
DEPARTMENT OF MATHEMATICS AND
APPLIED MATHEMATICS

Dissertation Mathematics
WIS 890

December 2021

Semi-order units in vector lattices

Chitanga Painos 16124970

Supervised by

Prof J.H VAN DER WALT and Dr M. WORTEL

Department of Mathematics and Applied Mathematics
University of Pretoria

1



Semi-order units in vector lattices

PAINOS CHITANGA
16124970

Project submitted as a partial fulfillment for the degree

Masters of Science

in Mathematics

In the Faculty of Natural and Agricultural Sciences
University of Pretoria

Pretoria

December 2021

Supervisors

Prof J.H VAN DER WALT and Dr M. WORTEL

Department of Mathematics and Applied Mathematics

2



Declaration

I, CHITANGA PAINOS declare that the dissertation, which I hereby sub-
mit for the degree Masters of Science in Mathematics at the University of
Pretoria, is my own work and has not previously been submitted by me for
a degree at this or any other tertiary institution.

Signature:
Date:

3



Acknowledgements

First and foremost l would like to thank my supervisors Prof J.H. Van der
Walt and DrW.Wortel for their patience and guidance throughout the thesis.
l also want to thank my family for the support but mainly Arthur Antonio
a brother who always reminded me that the goal is to finish what l have
started.
Last but not least l want to thank the Mastercard Foundation Scholarship
at the University of Pretoria for providing me with all the financial support
over the 2 years when l was doing my Masters.

4



Semi-order units in vector lattices

Painos Chitanga 16124970

Monday 28th March, 2022



Contents

1 Introduction 2
1.1 Continuous Functions in Analysis . . . . . . . . . . . . . . . . 2
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 General Vector Lattices 4
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Order Bounded Operators and Order Adherence . . . . . . . . 10
2.3 Lattice Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Semi-order Units . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 The vector lattice C(X) 33
3.1 Compactifications . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 The Compact-Open Topology . . . . . . . . . . . . . . . . . . 42
3.3 Closed Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Order dual of C(X) . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Bands in C(X)∼ and C(X)∼∼ . . . . . . . . . . . . . . . . . . 48
3.6 Embedding C(X) into C(X)∼∼ . . . . . . . . . . . . . . . . . 51

3.7 Semi-order units in C̃(X) and the compact open topology . . 57

A 68
A.1 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
A.2 Ordered vector spaces . . . . . . . . . . . . . . . . . . . . . . 70

1



Chapter 1

Introduction

1.1 Continuous Functions in Analysis

Spaces of continuous functions come equipped with a variety of structures
making it a useful and versatile object of study in mathematics. Indeed, the
space C(X) of real-valued continuous functions on a topological space X is a
ring [8] and a vector lattice [7]. If X is compact then C(X) is a Banach alge-
bra [9], and a Banach lattice when equipped with the uniform norm. Hence
C(X) serves simultaneously as an example of many different mathematical
objects.

Spaces of continuous functions are often “typical” objects in certain classes
of objects. Every Archimedean vector lattices can be represented as a space
of (extended) real-valued continuous functions on some topological space X,
see [10]. Also commutative C∗− algebras can be represented as a space of
continuous functions, see for instance [5].

In this thesis we study C(X) as a vector lattice and a locally convex topolog-
ical vector space, and the interaction between these structures. In the case
of a compact space X, the norm and the order are intimately related to one
another. Indeed, one may define the norm through the order structure.

||f || = inf{λ > 0 : |f | ≤ λ1}.

Furthermore the order bounded and norm bounded sets in C(X) are identi-
cal, a linear functional ϕ on C(X) is order bounded if and only if it is norm
bounded. Following [4], we aim to generalize these results to a non-compact
space X. In particular, we consider C(X) equipped with the compact open
topology, and the relationship between this topology and the order structure
on C(X).
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1.2 Outline

In chapter 2 we give the definition of a semi-order unit and the semi-order
unit topology. Many vector lattices have few semi-order units, for example
C(X) for a connected non-compact space Tychonoff spaceX. Therefore given

a vector lattice E, we consider the order adherence Ẽ, the collection of all
limits of order convergent nets in E viewed as a subspace of its order bidual.
We will find the semi-order units of Ẽ for certain explicit of vector lattices E.

We dedicate chapter 3 to C(X). In this chapter we study Cco(X) from
the order theoretic point of view. We discuss closed ideals in Cco(X), and
we compare the order dual and the topological dual. We also discuss the
order theoretic characterization of the compact open topology in terms of

semi-order unit in C̃(X).

In particular, we end the thesis by showing that X is realcompact if and only
if the semi-order unit topology inherited from the order adherence agrees
with the compact-open topology on C(X). The Stone-Čech compactification
and the realcompactfication of X are constructed as necessary preliminary
material for the chapter.

The Appendix contains some results which are used throughout the thesis.
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Chapter 2

General Vector Lattices

2.1 Preliminaries

Recall that a vector lattice is an ordered vector space which is a lattice with
respect to its partial order. We will assume that the reader is familiar with
some basic terminology on ordered vector spaces, in particular vector lattices,
see for instance [11], [2]. We follow the notation of [4].

Definition 2.1.1. Let E be a vector lattice. A positive element u in E is
called a semi-order unit if for each v in E, there exists a λ > 0 such that
v ∧ nu ≤ λu for all n ∈ N.

Proposition 2.1.2. Let E be a vector lattice. A positive element u ∈ E is
a semi-order unit if and only if for all v ∈ E, there exists a µ > 0 such that
|v| ∧ nu ≤ µu for all n ∈ N.

Proof. Suppose there exists a µ > 0 such that |v| ∧ nu ≤ µu, for all n ∈ N.
Since E is a lattice, v ≤ |v|. Hence for each n ∈ N we have that

v ∧ nu ≤ |v| ∧ nu ≤ µu.

This holds for each n ∈ N. By setting λ = µ, we have v ∧ nu ≤ λu, so that
u is a semi-order unit.
Now suppose u is a semi-order unit and fix v ∈ E. Since E is a lattice,
|v| ∈ E so by assumption, there exists a λ > 0 such that |v| ∧ nu ≤ λu for
all n ∈ N. By setting µ = λ we get the desired result.

Proposition 2.1.3. Let u be a positive element in a vector lattice E and
λ > 0. Then for v ∈ E, we have that |v| ∧ nu ≤ λu for all n ∈ N if and only
if |v| ∧ tu ≤ λu for all t > 0.
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Proof. Suppose |v| ∧ nu ≤ λu for all n ∈ N. Fix t > 0. Since N is not
bounded from above, there exists an N ∈ N such that N > t. It follows that
Nu > tu. Thus

|v| ∧ tu ≤ |v| ∧Nu ≤ λu.

Since t > 0 was arbitrary, it follows that |v| ∧ tu ≤ λu for all t > 0. Suppose
|v| ∧ tu ≤ λu for all t > 0. Since N ⊆ R+, it follows that if n ∈ N, then n > 0
so that |v| ∧ nu ≤ λu. Since n was abitrary the result follows.

Using the above propositions, we will sometimes use |v| rather than v since
the definitions will be equivalent.
Note that it also holds for any subset of R which is not bounded from above.
Remark: If A is a non-empty set in R and is bounded from below, then inf A
exists. For λ > 0 define a set

B = {λa : a ∈ A}.

Then B is bounded below and inf B = λ inf A.

Theorem 2.1.4. Let u be a semi-order unit in a vector lattice E. Then the
function defined by

ρ(v) = inf{λ > 0 : |v| ∧ nu ≤ λu, n ∈ N}

for v in E defines a semi-norm on E.

Proof. Since u is a semi-order-unit, the set

{λ > 0 : |v| ∧ nu ≤ λu, n ∈ N}

is non-empty and is bounded below by 0, so its infimum exists. By the
characterization of an infimum, we have that

0 ≤ inf{λ > 0 : |v| ∧ nu ≤ λu, n ∈ N}

so that ρ(v) ≥ 0 for all v ∈ E. Hence

ρ : E −→ [0,∞).

Let v ∈ E and let α ∈ R.
If α = 0, then

|α|ρ(v) = 0 ρ(v) = 0 inf{λ > 0 : |v| ∧ nu ≤ λu, n ∈ N}
= inf{λ > 0 : |0| ∧ nu ≤ λu, n ∈ N}
= ρ(αv).
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If α ̸= 0, then

ρ(αv) = inf{λ > 0 : |αv| ∧ nu ≤ λu, n ∈ N}
= inf{λ > 0 : |α||v| ∧ nu ≤ λu, n ∈ N}

= inf{λ > 0 : |α|(|v| ∧ n

|α|
u) ≤ λu, n ∈ N}

= inf{λ > 0 : |α|(|v| ∧ tu) ≤ λu, t > 0}
= inf{λ > 0 : |α|(|v| ∧ nu) ≤ λu, n ∈ N}

= inf{λ > 0 : (|v| ∧ nu) ≤ λ

|α|
u, n ∈ N}

= inf{|α|µ > 0 : (|v| ∧ nu) ≤ µu, n ∈ N}whereµ =
λ

|α|
= |α| inf{µ > 0 : (|v| ∧ nu) ≤ µu, n ∈ N} (using the Remark before the theorem)

= |α|ρ(v).

Hence ρ(αv) = |α|ρ(v).
Now it only remains to show the triangle inequality. Let v1, v2 ∈ E. Since E
is a vector lattice, |v1 + v2| ≤ |v1|+ |v2|. Hence from Theorem 6.5 of [11] we
have that for each n ∈ N,

|v1 + v2| ∧ nu ≤ (|v1|+ |v2|) ∧ nu = |v1| ∧ nu+ |v2| ∧ nu. (2.1)

Recall that if A and B are nonempty subsets of R that are bounded from
below, then if C =

{
a+b : a ∈ A, b ∈ B

}
, it follows that inf C = inf A+inf B.

In addition, if A ⊆ B then inf B ≤ inf A. Using this argument, we have that

ρ(v1) + ρ(v2) = inf
{
λ1 : |v1| ∧ nu ≤ λ1u, n ∈ N

}
+ inf

{
λ2 : |v2| ∧ nu ≤ λ2u, n ∈ N

}
= inf{λ1 + λ2 : |v1| ∧ nu ≤ λ1u and |v2| ∧ nu ≤ λ2u, n ∈ N}.

Let λ1 and λ2 be such that |v1| ∧ nu ≤ λ1u and |v2| ∧ nu ≤ λ2u.
Then for λ = λ1 + λ2, using (2.1) :

|v1 + v2| ∧ nu ≤ |v1| ∧ nu+ |v2| ∧ nu
≤ λ1u+ λ2u

= λu.

Hence
{
λ1 + λ2 > 0 : |v1| ∧ nu ≤ λ1u, and |v2| ∧ nu ≤ λ2u n ∈ N

}
is a

subset of the set
{
λ > 0 : |v1 + v2| ∧ nu ≤ λu, n ∈ N

}
. Taking the infimum

we obtain the result ρ(v1 + v2) ≤ ρ(v1) + ρ(v2).
Hence ρ defines a semi-norm on a vector lattice E.
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Example 2.1.5. Let X be a discrete space and consider C(X) = RX . The
followings are equivalent.

i. u is a semi-order unit.

ii. The support of u is finite.

Proof of ii =⇒ i . Suppose spt u is finite. Define a set A as

A = spt u =
{
x ∈ X : u(x) ̸= 0

}
=

{
x1, ..., xn

}
.

Fix f ∈ C(X) = RX . Then for any x /∈ A, u(x) = 0 so that nu(x) = 0 for
all n ∈ N. Hence for x /∈ A we have that

min
{
|f(x)|, nu(x)

}
= 0. (2.2)

Define
a = max

{
|f(xi)| : i = 1, ..., n

}
.

Clearly a ̸= 0 because it is a maximum of a finite set of positive elements.
Since u(x) ̸= 0 for x ∈ A, the set{

a

u(x)
: x ∈ A

}
is well defined and non-empty. Define

λ = max

{
a

u(x)
: x ∈ A

}
.

It follows that λ > 0 and λ ≥ a
u(x)

for all x ∈ A. Hence, if x ∈ A then

|f(x)| ≤ a ≤ λu(x) so that,

min
{
|f(x)|, nu(x)

}
≤ λu(x). (2.3)

Combining (2.2) and (2.3) we have that for x ∈ X

min
{
|f(x)|, nu(x)

}
≤ λu(x) for all n ∈ N

so that
|f | ∧ nu ≤ λu, n ∈ N.

Since f was arbitrary, it follows that u is a semi-order unit.
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Proof of i =⇒ ii. Let u be a semi-order unit. Then for any f ∈ C(X),
there exists a λ > 0 such that |f | ∧ nu ≤ λu for all n ∈ N.
With a view for a contradiction, suppose that spt u is not finite. Let

A =
{
xi : i ∈ N

}
⊆ spt u.

Define a function as

f(x) =

{
iu(xi) if x = xi ∈ A

0 if x /∈ A.

Then f ∈ C(X). Since u is a semi-order unit, it follows that there exists a
λ > 0 such that

|f | ∧ nu ≤ λu, for all n ∈ N.
In particular for i, n ∈ N, we have that

min{iu(xi), nu(xi)} ≤ λu(xi).

Hence for i, n ∈ N, we have that iu(xi) ≤ λu(xi) or nu(xi) ≤ λu(xi). Since
u(xi) > 0, it follows that for i, n ∈ N, we have that n ≤ λ or i ≤ λ. Since
this holds for any i, n ∈ N, this means that N is bounded. However this is a
contradiction hence, spt u is finite.

Definition 2.1.6. Let E be a vector lattice. By the semi-order unit topology
on E, we will mean the locally convex topology generated by the collection
of semi-norms associated to the family of all semi-order units in E.

Definition 2.1.7. Let E be a vector lattice. A subset D of E is upward
directed if for every x, y ∈ D, there exists z ∈ D such that x ≤ z and y ≤ z.

We note that the downward directed set is defined in a similar way.
Let I and J be directed sets.

Definition 2.1.8. A net S = (vβ)β∈J in a vector lattice E is said to be
decreasing if β0 < β1 implies that vβ1 ≤ vβ0 . In this case we write vβ↓. If, in
addition inf(vβ, β ∈ J) = v for some v ∈ E, we say (vβ) decreases to v and
we write vβ↓ v.

Definition 2.1.9. A net S = (uα)α∈I in a vector lattice E is said to be order
convergent to u ∈ E if there exists a net (vβ)β∈J in E such that vβ↓ 0 and
for every β ∈ J there exists αβ ∈ I such that |uα−u|≤ vβ whenever α ≥ αβ.
We denote this by

uα
o−→ u (2.4)

and say (uα)α∈I is o-convergent to u.
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Lemma 2.1.10. Let E be a vector lattice and D ⊆ E, D downward directed
and bounded below. If y = infD then there exists a net in D that order
converges to y.

Proof. Since D is downward directed, it follows that for u, v ∈ D, there
exists a w ∈ D such that w ≤ v and w ≤ u. Now let I = (D,≤o) where for
u, v ∈ D, u ≤o v if and only if v ≤ u. Define a map

S : I ∋ u 7−→ u ∈ D.

Then S is a decreasing net and since D ↓ y in E, it follows that S ↓ y hence
S

o−→ y.

Definition 2.1.11. Let E be a vector lattice and (xα)α∈I a net in E. We
say that lim supxα = z if there exists an α0 ∈ I such that

inf
α′≥α0

sup
α≥α′

xα = z.

We also say that lim inf xα = z if there exists an α0 ∈ I such that

sup
α′≥α0

inf
α≥α′

xα = z.

We note that, in general, if lim supxα and lim inf xα exist then lim inf xα ≤
lim supxα.

Theorem 2.1.12. Let E be a Dedekind complete vector lattice, (xα)α∈I a net
in E and x a point in E. Then the followings are equivalent:

i. xα
o−→ x.

ii. lim inf xα = x = lim sup xα.

Proof. Suppose that xα
o−→ x. It suffices to show that lim inf xα ≥ x ≥

lim supxα. Since xα
o−→ x, then there exists nets (wβ)β∈J ↑ x and (vβ)β∈J ↓ x

such that for all β ∈ J, there exists αβ ∈ I such that if α ≥ αβ then
wβ ≤ xα ≤ vβ. Therefore there exists an α0 ∈ I such that {xα : α ≥ α0} is
order bounded. Hence lim inf xα and lim supxα exist because E is Dedekind
complete. Now fix β0 ∈ J and let α0 = αβ0 . Then wβ0 ≤ xα ≤ vβ0 for all
α ≥ α0. Now

(
sup
α≥α′

xα
)
α′≥α0

is a decreasing net in α0.

For all β ≥ β0, there exists αβ ≥ α0 such that if α ≥ αβ then wβ ≤ xα ≤ vβ.
Hence wβ ≤ sup

α≥αβ

xα ≤ vβ. Now

lim supxα = inf
α′≥α0

sup
α≥α′

xα ≤ inf
β≥β0

sup
α≥αβ

xα ≤ inf
β≥β0

vβ = x.
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We also have that

lim inf xα = sup
α′≥α0

inf
α≥α′

xα ≥ sup
β≥β0

inf
α≥αβ

xα ≥ inf
β≥β0

wβ = x.

Hence lim supxα ≤ lim inf xα so that lim sup xα = lim inf xα = x.
Now suppose that lim supxα = x = lim inf xα. Then there exists an α0 ∈ I
such that

inf
α′≥α0

sup
α≥α′

xα = x = sup
α′≥α0

inf
α≥α′

xα.

Let J = {α ∈ I : α ≥ α0} with the ordering inherited from I. Then J is
upward directed.
Let vα = sup{xα′ : α′ ≥ α} for all α ∈ J. Then vα ↓ x. Also let wα = inf{xα′ :
α′ ≥ α}. Then wα ↑ x. Define uα = sup{vα − x, x− wα}. Then (uα)α∈J is a
net in E and uα ↓ 0. Now if α′ ≥ α then

wα = inf
α′≥α

xα′ ≤ xα ≤ sup
α′≥α

xα′ = vα.

That is wα − x ≤ xα′ − x ≤ vα − x so that |xα′ − x| ≤ uα.
Hence xα

o−→ x.

Theorem 2.1.13. Let E and F be vector lattices and let τ : E −→ F a linear
map. Then the following are equivalent:

i. τ is a lattice homomorphism.

ii. τ [x ∨ y] = τx ∨ τy for all x, y ∈ E.

iii. τ [x ∧ y] = τx ∧ τy for all x, y ∈ E.

iv. τ [x ∨ y] = τx ∨ τy whenever x ∨ y = 0 holds in E.

v. τx+ = [τx]+

vi. τ |x| = |τx|
Proof. For the proof of this result, see [1, Theorem 1.31].

2.2 Order Bounded Operators and Order Ad-

herence

Definition 2.2.1. Let E and F be be a vector lattices. A linear operator

T : E −→ F

is said to be order bounded if it maps order intervals in E into order intervals
in F .
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Theorem 2.2.2. Let E and F be vector lattices and denote by Lb(E,F ) the
collection of all order bounded operators from E into F. Then Lb(E,F ) is an
ordered vector space.

Proof. Suppose T, S ∈ L(E,F ).
Fix [x, y] ⊂ E. Since T ∈ Lb(E,F ), the order bounded interval [x, y] is
mapped to some bounded interval say [a, b] in F and similarly S is mapped
into an order bounded [c, d].
Claim 1: (T + S)([x, y]) ⊆ [a+ c, b+ d].
Fix v ∈ [x, y] then

a ≤ T (v) ≤ b and c ≤ S(v) ≤ d.

It then follows that

a+ c ≤ (T + S)(v) = T (v) + S(v) ≤ b+ d.

Hence (T + S)(v) ∈ [a+ c, b+ d], proving the claim.
λ > 0.
Claim 2: λT is mapped into [λa, λb].
Fix v ∈ [x, y], then a ≤ T (v) ≤ b. Since λ > 0 it follows that

λa ≤ λT (v) = T (λv) ≤ λb.

Hence λT is order bounded.
Suppose λ = −1. Now if v ∈ [x, y] then a ≤ T (v) ≤ b so that

−b ≤ −T (v) = T (−v) ≤ −a.

That is (−T )([x, y]) ⊆ [−b,−a]. Hence it is a linear vector space.

When F is Dedekind complete, we present the following result.

Theorem 2.2.3. Let E,F be vector lattices with F being Dedekind complete
and let D ⊆ Lb(E,F ) be upward directed and bounded from above. Then

S(x) = sup{Tx : T ∈ D}, x ≥ 0, x ∈ E

extends to an operator S̃ ∈ Lb(E,F ) such that S̃ = supD in Lb(E,F ).

Proof. We prove for the case when D ⊆ Lb(E,F )+.
Consider T1 and T2 in D. Since D is upward directed there exists an operator
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T3 ∈ D such that T1 ≤ T3 and T2 ≤ T3 in particular if x1, x2 ∈ E+ then
T1x1 ≤ T3x1 and T2x2 ≤ T3x2. Hence

T1x1 + T2x2 ≤ T3x1 + T3x2 = T3(x1 + x2) ≤ S(x1 + x2).

Taking the supremum we have S(x1) + S(x2) ≤ S(x1 + x2).
For the reverse inequality, consider T ∈ D then

T (x1 + x2) = Tx1 + Tx2 ≤ S(x1) + S(x2).

Hence S(x1+x2) ≤ S(x1)+S(x2) so that S(x1+x2) = S(x1)+S(x2). Hence
the map S is additive and it follows from extension Lemma (see [11, Lemma

20.1] ) that there exists a uniquely determined positive linear operator S̃ :

E −→ F such that S̃ extends S.
Claim: S̃ = supD.
For x ∈ E+ and T ∈ D, we have that

Tx ≤ sup{Tx : T ∈ D} = S̃(x).

Hence T ≤ S̃. Since T was an arbitary element of D we have that S̃ is an
upper bound of D. Now Let R be any other upper bound of D. Then T ≤ R
for all T ∈ D. For x ∈ E+ we have that

S̃(x) = sup{Tx : T ∈ D} ≤ Rx.

Thus S̃ ≤ R so that S̃ is the supremum of D proving the claim.

If we replace F by R, then the collection of all bounded linear operators from
E to R form a vector space called the order dual of E and we denote it by
E∼.
The bidual of E is defined in the similar way and we denote it by E∼∼.

Theorem 2.2.4. Let E and F be vector lattices. Assume T : E −→ F is an
interval preserving operator and let T ∗ : F∼ −→ E∼ be defined by T ∗ϕ = ϕ◦T
for all ϕ ∈ F∼. Then T ∗ is a lattice homomorphism.

Proof. The proof of this result can be found in [2, Theorem 2.19].

Corollary 2.2.5. Let E and F be vector lattices. Assume T : E −→ F is a
vector lattice isomorphism. Then T ∗ is a vector lattice isomorphism.

Definition 2.2.6. Let E be a vector lattice. The order adherence of E are
all elements u ∈ E∼∼ such that there exists a net S = (uα)α∈I in E with

uα
o−→ u in E∼∼ and we denote this by Ẽ. That is

Ẽ =
{
u ∈ E∼∼ : ∃(uα)α∈I ⊆ E, uα

o−→ u
}
.
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Theorem 2.2.7. The space Ẽ is a sublattice of E∼∼.

Proof. Let u, v ∈ Ẽ. Then there exist nets (uα)α∈I and (vβ)β∈J in E such
that

uα
o−→ u and vβ

o−→ v,

where I and J are directed sets. Let w(α,β) with the component-wise ordering
be the net defined by

w(α,β) = uα + vβ.

Using the triangle inequality we have,

|(u+ v)− w(α,β)| = |(u+ v)− (uα + vβ)|
= |(u− uα) + (v − uβ)|
≤ |u− uα|+ |v − vβ|.

Since uα
o−→ u it follows that there exists a net (fγ)γ∈KA

with KA a directed
set so that fγ ↓ 0 and for each γ ∈ KA, there exists αγ ∈ I such that
|u− uα| ≤ fγ whenever α ≥ αγ.

Since vβ
o−→ v it follows that there exists a net (gλ)λ∈KB

with KB a directed
set so that gλ ↓ 0 and for each λ ∈ KB there exists βλ ∈ J such that
|v − vβ| ≤ gβ whenever β ≥ βλ.
Let h(γ,λ) = fγ + gλ, with the component-wise ordering. Now if (γ0, λ0) ≤
(γ1, λ1) then γ0 ≤ γ1 and λ0 ≤ λ1 so that fγ1 ≤ fγ0 and gλ1 ≤ gλ0 . Hence

h(γ1,λ1) = fγ1 + gλ1 ≤ fγ0 + gλ0 = h(γ0,λ0).

Thus h(γ,λ) ↓ . Since fγ ↓ 0 and gλ ↓ 0 it follows that h(γ,λ) ↓ 0.
Now for any (γ, λ), (α, β) ≥ (αγ, βλ) implies that α ≥ αγ and β ≥ βλ hence

|(u+ v)− w(α,β)| ≤ fγ + gλ = h(γ,λ)

so that w(α,β)
o−→ u+v. Hence there is a net (w(α,β))(α,β)∈I×J in E that order

converges to u+ v so that u+ v ∈ Ẽ.
Let β ∈ R. Since u ∈ Ẽ, there exists a net (uα)α∈I in E such that uα

o−→ u.
Define vα = βuα for each α ∈ I. Then

|βu− vα| = |βu− βuα| = |β(u− uα)| = |β||u− uα|.

Since uα
o−→ u it follows that there exists a net (fγ)γ∈KA

so that fγ ↓ 0
and for each γ ∈ KA, there exists αγ ∈ I such that |u − uα| ≤ fγ whenever
α ≥ αγ. Let gγ = |β|fγ. Then gγ ↓ 0 and if α > αγ then

|βu− vα| ≤ |β|fγ = gγ.
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Hence vα
o−→ βu so that βu ∈ E. Since 0 ∈ E ⊆ Ẽ we have that E is a linear

subspace of E∼∼. Since Ẽ inherits the ordering from E∼∼, it is an ordered
vector space.
It remains to show that it is a lattice. It is sufficient to prove tat if u ∈ Ẽ,
then |u| ∈ Ẽ.

Suppose u ∈ Ẽ then there exists a net (uα)α∈I in E such that uα
o−→ u.

Hence there exist a net fγ ↓ 0 such that for each γ ∈ J we can find an αγ ∈ I
and if α ≥ αγ, then |uα − u| ≤ fγ.
Since E is a vector lattice, |uα| ∈ E for each α ∈ I thus (|uα|)α∈I is a net in
E.
Now, for each γ ∈ J, if α ≥ αγ, by the reverse triangle inequality, we have
that

||uα| − |u|| ≤ |uα − u| ≤ fγ.

Thus |uα|
o−→ |u|. Hence Ẽ is a lattice.

2.3 Lattice Theory

In this section we give more general results on general vector lattices which
will be used in the next chapter. The approach is to establish each result in
a general setup and apply it to a specific vector lattice. In particular it will
be applied to the space of real valued continuous functions on a topological
space X.
Let E be a vector lattice and I an ideal in E. We denote by E/I, the quotient
space and we use [x] to denote the elements of E/I. In particular,

[x] = x+ I = {x+ y : y ∈ I}.

For x, y ∈ E, we will say [x] ≤ [y] if there exists x1 ∈ [x] and y1 ∈ [y] such
that x1 ≤ y1. Observe that this defines a partial ordering on E/I.

Theorem 2.3.1. The space E/I is a vector lattice and we call it the quotient
vector lattice of E modulo the ideal I.

The proof of this result can be found in [11].

Proposition 2.3.2. Let E and F be vector lattices and let T : E −→ F be a
lattice homomorphism. Then kerT is an ideal in E.

Proof. The zero vector is in kerT. If x, y ∈ kerT and λ ∈ R, then T (x+y) =
Tx + Ty = 0 + 0 = 0. Also T (λx) = λTx = λ0 = 0, so that kerT is a
linear vector space. Finally since T is a lattice homomorphism we have that
T (x ∨ y) = Tx ∨ Ty = 0 ∨ 0 = 0, hence kerT is an ideal in E.
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Theorem 2.3.3. Let E and F be vector lattices and let T : E −→ F be a
lattice homomorphism onto F. Then the map T̃ : E/ kerT −→ F defined by

T̃ (x+ kerT ) = Tx

is well defined and is a lattice isomorphism.

Proof. Suppose x1 + kerT = x2 + kerT . Then x1 − x2 ∈ kerT so that
T (x1−x2) = 0. Hence Tx1 = Tx2 and T̃ (x1+kerT ) = T̃ (x2+kerT ). Hence

T̃ is well defined. The map T̃ is linear by abstract results.
Surjectivity: Since T is onto, let y ∈ F, then there exists an x ∈ E such that
Tx = y. Hence

T̃ (x+ kerT ) = Tx = y

so that T̃ is surjective.
Injectivity: Let x + kerT ∈ ker T̃ . Then 0 = T̃ (x + kerT ) = Tx. Hence
x ∈ kerT . Thus x+ kerT = kerT which is the zero element of the quotient
space. Hence ker T̃ = {kerT} so that T̃ is injective.
Finally let [x1] = x1 + kerT and [x2] = x2 + kerT be elements in E/ kerT .
Then

T̃ ([x1] ∨ [x2]) = T̃ ([x1 ∨ x2])
= T (x1 ∨ x2) (definition of T̃ )

= Tx1 ∨ Tx2 (T is a lattice homomorphism)

= T̃ ([x1]) ∨ T̃ ([x2]) (definition of T̃ ).

Hence T̃ ([x1]∨[x2]) = T̃ ([x1])∨T̃ ([x2]) so that T̃ is a lattice isomorphism.

Definition 2.3.4. Let E be a vector lattice. E∼ separates E if for every
0 ̸= x ∈ E there exists ϕ ∈ E∼ such that ϕ(x) ̸= 0.

Note that if F ⊆ E, we will say F separates E∼ if for every 0 ̸= ϕ ∈ E∼,
there exists an x ∈ F such that ϕ(x) ̸= 0.

Definition 2.3.5. Let E be a vector lattice and I ⊆ E an ideal in E. We
denote by I⊥ the subspace of E∼ whose members vanishes on I. That is

I⊥ = {ϕ ∈ E∼ : ϕ[I] = {0}},

and we say I⊥ is the annihilator of I.
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Theorem 2.3.6. Let E be a vector lattice and I ⊆ E an ideal in E. Suppose
E∼ separates E and (E/I)∼ separates E/I. Let Q : E −→ E/I defined by
f 7−→ f + I be the quotient map. Then the map Q∗ : (E/I)∼ −→ I⊥ defined
by

Q∗(ϕ) = ϕ ◦Q

is a lattice isomorphism.

Proof. If ϕ ∈ (E/I)∼ and f ∈ I then Q∗[ϕ](f) = ϕ ◦ Q(f) = ϕ(Q(f)) =
ϕ(0 + I) = 0 so that ϕ ◦Q ∈ I⊥. Hence Q∗ is well defined. The operator Q∗

is linear since an adjoint of a linear transformation is linear. Since the map
Q : E −→ E/I is surjective, the adjoint operator Q∗ is injective.
Surjectivity: Let γ ∈ I⊥. Then define a map ϕ : E/I −→ R given by

ϕ(f + I) = γ(f), f ∈ E.

First suppose that γ ∈ E∼
+ . If f ∈ E and f ≥ 0 then γ(f) ≥ 0. Hence if

f + I ∈ E/I such that f + I is a positive element then there exists a positive
element f ′ ∈ E such that f ′ + I = f + I so that ϕ(f + I) = ϕ(f ′ + I) =
γ(f ′) ≥ 0. Hence ϕ is a positive functional on E/I so that ϕ ∈ (E/I)∼+.
Now for any γ ∈ E∼, let

ϕ0(f + I) = γ+(f), ϕ1(f + I) = γ−(f), f ∈ E.

Then ϕ0 and ϕ1 are positive functionals on E/I so that ϕ0, ϕ1 ∈ (E/I)∼+. Let
ϕ = ϕ0 − ϕ1. Then ϕ ∈ (E/I)∼. Thus Q∗ is surjective.
It remains to show that Q∗ and its inverse map are both positive maps so
that it is a lattice isomorphism. To this end, let ϕ ≥ 0. Then for any positive
element f + I of E/I we have that ϕ(f + I) ≥ 0. So if f ≥ 0 in E then

[Q∗(ϕ)](f) = ϕ(Q(f)) = ϕ(f + I) ≥ 0.

Now suppose Q∗ϕ ≥ 0. Let f + I be a positive element of E/I then there
exists an f ′ ∈ E such that f ′ ≥ 0 and f + I = f ′ + I. Hence

ϕ(f + I) = ϕ(f ′ + I)

= ϕ(Q(f ′))

= [Q∗(ϕ)](f ′)

≥ 0.

Hence ϕ ≥ 0 if and only if Q∗(ϕ) ≥ 0 so that Q∗ is a linear lattice isomor-
phism.
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Theorem 2.3.7. Let E be a vector lattice and I an ideal in E. Then I⊥ is a
band in E∼.

Proof. If ϕ0 is the zero functional on E then ϕ0(x) = 0 for all x ∈ E. hence
ϕ0(x) = 0 for all x ∈ I. We have ϕ0 ∈ I⊥. Now if ϕ1, ϕ2 ∈ I⊥ and α ∈ R,
then for x ∈ I

(ϕ1 + αϕ2)(x) = ϕ1(x) + αϕ2(x) = 0 + 0 = 0.

Hence ϕ1 + αϕ2 ∈ I⊥ and I⊥ is a linear subspace of E∼.
Next we will show that if ψ ∈ I⊥ and x ∈ I+ then |ψ|(x) = 0.
If ψ ∈ I⊥ then ψ ∈ E∼ and ψ(x) = 0 for all x ∈ I. Note that if x ∈ I+ then
x ∈ E+. Since I is an ideal in E, it follows that if x ∈ I+ and y ∈ E such
that |y| ≤ x, then y ∈ I and ψ(y) = 0. Hence

|ψ|(x) = sup{ψ(y) : |y| ≤ x} = sup{0 = ψ(y) : |y| ≤ x} = 0.

Now let ψ1 ∈ I⊥ and ψ2 ∈ E∼ be such that |ψ2| ≤ |ψ1|. For x ∈ I+, we have
that |ψ2|(x) ≤ |ψ1|(x) = 0. Hence |ψ2|(x) = 0, thus sup{ψ2(y) : |y| ≤ x} = 0.
Since x ∈ E+ and |x| = x, we have ψ2(x) = 0. Therefore ψ2 ∈ I⊥. Thus I⊥

is an ideal in E∼.

It remains to show that I⊥ is a band.
Let D be an upward directed set in I⊥ that is bounded from above. For
x ∈ E+, define

ϕ1(x) = sup{ϕ(x) : ϕ ∈ D}.
Then ϕ1(x) = 0 for all x ∈ I+. It follows from Theorem 2.2.3 that ϕ1 can be

extended to a bounded linear operator ϕ̃1 such that ϕ̃1 = supD and ϕ̃1(I) = 0
so that supD ∈ I⊥. Hence I⊥ is a band in E∼.

Definition 2.3.8. Let E be vector lattice and A ⊆ E. Then

Ad = {y ∈ E : |x| ∧ |y| = 0 ∀x ∈ A}.

We call Ad the disjoint complement of A.

Theorem 2.3.9. Let E be a vector lattice. Then Ad is a band in E.

Proof. The proof of this result can be found in [11, Theorem 8.4]

Theorem 2.3.10. Let E be a vector lattice and B be a band in E such that

E = B ⊕Bd.

Suppose x ∈ B is an order unit of B. Then x is a semi-order unit of E.
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Proof. Fix z ∈ E. Then z = z1+ z2 where z1 ∈ B and z2 ∈ Bd. We also have
that |z| = |z1| + |z2|. Since x ∈ B is an order unit, there exists a λ > 0, λR
such that |z1| ≤ λx.
For n ∈ N, we have the following

|z| ∧ nx = (|z1|+ |z2|) ∧ nx
= (|z1| ∧ nx) + (|z2| ∧ nx)
= |z1| ∧ nx (∵ nx ∈ B and z2 ∈ Bd so |z2| ∧ nx = 0)

≤ |z1|
≤ λx.

Hence for every z ∈ E, there exists a λ such that |z|∧nx ≤ λx, n ∈ N. Thus
x is a semi-order unit of E.

Lemma 2.3.11. Let E be a vector lattice and B a band in E such that

E = B ⊕Bd.

Suppose PB : E −→ B is the band projection on the first component. The
map

P ∗
B : B∼ −→ E∼

is a lattice isomorphism onto (Bd)⊥.

Proof. PB is onto so that the adjoint P ∗
B is injective and is linear since the

adjoint of a linear transformation is linear.
For surjectivity, let M = (Bd)⊥ and ψ ∈ M . Then ψ ∈ E∼ and ψ(x) = 0
for all x ∈ Bd. We need to prove that there exists a Ψ ∈ B∼ such that
P ∗
B(Ψ) = ψ. First we let Ψ = ψ|B. Then Ψ is well defined and Ψ ∈ B∼. Now

let x ∈ E. Since E = B ⊕Bd, then there exist elements y, z with y ∈ B and
z ∈ Bd such that x = y + z. Hence

[P ∗
BΨ](x) = Ψ(PB(x))

= Ψ(y)

= ψ(y) (∵ Ψ = ψ|B and y ∈ B)

= ψ(y) + ψ(z) (∵ ψ ∈M so ψ(z) = 0)

= ψ(y + z) = ψ(x).

Hence P ∗
B(Ψ) = ψ so that P ∗

B is surjective.

Finally we show that P ∗
B and its inverse are both positive so that P ∗

B is
a lattice isomorphism.
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Suppose Ψ ≥ 0 and let x ∈ E+ then x = y + z where y and z are in B+ and
(Bd)+ respectively. Since y ∈ B+ and Ψ ≥ 0, we have that Ψ(y) ≥ 0. Hence

[P ∗
BΨ](x) = Ψ(PB(x)) = Ψ(y) ≥ 0.

Now suppose P ∗
BΨ ≥ 0. Since y ∈ B+, then y ∈ E+. Hence

Ψ(y) = Ψ(PB(y)) = [P ∗
BΨ](y) ≥ 0.

Hence P ∗
B is a lattice isomorphism between B∼ and (Bd)⊥.

Lemma 2.3.12. Let E be a vector lattice. If ϕ ∈ E∼ and f ∈ E then

|ϕ(f)| ≤ |ϕ|(|f |).

In particular, if ϕ ∈ E∼
+ then |ϕ(f)| ≤ ϕ(|f |).

Proof. First let ψ ∈ E∼ and f ∈ E+, then

ψ(f) ≤ ψ+(f) ≤ |ψ|(f),

and we also have that

−ψ(f) ≤ ψ−(f) ≤ |ψ|(f).

Hence
|ψ(f)| = ψ(f) ∨ (−ψ(f)) ≤ |ψ|(f).

Now if f ∈ E then

|ψ(f)| = |ψ(f+)− ψ(f−)|
≤ |ψ(f+)|+ |ψ(f−)| (triangle inequality)

≤ |ψ|(f+) + |ψ|(f−) (f+, f− ∈ E+)

= |ψ|(|f |).

The last statement follows from the fact that if ϕ ≥ 0, then f ∈ E+ so
|ϕ|(|f |) = ϕ(|f |). Hence

|ϕ(f)| ≤ |ϕ|(|f |) = ϕ(|f |).
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2.4 Semi-order Units

We have given the definition of a semi-order unit and a couple of results
based on semi-order units but we have not yet characterised them in any
vector lattice. In this section, we will compute the semi-order units of some
ℓp and Lp spaces for p ∈ N. We will characterise these semi-order units.
We will make use of the following theorems for which the proof is not given.

Theorem 2.4.1. Let E be a Banach lattice. Then the norm dual of E and
the order dual of E coincide. That is E∼ = E∗.

Theorem 2.4.2 (Baire Category theorem). Let X be a non-empty complete
metric space. If X can be written as a countable union of closed sets, then at
least one of those sets has non-empty interior.

Theorem 2.4.3. Let E be a reflexive Banach lattice. Then Ẽ = E.

Proof. Since E is a banach lattice, by Theorem 2.4.1, E∼ = E∗. The space
E∗ is a banach lattice hence E∼∼ = E∗∗. Now by reflexivity we have that

E∼∼ = E∗∗ = E.

Hence E = E∼∼. By definition, Ẽ ⊆ E∼∼ = E. For the reverse inclusion, let
x ∈ E∼∼. Then x ∈ E because E = E∼∼. Now let I be any directed set and
let xα = x. Then (xα)α∈I is a net in E and it order converges to x so that

x ∈ Ẽ. Hence E∼∼ ⊆ Ẽ and E = Ẽ.

Theorem 2.4.4. Let E be a Banach lattice. Then order intervals in E are
norm bounded and closed.

Proof. Let x ∈ [u, v] ⊂ E then u ≤ x ≤ v. It then follows that

0 ≤ x− u ≤ v − u so that ||x− u|| ≤ ||v − u||.

Thus
||x|| = ||x− u+ u|| ≤ ||x− u||+ ||u|| ≤ ||v − u||+ ||u||.

Let M = ||v−u||+ ||u||. Now if x ∈ [u, v] then ||x|| ≤M therefore the order
interval is bounded. Next, we will show that it is closed.
Let (xn) be a sequence such that xn ∈ [u, v] for each n ∈ N. Since xn ∈ [u, v],
it follows that u ≤ xn ≤ v so that 0 ≤ xn − u ≤ v − u. By the closedness
property of the positive cone, we have that 0 ≤ x − u ≤ v − u so that
u ≤ x ≤ v. Hence the order interval [u, v] is closed.

For the following vector lattices, we compute the semi-order units of Ẽ.
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i. c0

ii. ℓp, 1 < p <∞

iii. Lp(0, 1), 1 < p <∞

iv. ℓ1

v. c00 and s = RN.

For notation we will use ek to denote the sequence with the element 1 on
the kth component and zero everywhere else. We denote by x(k) the kth

component of x ∈ RN. If xn is a sequence in RN, then xn(k) denotes the k
th

component of the nth term of the sequence.

Lemma 2.4.5. Let E be an ideal in s = RN and let x ∈ E. Then yn =∑n
k=1 x(k)ek order converges to x.

Proof. Fix x ∈ E and let (ek) be the standard basis of E.
Now for each n ∈ N, define

un = (un(k)) =

{
0, k ≤ n

|x(k)|, k > n.

For each, n ∈ N, un ≤ |x| so that un ∈ E since E is an ideal in s and x ∈ E.
Thus (un) is a net in E. Furthermore un+1 ≤ un so that un ↓ .
For each n ∈ N, we have that 0 ≤ un. Therefore 0 is a lower bound of the set

{un : n ∈ N}.

Suppose v ∈ E such that v is a lower bound of {un : n ∈ N}. Then v ≤ un
for all n ∈ N. In particular for each k ∈ N there exists a un such that
un(k) = 0. Hence v(k) ≤ 0 for each k ∈ N so that v ≤ 0. This leads to
inf{un : n ∈ N} = 0. Thus un ↓ 0, we have

|yn − x| = un ↓ 0.

From this we see, yn
o−→ x.

Example 2.4.6. The norm dual of c0 is ℓ1. By Theorem 2.4.1, the order
dual of c0 is also ℓ

1. Now the norm dual of ℓ1 is ℓ∞. Hence the order dual of
ℓ1 is also ℓ∞. Therefore the order bidual of c0 is ℓ∞.
We need to show that c̃0 = ℓ∞.
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Let x ∈ ℓ∞ and define yn =
∑n

k=1 x(k)ek. Then yn ∈ c0 for each n ∈ N.
It follows from Lemma 2.4.5 that x ∈ c̃0 proving the claim.
Now we characterise the semi-order units of ℓ∞.
Let B be the collection of all semi-order units of ℓ∞. Define

A = {u ∈ ℓ∞ : u ≥ 0, inf{|u(k)| : |u(k)| ≠ 0} > 0}.

Next we need to show that A = B.

Let u ∈ A and fix v ∈ ℓ∞.
Since u ∈ A, it follows that inf{|u(k)| : |u(k)| ̸= 0} > 0. Let = inf{|u(k)| :
|u(k)| ≠ 0}. If u(k) = 0 then

|v(k)| ∧ nu(k) = 0, ∀n ∈ N.

Now if u(k) ̸= 0, then a ≤ |u(k)| we have 1 ≤ 1
a
|u(k)|. Since v ∈ ℓ∞, let

d = ||v||∞ then |v(k)| ≤ d, for each k ∈ N. Therefore

|v(k)| ≤ d.1 ≤ d

a
|u(k)|.

Hence

|v(k)| ∧ nu(x) ≤ d

a
|v(k)|.

Let λ = d
a
. Then |v| ∧ nu ≤ λu for each n ∈ N, as a consequence, u is a

semi-order unit of ℓ∞. Thus u ∈ B. Since u ∈ A was arbitrary we have that
A ⊆ B.

For the reverse inclusion. Suppose u ∈ B and consider 1 = (1, 1, 1, ....).
Since u is a semi-order unit of ℓ∞, it follows that there exists a λ > 0 such
that 1 ∧ nu ≤ λu. In particular, we have that

1 ∧ n|u(k)| ≤ λ|u(k)| for each n ∈ N.

If |u(k)| ≠ 0, then for suffiently large N , 1 < N |u(k)|. We have

1 = 1 ∧N |u(k)| ≤ λ|u(k)|.

Hence 1 ≤ λu(k) and 1
λ
≤ |u(k)|. Since |u(k)| ̸= 0 was arbitrary, it follows

that inf{|u(k)| : |u(k)| ≠ 0} ≥ 1
λ
, therefore u ∈ A. Thus B ⊆ A, proving the

claim. So the semi-order units of ℓ∞ are precisely elements u ∈ ℓ∞ such that
u ≥ 0 and inf{|u(k)| : |u(k)| ≠ 0} > 0.
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Example 2.4.7. ℓp with 1 < p < ∞ is reflexive see [3]. Hence ℓ̃p = ℓp by
Theorem 2.4.3. Now we compute the semi-order units of ℓp.
Let u ∈ ℓp such that u ≥ 0.
Statement i. The order interval [−u, u] has empty interior.
It is sufficient to show that 0 is not an interior point of the order interval.
Fix r > 0. It will be shown that B(0, r) ̸⊆ [−u, u].
Since u ∈ ℓp, there exists a k ∈ N such that 0 ≤ u(k) < r. Choose v(k) such
that u(k) < v(k) < r. Now, let v = (0, ...0, v(k), 0, ...) . Clearly v ∈ ℓp and
u(k) < v(k) which implies v /∈ [−u, u]. Now

||v − 0||p = v(k) < r, hence v ∈ B(0, r).

Hence 0 is not an interior point of the order interval [−u, u]. By translation
we can show that every point of [−u, u] is not an interior point. Hence the
order interval has empty interior.
Statement ii. ℓp has no order unit.
We will prove by contraction. Suppose u ∈ ℓp is an order unit. Then for
each v ∈ ℓp, there exists an n ∈ N such that |v| ≤ nu. Hence v ∈ [−nu, nu].
Since v ∈ ℓp was abitrary we have that

ℓp =
⋃
n∈N

[−nu, nu].

Hence ℓp can be written as a countable union of closed empty interior sets,
however this contradicts Theorem 2.4.2. Thus u cannot be an order unit of
ℓp which leads to ℓp having no order units.

We now characterise the semi-order units of ℓp.

Now let u ∈ ℓp such that u(k) > 0 for all k ∈ N.
Statement iii. u is a semi-order unit if and only if u is an order unit.
If u is an order unit then for each v ∈ ℓp, there exists λ > 0 such that
|v| ≤ λu. Now if n ∈ N, then |v| ∧ nu ≤ |v| ≤ λu. Hence

|v| ∧ nu ≤ λu for each n ∈ N.

Thus u is a semi-order unit of ℓp.
Now suppose u is a semi-order unit of ℓp. If v ∈ ℓp, then there exists a λ > 0
such that |v| ∧ nu ≤ λu for each n ∈ N.
Since the infimum is pointwise, we have that for each k ∈ N,

|v(k)| ∧ n|u(k)| ≤ λ|u(k)| for each n ∈ N.
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Now fix k ∈ N. Since N is not bounded, there exists an N ∈ N such that
λ < N hence λu(k) < Nu(k) since u(k) > 0. It then follows that

|v(k)| = |v(k)| ∧N |u(k)| ≤ λ|u(k)|.

There |v(k)| ≤ λ|u(k)|. Since k ∈ N, was arbitrary we have that |v| ≤ λu
so that u is an order unit of ℓp. But ℓp has no order units, it follows that u
cannot be a semi-order unit of ℓp.
Statement iv. Let u0 ∈ ℓp. If spt u0 is infinite then u0 is not a semi-order
unit of ℓp.
Let S = spt u0 and ϕ : S −→ N be a bijection. Let

E = {u ∈ ℓp : u(k) = 0 ∀k ∈ Sc}

and define T : E −→ ℓp and T−1 : ℓp −→ E by

(Tu)(k) := u(ϕ−1(k)) and (T−1u)(k) := u(ϕ(k)).

Let u, v ∈ E such that u ̸= v. Then there exists k ∈ N such that u(ϕ−1(k)) ̸=
v(ϕ−1(k)) and Tu ̸= Tv. Hence T is one to one. Now let w ∈ ℓp and for
k ∈ Sc, let w(k) = 0.

w0(k) =

{
0 if ϕ−1(k) ∈ Sc

w(k) if ϕ−1(k) ∈ S

Then w0 ∈ E and Tw0 = w. Therefore T is surjective.

It remains to show that T and T−1 are positive. Let u ∈ E such that
u ≥ 0. Since the ordering was pointwise, it follows that u(k) ≥ 0 for all
k ∈ N so that (Tu)(k) = u(ϕ−1(k)) ≥ 0. Hence T is positive. Also if u ∈ ℓp

such that u ≥ 0, then u(k) ≥ 0 which leads to (T−1u)(k) = u(ϕ(k)) ≥ 0.
Hence T−1u ≥ 0. We conclude that T and T−1 are positive and T is a lattice
isomorphism.

Now if u0 is a semi-order unit of E, and then Tu0 is also a semi-order unit of
ℓp with full support. By statement iii., Tu0 is an order unit of ℓp contradict-
ing statement i.. Thus u0 is not a semi-order unit of ℓp. Hence no element
with infinitely many non-zero elements is a semi-order unit of ℓp.
Let B be a collection of all semi-order units of ℓp and let A be defined as
follows

A = {u ∈ ℓp : u ≥ 0, u(k) ̸= 0 for finite k′s}
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Statement v. Semi order units of ℓp are precisely finitely supported elements,
that is A = B.

We have shown that if u ∈ ℓp is not finitely supported, then u is not a
semi-order unit of ℓp. Equivalently, if u /∈ A then u /∈ B, That is B ⊆ A. For
the reverse inclusion, suppose u ∈ A. Then u is finitely supported.
Fix v ∈ ℓp. Then for the case u(k) = 0, k ∈ N we have that |v(k)|∧nu(k) = 0
For the case of u(k) ̸= 0, k ∈ N, we first observe that the set {|u(k)| : u(k) ̸=
0} is finite since u is finitely supported.

Now let a = inf{|u(k)| : u(k) ̸= 0}. Then a > 0. Since ℓp ⊂ ℓ∞, ||v||∞
is well defined. Let d = ||v||∞, we have |v(k)| ≤ d ≤ d

a
|u(k)|. Let λ = d

a
then

|v| ∧ nu ≤ λu for each n ∈ N. Therefore u is a semi-order unit of ℓp, hence
u ∈ B proving the statement.

We will use the following result for which we give the proof first. Let m(.)
be the usual Lebesgue measure on R and T ⊂ (0, 1) be measurable in the
Lebesgue sense.

Lemma 2.4.8. For any measurable T ⊆ (0, 1), Lp(T ) has no order units.

Proof. With a view for a contradiction, suppose f ∈ Lp(T ) is an order unit.
We will first show that the order interval [−f, f ] has empty interior.

Since f is positive and well defined on T, we can write

T =
⋃
n∈N

f−1([0, n]).

Since f > 0, for n ∈ N, the set f−1([0, n]) is measurable and one of the sets
has positive measure. Let N ∈ N be such that S = f−1([0, N ]) has positive
measure.
Now fix ε > 0.
We will first show that there exist an A ⊆ S such that m(A) < ε.
Let h : T 7−→ R be defined by

h(t) = m([0, t) ∩ S), t ∈ T.

Since S is measurable and [0, t) is measurable, it follows that S ∩ [0, t) is
measurable for any t ∈ (0, 1).
Now

h(0) = m([0, 0) ∩ S) = m(∅ ∩ S) = m(∅) = 0
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and h(1) = m([0, 1) ∩ S) = m(S).

Next we show that h is continuous by let a ∈ (0, 1) and δ = ε. Then

|h(t)− h(a)| = |m([0, t) ∩ S)−m([0, a) ∩ S)|.

If |t − a| < δ, and t > a then [0, t) = [0, a) ∪ [a, t). Hence [0, t) ∩ S =
([0, a)∩ S)∪ ([a, t)∩ S) which are disjoint. By the additivity of measure, we
have that

m([0, t) ∩ S) = m([0, a) ∩ S) +m([a, t) ∩ S).

Hence

|h(t)− h(a)| = |m([0, t) ∩ S)−m([0, a) ∩ S)|
≤ m([a, t) ∩ S)
≤ m([a, t))

= |t− a|
< δ

If t < a then the argument still holds with the roles of a and t swaped.
Hence |h(t)−h(a)| < ε whenever |t−a| < δ. Thus h is uniformly continuous.
Since h is continuous on [0, 1], h(0) = 0 and h(1) = m(S). It then follows
from the Intermediate Value Theorem that for any number ε0 such that
0 < ε0 < m(S), there exists a t0 ∈ (0, 1) such that h(t0) = ε0. That is
m([0, t0)∩S) = ε0. Now let A = [0, t0)∩S then A ⊆ S and 0 < m(A) < m(S).
Let r > 0 be given. It will be shown that 0 is not an interior point of [−f, f ].
We know that there exists an A ⊆ S such that

0 ≤ m(A) =

(
r

N + 1

)p

.

Now define

k(t) =

{
N + 1

2
if t ∈ A

0 if t ∈ T/A.
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Clearly k is well defined and∫
T

|k(t)|pdt =
∫
A

(
N +

1

2

)p
dt

=
(
N +

1

2

)p ∫
A

1dt

=
(
N +

1

2

)p
m(A)

< (N + 1)p
(

r

N + 1

)p

= rp.

Thus ||k||p =
(∫

T
|k(t)|pdt

) 1
p

< r so that k ∈ B(0, r). For t ∈ A

f(t) ≤ N < N +
1

2
= k(t),

so that k /∈ [−f, f ]. Since r > 0 was arbitrary, it follows that 0 is not an
interior point of [−f, f ].

For any function g ∈ Lp(T ), with f an order unit of Lp(T ), there exists
an n ∈ N such that

|g| ≤ nf, hence g ∈ [−nf, nf ].

Therefore every function belong to some order interval. Thus

Lp(T ) =
⋃
n∈N

[−nf, nf ].

Lp(T ) can be written as a union of closed empty interior sets which contra-
dicts the Baire Category Theorem. Hence Lp(T ) has no order units.

Example 2.4.9. We consider the space Lp(0, 1), 1 < p < ∞. The space
Lp(0, 1) is reflexive so it follows that the order adherence of Lp(0, 1) is Lp(0, 1).
that is

L̃p(0, 1) = Lp(0, 1).

Proof. Let g ∈ Lp(0, 1) be a semi-order unit. If

S = {t ∈ (0, 1) : g(t) > 0},
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g|S is an order unit of Lp(S).
Fix k ∈ Lp(0, 1) Define

f(t) =

{
k(t) if t ∈ S

0 if t /∈ S.

Hence ∫ 1

0

|f(t)|pdt =
∫
S

|k(t)|pdt <∞,

and f ∈ Lp(0, 1). Since g is a semi-order unit of Lp(0, 1), there exists a λ > 0
such that

|f | ∧ ng ≤ λg.

Since N is not bounded, there exists N ∈ N such that λ < N and λg(t) <
Ng(t). Hence

|f(t)| = |f(t)| ∧Ng(t) ≤ λg(t).

Which implies that |f(t)| ≤ λg(t). Since t ∈ S was arbitrary, it follows that
f |S = k ≤ λg|S. Hence g|S is an order unit of Lp(S). But Lp(S) has no order
units hence there is no set S such that m(S) > 0 and g|S is an order unit
of Lp(S). This implies that the semi-order unit of Lp(0, 1) are precisely all
positive elements g ∈ Lp(0, 1) such that m(S) = 0 where

S = {t ∈ (0, 1) : g(t) > 0}.

In another words, g = 0 a.e.

Definition 2.4.10. Let E,F be vector lattices. Suppose T : E −→ F is a
linear operator. We call T an order continuous operator if for any D ⊆ E
such that D ↓ 0, we have that inf{|Tx| : x ∈ D} = 0.

Theorem 2.4.11. Let E be a vector lattice and denote by E∼
n the set of all

order continuous operators on E. Then E∼
n is a band in E∼.

Proof. The proof of this result can be found in [11, Theorem 22.2].

Example 2.4.12. Consider the space ℓ1.
Its norm dual is ℓ∞. Since ℓ1 is a Banach lattice, it follows from Theorem
2.4.1 that the order dual of ℓ1 is ℓ∞.
Statement i. The order continuous order bounded functionals on ℓ∞ can be
identified by ℓ1.

Fix a, b ∈ ℓ1 and define a map

T : ℓ1 ∋ a 7−→ ϕa ∈ (ℓ∞)∼n by
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ϕa(x) =
∞∑
k=1

a(k)x(k), x ∈ ℓ∞.

Let ϕa = ϕb. Then

a(k) = 1a(k) = ϕa(ek) = ϕb(ek) = 1b(k) = b(k).

Hence a(k) = b(k) for all k ∈ N so that a = b. Hence T is injective.

Next we will show that ϕa is order continuous. We prove for the case where
a > 0. The general case will follow from ϕa = ϕa+ − ϕa− .

Fix D ⊆ ℓ∞ such that D ↓ 0. For each k ∈ N, let Dk = {x(k) : x ∈ D}
Statementii. infDk = 0 for each k ∈ N.

Since D ↓ 0, we have that x ≥ 0 for all x ∈ D so that x(k) ≥ 0. Hence
0 is a lower bound of Dk. Now with a view for a contradiction, suppose it is
not the greatest lower bound, then there exists a λ > 0 such that λ ≤ x(k)
for each x ∈ D. Now λek is a lower bound of D and λek > 0 contradicting
the fact that infD = 0. Hence infDk = 0.

Fix y ∈ D and let
Dy = {x ∈ D : x ≤ y}.

Statement iii. infD = infDy.

Let x ∈ Dy then x ∈ D so that infD ≤ x. Hence infD is a lower bound
of Dy. Thus infD ≤ infDy. Similarly, if x0 ∈ D, since y, x0 ∈ D and D
is downward directed, there exists a w ∈ D so that w ≤ y and w ≤ x0,
leading to w ∈ Dy. Hence infDy ≤ w ≤ x0, thus infDy is a lower bound and
infDy ≤ infD. Hence infD = infDy.

So we may assume there exist a y such that D ≤ y. Given ε > 0. Let
N ∈ N be such that

∑∞
k=N+1 a(k)y(k) <

ε
2
. Since D ↓ 0, it follows from

statement ii. that the pointwise infimum is 0. Choose an x ∈ D such that
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a(k)x(k) < ε
2N

for all 1 ≤ k ≤ N . Then

ϕa(x) =
∞∑
k=1

a(k)x(k) =
N∑
k=1

a(k)x(k) +
∞∑

n=N+1

a(k)x(k)

<

N∑
n=1

ε

2N
+

∞∑
n=N+1

a(k)y(k)

<
ε

2
+
ε

2
.

So for every ε > 0, there exists an x ∈ D so that ϕa(x) < ε. Hence
inf ϕa(D) = 0. Thus ϕa is order continuous so that ϕa ∈ (ℓ∞)∼n .
Now let ϕ ∈ (ℓ∞)∼n such that ϕ ≥ 0. We prove that there exists an a ∈ ℓ1

such that ϕ = ϕa.
Let a ∈ RN be defined by a(k) = ϕ(ek).
Now if x ∈ ℓ∞ then x =

∑∞
k=1 x(k)ek. For N ∈ N, define

xN =
N∑

n=1

xnen.

Then

ϕ(xN) = ϕ(
N∑
k=1

x(k)ek) =
N∑

n=1

x(k)ϕ(ek) =
N∑
k=1

a(k)x(k) = ϕa(xN).

Using Lemma 2.4.5, xN
o−→ x. Since ϕ is order continuous we have that

ϕ(xN) −→ ϕ(x) so ϕ(x) =
∑∞

k=1 a(k)x(k). Hence ϕ = ϕa.

It only remains to show that a ∈ ℓ1.
Consider 1 = (1, 1, ...). Then for each n ∈ N, we have that 0 ≤

∑n
k=1 ek ≤ 1.

Since ϕ is order bounded, the order interval [0,1] in ℓ∞ is mapped to some
bounded interval [0, α] in R. Also a(k) = ϕ(ek) ≥ 0 so that |a(k)| = a(k).
Hence for n ∈ N

0 ≤
n∑

k=1

a(k) =
n∑

k=1

ϕ(ek) = ϕ(
n∑

k=1

ek) ≤ ϕ(1) = α <∞.

Therefore a = lim
n−→∞

∑n
k=1 a(k) ≤ α < ∞ and a ∈ ℓ1. Thus ℓ1 = (ℓ∞)∼n . It

then follows from Theorem 2.4.11 that (ℓ∞)∼n is a band in (ℓ∞)∼. Now

ℓ1 = (ℓ∞)∼n ⊆ (ℓ∞)∼ = (ℓ1)∼∼.
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Hence ℓ1 is a band in (ℓ1)∼∼. If Φ ∈ ℓ̃1, then there exists a net (fα)α∈I in ℓ1

so that fα
o−→ Φ. Now lim sup fα = Φ by Theorem 2.1.12. Since ℓ1 is a band,

for each α0 ∈ I, inf
α≥α0

fα ∈ ℓ1. Hence Φ = lim sup fα ∈ ℓ1. Thus ℓ̃1 = ℓ1. Now

the semi-order units of ℓ1 are precisely the elements u ∈ ℓp such that the set
{u(k) : u(k) ̸= 0} is finite.

Example 2.4.13. Let s = RN. The order dual of s is c00.
For a ∈ c00 and x ∈ S define

ϕa(x) = ⟨x, a⟩ =
∞∑
k=1

x(k)a(k).

Clearly the mapping is linear because

ϕa+b(x) = ⟨x, a+ b⟩ =
∞∑
k=1

x(k)(a(k) + b(k))

=
∞∑
k=1

x(k)a(k) +
∞∑
k=1

x(k)a(k)

= ϕa(x) + ϕb(x).

Since x ∈ s was arbitrary, we have that ϕa+b = ϕa + ϕb. It remains to show
that it is order bounded.

First consider ϕej for ej ∈ c00. For x ∈ s, we have that

ϕej(x) = ⟨x, ej⟩ =
∞∑
k=1

ej(k)x(k) = x(j).

Let [x, y] be an order interval in s and let v ∈ [x, y]. Then x ≤ v ≤ y. Since
the ordering is point-wise we have that for each k ∈ N, x(k) ≤ v(k) ≤ yn.
Hence

x(j) = ϕej(x) ≤ v(k) = ϕej(v) ≤ y(k) = ϕej(y).

The order interval [x, y] is mapped into the order interval [ϕej(x), ϕej(y)] so
that ϕek is order bounded.

Now fix a ∈ c00. Since a has finite non-zero terms, there is a finite I ⊂ N
finite such that

a =
∑
k∈I

a(k)ek.

31



Hence ϕa = ϕ∑
k∈I ek

=
∑

k∈I ϕek . Since ϕek is order bounded for each k ∈ I,
the sum of finite order bounded operator is order bounded by Theorem 2.2.2,
so that ϕa ∈ L(s,R).

Now fix ϕ ∈ s∼+. Define a(k) = ϕ(ek), k ∈ N and let a = (a(k)).
We will show that a ∈ c00, by considering the set A = {k ∈ N : ϕ(ek) ̸= 0}
and prove that A is finite.
With a view for a contradiction, suppose A is not finite. Then for each k ∈ A,
ϕ(ek) > 0. Define x ∈ s by x(k) = 1

ϕ(ek)
for k ∈ A and x(k) = 0 for k /∈ A.

Let A = {ki : i ∈ N} and define xN =
∑N

i=1 x(ki)eki ≤ x. Clearly x ∈ s and

ϕ(x) ≥ ϕ(xN) = ϕ

( N∑
ki=1

x(ki)eki

)
=

N∑
i=1

1 = N.

This holds for all N ∈ N, so ϕ(x) is an upper bound for N, which is a
contradiction. The set A is finite, so that a ∈ c00. Now for x ∈ s, we have
that x =

∑∞
n=1 xnek. Since A is finite we have the following.

ϕa(x) =
∞∑
k=1

a(k)x(k) =
∞∑
k=1

x(k)ϕ(ek) =
∑
k∈A

x(k)ϕ(ek) =
∑
k∈A

ϕ(x(k)ek) = ϕ(x).

Hence ϕa = ϕ and s∼ = c00. Now the order dual of c00 is also s. Therefore
s̃ = s.
The semi-order units of s are the elements which are finitely supported.
It also follows that c̃00 = c00 and every element in c00 is a semi-order unit.
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Chapter 3

The vector lattice C(X)

Recall that a topological space X is Tychonoff if X is a completely regular
Haursdoff space.

In this chapter, we declare X to be a Tychonoff space. We denote by C(X)
the space of real valued continuous function from X into R. We define the
point-wise ordering on C(X) as follows. For f, g ∈ C(X)

f ≤ g ⇐⇒ f(x) ≤ g(x) for all x ∈ X.

C(X) equipped with this point-wise ordering is a vector lattice.

For each K ⊆ X compact and f ∈ C(X), we define

||f ||K = sup{|f(x)| : x ∈ K}.

This defines a semi-norm on C(X). The family of all such semi-norms de-
fines a locally convex topology on C(X) called the compact-open topology.
We denote C(X) equipped with this topology by (C(X), τco), but will sim-
ply write Cco(X). In this chapter, we study Cco(X) from the order theoretic
point of view. We discuss closed ideals in Cco(X).We compare the order and
topological duals.

We also discuss the order theoretic characterization of the compact open
topology in terms of semi-order unit in suitable subspace of C(X)∼∼.

The Stone-Čech compactification and the realcompactfication of X are con-
structed as necessary preliminary material for the chapter.
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3.1 Compactifications

Let X and Y be topological spaces. Recall that a map τ : X −→ Y is a
homeomorphism if τ is a continuous bijection such that τ−1 : Y −→ X is
continuous. If τ is injective, but not onto, then τ : X −→ τ [X] becomes a
bijection. Now if τ is continuous and τ−1 : τ [X] −→ X is continuous we say
τ is a homeomorphic embedding.

Definition 3.1.1. Let X be a topological space. A pair (Y,∆) where Y is a
compact Hausdorff space and

∆ : X −→ Y

is a homeomorphic embedding of X in Y such that ∆[X] = Y is called a
compactification of X.

If (Y,∆) is a compactification of X, we will usually identify X with ∆[X]
and consider X as a subspace of Y. We are interested in a special compactifi-
cation in which every bounded real-valued continuous function on X can be
extended to a continuous function on this compactification. That compacti-
fication is called the Stone− Čech Compactification of X and is denoted by
βX. In this section, we will construct this space.

Definition 3.1.2. A subspace S of X is C−embedded in X, if every contin-
uous function on S can be extended to a continuous function on X.

Definition 3.1.3. A subspace S ofX is C∗−embedded inX, if every bounded
continuous function on X can be extended to a bounded continuous function
on X.

The following diagram illustrates this, with e, the inclusion map.

e : S ∋ x 7−→ x ∈ X

S X

R

e

f
g

This means that for every f ∈ C(S), there is a g ∈ C(X) such that f = g ◦e.

Theorem 3.1.4. Let B ⊆ X and let f : B → Z be a continuous map of B
into a Hausdorff space Z. Then there exists at most one extension of f to a
continuous function

f̃ : B → Z.
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Proof. Suppose f̃1 and f̃2 are two distinct extensions of f . Since f̃1 and f̃2 are
distinct, there exists an x ∈ B such that f̃1(x) ̸= f̃2(x). Since Z is Hausdorff,
there exists two disjoint open sets U1 and U2 in Z such that f̃1(x) ∈ U1 and
f̃2(x) ∈ U2. Pick a neighbourhood V of x such that f1(V ) ⊆ U1 and f2(V ) ⊆
U2. Since x ∈ B, every open neighbourhood of x intersects B. In particular,
V ∩ B ̸= ∅. So let y ∈ V ∩ B so that y ∈ B. Since f̃1 and f̃2 are extensions
of f , it implies that they are equal on B hence f̃1(y) = f(y) = f̃2(y). But
f̃1(y) ∈ U1 and f̃2(y) ∈ U2, which contradicts the fact that U1 and U2 are
disjoint.

Corollary 3.1.5. Let Y and Z be topological spaces with Z Haursdorff. Let
X ⊆ Y satisfy X = Y . Suppose f and g are continuous maps from Y into
Z. If f

∣∣
X
= g

∣∣
X
, then f = g on Y .

Theorem 3.1.6. Let {Xα : α ∈ J} be a collection of topological spaces, Y
another topological space and let σ be a map

σ : Y −→
∏
α∈J

Xα.

Then σ is continuous with respect to the product topology if and only if πα ◦σ
is continuous for each α ∈ J where πα is the projection onto Xα

Proof. Suppose σ is continuous. Since the projection map πα is continuous
for each α ∈ J, it follows that the composition πα ◦ σ is continuous for each
α ∈ J. Now suppose that πα◦σ is continuous for each α ∈ J. Then for U open
in Xα the preimage of U under πα ◦ σ is an open set. That is (πα ◦ σ)−1[U ]
is open. But

(πα ◦ σ)−1[U ] = σ−1[π−1
α [U ]].

It follows that the preimage under σ of each subbasic open set for the product
topology is open. Hence σ is continuous.

Let A and B be sets and τ a mapping from A into B. For each map g ∈ RB,
the composition g ◦ τ ∈ RA. So the map τ induces a map

τ ′ : RB −→ RA defined by τ ′g = g ◦ τ, g ∈ RB.

There is a duality between the properties “one-to-one” and “onto.” In par-
ticular we have the following.

Lemma 3.1.7. Let τ be a mapping from a set A into a set B and let τ ′ be
the induced mapping. Then

i. τ ′ is a linear lattice homomorphism.

35



ii. τ ′ is one-to-one if and only if τ is onto.

iii. τ ′ is onto if and only if τ is one-to-one.

Proof of (i). Let f, g ∈ RB and α, β ∈ R. For x ∈ A we have that

τ ′(αf + βg)(x) = (αf + βg)(τx)

= αf(τx) + βg(τx)

= α(τ ′f)(x) + β(τ ′g)(x)

= (ατ ′f + βτ ′g)(x)

Similarily, τ ′(f ∨ g)(x) = (τ ′f ∨ τ ′g)(x)
Since this is true for all x ∈ A, it follows that τ ′(αf +βg) = ατ ′f +βτ ′g and
τ ′(g ∨ f) = τ ′g ∨ τ ′f so that τ ′ is a linear lattice homomorphism.

Proof of (ii). Suppose τ is onto and let f, g ∈ RB such that τ ′f = τ ′g. Let
y ∈ B. Since τ is onto, it follows that there exists x ∈ A such that τ(x) = y.
Now

g(y) = g(τ(x))

= [g ◦ τ ](x)
= [f ◦ τ ](x) (∵ f ◦ τ = g ◦ τ)
= f(τ(x))

= f(y).

Since this is true for all y ∈ B we have that f = g so that τ ′ is injective.
Now assume that τ is not onto. Then there exists a y ∈ B such that y /∈ τ [A].

Let 1{y} be the indicator function on y.
Then if x ∈ X, τ ′1{y}(x) = 1{y}(τx) = 0. Also τ ′0(x) = 0(τx) = 0. Hence τ ′

is not injective.

Proof of (iii). Assume τ ′ is onto and let τx1 = τx2 for some x1, x2 ∈ A.
Fix f ∈ RA. Since τ ′ is onto, there exists a g ∈ RB such that τ ′g = f. Now

f(x1) = [τ ′g](x1) = g(τx1) = g(τx2) = [τ ′g](x2) = f(x2).

Since this holds for all f ∈ RA we have that x1 = x2 so that τ is injective.

Now assume that τ is one-to-one and fix f ∈ RA.
Since τ is one-to-one, the map τ−1 : τ [A] −→ A is well defined and a bijec-
tion. Now f ◦ τ−1 ∈ RB. Let g = f ◦ τ−1. Now if x ∈ A, then

[τ ′g](x) = [τ ′(f ◦ τ−1)](x) = [f ◦ τ−1 ◦ τ ](x) = f(τ−1(τx)) = f(x).

Hence τ ′g = f so that τ ′ is onto.
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In most application we are interested in topological spaces X and Y and a
continuous map τ : X −→ Y . In this situation, τ ′ maps C(Y ) into C(X)
and Cb(Y ) into Cb(X).

Theorem 3.1.8. Let X,Y be Tychonoff space and let τ : X −→ Y be a
continuous map and let τ ′ : C(Y ) −→ C(X) be the induced map defined by
τ ′g = g ◦ τ . Then

i. τ ′ is injective if and only if τ [X] is dense in Y.

ii. τ ′ is onto if and only if τ is a homeomorphism onto a C−embedded
subspace of Y.

iii. τ ′ : Cb(Y ) −→ Cb(X) is onto if and only if τ is a homeomorphism onto
τ [X] and τ [X] is C∗−embedded in Y .

iv. If τ is a homeomorphism then τ ′ is a lattice isomorphism.

Proof of (i). τ ′ is injective if and only if ker τ ′ = {0}. This is equivalent to
the following: for all g ∈ C(X), if g(τx) = 0 for all x ∈ X then g = 0. The
last statements hold if and only if τ [X] is dense in Y . We prove the last
equivalence. Suppose τ [X] is not dense in Y. Then there is y ∈ Y such that
y /∈ τ [X]. Since Y is Tychonoff, there exists a function g ∈ C(Y ) such that
g = 0 on τ [X] and g(y) = 1. Now if x ∈ X then τx ∈ τ [X], hence g(τx) = 0.
Thus g(τx) = 0 for all x ∈ X and g ̸= 0 on Y proving the contrapositive.

On the other hand, suppose τ [X] is dense in Y and assume that g(τx) = 0
for all x ∈ X. Then, if y ∈ τ [X] then there exists an x ∈ X such that y = τx.
Hence

g(y) = g(τx) = 0.

Hence g|τ [X] = 0. It follows from Corollary 3.1.5 that g = 0 on Y.

Proof of (ii). Assume τ ′ is onto. Fix f ∈ C(X). Since τ is onto, it follows
that there exists a g ∈ C(Y ) such that τ ′g = f. Now if τx1 = τx2 then
g(τx1) = g(τx2). Hence

[τ ′g](x1) = [τ ′g](x2) i.e f(x1) = f(x2).

Since this holds for each f ∈ C(X), by the Tychonoff property we have that
x1 = x2 so that τ is injective. A mapping is onto its range so τ−1 is well
defined as a mapping from τ [X] onto X.

We will show that τ−1 is continuous. Let (xα) be a net in X so that (τxα)
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converges to some τx in τ [X]. Assume that xα ↛ x. Then there exists V ∋ x
open and (yβ) a subnet of (xα) such that yβ /∈ V for all β. Now there ex-
ists f ∈ C(X) such that f(x) = 1 and f [X\V ] = {0}. So f(yβ) = 0 and
f(x) = 1. Now τ ′ is onto. This implies that there exists a g ∈ C(Y ) such
that f = τ ′g. For all β, g(τyβ) = f(yβ) = 0 and g(τx) = f(x) = 1. Therefore
g(τyβ) ↛ g(τx). But τyβ −→ τx because it is a subnet of (τxα). Therefore
g is not continuous which is a contradiction. Hence τ−1 is continuous. Thus
τ is a homeomorphism.

Let h ∈ C(τ [X]). Then f = h ◦ τ ∈ C(X). Now since τ ′ is onto, it fol-
lows that there exists a g ∈ C(Y ) such that τ ′g = f . Now if y ∈ τ [X] then
there exist an x ∈ X such that τx = y. Hence

h(y) = h(τx) = [h ◦ τ ](x) = f(x) = [g ◦ τ ](x) = g(τx) = g(y).

Hence h = g|τ [X]. It follows that τ [X] is C−embedded in Y .

Now suppose that τ is a homeomorphic embedding whose image is C−embedded
in Y. By assumption, τ−1 is continuous from τ [X] onto X. Consider any
f ∈ C(X). Then the function f ◦ τ−1 ∈ C(τ [X]) and by assumption it has a
continuous extension g to all of Y . Clearly f = g ◦ τ i.e f = τ ′g. Hence τ ′ is
onto.

Proof of (iii). This result follows by an identical argument as for (ii).

Proof of (iv). Since τ is a homeomorphism, it follows from (i) and (ii) that
τ ′ is a bijection. From Lemma 3.1.7, τ ′ is a linear lattice homomorphism so
that τ ′ is a lattice isomorphism.

Theorem 3.1.9. Let S, T and X be Hausdorff spaces. Assume that there
exist homeomorphisms

τ0 : X −→ S and τ1 : X −→ T

onto dense subspaces of S and T respectively. If there exist continuous maps

σ0 : S −→ T and σ1 : T −→ S

so that

S

X

T

τ0

τ1

σ0

X

S

T

τ0

σ1

τ1

commute, then σ0 is a homeomorphism onto T and σ1 = σ−1
0 .
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Proof. First observe that the map σ0 ◦σ1 : S −→ S is the identity map. This
is because its restriction on X is the identity on X. Since X is dense in S
we have that it is the identity on S. It also follows that σ1 ◦ σ0 is also the
identity map on T . That is

σ0 ◦ σ1 = idS and σ1 ◦ σ0 = idT .

Hence σ−1
0 = σ1 so that σ0 is a homeomorphism as required.

Lemma 3.1.10. Let X be a Tychonoff space.

i. Let F = {fα : α ∈ I} be the collection of all bounded continuous
functions from X to R and let Iα = [ inf

x∈X
fα(x), sup

x∈X
fα(x)] for every

α ∈ I. Let Y =
∏

α∈I Iα. Then

e : X ∋ x 7−→ (fα(x))α∈I ∈ Y

is a homeomorphic embedding onto a C∗−embedded subspace of Y.

ii. Let S = {fβ : β ∈ J} be the collection of all continuous functions from
X to R. Then

e : X ∋ x 7−→ (fβ(x))β∈J ∈ RJ

is a homeomorphic embedding onto a C-embedded subspace of RJ .

Proof of (i). By definition of e, πα◦e = fα for each α ∈ I which is continuous
where πα is the projection map onto the α component. Hence by Theorem
3.1.6, e is continuous.
Now suppose x1, x2 ∈ X such that x1 ̸= x2. Since X is Tychonoff, there
exists a function fα0 ∈ F such that fα0(x1) ̸= fα0(x2). Hence e(x1) ̸= e(x2)
so that e is one-to-one. The induced homomorphism e′ : Cb(Y ) −→ Cb(X)
is onto. Indeed for fα ∈ F = Cb(X).

e′πα = πα ◦ e = fα.

By Theorem 3.1.8 (iii), e is a homeomorphism onto e[X] and e[X] is C∗−embedded
in Y .

Proof of (ii). The result follows a similar argument as for (i) so we omit the
proof.

Lemma 3.1.11. Let (Y,∆) be a compactification of X such that every bounded
continuous function on X extends to a continuous function f̃ : Y −→ R.
Let K be a compact Haursdorff space and f : X −→ K a continuous function.
Then there exists a unique continuous extension f̃ : Y −→ K of f.
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Proof. Since K is Tychonoff, we can view K as a subspace of a product of
compact interval say K ⊆

∏
γ∈M

Iγ where M ∈ N by Lemma 3.1.10.

Hence for all γ ∈ M, fγ : X −→ Iγ with fγ = πγ ◦ f continuous. Therefore,
there exists a unique continuous extension of fγ, f̃γ : Y −→ R.
The function f̃γ : Y ∋ x 7−→ (f̃γ(x))γ∈M ∈

∏
γ∈M

Iγ is continuous and f̃(x) =

f(x) for all x ∈ X. Now f̃ [X] = f [X] ⊆ K and K is closed in
∏
j∈M

Iγ.

Therefore f̃ [Y ] = f̃ [X] ⊆ f̃ [X] ⊆ K by Theorem A.1.3. So f̃ : Y −→ K is a
continuous extension of f. The uniqueness follows from Theorem 3.1.5 since
X is dense Y.

Theorem 3.1.12. Let X be a Tychonoff space. Then there exists a unique
compactification (βX, β) of X having the property that every bounded con-
tinuous function f : X −→ R extends uniquely to a continuous function on
βX.

Proof. Let F , Y and e be as given in Lemma 3.1.10 i. By Lemma 3.1.10,
e is a homeomorphism onto e[X] and e[X] is C∗−embedded in Y. Now let
βX = e[X] and β(x) = e(x), x ∈ X.

If f ∈ Cb(X) then there exists a continuous extension f̃ : Y −→ R of f .
The restriction, f̃ |e[X] is a continuous extension of f to βX. Uniqueness of
the extension follows since X is dense in βX. Hence every bounded contin-
uous function f : X −→ R extends uniquely to a continuous function on βX.

It remains to show that the space βX is unique. To this end, let (X̂,∆)
be a compactification of X such that every f ∈ Cb(X) extends continu-

ously to X̂. Then by Lemma 3.1.11, X
β−→ βX extends to X̂

β̂−→ βX and

X
∆−→ X̂ extends to βX

∆̂−→ X̂. Now by Theorem 3.1.9, βX and X̂ are
homeomorphic.

Definition 3.1.13. A space X is realcompact if for all x0 ∈ βX\X, there
exists a function f ∈ C(X) such that f does not extend to a continuous
function

f̃ : X ∪ {x0} −→ R.

Definition 3.1.14. LetX be a Tychonoff space. By a realcompactification of
a space X, we mean the largest subspace of βX in which X is C−embedded.
We denote this space by υX.

We will use the following lemma without proof.
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Lemma 3.1.15. A space X is realcompact if and only if X is homeomorphic
to a closed subspace of Rγ for some cardinal γ.

Theorem 3.1.16. Let X be a Tychonoff space then there exists a unique
realcompact space υX such that every continuous function f on X extends
to a continuous function f̃ on υX.

Proof. The proof is exactly as Theorem 3.1.12. Let S and e be given as in
Lemma 3.1.10 ii.
By Lemma 3.1.10ii, e is a homeomorphism onto e[X] and e[X] is C−embedded
in Y , where Y is a closed subset of RJ . Let υX = e[X]. Then υX is real-
compact by Lemma 3.1.15. Now if f ∈ C(X), then there exist f̃ : Y −→ R
a continuous extension of f. Now the restriction f̃ |υX is an extension of f to
υX. Uniqueness of the extension follows since X is dense in υX.
The proof of the uniqueness of υX is similar to the uniqueness of βX and
therefore we omit it, see the last part of the proof of Theorem 3.1.12.

Theorem 3.1.17. Let X be a Tychonoff space. Then

i. The map
T : Cb(X) ∋ f 7−→ f̃ ∈ C(βX)

is a lattice isomorphism.

ii. The map
T : C(X) ∋ f 7−→ f̃ ∈ C(υX)

is a lattice isomorphism.

Proof of (i). Let f, g ∈ Cb(X) such that f ̸= g. Then there exists an x ∈ X
such that f(x) ̸= g(x). Hence f̃(x) ̸= g̃(x) so that Tf ̸= Tg. Thus T is
one-to-one.

If h ∈ C(βX) then f = h|X ∈ Cb(X). So there exists an extension
f̃ ∈ C(βX) of f. Then f̃ |X = f = h|X . Now h and f̃ are extension of
f. By Corollary 3.1.5 f̃ = h. Hence Tf = h so that T is onto.

Let f ≥ 0. Then f̃ ∨ 0 ≥ 0 is an extension of f and by the uniqueness
of the extension we have that Tf ≥ 0. Now let f̃ ≥ 0. Then since X ⊆ βX,
f ≥ 0 on X. Hence T−1f̃ = f ≥ 0. Hence T is a lattice isomorphism.

Proof of (ii). The proof is identical to the proof of (i) so we omit it.
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3.2 The Compact-Open Topology

Recall that by the compact open topology on C(X) we mean the locally
convex topology generated by the collection of basic open sets

{U ε
f = {g ∈ C(X) : ||g−f ||K = ρK(g−f) < ε} : f ∈ C(X) K ⊆ X compact, ε > 0}.

If (fα)α∈I is a net in C(X) which converges to f in Cco(X) we will write
fα

co−→ f.
Note that in the previous section, we established that C(X) and C(υX) are
isomorphic vector lattices. However this map is not a homeomorphism with
respect to the compact open topologies on C(X) and C(υX) respectively.
The proof of this fact relies on the following.

Lemma 3.2.1. Let X be a Tychonoff space such that X ̸= υX and let z ∈
υX\X. Define

U = {f ∈ C(X) : |f̃(z)| < 1}.

Then U is not open in Cco(X).

Proof. It is sufficient to show that the zero function is not an interior point
of U . Fix ε > 0. We show that for any K compact in Y ,

{f ∈ C(X) : ρK(f) < ε} ̸⊆ U.

Since z /∈ X, then z /∈ K and since K is compact in X, it is compact in υX.
Now υX is completely regular, there exists a function ḡ ∈ C(υX) such that
ḡ(z) = 1 and ḡ[K] = {0}. Let g = ḡ|X . Then g ∈ C(X) and g̃ = ḡ where
g̃ = Tg, the extension of g to υX. Now ρK(ḡ) = 0 < ε, but g̃(z) = 1 so that
g /∈ U . Hence {f ∈ C(X) : ρK(f) < ε} ̸⊆ U so that 0 ∈ U is not an interior
point of U . Hence U is not open.

Theorem 3.2.2. Let X be a Tychonoff space and let

T : Cco(X) ∋ f 7−→ f̃ ∈ Cco(υX).

Then T is a homeomorphism if and only if X is realcompact.

Proof. Suppose X is realcompact. Then X = υX so that T is the identity
map and hence a homeomorphism.

Now suppose that X is not realcompact. Then X ̸= υX. Since X ⊆ υX,
there exists z ∈ υX such that z /∈ X. Define

U = {f̃ ∈ C(υX) : f̃(z) < 1}.
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Let K = {z}. Then K is compact in υX. and U = {f̃ : C(υX) : ρK(f) < 1}
is open in Cco(υX). By Theorem 3.2.1, U is not open in Cco(X). Thus T is
not a homeomorphism.

Theorem 3.2.3. Let (fα)α∈I be a net in C(X) and f ∈ C(X) such that
fα(x) ↑ f(x) for every x ∈ X. Then fα

co−→ f.

Proof. Fix K ⊆ X compact. Then fα|K is continuous on K and f |K is also
continuous on K. Hence (fα|K)α∈I is a monotonic increasing net of func-
tions such that fα(x) ↑ f(x) for each x ∈ K. Hence by the Dini’s Theorem,
fα|K −→ f |K uniformly. Since K was abitrary, it follows that fα

co−→ f.

Theorem 3.2.4. Let X be a Tychonoff space. Then B ⊆ Cco(X) is topolog-
ically bounded if and only if for all K ⊆ X compact, there exists a λK > 0
such that if f ∈ B then |f(x)| ≤ λK for all x ∈ K.

Proof. Assume that for all K ⊆ X compact, there exists a λK such that if
f ∈ B then |f(x)| ≤ λK for all x ∈ K. Fix U ∈ N0 where U is a basic open
set contain 0. Without loss of generality we may assume that

U = {f ∈ C(X) : ρK(f) < ε},

for some compact set K ⊆ X and some ε > 0. So by assumption, there
exists a λK > 0 such that if f ∈ B then |f(x)| ≤ λK for all x ∈ K. Now let
λ = 2λK

ε
. Hence if f ∈ B then ρK(f) ≤ λK = λε

2
. Hence

ρK(
1

λ
f) =

1

λ
ρK(f) ≤

1

λ
λK <

2

λ
λK = ε

so that 1
λ
f ∈ U. Hence f ∈ λU . Thus B ⊆ λU so that B is topologically

bounded.

Now fix K ⊆ X compact. Then the set U = {f ∈ C(X) : ρK(f) < 1}
is open in Cco(X) and contain 0 so that U ∈ N0. By assumption, there exists
a λ > 0 such that B ⊆ λU . Let λK = λ. If f ∈ B then f ∈ λU so that
ρK(f) < λ = λK . Hence

ρK(f) = sup{|f(x)| : x ∈ K} ≤ λK .

This implies that |f(x)| ≤ λK for all x ∈ X.
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3.3 Closed Ideals

In this section we discuss closed ideals in Cco(X). We will establish that
given any closed ideal I in Cco(X), there exists a closed set A in X such that
I consists precisely of those f ∈ C(X) such that f [A] = {0}.

Theorem 3.3.1. Let X be a Tychonoff space, A a closed subset of X and
define

IA = {f ∈ C(X) : f |A = 0}.

i. IA is a closed ideal in Cco(X).

ii. If I is a closed ideal in Cco(X), then there exists a closed set A ⊆ X
such that I = IA.

Proof of (i). Let f, g ∈ IA. Now for x ∈ A, we have that

[f + g](x) = f(x) + g(x) = 0 + 0 = 0.

Hence (f + g)|A = 0 so that f + g ∈ IA. For α ∈ R we have

[αf ](x) = αf(x) = α0 = 0.

So that αf ∈ IA. Thus IA is a linear subspace of C(X).

Now suppose that f ∈ IA and g ∈ C(X) such that |g| ≤ |f |. Since the
ordering is point-wise we have that |g(x)| ≤ |f(x)| for each x ∈ X. In
particular, if x ∈ A we have that

0 ≤ |g(x)| ≤ |f(x)| = 0.

Hence g(x) = 0 for all x ∈ A so that g ∈ IA. Thus IA is an ideal in C(X).

It is remains to show that it is closed in Cco(X). Let (fα)α∈J be a net in
IA such that fα

co−→ f for some f ∈ Cco(X). Fix ε > 0 and let x ∈ A. Since
K = {x} is compact in X and fα

co−→ f, there exists an α0 ∈ J such that if
α ≥ α0 then ||f − fα||K < ε. Hence

|f(x)| = |f(x)− fα0(x) + fα0(x)|
≤ |f(x)− fα0(x)|+ |fα0(x)|
= |f(x)− fα0(x)| (∵ fα0 ∈ IA and x ∈ A)

= ||f − fα0||{x}
< ε.

Hence for all ε > 0 and x ∈ A we have that 0 ≤ |f(x)| < ε so that f(x) = 0.
Thus f ∈ IA so that IA is a closed ideal in Cco(X).
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Proof of (ii). For f ∈ C(X), let Z(f) denote the zero-set of f , that is

Z(f) = {x ∈ X : f(x) = 0}.

Since f is continuous, Z(f) is closed in X because it is an inverse image of
the closed set {0}. Let

A =
⋂
f∈I+

Z(f),

where I+ = {f ∈ I : f ≥ 0}. A is closed because an arbitrary intersection of
closed sets is closed.

Let f ∈ I. Since I is an ideal, |f | ∈ I+ and A ⊆ Z(|f |) = Z(f) so that
|f |[A] = {0}. Hence f |A = 0, thus f ∈ IA giving I ⊆ IA.

For the reverse inclusion, let f ∈ IA, f ≥ 0. Fix K ⊆ X compact and
ε > 0.
Let x ∈ Z(f) ∩K. Then pick a function fx ≡ 0. Since f ≥ 0, it follows that
fx ≤ f on X. Since f is continuous on X, it is continuous at x, so there exists
an open set Vx in X containing x such that if y ∈ Vx then f(y) ∈ (− ε

2
, ε
2
).

Now f ≥ 0 so f(y) ∈ [0, ε
2
) for all y ∈ Vx. Hence

0 ≤ f(y)− fx(y) = f(y)− 0 <
ε

2
< ε for all y ∈ Vx.

Now suppose that x ∈ K\Z(f). Since A ⊆ Z(f), there exists a 0 ≤ g ∈ I

such that g(x) ̸= 0. Now Let α = min{f(x)
2
, ε
2
} and define a function

h =
f(x)− α

g(x)
g

Then

h(x) =
f(x)− α

g(x)
g(x) = f(x)− α.

Hence
f(x)− ε < h(x) < f(x).

Note that h ∈ I because I is an ideal and h ≥ 0. Let fx = f ∧ h. Since
0 ≤ fx ≤ h and h ∈ I then fx ∈ I. Clearly fx ≤ f on X.

Since f(x) − ε < h(x) < f(x), there exist an open set Vx containing x
such that for all y ∈ Vx, f(y)− ε < h(y) < f(y). If y ∈ Vx then h(y) < f(y)
so that fx(y) = h(y). Hence f(y) − ε < fx(y) < f(y). There, if y ∈ Vx we
have 0 ≤ f(y)− fx(y) < ε, for all y ∈ Vx.
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Now {Vx : x ∈ K} is an open cover for K and since K is compact in X there
exists x1, ..., xn ∈ K such that K ⊆ Vx1 ∪ ... ∪ Vxn . Fix y ∈ K. Then y ∈ Vxi

for some i = 1, ..., n so that

0 ≤ f(y)− fxi
(y) < ε.

Define g = sup{fxi
: i = 1, ..., n}. Then g is continuous on X and 0 ≤ fxi

≤ g
and g ∈ I. Now if y ∈ K, then y ∈ Vxi

for some i = 1, ..., n. Hence

0 ≤ f(y)− g(y) ≤ f(y)− fxi
(y) < ε.

Hence ||f − g||K < ε. This implies that every open subset of Cco(X) con-
taining f intersect I, so that f ∈ I. Since I is closed in Cco(X) we have that
I = I. Thus IA ⊆ I as required.

3.4 Order dual of C(X)

In this section we establish results on the order dual of C(X). It will be
shown that X is realcompact if and only if C(X)∼ = Cco(X)′, where Cco(X)′

denote the continuous dual of C(X) with the compact-open topology. The
order dual of C(X), C(X)∼ is described in the following result, see [6].

Theorem 3.4.1. Let X be a Tychonoff space. Then for all ϕ ∈ C(X)∼, there
exists µϕ, a regular borel measure on υX with compact support such that∫

υX

fdµϕ = ϕ(f) for all f ∈ C(X).

X is realcompact if and only if the support of µϕ is contained in X for all
ϕ ∈ C(X)∼.

Theorem 3.4.2. Let X be a Tychonoff space. Then C(X)∼ coincides with
Cco(X)′ if and only if X is realcompact.

Proof. Assume that X is not realcompact. Then there is a z ∈ υX\X. Define

ϕ : C(X) ∋ f 7−→ f̃(z) ∈ R.

Statement i. ϕ ∈ C(X)∼.
Let [h, g] be an order interval in Cco(X) and let f ∈ [h, g]. Then h ≤ f ≤ g
in C(X). Since C(X) and C(υX) are isomorphic vector lattices we have that
h̃ ≤ f̃ ≤ g̃ in C(υX). Now the ordering is point-wise, so we have that
h̃(z) ≤ f̃(z) ≤ g̃(z). Hence ϕ(f) ∈ [h̃(z), g̃(z)]. Therefore ϕ is order bounded.
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Statement ii. ϕ /∈ Cco(X)′.
The set A = (−1, 1) is open in R and

ϕ−1(A) = {f ∈ C(X) : |f̃(z)| < 1}.

Now this set is not open in Cco(X) by Lemma 3.2.1 so that ϕ is not contin-
uous. Thus C(X)∼ ̸= Cco(X)′.

Assume that X is realcompact. Fix ϕ ∈ C(X)∼, then by Theorem 3.4.1,
there exists a measure µϕ such that∫

X

fdµϕ = ϕ(f) for all f ∈ C(X).

Let K be the support of µϕ. Then K is compact. Let (fα)α∈I be a net in
Cco(X) so that fα −→ 0. Then ||fα||K −→ 0.
Fix ε > 0. Then there exists αε ∈ I such that for all α ≥ αε and for all
x ∈ K, |fα(x)| < ε

µϕ(K)
. Hence

|ϕ(fα)| ≤
∫
X

|fα|dµα < ε.

So ϕ(fα) −→ 0. Therefore ϕ ∈ Cco(X)′.
Now suppose that ϕ ∈ Cco(X)′. Then by Theorem A.1.6, ϕ is topologically
bounded. Then by Theorem 3.2.4, if B ⊆ C(X) is order bounded, it is
topologically bounded. so that ϕ(B) is bounded by Theorem A.1.6. Thus
ϕ ∈ C(X)∼ so that Cco(X)′ = C(X)∼.

Theorem 3.4.3. Let X be a realcompact space and ϕ a positive linear func-
tional on C(X). There exists a compact subset K of X and a positive linear
functional ϕ′ on C(K) such that ϕ = ϕ′ ◦ rK, where rK : C(X) −→ C(K) is
defined by rK(f) = f |K , f ∈ C(X)..

Proof. Suppose ϕ is a positive linear function on C(X), so ϕ ∈ C(X)∼.
Since X is a realcompact space, it follows from Theorem 3.4.2 that C(X)∼

and Cco(X)′ coincide, that is Cco(X)′ = C(X)∼. Hence ϕ ∈ Cco(X)′. Thus ϕ
is continuous with respect to the topology of compact convergence on C(X).

It follows from Theorem A.1.7 that there exists a compact set K and an
α > 0 such that

|ϕ(f)| ≤ α||f ||K for all f ∈ C(X).
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Fix g ∈ C(K). Since rK is onto, there exists an f ∈ C(X) such that rK(f) =
g.
Suppose f0, f1 ∈ C(X) satisfy rK(f0) = rK(f1) = g. Then,

|ϕ(f0)− ϕ(f1)| = |ϕ(f0 − f1)| ≤ ||f0 − f1||K = 0.

So that ϕ(f1) = ϕ(f0). Therefore the map ϕ′ : C(K) −→ R given by ϕ′(g) =
ϕ(f) if rK(f) = g is well defined. Now if f ∈ C(X), then

[ϕ′ ◦ rK ](f) = ϕ′(rK(f)) = ϕ′(f |K) = ϕ(f)

Hence ϕ = ϕ′ ◦ rK . Since ϕ is linear, we have

ϕ′((f + h)|K) = ϕ(f + h) = ϕ(f) + ϕ(h) = ϕ′(f |K) + ϕ′(h|K),

so that ϕ′ is also linear. Now let g ∈ C(K)+, then g ≥ 0 on K. Since rK is
onto, there exists an f ∈ C(X) such that f |K = g.The function f ∨ 0 is in
C(X)+ and extends g. Since ϕ is positive it follows that ϕ′(g) = ϕ(f) ≥ 0.
Hence ϕ′ is positive thus proving the result.

3.5 Bands in C(X)∼ and C(X)∼∼

Let X be a Tychonoff space and K ⊆ X compact. Denote by rK the re-
striction map from C(X) to C(K). In this section we will establish the rela-
tionship between C(K) and C(X) together with their order dual spaces. In
particular, we will show an isomorphism between C(K)∼ and a subspace of
C(X)∼ and also between C(K)∼∼ and a subspace of C(X)∼∼.

Lemma 3.5.1. Let K ⊆ X be a compact subset of X. Define a map rK :
C(X) −→ C(K) by rK(f) = f |K , f ∈ C(X). Then rK is an onto linear
lattice homomorphism.

Proof. Let g ∈ C(K) be given. Consider the embedding X ↪→ βX. Since
K ⊆ X is compact, it is closed in βX. Since βX is a compact Hausdorff
space, it is normal. Now K being a closed subset of a normal space, it
follows from the Tietze Extension theorem that there is g̃ ∈ C(βX) such
that g̃|K = g. Since X ⊆ βX, g̃|X is continuous on X. Let f = g̃|X , then
f ∈ C(X) and f |K = g̃|K = g. Hence rK(f) = f |K = g. Since g ∈ C(K)
was arbitrary, it follows that rK is onto. It is easy to see that rK is linear. It
remains to show that it is a lattice homomorphism. By [1, Theorem 1.30], it
suffices to show that

(f ∧ 0)|K = f |K ∧ 0.
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For x ∈ K, since the ordering is point-wise we have [f ∧ 0](x) = f(x) ∧ 0.
This holds for each x ∈ K so that (f ∧ 0)|K = f |K ∧ 0. Thus rK is an onto
lattice homomorphism.

For rK : C(X) −→ C(K), define the maps

r∗K : C(K)∼ −→ C(X)∼ and r∗∗K : C(X)∼∼ −→ C(K)∼∼

as

r∗K(ϕ) = ϕ ◦ rK , ϕ ∈ C(K)∼ and r∗∗K (Ψ) = Ψ ◦ r∗K , Ψ ∈ C(X)∼∼.

We give the following results about the maps r∗K and r∗∗K .

Theorem 3.5.2. Let K ⊆ X be compact. The mapping r∗K is a lattice iso-
morphism onto a band J in C(X)∼.

Proof. The restriction map rK : C(X) −→ C(K) is an onto lattice homo-
morphism by Lemma 3.5.1.
Let I = {f ∈ C(X) : f [K] = {0}} = ker(rK). Then I is an ideal in C(X).
Let r̃K : C(X)/I −→ C(K) be defined by

f + I 7−→ rK(f).

By Theorem 2.2.4, r̃K
∗ is a lattice homomorphism and (r̃K

−1)∗ is a lattice
homomorphism so r̃K

∗◦(r̃K−1)∗ is the identity on (C(X)/I)∼. Also (r̃K
−1)∗◦

r̃K
∗ is the identity on C(K)∼. Therefore r̃K

∗ is a lattice isomorphism.
Claim: (C(X)/I)∼ is separating on C(X)/I. Let f+I be a non-zero element
in C(X)/I. Then f /∈ I. Since f /∈ I, there is an x ∈ K such that f(x) ̸= 0.
Hence f ′ = rK(f) ̸= 0. Since C(K)∼ is separating on C(K) there exists a
ϕ ∈ C(K)∼ such that ϕ(f ′) ̸= 0. It then follows that r̃K

∗(ϕ)(f) ̸= 0. Hence
(C(X)/I)∼ is separating on C(X)/I.
Now let J = I⊥. Then by Theorem 2.3.7, J is a band in C(X)∼.
Let Q : C(X) −→ C(X)/I be defined by

f 7−→ f + I.

Q is a lattice homomorphism onto C(X)/I by Theorem 2.3.6. The map

Q∗ : (C(X)/I)∼ −→ I⊥ = J

is a lattice isomorphism.
Since the composition of lattice isomorphisms is a lattice isomophism we have
that the map

Q∗ ◦ r̃K∗ : C(K)∼ −→ J
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is a lattice isomorphism.
Claim: Q∗ ◦ r̃K∗ = r∗K
Fix ϕ ∈ C(K)∼ and let f ∈ C(X). It follows that

[Q∗ ◦ r̃K∗(ϕ)](f) = [Q∗(ϕ ◦ r̃K)](f)
= [ϕ ◦ r̃K ◦Q](f)
= ϕ ◦ r̃K(Q(f))
= ϕ ◦ r̃K(f + I)

= ϕ((r̃K(f + I))

= ϕ(rK(f))

= [ϕ ◦ rK ](f) = r∗K(f).

Since this is true for all all ϕ ∈ C(K)∼ and f ∈ C(X) we have that Q∗◦r̃K∗ =
r∗K so that r∗K is a lattice isomorphism between C(K)∼ and J.

Theorem 3.5.3. Let K ⊆ X be compact. Let

I = {f ∈ C(X) : f [K] = {0}},

and J = I⊥. Then M = (Jd)⊥ is a band in C(X)∼∼ and r∗∗K restricted to M
is a lattice isomorphism onto C(K)∼∼.

Proof. J ⊆ C(X)∼ is non-empty and it follows from Theorem 2.3.9 that Jd

is a band in C(X)∼. Hence an ideal in C(X)∼. It then follows from Theorem
2.3.7 that (Jd)⊥ is a band in C(X)∼∼. Hence M is a band in C(X)∼∼.
In Theorem 3.5.2, we showed that the map

r∗K : C(K)∼ −→ J ⊆ C(X)∼

is a linear lattice isomorphism onto J . We have the following two adjoints
for r∗K ,

r∗∗K : C(X)∼∼ −→ C(K)∼∼

r∗∗0 : J∼ −→ C(K)∼∼.

Since r∗K is a lattice isomorphism, it follows from Corollary 2.2.5 that r∗∗0 is
a lattice isomorphism.

Since C(X)∼ is a Dedekind complete vector lattice, see [ Theorem 20.2,
[11]], and J being a band, it follows that it is a projection band since any
band in a Dedekind complete vector space is a projection band. That is,
C(X)∼ = J ⊕ Jd. Let PJ : C(X)∼ −→ J be the band projection onto J and
P ∗
J : J∼ −→ C(X)∼∼ be its adjoint. It follows from Lemma 2.3.11 that P ∗

J
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is a lattice isomorphism onto M = (Jd)⊥.
Claim: For all Ψ ∈ J∼,

r∗∗K (P ∗
JΨ) = r∗∗0 (Ψ)

That is, the following diagram commutes.

J∼ M

C(K)∼∼

P ∗
J

r∗∗0
r∗∗K |M

Fix Ψ ∈ J∼ and let ϕ ∈ C(K)∼.

[r∗∗K (P ∗
JΨ)](ϕ) = [r∗∗K (Ψ ◦ PJ)](ϕ)

= [(Ψ ◦ PJ) ◦ r∗K ](ϕ)
= Ψ ◦ PJ(r

∗
K(ϕ))

= Ψ(PJ(r
∗
K(ϕ)))

= Ψ(r∗K(ϕ)) (∵ r∗K(ϕ) ∈ J)

= r∗∗0 (Ψ)(ϕ).

Since this holds for all Ψ ∈ J∼ and ϕ ∈ C(K)∼ it follows that the claim is
true. Hence r∗∗K restricted to M is a lattice isomorphism onto C(K)∼∼.

3.6 Embedding C(X) into C(X)∼∼

Let X be a Tychonoff space. For x ∈ X, we denote by ϕx an element of
C(X)∼ such that f 7−→ f(x) for every f ∈ C(X).
If f ∈ C(X), we denote by Ψf the representation of f in C(X)∼∼ under the
canonical embedding.

Lemma 3.6.1. Let D be a subset of C(X)+ and ϕ ∈ C(X)∼+. If D is upward
directed and bounded from above in C(X)∼∼, then in C(X)∼∼

[supD](ϕ) = sup{Ψf (ϕ) : f ∈ D}.

Proof. Assume D ⊆ C(X)∼∼
+ is upward direct and bounded from above.

Since C(X)∼∼ is a Dedekind complete vector lattice , see [ Theorem 20.2,
[11]], it follows that supD exists in C(X)∼∼.

On the other hand, C(X)∼ is a vector lattice and R is Dedekind complete
and it follows from Theorem 2.2.3 that the map Φ : C(X)∼+ −→ R given by;

Φ(ϕ) = sup{Ψf (ϕ) : f ∈ D}, ϕ ∈ C(X)∼+
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can be extended to Φ̃ in C(X)∼∼ such that Φ̃ = supD. If ϕ ≥ 0 we have the
following

[supD](ϕ) = Φ̃(ϕ) = sup{Ψf (ϕ) : f ∈ D}.

We also note that the similar result holds for downward directed sets with
infimum.

Lemma 3.6.2. Let f ∈ C(X), x ∈ X and 0 ≤ ϕ ≤ ϕx in C(X)∼. Then

|ϕ(f)| ≤ |f(x)|.

Proof. Suppose 0 ≤ ϕ ≤ ϕx.
Since ϕ ≥ 0 by Lemma 2.3.12 we have that

|ϕ(f)| ≤ ϕ(|f |)
≤ ϕx(|f |) (∵ |f |is positive)
= |f |(x) (definition of ϕx)

= |f(x)|.

Lemma 3.6.3. Let Ψ and Φ be in C(X)∼∼ and ϕx be the point evaluation
functional at x ∈ X. Then

(Φ ∨Ψ)(ϕx) = Φ(ϕx) ∨Ψ(ϕx)

and
(Φ ∧Ψ)(ϕx) = Φ(ϕx) ∧Ψ(ϕx).

Proof. Using Theorem 2.1.13, it is sufficient to show that

[Ψ+](ϕx) = [Ψ(ϕx)]
+.

By definition
[Ψ+](ϕx) = sup{Ψ(ϕ) : 0 ≤ ϕ ≤ ϕx}.

For 0 ≤ ϕ ≤ ϕx, it follows from Lemma 3.6.2 that |ϕ(f)| ≤ |f(x)| for all
f ∈ C(X).

statement: If 0 ≤ ϕ ≤ ϕx then ϕ = kϕx for some 0 ≤ k ≤ 1. Let 0 ≤ ϕ ≤ ϕx.
Fix f ∈ C(X). Let g = f − f(x)1, where 1 is the constant 1 function on X.
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Then g ∈ C(X) and f = f(x)1 + g. Using Lemma 3.6.2 and the definition
of g we have that

|ϕ(g)| ≤ |g(x)| = |[f − f(x)1](x)| = f(x)− f(x) = 0.

Hence |ϕ(g)| = 0 so that g ∈ kerϕ. Thus

ϕ(f) = ϕ(f(x)1+ g)

= f(x)ϕ(1) + ϕ(g)

= ϕ(1)f(x) (∵ g ∈ kerϕ)

= ϕ(1)ϕx(f).

Since ϕ ≥ 0 and 1 ≥ 0, we have ϕ(1) ≥ 0. On the other hand, by Lemma
3.6.2 |ϕ(1)| ≤ |1(x)| = 1 Hence

0 ≤ ϕ(1) ≤ 1.

Hence setting k = ϕ(1) we have the statement.
Finally,

[Ψ+](ϕx) = sup{kΨ(ϕx) : 0 ≤ k ≤ 1} = [Ψ(ϕx)]
+

Lemma 3.6.4. Let X be realcompact, f ∈ C(X) and D = {fα : α ∈ I} be an
upward directed and bounded subset of C(X). Then Ψf = sup{Ψfα : fα ∈ D}
in C(X)∼∼ if and only if f(x) = sup{fα(x) : fα ∈ D} for all x ∈ X.

Proof. Let X be realcompact. Suppose Ψfα ↑ Ψf in C(X)∼∼. Then for all
ψ ∈ C(X)∼+, we have that Ψ(ψ) = sup{Ψfα(ψ) : fα ∈ D}. Now if ψ = ϕx,
then

f(x) = Ψf (ϕx) = sup{Ψfα(ϕx) : fα ∈ D} = sup{fα(x) : fα ∈ D}.

Now suppose D = {fα : α ∈ I} is directed such that fα(x) ↑ f(x) for each
x ∈ X. Then by Theorem 3.2.3, fα −→ f in the compact open topology.

SinceX is realcompact, C(X)∼ coincides with the continuous dual of Cco(X).
Hence if ϕ ∈ C(X)∼ then ϕ ∈ Cco(X)′. Hence

ϕ(fα) −→ ϕ(f).

So if ϕ ∈ C(X)∼+, then Ψf (ϕ) = sup{Ψfα(ϕ) : fα ∈ D}. This implies that
Ψf = sup{Ψfα : fα ∈ D} by Lemma 3.6.1.
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Lemma 3.6.5. Let X be realcompact. If Φ and Ψ belong to C(X)∼∼ and A
and B are subsets of C(X) such that Φ = sup{Φf : f ∈ A} and Ψ = sup{Ψg :
g ∈ B}. Then Φ ≤ Ψ if and only if sup{f(x) : f ∈ A} ≤ sup{g(x) : g ∈ B}
for all x ∈ X.

Proof. Assume sup{f(x) : f ∈ A} ≤ sup{g(x) : g ∈ B} for all x ∈ X. For
x ∈ X, f ∈ A and g ∈ B, we have that

f(x) ≥ f(x) ∧ g(x) = [f ∧ g](x),

so that f(x) ≥ sup
g∈B

[f ∧ g](x).

Since sup{f(x) : f ∈ A} ≤ sup{g(x) : g ∈ B}, for any f ∈ A, we have

f(x) ≤ sup{f(x) : f ∈ A} ≤ sup{g(x) : g ∈ B}.

Now

f(x) = f(x) ∧ f(x)
≤ f(x) ∧ sup{g(x) : g ∈ B}
= sup

g∈B
{g(x) ∧ f(x) : g ∈ B}

= sup
g∈B

[g ∧ f ](x)

Hence f(x) = sup
g∈B

[g ∧ f ](x), x ∈ X for all x ∈ X. Since f ∈ C(X) and

f(x) = sup
g∈B

[g ∧ f ](x) we have, by Lemma 3.6.4 that

Φf = sup
g∈B

{Φf ∧Ψg : g ∈ B}

≤ sup{Ψg : g ∈ B}
= Ψ.

Hence sup{Φf : f ∈ A} ≤ Ψ. Thus Φ ≤ Ψ.

Now suppose that Φ ≤ Ψ. It follows that for all ϕ ∈ (C(X)∼)+, Φ(ϕ) ≤ Ψ(ϕ).
In particular, Φ(ϕx) ≤ Ψ(ϕx) for every x ∈ X. Hence using Lemma 3.6.1 it
follows that

sup{Φf (ϕx) : f ∈ A} = Φ(ϕx) ≤ Ψ(ϕx) = sup{Ψ(ϕx) : g ∈ B}.

Hence sup{f(x) : f ∈ A} ≤ sup{g(x) : g ∈ g ∈ B}.
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C̃(X) is the order adherence of C(X) in C(X)∼∼. It is the space of all
elements Φ ∈ C(X)∼∼ such that there exists a net (fα)α∈I in C(X) giving
Φfα

o−→ Φ in C(X)∼∼.

Lemma 3.6.6. Let X be realcompact. If Φ and Ψ belong to C̃(X), then
Φ ≤ Ψ if and only if Φ(ϕx) ≤ Ψ(ϕx) for all x ∈ X.

Proof. Suppose Φ ≤ Ψ. Then for any ϕ ∈ C(X)∼+, it follows that Φ(ϕ) ≤
Ψ(ϕ). In particular if ϕ = ϕx we get the result.

Now suppose that Φ(ϕx) ≤ Ψ(ϕx) for all x ∈ X. Since Φ,Ψ ∈ C̃(X), it
follows that there exists a net (fα)α∈I and a net (gβ)β∈J such that Φfα

o−→ Φ

and Ψgβ

o−→ Ψ.

It follows from Theorem 2.1.12 that

Φ = lim inf Φfα and Ψ = lim supΨgβ .

Since Φ(ϕx) ≤ Ψ(ϕx), it follows from Definition 2.1.11 that there exists α0 ∈ I
and β0 ∈ J such that for all α′ ≥ α0 and for all β′ ≥ β0,

inf{Φfα : α ≥ α′}(ϕx) ≤ Φ(ϕx) ≤ Ψ(ϕx) ≤ sup{Ψgβ : β ≥ β′}(ϕx).

It then follows from Lemma 3.6.5 that inf{Φfα : α ≥ α′} ≤ sup{Ψgβ : β ≥ β′}
for all α′ ∈ I, β′ ∈ J such that α′ ≥ α0 and β′ ≥ β0, so that Φ ≤ Ψ.

Theorem 3.6.7. The space C̃(X) of order adherence of C(X) is a sublattice
of C(X)∼∼ containing semi-order units

eK = inf{f ∈ C(X) : f ≥ 0 and f [K] = {1}}, K ⊆ X compact.

Proof. It follows from Theorem 2.2.7 that C̃(X) is a sublattice of C(X)∼∼.

We show that eK ∈ C̃(X). Let

D = {f ∈ C(X) : f ≥ 0 and f [K] = {1}}.

Then the constant 1 function is in D so that D ̸= ∅. Now let f, g ∈ D and
define h = f ∧ g. Then h ≥ 0, h[K] = 1 so that h ∈ D. But h ≤ f, g, hence
D is downward direct and bounded below by 0. Hence by Lemma 2.1.10,

there exists a net in D that order converges to eK . Hence eK ∈ C̃(X).
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Finally we show that eK is a semi-order unit of C̃(X).
From Lemma 3.5.2, we showed that r∗K : C(K)∼ −→ J is a lattice isomor-
phism, where J is a band in C(X)∼. Since C(X)∼ is Dedekind complete we
have that C(X)∼ = J ⊕ Jd. We can rewrite it as

C(X)∼ = C(K)∼ ⊕W,

where W is the disjoint complement of C(K)∼ in C(X)∼. We will show that
eK vanishes on W.

Let ϕ ≥ 0 be in W . Now ϕ ≥ 0 and ϕ ∈ C(X)∼, so there exists a com-
pact set Kϕ and a positive functional ϕ′ ∈ C(Kϕ)

∼ such that ϕ = ϕ′ ◦ rKϕ
,

where rKϕ
is the restriction map. Hence ϕ is non-negative regular borel mea-

sure with compact support contained in Kϕ. Now Kϕ = (Kϕ∩K)∪ (Kϕ\K),
we can express ϕ as a sum of two non-negative measures ϕ1 and ϕ2 such that
sptϕ1 ⊆ K ∩Kϕ and spt ϕ2 ⊂ Kϕ\K. Since spt ϕ1 ⊆ K ∩Kϕ ⊆ K it follows
that ϕ1 ∈ C(K)∼. Since ϕ1 ∈ C(K)∼ and ϕ ∈ W it follows that ϕ1 ∧ ϕ = 0.
But ϕ1 ≤ ϕ. Thus ϕ = 0. Hence ϕ = ϕ2 and ϕ(K) = 0. Since ϕ is regular,
for any ε > 0, there exists a compact set F contained in Kϕ\K such that
ϕ(Kϕ\F ) < ε. Let g ∈ C(X) satisfy 0 ≤ g ≤ 1, g[K] = {1} and g[F ] = {0}.
It then follows from the definition of eK that

0 ≤ eK(ϕ) ≤ g(ϕ) ≤ ||g||Kϕ
ϕ(Kϕ\F ) < ε.

Thus eK is a member of C(X)∼∼ which vanishes on the disjoint complement
of J in C(X)∼.

Now we show that eK is an order unit of M ⊆ C(X)∼∼, where M = (Jd)⊥.
To this end, let

A = {f ∈ C(X) : f ≥ 0, f [K] = 1}.

For ϕ ∈ C(K)∼ and the restriction map r∗K : C(X)∼ −→ C(K)∼ we have the
following;

(r∗∗K eK)(ϕ) = eK(r
∗
Kϕ) = inf{Ψf : f ∈ A}(r∗Kϕ)

= inf{Ψf (r
∗
Kϕ) : f ∈ A}

= inf{ϕ(rKf) : f ∈ A}
= ϕ(1K).

Where 1K is the constant function 1 on C(K). Hence r∗∗K (eK) is the constant
function 1 in C(K)∼∼.
Let Γ : C(K) −→ C(K)∼∼ be defined by f 7−→ Φf for all f ∈ C(K). Then Γ
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is a lattice isomorphism onto Γ[C(K)]. Since 1K is an order unit of C(K), it
follows that Γ(1K) = Γ1K

is an order unit of Γ[C(K)]. Now if Φ ∈ C(K)∼∼
+

and ψ ∈ C(K)∼+. Then

Φ(ψ) ≤ ||Φ||||ψ||
= ||Φ||ψ(spt(ψ))
= ||Φ||Γ1K

(ψ)

= ||Φ||Γ1K
(ψ)

Hence Φ ≤ ||Φ||Γ1K
so that Γ1K

is an order unit of C(K)∼∼. By Theorem
3.5.3, r∗∗K is a lattice isomorphism on to M. It follows that eK is an order
unit of M. It then follows from Theorem 2.3.10 that eK is a semi-order unit
of C(X)∼∼.

3.7 Semi-order units in C̃(X) and the com-

pact open topology

Let u be a semi-order unit of C(X) and ρu the associated semi-norm. By
semi-order unit topology on C(X), we mean the locally convex space gener-
ated by the collection of semi-norms, {ρu : u is a semi-order unit on C(X)}.
In this section, we establish some results regarding the semi-order unit topol-
ogy. It will be shown that if u is a semi-order unit of C(X), then the set
S = {x ∈ X : u(x) ̸= 0} is bounded away from 0. Furthermore, it is a clopen
set. We establish the following equivalence. If X is realcompact, then the
semi-order unit topology agree with the compact open topology if and only
if X is a union of clopen sets.

Proposition 3.7.1. Let u be a semi-order unit of C(X). The set

S = {x ∈ X : u(x) ̸= 0}

is both open and closed in X.

Proof. We first show that S is open.
Since u is a continuous function onX and R\{0} = (−∞, 0)∪(0,∞) is open in
R, we have that u−1(R\{0}) is open in X. That is S = u−1(R\{0}) is open.

Now we show that S is closed.
Since u is a semi-order-unit, u ≥ 0. It follows that

√
u is well defined function

and continuous on X, as u is a semi-order unit, there exist a λ > 0 such that
√
u ∧ nu ≤ λu, for all n ∈ N.
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Let x ∈ S. Then
√
u(x) ∧ nu(x) ≤ λu(x). Since u(x) > 0, {nu(x) : n ∈ N}

is not bounded, it follows that
√
u(x) ≤ λu(x), hence u(x) ≤ λ2u2(x). This

implies that
1

λ2
≤ u(x).

Let a = 1
λ2 then 0 < a ≤ u(x), x ∈ S. Hence 0 < a ≤ u(x) for all

x ∈ S. So if x ∈ S then x ∈ u−1([a,∞)), clearly u−1([a,∞)) ⊆ S. Hence
S = u−1([a,∞)). The set [a,∞) is closed in R. Since u is continuous on X,
the set S = u−1([a,∞)) is closed in X. Thus S is both closed and open.

Lemma 3.7.2. Let X be a realcompact space and S ⊆ X. Assume f |S is
bounded for all f ∈ C(X). Then S is compact.

Proof. Fix f ∈ C(X). Then by Lemma 3.1.11 there exist a unique extension
f̃ of f such that f̃ : βX −→ R and f̃ is continuous on βX.

Suppose there exists x0 ∈ S
βX\X, where SβX

denotes the closure of S in
βX. Since f |S is bounded, it follows that f̃(x0) ∈ R. Since f is arbitrary,
it follows that every continuous function extends to a real-valued continuous
function on X ∪ {x0} which is a contradiction since X is realcompact.

Hence S
βX\X = ∅, so it follows that S

βX ⊆ X. Now S
βX ⊆ X compact in

βX implies that S
βX

compact in X. S ⊆ S
βX

implies that S is compact.

Proposition 3.7.3. Let X be a realcompact space. If u is a semi-order unit
of C(X) then the set

S = {x ∈ X : u(x) ̸= 0}

is compact.

Proof. By Lemma 3.7.2, it suffices to show that for any f ∈ C(X), f |S is
bounded.

Fix f ∈ C(X). Since u is a semi-order unit, u is continuous so that u2

is also continuous. It follows that there exists a δ > 0 such that

u2 ∧ nu ≤ δu for all n ∈ N.

Hence we have that u is bounded by δ, that is u(x) ≤ δ for all x ∈ X. Since
f ∈ C(X), u a semi-order unit, there exists a λ > 0, such that |f | ∧nu ≤ λu
for all n ∈ N. In particular, if x ∈ S then u(x) > 0 so that the sequence
(nu(x)) is not bounded. It follows that

|f(x)| ≤ λu(x) ≤ λδ.
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Hence f is bounded on S. Since f is an arbitrary function in C(X), we have
that every function in C(X) is bounded on S. It then follows from Lemma
3.7.2 that S is compact. Since S is closed we have that S = S so that S is
compact as required.

Proposition 3.7.4. Let u ∈ C(X) such that u > 0. Suppose S = {x ∈ X :
u(x) ̸= 0} is compact in X. Then u is a semi-order unit.

Proof. Fix f ∈ C(X). Since S is compact and f is continuous, it follows
that f |S is bounded. So there exists M ∈ R, M > 0 such that

|f(x)| ≤M for all x ∈ S. (3.1)

Since S is compact and u is continuous, we have that u[S] is compact in R.
Hence inf u[S] exists and belong to u[S] so that inf u[S] > 0.
Define c = inf u[S]. It follows that 0 < c ≤ u(x) for all x ∈ S. Hence

0 <
1

u(x)
≤ 1

c
for all x ∈ S. (3.2)

Using (3.1) and (3.2) we have

|f(x)|
u(x)

≤ 1

c
M, so that |f(x)| ≤ M

c
u(x) for all x ∈ S.

Let λ = M
c
. Then for x ∈ S, |f(x)| ≤ λu(x). Hence for x ∈ S, we have that

min{|f(x)|, nu(x)} ≤ λu(x) for all n ∈ N.

For x /∈ S, u(x) = 0 so that nu(x) = 0 = λu(x) for all n ∈ N. Hence

min{|f(x)|, nu(x)} ≤ λu(x), x ∈ X n ∈ N.

Thus |f | ∧ nu ≤ λu for all n ∈ N. Since f is arbitrary it follows that u is a
semi-order unit of C(X).

Proposition 3.7.5. Let S be a clopen subset of X and f the indicator func-
tion of S. Then f is continuous.

Proof. Let B = {0, 1}. We will show that for any V open in R, the set
f−1[V ] = f−1[V ∩B] is open in X.

Let V be open in R then V ∩ B is one of ∅, {0}, {1} or B. Now f−1[∅] = ∅
which is open, f−1[{0}] = X\S which is open, and f−1[{1}] = S is open in
X. Finally f−1[B] = X which is also open. Hence f is continuous on X.
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Theorem 3.7.6. Let X be a realcompact space. The semi-order unit topology
on C(X) coincides with the topology of compact convergence if and only if X
is a union of open compact sets.

Proof. Let u be a semi-order unit on C(X). Then the set S = {x ∈ X :
u(x) ̸= 0} is open, closed and compact; that is, S is an open compact set.
Note that we have shown that there is an a > 0 such that if x ∈ S, then
u(x) > a and we have also shown that there is a δ > 0 such that if x ∈, S
then u(x) ≤ δ. These together yield

0 < a ≤ u(x) ≤ δ for all x ∈ S.

This implies that u is bounded away from zero on S. Since u(x) > 0 for all
x ∈ S, it follows that {nu(x) : n ∈ N} is not bounded on S. Using this fact,
we have that

ρ(f) = inf{λ > 0 : |f | ∧ nu ≤ λu for all n ∈ N
}

= inf
{
λ > 0 : |f(x)| ∧ nu(x) ≤ λu(x), x ∈ X for all n ∈ N

}
= inf

{
λ > 0 : |f(x)| ≤ λu(x) x ∈ S

}
= inf

{
λ > 0 : f |S ≤ λu|S

}
.

Since u ≤ δ on S, it follows that if f |S ≤ λu|S then f |S ≤ λδ. Hence
1
δ
||f ||S ≤ ρ(f). Also a ≤ u(x), x ∈ S so that 1 ≤ 1

a
u(x). Hence

|f(x)| ≤ ||f ||S ≤ ||f ||S
a

u(x) for all x ∈ S.

Thus |f | ∧ nu ≤ ||f ||S
a
u, n ∈ N. Hence ||f ||S

a
∈ {λ > 0 : |f | ∧ nu ≤ λu} so that

ρ(f) ≤ ||f ||S
a
. Thus

1

δ
||f ||S ≤ ρ(f) ≤ 1

a
||f ||S

This implies that the semi-norm associated with u is equivalent to ||.||S.
Hence semi-order unit topology on C(X) is coarser than the topology of
compact convergence.

Suppose X =
⋃
α∈I

Aα where each Aα is an open, compact set.

We have already proved that the semi-order unit topology on C(X) is gener-
ally coarser than the topology of compact convergence. So it remains to show
the reverse inclusion and to this end, fixK ⊆ X compact. Since {Aα : α ∈ I}
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is an open cover for X, it also covers K. Hence there exist A1, ...An such
that

K ⊆
n⋃

i=1

Ai.

Let S =
⋃n

i=1Ai. Then S is open compact in X. Let u be an indicator
function on S. Since S is clopen, it follows from Proposition 3.7.5 that u is
continuous on X. It then follows from Proposition 3.7.4 that u is a semi-
order unit. It follows that the semi-norm associated with the function u is
equal to ||.||S. Indeed

ρu(f) = inf{λ > 0 : |f | ∧ nu ≤ λu for all n ∈ N
}

= inf
{
λ > 0 : |f(x)| ∧ nu(x) ≤ λu(x), x ∈ X for all n ∈ N

}
= inf

{
λ > 0 : |f(x)| ≤ λu(x) x ∈ S

}
= inf

{
λ > 0 : f |S ≤ λ

}
(∵ u|S = 1)

= ||f ||S.

Hence ρu(f) = ||f ||S.

Since K ⊆ S, we have that

sup{|f(x)| : x ∈ K} ≤ sup{|f(x)| : x ∈ S}

that is ||f ||K ≤ ||f ||S. Hence the topology of compact convergence is coarser
that the semi-order unit topology. This implies that the topology of compact
convergence is equal to semi-order unit topology.

Now suppose that the semi-order unit topology on C(X) agrees with the
topology of compact convergence i.e Cco(X) = Csou(X). It will be shown
that X is a union of open compact sets. It is sufficient to show that each
x ∈ X belongs to an open compact set Ax so that X =

⋃
x∈X

Ax.

Fix x0 ∈ X. Let K be the singleton {x0}. Then K is compact. Since
the topology of compact convergence and semi-order-unit topology coincide,
there exist semi-order units u1, ..., un with associated semi-norms ρ1, ..., ρn
such that

sup{ρi : i = 1, ..., n} ≥ ||.||K .
Claim: There exists 1 ≤ i ≤ n such that x0 ∈ {x ∈ X : ui(x) ̸= 0}.
Assume that it is not true. Since {x ∈ X : ui(x) ̸= 0} is a compact set in X,
it follows that

B =
n⋃

i=1

{x ∈ X : ui(x) ̸= 0 for some i = 1, ..., n}

61



is closed in X and x0 /∈ B. Since X is completely regular, we can sep-
arate singletons and closed sets with a continuous function. Hence, there
exists an f ∈ C(X) such f(x0) = 1 and f(x) = 0 for all x ∈ B. Hence
ρi(f) = 0 for each i = 1, .., n and sup{ρi(f) : i = 1, ..., n} = 0, but
||f ||K = 1. This implies sup{ρi(f) : i = 1, ..., n} < 1. This is however a
contradiction, since sup{ρi : i = 1, ..., n} ≥ ||.||K . Hence ui(x0) ̸= 0 for some
i = 1, ..., n. That is there, is an i0 such that ui0(x0) ̸= 0. It follows that
x0 ∈ {x ∈ X : ui0 ̸= 0} = Ax0 which is an open compact set by Proposition
3.7.3.

Since x0 was arbitrary, it follows that it is true that for all x ∈ X and
that there exists an Ax open compact such that x ∈ Ax. Hence X =

⋃
x∈X

Ax

as required.

Lemma 3.7.7. Let X be a topological space and let S ⊆ .X Suppose that
some function h ∈ C(X) is not bounded on S. Then S contains a copy of N,
C-embedded in X on which h approaches infinity.

Proof. By replacing h with |h| if necessary, we may suppose that h is pos-
itive. S is non-empty for if it is empty then h is bounded on S which is a
contradiction.

Now pick arbitrary x1 ∈ S. Since h is not bounded on S it follows that
for any M ∈ R,M > 0, there exists an x ∈ S such that h(x) > M . In
particular there exists an x2 ∈ S such that

h(x2) ≥ h(x1) + 1.

Inductively, there exists a sequence (xn) in S such that h(xn+1) ≥ h(xn) + 1
for all n ∈ N. Let A = {xn : n ∈ N} and define

H : N −→ A by n 7−→ xn.

Then H is a bijection by construction. It remains to show that singletons
are open in A with the subspace topology inherited from X. To this end let
xn ∈ A, then

{xn} = h−1({y ∈ R : h(xn−1) + 1 < y < h(xn+1) + 1}) ∩ A,

which is open by the continuity of h. Hence A carries discrete topology. Thus
S contains a copy of N. By the construction of the set A, the function h is
unbounded on A.
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Claim: h|A : A −→ h[A] is a homeomorphism.
Any function is onto its range, hence h|A is onto h[A]. Let xn, xm ∈ A with
xn ̸= xm. Then n ̸= m. So assume m < n, then by the construction of the
set A, h(xm) < h(xm) + 1 ≤ h(xm+1) ≤ h(xn). Hence h(xm) < h(xn) so that
h(xm) ̸= h(xn). Hence h is injective so that h is a bijection. h is continuous
on X, so h|A is continuous on A

Since A is equipped with a discrete topology, it suffices to show that one
point set are open in h[A].

Let y ∈ h[A]. Then there exists n ∈ N such that y = h(xn). Now let
U = (y − 1

2
, y + 1

2
). Then U is open in R and {h(xn)} = h[A] ∩ U. Thus

one point sets are open in h[A] with the topology inherited from R, so that
h is a homeomorphism.

It then follows from [8, Theorem 1.9] that A is C-embedded in X.

Theorem 3.7.8. Let X be realcompact and Ψ a semi-order unit on C̃(X).
Then the closure in X of {x ∈ X : Ψ(ϕx) ̸= 0} is compact, where ϕx denotes
the point-evaluation functional of x ∈ X.

Proof. Let S = {x ∈ X : Ψ(ϕx) ̸= 0}. With a view towards a contradiction,
suppose that S is not compact. Since X is realcompact, it follows from
Lemma 3.7.2 that there exist a continuous function h which is not bounded
on S. Hence by Theorem 3.7.7 there exist a discrete infinite subset A of S
such that A is C-embeddeble in X. Since the subspace topology on A is a
discrete topology, any function f : A −→ R is continuous. Define

f(xn) = nΨ(ϕxn).

Since A is C-embedded in X, f can be extended to a continous function g
on X. Since Ψ is a semi-order unit, g∧nΨ ≤ λΨ for all n ∈ N. In particular,

nΨ(ϕxn) = g(xn) ∧ nΨ(ϕxn) ≤ λΨ(ϕxn)

for some λ > 0 and for all n ∈ N. Since Ψ(ϕxn) ̸= 0 and is positive because Ψ
is a semi-order unit, we have that n ≤ λ for all n ∈ N. This is a contradiction
because N is not bounded from above. Hence S is compact.

Denote by τsou the topology induced on C(X) as a subspace of C̃(X) equipped
with the semi-order unit topology. We denote this topological space by a pair
(C(X), τsou) or simply Csou(X).
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Theorem 3.7.9. Let X be realcompact and Ψ a semi-order-unit in C̃(X).
Then there exists a real number M such that Ψ(ϕx) ≤M for all x in X.

Proof. With a view towards a contradiction, suppose Ψ does not satisfy the
conclusion. Then for each M > 0, there exists an x ∈ X such that Ψ(ϕx) ≥
M. In particular for each n ∈ N, there exists an xn ∈ X such that

Ψ(ϕxn) ≥ n3.

For each n ∈ N, let ψn be the point evaluation at xn, acting as a functional
on C(K). Then ψn ∈ C(K)∼ and r∗Kψn = ϕxn . We have

||ψn|| = sup
||f ||K=1

|ψn(f)| = sup
||f ||K=1

|f(xn)| = 1.

Therefore
∑∞

n=1
1
n2ψn is absolutely convergent in C(K)∼. Because C(K)∼ is

a Banach lattice,
∑∞

n=1
1
n2ψn converges in norm to some ψ in C(K)∼. Note

that 1
n2ψn ≤ ψ for every n ∈ N. Hence 1

n2ϕxn = r∗K(
1
n2ψn) ≤ r∗Kψ so that

Ψ(r∗Kψ) ≥ Ψ(
1

n2
ϕxn) > n

for all n ∈ N, a contradiction.

Proposition 3.7.10. Let X be realcompact, Ψ a semi-order unit of C̃(X)
with the associated seminorm ρΨ. Let K be the closure in X of {x ∈ X :
Ψ(ϕx) ̸= 0}. Then for all f ∈ C(X)

ρΨ(f) ≤ ||f ||KρΨ(1).

Proof. Fix f ∈ C(X). Consider x ∈ K. We have that |f(x)| ≤ ||f ||K . By
Lemma 3.6.3 we have that, for all n ∈ N

(|f | ∧ nΨ)(ϕx) = ((x) ∧ nΨ(ϕx) ≤ ||f ||K ∧ nΨ(ϕx).

By definition of ρΨ,

ρΨ(||f ||K1) = inf{λ > 0 : ||f ||K1 ∧ nΨ ≤ λΨ, for all n ∈ N}.

Therefore (||f ||K1) ∧ (nΨ) ≤ ρΨ(||f ||K1)Ψ in C(X)∼∼. So, again using
Lemma 3.6.3 we have

||f ||K ∧ (nΨ(ϕx)) = (||f ||K1) ∧ (nΨ)(ϕx)

≤ ρΨ(||f ||K1)Ψ(ϕx).
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Hence

(|f | ∧ nΨ)(ϕx) ≤ ρΨ(||f ||K1)Ψ(ϕx)

= ||f ||KρΨ(1)Ψ(ϕx).

Since Ψ(ϕx) = 0 for all x /∈ K we have that for all x ∈ X,

(|f | ∧ nΨ)(ϕx) ≤ ||f ||KρΨ(1)Ψ(ϕx).

Hence f ∧ nΨ ≤ ||f ||KρΨ(1)Ψ for all n ∈ N so that

||f ||KρΨ(1) ∈ {λ > 0 : f ∧ nΨ ≤ λΨ}.

Taking the infimum of the set {λ > 0 : f ∧ nΨ ≤ λΨ} we obtain ρΨ(f) ≤
||f ||KρΨ(1).

Proposition 3.7.11. The topology τsou is finer than the topology of compact
convergence.

Proof. Let K be a compact set in X and denote by eK the semi-order unit
associated with K and ρeK be the associated semi-norm. We show that
||f ||K ≤ ρeK (f) for all f ∈ C(X). Fix f ∈ C(X). By definition of ρeK we
have that |f | ∧ neK ≤ ρeK (f)eK for all n ∈ N. It follows from Lemma 3.6.3
that

|f(x)| ∧ neK(ϕx) ≤ ρeK (f)eK(ϕx), x ∈ X.

Since eK(ϕx) = 1 for all x ∈ K, we have that |f(x)| ≤ ρeK (f) for all x ∈ K.
Hence ||f ||K ≤ ρeK (f). Let U be an open neighbourhood of 0 with respect
to the compact-open topology. For every compact set K ⊆ X, there exists
a εK > 0 so that {f ∈ C(X) : ||f ||K < εK} ⊆ U . Since ||.||K ≤ ρeK ,
{f ∈ C(X) : ρeK < εK} ⊆ {f ∈ C(X) : ||f ||K < εK} ⊆ U . Hence U is an
open neighbourhood of 0 with respect to τsou, the semi-order unit topology.
This shows that τsou is finer than the compact-open topology.

Theorem 3.7.12. Let X be realcompact.

i. If K is a compact subset of X with associated semi-order unit eK in

C̃(X) then ρeK (f) = ||f ||K for all f ∈ C(X).

ii. Let Ψ be semi-order unit in C̃(X) and A = {x ∈ X : Ψ(ϕx) ̸= 0}. Let
K = A. Then ρΨ(.) and ||.||K are equivalent on C(X).
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Proof of (i). We showed in the proof of Proposition 3.7.11 and in Proposition
3.7.10 that

||f ||K ≤ ρeK (f) ≤ ρeK (1)||f ||K , f ∈ C(X).

We will show that ρeK (1) = 1.

ρeK (1) = inf{λ > 0 : 1 ∧ neK ≤ λeK}

1 ∧ neK ≤ λeK ⇐⇒ (1 ∧ neK)(ϕx) ≤ λeK(ϕx) ∀x ∈ X (By Lemma 3.6.6)

⇐⇒ 1 ∧ neK(ϕx) ≤ λeK(ϕx) ∀x ∈ K (eK(ϕx) = 0 ∀x /∈ K)

⇐⇒ 1 ∧ n ≤ λ (x ∈ K =⇒ eK(ϕx) = 1)

⇐⇒ λ ≥ 1.

Hence ρeK (1) = 1 so that

||f ||K ≤ ρe(f) ≤ ||f ||K .

Hence ρeK (f) = ||f ||K thus proving (i).

Proof of (ii). Let f ∈ C(X). We note that

|f(x)| ∧ nΨ(ϕx) ≤ ρΨ(f)Ψ(ϕx)

Because Ψ(ϕx) > 0 for all x ∈ A, we have |f(x)| ≤ ρΨ(f), x ∈ A. By Theorem
3.7.9, there exists an M > 0 such that Ψ(ϕx) ≤M and Ψ(ϕx) ̸= 0 for x ∈ A.
Hence

sup{|f(x)| : x ∈ A} ≤ ρΨ(f)M.

Thus
1

M
||f ||K ≤ ρΨ(f) ≤ ρΨ(1)||f ||K .

Therefore ||.||K and ρΨ(.) are equivalent on C(X).

We showed in Theorem 3.1.17 that T : C(X) −→ C(υX) is a lattice iso-
morphism so the adjoint T ∗ : C(υX)∼ −→ C(X)∼ is a lattice isomorphism.
Similarly the adjoint C(X)∼∼ −→ C(υX)∼∼ is a lattice isomorphism.

Now if Ψ ∈ C̃(X), then there exists a net (fα)α∈I such that Ψfα
o−→ Ψ.

The net (Tfα)α∈I = (f̃α)α∈I is in C(υX) and Ψf̃α

o−→ Ψf̃ . We deduce that

C̃(X) and C̃(υX) are isomorphic vector lattices. The semi-order units in
these two spaces are in 1 to 1 correspondence.
Hence Csou(X) and Csou(υX) are homeomorphic. In particular, T is a home-
omorphism.
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Lemma 3.7.13. Ψ is a semi-order unit of C̃(X) if and only if T ∗∗Ψ is a

semi-order unit of C̃(υX).

Proof. We will show that

ρΨ(f) = ρT ∗∗Ψ(Tf) for all f ∈ C(X).

For λ > 0, |f | ≤ nΨ ≤ λΨ in C̃(X) if and only if |T ∗∗f | ∧ nT ∗∗Ψ ≤ λT ∗∗Ψ

in C̃(υX). But Tf = T ∗∗f in C̃(υX).
So for λ > 0,

|f | ≤ nΨ ≤ λΨ in C̃(X) ⇐⇒ |Tf | ∧ nT ∗∗Ψ ≤ λT ∗∗Ψ in C̃(υX).

Therefore ρΨ(f) = ρT ∗∗Ψ(Tf), for all f ∈ C(X).

Using Theorem 3.7.12, and the above Lemma together with the previous
discussion we obtain the following theorem.

Theorem 3.7.14. Let X be Tychonoff. Then the following statements are
equivalent.

i. X is realcompact

ii. T : Cco(X) ∋ f 7−→ f̃ ∈ Cco(υX) is a homeomorphism.

iii. Csou(X) = Cco(X) .

proof of (i) =⇒ (iii). This follows immediately from Theorem 3.7.12.

proof of (iii) =⇒ (ii). Suppose Csou(X) = Cco(X). Using the previous dis-
cussion we have that Csou(X) and Csou(υX) are homeomorphic. Also using
Theorem 3.7.12, υX is realcompact so Csou(υX) = Cco(υX). Together with
the assumption we have that

Cco(X) = Csou(X) ∼= Csou(υX),= Cco(υX).

Hence Cco(X) and Cco(υX) are homeomorphic.

Proof of (i) ⇐⇒ (ii). This is Theorem 3.2.2. This completes the proof.
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Appendix A

Here we collect together some useful results which are used in the thesis or
helps us to recap some concepts but do not belong to any scope of the essay.

A.1 Topology

Definition A.1.1. A topological space X is completely regular if for any
closed set B ⊆ X and every x0 /∈ B then there exist a continuous function
f : X −→ R such that f(x0) = 1 and f [B] = {0}.

Definition A.1.2. A topological space X is a Tychonoff space if X is a
completely regular Hausdorff space.

Theorem A.1.3. Let V be a topological space, B ⊆ V and f : V −→ R be
a continuous function. Then

f [B] ⊆ f [B].

Proof. Let y ∈ f [B]. Then there exists x ∈ B such that f(x) = y. Since
x ∈ B, there exists a net (xα)α∈I such that xα −→ x. Now (f(xα))α∈I is a
net in f [B]. Since f is continuous, f(xα) −→ f(x). Hence y ∈ f [B]. Thus
f [B] ⊆ f [B].

Definition A.1.4. Let V be a topological vector space. A set B is bounded
in B if for every neighbourhood U of 0, there exists a λ > 0 such that
B ⊂ λU. Equivalently, B is topologically bounded if for all U ∈ N0, there
exists a λ > 0 such that

1

λ
B ⊆ U.

Definition A.1.5. Let V be a topological space and ϕ : V −→ R a linear
functional. Then ϕ is topologically bounded if for every B ⊆ V bounded
with respect to a topology on V , ϕ(B) is bounded in R.
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We denote by V ′ a space of continuous functionals on the topological space
V

Theorem A.1.6. Let ϕ ∈ V ′. Then ϕ is topologically bounded.

Proof. Fix B ⊆ V bounded. Since ϕ is continuous, with ε = 1, there exists
a U ∈ N0, such that if f ∈ U then |ϕ(f)| = |ϕ(f)−ϕ(0)| < 1. Since U ∈ N0,
there exists a λ > 0 such that B ⊆ λU. Now if f ∈ B, then |ϕ(f)| ≤ λ. Hence
ϕ is topologically bounded.

Theorem A.1.7. Let X be realcompact and ϕ ∈ Cco(X)′. Then there exists a
compact set K ⊆ X and α > 0 such that |ϕ(f)| ≤ α||f ||K , for all f ∈ C(X)

Proof. Fix ϕ ∈ C(X)∼+. Then there exist a regular borel measure µϕ such
that ∫

X

fdµϕ = ϕ(f).

Let K = sptµϕ. Then K ⊆ X since X is realcompact. Now if f ≥ 0 Then

|ϕ(f)| = ϕ(f) =

∫
X

fdµϕ ≤
∫
X

||f ||Kdµϕ = ||f ||Kµϕ(K).

Let α = µϕ(K) thus we get the result.

Definition A.1.8. Two semi-norms ||.|| and ||.||0 on E are equivalent if there
exists positive real numbers α and β such that

α||f || ≤ ||f ||0 ≤ β||f ||, f ∈ E.

Lemma A.1.9. Let V be a vector space and P be a collection of all semi-
norms on V. If the subbase elements of the topology of X are of the form
{x ∈ V : ρ(x − x0) < ε} for ε, x0 ∈ X and ρ ∈ P . Then a set U is open if
and only if for each x ∈ U, there exists ρ1, ..., ρn and ε1, ..., εn such that

n⋂
k=1

{x ∈ V : ρk(x− x0) < εk} ⊆ U

Theorem A.1.10 (Tietze Extension Theorem). Let V be a normal space and
B ⊆ V . Suppose f : B −→ R is continuous. Then there exists f̃ : V −→ R
a continuous extension of f.

Theorem A.1.11 (Dini’s Theorem). Let V be a compact topological space
and (fn)n∈N be a monotonic increasing sequence of continuous function on
V which convergences pointwise to a continuous function f : V −→ R. Then
fn −→ f uniformly.
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A.2 Ordered vector spaces

Definition A.2.1. Let E be a set. A relation ≤ on E is called a partial
order if:

i. x ≤ x for every x ∈ E (≤ is reflexive).

ii. x ≤ y and y ≤ z implies x ≤ z (≤ is transitive).

iii. x ≤ y and y ≤ x implies x = y (≤ is anti-symmetric).

The set E equipped with partial ordering is called a partially ordered set.

Definition A.2.2. Let E be a non-empty partially ordered set. If x∨ y and
x ∧ y exist for every x, y ∈ E we say E is a lattice.

Definition A.2.3. Let (E,≤) be a vector space equipped with partial or-
dering such that the following properties hold for all x, y, z ∈ E and λ ≥ 0.

i. x ≤ y implies x+ z ≤ y + z.

ii. x ≤ y implies λx ≤ λy.

Then (E,≤) is called an ordered vector space.

Definition A.2.4. Let (E,≤) be an ordered vector space. Then

E+ = {x ∈ E : 0 ≤ x}

is called the positive cone of E and the elements of E+ are called the positive
elements of E.

Definition A.2.5. A Riesz space is an ordered vector space which is lattice
with respect to its partial order and we will denote it by E.
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