ΣN
j=1ai j i = j ,

li j = −ai j i ≠ j .

Let  = diag(b1, b2, … , bn ) to be a diagonal matrix, and bi > 0,
if agent i can sense the leader, otherwise bi = 0.

The following lemmas are useful in our theoretical analysis.

Lemma 1 [32]. For any positive definite matrix Q, if constant 𝛽 > 0,

then in the interval [0, 𝛽], the following inequality holds for the integrable

vector function 𝜛(s):

[
∫

𝛽

0
𝜛(s)ds

]T

Q

[
∫

𝛽

0
𝜛(s)ds

]
⩽ 𝛽

[
∫

𝛽

0
𝜛(s)T

Q𝜛(s)ds

]
.

Lemma 2 [33].

T =

(
T11 T12

T T
12 T22

)
< 0,

if and only if

T11 < 0, T22 − T T
12 T −1

11 T12 < 0,

or equivalently

T22 < 0, T11 − T12T −1
22 T T

12 < 0.

where T11, T12, and T22 are matrices with appropriate dimensions.
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3 PROBLEM STATEMENT

Consider a class of MASs with N followers and a leader. The
ith, i = 1, 2, … ,N , follower’s dynamic is

⎧⎪⎪⎨⎪⎪⎩
ẋi = Axi + Bui + B𝜔𝜔

i ,

yi
1 = C1xi ,

yi
2 = C2xi ,

(1)

where A ∈ n×n,B ∈ n×p,B𝜔 ∈ n×q,C1 ∈ r×n, and
C2 ∈ n×n are matrices, xi ∈ n, ui ∈ p, yi

2 ∈ n, yi
1 ∈

r , 𝜔i ⊂ q are the state vector, controller, measured output,
controlled output, and disturbance input, respectively. The
dynamic of the leader labelled by 0 is

⎧⎪⎪⎨⎪⎪⎩
ẋ0 = Ax0,

y0
1 = C1x0,

y0
2 = C2x0.

(2)

We denote the release times of agent i by t i
0h, t i

1h, t i
2h, …, where

t i
0 = 0 is the initial time of the ith agent and {t i

0, t
i
1, t

i
2, …} ⊂

{0, 1, 2, …}. The output yi
2(t ) takes h as the sampling period and

samples at time instant kh, where h > 0. Two types of transmis-
sion delays are considered. One is the transmission delay from
system output to output feedback controller, denoted by 𝜄i

k
. The

other is from the OFC to the ZOH, denoted by 𝜍i
k
. We make

the hypothesis that 𝜄i
k
∈ [0, 𝜄) and 𝜍i

k
∈ [0, 𝜍), where 𝜄 and 𝜍 are

upper bounds of 𝜄i
k

and 𝜍i
k
, respectively. Without loss of gen-

erality, let 𝜍 = m1h and 𝜄 = m2h, where m1, m2 > 0. Motivated
by the works in [37], a novel event-triggered condition requiring
only local information:

[
𝜀i
(
t i
k
h + pih

)
− 𝜀i

(
t i
k
h
)]T

C T
2 ΩC2

[
𝜀i
(
t i
k
h + pih

)
− 𝜀i

(
t i
k
h
)]

⩽ 𝜎𝜀i
(
t i
k
h + pih

)T
C T

2 ΩC2𝜀
i
(
t i
k
h + pih

)
, i = 1, 2, … ,N ,

(3)

is constructed to judge whether the output signal is being trans-
ferred to the OFC or not, where 𝜀i = −

∑
j∈i

ai j (x
i − x j ) −

bi (x
i − x0), Ω > 0, pi = 1, 2, … and 0 ≤ 𝜎 < 1.

Remark 1. When the inequality (3) holds, the sample output
yi
2(t i

k
h + pih) of agent i will not be transferred to the OFC. Only

when the inequality (3) fails to hold, it will be transmitted to
output feedback controller. It can be seen from the informa-
tion transmission mechanism that event-triggered design can
save network bandwidth and energy. Obviously, when 𝜎 in (3) is
equal to 0, it becomes time-triggered scheme as the special case
of ETC scheme.

4 OUTPUT FEEDBACK H∞ CONTROL
VIA ETC STRATEGY

From the event-triggered condition (3), the (k + 1)th
release time of agent i is t i

k+1h = t i
k
h + d i

k
h, where

d i
k
= min j { j |[𝜀i (t i

k
h + jh) − 𝜀i (t i

k
h)]

T
C T

2 ΩC2[𝜀i (t i
k
h + jh) −

𝜀i (t i
k
h)] > 𝜎𝜀i (t i

k
h + jh)

T
C T

2 ΩC2𝜀
i (t i

k
h + jh)}. We assume that

d i
k

is finite, that is, there exists a positive integer l such that
d i

k
⩽ l .
Let x̄i = xi − x0, ȳi

2 = yi
2 − y0

2, and ȳi
1 = yi

1 − y0
1, one has

⎧⎪⎨⎪⎩
̇̄xi = Ax̄i + Bui + B𝜔𝜔

i ,

ȳi
1 = C1x̄i ,

ȳi
2 = C2x̄i .

(4)

Let x̂i and x̂0 be the estimates of xi and x0, respectively, and
construct observers as

̇̂xi = Ax̂i + Bui + L
(
yi
2

(
t i
k
h
)
−C2x̂i

(
t i
k
h
))
,

t ∈
[
t i
k
h + 𝜄, t i

k+1h + 𝜄
)
, (5)

and

̇̂x0 = Ax̂0 + L(y0
2 −C2x̂0). (6)

An observer-based dynamical OFC is presented as the follow-
ing:

ui (t ) = K 𝜀i (t i
k
h), t ∈ [t i

k
h + 𝜄, t i

k+1h + 𝜄), (7)

where

𝜀i = −
∑
j∈i

ai j (x̂
i − x̂ j ) − bi (x̂

i − x̂0),

and let

ui (t ) = K 𝜀i (t i
0h), t ∈ [t i

0h, t i
0h + 𝜄 + 𝜍), (8)

where xi (t i
0h) is the initial value of xi .

Let x̃i = x̂i − x̂0, one has

̇̃xi (t ) = Ax̃i (t ) + Bui (t ) + L
(
ȳi
2

(
t i
k
h
)
−C2x̃i

(
t i
k
h
))
,

t ∈
[
t i
k
h + 𝜄, t i

k+1h + 𝜄
)
. (9)

Remark 2. From the continuity of x̃i (t ) on the interval [t i
k
h +

𝜄, t i
k+1h + 𝜄) and x̃i (t i

k+1h + 𝜄) = limt→(t i
k+1h+𝜄)

− x̃i (t ), one has

x̃i (t ) on [t i
k
h + 𝜄, t i

k+1h + 𝜄], and then x̃i (t ) on [t i
0, +∞) are con-

tinuous. For the same reason, x̄i (t ) is continuous on [t i
0, +∞)

as well.



LI ET AL. 1649

Remark 3. Note that the event-triggered condition (3) and con-
troller (8) are distributed depending only on local information
of neighboring agents. The event-triggered control method is
applied in this paper, which can reduce unnecessary energy
consumption.

Because there are two type of time-delays 𝜄i
k

and 𝜍i
k
, the

dynamic output feedback controller (7) is updated based on
ȳi
2(t i

k
h) with a time-delay 𝜄i

k
in [t i

k
h + 𝜄, t i

k+1h + 𝜄], while the
system (9) is updated based on the sample control signal
ui (t ) with a delay 𝜍i

k
in time interval [t i

k
h + 𝜄 + 𝜍, t i

k+1h + 𝜄 +
𝜍). In other words, systems (7) and (9) are updated in dif-
ferent time intervals, so the CLS cannot be obtained from
the two equations directly. In the following, the closed-loop
system is derived by using an interval partition method. We
divide the time interval of (9) using the updating time instants
of (7).

Considering [t i
k
h + 𝜄 + 𝜍, t i

k+1h + 𝜄 + 𝜍) and noting that
t i
k+1h + 𝜄 + 𝜍 < t i

k
h + lh + m1h + m2h, we can find two pos-

itive integers t i
mk1

, t i
mk2

∈ {0, 1, 2, …}, satisfying t i
k
⩽ t i

mk1
<

t i
mk2

, t i
mk1

< t i
k
+ m1 + m2 and t i

mk2
< t i

k
+ l + m1 + m2 such

that

t i
k
h + 𝜄 + 𝜍 ∈

[
t i
mk1

h + 𝜄, t i
mk1+1h + 𝜄

)
,

and

t i
k+1h + 𝜄 + 𝜍 ∈

[
t i
mk2

h + 𝜄, t i
mk2+1h + 𝜄

)
.

Then we have the following interval decomposition:

[
t i
k
h + 𝜄 + 𝜍, t i

k+1h + 𝜄 + 𝜍
)
= 0,𝜅i

mk2−mk1−1⋃
s=1

𝜅i

s

⋃1,𝜅i
,

(10)

where

𝜅i =

⎧⎪⎪⎨⎪⎪⎩

t i
mk1

, t ∈
[
t i
k
h + 𝜄 + 𝜍, t i

mk1+1h + 𝜄
)
,

t i
mk1+s , t ∈

[
t i
mk1+sh + 𝜄, t i

mk1+s+1h + 𝜄
)
,

s = 1, … ,mk2
− mk1

− 1,

t i
mk2

, t ∈
[
t i
mk2

h + 𝜄, t i
k+1h + 𝜄 + 𝜍

)
,

(11)

and

𝜅i
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0,𝜅i
=

[
t i
k
h + 𝜄 + 𝜍, t i

mk1+1h + 𝜄
)
, 𝜅i = t i

mk1
,

𝜅i

s =
[
t i
mk1+sh + 𝜄, t i

mk1+s+1h + 𝜄
)
, 𝜅i = t i

mk1+s ,

s = 1, … ,mk2
− mk1

− 1,

1,𝜅i
=

[
t i
mk2

h + 𝜄, t i
k+1h + 𝜄 + 𝜍

)
, 𝜅i = t i

mk2
.

(12)

From (11) and (12), the system (4), (9) and the dynamic OFC
(7) can be rewritten as

̇̃xi (t ) = Ax̃i (t ) + BK 𝜀i (𝜅i h)

+ L
[
ȳi
2(𝜅i h) −C2x̃i (𝜅i h)

]
, t ∈ 𝜅i

, (13)

̇̄xi (t ) = Ax̄i (t ) + BK 𝜀i (t i
k
h) + B𝜔𝜔

i (t ), t ∈ 𝜅i
, (14)

and

ui (t ) = K 𝜀i (t i
k
h), t ∈ 𝜅i

, (15)

respectively.
When t ∈ [t i

k
h + 𝜄 + 𝜍, t i

mk1+1h + 𝜄), we have t i
k
h + 𝜄 + 𝜍 −

t i
mk1

h ≤ t − 𝜅i h < t i
mk1+1h + 𝜄 − t i

mk1
h < 𝜄 + lh. It follows from

t i
k
h + 𝜄 + 𝜍 ≥ t i

mk1
h + 𝜄 that 𝜄 ≤ t − 𝜅i h < 𝜄 + lh.

When t ∈ [t i
mk1+sh + 𝜄, t i

mk1+s+1h + 𝜄), we have t i
mk1+sh +

𝜄 − t i
mk1+sh ≤ t − 𝜅i h < t i

mk1+s+1h + 𝜄 − t i
mk1+sh, that is, 𝜄 ≤ t −

𝜅i h < 𝜄 + lh.
When t ∈ [t i

mk2
h + 𝜄, t i

k+1h + 𝜄 + 𝜍), we have t i
mk2

h + 𝜄 −

t i
mk2

h ≤ t − 𝜅i h < t i
k+1h + 𝜄 + 𝜍 − t i

mk2
h. It follows from

t i
k+1h + 𝜄 + 𝜍 ≤ t i

mk2+1h + 𝜄 that 𝜄 ≤ t − 𝜅i h < 𝜄 + lh.

Therefore, 𝜄 ≤ t − 𝜅i h < 𝜄 + lh, t ∈ 𝜅i
.

When t ∈ [t i
k
h + 𝜄 + 𝜍, t i

k+1h + 𝜄 + 𝜍), it is easy to see that
t i
k
h + 𝜄 + 𝜍 − t i

k
h ≤ t − t i

k
h < t i

k+1h + 𝜄 + 𝜍 − t i
k
h < 𝜄 + 𝜍 + lh.

That is, 𝜄 + 𝜍 ≤ t − t i
k
h < 𝜄 + 𝜍 + lh, t ∈ 𝜅i

.
Let

𝜗1(t ) = t − 𝜅i h, 𝜗2(t ) = t − t i
k
h, t ∈ 𝜅i

, (16)

where 𝜗1(t ) ∈ [𝜄, 𝜄 + lh), 𝜗2(t ) ∈ [𝜄 + 𝜍, 𝜄 + 𝜍 + lh), for all
agents, satisfying �̇�1(t ) = 1 and �̇�2(t ) = 1.

We denoted the stack column vectors of xi , i = 1, 2, … ,N ,
by col(xi ). Let ei = x̄i − x̃i , e = col(ei ). In the following lemma,
CLS is derived according to (10).

Lemma 3. Based on systems (13) and (14), the following CLS can be

obtained:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

̇̄xi (t ) = Ax̄i (t ) + BK 𝜀i (t ) − BK ∫ t

t−𝜗2(t )
̇̃𝜀i (r )dr + B𝜔𝜔

i (t ),

ėi (t ) = LC2x̄i (t ) − LC2𝜀
i (t ) + (A − LC2)ei (t )

− BK ∫ t

t−𝜗2(t )
̇̃𝜀i (r )dr + BK ∫ t

t−𝜗1(t )
̇̃𝜀i (r )dr

− LC2 ∫ t

t−𝜗1(t )
̇̃xi (r )dr + LC2 ∫ t

t−𝜄(t )
�̇�i (r )dr

− L𝜖𝜅i (t ) + B𝜔𝜔
i (t ), t ∈ 𝜅i

, i = 1, 2, … ,N ,

(17)

where the functions 𝜄(t ) and 𝜖𝜅i (t ) will be determined later.
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Proof. Similar to [37], we decompose the time interval 𝜅i
. For

0,𝜅i
, noticing that t i

k
h + 𝜄 + 𝜍 ∈ [t i

mk1
h + 𝜄, t i

mk1+1h + 𝜄), there

exists a positive number ni
0 = min j { jh|t i

k
h + 𝜄 + 𝜍 < t i

mk1
h + 𝜄 +

jh}. Consider two cases:
Case 1. If t i

mk1
h + 𝜄 + ni

0h ≥ t i
mk1+1h + 𝜄, let

𝜄i (t ) = t − t i
mk1

h − (ni
0 − 1)h, t ∈ [t i

k
h + 𝜄 + 𝜍, t i

mk1+1h + 𝜄),

and

𝜖𝜅i (t ) = C2𝜀
i (t i

mk1
h) −C2𝜀

i (t i
mk1

h + (ni
0 − 1)h),

t ∈ [t i
k
h + 𝜄 + 𝜍, t i

mk1+1h + 𝜄).

From the definition of 𝜄i , one has

𝜄i ⩾ t i
k
h + 𝜄 + 𝜍 − t i

mk1
h − (ni

0 − 1)h,

and

𝜄i < t i
mk1+1h + 𝜄 − t i

mk1
h − (ni

0 − 1)h.

From the definition of ni
0, one has t i

k
h + 𝜄 + 𝜍 ≥ t i

mk1
h + 𝜄 +

ni
0h − h. Then

𝜄i ⩾ t i
mk1

h + 𝜄 + ni
0h − h − t i

mk1
h − (ni

0 − 1)h = 𝜄.

Since t i
mk1

h + 𝜄 + ni
0h ≥ t i

mk1+1h + 𝜄, one gets

𝜄i < t i
mk1

h + 𝜄 + ni
0h − t i

mk1
h − (ni

0 − 1)h = 𝜄 + h.

Therefore,

𝜄 ⩽ 𝜄i (t ) < 𝜄 + h.

Case 2. If t i
mk1

h + 𝜄 + ni
0h < t i

mk1+1h + 𝜄, the following inter-
vals:

[t i
k
h + 𝜄 + 𝜍, t i

mk1
h + 𝜄 + ni

0h), [t i
mk1

h + 𝜄 + d ih, t i
mk1

h + 𝜄 + d ih + h)

are considered. We can find some constant N 0,𝜅i
such that

t i
mk1

h + 𝜄 + N 0,𝜅i
h < t i

mk1+1h + 𝜄 < t i
mk1

h + 𝜄 + N 0,𝜅i
h + h,

and C2𝜀
i (t i

mk1
h + (ni

0 − 1)h) and C2𝜀
i (t i

mk1
h + d ih), d i =

ni
0, … ,N 0,𝜅i

satisfy condition (3). Then, 0,𝜅i
can be divided

into

0,𝜅i
=  0,𝜅i

ni
0−1

N 0,𝜅i⋃
d i=ni

0

 0,𝜅i

d i , 𝜅i = t i
mk1

,

where

 0,𝜅i

ni
0−1

=
[
t i
k
h + 𝜄 + 𝜍, t i

mk1
h + 𝜄 + ni

0h
)
,

 0,𝜅i

d i =
[
t i
mk1

h + 𝜄 + d ih, t i
mk1

h + 𝜄 + d ih + h
)
,

d i = ni
0, … ,N 0,𝜅i

− 1,

 0,𝜅i

N 0,𝜅i =
[
t i
mk1

h + 𝜄 + N 0,𝜅i
h, t i

mk1+1h + 𝜄
)
,

and 𝜅i = t i
mk1

.
Let

𝜛1
((

ni
0 − 1

)
h
)
= C2𝜀

i
(
t i
mk1

h
)
−C2𝜀

i
(
t i
mk1

h +
(
ni

0 − 1
)
h
)
,

𝜛1(d ih) = C2𝜀
i
(
t i
mk1

h
)
−C2𝜀

i
(
t i
mk1

h + d ih
)
,

𝜛1
(
N 0,𝜅i

h
)
= C2𝜀

i
(
t i
mk1

h
)
−C2𝜀

i
(
t i
mk1

h + N 0,𝜅i
h
)
. (18)

Define

𝜄i (t ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

t − t i
mk1

h − (ni
0 − 1)h, t ∈  0,𝜅i

ni
0−1

,

t − t i
mk1

h − d ih, t ∈  0,𝜅i

d i , d i = ni
0,

… ,N 0,𝜅i
− 1,

t − t i
mk1

h − N 0,𝜅i
h, t ∈  0,𝜅i

N 0,𝜅i ,

(19)

and

𝜖𝜅i (t ) =

⎧⎪⎪⎨⎪⎪⎩
𝜛1((ni

0 − 1)h), t ∈  0,𝜅i

ni
0−1

,

𝜛1(d ih), t ∈  0,𝜅i

d i , d i = ni
0, … ,N 0,𝜅i

− 1,

𝜛1(N 0,𝜅i
h), t ∈  0,𝜅i

N 0,𝜅i .

(20)

Just like in Case 1, we can also obtain that

𝜄 ⩽ 𝜄i (t ) < 𝜄 + h.

Similarly, 𝜅i

s and 1,𝜅i
can be divided into

𝜅i

s =

N 𝜅i
s⋃

d i=0

 𝜅i

s,d i , 𝜅
i = t i

mk1+s , s = 1, … ,mk2
− mk1

− 1,

and

1,𝜅i
=

N 1,𝜅i⋃
d i=0

 1,𝜅i

d i , 𝜅i = t i
mk2

,
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FIGURE 1 An example of interval decomposition.

respectively, where

 𝜅i

s,0 =
[
t i
mk1+sh + 𝜄, t i

mk1+sh + 𝜄 + h
)
,

 𝜅i

s,d i =
[
t i
mk1+sh + 𝜄 + d ih, t i

mk1+sh + 𝜄 + d ih + h
)
,

d i = 1, … ,N 𝜅i

s − 1,

 𝜅i

s,N 𝜅i
s

=
[
t i
mk1+sh + 𝜄 + N 𝜅i

s h, t i
mk1+s+1h + 𝜄

)
,

𝜅i = t i
mk1+s , s = 1, … ,mk2

− mk1
− 1.

 1,𝜅i

0 =
[
t i
mk2

h + 𝜄, t i
mk2

h + 𝜄 + h
)
,

 1,𝜅i

d i =
[
t i
mk2

h + 𝜄 + d ih, t i
mk2

h + 𝜄 + d ih + h
)
,

d i = 1, … ,N 1,𝜅i
− 1,

 1,𝜅i

N 1,𝜅i =
[
t i
mk2

h + 𝜄 + N 1,𝜅i
h, t i

k+1h + 𝜄 + 𝜍
)

and 𝜅i = t i
mk2

.
To facilitate the understanding of interval decomposition

methods, an illustrative example is given in Figure 1.
Let

𝜛2(0) = C2𝜀
i
(
t i
mk1+sh

)
−C2𝜀

i
(
t i
mk1+sh

)
,

𝜛2(d ih) = C2𝜀
i
(
t i
mk1+sh

)
−C2𝜀

i
(
t i
mk1+sh + d ih

)
,

𝜛2
(
N 𝜅i

s h
)
= C2𝜀

i
(
t i
mk1+sh

)
−C2𝜀

i
(
t i
mk1+sh + N 𝜅i

s h
)
,

𝜛3(0) = C2𝜀
i
(
t i
mk2

h
)
−C2𝜀

i
(
t i
mk2

h
)
,

𝜛3(d ih) = C2𝜀
i
(
t i
mk2

h
)
−C2𝜀

i
(
t i
mk2

h + d ih
)
,

𝜛3
(
N 1,𝜅i

h
)
= C2𝜀

i
(
t i
mk2

h
)
−C2𝜀

i
(
t i
mk2

h + N 1,𝜅i
h
)
. (21)

Define

𝜄i (t ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

t − t i
mk1+sh, t ∈  𝜅i

s,0 , s = 1, … ,

mk2
− mk1

− 1,
t − t i

mk1+sh − d ih, t ∈  𝜅i

s,d i , d i = 1, … ,

N 𝜅i

s − 1,
t − t i

mk1+sh − N 𝜅i

s h, t ∈  𝜅i

s,N 𝜅i
s

,

t − t i
mk2

h, t ∈  1,𝜅i

0 ,

t − t i
mk2

h − d ih, t ∈  1,𝜅i

d i ,

d i = 1, … ,N 1,𝜅i
− 1,

t − t i
mk2

h − N 1,𝜅i
h, t ∈  1,𝜅i

N 1,𝜅i ,

(22)

and

𝜖𝜅i (t ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜛2(0), t ∈  𝜅i

s,0 , s = 1, … ,mk2
− mk1

− 1,

𝜛2(d ih), t ∈  𝜅i

s,d i , d i = 1, … ,N 𝜅i

s − 1,

𝜛2(N 𝜅i

s h), t ∈  𝜅i

s,N 𝜅i
s

,

𝜛3(0), t ∈  1,𝜅i

0 ,

𝜛3(d ih), t ∈  1,𝜅i

d i , d i = 1, … ,N 1,𝜅i
− 1,

𝜛3(N 1,𝜅i
h), t ∈  1,𝜅i

N 1,𝜅i .

(23)

By a similar analysis, we can obtain that

𝜄 ⩽ 𝜄i (t ) < 𝜄 + h.

Let 𝜄(t ) ∈ [𝜄, 𝜄 + h) with �̇�(t ) = 1, for all agents, t ∈ 𝜅i
.

From the definition of 𝜖𝜅i (t ) and (3), for t ∈ 𝜅i
, we have

𝜖T
𝜅iΩ𝜖𝜅i ⩽ 𝜎𝜀i (t − 𝜄)T

C T
2 ΩC2𝜀

i (t − 𝜄)

= 𝜎

[
C2𝜀

i −C2 ∫
t

t−𝜄

�̇�i (r )dr

]T

Ω

[
C2𝜀

i −C2 ∫
t

t−𝜄

�̇�i (r )dr

]
,
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that is,

−𝜖T
𝜅iΩ𝜖𝜅i + 𝜎

[
C2𝜀

i −C2 ∫
t

t−𝜄

�̇�i (r )dr

]T

Ω[C2𝜀
i −C2 ∫

t

t−𝜄

�̇�i (r )dr ] ⩾ 0, i = 1, 2, … ,N . (24)

On the basis of the above analysis, we can easily derive that

ȳi
2(𝜅i h) = C2𝜀

i (t − 𝜄(t )) + 𝜖𝜅i (t )

= C2𝜀
i (t ) −C2 ∫

t

t−𝜄(t )
�̇�i (r )dr + 𝜖𝜅i (t ). (25)

From (4) to (13), the error dynamics is given by

ėi = Ax̄i + BK 𝜀i
(
t i
k
h
)
+ B𝜔𝜔

i − Ax̃i − BK 𝜀i (𝜅i h)

− Lȳi
2(𝜅i h) + LC2x̃i (𝜅i h). (26)

By (16) and (25), the CLS (17) can be obtained. □

Remark 4. The updating interval of (7) and (9) is different due
to the transmission delays 𝜄i

k
and 𝜍i

k
. It is challenging for stability

analysis. An interval decomposition method is used such that
system (7) and (9) are updated in the same time interval.

Remark 5. In [31, 34 37], the interval decomposition method has
also been used in the event-triggered control problem. The main
difference is that we need to obtain a unified closed-loop system
due to existing two kinds of transmission delay. In Lemma 2, a
CLS is obtained.

Definition 1. For the CLS (17) and given 𝛾 > 0, if:

1. limt→∞ ‖x̄i (t )‖ = 0, asymptotically for all agents and any
initial states as the disturbance vanishing;

2. ‖ȳ1(t )T
ȳ1(t )‖2 ⩽ 𝛾‖𝜔(t )T 𝜔(t )‖2, holds, then, controller (7)

is called H∞ consensus OFC and the CLS is said to have an
H∞ performance with an index 𝛾.

In the following, sufficient conditions based on LMI are
given to ensure the existence of the H∞ consensus OFC.

Lemma 4. There exists an H∞ consensus OFC (7) for system (1)

and (2), if there exist matrices L, K , Ω > 0 and W > 0, and constants

h > 0 and 𝜎 > 0 such that

⎛⎜⎜⎜⎜⎜⎝

Σ ΓT
1 (IN ⊗W ) ΓT

2 (IN ⊗W ) ΓT
3 (IN ⊗Ω)

∗ −
1

a1
(IN ⊗W ) 0 0

∗ ∗ −
1

a1
(IN ⊗W ) 0

∗ ∗ ∗ −
1

𝜎
(IN ⊗Ω)

⎞⎟⎟⎟⎟⎟⎠
< 0,

(27)

where

Σ =

⎛⎜⎜⎜⎝
Σ11 Σ12 0

∗ Σ22 Σ23

∗ ∗ Σ33

⎞⎟⎟⎟⎠, Σ11 = G11 + IN ⊗C T
1 C1,

G11 = IN ⊗ (WA + AT W ) − ⊗WBK

−T ⊗ K T BT W ,

Σ12 =
(
Σ13 Σ14

)
,

Σ13 =

⎛⎜⎜⎜⎜⎝


⊗WBK +T ⊗C T
2 LT W

+IN ⊗C T
2 LT W 

⊗WBK

⎞⎟⎟⎟⎟⎠
,

Σ14 =
(
− ⊗WBK IN ⊗WB𝜔

)
,

Σ22 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

G31 ⊗WBK −⊗WBK IN ⊗WB𝜔

∗ −
1

3a1
(IN ⊗W ) 0 0

∗ ∗ −
1

2a1
(IN ⊗W ) 0

∗ ∗ ∗ −𝛾2INn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

G31 = IN ⊗ (WA + AT W −WLC2 −C T
2 LT W ),

Σ23 =
(
Σ24 Σ25

)
,

Σ24 =

⎛⎜⎜⎜⎝
−(IN ⊗WLC2 + ⊗WBK ) IN ⊗WLC2

+ ⊗WBK

09N×3N 09N×3N

⎞⎟⎟⎟⎠,

Σ25 =

(
− ⊗WLC2 −IN ⊗WL

09N×3N 09N×3N

)
,

Σ33 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−a1(IN ⊗W ) 0 0
0

0 −
1

2a1
(IN ⊗W ) 0

0

0 0 −
1

3a1
(IN ⊗W )

0

0 0 0
−IN ⊗Ω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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Γ1 = (Γ11Γ12) ,

Γ11 =
(
IN ⊗ A − ⊗ BK ⊗ BK +T ⊗C T

2 LT

+ IN ⊗C T
2 LT

)
,

Γ12 = ( ⊗ BK − ⊗ BKIN ⊗ B𝜔03N×12N ) ,

Γ2 = (Γ21Γ22Γ23) ,

Γ21 =
(
03N×3N IN ⊗ (A − LC2) ⊗ BK

)
,

Γ22 =
(
− ⊗ BKIN ⊗ B𝜔 − (IN ⊗ LC2 + ⊗ BK )

)
,

Γ23 =
(
IN ⊗ LC2 + ⊗ BK − ⊗ LC2 − IN ⊗ L

)
,

Γ3 =
( ⊗C203N×18N − ⊗C203N×3N

)
,

a1 = (m1 + m2 + l )h.

Proof. Construct a Lyapunov–Krasovskii functional U (t ) =
U1(t ) +U2(t ), where

U1(t ) = x̄(t )T (IN ⊗W )x̄(t )

+

N∑
i=1

∫
t

t−a1
∫

t

𝛽

̇̄xi (r )T
W ̇̄xi (r )drd𝛽, (28)

U2(t ) = e(t )T (IN ⊗W )e(t )

+

N∑
i=1

∫
t

t−a1
∫

t

𝛽

ėi (r )T
W ėi (r )drd𝛽. (29)

The time derivatives of U1(t ) and U2(t ) along trajectories of
CLS (17) are

U̇1 = ̇̄xT (IN ⊗W )x̄ + x̄T (IN ⊗W ) ̇̄x +

N∑
i=1

a1( ̇̄xi )
T

W ̇̄xi

−

N∑
i=1

∫
t

t−a1

̇̄xi (r )T
W ̇̄xi (r )dr , (30)

and

U̇2 = ėT (IN ⊗W )e + eT (IN ⊗W )ė +
N∑

i=1

a1(ėi )
T

W ėi

−

N∑
i=1

∫
t

t−a1

ėi (r )T
W ėi (r )dr . (31)

From Lemma 1, we obtain that

−∫
t

t−a1

̇̄xi (r )T
W ̇̄xi (r )dr

⩽ −
1
3 ∫

t

t−𝜗2(t )

̇̄xi (r )T
W ̇̄xi (r )dr

−
1
3 ∫

t

t−𝜗1(t )

̇̄xi (r )T
W ̇̄xi (r )dr

−
1
3 ∫

t

t−𝜄(t )

̇̄xi (r )T
W ̇̄xi (r )dr

⩽ −
1

3a1
[∫

t

t−𝜗2(t )

̇̄xi (r )T
drW ∫

t

t−𝜗2(t )

̇̄xi (r )dr

+ ∫
t

t−𝜗1(t )

̇̄xi (r )T
drW ∫

t

t−𝜗1(t )

̇̄xi (r )dr

+ ∫
t

t−𝜄(t )

̇̄xi (r )T
drW ∫

t

t−𝜄(t )

̇̄xi (r )dr ],

and

−∫
t

t−a1

ėi (r )T
W ėi (r )dr

⩽ −
1
2 ∫

t

t−𝜗2(t )
ėi (r )T

W ėi (r )dr

−
1
2 ∫

t

t−𝜗1(t )
ėi (r )T

W ėi (r )dr

⩽ −
1

2a1
[∫

t

t−𝜗2(t )
ėi (r )T

drW ∫
t

t−𝜗2(t )
ėi (r )dr

+ ∫
t

t−𝜗1(t )
ėi (r )T

dsW ∫
t

t−𝜗1(t )
ėi (r )dr ].

Let

𝜉1(t ) = col

(
∫

t

t−𝜗2(t )

̇̄xi (r )dr

)
,

𝜉2(t ) = col

(
∫

t

t−𝜗2(t )
ėi (r )dr

)
,

𝜉3(t ) = col

(
∫

t

t−𝜗1(t )

̇̄xi (r )dr

)
,

𝜉4(t ) = col

(
∫

t

t−𝜗1(t )
ėi (r )dr

)
,

𝜉5(t ) = col

(
∫

t

t−𝜄(t )

̇̄xi (r )dr

)
,
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we have

U̇1 ⩽ −
1

3a1
col

(
∫

t

t−𝜗2

̇̄xi (r )dr

)T

(IN ⊗W )col

(
∫

t

t−𝜗2

̇̄xi (r )dr

)

−
1

3a1
col

(
∫

t

t−𝜗1

̇̄xi (r )dr

)T

(IN ⊗W )col

(
∫

t

t−𝜗1

̇̄xi (r )dr

)

−
1

3a1
col

(
∫

t

t−𝜄

̇̄xi (r )dr

)T

(IN ⊗W )col

(
∫

t

t−𝜄

̇̄xi (r )dr

)
+ ̇̄xT (IN ⊗W )x̄ + x̄T (IN ⊗W ) ̇̄x +

N∑
i=1

a1 ̇̄x
i T

W ̇̄xi

⩽ −
1

3a1
𝜉T

1 (IN ⊗W )𝜉1 −
1

3a1
𝜉T

3 (IN ⊗W )𝜉3

−
1

3a1
𝜉T

5 (IN ⊗W )𝜉5 + [(IN ⊗ A)x̄ + (IN ⊗ BK )𝜀

− (IN ⊗ BK )col

(
∫

t

t−𝜗2

̇̃𝜀i (r )dr

)
+ (IN ⊗ B𝜔 )𝜔]T (IN ⊗W )x̄

+ x̄T (IN ⊗W )[(IN ⊗ A)x̄ + (IN ⊗ BK )𝜀

− (IN ⊗ BK )col

(
∫

t

t−𝜗2

̇̃𝜀i (r )dr

)
+ (IN ⊗ B𝜔 )𝜔]

+

N∑
i=1

a1[Ax̄i + BK 𝜀i − BK ∫
t

t−𝜗2

̇̃𝜀i (r )dr + B𝜔𝜔
i ]

T

× W [Ax̄i + BK 𝜀i − BK ∫
t

t−𝜗2

̇̃𝜀i (r )dr + B𝜔𝜔
i ], (32)

and

U̇2 ⩽ −
1

2a1
col

(
∫

t

t−𝜗2

ėi (r )dr

)T

(IN ⊗W )col

(
∫

t

t−𝜗2

ėi (r )dr

)

−
1

2a1
col

(
∫

t

t−𝜗1

ėi (r )dr

)T

(IN ⊗W )col

(
∫

t

t−𝜗1

ėi (r )dr

)

+ ėT (IN ⊗W )e + eT (IN ⊗W )ė +
N∑

i=1

a1 ėi (t )T
W ėi (t )

⩽ −
1

2a1
𝜉T

2 (IN ⊗W )𝜉2 −
1

2a1
𝜉T

4 (IN ⊗W )𝜉4

+

[
(IN ⊗ LC2)x̄ − (IN ⊗ LC2)𝜀 + IN ⊗ (A − LC2)e

− (IN ⊗ BK )col

(
∫

t

t−𝜗2

̇̃𝜀i (r )dr

)
− (IN ⊗ LC2) col

×

(
∫

t

t−𝜗1

̇̃xi (r )dr

)
+ (IN ⊗ LC2)col

×

(
∫

t

t−𝜄

�̇�i (r )dr

)
− (IN ⊗ L)𝜖k + (IN ⊗ B𝜔 )𝜔

]T

+ (IN ⊗W )e + eT (IN ⊗W )

×

[
(IN ⊗ LC2)x̄ − (IN ⊗ LC2)𝜀

+ IN ⊗ (A − LC2)e − (IN ⊗ BK )col

(
∫

t

t−𝜗2

̇̃𝜀i (r )dr

)

− (IN ⊗ LC2)col

(
∫

t

t−𝜗1

̇̃xi (r )dr

)

+ (IN ⊗ LC2)col

(
∫

t

t−𝜄

�̇�i (r )dr

)

− (IN ⊗L)𝜖k + (IN ⊗B𝜔 )𝜔

]
+

N∑
i=1

a1

[
LC2x̄i − LC2𝜀

i

+ (A − LC2)ei − BK ∫
t

t−𝜗2

̇̃𝜀i (r )dr + BK ∫
t

t−𝜗1

̇̃𝜀i (r )dr

− LC2 ∫
t

t−𝜗1

̇̃xi (r )dr + LC2 ∫
t

t−𝜄

�̇�i (r )dr

− L𝜖𝜅i + B𝜔𝜔
i

]
T W

×

[
LC2x̄i − LC2𝜀

i (A − LC2)ei − BK ∫
t

t−𝜗2

̇̃𝜀i (r )dr

+ BK ∫
t

t−𝜗1

̇̃𝜀i (r )dr − LC2 ∫
t

t−𝜗1

̇̃xi (r )dr

+ LC2 ∫
t

t−𝜄

�̇�i (r )dr − L𝜖𝜅i + B𝜔𝜔
i

]
. (33)

Note that

col

(
∫

t

t−𝜗2

̇̃𝜀i (r )dr

)
= ( ⊗ In )col

(
∫

t

t−𝜗2(t )

̇̃xi (r )dr

)

= ( ⊗ In )col

(
∫

t

t−𝜗2

( ̇̄xi (r ) − ėi (r ))dr

)
= ( ⊗ In )(𝜉1 − 𝜉2), (34)

col

(
∫

t

t−𝜗1

̇̃xi (r )dr

)
= ( ⊗ In )col

(
∫

t

t−𝜗1

( ̇̄xi (r ) − ėi (r ))dr

)
= 𝜉3 − 𝜉4, (35)
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col

(
∫

t

t−𝜗1

̇̃𝜀i (r )dr

)
= ( ⊗ In ) col

(
∫

t

t−𝜗1(t )

̇̃xi (r )dr

)
= ( ⊗ In )(𝜉3 − 𝜉4), (36)

and

col

(
∫

t

t−𝜄

�̇�i (r )dr

)
= ( ⊗ In )col

(
∫

t

t−𝜄(t )

̇̄xi (r )dr

)
= ( ⊗ In )𝜉5(t ). (37)

Then, (32) and (33) can be rewritten as

U̇1 ⩽ −
1

3a1
𝜉T

1 (IN ⊗W )𝜉1 −
1

3a1
𝜉T

3 (IN ⊗W )𝜉3

−
1

3a1
𝜉T

5 (IN ⊗W )𝜉5 + 𝜁T
1 (G1 + G2)𝜁1, (38)

and

U̇2 ⩽ −
1

2a1
𝜉T

2 (IN ⊗W )𝜉2 −
1

2a1
𝜉T

4 (IN ⊗W )𝜉4

+ 𝜁T
2 (G3 + G4)𝜁2, (39)

where

𝜁1 =
(
x̄T eT 𝜉T

1 𝜉T
2 𝜔T

)T
,

𝜁2 =
(
eT x̄T 𝜉T

1 𝜉T
2 𝜉T

3 𝜉T
4 𝜉T

5 𝜖T
𝜅 𝜔T

)T
,

G1 = (G11 G12 G13 0) ,

G11 = IN ⊗ (WA + AT W ) − ⊗WBK −T ⊗ K T BT W ,

G12 = ( ⊗ WBK  ⊗WBK − ⊗WBK IN ⊗WB𝜔 ),

G13 = ( ⊗WBK  ⊗WBK − ⊗WBK IN ⊗WB𝜔 )T
,

G2 = G21a1(IN ⊗W )G T
21,

G21 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(IN ⊗ A − ⊗ BK )T

( ⊗ BK )T

( ⊗ BK )T

(− ⊗ BK )T

(IN ⊗ B𝜔 )T

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

G3 =

⎛⎜⎜⎜⎜⎝
G31 G32 G33 G34

G35 0 0 0

G36 0 0 0

G37 0 0 0

⎞⎟⎟⎟⎟⎠
,

G31 = IN ⊗ (WA + AT W −WLC2 −C T
2 LT W ),

G32 =

(T ⊗C T
2 LT W + IN ⊗C T

2 LT W 
⊗WBK − ⊗WBK

)
,

G33 =

(
−(IN ⊗WLC2 + ⊗WBK ) IN ⊗WLC2

+ ⊗WBK

)
,

G34 =
(
− ⊗WLC2 −IN ⊗WL IN ⊗WB𝜔

)
,

G35 =
⎛⎜⎜⎝
 ⊗WLC2 + IN ⊗WLC2

( ⊗WBK )T

−( ⊗WBK )T

⎞⎟⎟⎠ ,
G36 =

(
−(IN ⊗WLC2 + ⊗WBK )T

(IN ⊗WLC2 + ⊗WBK )T

)
,

G37 =
⎛⎜⎜⎝
−( ⊗WLC2)T

−(IN ⊗WL)T

(IN ⊗WB𝜔 )T

⎞⎟⎟⎠ , G4 = G41a1(IN ⊗W )G T
41,

G41 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

IN ⊗ (A − LC2)T

 ⊗ LC2 + IN ⊗ LC2

( ⊗ BK )T

−( ⊗ BK )T

−(IN ⊗ LC2 + ⊗ BK )T

(IN ⊗ LC2 + ⊗ BK )T

−( ⊗ LC2)T

−(IN ⊗ L)T

(IN ⊗ B𝜔 )T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Moreover, by (38) and (39), we have

U̇ (t ) ⩽ 𝜁T
1 (G1 + G2)𝜁1 + 𝜁T

2 (G3 + G4)𝜁2

−
1

3a1
𝜉T

1 (t )(IN ⊗W )𝜉1(t )

−
1

3a1
𝜉T

3 (t )(IN ⊗W )𝜉3(t )−
1

2a1
𝜉T

2 (t )(IN ⊗W )𝜉2(t )

−
1

2a1
𝜉T

4 (t )(IN ⊗W )𝜉4(t )−
1

3a1
𝜉T

5 (t )(IN ⊗W )𝜉5(t )

− 𝜖𝜅 (t )T (IN ⊗Ω)𝜖𝜅 (t )

+ 𝜎[( ⊗C2)x̄(t ) − ( ⊗C2)𝜉5(t )]
T

(IN ⊗Ω)

× [( ⊗C2)x̄(t ) − ( ⊗C2)𝜉5(t )].

Define U3(t ) as:

U3(t ) = ȳi
1(t )T

ȳi
1(t ) − 𝛾2𝜔i (t )T 𝜔i (t ), (40)
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that is,

U3(t ) = x̄T (t )(IN ⊗C T
1 C1)x̄(t ) − 𝛾2𝜔T (t )𝜔(t ). (41)

From (38) to (41), we have

U̇ (t ) +U3(t ) ⩽ 𝜁T
⎡⎢⎢⎣Σ +

(
ΓT

1 ΓT
2 ΓT

3

)
Σ0

⎛⎜⎜⎝
Γ1
Γ2
Γ3

⎞⎟⎟⎠
⎤⎥⎥⎦𝜁,

(42)

where

𝜁 =
(
x̄T eT 𝜉T

1 𝜉T
2 𝜔T 𝜉T

3 𝜉T
4 𝜉T

5 𝜖T
𝜅

)T
,

Σ =
⎛⎜⎜⎝
Σ11 Σ12 0
∗ Σ22 Σ23

∗ ∗ Σ33

⎞⎟⎟⎠, Σ11 = G11 + IN ⊗C T
1 C1,

G11 = IN ⊗ (WA + AT W ) − ⊗WBK −T ⊗ K T BT W ,

Σ12 =
(
Σ13 Σ14

)
,

Σ13 =

( ⊗WBK +T ⊗C T
2 LT W + IN ⊗C T

2 LT W

 ⊗WBK

)
,

Σ14 =
(
− ⊗WBK IN ⊗WB𝜔

)
,

Σ22 =

⎛⎜⎜⎜⎝
G31  ⊗WBK − ⊗WBK IN ⊗WB𝜔
∗ −

1

3a1
(IN ⊗W ) 0 0

∗ ∗ −
1

2a1
(IN ⊗W ) 0

∗ ∗ ∗ −𝛾2INn

⎞⎟⎟⎟⎠,
G31 = IN ⊗ (WA + AT W −WLC2 −C T

2 LT W ),

Σ23 =
(
Σ24 Σ25

)
,

Σ24 =

(
−(IN ⊗WLC2 + ⊗WBK ) IN ⊗WLC2

+ ⊗WBK
09N×3N 09N×3N

)
,

Σ25 =

(
− ⊗WLC2 −IN ⊗WL

09N×3N 09N×3N

)
,

Σ33 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−a1(IN ⊗W ) 0 0
0

0 −
1

2a1
(IN ⊗W ) 0

0
0 0 −

1

3a1
(IN ⊗W )

0
0 0 0

−IN ⊗Ω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Σ0 =
⎛⎜⎜⎝
a1IN ⊗W 0 0

0 a1IN ⊗W 0
0 0 𝜎IN ⊗Ω

⎞⎟⎟⎠,
Γ1 =

(
Γ11 Γ12

)
,

Γ11 =
(
IN ⊗ A − ⊗ BK  ⊗ BK +T ⊗C T

2 LT

+ IN ⊗C T
2 LT

)
,

Γ12 =
( ⊗ BK − ⊗ BK IN ⊗ B𝜔 03N×12N

)
,

Γ2 =
(
Γ21 Γ22 Γ23

)
,

Γ21 =
(
03N×3N IN ⊗ (A − LC2)  ⊗ BK

)
,

Γ22 =
(
− ⊗ BK IN ⊗ B𝜔 −(IN ⊗ LC2 + ⊗ BK )

)
,

Γ23 =
(
IN ⊗ LC2 + ⊗ BK − ⊗ LC2 −IN ⊗ L

)
,

Γ3 =
( ⊗C2 03N×18N − ⊗C2 03N×3N

)
,

a1 = (m1 + m2 + l )h.

From Lemma 2, the condition (27) is equivalent to

Σ +
(
ΓT

1 ΓT
2 ΓT

3

)
Σ0

⎛⎜⎜⎝
Γ1
Γ2
Γ3

⎞⎟⎟⎠ < 0,

which implies that

U̇ + ȳT
1 ȳ1 − 𝛾2𝜔T 𝜔 < 0, t ∈ 𝜅i

. (43)

In the case of t ∈ [t i
0h, t i

0h + 𝜄 + 𝜍), the derivative of U1(t ) is
given by

U̇1 = ̇̄xT (IN ⊗W )x̄ + x̄T (IN ⊗W ) ̇̄x

+

N∑
i=1

a1( ̇̄xi )
T

W ̇̄xi −

N∑
i=1

∫
t

t−a1

̇̄xi (r )T
W ̇̄xi (r )dr

⩽ 𝜁T
0 (G01

+ G02
)𝜁0 −

(
col

(
∫

t

t i
0h

�̇�i (s)ds

))T

× a1(IN ⊗W )col

(
∫

t

t i
0h

�̇�i (r )dr

)
. (44)

From (38) and (44), we have

U̇1(t ) +U3(t ) ⩽ 𝜁T
0 (Σ1 + G02

)𝜁0, (45)

where

𝜁0 =

(
x̄T col

(∫ t

t i
0h

̇̄xi (s)ds
)T

𝜔T

)T

,

G01
=

⎛⎜⎜⎜⎝
G11  ⊗WBK IN ⊗WB𝜔

( ⊗WBK )T 0 0

(IN ⊗WB𝜔 )T 0 0

⎞⎟⎟⎟⎠,
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G11 = IN ⊗ (WA + AT W ) − ⊗WBK −T ⊗ K T BT W ,

G02
=

⎛⎜⎜⎝
(IN ⊗ A − ⊗ BK )T

( ⊗ BK )T

(IN ⊗ B𝜔 )T

⎞⎟⎟⎠a1(IN ⊗W )

⎛⎜⎜⎝
(IN ⊗ A − ⊗ BK )T

( ⊗ BK )T

(IN ⊗ B𝜔 )T

⎞⎟⎟⎠
T

,

Σ1 =

⎛⎜⎜⎜⎝
G11  ⊗WBK IN ⊗WB𝜔

( ⊗WBK )T
−

1

a1
(IN ⊗W ) 0

(IN ⊗WB𝜔 )T 0 −𝛾2INn

⎞⎟⎟⎟⎠.
The condition (27) implies that the matrix

⎛⎜⎜⎜⎜⎜⎝

G11 + IN ⊗C T
1 C1  ⊗WBK IN ⊗WB𝜔 (IN ⊗WA − ⊗WBK )T

∗ −
1

a1
(IN ⊗W ) 0 ( ⊗WBK )T

∗ ∗ −𝛾2INn IN ⊗ BT
𝜔W

∗ ∗ ∗ −
1

a1
(IN ⊗W )

⎞⎟⎟⎟⎟⎟⎠

is negative definite.
Therefore, from (45) and the above matrix, one has

U̇1 +U3 < 0, t ∈ [t i
0h, t i

0h + 𝜄 + 𝜍).

Since
⋃∞

k=0[t i
k
h + 𝜄 + 𝜍, t i

k+1h + 𝜄 + 𝜍)
⋃

[t i
0h, t i

0h + 𝜄 + 𝜍) =
[t0, +∞), and x̄(t ), e(t ) are continuous on [t0, +∞), thus, U (t )
is continuous on [t0, +∞). If 𝜔(t ) = 0, we get

U̇ (t ) + ȳ1(t )T
ȳ1(t ) < 0,

Therefore, when the disturbance vanishes, the CLS is asymp-
totically stable. Furthermore, limt→∞ x̄i (t ) = 0.

Since U (t ) is continuous on [t0, +∞), integrating the inequal-
ity (43) from t0 to t yields

U (t ) −U (t0) < − ∫ t

t0
ȳ1(r )T

ȳ1(r )dr + 𝛾2 ∫ t

t0
𝜔(r )T 𝜔(r )dr .

Using the 0 initial condition and when t → ∞, one has

∫ ∞

0
ȳ1(r )T

ȳ1(r )dr < 𝛾2 ∫ ∞

0
𝜔(r )T 𝜔(r )dr .

Thus, ‖ȳ1(t )T
ȳ1(t )‖2 ⩽ 𝛾‖𝜔(t )T 𝜔(t )‖2. □

The matrix inequality (27) with respect to W , L and K is
not solvable. In the following theorem, we transform the matrix
inequality (27) into an LMI-based feasible problem.

Theorem 1. There exists an H∞ consensus OFC (7) for system (1)

and (2), if there exist matrices L̄, K̄ , W > 0 and Ω > 0, and given

constants h > 0 and 𝜎 > 0 such that

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Σ̄ Γ̄T
1 Γ̄T

2 ΓT
3 (IN ⊗Ω)

∗ −
1

a1
(IN ⊗W ) 0 0

∗ ∗ −
1

a1
(IN ⊗W ) 0

∗ ∗ ∗ −
1

𝜎
(IN ⊗Ω)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
< 0,

(46)

where

Σ̄ =

⎛⎜⎜⎜⎝
Σ̄11 Σ̄12 0

∗ Σ̄22 Σ̄23

∗ ∗ Σ33

⎞⎟⎟⎟⎠, Σ̄11 = Ḡ11 + IN ⊗C T
1 C1,

Ḡ11 = IN ⊗ (WA + AT W ) − ⊗ K̄ −T ⊗ K̄ T ,

Σ̄12 =

(⊗ K̄ +T ⊗C T
2 L̄T + IN ⊗C T

2 L̄T ⊗ K̄

− ⊗ K̄ IN ⊗WB𝜔

)
,

Σ̄22 =

⎛⎜⎜⎜⎜⎜⎜⎝

Ḡ31  ⊗ K̄ − ⊗ K̄ IN ⊗WB𝜔

∗ −
1

3a1
(IN ⊗W ) 0 0

∗ ∗ −
1

2a1
(IN ⊗W ) 0

∗ ∗ ∗ −𝛾2INn

⎞⎟⎟⎟⎟⎟⎟⎠
,

G31 = IN ⊗ (WA + AT W − L̄C2 −C T
2 L̄T ),

Σ̄23 =
(
Σ̄24 Σ̄25

)
,

Σ̄24 =

(
−(IN ⊗ L̄C2 + ⊗ K̄ ) IN ⊗ L̄C2 + ⊗ K̄

09N×3N 09N×3N

)
,

Σ̄25 =

(
− ⊗ L̄C2 −IN ⊗ L̄

09N×3N 09N×3N

)
,
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Σ33 =

⎛⎜⎜⎜⎜⎜⎝

−
1

a1
(IN ⊗W ) 0 0 0

0 −
1

2a1
(IN ⊗W ) 0 0

0 0 −
1

3a1
(IN ⊗W ) 0

0 0 0 −IN ⊗Ω

⎞⎟⎟⎟⎟⎟⎠
,

and

Γ̄1 = (Γ̄11 Γ̄12),

Γ̄11 =
(
IN ⊗WA − ⊗ K̄  ⊗ K̄ +T ⊗C T

2 L̄T

+ IN ⊗C T
2 L̄T

)
,

Γ12 =
( ⊗ K̄ − ⊗ K̄ IN ⊗WB𝜔 03N×12N

)
,

Γ̄2 =
(
Γ̄21 Γ̄22 Γ̄23

)
,

Γ̄21 =
(
03N×3N IN ⊗ (WA − L̄C2)  ⊗ K̄

)
,

Γ̄22 =
(
− ⊗ K̄ IN ⊗WB𝜔 −(IN ⊗ L̄C2 + ⊗ K̄ )

)
,

Γ̄23 =
(
IN ⊗ L̄C2 + ⊗ K̄ − ⊗ L̄C2 −IN ⊗ L̄

)
,

Γ3 =
( ⊗C2 03N×18N − ⊗C2 03N×3N

)
.

Under this setting, the control gain and the observer gain are K =

(BT B)
−1

BT W −1K̄ and L = W −1L̄ , respectively.

Proof. Let K̄ = WBK and L̄ = WL. Then, we can obtain (46)
from (27). □

Remark 6. The sufficient condition proposed in Theorem 1 for
H∞ consensus achieving is based on LMI. For LMI based algo-
rithm, how to reduce its conservatism is an interesting topic
worthy of further investigation in the future.

5 NUMERICAL SIMULATIONS

In this section, we give two examples to show the validity of
results. Consider a MAS consisting of one leader and four fol-
lowers shown in Figure 2. Choose the parametric matrices of
the MAS as:

A =
⎛⎜⎜⎝
−2 0 0.3
2 −3 0
1 0 −2

⎞⎟⎟⎠ , B =
⎛⎜⎜⎝
1
2
1

⎞⎟⎟⎠ , B𝜔 =
⎛⎜⎜⎝
1
1
1

⎞⎟⎟⎠,
C1 =

⎛⎜⎜⎝
0.1 0 0.2
0.1 0.2 0
0 0.3 0.1

⎞⎟⎟⎠, C2 =
⎛⎜⎜⎝
1 0 1
1 2 0
0 1 3

⎞⎟⎟⎠,
𝜔(t ) =

{
sin t , t ∈ [0, 20],

0, otherwise.

Case 1 ∶ Select the parameters: h = 0.02, 𝜎 = 0.2,m1 =
2,m2 = 1, and l = 6. By calculating, we get 𝛾 = 12.6356, matri-
ces K ,L and Ω are

K =
(
0.0232 0.0064 0.0109

)
,

L =
⎛⎜⎜⎝
−0.0770 −0.0244 0.0112
0.0384 −0.0157 −0.0139
−0.0183 −0.0008 −0.0131

⎞⎟⎟⎠,
and

Ω =
⎛⎜⎜⎝

15.6891 −1.5107 −4.4787
−1.5107 4.2762 −0.7225
−4.4787 −0.7225 3.4434

⎞⎟⎟⎠.
Case 2 ∶ Select the parameters: h = 0.02, 𝜎 = 0.3,m1 =

2,m2 = 1, and l = 6. By calculating, we get 𝛾 = 4.6603, matri-
ces K ,L, Ω are

K =
(
0.0236 0.0079 0.0125

)
, (47)

L =
⎛⎜⎜⎝
−0.0713 −0.0229 0.0099
0.0256 −0.0155 −0.0106
−0.0229 −0.0008 −0.0107

⎞⎟⎟⎠, (48)

and

Ω =
⎛⎜⎜⎝

1.5655 −0.1485 −0.4492
−0.1485 0.3826 −0.0593
−0.4492 −0.0593 0.3232

⎞⎟⎟⎠. (49)

We choose the initial values of x(0) and x̂(0) as

x(0) = (0.7, 0.6, 0.1, −0.4, 0.2, 0.3, 0.5, −0.1, 0.5,

− 0.1, 0.4, 0.1, 0.5, 0.8, −0.1)T ,

and

x̂(0) = (−0.2, 0.7, 0.4, 0.2, −0.2, 0.3, 0.5, 0.1,

− 0.1, 0.2, 0.5, 0.3, 0.4, 0.7, 0.2)T ,

and the transmission delays 𝜄i
k

and 𝜍i
k

are randomly gen-
erated in the interval [0, 2h] and [0, h] respectively. Fig-
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FIGURE 2 Connected graph
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FIGURE 3 Trajectories of error dynamic
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FIGURE 4 The corresponding release instants
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FIGURE 5 Trajectories of states
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FIGURE 6 The corresponding release instants

ures 3 and 5 show the state trajectories of Case 1 and
Case 2, respectively, while Figures 4 and 6 show the release
time instants. The simulation results show that the Zeno-
behaviour can be avoided and consensus can be reached
asymptotically.

Remark 7. For multi-agent systems, computational complexity
is an important problem we face when the number of agents is
large. However, the LMI (46) in theorem 1 can be solved offline,
and the event-triggered condition (3) and controller (8) are
distributed only depending on local information exchange,
which greatly reduce the computational burden when the num-
ber of agents is large.
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6 CONCLUSION

The consensus control of leader-following MASs is studied in
this paper via event-triggered H∞ consensus OFC. Due to tak-
ing two class of time-delay into account, the system and the out-
put feedback controller have different update time intervals. By
interval dividing, we obtain the CLS updated in the same time
intervals. The event-triggered condition is adopted to reduce
times of sampling and improve efficiency. Output feedback H∞

control method is applied such that leader-following consensus
is reached. In the future, it is important to reduce the conser-
vatism of the sufficient conditions.
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