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Chapter 1

Introduction

1.1 Continuous Functions in Analysis

Spaces of continuous functions come equipped with a variety of structures
making it a useful and versatile object of study in mathematics. Indeed, the
space C(X) of real-valued continuous functions on a topological space X is a
ring [8] and a vector lattice [7]. If X is compact then C'(X) is a Banach alge-
bra [9], and a Banach lattice when equipped with the uniform norm. Hence
C'(X) serves simultaneously as an example of many different mathematical
objects.

Spaces of continuous functions are often “typical” objects in certain classes
of objects. Every Archimedean vector lattices can be represented as a space
of (extended) real-valued continuous functions on some topological space X,
see [10]. Also commutative C*— algebras can be represented as a space of
continuous functions, see for instance [5].

In this thesis we study C'(X) as a vector lattice and a locally convex topolog-
ical vector space, and the interaction between these structures. In the case
of a compact space X, the norm and the order are intimately related to one
another. Indeed, one may define the norm through the order structure.

IFI] = inf{A > 0 - [f] < AL},

Furthermore the order bounded and norm bounded sets in C'(X) are identi-
cal, a linear functional ¢ on C'(X) is order bounded if and only if it is norm
bounded. Following [4], we aim to generalize these results to a non-compact
space X. In particular, we consider C'(X) equipped with the compact open
topology, and the relationship between this topology and the order structure
on C(X).



1.2 Outline

In chapter 2 we give the definition of a semi-order unit and the semi-order
unit topology. Many vector lattices have few semi-order units, for example
C(X) for a connected non-compact space Tychonoff space X. Therefore given
a vector lattice F/, we consider the order adherence E, the collection of all
limits of order convergent nets in F viewed as a subspace of its order bidual.
We will find the semi-order units of E for certain explicit of vector lattices F.

We dedicate chapter 3 to C'(X). In this chapter we study C.(X) from
the order theoretic point of view. We discuss closed ideals in C,,(X), and
we compare the order dual and the topological dual. We also discuss the
order theoretic characterization of the compact open topology in terms of

—_—

semi-order unit in C(X).

In particular, we end the thesis by showing that X is realcompact if and only
if the semi-order unit topology inherited from the order adherence agrees
with the compact-open topology on C(X). The Stone-C'ech compactification
and the realcompactfication of X are constructed as necessary preliminary
material for the chapter.

The Appendix contains some results which are used throughout the thesis.



Chapter 2

General Vector Lattices

2.1 Preliminaries

Recall that a vector lattice is an ordered vector space which is a lattice with
respect to its partial order. We will assume that the reader is familiar with
some basic terminology on ordered vector spaces, in particular vector lattices,
see for instance [11], [2]. We follow the notation of [4].

Definition 2.1.1. Let E be a vector lattice. A positive element v in E is
called a semi-order unit if for each v in F, there exists a A > 0 such that
vAnu < Au for all n € N.

Proposition 2.1.2. Let E be a vector lattice. A positive element u € E is
a semi-order unit if and only if for all v € E, there exists a > 0 such that
] Anu < pu for all n € N.

Proof. Suppose there exists a p > 0 such that |v| A nu < pu, for all n € N.
Since E is a lattice, v < |v|. Hence for each n € N we have that

vAnu < |v] Anu < pu.

This holds for each n € N. By setting A = p, we have v A nu < Au, so that
u is a semi-order unit.

Now suppose u is a semi-order unit and fix v € E. Since E is a lattice,
|v| € E so by assumption, there exists a A > 0 such that |[v| A nu < Au for
all n € N. By setting 4 = A we get the desired result. O]

Proposition 2.1.3. Let u be a positive element in a vector lattice E and
A > 0. Then forv € E, we have that |v| Anu < Au for all n € N if and only
if |o] Atu < Au for all t > 0.



Proof. Suppose |v| A nu < Au for all n € N. Fix t > 0. Since N is not
bounded from above, there exists an N € N such that N > ¢. It follows that
Nu > tu. Thus

v Atu < |v] A Nu < Au.

Since t > 0 was arbitrary, it follows that |v| A tu < Au for all ¢ > 0. Suppose
|v] Atu < Au for all t > 0. Since N C RT| it follows that if n € N, then n > 0
so that |v| A nu < Au. Since n was abitrary the result follows. O

Using the above propositions, we will sometimes use |v| rather than v since
the definitions will be equivalent.

Note that it also holds for any subset of R which is not bounded from above.
Remark: If A is a non-empty set in R and is bounded from below, then inf A
exists. For A > 0 define a set

B={)la:a¢c A}.
Then B is bounded below and inf B = Ainf A.

Theorem 2.1.4. Let v be a semi-order unit in a vector lattice E. Then the
function defined by

p(v) =inf{\ > 0:|v]| Anu < Iu, ne N}
for vin E defines a semi-norm on E.
Proof. Since u is a semi-order-unit, the set
{A>0:|v| Anu<AIu, neN}

is non-empty and is bounded below by 0, so its infimum exists. By the
characterization of an infimum, we have that

0 <inf{A>0:|v| Anu<AIu, neN}
so that p(v) > 0 for all v € E. Hence
p:E—[0,00).

Let v € E and let a € R.
If o =0, then
lalp(v) =0 p(v) =0 inf{\A > 0: |v] Anu < Au,n € N}
=inf{\A > 0:]0| A nu < Au,n € N}
= p(av).



If a # 0, then

plav) =1inf{\ > 0 : |av| A nu < Au,n € N}
=inf{A > 0 : |a||v| A nu < Au,n € N}

= inf{\ > 0: |a|(Jv| A %u) < Au,n € N}

=inf{A > 0 : |a|(Jv| A tu) < Au,t > 0}
= inf{\ > 0 : |a|(Jv| A nu) < Au,n € N}

A
=inf{\ > 0: (Jv| Anu) < —u,n € N}

|
A
= inf{|a|g > 0: (Jv| Anu) < pu,n € N}whereu = al
«
= |a|inf{y > 0: (Jv| Anu) < pu,n € N} (using the Remark before the theorem)

= |alp(v).

Hence p(av) = |a|p(v).

Now it only remains to show the triangle inequality. Let vy, v, € E. Since E
is a vector lattice, |v; + va| < |v1| + |va]. Hence from Theorem 6.5 of [11] we
have that for each n € N,

|v1 + vo| Anu < (|or] + |v2]) A nu = |v| A nu+ |vs| A nu. (2.1)

Recall that if A and B are nonempty subsets of R that are bounded from
below, then if C' = {a—l—b a € Abe B}, it follows that inf C' = inf A+inf B.
In addition, if A C B then inf B < inf A. Using this argument, we have that

p(v1) + p(vz) = inf { Ay ¢ Jor| Anu < XNu,n € N} +inf {s ¢ [us] Anu < Xou,n € N}
=1inf{\ + Ao : |v1| Anu < \u and |vg| A nu < Au,n € N}

Let A\; and s be such that |v1| A nu < A\ju and |vs| A nu < Aqu.
Then for A = A\; + Ay, using (2.1) :

|v1 + vo| Anu < |v1| Anu+ |vg| A nu
S )\1U+ )\QU
= \u.

Hence {/\1 + X > 0 |u | Anu < Mu, and |vo] Anu < Mu n € N} is a
subset of the set {\ > 0 : |v; 4+ va| A nu < Au,n € N}. Taking the infimum
we obtain the result p(v; + v2) < p(v1) + p(va).

Hence p defines a semi-norm on a vector lattice E. O]



Example 2.1.5. Let X be a discrete space and consider C'(X) = RX. The
followings are equivalent.

i. u is a semi-order unit.
ii. The support of u is finite.

Proof of it = 1. Suppose spt u is finite. Define a set A as
A=sptu= {x € X :u(x) # 0} = {xl, ...,:rn}.

Fix f € C(X) = RX. Then for any z ¢ A, u(x) = 0 so that nu(z) = 0 for
all n € N. Hence for © ¢ A we have that

min {| f ()|, nu(z)} = 0. (2.2)

Define
a=max{|f(z;)|:i=1,...n}.

Clearly a # 0 because it is a maximum of a finite set of positive elements.
Since u(x) # 0 for x € A, the set

{ﬁ:xeA}

is well defined and non-empty. Define

)\:max{ﬁ:xeA}.

It follows that A > 0 and A > & for all z € A. Hence, if 2 € A then
|f(x)] < a < Au(z) so that,

min {|f(z)], nu(z)} < Au(z). (2.3)
Combining (2.2) and (2.3) we have that for x € X
min {|f(z)|, nu(z)} < Au(z) for all n €N

so that
|fIAnu < Au,n € N.

Since f was arbitrary, it follows that u is a semi-order unit. n



Proof of i = ii. Let u be a semi-order unit. Then for any f € C(X),
there exists a A > 0 such that |f| A nu < Au for all n € N.
With a view for a contradiction, suppose that spt « is not finite. Let

A:{xi:iEN} C spt u.
Define a function as

~Jiu(z) if x=m€ A
f(x)_{() if x¢ A

Then f € C(X). Since u is a semi-order unit, it follows that there exists a
A > 0 such that
|f| Anu < Au, for all n € N.

In particular for 7,n € N, we have that
min{iu(x;), nu(z;)} < Au(z;).

Hence for i,n € N, we have that tu(x;) < Au(x;) or nu(x;) < Au(x;). Since
u(z;) > 0, it follows that for i,n € N, we have that n < X or i« < \. Since
this holds for any i,n € N, this means that N is bounded. However this is a
contradiction hence, spt u is finite. ]

Definition 2.1.6. Let E be a vector lattice. By the semi-order unit topology
on F, we will mean the locally convex topology generated by the collection
of semi-norms associated to the family of all semi-order units in F.

Definition 2.1.7. Let E be a vector lattice. A subset D of E is upward
directed if for every x,y € D, there exists z € D such that x < z and y < z.

We note that the downward directed set is defined in a similar way.
Let I and J be directed sets.

Definition 2.1.8. A net S = (vg)ges in a vector lattice £ is said to be
decreasing if By < 4, implies that vg, < vg,. In this case we write vgl. If, in
addition inf(vg, § € J) = v for some v € E, we say (vg) decreases to v and
we write vgl v.

Definition 2.1.9. A net S = (uq)acr in a vector lattice E is said to be order
convergent to u € E if there exists a net (vg)ges in E such that vgl 0 and
for every 5 € J there exists ag € I such that |u, —u|< vg whenever o > .
We denote this by

Uy — U (2.4)

and say (Uq)acrs 18 O-convergent to u.



Lemma 2.1.10. Let E be a vector lattice and D C E, D downward directed
and bounded below. If y = inf D then there exists a net in D that order
converges to y.

Proof. Since D is downward directed, it follows that for u,v € D, there
exists a w € D such that w < v and w < u. Now let I = (D, <°) where for
u,v € D, u <°wv if and only if v < u. Define a map

S:Is3u—ué€D.

Then S is a decreasing net and since D | y in F, it follows that S | y hence
S 2. O

Definition 2.1.11. Let E be a vector lattice and (x4)aer a net in E. We
say that lim sup z, = z if there exists an «ag € I such that

inf supz, = z.
,>‘10a>a

We also say that liminf x, = z if there exists an oy € I such that

sup inf z, = 2.
/>a0a>a

We note that, in general, if limsup x,, and liminf x,, exist then liminf x, <
lim sup z,,.

Theorem 2.1.12. Let E be a Dedekind complete vector lattice, (To)acs a net
in E and x a point in E. Then the followings are equivalent:

. o
I Ty — .
1. liminf z, = x = lim sup x,.

Proof. Suppose that z, — . It suffices to show that liminfz, > z >
lim sup 7. Since z, — , then there exists nets (ws)ses T = and (vs)ses 4 T
such that for all 8 € J, there exists ag € I such that if o > ag then
ws < x4 < vg. Therefore there exists an o € I such that {z, : @ > ap} is
order bounded. Hence liminf z, and lim sup z,, exist because E is Dedekind
complete. Now fix Sy € J and let ag = ag,. Then wg, < x, < vg, for all
o > ap. Now (sup a:a) is a decreasing net in ay.

a>a!
For all g > p,, there exists ag > o such that if o > ag then wg < z, < vg.

Hence wg < sup z, < vg. Now
azag

o' >ap

limsup x, = inf supz, < inf supz, < inf vg = z.
© oZavaael 2Poa>ag “ = b2



We also have that

liminfz, = sup inf z, > sup inf z, > inf ws = z.
a'>ag@Ze’! B>By¥24s 2o
Hence lim sup z, < liminf x,, so that limsup z, = liminf z, = z.
Now suppose that limsup x, = & = liminf z,. Then there exists an ag € [
such that

inf supxr, = x = sup inf z,.
o' >000>qf a'>an=e’

Let J = {a € I : @ > ag} with the ordering inherited from I. Then J is
upward directed.

Let v, = sup{zy : &/ > a} for all @ € J. Then v, | x. Also let w, = inf{xy :
o > a}. Then w, 1 x. Define u, = sup{v, — x,z — w,}. Then (uy)acs is a
net in £ and u, | 0. Now if o > « then

wo = inf zy < o < sUpzy = Vg,

/
a'>a o'>a

That is wy, — x < 2y — T < V4 — 2 S0 that |24 — 2| < U,
Hence z, — x. O

Theorem 2.1.13. Let E and F' be vector lattices and let 7 : E — F a linear
map. Then the following are equivalent:

1. T s a lattice homomorphism.
. T[xVyl =1V Ty forallz,y € E.
iii. Tlx Nyl =T ATy for all z,y € E.

. T[xVy| =712V Ty whenever xVy =0 holds in E.

v. ot = [rz]t
vi. T|z| = ||
Proof. For the proof of this result, see [1, Theorem 1.31]. m

2.2 Order Bounded Operators and Order Ad-
herence

Definition 2.2.1. Let E and F' be be a vector lattices. A linear operator
T:-F—F

is said to be order bounded if it maps order intervals in E into order intervals
in F.

10



Theorem 2.2.2. Let E and F be vector lattices and denote by Ly(E, F) the
collection of all order bounded operators from E into F. Then L,(E, F) is an
ordered vector space.

Proof. Suppose T, S € L(E, F).

Fix [z,y] € E. Since T € L,(E, F), the order bounded interval [z,y] is
mapped to some bounded interval say [a,b] in F' and similarly S is mapped
into an order bounded |[c, d].

Claim 1: (T'+ S)([z,y]) C [a + ¢, b+ d].

Fix v € [z,y] then

a<T(w)<band ¢ < S(v) <d.
It then follows that
a+c<(T+S)(v)=Tw)+ Sw) <b+d.

Hence (T'+ S)(v) € [a + ¢,b+ d], proving the claim.

A > 0.

Claim 2: AT is mapped into [Aa, \b|.

Fix v € [z,y], then a < T'(v) <b. Since A > 0 it follows that

Aa < XT'(v) = T(Av) < Ab.
Hence AT is order bounded.
Suppose A = —1. Now if v € [z,y] then a < T'(v) < b so that
—b < -T(v) =T(-v) < —a.
That is (=T')([z,y]) C [=b, —a]. Hence it is a linear vector space. O

When F' is Dedekind complete, we present the following result.

Theorem 2.2.3. Let E,F be vector lattices with F being Dedekind complete
and let D C Ly(E, F') be upward directed and bounded from above. Then

S(z) =sup{Tz:T € D}, z >0,z € £
extends to an operator S € Ly(E, F) such that S = sup D in Ly(E, F).

Proof. We prove for the case when D C L,(E, F)..
Consider T7 and T5 in D. Since D is upward directed there exists an operator

11



T3 € D such that T} < Ty and Ty < Tj in particular if x1,29 € E, then
Tlxl S Tgl’l and TQ[L’Q S TgIQ. Hence

Tll'l + TQZL‘Q S Tgl‘l + TgSL‘Q = T3($1 + ZL'Q) S 5(271 + ZL‘Q).

Taking the supremum we have S(z1) + S(z2) < S(x; + x2).
For the reverse inequality, consider 7" € D then

T(ZL‘l + $2) = TﬁL‘l + TZL’Q S S($1) + S(ZL’Q)

Hence S(x1 4 22) < S(x1)+ S(x2) so that S(x1+22) = S(x1) + S(22). Hence
the map S is additive and it follows from extension Lemma (see [11, Lemma
20.1] ) that there exists a uniquely determined positive linear operator S
E — F such that S extends S.

Claim: S =supD.

For x € £/, and T' € D, we have that

Tz < sup{Tz :T € D} = S(x).

Hence T < S. Since T was an arbitary element of D we have that S is an
upper bound of D. Now Let R be any other upper bound of D. Then T' < R
for all T'e D. For x € F, we have that

S(z) =sup{Tz : T € D} < Rz,
Thus S < R so that S is the supremum of D proving the claim. O

If we replace F' by R, then the collection of all bounded linear operators from
E to R form a vector space called the order dual of F and we denote it by
E~.

The bidual of E is defined in the similar way and we denote it by E~.

Theorem 2.2.4. Let E and F be vector lattices. Assume T : E — F is an
interval preserving operator and let T* : F~ — E~ be defined by T*¢ = ¢oT
for all ¢ € F~. Then T is a lattice homomorphism.

Proof. The proof of this result can be found in [2, Theorem 2.19]. O]

Corollary 2.2.5. Let E and F be vector lattices. Assume T : E — F is a
vector lattice isomorphism. Then T is a vector lattice isomorphism.

Definition 2.2.6. Let E be a vector lattice. The order adherence of E are
all elements u € E™~ such that there exists a net S = (uq)aes in E with
Uy - w in E~~ and we denote this by E. That is

E = {u € B~ : Iug)aer C E, uy > u}

12



Theorem 2.2.7. The space E is a sublattice of E~™.

Proof. Let u,v € E. Then there exist nets (ug)acr and (vg)ses in E such
that
o o
Uq — u and vg — v,

where I and J are directed sets. Let w(,,g) with the component-wise ordering
be the net defined by
W(q,p) = U + V3.

Using the triangle inequality we have,

|(u +v) = (ua + vp)]
(= ua) + (0 = ug)|
< Ju = ta| + |v = gl

|(u+0) = wagl| =

Since u, — u it follows that there exists a net (f,),ex, with K a directed
set so that f, | 0 and for each v € K, there exists o, € I such that
lu — uq| < f, whenever a > .

Since vz — v it follows that there exists a net (gy)iex, with Kp a directed
set so that g\, | 0 and for each A\ € Kpg there exists §, € J such that
|v — vg| < gz whenever 5 > (.

Let h(yn) = fy 4 ga, with the component-wise ordering. Now if (79, Ag) <
(71, )\1) then Yo S 71 and )\0 S )\1 so that fVl S fVO and (%) S 9ro- Hence

h(’YlJ\l) = f’Yl +gn < fVO T 9 = h(“/OJ\O)'

Thus hy 5 | . Since f, | 0 and gy | 0 it follows that A,y | 0.
Now for any (v, A), (o, B) > (v, B)) implies that o > ., and 5 > B, hence

[(u+v) = wap| < fy+ 91 =hea

so that wq,g) —25 u+w. Hence there is a net (W(a,)) (a,8)c1xs In E that order

converges to u + v S0 tNhat u+ve E.
Let 8 € R. Since u € E, there exists a net (uy)qc; in E such that u, — w.
Define v, = pBu, for each a € I. Then

|Bu = va| = |Bu = fua| = [6(u = ua)| = [Bl|u — ol

Since u, — u it follows that there exists a net (f,).ex, so that f, | 0
and for each v € Ky, there exists o, € I such that |u — u,| < f, whenever
a > o. Let g, = |5]f,. Then g, | 0 and if o > a, then

|[Bu = va| < [Blfy = gy

13



Hence v, - Bu so that Qu € F.Since0 ¢ F C E we have that E is a linear
subspace of E~~. Since E inherits the ordering from E~7, it is an ordered
vector space. _
It remains to show that it is a lattice. It is sufficient to prove tat if u € E,
then |u| € E.
Suppose u € E then there exists a net (ta)aer in E such that u, — w.
Hence there exist a net f., | 0 such that for each v € J we can find an o, € 1
and if o > a, then |u, —u| < f,.
Since E is a vector lattice, |u,| € E for each a € I thus (|ua|)acr is a net in
E.
Now, for each v € J, if @ > «,, by the reverse triangle inequality, we have
that

ol = [ul] < |ua —ul < £,

Thus |ua| = |u|. Hence E is a lattice. O

2.3 Lattice Theory

In this section we give more general results on general vector lattices which
will be used in the next chapter. The approach is to establish each result in
a general setup and apply it to a specific vector lattice. In particular it will
be applied to the space of real valued continuous functions on a topological
space X.

Let E be a vector lattice and [ an ideal in E. We denote by E/I, the quotient
space and we use [z] to denote the elements of F/I. In particular,

[]=x+1={x+y:yel}

For z,y € E, we will say [z] < [y] if there exists z; € [z] and y; € [y] such
that z; < y;. Observe that this defines a partial ordering on E/I.

Theorem 2.3.1. The space E/I is a vector lattice and we call it the quotient
vector lattice of E modulo the ideal I.

The proof of this result can be found in [11].

Proposition 2.3.2. Let E and F be vector lattices and let T : E — F be a
lattice homomorphism. Then ker T is an ideal in E.

Proof. The zero vector is in ker T. If x,y € ker T and A € R, then T'(x+y) =
Tx+Ty =0+0 = 0. Also T'(Az) = XTx = A0 = 0, so that ker7T is a
linear vector space. Finally since T is a lattice homomorphism we have that
T(xVy)=TzVTy=0V0=0, hence ker T" is an ideal in E. O

14



Theorem 2.3.3. Let E and F be vector lattices and let T : E — F be a
lattice homomorphism onto F. Then the map T : E/ker T — F defined by

T(x+kerT)=Tx
is well defined and is a lattice isomorphism.

Proof. Suppose x; + kerT = x5 + kerT. Then z; — 25 € kerT so that
T(xy —x2) = 0. Hence T'zy = Txy and T'(z1 +ker T') = T'(z2 + ker T'). Hence
T is well defined. The map T is linear by abstract results.

Surjectivity: Since 7' is onto, let y € F, then there exists an x € E such that
Tx =1y. Hence

T(x+kerT)=Tx=y

so that T is surjective. B B

Injectivity: Let = 4+ kerT € kerT. Then 0 = T(x + kerT)) = T'z. Hence
x € ker T'. Thus z + ker T" = ker T" which is the zero element of the quotient
space. Hence ker T' = {ker T'} so that 7' is injective.

Finally let [x1] = z1 + ker T and [z3] = x5 + ker T be elements in E/ker T
Then

T([21] V [22]) = T([z1 V 2])
— T(z1 V x3) (definition of T)

=Tz VTzy (T is a lattice homomorphism)
— T([21]) V T([z2]) (definition of T).
Hence T([z1]V [22]) = T([1]) VT ([z2]) so that T is a lattice isomorphism. [

Definition 2.3.4. Let E be a vector lattice. E~ separates E if for every
0 # x € E there exists ¢ € £~ such that ¢(x) # 0.

Note that if FF C E, we will say F' separates £~ if for every 0 # ¢ € E~,
there exists an o € F such that ¢(z) # 0.

Definition 2.3.5. Let E be a vector lattice and I C E an ideal in . We
denote by I+ the subspace of E~ whose members vanishes on I. That is

It ={¢pe B~ :9¢[l] = {0},

and we say I+ is the annihilator of 1.
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Theorem 2.3.6. Let F be a vector lattice and I C E an ideal in E. Suppose
E~ separates E and (E/I)~ separates E/I. Let Q : E — E/I defined by
[ f+1I be the quotient map. Then the map Q* : (E/I)~ — I+ defined
by

Q* () =¢oQ

1S a lattice isomorphism.

Proof. T ¢ € (E/I)* and f € I then Q[6](f) = 60 Q(f) = ¢(Q(f)) =
#(0+ 1) =0 so that ¢ o Q € I+. Hence Q* is well defined. The operator Q*
is linear since an adjoint of a linear transformation is linear. Since the map
Q : E — E/I is surjective, the adjoint operator Q* is injective.
Surjectivity: Let v € It. Then define a map ¢ : E/I — R given by

o(f +1)=1(f), feE.

First suppose that v € EY. If f € E and f > 0 then v(f) > 0. Hence if
f+1 € E/I such that f+ 1 is a positive element then there exists a positive
element f' € E such that f'+1 = f+ [ so that ¢(f +1) = o(f +1) =
v(f") > 0. Hence ¢ is a positive functional on £/I so that ¢ € (E/I)7.
Now for any v € E7, let

do(f+1)=7"(f), e1(f +1)=~"(f), fEE.

Then ¢y and ¢, are positive functionals on £/I so that ¢o, ¢1 € (E/I)7. Let
¢ = ¢g— ¢1. Then ¢ € (E/I)~. Thus Q* is surjective.

It remains to show that @* and its inverse map are both positive maps so
that it is a lattice isomorphism. To this end, let ¢ > 0. Then for any positive
element f + I of E/I we have that ¢(f +1) > 0. Soif f > 0in E then

Q" (D)](f) = (Qf)) = o(f + 1) = 0.

Now suppose Q*¢ > 0. Let f + I be a positive element of E/I then there
exists an f’ € E such that f/ > 0and f+ 1 = f'+ I. Hence

o(f +1) = o(f' +1)
P(Q(f))
[Q*( IS

| \/

Hence ¢ > 0 if and only if @*(¢) > 0 so that Q* is a linear lattice isomor-
phism. O
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Theorem 2.3.7. Let E be a vector lattice and I an ideal in E. Then I+ is a
band in E™.

Proof. If ¢q is the zero functional on E then ¢g(x) = 0 for all z € E. hence
do(x) = 0 for all x € I. We have ¢y € I*+. Now if ¢1,¢o € I+ and o € R,
then for z € 1

(1 + aga)(z) = ¢1(z) + age(z) =0+ 0=0.

Hence ¢, + agp € I+ and I+ is a linear subspace of E™.

Next we will show that if ¢» € [+ and z € I, then [¢|(z) = 0.

If 1 € I+ then ¢ € E~ and v (z) = 0 for all z € I. Note that if z € I then
x € E,. Since [ is an ideal in F, it follows that if z € I, and y € E such
that |y| <z, then y € I and ¢(y) = 0. Hence

[W[(z) = sup{e(y) : |yl <z} =sup{0 =(y) : [y] <z} =0.

Now let ¢; € I+ and 1, € E™ be such that [is| < |¢1]. For o € I, we have

that [1o|(z) < |¢1|(z) = 0. Hence |¢h|(x) = 0, thus sup{us(y) : |y| < z} = 0.
Since z € E, and |z| = z, we have 1y(z) = 0. Therefore 1, € I*+. Thus I+
is an ideal in E™.

It remains to show that I+ is a band.
Let D be an upward directed set in I+ that is bounded from above. For
x € FE,, define

¢1(x) = sup{¢(z) : ¢ € D}.
Then ¢1(x) =0 for all z € I,. It follows from Theorem 2.2.3 that ¢; can be

extended to a bounded linear operator qfﬁvl such that qgl =sup D and gz?l(] )=0
so that sup D € I+. Hence I+ is a band in E~. O]

Definition 2.3.8. Let E be vector lattice and A C E. Then
Al ={yc E:|z|A|yl =0 Vo € A}.
We call A? the disjoint complement of A.
Theorem 2.3.9. Let E be a vector lattice. Then A? is a band in E.
Proof. The proof of this result can be found in [11, Theorem 8.4] O
Theorem 2.3.10. Let E be a vector lattice and B be a band in E such that
E=B® B

Suppose x € B is an order unit of B. Then x is a semi-order unit of E.
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Proof. Fix z € E. Then z = 2, + 2, where z; € B and 2, € B%. We also have
that |z] = |z1] + |#2|. Since x € B is an order unit, there exists a A > 0, AR
such that |z| < Az.

For n € N, we have the following

12| Anx = (|z1] + |22]) A nz
= (Jz1] A nzx) + (|22 A nx)
= |z|Anz (o nz € B and 2z € BY so |z| Anz =0)

Hence for every z € E, there exists a A such that |z| Anz < Az, n € N. Thus
x is a semi-order unit of E. O

Lemma 2.3.11. Let E be a vector lattice and B a band in E such that
E =B B

Suppose Pg : E — B 1is the band projection on the first component. The
map
P;:BY — E~

is a lattice isomorphism onto (B%)*.

Proof. Ppg is onto so that the adjoint Pj is injective and is linear since the
adjoint of a linear transformation is linear.

For surjectivity, let M = (B%)* and ¢ € M. Then ¢ € E~ and ¢(z) =
for all x € BY. We need to prove that there exists a ¥ € B™ such that
P} (V) = . First we let U = 4|g. Then ¥ is well defined and ¥ € B~. Now
let x € E. Since E = B ® B?, then there exist elements y, z with y € B and
z € B? such that x = y + 2. Hence

[PpY](z) = ¥(Pp(z))
= V(y)
=(y) (¥ =1|p and y € B)
=U(y) +¥(z) (€ Msoy(z) =0)
=Yy +2) = ¢(2)

Hence P (V) = v so that P}, is surjective.

Finally we show that Pj and its inverse are both positive so that Pj is
a lattice isomorphism.
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Suppose ¥ > 0 and let x € E, then x = y + z where y and z are in B, and
(B9) . respectively. Since y € B, and ¥ > 0, we have that ¥(y) > 0. Hence

[Pp¥](z) = ¥(Pp(z)) = ¥(y) > 0.

Now suppose PV > 0. Since y € B, then y € E.. Hence
V(y) = U(Ps(y)) = [PpY](y) > 0.
Hence P}, is a lattice isomorphism between B~ and (B9)*. O

Lemma 2.3.12. Let E be a vector lattice. If ¢ € E~ and f € E then

[6(NI < [2I(1fD-

In particular, if ¢ € EY then |o(f)] < o(|f]).
Proof. First let ¢ € E~ and f € E,, then

V(f) < (f) < I(f),

and we also have that

—(f) <9~ (f) < |DI(F).

Hence
(N =»(f) Vv (=¢(f)) < [DI).
Now if f € E then

(W) =1b(f7) = ¢ (f7)]
< () +[(f7)] (triangle inequality)
< WIGT) +IIF) (F7f7 € By)
= [2[(f1)-

The last statement follows from the fact that if ¢ > 0, then f € FE, so
[6[(1f1) = &([f]). Hence

(NI < 2l(1F1) = o(1f])-
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2.4 Semi-order Units

We have given the definition of a semi-order unit and a couple of results
based on semi-order units but we have not yet characterised them in any
vector lattice. In this section, we will compute the semi-order units of some
/P and LP spaces for p € N. We will characterise these semi-order units.

We will make use of the following theorems for which the proof is not given.

Theorem 2.4.1. Let E be a Banach lattice. Then the norm dual of E and
the order dual of E coincide. That is E~ = E*.

Theorem 2.4.2 (Baire Category theorem). Let X be a non-empty complete
metric space. If X can be written as a countable union of closed sets, then at
least one of those sets has non-empty interior.

Theorem 2.4.3. Let E be a reflexive Banach lattice. Then E=EF.

Proof. Since F is a banach lattice, by Theorem 2.4.1, £~ = E*. The space
E* is a banach lattice hence E~~ = E**. Now by reflexivity we have that

E~~ =FE"=FE.

Hence £ = E~~. By definition, E C E~~ = FE. For the reverse inclusion, let
x € E~. Then x € E because £ = E~~. Now let I be any directed set and
let x, = . Then (x4)aer is a net in E and it order converges to = so that
mEE’.HenceE”NQEandE:E’. O

Theorem 2.4.4. Let E be a Banach lattice. Then order intervals in E are
norm bounded and closed.

Proof. Let x € [u,v] C E then u < x < v. It then follows that
0<z—u<wv—usothat |lz—ul| <|v—u

Thus
2] = |z —u+ul| < ||z —ul| + [Ju]| < [l —ul| + [Ju]].

Let M = ||v —ul| +||u]|. Now if x € [u,v] then ||z|| < M therefore the order
interval is bounded. Next, we will show that it is closed.

Let (z,,) be a sequence such that z,, € [u,v] for each n € N. Since z,, € [u,v],
it follows that v < x, < v so that 0 < z, — u < v — u. By the closedness
property of the positive cone, we have that 0 < x — u < v — u so that
u < z < wv. Hence the order interval [u,v] is closed. O

For the following vector lattices, we compute the semi-order units of E.
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i. ¢y
ii. P1<p<o©
iii. 27(0,1),1 < p < 00
iv. (*
V. coo and s = RY,

For notation we will use e, to denote the sequence with the element 1 on
the k'™ component and zero everywhere else. We denote by z(k) the k"
component of x € RY. If x,, is a sequence in RY, then x,,(k) denotes the k"
component of the n*" term of the sequence.

Lemma 2.4.5. Let E be an ideal in s = RY and let v € E. Then y, =
> vy x(k)ey order converges to x.

Proof. Fix x € E and let (ej) be the standard basis of E.
Now for each n € N, define

0, kE<n

tn = (tn (k) = {]a:(k)|, k> n.

For each, n € N, u,, < |z| so that u,, € E since E is an ideal in s and z € E.
Thus (u,) is a net in E. Furthermore w,.; < u, so that u, | .
For each n € N, we have that 0 < u,,. Therefore 0 is a lower bound of the set

{u, : n € N}.

Suppose v € E such that v is a lower bound of {u, : n € N}. Then v < w,
for all n € N. In particular for each & € N there exists a wu, such that
un(k) = 0. Hence v(k) < 0 for each & € N so that v < 0. This leads to
inf{u, : n € N} = 0. Thus u, | 0, we have

|yn_x| :un\LO
From this we see, v, — . O]

Example 2.4.6. The norm dual of ¢y is ¢!. By Theorem 2.4.1, the order
dual of ¢ is also ¢*. Now the norm dual of ¢! is /. Hence the order dual of
¢! is also £>°. Therefore the order bidual of ¢, is £*°.

We need to show that ¢y = £°°.
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Let © € (* and define y,, = > _,_, x(k)eg. Then y, € ¢y for each n € N.
It follows from Lemma 2.4.5 that x € ¢y proving the claim.

Now we characterise the semi-order units of £°°.

Let B be the collection of all semi-order units of £*°. Define

A={ue ™ u>0, nf{luk): [u(k)] # 0} > 0},

Next we need to show that A = B.

Let u € A and fix v € £*°.
Since u € A, it follows that inf{|u(k)| : |u(k)| # 0} > 0. Let = inf{|u(k)| :
lu(k)| # 0}. If u(k) =0 then

lv(k)| Anu(k) =0, ¥n € N.
Now if u(k) # 0, then a < |u(k)| we have 1 < L|u(k)|. Since v € £, let
d = ||v||o then |v(k)| < d, for each k € N. Therefore
d
o)) < d.1 < LJulh).
a
Hence d
[o(R)[ A nu(z) < =Ju(k)].

Let A = g. Then |v| A nu < Au for each n € N, as a consequence, u is a
semi-order unit of /*°. Thus v € B. Since u € A was arbitrary we have that
ACB.

For the reverse inclusion. Suppose u € B and consider 1 = (1,1,1,....).
Since wu is a semi-order unit of £°°, it follows that there exists a A > 0 such
that 1 A nu < Au. In particular, we have that

1L A nju(k)| < Au(k)| for each n € N.
If Ju(k)| # 0, then for suffiently large N, 1 < N|u(k)|. We have
1 =1A Nu(k)|] < Mu(k)|.

Hence 1 < Au(k) and + < |u(k)|. Since |u(k)| # 0 was arbitrary, it follows
that inf{|u(k)| : [u(k)| # 0} > %, therefore u € A. Thus B C A, proving the
claim. So the semi-order units of /> are precisely elements u € £*° such that
u > 0 and inf{|u(k)| : |u(k)| # 0} > 0.
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Example 2.4.7. (? with 1 < p < oo is reflexive see [3]. Hence (r = (7 by
Theorem 2.4.3. Now we compute the semi-order units of /7.

Let u € ¢P such that u > 0.

Statement i. The order interval [—u, u| has empty interior.

It is sufficient to show that 0 is not an interior point of the order interval.
Fix r > 0. It will be shown that B(0,r) € [—u,u.

Since u € (P, there exists a k € N such that 0 < u(k) < r. Choose v(k) such
that u(k) < v(k) < r. Now, let v = (0,...0,v(k),0,...) . Clearly v € % and
u(k) < v(k) which implies v ¢ [—u, u]. Now

l|lv —0||, = v(k) <r, hence v e B(0,r).

Hence 0 is not an interior point of the order interval [—u,u]. By translation
we can show that every point of [—u,u] is not an interior point. Hence the
order interval has empty interior.

Statement . /7 has no order unit.

We will prove by contraction. Suppose u € fP is an order unit. Then for
each v € P there exists an n € N such that |v| < nu. Hence v € [—nu, nul.
Since v € (P was abitrary we have that

P = U [—nu, nu.

neN

Hence ¢P can be written as a countable union of closed empty interior sets,
however this contradicts Theorem 2.4.2. Thus u cannot be an order unit of
(P which leads to /P having no order units.

We now characterise the semi-order units of ¢P.

Now let u € P such that u(k) > 0 for all k£ € N.

Statement ¢i¢. u is a semi-order unit if and only if v is an order unit.

If u is an order unit then for each v € (P, there exists A\ > 0 such that
lv| < Au. Now if n € N, then |v] A nu < |v| < Au. Hence

|v| Anu < Au for each n € N.

Thus u is a semi-order unit of /7.

Now suppose u is a semi-order unit of /P. If v € /P, then there exists a A > 0
such that |v| A nu < Au for each n € N.

Since the infimum is pointwise, we have that for each £ € N,

lv(k)| An|u(k)|] < AMu(k)| for each n € N.
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Now fix k£ € N. Since N is not bounded, there exists an N € N such that
A < N hence Au(k) < Nu(k) since u(k) > 0. It then follows that

[o(F)| = (k)] A Nlu(k)| < Alu(k)]

There |v(k)| < Mu(k)|. Since k € N, was arbitrary we have that |v| < Au
so that w is an order unit of /7. But /7 has no order units, it follows that u
cannot be a semi-order unit of /7.

Statement iv. Let ug € ¢P. If spt ug is infinite then wug is not a semi-order
unit of /7.

Let S = spt ug and ¢ : S — N be a bijection. Let

E={uect: ulk)=0 Vke S}
and define T : E — (P and T~!: (» — E by

(Tu)(k) == u(¢™"(k)) and (T~ u)(k) = u(g(k)).

Let u,v € E such that u # v. Then there exists k € N such that u(¢~1(k)) #
v(¢~(k)) and Tu # Tv. Hence T is one to one. Now let w € ¢? and for
ke S¢ let w(k) =0.

o ek ese
wolk) = {w(k:) it 9-1(k) € S

Then wy € F and Twy = w. Therefore T is surjective.

It remains to show that 7" and 7' are positive. Let u € E such that
u > 0. Since the ordering was pointwise, it follows that u(k) > 0 for all
k € N so that (Tu)(k) = u(¢~'(k)) > 0. Hence T is positive. Also if u € ¢¢
such that v > 0, then u(k) > 0 which leads to (T 'u)(k) = u(¢(k)) > 0.
Hence T'u > 0. We conclude that 7" and T~ are positive and 7 is a lattice
isomorphism.

Now if ug is a semi-order unit of F, and then T'ug is also a semi-order unit of
/P with full support. By statement iii., T'uq is an order unit of /7 contradict-
ing statement ¢.. Thus ug is not a semi-order unit of /¥. Hence no element
with infinitely many non-zero elements is a semi-order unit of /7.

Let B be a collection of all semi-order units of /# and let A be defined as
follows

A={uelP:u>0,u(k)+#0 for finite k's}
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Statement v. Semi order units of /7 are precisely finitely supported elements,
that is A = B.

We have shown that if u € /P is not finitely supported, then wu is not a
semi-order unit of ¢*. Equivalently, if u ¢ A then u ¢ B, That is B C A. For
the reverse inclusion, suppose u € A. Then u is finitely supported.

Fix v € 7. Then for the case u(k) = 0,k € N we have that |v(k)| Anu(k) =0
For the case of u(k) # 0,k € N, we first observe that the set {|u(k)| : u(k) #
0} is finite since w is finitely supported.

Now let a = inf{|u(k)| : u(k) # 0}. Then a > 0. Since # C (>, ||v||x
is well defined. Let d = ||v||o0, we have |v(k)| < d < 4|u(k)|. Let A = £ then
|v| Anu < Au for each n € N. Therefore u is a semi-order unit of /7, hence
u € B proving the statement.

We will use the following result for which we give the proof first. Let m(.)
be the usual Lebesgue measure on R and 7' C (0, 1) be measurable in the
Lebesgue sense.

Lemma 2.4.8. For any measurable T C (0,1), LP(T) has no order units.

Proof. With a view for a contradiction, suppose f € LP(T') is an order unit.
We will first show that the order interval [— f, f] has empty interior.

Since f is positive and well defined on T, we can write

T =] ([0,n]).

neN

Since f > 0, for n € N, the set f~!([0,n]) is measurable and one of the sets
has positive measure. Let N € N be such that S = f~!([0, N]) has positive
measure.

Now fix ¢ > 0.

We will first show that there exist an A C S such that m(A) < e.

Let h : T'—— R be defined by

h(t) = m((0,t) N S),t € T.

Since S is measurable and [0,¢) is measurable, it follows that S N [0,t) is
measurable for any ¢ € (0,1).
Now

h(0) = m([0,0) N S) =m(@N S) = m(®) =0
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and h(1) =m([0,1)NS) =m(S).

Next we show that h is continuous by let a@ € (0,1) and 6 = . Then
() = h(a)] = [m([0,) 1 S) —m([0,a) N S)].

If [t —a|l < 9, and t > a then [0,¢) = [0,a) U [a,t). Hence [0,t) NS =
([0,a) N S) U ([a,t)NS) which are disjoint. By the additivity of measure, we
have that

m([0,¢) N S) =m([0,a) N S) + m([a,t)NS).

Hence

|h(t) — h(a)| = |m([0,t) N'S) —m([0,a) N S)|
< m([a,t) NS)
< m([a,1))
= |t —a|
<0

If t < a then the argument still holds with the roles of a and t swaped.
Hence |h(t) —h(a)| < € whenever |t —a| < 6. Thus h is uniformly continuous.
Since h is continuous on [0, 1], A(0) = 0 and h(1) = m(S). It then follows
from the Intermediate Value Theorem that for any number g5 such that
0 < g9 < m(S), there exists a ty € (0,1) such that h(ty) = 9. That is
m([0,%9)NS) = go. Now let A = [0,%¢)NS then A C S and 0 < m(A4) < m(S).
Let r > 0 be given. It will be shown that 0 is not an interior point of [—f, f].
We know that there exists an A C S such that

0= ml4) = (N: 1>p‘

l .
k(1) = N+ 3 ?ftEA
0 if t e T/A.

Now define
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Clearly k is well defined and

[t = [ (4 3y

1

Thus ||k||, = (fT |/<:(t)|pdt> " <rsothatk e B(0,7). Fort € A

F() S N < N+ 3 = k(o)

so that k ¢ [—f, f]. Since r > 0 was arbitrary, it follows that 0 is not an
interior point of [—f, f].

For any function g € LP(T), with f an order unit of LP(T), there exists
an n € N such that

lg| < nf, hence g € [-nf,nf].

Therefore every function belong to some order interval. Thus

/(1) = | J[-nf.nf).

neN

LP(T) can be written as a union of closed empty interior sets which contra-
dicts the Baire Category Theorem. Hence LP(T') has no order units. ]

Example 2.4.9. We consider the space LF(0,1), 1 < p < oo. The space
LP(0,1) is reflexive so it follows that the order adherence of LP(0,1) is LP(0, 1).
that is

e~

Lr(0,1) = LP(0,1).
Proof. Let g € L?(0,1) be a semi-order unit. If

S={te(0,1):g(t) >0},
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g|s is an order unit of L?(S).
Fix k € L*(0,1) Define

k() ifteS
f@>_{o if t¢S.

Hence
1
/ )Pt = / k(O)Pdt < oo,
0 S

and f € LP(0,1). Since g is a semi-order unit of L”(0, 1), there exists a A > 0
such that
[fI Ang < Ag.
Since N is not bounded, there exists N € N such that A < N and Ag(¢t) <
Ng(t). Hence
[F@)] = FOI A Ng(t) < Ag(t).

Which implies that |f(t)| < Ag(t). Since t € S was arbitrary, it follows that
fls =k < Ag|s. Hence g|s is an order unit of LP(S). But LP(S) has no order
units hence there is no set S such that m(S) > 0 and g|s is an order unit

of LP(S). This implies that the semi-order unit of L”(0, 1) are precisely all
positive elements g € LP(0, 1) such that m(S) = 0 where

S={te(0,1):g¢(t) >0}
In another words, g = 0 a.e. [

Definition 2.4.10. Let E, F' be vector lattices. Suppose T': E — F'is a
linear operator. We call T" an order continuous operator if for any D C F
such that D | 0, we have that inf{|Tx|:z € D} = 0.

Theorem 2.4.11. Let E be a vector lattice and denote by E;; the set of all
order continuous operators on K. Then E is a band in E~.

Proof. The proof of this result can be found in [11, Theorem 22.2]. ]

Example 2.4.12. Consider the space (.

Its norm dual is £*°. Since ¢! is a Banach lattice, it follows from Theorem
2.4.1 that the order dual of ¢! is £°°.

Statement 7. The order continuous order bounded functionals on /*° can be
identified by ¢!.

Fix a,b € ¢! and define a map

T:0'>ar— ¢, € () by
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Ga(x) = a(k)x(k), v el

k=1

o0

Let ¢4, = ¢». Then

a(k) = la(k) = ¢a(er) = du(exr) = 1b(k) = b(k).

Hence a(k) = b(k) for all & € N so that a = b. Hence T is injective.

Next we will show that ¢, is order continuous. We prove for the case where
a > 0. The general case will follow from ¢, = Pg+ — Pg- -

Fix D C (> such that D | 0. For each k € N, let Dy, = {z(k) : z € D}
Statementii. inf D, = 0 for each k € N.

Since D | 0, we have that x > 0 for all z € D so that z(k) > 0. Hence
0 is a lower bound of Dy. Now with a view for a contradiction, suppose it is
not the greatest lower bound, then there exists a A > 0 such that A < z(k)
for each x € D. Now Aey, is a lower bound of D and Ae, > 0 contradicting
the fact that inf D = 0. Hence inf D, = 0.

Fix y € D and let
D,={xeD:z <y}

Statement ¢i¢. inf D = inf D,,.

Let x € D, then x € D so that inf D < z. Hence inf D is a lower bound
of D,. Thus inf D < inf D,. Similarly, if xy € D, since y,z9 € D and D
is downward directed, there exists a w € D so that w < y and w < x,
leading to w € D,. Hence inf D, < w < xy, thus inf D, is a lower bound and
inf D, <inf D. Hence inf D = inf D,,.

So we may assume there exist a y such that D < y. Given ¢ > 0. Let

N € N be such that >°° \; a(k)y(k) < §. Since D | 0, it follows from
statement . that the pointwise infimum is 0. Choose an x € D such that
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a(k)r(k) < 55 for all 1 <k < N. Then

Ga() = a(k)ax(k) =Y a(k)x(k)+ > a(k)z(k)
k=1 k=1 n=N+1
< Z o % a(k)y(k)
<i4i

So for every ¢ > 0, there exists an x € D so that ¢,(r) < e. Hence
inf ¢,(D) = 0. Thus ¢, is order continuous so that ¢, € (£>°)".

Now let ¢ € (£°); such that ¢ > 0. We prove that there exists an a € ¢!
such that ¢ = ¢,.

Let a € RN be defined by a(k) = ¢(ey).

Now if z € £*° then z = Y7, z(k)e,. For N € N, define

TN = Zl Tnén
Then
olen) = (> w(k)er) = S a(k)oler) = 3 alk)a(k) = dalan).

Using Lemma 2.4.5, xy — . Since ¢ is order continuous we have that

d(xn) — ¢(z) so ¢p(z) = 1o, a(k)z(k). Hence ¢ = ¢,.

It only remains to show that a € ¢*.

Consider 1 = (1,1, ...). Then for each n € N, we have that 0 < >} ;e < 1.
Since ¢ is order bounded, the order interval [0, 1] in ¢*° is mapped to some
bounded interval [0, a] in R. Also a(k) = ¢(ex) > 0 so that |a(k)| = a(k).
Hence for n € N

0< alk) =Y dler) =D ex) < (1) = a < 0.

Therefore a = lim Y7 a(k) < a < co and a € (' Thus ¢! = (). It
n—--ao0

n

then follows from Theorem 2.4.11 that (£°°) is a band in (£>°)~. Now

&= ()7 C (%) = ()
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Hence ¢! is a band in (¢')~~. If ® € (1, then there exists a net (fo)aer in £
so that f, — ®. Now limsup f, = ® by Theorem 2.1.12. Since ¢! is a band,
for each o € I, inf f, € /*. Hence ® = limsup f, € ¢!. Thus ¢! = ¢*. Now

a>ap
the semi-order units of ¢! are precisely the elements u € ¢? such that the set
{u(k) : u(k) # 0} is finite.

Example 2.4.13. Let s = RY. The order dual of s is cgp.
For a € cyp and x € S define

ale) = {z,) = g;x(ma(k»
Clearly the mapping is linear because _
bunl®) = 5,0+ b) = lf;x(kxa(k) +b(1)
=S a)alk) + 3wkl
@)+ ).

Since x € s was arbitrary, we have that ¢,y = ¢, + ¢p. It remains to show
that it is order bounded.

First consider ¢, for e; € cpo. For z € s, we have that

e, (1) = (z,e;) = > e;(k)a(k) = x(j).

Let [z, y] be an order interval in s and let v € [z,y]. Then 2 < v <y. Since
the ordering is point-wise we have that for each k € N, z(k) < v(k) < y,.
Hence

2(j) = ¢e; (x) < v(k) = &c,(v) < y(k) = oc,(y).

The order interval [z,y] is mapped into the order interval [¢., (), ¢, (y)] so
that ¢, is order bounded.

Now fix a € cyg. Since a has finite non-zero terms, there is a finite I C N

finite such that
a= Z a(k)eg.

kel
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Hence ¢, = ¢35, _ e, = Y kes Pep- Since ¢, is order bounded for each k € I,
the sum of finite order bounded operator is order bounded by Theorem 2.2.2,
so that ¢, € L(s,R).

Now fix ¢ € s7. Define a(k) = ¢(ex), k€ N and let a = (a(k)).

We will show that a € ¢y, by considering the set A = {k € N : ¢(ey) # 0}
and prove that A is finite.

With a view for a contradiction, suppose A is not finite. Then for each k& € A,

¢(ex) > 0. Define x € s by x(k) = @ for k € A and (k) =0 for k ¢ A.
Let A= {k; :i € N} and define zy = 3. 2(k;)e, < x. Clearly z € s and

N

o(r) > ¢(xn) = cb( Z :v(k:i)eki> = él - N

k=1

This holds for all N € N, so ¢(z) is an upper bound for N, which is a
contradiction. The set A is finite, so that a € c¢ypy. Now for x € s, we have
that © = > 7 x,ex. Since A is finite we have the following.

= a(k)z(k) =Y _x(k)dler) = > x(k)dler) = > _ d(x(k)er) = ¢(x).

Hence ¢, = ¢ and s~ = ¢g9. Now the order dual of cyy is also s. Therefore
s =s.

The semi-order units of s are the elements which are finitely supported.

It also follows that cyg = oo and every element in ¢y is a semi-order unit.
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Chapter 3

The vector lattice C(X)

Recall that a topological space X is Tychonoff if X is a completely regular
Haursdoft space.

In this chapter, we declare X to be a Tychonoff space. We denote by C'(X)
the space of real valued continuous function from X into R. We define the
point-wise ordering on C'(X) as follows. For f,g € C(X)

f<g <= f(x)<g(z) forall ze€ X.

C(X) equipped with this point-wise ordering is a vector lattice.
For each K C X compact and f € C(X), we define

| fllc = sup{|f(2)| : = € K}.

This defines a semi-norm on C'(X). The family of all such semi-norms de-
fines a locally convex topology on C'(X) called the compact-open topology.
We denote C'(X) equipped with this topology by (C(X), 7w), but will sim-
ply write C.,(X). In this chapter, we study Ce,(X) from the order theoretic
point of view. We discuss closed ideals in C,(X). We compare the order and
topological duals.

We also discuss the order theoretic characterization of the compact open
topology in terms of semi-order unit in suitable subspace of C'(X)™~".

The Stone-Clech compactification and the realcompactfication of X are con-
structed as necessary preliminary material for the chapter.
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3.1 Compactifications

Let X and Y be topological spaces. Recall that a map 7 : X — Y is a
homeomorphism if 7 is a continuous bijection such that 77! : ¥ — X is
continuous. If 7 is injective, but not onto, then 7 : X — 7[X] becomes a
bijection. Now if 7 is continuous and 77! : 7[X] — X is continuous we say
7 is a homeomorphic embedding.

Definition 3.1.1. Let X be a topological space. A pair (Y, A) where Y is a
compact Hausdorff space and

A X —Y

is a homeomorphic embedding of X in Y such that A[X] = Y is called a
compactification of X.

If (Y,A) is a compactification of X, we will usually identify X with A[X]
and consider X as a subspace of Y. We are interested in a special compactifi-
cation in which every bounded real-valued continuous function on X can be
extended to a continuous function on this compactification. That compacti-
fication is called the Stone — Cech Compactification of X and is denoted by
BX. In this section, we will construct this space.

Definition 3.1.2. A subspace S of X is C'—embedded in X, if every contin-
uous function on S can be extended to a continuous function on X.

Definition 3.1.3. A subspace S of X is C*—embedded in X, if every bounded
continuous function on X can be extended to a bounded continuous function
on X.

The following diagram illustrates this, with e, the inclusion map.
e:Sorxr— e X

S —=— X

\ s

R
This means that for every f € C(5), thereis a g € C(X) such that f = goe.

Theorem 3.1.4. Let B C X and let f : B — Z be a continuous map of B
into a Hausdorff space Z. Then there exists at most one extension of f to a
continuous function

f:B—Z
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Proof. Suppose fl and f~2 are two distinct extensions of f. Since fl and fQ are
distinct, there exists an = € B such that f;(z) # fo(z). Since Z is Hausdorff,
there exists two disjoint open sets U; and U, in Z such that fl(x) € U; and
fo(x) € Us. Pick a neighbourhood V of & such that f,(V) C Uy and fo(V) C
U,. Since x € B, every open neighbourhood of z intersects B. In particular,
VNB#0. Solet y € VN B sothat y € B. Since f; and f, are extensions
of f, it implies that they are equal on B hence fi(y) = f(y) = fo(y). But
fl(y) € U, and fg(y) € U,, which contradicts the fact that U; and U, are
disjoint. O

Corollary 3.1.5. Let Y and Z be topological spaces with Z Haursdorff. Let
X CY satisfy X =Y. Suppose [ and g are continuous maps from Y into
Z. [ff‘X :g‘X, then f =g onY.

Theorem 3.1.6. Let {X, : a € J} be a collection of topological spaces, Y
another topological space and let o be a map

a:Y—)HXa.

aeJ

Then o is continuous with respect to the product topology if and only if To00
is continuous for each o € J where m, is the projection onto X,

Proof. Suppose ¢ is continuous. Since the projection map m, is continuous
for each o € J, it follows that the composition m, o ¢ is continuous for each
a € J. Now suppose that 7,00 is continuous for each o € J. Then for U open
in X, the preimage of U under 7, o o is an open set. That is (7, 0 o) ![U]
is open. But

(Mo 00) U] = 0 [x ' [U]].

o

It follows that the preimage under o of each subbasic open set for the product
topology is open. Hence o is continuous. O

Let A and B be sets and 7 a mapping from A into B. For each map g € R”,
the composition g o 7 € R4. So the map 7 induces a map

7 RP — R defined by 7g=gor, geRE.

There is a duality between the properties “one-to-one” and “onto.” In par-
ticular we have the following.

Lemma 3.1.7. Let 7 be a mapping from a set A into a set B and let 7' be
the induced mapping. Then

i. 7' is a linear lattice homomorphism.
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ir. 7' is one-to-one if and only if T is onto.

iti. 7' is onto if and only if T is one-to-one.
Proof of (i). Let f,g € RP and o, 8 € R. For x € A we have that

T(af + Bg)(x) = (af + Bg)(Tz)
= af(rz) + By(rz)
= a(7'f)(x) + B(r'g)()
= (ar'f + B7'g)(x)
Similarily, 7(f V g)(z) = (7'f V 7'¢g)(x)
Since this is true for all z € A, it follows that 7/(af + 8g) = ar’f + B7'g and
m'(gV f)=7'gV 7' f so that 7’ is a linear lattice homomorphism. O

Proof of (ii). Suppose 7 is onto and let f,g € R? such that 7/f = 7/g. Let
y € B. Since 7 is onto, it follows that there exists z € A such that 7(z) = y.
Now

9(y) = g(7(x))
= [goT](x)
=[forl(x) (- foT=gorT)
= f(r())
= f(y).

Since this is true for all y € B we have that f = g so that 7’ is injective.
Now assume that 7 is not onto. Then there exists a y € B such that y ¢ T[A].

Let 1y,; be the indicator function on y.
Then if v € X, 71y (x) = 1gy(72) = 0. Also 7'0(x) = O(7z) = 0. Hence 7’
is not injective. O

Proof of (iii). Assume 7' is onto and let 721 = 725 for some x1, 25 € A.
Fix f € RA. Since 7' is onto, there exists a ¢ € R? such that 7/g = f. Now

f(xr) = [T'gl(x1) = g(r21) = g(T22) = [T'9)(22) = [(2).

Since this holds for all f € R4 we have that x; = x5 so that 7 is injective.

Now assume that 7 is one-to-one and fix f € R4.
Since 7 is one-to-one, the map 77! : 7[A] — A is well defined and a bijec-
tion. Now for ' € RB. Let g = f o7 !. Now if v € A, then

[P'gl(@) = [7'(for () = [for " or](x) = f(r7 (rz)) = f(a).

Hence 7'¢g = f so that 7’ is onto. O]
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In most application we are interested in topological spaces X and Y and a
continuous map 7 : X — Y. In this situation, 7/ maps C(Y") into C(X)
and C,(Y') into Cy(X).

Theorem 3.1.8. Let X,Y be Tychonoff space and let 7 : X — Y be a
continuous map and let 7' : C(Y) — C(X) be the induced map defined by
7'g=goT. Then

i. 7' is injective if and only if T[X] is dense in'Y.

it. 7' is onto if and only if T is a homeomorphism onto a C'—embedded
subspace of Y.

iii. T Cp(Y) — Cyp(X) is onto if and only if T is a homeomorphism onto
71X and 7[X] is C*—embedded in Y .

w. If T is a homeomorphism then 7' is a lattice isomorphism.

Proof of (i). 7' is injective if and only if ker 7" = {0}. This is equivalent to
the following: for all g € C(X), if g(7x) = 0 for all x € X then g = 0. The
last statements hold if and only if 7[X] is dense in Y. We prove the last
equivalence. Suppose 7[X] is not dense in Y. Then there is y € Y such that
y ¢ 7[X]. Since Y is Tychonoff, there exists a function g € C(Y") such that
g=0on7[X]and g(y) = 1. Now if z € X then 72 € 7[X], hence g(7z) = 0.
Thus g(tx) =0 for all x € X and g # 0 on Y proving the contrapositive.

On the other hand, suppose 7[X] is dense in Y and assume that g(7z) =0
for all z € X. Then, if y € 7[X] then there exists an € X such that y = 7.
Hence

9(y) = g(rz) = 0.
Hence g|;;x; = 0. It follows from Corollary 3.1.5 that g = 0 on Y. O

Proof of (ii). Assume 7' is onto. Fix f € C(X). Since 7 is onto, it follows
that there exists a ¢ € C(Y) such that 7'g = f. Now if 72y = 7z5 then
g(tx1) = g(725). Hence

[7',9]@1) = [7/9](1'2) i.e f(r1) = f(r2).

Since this holds for each f € C(X), by the Tychonoff property we have that
x1 = X9 so that 7 is injective. A mapping is onto its range so 7! is well
defined as a mapping from 7[X] onto X.

We will show that 77! is continuous. Let (z,) be a net in X so that (7z,)
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converges to some 7z in 7[X]. Assume that x, - . Then there exists V' > =
open and (yg) a subnet of (z,) such that yz ¢ V for all 5. Now there ex-
ists f € C(X) such that f(z) = 1 and f[X\V] = {0}. So f(ys) = 0 and
f(z) = 1. Now 7’ is onto. This implies that there exists a g € C(Y) such
that f = 7'g. For all 3, g(7ys) = f(yp) = 0 and g(7z) = f(x) = 1. Therefore
g(tys) - g(Tx). But Tys — Tx because it is a subnet of (7z,). Therefore
¢ is not continuous which is a contradiction. Hence 77! is continuous. Thus
T is a homeomorphism.

Let h € C(7[X]). Then f = ho71 € C(X). Now since 7" is onto, it fol-
lows that there exists a g € C(Y)) such that 7'g = f. Now if y € 7[X] then
there exist an z € X such that 7z = y. Hence

hy) = h(rz) = [ho7](x) = f(z) = [g o 7](x) = g(12) = g(y).
Hence h = gx). It follows that 7[X] is C'—embedded in Y.

Now suppose that 7 is a homeomorphic embedding whose image is C'—embedded
in Y. By assumption, 77! is continuous from 7[X] onto X. Consider any
f € C(X). Then the function f o7~ € C(r[X]) and by assumption it has a
continuous extension ¢ to all of Y. Clearly f = go7ie f = 7'g. Hence 7’ is
onto. [

Proof of (iii). This result follows by an identical argument as for (7). O

Proof of (iv). Since 7 is a homeomorphism, it follows from (i) and (éi) that
7’ is a bijection. From Lemma 3.1.7, 7/ is a linear lattice homomorphism so
that 7 is a lattice isomorphism. O]

Theorem 3.1.9. Let S, T and X be Hausdorff spaces. Assume that there
exist homeomorphisms

To: X — S and 71 : X — T
onto dense subspaces of S and T respectively. If there exist continuous maps

o0: S —T and o1: 1T — S

so that
S X
To 70
X / 0o T1 \ S
Xln /IY
T T

commute, then og is a homeomorphism onto T and o, = 00_1.
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Proof. First observe that the map ogoo; : S — S is the identity map. This
is because its restriction on X is the identity on X. Since X is dense in S
we have that it is the identity on S. It also follows that o, o 0 is also the
identity map on 7. That is

0p 001 = st and 01000 = ’ldT
Hence o, = 0, so that oy is a homeomorphism as required. O
Lemma 3.1.10. Let X be a Tychonoff space.

i. Let F = {fa : a € I} be the collection of all bounded continuous
functions from X to R and let 1, = [in}f(fa(:v),supfa(x)] for every
ze zeX

aecl. LetY =]][,c;La- Then

acl To

e: X332+ (fal))acr €Y
s a homeomorphic embedding onto a C*—embedded subspace of Y.

ii. Let S ={fs: [ € J} be the collection of all continuous functions from
X toR. Then
e: X 3w (fs(z))pes € R/

is a homeomorphic embedding onto a C-embedded subspace of R”.

Proof of (i). By definition of e, m,0e = f,, for each a € I which is continuous
where 7, is the projection map onto the a component. Hence by Theorem
3.1.6, e is continuous.

Now suppose 1,9 € X such that x; # z5. Since X is Tychonoff, there
exists a function f,, € F such that f,, (1) # fa,(22). Hence e(z1) # e(x2)
so that e is one-to-one. The induced homomorphism e’ : Cp(Y) — Cp(X)
is onto. Indeed for f, € F = Cy(X).

/
€To =Tq0€ = f,.

By Theorem 3.1.8 (iii), e is a homeomorphism onto e[ X ] and e[ X] is C*—embedded
inY. [l

Proof of (ii1). The result follows a similar argument as for (i) so we omit the
proof. n

Lemma 3.1.11. Let (Y, A) be a compactification of X such that every bounded
continuous function on X extends to a continuous function f Y — R

Let K be a compact Haursdorff space and f : X — K a continuous function.
Then there exists a unique continuous extension f :Y —s K of f.
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Proof. Since K is Tychonoff, we can view K as a subspace of a product of

compact interval say K C [] I, where M € N by Lemma 3.1.10.
yeM
Hence for all v € M, f,: X — I, with f, = m, o f continuous. Therefore,

there exists a unique continuous extension of f,, f,:Y — R.

The function f, : Y 3 2 — (f,(2))yenr € [] L, is continuous and f(z) =
yeM

f(x) for all z € X. Now f[X] = f[X] C K and K is closed in [] I,.
jeM
Therefore f[Y] = f[X] C f[X] € K by Theorem A.1.3. So f: Y — K is a

continuous extension of f. The uniqueness follows from Theorem 3.1.5 since
X is dense Y. O

Theorem 3.1.12. Let X be a Tychonoff space. Then there exists a unique
compactification (BX,3) of X having the property that every bounded con-
tinuous function f : X — R extends uniquely to a continuous function on

BX.

Proof. Let F, Y and e be as given in Lemma 3.1.10 ¢. By Lemma 3.1.10,
e is a homeomorphism onto e[X] and e[X] is C*—embedded in Y. Now let

pX =e[X] and S(z) = e(z), v € X.

If f € Cy(X) then there exists a continuous extension f:Y — Rof f.
The restriction, f |m is a continuous extension of f to SX. Uniqueness of
the extension follows since X is dense in fX. Hence every bounded contin-
uous function f : X — R extends uniquely to a continuous function on 5.X.

It remains to show that the space X is unique. To this end, let ()? ,A)
be a compactification of X such that every f € C,(X) extends continu-

ously to X. Then by Lemma 3.1.11, X BN BX extends to X N BX and
X 25 X extends to BX 2, X. Now by Theorem 3.1.9, fX and X are

homeomorphic. O

Definition 3.1.13. A space X is realcompact if for all o € X\ X, there
exists a function f € C(X) such that f does not extend to a continuous
function

f:XU{z} —R

Definition 3.1.14. Let X be a Tychonoff space. By a realcompactification of
a space X, we mean the largest subspace of X in which X is C'—embedded.
We denote this space by v.X.

We will use the following lemma without proof.
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Lemma 3.1.15. A space X s realcompact if and only if X is homeomorphic
to a closed subspace of R for some cardinal ~.

Theorem 3.1.16. Let X be a Tychonoff space then there exists a unique
realcompact space vX such that every continuous function f on X extends
to a continuous function f on vX.

Proof. The proof is exactly as Theorem 3.1.12. Let S and e be given as in
Lemma 3.1.10 7.

By Lemma 3.1.10iz, e is a homeomorphism onto e[X] and e[ X] is C'—embedded
in Y, where Y is a closed subset of R/. Let vX = e[X]. Then vX is real-
compact by Lemma 3.1.15. Now if f € C(X), then there exist f:Y —>R
a continuous extension of f. Now the restriction f l,x is an extension of f to
vX. Uniqueness of the extension follows since X is dense in v.X.

The proof of the uniqueness of v.X is similar to the uniqueness of SX and
therefore we omit it, see the last part of the proof of Theorem 3.1.12. O

Theorem 3.1.17. Let X be a Tychonoff space. Then

i. The map 3
T:Co(X)> fr— feC(BX)

s a lattice isomorphism.
1. The map 3
T:C(X)> f— feCwX)
1$ a lattice isomorphism.
Proof of (i). Let f,g € Cy(X) such that f # g. Then there exists an v € X
such that f(x) # g(x). Hence f(z) # g(x) so that Tf # Tg. Thus T is

one-to-one.

If h € C(BX) then f = hlx € Cy(X). So there exists an extension

f e C(BX) of f. Then f|x = f = h|x. Now h and f are extension of
f. By Corollary 3.1.5 f = h. Hence T'f = h so that T is onto.

Let f > 0. Then f V0 > 0 is an extension of f and by the uniqueness
of the extension we have that T'f > 0. Now let f > 0. Then since X C X,
f>0on X. Hence T-'f = f > 0. Hence T is a lattice isomorphism. m

Proof of (ii). The proof is identical to the proof of (i) so we omit it. O
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3.2 The Compact-Open Topology

Recall that by the compact open topology on C(X) we mean the locally
convex topology generated by the collection of basic open sets

U ={9€C(X):lg—fllx = pr(9—f) <e}: f € C(X) K C X compact,e > 0}.

If (fa)aer is a net in C'(X) which converges to f in C.,(X) we will write
fo = 1

Note that in the previous section, we established that C'(X) and C(vX) are
isomorphic vector lattices. However this map is not a homeomorphism with
respect to the compact open topologies on C'(X) and C(vX) respectively.
The proof of this fact relies on the following.

Lemma 3.2.1. Let X be a Tychonoff space such that X # vX and let z €
vX\X. Define

U={feCX):[f(z)] <1}
Then U is not open in Ceo(X).

Proof. 1t is sufficient to show that the zero function is not an interior point
of U. Fix ¢ > 0. We show that for any K compact in Y,

{feCX):px(f) <} ZU

Since z ¢ X, then z ¢ K and since K is compact in X, it is compact in vX.
Now vX is completely regular, there exists a function g € C'(vX) such that
g(z) = 1 and g[K] = {0}. Let g = g|x. Then g € C(X) and § = g where
g = T'g, the extension of g to vX. Now px(g) =0 < ¢, but g(z) = 1 so that
g ¢ U. Hence {f € C(X) : px(f) <e} € U so that 0 € U is not an interior
point of U. Hence U is not open. n

Theorem 3.2.2. Let X be a Tychonoff space and let
T:Cu(X)3 fr— f e CpvX).
Then T is a homeomorphism if and only if X is realcompact.

Proof. Suppose X is realcompact. Then X = vX so that T is the identity
map and hence a homeomorphism.

Now suppose that X is not realcompact. Then X # vX. Since X C v.X,
there exists z € vX such that z ¢ X. Define

U={fecCX): f(z)<1}.
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Let K = {z}. Then K is compact in vX. and U = {f : C(vX) : px(f) < 1}
is open in Ce(vX). By Theorem 3.2.1, U is not open in C,,(X). Thus T is
not a homeomorphism. O

Theorem 3.2.3. Let (fo)acr be a net in C(X) and f € C(X) such that
folx) 1 f(2) for every x € X. Then fo — f.

Proof. Fix K C X compact. Then f,|x is continuous on K and f|f is also
continuous on K. Hence (fo|x)acs 18 @ monotonic increasing net of func-
tions such that f,(z) T f(z) for each € K. Hence by the Dini’s Theorem,
folk — flx uniformly. Since K was abitrary, it follows that f, — f. O

Theorem 3.2.4. Let X be a Tychonoff space. Then B C C,,(X) is topolog-
weally bounded if and only if for all K C X compact, there exists a Ax > 0
such that if f € B then |f(z)| < Ak for all x € K.

Proof. Assume that for all K C X compact, there exists a \x such that if
f € B then |f(z)] < Ak for all x € K. Fix U € Ny where U is a basic open
set contain 0. Without loss of generality we may assume that

U={feCX):px(f) <e},

for some compact set K C X and some £ > 0. So by assumption, there
exists a Ag > 0 such that if f € B then |f(z)| < Ak for all x € K. Now let
A= %TK Hence if f € B then pg(f) < Mg = 2. Hence

1 1

prc(5) = 3ox(f) < TAk < SAx =

so that %f € U. Hence f € A\U. Thus B C AU so that B is topologically
bounded.

Now fix K C X compact. Then the set U = {f € C(X) : px(f) < 1}
is open in C,,(X) and contain 0 so that U € Nj. By assumption, there exists
a A > 0 such that B C A\U. Let Ay = A\. If f € B then f € AU so that
pr(f) < A= Ak. Hence

pc(f) = sup{| f(z)] : 2 € K} < A

This implies that |f(z)| < Ak for all z € X. O
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3.3 Closed Ideals

In this section we discuss closed ideals in C.,(X). We will establish that
given any closed ideal I in C,,(X), there exists a closed set A in X such that
I consists precisely of those f € C(X) such that f[A] = {0}.

Theorem 3.3.1. Let X be a Tychonoff space, A a closed subset of X and
define
In,={feC(X): fla=0}.

i. Iy is a closed ideal in Ceo(X).

ii. If I is a closed ideal in C.o(X), then there exists a closed set A C X
such that I = 14.

Proof of (i). Let f,g € 1. Now for x € A, we have that

[f + gl(x) = f(z) + g(x) =0+0=0.
Hence (f + ¢)|a = 0 so that f + g € I4. For a € R we have

f](z) = af(z) = a0 = 0.
So that af € I4. Thus I4 is a linear subspace of C'(X).

Now suppose that f € I4 and g € C(X) such that |g| < |f]. Since the
ordering is point-wise we have that |g(x)| < |f(x)| for each z € X. In
particular, if x € A we have that

0 < lg(z)| < [f(z)] = 0.
Hence g(z) =0 for all € A so that g € I4. Thus [, is an ideal in C'(X).

It is remains to show that it is closed in C.(X). Let (fa)acs be a net in
I, such that f, =% f for some f € Ceo(X). Fix e > 0 and let z € A. Since
K = {x} is compact in X and f, — f, there exists an oy € .J such that if
a > «aq then ||f — fa|lx < . Hence

|f(@)] = [f(2) = fap(2) + fao (2)]
<|f(2) = fao (@) + [ fao (2)]
= |f(2) = fao(@)] (. foo € L4 and z € A)
= [|f = faolliz)

< E&.

Hence for all ¢ > 0 and x € A we have that 0 < |f(z)| < € so that f(z) = 0.
Thus f € 14 so that 1, is a closed ideal in C,(X). O
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Proof of (i1). For f € C(X), let Z(f) denote the zero-set of f, that is

Z(f) = {w € X : f(x) = 0},

Since f is continuous, Z(f) is closed in X because it is an inverse image of
the closed set {0}. Let

A= () Zz(f),
fely
where I, = {f € I: f > 0}. A is closed because an arbitrary intersection of
closed sets is closed.

Let f € I. Since I is an ideal, |f| € I, and A C Z(|f|) = Z(f) so that
|fI[A] = {0}. Hence f|4 =0, thus f € I4 giving I C I4.

For the reverse inclusion, let f € I4,f > 0. Fix K C X compact and

e > 0.

Let x € Z(f) N K. Then pick a function f, = 0. Since f > 0, it follows that

fz < fon X. Since f is continuous on X, it is continuous at z, so there exists
g £

an open set V; in X containing x such that if y € V, then f(y) € (=5, 5).
Now f > 0so f(y) € [0,5) for all y € V. Hence

0< f(y) = foly) = Fly) =0 < 5 << forall ye V.

Now suppose that z € K\Z(f). Since A C Z(f), there exists a 0 < g € [
such that g(z) # 0. Now Let o = min{@, 5} and define a function

_fl@)—a
"= (@) ¢
Then Fa) —
) = H () = f (@)~
Hence

f(@) —e < h(z) < f(z).
Note that h € I because I is an ideal and h > 0. Let f, = f A h. Since
0< f.<handh eI then f, € I. Clearly f, < f on X.

Since f(x) —e < h(z) < f(z), there exist an open set V, containing x
such that for all y € V., f(y) —e < h(y) < f(y). Iif y € V,, then h(y) < f(y)
so that f,(y) = h(y). Hence f(y) —e¢ < f.(y) < f(y). There, if y € V, we
have 0 < f(y) — fa(y) <e¢, for all y € V.
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Now {V, : z € K} is an open cover for K and since K is compact in X there
exists 1, ...,x, € K such that K CV, U.. UV, .Fixy e K. Theny € V,,
for some i = 1, ...,n so that

0<fy) = fuly) <e

Define g = sup{f,, : i = 1,...,n}. Then g is continuous on X and 0 < f,, < g
and g € I. Now if y € K, then y € V,,, for some 7 =1, ...,n. Hence

0<fly) —gly) < fly) — fu(y) <¢

Hence ||f — g||[x < e. This implies that every open subset of C¢,(X) con-
taining f intersect I, so that f € I. Since I is closed in C¢,(X) we have that
I =1. Thus I, C I as required. [

3.4 Order dual of C'(X)

In this section we establish results on the order dual of C'(X). It will be
shown that X is realcompact if and only if C'(X)~ = Cu(X)’, where Ceo(X)’
denote the continuous dual of C(X) with the compact-open topology. The
order dual of C'(X), C(X)"~ is described in the following result, see [6].

Theorem 3.4.1. Let X be a Tychonoff space. Then for all ¢ € C(X)~, there
exists g, a reqular borel measure on vX with compact support such that

[ tdis=o(s) for alt f € C().

vX

X is realcompact if and only if the support of j4 is contained in X for all
peC(X).

Theorem 3.4.2. Let X be a Tychonoff space. Then C(X)~ coincides with
Coo(X) if and only if X is realcompact.

Proof. Assume that X is not realcompact. Then thereis a z € v X\ X. Define
¢:C(X)> fr— f(2) eR.

Statement i. ¢ € C'(X)™.

Let [h, g] be an order interval in C,(X) and let f € [h,g]. Then h < f < g
in C'(X). Since C(X) and C(vX) are isomorphic vector lattices we have that
h < f<gin C(vX). Now the ordering is point-wise, so we have that

h(z) < f(2) < §(2). Hence ¢(f) € [h(z), §(z)]. Therefore ¢ is order bounded.
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Statement 7i. ¢ ¢ Ceo(X)".
The set A =(—1,1) is open in R and

o7 (A) ={f € C(X):|f(2)] < 1}.

Now this set is not open in C,,(X) by Lemma 3.2.1 so that ¢ is not contin-
uous. Thus C(X)~ # Cu(X)'.

Assume that X is realcompact. Fix ¢ € C(X)~, then by Theorem 3.4.1,
there exists a measure ji4 such that

/)(fdu(z,:(b(f) for all f € C(X).

Let K be the support of ys. Then K is compact. Let (fa)aesr be a net in
Ceo(X) so that f, — 0. Then ||fa||x — O.
Fix ¢ > 0. Then there exists a. € I such that for all @« > «, and for all

r e K, |fo(z)] < ﬁ. Hence

6(fa)] < /X Fldpn < <.

So ¢(f.) — 0. Therefore ¢ € C.,(X)'.

Now suppose that ¢ € C.,(X)". Then by Theorem A.1.6, ¢ is topologically
bounded. Then by Theorem 3.2.4, if B C C(X) is order bounded, it is
topologically bounded. so that ¢(B) is bounded by Theorem A.1.6. Thus
¢ € C(X)™~ so that Coo(X) = C(X)™. O

Theorem 3.4.3. Let X be a realcompact space and ¢ a positive linear func-
tional on C(X). There exists a compact subset K of X and a positive linear
functional ¢' on C(K) such that ¢ = ¢ org, where rg : C(X) — C(K) is
defined by ri(f) = flx, f € C(X)..

Proof. Suppose ¢ is a positive linear function on C(X), so ¢ € C(X)~.

Since X is a realcompact space, it follows from Theorem 3.4.2 that C'(X)~
and C.,(X)" coincide, that is Ceo(X) = C(X)™~. Hence ¢ € C.o(X)'. Thus ¢
is continuous with respect to the topology of compact convergence on C'(X).

It follows from Theorem A.1.7 that there exists a compact set K and an
a > 0 such that

[6(f)I < ol fllx forall feC(X).
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Fix g € C(K). Since rx is onto, there exists an f € C'(X) such that ri(f) =

g.
Suppose fo, f1 € C(X) satisfy rx(fo) = rx(f1) = g. Then,

[6(fo) = ¢(f)l = lo(fo — SOl < [Ifo = fullk = 0.

So that ¢(f1) = ¢(fo). Therefore the map ¢’ : C(K) — R given by ¢'(g) =
o(f) if re(f) = g is well defined. Now if f € C(X), then

W orgl(f) = ¢/(TK(f)) = ¢/(f|l<) = o(f)

Hence ¢ = ¢ o rg. Since ¢ is linear, we have

O'((f +h)lx) = o(f +h) = ¢(f) + ¢(h) = ¢'(flx) + ¢'(hlK),

so that ¢ is also linear. Now let g € C'(K)4, then ¢ > 0 on K. Since 7k is
onto, there exists an f € C'(X) such that f|x = ¢g.The function f V0 is in
C(X); and extends g. Since ¢ is positive it follows that ¢'(g) = ¢(f) > 0.
Hence ¢’ is positive thus proving the result. O]

3.5 Bands in C(X)~ and C(X)™™

Let X be a Tychonoff space and K C X compact. Denote by rg the re-
striction map from C'(X) to C'(K). In this section we will establish the rela-
tionship between C'(K) and C'(X) together with their order dual spaces. In
particular, we will show an isomorphism between C'(K)~ and a subspace of
C'(X)~ and also between C'(K)~~ and a subspace of C'(X)~".

Lemma 3.5.1. Let K C X be a compact subset of X. Define a map rg :
C(X) — C(K) by re(f) = flg,f € C(X). Then rk is an onto linear
lattice homomorphism.

Proof. Let g € C(K) be given. Consider the embedding X — SX. Since
K C X is compact, it is closed in fX. Since X is a compact Hausdorff
space, it is normal. Now K being a closed subset of a normal space, it
follows from the Tietze Extension theorem that there is g € C(SX) such
that g|x = g. Since X C X, g|x is continuous on X. Let f = g|y, then
feC(X) and flxk = glk = g. Hence rg(f) = flx = g. Since g € C(K)
was arbitrary, it follows that rg is onto. It is easy to see that rg is linear. It
remains to show that it is a lattice homomorphism. By [1, Theorem 1.30], it
suffices to show that

(fAO)|x = flg NO.
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For x € K, since the ordering is point-wise we have [f A 0](x) = f(z) A 0.
This holds for each x € K so that (f A0)|x = f|x A 0. Thus rx is an onto
lattice homomorphism. O

For rg : C(X) — C(K), define the maps
g C(K)Y — C(X)~ and 7} : CO(X)™ — C(K)™~
as
r(p) =¢org, ¢ € C(K)” and ri (V) =Vory, VelX) .
We give the following results about the maps rj and r}.

Theorem 3.5.2. Let K C X be compact. The mapping ry is a lattice iso-
morphism onto a band J in C(X)~.

Proof. The restriction map rx : C(X) — C(K) is an onto lattice homo-
morphism by Lemma 3.5.1.

Let I ={f € C(X) : f[K] = {0}} = ker(rg). Then I is an ideal in C'(X).
Let g : C(X)/I — C(K) be defined by

fH+T—rr(f).

*

By Theorem 2.2.4, 75" is a lattice homomorphism and (7% ')* is a lattice
homomorphism so 75 o (7 )* is the identity on (C(X)/I)~. Also (rg ')*o
rx is the identity on C(K)~. Therefore rx" is a lattice isomorphism.
Claim: (C'(X)/I)~ is separating on C'(X)/I. Let f+1I be a non-zero element
in C(X)/I. Then f ¢ I. Since f ¢ I, there is an « € K such that f(z) # 0.
Hence " = rx(f) # 0. Since C(K)~ is separating on C(K) there exists a
¢ € C(K)~ such that ¢(f') # 0. It then follows that 7" (¢)(f) # 0. Hence
(C(X)/I)~ is separating on C(X)/I.

Now let J = I*. Then by Theorem 2.3.7, J is a band in C(X)~.

Let @Q : C(X) — C(X)/I be defined by

fr—f+1
@ is a lattice homomorphism onto C(X)/I by Theorem 2.3.6. The map
Q*:(C(X)/ )" —T-=1J

is a lattice isomorphism.
Since the composition of lattice isomorphisms is a lattice isomophism we have
that the map

Q org :C(K)” — J
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is a lattice isomorphism.
LSS * SRk
Claim: Q* org” =rj

Fix ¢ € C(K)~ and let f € C(X). It follows that

Q" oK™ (9)](f) = [Q" (¢ o TK)I(f)
= [porg o Q](f)
= ¢ orr(Q(f))
=¢org(f+1)
= o((re(f + 1))
= ¢(rk(f))
= [pork](f) =rk(f)

Since this is true for all all ¢ € C(K)~ and f € C'(X) we have that Q*org” =
5 so that r} is a lattice isomorphism between C'(K)™~ and J. O

Theorem 3.5.3. Let K C X be compact. Let

I={f e C(X): fIK] ={0}},

and J = I*+. Then M = (J4)?t is a band in C(X)™ and r}’ restricted to M
is a lattice isomorphism onto C(K)™~™.

Proof. J C C(X)~ is non-empty and it follows from Theorem 2.3.9 that J¢
is a band in C'(X)~. Hence an ideal in C'(X)~. It then follows from Theorem
2.3.7 that (J9)* is a band in C(X)~~. Hence M is a band in C'(X)~"~.

In Theorem 3.5.2, we showed that the map

ry: C(K)” — J CC(X)~

is a linear lattice isomorphism onto J. We have the following two adjoints
for 7%,

i C(X)™ — C(K)™
et Y — C(K)™.

Since 7} is a lattice isomorphism, it follows from Corollary 2.2.5 that r§* is
a lattice isomorphism.

Since C'(X)~ is a Dedekind complete vector lattice, see [ Theorem 20.2,
[11]], and J being a band, it follows that it is a projection band since any
band in a Dedekind complete vector space is a projection band. That is,
C(X)~=J® J% Let Py: C(X)~ — J be the band projection onto J and
Py JY — C(X)™ be its adjoint. It follows from Lemma 2.3.11 that Pj
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is a lattice isomorphism onto M = (J¢)+.
Claim: For all ¥ € J~,
g (Py0) = 15" (V)

That is, the following diagram commutes.
Py
JW —— M
N f}?‘ LY
To
C(K)™

Fix U € J~ and let ¢ € C(K)™.

[ (PrU))(0) = [rk (W o Py)l(¢)

= [(Wo Py)orkl(¢)

= Vo Ps(rk(¢))

= V(P (rk(e)))

= V(rk(¢)) (. rk(o) € J)

=75 (V)(9)-
Since this holds for all ¥ € J~ and ¢ € C(K)~ it follows that the claim is
true. Hence rjF restricted to M is a lattice isomorphism onto C'(K)~~. [

3.6 Embedding C'(X) into C(X)™~

Let X be a Tychonoff space. For x € X, we denote by ¢, an element of
C(X)~ such that f — f(x) for every f € C(X).

If f e C(X), we denote by ¥ the representation of f in C'(X)~> under the
canonical embedding.

Lemma 3.6.1. Let D be a subset of C(X); and ¢ € C(X)7. If D is upward
directed and bounded from above in C(X)~~, then in C(X )™~

jsup D)(6) = sup{¥;(¢) : f € D}.

Proof. Assume D C C(X)}~ is upward direct and bounded from above.
Since C'(X )™ is a Dedekind complete vector lattice , see [ Theorem 20.2,
[11]], it follows that sup D exists in C'(X)~™.

On the other hand, C'(X)~ is a vector lattice and R is Dedekind complete
and it follows from Theorem 2.2.3 that the map ® : C'(X)} — R given by;

®(¢) = sup{¥(¢) : f € D}, ¢ € C(X)7
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can be extended to ® in C'(X)™™ such that ® = sup D. If ¢ > 0 we have the
following

[sup D](¢) = (¢) = sup{¥;(¢) : f € D}.
L]

We also note that the similar result holds for downward directed sets with
infimum.

Lemma 3.6.2. Let f € C(X), x € X and 0 < ¢ < ¢, in C(X)~. Then

[6()] < [f(2)].

Proof. Suppose 0 < ¢ < ¢,.
Since ¢ > 0 by Lemma 2.3.12 we have that

8()] < &(I£1)
< ¢:(|f]) (. [flis positive)
= |f|(z) (definition of ¢,)

= [f(2)]
O

Lemma 3.6.3. Let U and ® be in C(X)™™ and ¢, be the point evaluation
functional at v € X. Then

(®V)(0z) = P(¢r) V ¥(¢0)

and

((I) N \II)(ngm) = CID(gbz) A qj(¢z)
Proof. Using Theorem 2.1.13, it is sufficient to show that
[0 )(pe) = [W(a)]"-

By definition

[T7)(¢a) = sup{¥(¢) : 0 < ¢ < ¢4}
For 0 < ¢ < ¢,, it follows from Lemma 3.6.2 that |¢(f)| < |f(z)| for all
fed(X).

statement: If 0 < ¢ < ¢, then ¢ = k¢, for some 0 < k < 1. Let 0 < ¢ < ¢,.
Fix f € C(X). Let g = f — f(x)1, where 1 is the constant 1 function on X.
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Then g € C(X) and f = f(z)1 + g. Using Lemma 3.6.2 and the definition
of g we have that

0(9)] < lg(@)| = [[f = fl)1](@)] = f(z) — f(x) = 0.
Hence |¢(g)| = 0 so that g € ker ¢. Thus

Since ¢ > 0 and 1 > 0, we have ¢(1) > 0. On the other hand, by Lemma
3.6.2 |¢(1)] <|1(x)| =1 Hence

0<¢(1) <1

Hence setting k = ¢(1) we have the statement.
Finally,

[U](¢) = sup{kV(e,) : 0 < k <1} = [U(¢,)]"
Il

Lemma 3.6.4. Let X be realcompact, f € C(X) and D ={fs: a € I} be an
upward directed and bounded subset of C(X). Then Uy = sup{W¥y, : fo € D}
in C(X)™~ if and only if f(x) = sup{fa(z) : fo € D} forallx € X.

Proof. Let X be realcompact. Suppose Uy 1 U in C'(X)~~. Then for all
Y € C(X)7, we have that ¥ () = sup{Vfa(v) : fo € D}. Now if ¢ = ¢,
then

f(l’) = q}f(¢x) = SuP{\Pfa(¢x) fa € D} = SuP{fa(m) Cfa € D}-

Now suppose D = {f, : @ € I} is directed such that f,(z) 1 f(x) for each
x € X. Then by Theorem 3.2.3, f, — f in the compact open topology.

Since X is realcompact, C'(X )™~ coincides with the continuous dual of Ce,(X).
Hence if ¢ € C(X)™~ then ¢ € C,,(X)". Hence

¢(fa) — o(f).

So if ¢ € C(X)7, then Wy(¢) = sup{¥y, (¢) : fo € D}. This implies that
Uy =sup{¥y, : fo € D} by Lemma 3.6.1. O
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Lemma 3.6.5. Let X be realcompact. If ® and ¥ belong to C(X)™~™ and A
and B are subsets of C(X) such that ® = sup{®y: f € A} and ¥ = sup{V¥, :
g € B}. Then ® <V if and only if sup{f(z) : f € A} < sup{g(z): g € B}
forall x € X.

Proof. Assume sup{f(z) : f € A} <sup{g(z):g € B} for all z € X. For
r € X, feAand g € B, we have that

f(@) = f(x) Agl) = [f Agl(x),

so that f(z) > sup[f A g](x).
geB
Since sup{f(z) : f € A} <sup{g(x): g € B}, for any f € A, we have

f(x) < sup{f(x): f € A} <sup{g(z): g € B}.

Now

f(@) = f(z) A f(z)
< f(z) Asup{g(z) : g € B}
= sup{g(z) A f(z) : g € B}

geB

= Slelg[g A fl()

Hence f(z) = sup[g A f](z), x € X for all x € X. Since f € C(X) and

geB
f(z) =sup[g A f](x) we have, by Lemma 3.6.4 that
geB

Oy =sup{®r AV, : g€ B}

geB
<sup{¥,:g € B}
=V,

Hence sup{®;: f € A} < V. Thus & < V.

Now suppose that ® < W. Tt follows that for all ¢ € (C'(X)™) 4, ®(¢) < V().
In particular, ®(¢,) < ¥(¢,) for every 2 € X. Hence using Lemma 3.6.1 it
follows that

sup{®;(¢.) : f € A} = ®(¢,) < ¥(¢,) = sup{¥(¢) : g € B}.

Hence sup{f(x): f € A} <sup{g(x):g € g€ B}. O
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—_—

C(X) is the order adherence of C'(X) in C(X)~. It is the space of all
elements ® € C(X)™~> such that there exists a net (f,)aes in C(X) giving
o, 2 @ in C(X)™.

—_—

Lemma 3.6.6. Let X be realcompact. If ® and ¥ belong to C(X), then
O < VU if and only if P(¢,) < V(p,) for all x € X.

Proof. Suppose ® < W. Then for any ¢ € C'(X)7, it follows that ®(¢) <
U(¢). In particular if ¢ = ¢, we get the result.

—_—

Now suppose that ®(¢,) < ¥(¢,) for all z € X. Since &, ¥ € C(X), it
follows that there exists a net (f,)acsr and a net (gg)ges such that &, —» @
and U, — 0.

It follows from Theorem 2.1.12 that
¢ =liminf &y, and ¥ = limsup ¥,,.

Since ®(¢,.) < U(¢,), it follows from Definition 2.1.11 that there exists o € 1
and Sy € J such that for all &/ > ag and for all 5’ > f,

inf{®y, : o0 > o' }dy) < P(@e) < V() < sup{¥y, : > f'}Ha).

It then follows from Lemma 3.6.5 that inf{®, : a > o'} < sup{¥,, : 3 > §'}
for all o’ € I, 3" € J such that o/ > oy and ' > Sy, so that & < . O

—_~—

Theorem 3.6.7. The space C(X) of order adherence of C(X) is a sublattice
of C(X)™™ containing semi-order units

ex =inf{f e C(X):f>0 and f[K] ={1}}, K C X compact.

e~

Proof. 1t follows from Theorem 2.2.7 that C'(X) is a sublattice of C'(X)~".
We show that ex € C'(X). Let
D={feC(X): f>0 and f[K]={1}}.

Then the constant 1 function is in D so that D # (). Now let f,g € D and
define h = f A g. Then h > 0, h[K] =1 so that h € D. But h < f, g, hence
D is downward direct and bounded below by 0. Hence by Lemma 2.1.10,

there exists a net in D that order converges to ex. Hence ex € C(X).
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—_—

Finally we show that ek is a semi-order unit of C'(X).

From Lemma 3.5.2, we showed that 7} : C(K)~ — J is a lattice isomor-
phism, where J is a band in C'(X)™~. Since C'(X)~ is Dedekind complete we
have that C'(X)~ = J @ J% We can rewrite it as

C(X)” =CK)"aW,

where W is the disjoint complement of C'(K)~ in C'(X)~. We will show that
ex vanishes on W.

Let ¢ > 0 be in W. Now ¢ > 0 and ¢ € C(X)™, so there exists a com-
pact set Ky and a positive functional ¢’ € C(Ky)™~ such that ¢ = ¢' o rg,,
where 7y, is the restriction map. Hence ¢ is non-negative regular borel mea-
sure with compact support contained in K,. Now Ky = (KyNK)U (Ky\K),
we can express ¢ as a sum of two non-negative measures ¢; and ¢, such that
sptg; € K N Ky and spt g2 C K\ K. Since spt ¢ C KN Ky C K it follows
that ¢; € C'(K)~. Since ¢; € C(K)~ and ¢ € W it follows that ¢y A ¢ = 0.
But ¢; < ¢. Thus ¢ = 0. Hence ¢ = ¢y and ¢(K) = 0. Since ¢ is regular,
for any € > 0, there exists a compact set F' contained in K,\K such that
P(K\F) <e. Let g € C(X) satisfy 0 < g <1, g[K] = {1} and g[F] = {0}.
It then follows from the definition of ex that

0 <ex(9) <g(9) < [l9llx, (K N\F) <e.

Thus ek is a member of C'(X )™~ which vanishes on the disjoint complement
of Jin C(X)™.

Now we show that eg is an order unit of M C C(X)™~~, where M = (J?9)*.
To this end, let
A={feC(X): f>0,fIK]=1}.

For ¢ € C'(K)~ and the restriction map 3 : C'(X)~ — C(K)~ we have the
following;

(rkex)(9) = ex(rid) = inf{W; : f € A}(ri o)
= inf{U,(ryo): f € A}
=inf{¢(rxf): f € A}
= ¢(1k).
Where 1 is the constant function 1 on C'(K'). Hence ¥ (ek) is the constant

function 1 in C(K)~".
Let I': C(K) — C(K)™ be defined by f —— @ for all f € C(K). Then I’
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is a lattice isomorphism onto I'[C'(K)]. Since 1k is an order unit of C'(K), it
follows that I'(1x) = I'1), is an order unit of I'[C/(K)]. Now if & € C(K)7~
and ¢ € C(K)7. Then

O(y) < [[®[[l|4|
= [|®][¢(spt(v))
= [[®[|T1 ()
= [[ @[T ()

Hence ® < ||®||I'1,. so that I'7,. is an order unit of C(K)~~. By Theorem
3.5.3, r¥ is a lattice isomorphism on to M. It follows that ex is an order
unit of M. It then follows from Theorem 2.3.10 that ex is a semi-order unit

of C(X)™. O

—

3.7 Semi-order units in C'(X) and the com-
pact open topology

Let u be a semi-order unit of C(X) and p, the associated semi-norm. By
semi-order unit topology on C'(X), we mean the locally convex space gener-
ated by the collection of semi-norms, {p, : u is a semi-order unit on C(X)}.
In this section, we establish some results regarding the semi-order unit topol-
ogy. It will be shown that if u is a semi-order unit of C'(X), then the set
S ={x € X :u(x) # 0} is bounded away from 0. Furthermore, it is a clopen
set. We establish the following equivalence. If X is realcompact, then the
semi-order unit topology agree with the compact open topology if and only
if X is a union of clopen sets.

Proposition 3.7.1. Let u be a semi-order unit of C(X). The set
S ={reX:u(zx)#0}
15 both open and closed in X.

Proof. We first show that S is open.
Since u is a continuous function on X and R\{0} = (—o0, 0)U(0, c0) is open in
R, we have that v~ *(R\{0}) is open in X. That is S = u~'(R\{0}) is open.

Now we show that S is closed.
Since u is a semi-order-unit, u > 0. It follows that \/u is well defined function
and continuous on X, as u is a semi-order unit, there exist a A > 0 such that

VuAnu < \u, forall neN.
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Let z € S. Then y/u(x) A nu(z) < Au(z). Smce u(z) > 0, {nu(z) : n € N}
is not bounded, it follows that \/ (r) < Au(zx), hence u(z) < A\?u?(z). This
implies that

)\i < u(zx).
Let @ = 55 then 0 < @ < u(z), z € S. Hence 0 < a < u(z) for all
z € S. So 1f r € S then z € u'([a,00)), clearly u~!([a,0)) C S. Hence
S = u"!([a,0)). The set [a,00) is closed in R. Since u is continuous on X,
the set S = u'([a,00)) is closed in X. Thus S is both closed and open. [J

Lemma 3.7.2. Let X be a realcompact space and S C X. Assume flg is
bounded for all f € C(X). Then S is compact.

Proof. Fix f € C(X). Then by Lemma 3.1.11 there exist a unique extension
f of f such that f: 38X — R and [ is continuous on SX.

Suppose there exists xq € g’BX\X , where 5% denotes the closure of S in
BX. Since f|s is bounded, it follows that f(xy) € R. Since f is arbitrary,
it follows that every continuous function extends to a real-valued continuous
function on X U {zy} which is a contradiction since X is realcompact.

Hence EBX\X = (), so it follows that gﬁX C X. Now gﬂx C X compact in
£X implies that 5 compact in X. S C 5% implies that S is compact. [
Proposition 3.7.3. Let X be a realcompact space. If u is a semi-order unit

of C(X) then the set
S={reX:u(zx)#0}

1§ compact.

Proof. By Lemma 3.7.2, it suffices to show that for any f € C(X), fl|s is
bounded.

Fix f € C(X). Since u is a semi-order unit, u is continuous so that u?
is also continuous. It follows that there exists a § > 0 such that

u? Anu < du for all n € N.

Hence we have that u is bounded by ¢, that is u(x) < § for all x € X. Since
f € C(X), u a semi-order unit, there exists a A > 0, such that |[f| Anu < Au
for all n € N. In particular, if z € S then u(z) > 0 so that the sequence
(nu(x)) is not bounded. It follows that

|f(z)] < du(z) < N

28



Hence f is bounded on S. Since f is an arbitrary function in C'(X), we have
that every function in C'(X) is bounded on S. It then follows from Lemma
3.7.2 that S is compact. Since S is closed we have that S = S so that S is
compact as required. L]

Proposition 3.7.4. Let u € C(X) such that u > 0. Suppose S = {x € X :
u(z) # 0} is compact in X. Then u is a semi-order unit.

Proof. Fix f € C(X). Since S is compact and f is continuous, it follows
that f|s is bounded. So there exists M € R, M > 0 such that

|f(z)] < M forall x €S. (3.1)

Since S is compact and u is continuous, we have that u[S] is compact in R.
Hence inf u[S] exists and belong to u[S] so that inf u[S] > 0.
Define ¢ = inf u[S]. It follows that 0 < ¢ < u(x) for all z € S. Hence

1
0<——<

u(z)
Using (3.1) and (3.2) we have

/()]
u(z)

Let A =2 Then for z € S, |f(z)| < Au(z). Hence for x € S, we have that

forall x € S. (3.2)

M
< M so that |f(z)| < —u(z) for all z € S.
¢

min{|f(z)], nu(z)} < u(z) for all n € N.
For z ¢ S, u(z) = 0 so that nu(z) = Au(z) for all n € N. Hence
min{|f(z)|,nu(z)} < Au(z), € X neN.

Thus |f| A nu < Au for all n € N. Since f is arbitrary it follows that u is a
semi-order unit of C'(X). O

Proposition 3.7.5. Let S be a clopen subset of X and f the indicator func-
tion of S. Then f is continuous.

Proof. Let B = {0,1}. We will show that for any V open in R, the set
f7YHV]= fYV N B]is open in X.

Let V be open in R then V' N B is one of 0, {0}, {1} or B. Now f~![] =0
which is open, f~![{0}] = X\S which is open, and f~![{1}] = S is open in
X. Finally f~'[B] = X which is also open. Hence f is continuous on X. [J
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Theorem 3.7.6. Let X be a realcompact space. The semi-order unit topology
on C(X) coincides with the topology of compact convergence if and only if X
1 a union of open compact sets.

Proof. Let u be a semi-order unit on C(X). Then the set S = {z € X :
u(z) # 0} is open, closed and compact; that is, S is an open compact set.
Note that we have shown that there is an a > 0 such that if x € S, then
u(z) > a and we have also shown that there is a § > 0 such that if z €, 5
then u(x) < 0. These together yield

0<a<u(x)<d forall ze€S.

This implies that u is bounded away from zero on S. Since u(z) > 0 for all
z € 9, it follows that {nu(x) : n € N} is not bounded on S. Using this fact,
we have that

p(f) =inf{A >0:|f| Anu < \u for all n € N}
=inf {A > 0:|f(z)| Anu(z) < Iu(z), = € X for all n € N}
=inf {A>0:|f(z)| < Au(z) z € S}
=inf {A > 0: f|s < Muls}.

Since u < § on S, it follows that if f|g < Au|g then f|s < AJ. Hence

[ flls < p(f). Also a < u(zx),z € S so that 1 < Lu(z). Hence

f@)] < |flls < mu(as) forall z € S.

a
Thus |f| Anu < %u,neN. Hence% € {A>0:|f| Anu < Au} so that
p(f) < % Thus

Llls < p(5) < 111l

This implies that the semi-norm associated with u is equivalent to |.||s.
Hence semi-order unit topology on C(X) is coarser than the topology of
compact convergence.

Suppose X = |J A, where each A, is an open, compact set.
a€cl
We have already proved that the semi-order unit topology on C'(X) is gener-

ally coarser than the topology of compact convergence. So it remains to show
the reverse inclusion and to this end, fix K C X compact. Since {4, : o € I}
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is an open cover for X, it also covers K. Hence there exist A;,...A, such
that

i=1

Let S = [J_, A;. Then S is open compact in X. Let u be an indicator
function on S. Since S is clopen, it follows from Proposition 3.7.5 that w is
continuous on X. It then follows from Proposition 3.7.4 that u is a semi-
order unit. It follows that the semi-norm associated with the function u is
equal to ||.||s. Indeed

pu(f) =inf{A >0:|f| Anu< Au for all n € N}
=inf {A>0:|f(z)| Anu(z) < Iu(z), z € X for all n € N}
=inf {A>0:|f(z)| < Mu(z) =z € S}
=inf{A>0: fls <A}(ouls=1)
= [I£lls-
Hence pu(f) = |Il]s-

Since K C S, we have that
sup{|f(z)| : # € K} < sup{|f(z)| : x € S}

that is || f||x < ||f||s- Hence the topology of compact convergence is coarser
that the semi-order unit topology. This implies that the topology of compact
convergence is equal to semi-order unit topology.

Now suppose that the semi-order unit topology on C(X) agrees with the
topology of compact convergence i.e Ceo(X) = Cypu(X). It will be shown
that X is a union of open compact sets. It is sufficient to show that each
x € X belongs to an open compact set A, so that X = (J A4,.
zeX

Fix 29 € X. Let K be the singleton {x¢}. Then K is compact. Since
the topology of compact convergence and semi-order-unit topology coincide,
there exist semi-order units uq, ..., u, with associated semi-norms p1, ..., pp
such that

sup{p; :i=1,....,n} > ||.||x-
Claim: There exists 1 < ¢ < n such that zy € {x € X : u;(x) # 0}.
Assume that it is not true. Since {z € X : u;(x) # 0} is a compact set in X,
it follows that

B= U{x € X :u(z) #0for some i=1,..,n}

i=1
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is closed in X and 2o ¢ B. Since X is completely regular, we can sep-
arate singletons and closed sets with a continuous function. Hence, there
exists an f € C(X) such f(xp) = 1 and f(x) = 0 for all x € B. Hence
pi(f) = 0 for each i = 1,..,n and sup{p;(f) : « = 1,...,n} = 0, but
|f||x = 1. This implies sup{p;(f) : ¢ = 1,...,n} < 1. This is however a
contradiction, since sup{p; : i = 1,...,n} > ||.||x. Hence w;(zq) # 0 for some
i = 1,...,n. That is there, is an iy such that u;(zo) # 0. It follows that
zo € {z € X : u;, # 0} = A,, which is an open compact set by Proposition
3.7.3.

Since xy was arbitrary, it follows that it is true that for all x € X and

that there exists an A, open compact such that z € A,. Hence X = |J A,
reX
as required. O

Lemma 3.7.7. Let X be a topological space and let S C .X Suppose that
some function h € C(X) is not bounded on S. Then S contains a copy of N,
C-embedded in X on which h approaches infinity.

Proof. By replacing h with |h| if necessary, we may suppose that h is pos-
itive. S is non-empty for if it is empty then A is bounded on S which is a
contradiction.

Now pick arbitrary x; € S. Since h is not bounded on S it follows that
for any M € R, M > 0, there exists an x € S such that h(x) > M. In
particular there exists an zo € S such that

Inductively, there exists a sequence (z,,) in S such that h(z,+1) > h(x,) + 1
for all n € N. Let A = {x, : n € N} and define

H:N— A by n+— z,.

Then H is a bijection by construction. It remains to show that singletons
are open in A with the subspace topology inherited from X. To this end let
T, € A, then

{r,}=h"{yeR:h(z, 1) +1<y<h(zo)+1}) N A,

which is open by the continuity of h. Hence A carries discrete topology. Thus
S contains a copy of N. By the construction of the set A, the function h is
unbounded on A.
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Claim: hls : A — h[A] is a homeomorphism.

Any function is onto its range, hence h|, is onto h[A]. Let x,,x,, € A with
Tp # Tm. Then n # m. So assume m < n, then by the construction of the
set A, h(zy,) < h(zp)+1 < h(zpme) < h(x,). Hence h(z,,) < h(z,) so that
() # h(z,). Hence h is injective so that h is a bijection. h is continuous
on X, so h|,4 is continuous on A

Since A is equipped with a discrete topology, it suffices to show that one
point set are open in h[A].

Let y € h[A]. Then there exists n € N such that y = h(z,). Now let
U= (y—3,y+3). Then U is open in R and {h(z,)} = h[A] N U. Thus
one point sets are open in h[A] with the topology inherited from R, so that
h is a homeomorphism.

It then follows from [8, Theorem 1.9] that A is C-embedded in X. O

Theorem 3.7.8. Let X be realcompact and ¥ a semi-order unit on C(X).
Then the closure in X of {x € X : U(¢,) # 0} is compact, where ¢, denotes
the point-evaluation functional of r € X.

Proof. Let S = {x € X : U(¢,) # 0}. With a view towards a contradiction,
suppose that S is not compact. Since X is realcompact, it follows from
Lemma 3.7.2 that there exist a continuous function A which is not bounded
on S. Hence by Theorem 3.7.7 there exist a discrete infinite subset A of S
such that A is C-embeddeble in X. Since the subspace topology on A is a
discrete topology, any function f : A — R is continuous. Define

f(xn) = n¥(gs,).

Since A is C-embedded in X, f can be extended to a continous function g
on X. Since ¥ is a semi-order unit, g AnW¥ < AV for all n € N. In particular,

for some A > 0 and for all n € N. Since ¥(¢,,,) # 0 and is positive because ¥
is a semi-order unit, we have that n < X for all ne N. This is a contradiction
because N is not bounded from above. Hence S is compact. O

—~——

Denote by s, the topology induced on C'(X) as a subspace of C'(X) equipped
with the semi-order unit topology. We denote this topological space by a pair
(C(X), Tsow) or simply Cpu(X).
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Theorem 3.7.9. Let X be realcompact and ¥ a semi-order-unit in C(X).
Then there ezists a real number M such that V(¢,) < M for all z in X.

Proof. With a view towards a contradiction, suppose ¥ does not satisfy the
conclusion. Then for each M > 0, there exists an z € X such that U(¢,) >
M. In particular for each n € N, there exists an z,, € X such that

V(¢a,) = n”.

For each n € N, let 1, be the point evaluation at x,, acting as a functional

on C(K). Then 9, € C(K)~ and 75, = ¢.,. We have

[|n|| = sup |Un(f)] = sup |f(z,)| =1

[1fllx=1 [1fllx=1

Therefore Y7 | =51, is absolutely convergent in C(K)~. Because C(K)~ is

a Banach lattice, 7 | 4, converges in norm to some ¢ in C'(K)~. Note

that 1, < 4 for every n € N. Hence —5¢,, = ri(35¢n) < 1t so that

1
V(i) 2 V(-s0r,) > 1

for all n € N, a contradiction. O

—_—

Proposition 3.7.10. Let X be realcompact, ¥ a semi-order unit of C(X)
with the associated seminorm py. Let K be the closure in X of {v € X :

U(p,) # 0}. Then for all f € C(X)

pu(f) < || fllxpu(1).

Proof. Fix f € C(X). Consider x € K. We have that |f(z)| < ||f||x. By
Lemma 3.6.3 we have that, for all n € N

(IfTARY)(¢s) = ((2) An¥(ds) < |[f]lx AW (ez).
By definition of py,
pou([|fllxl) =inf{\ > 0: ||f||k1 An¥ < AV, for all n € N}.

Therefore (||f||x1) A (n¥) < po(]|f]|xk1)¥ in C(X)~™. So, again using
Lemma 3.6.3 we have

11z A (00(¢2)) = (1 f][1) A (n¥)(¢2)
< pe(l[fllx1)¥(¢s).
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Hence

(I TARE)(9:) < pu(l[fllx1)¥(¢)
= |l/lxpe(1)¥(¢y).

Since ¥(¢,) = 0 for all ¢ K we have that for all x € X,

(FIA DN (D) <[]k pw(1)V(z)-

Hence f AnU < ||f||kpw(1)V for all n € N so that
1 llcpo(1) € {A>0: f And < AW},

Taking the infimum of the set {\ > 0: f An¥ < AU} we obtain pg(f) <
/1 pw(1). 0

Proposition 3.7.11. The topology T @S finer than the topology of compact
convergence.

Proof. Let K be a compact set in X and denote by ex the semi-order unit
associated with K and p., be the associated semi-norm. We show that
fllx < pey(f) for all f € C(X). Fix f € C(X). By definition of p., we
have that |f| A nex < pe,(f)ex for all n € N. It follows from Lemma 3.6.3
that

|f(x)| Aner(dn) < per(flex (o), x e X.

Since ek (¢,) =1 for all x € K, we have that |f(z)| < pe, (f) for all x € K.
Hence ||f||x < pex(f). Let U be an open neighbourhood of 0 with respect
to the compact-open topology. For every compact set K C X, there exists
acxg > 0sothat {f € C(X) : ||fllx < ex} C U. Since ||.||lx < pex,
{f€CX):pep <ex} C{feCX):||lfllk <ex} CU. Hence U is an
open neighbourhood of 0 with respect to 7y, the semi-order unit topology.
This shows that 7, is finer than the compact-open topology. O

Theorem 3.7.12. Let X be realcompact.

i. If K is a compact subset of X with associated semi-order unit ex in

C(X) then pe,(f) = [|fllx for all f € C(X).

—~——

ii. Let W be semi-order unit in C(X) and A = {r € X : ¥(¢,) # 0}. Let
K = A. Then py(.) and ||.||x are equivalent on C(X).
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Proof of (i). We showed in the proof of Proposition 3.7.11 and in Proposition
3.7.10 that

||f||K < IOEK(f) < peK(l)“fHKa f € O(X)
We will show that p., (1) = 1.

Per (1) =1nf{\ > 0: 1 Anex < lex}

1 Anex < deg <= (1 Aneg)(¢,) < Aeg(¢,) Vr € X (By Lemma 3.6.6)
< 1 Anex(¢s) < Aex(¢ps) Vo € K (ex(¢p,) =0 Vo ¢ K)
< IAn<\ (r €K = ex(¢.) =1)

— > 1.

Hence p., (1) = 1 so that

Al < pe(f) <1 f 1l
Hence pe,. (f) = ||f||x thus proving (7). O
Proof of (ii). Let f € C(X). We note that

[f (@) AW (z) < pul(f)¥(¢a)

Because ¥(¢,) > 0 for all z € A, we have |f(x)| < py(f), x € A. By Theorem
3.7.9, there exists an M > 0 such that ¥(¢,) < M and ¥(¢,) # 0 for x € A.
Hence

sup{|f(z)| : x € A} < pu(f)M.
Thus 1
27w < pu(f) < po (DIl

Therefore ||.||x and pg(.) are equivalent on C'(X). O

We showed in Theorem 3.1.17 that 7' : C'(X) — C(vX) is a lattice iso-
morphism so the adjoint 7% : C(vX)~ — C(X)~ is a lattice isomorphism.
Similarly the adjoint C'(X)~~ — C(vX)™" is a lattice isomorphism.

Now if ¥ € C(X), then there exists a net (fu)aes such that ¥, —» .
The net (T'fa)aer = (fa)aer is in C(vX) and ¥z 2 U ;. We deduce that

P

C(X) and C(vX) are isomorphic vector lattices. The semi-order units in
these two spaces are in 1 to 1 correspondence.

Hence Cy,, (X) and Cy,,, (vX) are homeomorphic. In particular, 7" is a home-
omorphism.
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Lemma 3.7.13. ¥ is a semi-order unit of C(X) if and only if TV is a
semi-order unit of C(vX).

Proof. We will show that

pu(f) = prw(T[) forall fe C(X).

For A > 0, |f] < n¥ < AV in C(X) if and only if [T f| A nT™*U < \T**W
in C(vX). But Tf =T*f in C(vX).
So for A > 0,

e~

If| <nU <A in O(X) < |Tf|ART™¥ < ATV in C(vX).

Therefore py(f) = prw(Tf), for all f € C(X). O

Using Theorem 3.7.12, and the above Lemma together with the previous
discussion we obtain the following theorem.

Theorem 3.7.14. Let X be Tychonoff. Then the following statements are
equivalent.

1. X 1s realcompact
ii. T:Cuw(X) 3 fr— f € C(vX) is a homeomorphism.
i, Cyou(X) = Coo(X) .
proof of (i) = (iii). This follows immediately from Theorem 3.7.12. [

proof of (iit) = (ii). Suppose Cspy(X) = Ceo(X). Using the previous dis-
cussion we have that C,,(X) and Cy,,(vX) are homeomorphic. Also using
Theorem 3.7.12, vX is realcompact so Cy,, (vX) = Cg(vX). Together with
the assumption we have that

Ceo(X) = Csou(X) = Cipu(vX), = Ceo(vX).
Hence C,,(X) and C.(vX) are homeomorphic. O
Proof of (i) <= (ii). This is Theorem 3.2.2. This completes the proof. [
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Appendix A

Here we collect together some useful results which are used in the thesis or
helps us to recap some concepts but do not belong to any scope of the essay.

A.1 Topology

Definition A.1.1. A topological space X is completely regular if for any
closed set B C X and every xy ¢ B then there exist a continuous function
f: X — R such that f(zy) =1 and f[B] = {0}.

Definition A.1.2. A topological space X is a Tychonoff space if X is a
completely regular Hausdorff space.

Theorem A.1.3. Let V be a topological space, B CV and f:V — R be
a continuous function. Then

fB] < f1BI.

Proof. Let y € f[B]. Then there exists + € B such that f(z) = y. S

x € B, there exists a net (z4)aes such that z, — . Now (f(2a))acs is a
net in f[B]. Since f is continuous, f(r,) — f(z). Hence y € f[B]. Thus
f1B] € f(B]. O

Definition A.1.4. Let V be a topological vector space. A set B is bounded
in B if for every neighbourhood U of 0, there exists a A > 0 such that
B C \U. Equivalently, B is topologically bounded if for all U € N, there
exists a A > 0 such that

1
—BCU.
\ cU

Definition A.1.5. Let V be a topological space and ¢ : V' — R a linear
functional. Then ¢ is topologically bounded if for every B C V bounded
with respect to a topology on V', ¢(B) is bounded in R.
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We denote by V' a space of continuous functionals on the topological space
\%

Theorem A.1.6. Let ¢ € V'. Then ¢ is topologically bounded.

Proof. Fix B C V bounded. Since ¢ is continuous, with ¢ = 1, there exists
a U € Ny, such that if f € U then |¢(f)| = |o(f) — ¢(0)| < 1. Since U € Ny,
there exists a A > 0 such that B C AU. Now if f € B, then |¢(f)| < A. Hence
¢ is topologically bounded. O]

Theorem A.1.7. Let X be realcompact and ¢ € Coo(X)'. Then there exists a
compact set K C X and o > 0 such that |o(f)| < al|f||k, for all f € C(X)

Proof. Fix ¢ € C(X)7. Then there exist a regular borel measure s, such
that

| fino= o).
X
Let K = sptyg. Then K C X since X is realcompact. Now if f > 0 Then

60| = 6(f) = /X Fdus < /X 1 llxdio = || Fllxcs(K).

Let o = piy(K) thus we get the result. O

Definition A.1.8. Two semi-norms ||.|| and ||.||o on E are equivalent if there
exists positive real numbers o and S such that

all Il < |fllo < BIISIl, f € E.

Lemma A.1.9. Let V be a vector space and P be a collection of all semi-
norms on V. If the subbase elements of the topology of X are of the form
{r eV :plx—uxy) <e} fore, xg € X and p € P. Then a set U is open if
and only if for each x € U, there exists pi,...,pn and €4, ..., &, such that

n

ﬂ{wEV:pk(x—x0)<ek}§U

k=1

Theorem A.1.10 (Tietze Extension Theorem). Let V be a normal space and
B C V. Suppose f: B — R is continuous. Then there exists f : V — R
a continuous extension of f.

Theorem A.1.11 (Dini’s Theorem). Let V be a compact topological space
and (fn)nen be a monotonic increasing sequence of continuous function on
V' which convergences pointwise to a continuous function f:V — R. Then
fn —> [ uniformly.
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A.2 Ordered vector spaces

Definition A.2.1. Let E be a set. A relation < on E is called a partial
order if:

i. x <z for every x € E (< is reflexive).
ii. z <yandy < z implies x < z (< is transitive).
iii. x <y and y < zimplies x = y (< is anti-symmetric).

The set E equipped with partial ordering is called a partially ordered set.

Definition A.2.2. Let F be a non-empty partially ordered set. If x Vy and
x Ay exist for every x,y € E we say E is a lattice.

Definition A.2.3. Let (E,<) be a vector space equipped with partial or-
dering such that the following properties hold for all x, y, 2 € E and A > 0.

i x <yimpliesx+ 2 <y—+ z.
ii. z <y implies Az < Ay.
Then (E, <) is called an ordered vector space.
Definition A.2.4. Let (E, <) be an ordered vector space. Then
Eft={reF:0<ux}

is called the positive cone of E and the elements of ET are called the positive
elements of F.

Definition A.2.5. A Riesz space is an ordered vector space which is lattice
with respect to its partial order and we will denote it by E.
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