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Abstract

The status, recent trends and future perspectives in modelling and optimisation of anaerobic co-digestion
is investigated. Areas that can be focused on and those which need further research towards enhancing
biogas production are pointed out. Co-digestion, modelling and optimisation of anaerobic digestion as well
as techno-economic aspects are reviewed in this paper. It was noted that co-digestion requires more re-
search into a variety of bio-resources and their specific blend proportions. Modelling and optimisation of
co-digestion with substrate seasonal fluctuations has not been addressed in previous studies. Controlling
key process factors including temperature, pH, and carbon to nitrogen ratio is critical in improving bio-
gas yield. Biogas hybridisation is yet to be explored in depth. The majority of researches are focused on
mono-digestion, feedstock co-digestion, modelling, and optimisation of anaerobic digestion needs signifi-
cant further investigations. A multi-objective approach taking all technical and economic parameters in the

modelling and optimization is essential.

Keywords: Anaerobic digestion; Co-digestion; Biogas enhancement; Modelling and optimisation;

Techno-economic analysis

1. Introduction

The energy sectors world over are faced with a task to come up with alternative sources of energy to
substitute fossil derived fuels. There is urgent need for boosting energy generation to fill in the shortfalls in
supply to the ever increasing energy demand. Generating energy from alternative sources will help in cli-

mate change mitigation and minimisation of alarms posed to the environment (Kang et al.,|2020). There has
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been a high uptake of renewable energy technologies (RETs) world over in a bid to deal with the detrimental
effects paused by fossil related energy generation technologies. In a bid of increasing energy accessibility
whilst simultaneously restricting worldwide temperature increament to 2°C, adoption of RETs and energy
efficiency must be encouraged and raised significantly (Sawin et al., [2016). This growing impetus for re-
newable energy alternative avenues demands the consideration of different feedstocks, development of novel
techniques, as well as improvements to existing technologies.

Bio-energy can be regarded as the most substantial renewable energy source due to its cost-effective
advantages and its great potential to substitute non-renewable fuel sources. Bioenergy comes from biomass
materials: any biological organic matter obtained from plants or animals. Biomass energy sources include
but are not limited to terrestrial plants, aquatic plants, timber processing residues, municipal solid wastes,
animal dung, sewage sludge, agricultural crop residues and forestry residues. It is one of the most versatile
among the renewable energies since it can be made available in solid, liquid and/or gaseous forms. Different
avenues can be explored to haverst energy from biomass materials.

Biogas originates from anaerobic digestion (AD) of biodegradable biological materials. Biogas gen-
eration via AD has advantages of better compatibility with the environment. The process makes use of
continuously generated accumulating quantities of bio-wastes, value adding them into some form of energy
(Adekunle and Okolie, 2015). This technology reduces the discharges of greenhouse gases leading to a
sustainable form of energy and a cleaner environment (Maile et al., 2016).

Anaerobic digestion is the breaking down of biomaterials by bacteria in an environment without oxygen.
It is the most favourable substitute to discarding of biodegradable organic municipal solid waste, agricultural
residues and animal wastes because of its efficient energy recovery nature. The bio-conversion is catalysed
by a huge consortia of microorganisms complementing each other, catalysing the diverse biochemical reac-
tions, therefore the metabolic pathways accompanying anaerobic digestion are quite complex. In anaerobic
digestion, co-digestion entails simultaneous digestion of varied wastes having harmonising features. In the
AD process biomass materials are broken down by bacterial action in an oxygen free environment producing
a gaseous blend comprising mainly of methane (Reyes et al., 2015). This gaseous blend/mixture is known
as biogas and it consists of methane, carbon dioxide, hydrogen sulphide, ammonia, hydrogen and water
vapour. A mineral rich digestate usually referred to as spent slurry or sludge is also obtained as a secondary

product of the biogas generation process.



In contrast with other biofuels, biogas production is flexible to different substrates on condition that they
are biodegradable. The waste streams which are the raw materials for biogas production vary significantly
due to seasonal and geographical location causing a dissimilarity in biogas yields reported by various au-
thors (Bong et al., 2018)). The substrate must have the dietary rations for the microorganisms for it to be
biodegraded optimally. Therefore, structure and constituent components of feed is exceedingly crucial in
AD to optimally produce biogas.

Agricultural waste, Eichhornia crassipes (water hyacinth) and municipal solid waste are hugely avail-
able sources to be tapped into for the attainment biogas (Kunatsa et al., [2013; Kunatsa and Mufundirwa,
2013)). Multi-stage anaerobic digestion accompanied with co-digestion of different raw materials and feed-
stocks as well as optimisation of the biogas production process can bring about enhanced yields of biogas.
With respect to substrates for anaerobic digestion, use of wastes is prioritised over other options since it ad-
dresses the environmental pollution issues while simultaneously generating energy (Horvath et al., [2016)).

According to Kangle et al. (2012)), co-digestion increases biogas outputs, however, it has a disadvantage
of largely still remaining unstudied for many varying substrates. Biogas production is enhanced by co-
digestion of different substrates rather than individual substrates but there is difficulty in getting to the exact
blend ratio for optimality since it depends on the type of substrates together with actual reaction conditions
availed (Adekunle and Okolie, 2015)). Co-digestion technology needs scrutinised supervision and control-
ling since no single customary set of working parameters could be practical to all organic biodegradable
wastes. Given this scenario, and that the availability of raw materials is of broad nature, further research in
co-digestion and optimisation of biogas generation from varied substrate types should be undertaken.

Biogas is produced using either the wet anaerobic digestion technology or the dry anaerobic digestion
technology (Angelonidi and Smith, 2015). In the wet technology the substrates are mixed with water to
make a bio-slurry which constitutes about 90 % water. Examples of digesters used in the wet digestion
technology include fixed dome, floating drum, polyethylene tube digesters and balloon digesters. In dry
digestion technology the substrates are not mixed with water but slurry with cultured microbes can be
added. Dry digestion is usually done on raw materials with a lot of fibre. The digestion chambers can
look more like composting facilities. AD maybe classified as "single" or "multi" stage. In multi-stage
digestion there are two or more reaction chambers separating the bioprocesses whilst in single stage there

is only one reaction chamber in which all the bioprocesses occur. The digester feeding mechanisms can be
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categorised into batch feeding and continuous feeding. In batch feeding substrates are fed once and left till
they are completely digested before a new set of substrates is fed. In continuous digestion a certain constant
quantity of feed is administered to the reactor at regular intervals.

The overall aim of this review study is to retrospect previous works, modern trends and approaches
in process enhancement and control strategies in anaerobic biogas production technology consequently
contributing vital information in the direction of biogas enhancement and optimisation. The subject matter
covered includes biochemical processes in AD, co-digestion, modelling and optimisation as well as techno-
economic aspects of the same. Much emphasis is given to co-digestion, modelling and optimisation in
order to investigate the previous works, progression and forecasts of the biogas production process in a bid
to enhance biogas yields. This study is unique in its own regard in the sense that it zeroes in on reviewing
issues of incorporation of co-digestion feedstock mixing ratios, multi-stage digestion, process conditions,
techno-economic aspects and biogas hybridisation among others in the modelling and optimisation of biogas
production in view of enhancing the ultimate biogas yield.

This work is of great importance as it value adds to the existing knowledge in academia and provides
more opportunities for new and extra investigations in the biogas arena. Small to medium enterprises as well
as commercial biogas players can also benefit from the results of this work. In general, more researches
are being done in the broad spectrum of biogas and this trend suggests that biogas technology acceptance
and adoption is increasing and is being taken seriously as an important contributor to the current world shift

towards renewable energy technologies and can feed in to a great extent to the mitigation of climate change.

2. Anaerobic co-digestion

Anaerobic digestion of biomass wastes can be done on individual materials (mono-digestion) or mix-
tures of numerous materials (mixed-digestion or co-digestion). Anaerobic co-digestion enhances digestion
and energy generation by increasing availability of nutrients for microbes and organic load while reduc-
ing inhibitory chemical toxicity through co-substrate dilution. Mono-digestion is commonly employed for
digesting animal manure in smaller biogas production facilities, but co-digestion is frequently employed in
bigger facilities which process bio-wastes from various origins (farms, residential areas and industry). Co-
digestion occurs when different feed materials are concurrently digested in the same reactor. Customarily,

AD technology was meant for one feed material but lately, it has been recognised that anaerobic digestion
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turns out to be more stable when a diversity of substrates are co-digested simultaneously. Co-digesting
varied substrates improved biogas production potentials in contrast to single substrates (Maragkaki et al.,
2018; [Lee et al., 2020; |Vivekanand et al., [2018)).

Generally all biomaterials and organic wastes are augmented with numerous nutrients necessary for
growth of micro-organisms. The differing nutrient quantities are interconnected with age, geographical
origins and species of the organic material. A great proportion of the agricultural residues and aquatic plants
are enriched with high nutrients, however, their lignocellulosic recalcitrant nature renders them resistive to
micro-bacterial degradation hence reduced gas outputs. Co-digesting these multifaceted biomaterials with
animal manures and other biodegradable organic substances gives enough access and potential to micro-
organisms to foster optimised degradation (Kunatsa et al., [2020).

In an investigation, Patil et al. (2011), found out that more biogas was produced from co-digestion
of Eichhornia crassipes, poultry waste and cow manure. Co-digestion presents immaculate digestibility,
supreme mineral manure, odour and germs management together with costs reduction in addition to being
environmentally friendly among other benefits (Yasar et al.,[2017). Table m shows a review of a few mono-
digestion and co-digestion studies some improved methane yields through co-digestion.

The major advantage of co-digestion is the improvement of biogas yields as well as methane content of
the same. Animal manures are being co-digested with other biodegradable materials to increase economic
effectiveness while ensuring anaerobic digestion system stability at a commercial scale (Hegde and Trabold,
2019). A number of recent previous studies, mainly centred on laboratory investigations and small-scale bio-
rectors have proven anaerobic co-digestion to be the way to go when it comes to biogas production and its
optimisation. According to the authors’survey, the majority of commercial reactors employ mono-digestion
mainly due to availability of one specific substrate in large quantities within the vicinity of the digester
geographic location. Other reasons for non-implementation of anaerobic co-digestion include ignorance,
unavailability of co-digestion technical expertise, reluctance to shift and adopt new technology as well
as avoiding the drawbacks of co-digestion. Some of the major drawbacks of co-digestion which hamper
application of the technology with large scale commercial reactors include accummulation of undigestable
solids inside the digester, high nitrogen backload, and accummulation of acids from other co-substrates
(Sembera et al., [2019). The synergistic effects of the co-substrate mixture which are brought about by the

dynamics of the co-digestion process as well as the microbes involved will outweigh the drawbacks of the
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Table 1: Effect of co-digestion on biogas yield

Comparison of mono-digestion and co-digestion bio-

Feedstocks . Source
gas yields
mono-digestion yielded 0.18 and
Wastewater sludge and 0.16 L CH,/gVS$s added for olive pomace %lnd wgstew— (Alagész
olive bomace ater sludge respectively. Co-digestion yielded etall2018)
p 021 L CH./gVS sadea- Co-digestion increased T
methane production by 17 — 31%
gradual increase of fish concentration increased
Wastewater sludge (WAS) me.thane generation up to 1.9 when 7?% was added.
With grass methane production only improved after (Cardona
and fish waste (FW) or . ) .
arden-grass (GG) adding 25%, adding more than 50% grass increased (et al.,[2019)
& & the production rate and final product by 1.5 and 1.7
times, respectively.
The combination V75/P,s had the best methane gen-
ti te of 69. L CH4g™' coD7;! d7'. In co-
Sugarcane press mud (P) cration rate 0 69.6N mL CHag™ COD; edd_l 1eo (Gonzalez
. digestion, methane outputs of 365 L CH kg™ VS and
and vinasse (V) i ) ) ) et al.,2017)
biogas production output of 1.6 LL™" were achieved,
which was 64% greater than mono-digestion.
Co-digestion of microalgae and primary sludge (Solé-
Microalgae and primary (25/75% on a volatile solids basis) was compared Bundd
sludge to microalgae mono-digestion. co-digestion improve
) et al.[2019)
methane generation by 65%.
Poultry droppings (PD) In co-digestion, maximum methane concentrations
and lignocellulosic co-  were found to be 330.1 and 340.1 NI kgl VS at a (Rahman
substrates (LCSs) (wheat blending ratio of 70:30 (PD:WS) and 50:50 (PD:MG) et all2017)

straw (WS) and meadow
grass (MQ))

respectively. This was an increase of 1.14 and 1.13
times higher than the LCSs individually.




technology. With the advancement of technology, inclusive of process regulation and control amongst other
interventions such as pretreatment, the benefits of anaerobic co-digestion can be fully realised. However,
research and development into the co-substrate blending proportions needs to be further investigated for a
wide variety of co-digestion substrates.

Table (1| shows that there is a vast potential of biogas generation from the co-digestion of a wide range
of biomass wastes. The recalcitrant nature of most of the lignocellulosic substrates can be overcome by
co-digesting them with animal manures which already has bacteria for anaerobic digestion and this in turn
enhances biogas yield from them. It can also be deduced that a different combination of substrates as well
as different mixing ratios consequently lead to different biogas production volumes and hence different
methane concentrations. This section concludes that further research has to be conducted on a wide range

of co-digestion feedstock combinations and their respective blend ratios.

3. Modelling and optimisation of anaerobic digestion

Co-digestion logically and concurrently manages biological organic matter thereby obtaining an alterna-
tive form of energy. It is more vulnerable to process instability due to substantial dissimilarity in feed stock
composition. Mechanistic models emanating from the anaerobic digestion model no.1 (ADM1) frame-
work are more well-known in anaerobic co-digestion modelling. Nevertheless, major aspects in present-day
anaerobic co-digestion, particularly interactions between system performance and co-substrate ratios and
properties for optimal biogas yields still remain underdeveloped.

There is a necessity of the development of models of different levels for the respective different cate-
gories of users. The small to medium enterprises (SMEs) only need a general understanding and as such
require low level-less complicated models. Commercial entities and all big revenue focused companies
require general to medium level models for the purposes of just informing on the expected biogas yields
in relation to time, rate of return on investment, and profits. Lastly senior technical managers, engineers
and researchers have the capacity and ability to understand deeper technical models with higher level of
sophistication and complexity. It is necessary to take into consideration different research interests in the
development of models of different levels. Table 2] shows the 2 major model categories and the respective
research interests together with the aspects to be considered in model development.

Optimisation of anaerobic digestion can be improved through proper modelling (Ramachandran et al.,
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Table 2: Research interests and model level categories

Model Category Aspects to be considered

medium to high level modelling
Process control and regulation (temperature and pH monitoring)
Production level

Substrate blend ratios (in case of co-digestion)

Reaction kinetics

low to medium level modelling

Optimising CH, proportion in biogas

Utilisation and biogas production vs demand side management
management
level Impurity removal and quality improvement for advanced uses

Slurry and other by-products management

biogas yields in relation to time, rate of return on investment and profits

2019). Process monitoring and control have been noted as further improvements needed for the biogas
production process (Wu et al.,|2019). Research and investigations on modelling, together with optimisation,
inclusive of control and regulation of the AD reactions are critical to the biogas fraternity. In comparison
to other well established fields, the modelling and optimisation of biochemical reactions such as the ones
in biogas generation are still a challenge mainly attributed to by the peculiarity and unsimilar nature of
the reaction progressions (Fedailaine et al., 2015). The bacteria involved in the biogas generation process
drastically respond to environmental alterations hence making it a challenge to predict and control the
process (Thorin et al., 2012)). Thorin et al.| (2012)) concluded that for anaerobic digestion processes, the
available detailed models are too complex for practical use and recommended the use of a combination of

empirical and physical and/or biological models as a possible approach.

3.1. Modelling

3.1.1. The Buswell biogas prediction equation

(Buswell and Sollo, [1948) developed a mechanism for methane fermentation which describes biogas
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constituent composition after anaerobic digestion as per the chemical composition of the initial substrates
entering into the digestion process. The elemental composition of the majority of substrates employed in
biogas production comprises of C, H, O, N and S in a complex molecular structure. The complex structure
is subjected to the biochemical reactions and biogas is obtained as the main product together with slurry
as a by-product. If it is assumed that a total coversion of biomass to biogas occurs after the complex
interdependant bio-chemical reactions, then the elemental composition approach developed by (Buswell
and Mueller, [1952)), is arrived at; that biogas is constituted mainly of CH4, CO,, NH; and H,S and that
other trace elements and gases are negligible. This is typical high level steady state modelling which takes
material balances into account. Since some of the biomass is not completely converted to biogas but goes to
slurry, a conversion factor of 0.8 is assumed and applied to the resultant biogas quantity to arrive at a more
accurate representation of the entire process. The Buswell equation for predicting biogas output is as shown

in equation ().

b ¢ 3d e a b ¢ 3d e
CaHbOCNdS€+(a_Z_§+Z+§)H20:>(§+§_Z_§_Z)CH4
(el 6030 8 o, v anm, + ets v
2 8 48 4] 3T e

a, b, c, d and e are given by percentage composition by mass of each of the elements devided by the relative

atomic mass (Ar) of each of the elements as depicted below:

3 Carbon ultimate mass

= , 2

a AI"C ( )

b= Hydrogen ultimate mass’ 3)
A}"H

o Oxygen ultimate mass’ @)
AI’O

J= Nitrogen ultimate mass, )
AI"N

. Sulphur ultimate mass. ©)

AI"S

Equation (T)) helps to build a material balance model. Reference is made to Kunatsa et al.| (2020), when

there are three different substrates. In this previous work, a biogas generation model for the determination



of optimal substrate blend ratios is formulated and optimised. Equation (I]) can be expressed in the form of

equations (7)), (8)) and (9) for substrates 1, 2 and 3 respectively.

bl C1 3d1 €1 aq b] C1 3d1 (4]
CaleloclNdISel + (Cll - Z - E + T + 5)[‘[20 = (5 + § - Z - ? - Z)CH4
aq l’)l C1 3d1 €1 (7)
+ ?—§+Z+?+Z C02+d1NH3+€1H2S,
bz C 3d2 (%) ay b2 C 3d2 e
CaszQOCZNdQSKZ + (612 — Z - E + T + E)HQO = (5 + g - Z - ? - Z)CH4
as bz Cy Sdz [5) (8)
+ 3—§+Z+?+Z C02+d2NH3+€2H25,
b3 C3 3d3 (4] as b3 C3 3d3 és
H B 8,28 8y BB 8 2B Sy
Ca3 b3OC3Nd3SE3 + (a3 4 2 + 4 + 2 ) 20 = ( 2 + 8 4 8 4 )C 4 (9)
az by c¢3 3d; e
+(§3 - §3 + 23 + ?3 + f)COZ + d;NH;3 + esH,S.
The aggregate biogas yield obtainable from these 3 substrates was modeled as:
3
Beoa =08 YV (10)
i=1

where B.,; is the summative biogas that is realised from the co-digestion of the 3 substrates and 0.8 is the
substrates’ biomass to biogas conversion factor. V;, V, and Vj are the biogas volumes from substrates 1, 2

and 3 respectively and are determined as shown below:
_ (224 107%) X (CO,, + NH3, + H,S | + CHy,)

Vi (m’) = Mron : (1)

(224 x107) X (CO,, + NH3, + H,S , + CH,,)

V, (m?) = , 12
2 (m) Mrysw (12)
-3
v, (m%) _ (224 %x107°) x (COQX/I-: NH;, + H,S, + CH43). (13)
cD

CO;,,¢» NH3, ¢, H,S ,,and CHy , ., are the number of moles of carbon dioxide, ammonia, hydrogen
sulphide and methane for water hyacinth (WH), municipal solid waste (MSW) and cow dumg (CD) respec-

tively and are determined as shown below.
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CHy=—+—-—-———-————;
COyy=——-——+—+—+—
NH;, =d, and

Hle = €1

CH, = 22 2 2
T T 4 8 4
a bz (&) 3d2 ()
COy =2 242,72 :
27 8478 "4
]\Iflg2 = d2 and
H252 =€
as b3 Cc3 3d3 €3
CH, =242 _23_ 258 _ 3.
BT T8 4 8 4
as b3 C3 3d3 (]
COp =22 423,75 :
BT 87478 "4
]\Iflg3 = d3 and
H253 = é€3

Mryy is the relative molecular mass of water hyacinth, Mrysw is the relative molecular mass of municipal

solid waste and Mr¢p is the relative molecular mass of cow dung. These relative molecular masses are as

denoted in equations (14)), (I5)) and (I6) respectively.

Mryy (kgmol_l) =a, *Arc + by * Arg + ¢ * Aro + d| * Ary + e; * Aryg, (14)
Mrysw (kgmol_l) =ay*xArc + by * Arg + ¢, * Arg + dy * Ary + e x Aryg, (15)
Mrcp (kgl’HOI_l) =az % Arc + by x Arg + c3 * Arg + d3 * Ary + e3 x Arg. (16)

where Ar is the relative atomic mass of each respective element in the substrate molecule.
The aim of |Kunatsa et al.| (2020) was to find feedstock mixing ratios which maximise biogas output in
the co-digestion combination. In a case study analysis, optimum co-digestion resulted in mixing ratios of

53.27 : 24.64 : 22.09 for WH, MSW, and CD, respectively. Biogas produced from 1 kg of substrate mixture

11



amounted to 124.56m?. Biogas production was enhanced by co-digestion and optimising the substrate blend

proportions. An increase by 157.11% in biogas output was noted.

3.1.2. First order dynamic model

The first order dynamic model is a high level-production level, dynamic modelling approach that looks
at the overall production response. Membere et al. (2013)) described and evaluated a dynamic model to
generate biogas from co-substrates, it was concluded that applying the modified first order dynamic model
produced higher biogas yield when compared to experiments in which it was not applied. Raw material
digestability was analysed through computational formulation of first order nature for batch systems as was

highlighted by Yusuf et al.|(2011) as shown in equation (17)):

m CO
Y i (17)

and In—2 = kt (18)

where: “C, is the initial volatile solid, C; is the volatile solid concentration at any given time (t), y; is the
volume of biogas produced per unit mass of VS fed at any time (t) and y,, is the volume of biogas per unit

of mass of VS converted at maximum time” (Yusuf et al., 2011).

Therefore Im__ _ okt , (19)
Ym = Yt

Ve = ym(l = ™). (20)

To ascertain the change in the amount of biogas with time, the first order derivative of equation (20) is

determined
Vi = kyme ™ @D
Equation (20) can now be written as:
Vi =Ym = % (22)
Vi = kym = ky, (23)
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Equation (23) gives the dynamic version of equation(20) that is potentially useful in future biogas production
modelling using the first order dynamic model. The dynamic model offers easy foretelling of the response
of the system and its output to mass and energy variations over time, easy parameter identification, easy
control and optimisation variable introduction as well as easy evaluation and comparison of process control
strategies (da Silva, 2015). Biogas generation kinetics are key in aiding the assessment of organic matter

digestibility characteristics (Karki et al., 2021)).

3.1.3. The modified Gompertz model

Unlike the first order dynamic model which gives supplementary data on hydrolysis rate, the modified
Gompertz model gives time delay to biogas generation together with the highest methane generation rate
(Pramanik et al., 2019). The modified Gompertz was verified to be an outstanding emperical non-linear
regression model informing of gas generation time delay in addition to describing bacterial growth as ex-
ponential (Zahan et al., 2018; |[Pramanik et al., [2019). Many researchers reported that biogas formation rate
is assumed to relate proportionally to the increase of methanogens in the bio-digester and as such biogas
prediction follows the modified Gompertz equation as in equation (24) (Etuwe et al., 2016} (Opurum et al.|

2017).

P= A.exp(—exp[%(/l -+ 1]) (24)

in which P is the cummulative biogas production at a given time ¢, ml/gVS; A is biogas production poten-
tial, ml; U is highest biogas generation rate (ml/gVS.day); e is a mathematical constant, 2.718; A is the
biogas formation delay time (minimum time to produce biogas), day; and ¢ is the aggregate time for biogas
formation, day. A, 4, and U are ascertained by non-linear regression. The higher U exhibits, the higher the

biogas production rate. Biogas generation increases with increased values of U.

3.1.4. Artificial Neural Networks (ANNs)

Neural networks comprise of nodes (similar to human brain neurons) classified in sequences of layers
interlinked in different ways and they can regulate a reaction progression through immitating the function-
ing human of brain (Nguyen et al., 2015). Fig. [I| shows a schematic of ANNs. Artificial Neural Networks
(ANNSs) can be used to forecast output data for complex systems having numerous operational input vari-

ables (Este et al.l 2015). ANNs work using initial data provided, trains on it and simulates the reaction
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Input layer Hidden layer Output layer

Figure 1: Artificial Neural Network schematic (Cheng et al.,[2015)

progression by resembling the actual process. Many researchers used ANNSs to predict, model and optimise
biogas production from different substrates (Ghatak and Ghatakl, 2018; Almomani, |[2020; Neto et al., 2021).
ANNs employ data-driven high level modelling, however, without physics, it is less useful in terms of op-
timising physical parameters. Another disadvantage of ANNs is that by its nature of being data driven, it

disregards process kinetics.

3.1.5. The anaerobic digestion model no.1 (ADM1)

ADMI simulates the biological transformation of intricate biodegradable matter to CHy, CO, and other
inert by-products (Batstone et al., 2002). The structured model has several phases that describe biological
and physicochemical process reactions. The ADMI is a complex model well suited for simulation but has
significant limitations when it comes to optimisation and process control applications. The ADM1 model
simulates constant volume, completely mixed systems which is not the case in many anaerobic digestion

reactors especially when it comes to bigger systems.
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ADMI1 has physico-chemical steps integrated together with biological steps. 19 process reactions, 33
state variables in addition to 105 stoichiometry based relations and kinetic parameters (Batstone et al., 2002).
According to [Yu et al.| (2014), the complexity of the ADM1 model necessitates requirement of several
parameters, eventually leading to complicated reaction progression equations. Identification of parameters
and handling of these several equations can be very difficult. (Kleerebezem and Van Loosdrecht, 2006
highlighted issues to do with stoichiometric impreciseness, glitches in solids retention time, and absence
of restraints on thermodynamic bounds. However, due to the variations in the substrates under digestion
only a few parameters will considerably affect the output of the model. ADM1 modelling is complex and as
such an improved practicality is required when it comes to co-digesting substrates anaerobically (Xie et al.,
2016).

Modelling the biogas generation process will lead to improvement of the biogas yield by manoeuvring
into enhanced options for controlling the digestion process. Table 3] gives the key existing anaerobic diges-
tion models. It can be deduced from Table 3| that the dynamic model and the steady state model dominate in
the existing anaerobic digestion models. The hydrolysis kinetics are mainly of first order. The Monod and
the modified Monod are the prevailing growth kinetics. Another deduction that can be made from Table [3]is
that a lot of modelling has been done on sludge but only a few articles present research on organic wastes,
manures and aquatic biomass. Many diverse attributes and factors are able to inhibit biogas generation as
shown in the table. Inhibition is primarily influenced by nature of substrate and reaction conditions and/or

parameters to which the process is subjected to.
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3.2. Optimisation

According to the dictionary Rock.Holdings| (2019), to optimise is "to determine the maximum or mini-
mum values of (a specified function that is subject to certain constraints)". Hagos et al.| (2017) highlighted
that process optimisation and improvement of biogas production still needs more investigations to be done
and that the use of simulation ways and means can lead to realisation of substantial enhancement of biogas
yields. Diverse optimisation approaches are established in literature in a bid to obtain the best reaction
conditions, best reaction parameters and best substrate ratios for different feed stocks so as to enhance and
optimise the biogas production process.

The conventional method of optimisation of anaerobic digestion comprise of laboratory batch exper-
iments with different ratios of co-digestion feedstocks to assess the extent of digestion of the substrates.
Co-digestion of varied substrates has shown that an improved biogas production potential is achieved in
comparison to mono-digestion of single substrates (Volpi et al., 2021; Muenmee and Prasertboonyai, [2021}
Petrovic et al., [2021). ANNs, GAs, ant colony optimisation (ACO) and particle swarm optimisation (PSO)
are possible tools for simulating and optimising the anaerobic biogas generation process. ANNs and GAs
are some of the modern optimisation approaches applied to deal with complex biogas maximisation prob-
lems. [Palma-Heredia et al.| (2021) employed the ACO optimisation approach to anaerobic co-digestion.
According to their results, employment of the ACO algorithm proved to be a beneficial way for optimising
anaerobic digestion blends, leading to the effective simulation of various co-digestion optimisation scenar-
ios. (Kegl and Kralj, [2020) investigated the appropriateness and effectiveness of a gradient-based optimiser
for multi-objective anaerobic digestion process optimisation. Various optimisation problems were designed
and solved using this model to gain insights into the effectiveness of this strategy. The proposed optimisation
method was found to be extremely effective.

Genetic algorithms employ a random search algorithm that is created in an attempt to mimic the prin-
ciples of natural selection and genetics (Roetzel et al., |2019). They work with string structures, similar to
biological structures, that evolve over time and use a randomized but systematic exchanging of informa-
tion to follow the theory of survival of the fittest. As a result, a fresh batch of strings is generated in every
generation, using portions of the old batch’s fittest members. GAs are able to cope with parallelism and
complicated scenarios. They can be employed with an objective function that is static or dynamic, linear

or nonlinear, continuous or discontinuous, or with random noise (Yang, |2020). Since multiple offspring
19



in a population function as autonomous agents, the population will concurrently navigate the search space
in various multiple directions, and consequently, an optimal solution is arrived at. This function makes
parallelising algorithms for implementation much easier.

Linear programming approaches, response surface methodologies as well as simplex-centroid mixture
design and central composite design are also among the optimisation approaches which have been applied in
anaerobic digestion (Gil et al., 2019; Lu et al.,[2017). Prospects of enhancing biogas generation from varied
substrates such as water hyacinth, cow dung and municipal solid waste via the avenues of co-digestion and
use of optimisation tools and techniques are investigated herein. Table 4] shows a summary of some of the

key biogas optimisations which were done.
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As noted earlier on, mathematical and analytical optimisation techniques that can be applied to biogas
production include the linear programming approach, non-linear programming approaches, such as non-
linear model predictive control (NMPC), artificial intelligence theory approaches, such as ANNs, fuzzy
logic, GAs, PSO, ACO, simulated annealing and immunity algorithm. |Gaida et al. (2014) applied the
ADMI1 model biogas production. NMPC was used as the optimisation approach to control the constituency
and quantity of the feed. Huang et al.|(2016), carried out an investigation to concurrently maximise chemical
oxygen demand (COD,s¢) and biogas flow rate (Qg,). The authors reported that by using GA-ANN model,
an increased biogas was attained when compared to ANNs alone. |Garcia-Gen et al. (2014), used linear
programming optimisation approach to maximise methane production by way of determining the feedings
into the processes. The ADM1 model was used and the method was validated experimentally. Implimen-
tation was done in MATLAB, ’linprog’ was used to determine substrate blends and ’fiminbnd’ was used to
ascertain HRT that optimises methane production. The objective function was expressed as in equation (25))

Zf\il pMet; x CODt; X x;

maxfobjective = HRT (25)

According to the authors, the objective function was subjected to the following linear restrictions: "(i)
organic loading rate (OLR); (ii) total Kjeldahl nitrogen (TKN); (iii) moisture or liquid fraction; (iv) lipid
content; (v) total alkalinity; salinity as (vi) Na* concentration and (vii) K™ concentration; (viii) H,S content
in biogas; and (ix) effluent COD content".

Beltramo et al.|(2016), optimised biogas flow rate using the ACO approach, the ADM1 model was used
to generate data and the ANNs model was used for simulations. The ACO algorithm was used for variable

selection. The selection probability of a variable prob(n) was described as in equation (26])

p(n)

b(n) =
POt = o b

(26)

Most of the biogas production models presented and discussed in subsection (3.1 were barely used in
biogas optimisations. This can also be noted from Table ] Of the models that were applied, the ADM1
was applied more often followed by ANNs and then the first order kinetic model. The majority of the
reported researches on biogas optimisation were by way of laboratory experimental approaches. These

laboratory experiments would be under specific conditions which might not be universal to all subatrates
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and geographic locations. This eventually results in gaps and lack of confidence and reliability in their
data being used to commercialise biogas technologies. The authors of this current review work would like
to stress out and comment that there is a disjoint or rather a discontinuity between the biogas production
models developed to date and their respective application to optimise and control the the overall biogas

generation process progression with a prior objective to maximise the ultimate biogas yield.

4. Techno-economic analysis of anaerobic biogas production

A techno-economic assessment enables the creation of an investment and operational cost framework
for the estimation of biogas generation’s possible present and future economic sustainability. Informed
financial and technical decisions such as biogas plant size or scale of operation as well as commercialisation
prospects amongst other key considerations can be made based on techno-economic analysis.

Al-Wahaib1 et al.| (2020) produced biogas from a variety of food wastes and conducted a techno-
economic analysis to determine the financial feasibility of establishing a small-scale biogas plant. Economic
examination gave a break even at $0.2944/m?, with all pricing beyond that yielding a positive net present
value. The researchers noted that incorporation of waste management charge savings could have increased
the total savings.

A techno-economic investigation by |Oreggioni et al.| (2017), on bio-methane generation from agricul-
tural and food wastes indicated that pressure swing adsorption cycles gave 37% lower capital costs and a
10% lower average life-time cost when compared to solvent-based technologies. This indicates that biomass
processing, pretreatment and feeding techniques have a great impact on the overall techno-economic results.

Glivin et al.[(2018) carried out techno-economic studies on the installation of a biogas plant at an institu-
tion. Biogas production proved to be viable, with payback periods ranging from 1.65 to 0.61 years for cow
dung based biogas plants and 1.47 to 0.38 years for kitchen waste based biogas plants. It can be deduced
that the type of feedstock has a huge influence on the total biogas yield which will in turn implicate on the
economic parameters such as payback period, net present value, internal rate of return, among others.

Several other researchers investigated techno-economic aspects of anaerobic biogas production (Tan
et al., 2021; Imeni et al., 20205 Mahmod et al., 2021). However, the majority of the works were focussed
towards ascertaining if the process was feasible or not. The previous works lack the merging of the technical

and the economic aspects to come up with analytical models for the optimisation of the entire process. It is
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vital to examine the tradeoffs arising from the relationships between technical developments and financial
aspects in order to come up with an effective biogas production system. Optimising feedstock availability,
controlling and regulating process conditions, maximising biogas output through co-digestion, feeding in of
optimal substrate blend proportions and process stabilisation are among the technological aspects which are
lacking in previous research works and still need to be investigated in greater detail. Objectives of reducing
investment and operational costs as much as possible while increasing economic benefits are among the
economic considerations which need to be explored in depth.

Process designs should incorporate anticipated operational and maintenance cost evaluations as well as
the investment requirements for the entire biogas production facility. This will provide a concrete foundation
for techo-economic analysis. Dynamic linkages will be formed with regards to the variation of the different
techno-economic aspects with time leading to the development of informed anaerobic digestion modelling
and optimisation frameworks for biogas enhancement. Consequently, the techno-economic implications
will not only aid technology investors and financiers in decision making but will also guide research and
development in the anaerobic biogas production niche. As such, generation of multi-objective techno-
economic functions are imperative to the modelling and optimisation of anaerobic digestion.

This section concludes by by discussing the whole process of conducting techno-economic assessments
of typical anaerobic digestion projects as well as highlighting on how the analysis of costs and benefits is
done. Investment appraisal computations are carried out based on the technical parameters of the project in
order to ascertain the overal techno-economic viability of the project. The following procedure is suggested

by the authors:

1. The initial investment costs (/y) are determined basing mainly on the capital requirements of the
specific project. Capital requirements include the digester construction costs, biomass harvesting
equipment for use in cases where agricultural residues and aquatic bio-materials such as water hy-
acinth are among the substrates. Pretreatment equipment such as dryers and choppers can be included
to the capital requirements. Construction and erection costs of biogas plant infrastructure and other
ancillary facilities such as substrate storage compartments are included to the capital requirements
and are integral components of the initial investment costs.

2. Transport costs for ferrying feedstocks/substrates to the digesters are calculated and teken into consid-
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eration. The siting of most anaerobic digestion plants is usually done within the vicinity of feedstocks
and water. However, transport costs have to be factored in for cases whereby the resources have to be
ferried from some other locations to the biogas generation plant.

. The operation and maintenance (O&M) costs are ascertained. The O&M costs of anaerobic digestion
are a bit difficult to arrive at as these fluctuate with time and availability of replacement and/or refur-
bishment parts and accessories. As a rule of thumb a certain percentage of the initial investment costs
for instance 2% is taken to be the value of O&M costs.

. The price of biogas is prescribed. The price of fuel on the market has a huge bearing on the deter-
mination of the price of biogas. In many countries, the energy sectors have a regulatory board which
stipulates and governs fuel prices. However, it is worthwhile to set the selling price of biogas below
that of conventional fuels such as Natural Gas and Liquid Petroleum Gas (LPG) for the reason that
the conventional fuels are more efficient and as such for biogas to be competitive on the market its
price has to be relatively lower. Biogas generation costs generally range from USD 0.22 to USD
0.39 per cubic meter of methane for animal dung-based biogas, and from USD 0.11 to USD 0.50 per
cubic meter of methane for industrial waste-based biogas (International Renewable Energy Agency
(IRENA), [2017).

. Carbon dioxide emissions are dtermined and carbon credits are calculated. The Paris climate agree-
ment intends to keep global warming below 2 degrees Celsius and promote initiatives to keep it below
1.5 degrees Celsius (Intergovernmental Panel on Climate Change (IPCC), [2019). There are specific
limits which companies cannot exceed when it comes to greenhouse gas emissions. Carbon taxes
are in operation world-over whereby entities pay for the amount of carbon dioxide they produce and
emission trading schemes are operational creating a carbon market where businesses buy and sell
carbon credits. Entities that avoid carbon dioxide emissions sell their rights to those having higher
emission reduction costs (Hartmann, 2017). Proceeds from carbon credits are taken as benefits and
they positively influence the revenue of a company.

. The amount of bio-slurry/bio-fertilizer is determined. It is not all the biomass material fed into the
biogas reactor that is digested completely. The residue sludge normally referred to as sludge or bio-
slurry can be used as a bio-fertiliser as it is rich in nutrients. This bi-product of anaerobic digestion

can be sold to farmers and other interested stakeholders after drying it or in its wet form. Revenue is
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realised from selling this bio-fertiliser.
7. The Net Present Value (NPV), Internal Rate of Return (IRR) and Payback Period (#pp) among other
project appraisal criterion parameters are employed to ascertain the financial viability of the project

under study. The following formulae can be used in calculating the parameters highlighted:

e Net Present Value (NPV)
B-C
(1+rr

NPV:—JO+22
T 27)

=—Iy+ [PWAF x (B- ()]
where [, is the initial investment, B represents the benefits (revenue), n is the project life time,
r is the interest rate or discount rate, C represents the project costs, B-C is equivalent to the Net

Profit, PWAF is the Present Worth Annuity Factor which is given by:

1-( n
pwar = 12007 (28)
r
e Payback Period (7pp)
—In(1 - &)
tpp = ——CE7 (29)
PP In(1 + 1)
where CF = Annual cash flow = B-C
e Internal Rate of Return (IRR)
—r X NPV
IRR = r, + 2= 1 X NPV (30)

NPV, + NPV,

where r; is the initial discount rate, r, is a new assumed discount rate which brings the NPV
closer to zero, NPV, is the initial Net Present Value and NPV, is the new Net Present Value

arrived at using r,.

5. Research gaps and future perspectives

Co-digesting different substrates is reported to increase biogas output volumes owing to the optimistic
interactions created in the digestion medium, microbial variations in diverse substrates as well as provision

of missing nutrients by the co-substrates. Anaerobic co-digestion still remains largely unstudied for many
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varying substrates. Application of the co-digestion technology therefore needs close management since no
one customary laid out operating parameters and settings are practical for all organic biodegradable wastes.
Considering the availability of many different organic materials which can be feedstocks for co-digestion,
further research in enhancement and controlling of biogas production from varied substrate types should be
undertaken.

There is need of modelling and optimisation using specific substrates such as water hyacinth, cow dung
and municipal solid waste so as to sustainably deal with the issues of environmental sustainability as well as
energy demand and supply. This study notes that many previous works (Ferreira et al., 2021} |Oladejo et al.,
2020; Mukumba et al., [2019; Mahato, 2020), used arbitrary suppositions from a selection of uninformed
different mixing ratios in co-digestion. Optimisation of the anaerobic biogas production process needs to be
done so as to arrive at informed optimal substrate blend ratios and reaction parameters through co-digestion.
Mathematical modelling can help researchers and the entire biogas fratenity to optimise operations more
effectively and forecast biogas production in a variety of scenarios, conditions and/or constraints. The use
of modelling and simulation in conjunction with analytical tools such as those in MATLAB will go a long
way in planning, controlling, and predicting anaerobic co-digestions. The modelling and simulations can be
coupled to optimisation of different specific target objectives such as maximising biogas output, minimising
energy cost, minimising environmental detriments, amongst many others. The majority of the models in
literature lack this coupling and this needs to be deeply looked into.

A lot of research and development is yet to be done with respect to mathematical modelling and appli-
cation of optimisation tools in biogas production. As such it will be of interest to further develop, evaluate
and compare the empirical, biological and mathematical models with regards to biogas prediction and opti-
misation. In line with the development of models and optimisation of the biogas production process, a wide
spectrum of control options needs to be incorporated in the models in a bid to regulate the entire process for
better optimal gas yields. Some control systems and/or strategies are lacking in the overall anaerobic biogas
production optimisations. Incorporation of some simple controllers such as the on-off switching devices to
advanced ones like the proportional integral derivative (PID) devices and fuzzy logic among others can lead
to entire bio-process automation and enhancement.

The resultant AD process biogas outputs are dependant upon the amount, nature and standard of the

biomass fed into the system. Thus the overall optimal yields are affected by the time of the year and the
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environment from which the substrates are derived from since these dictate the amount and quality of the
same. Biogas production and optimisation models developed to date do not account for the geographical
(environmental) and seasonal (time) variation of substrates. This offers an opportunuty for research in this
direction.

This current study also highlights, from reviewing of previous works the necessity of accelerating inte-
gration of RETs into the existing energy supply mix. It is hereby reported that lots of research have been
done on hybridisation of solar, wind, diesel, grid and in other instances coupled with storage such as bat-
teries. However, the hybridisation of biogas with these and other conventional fuel supply alternatives like
liquid petroleum gas (LPG) and other distributed renewable energy supply sources to meet energy and/or
fuel demand is still at infancy in terms of research and development and as such is presented as an avenue
for possible further research work.

Most of the previous works majored on experimental investigations and prospects of optimising single
phase mono-digestion processes inclusive of the factors that affect the same. This agrees with llo et al.
(2021) who also gave demerits to the laboratory experimental approaches owing to inconsistency in specific
conditions under which the experiments are carried out. It is however realised in this study that research gaps
do exist in regard to optimisation of co-digestion processes using biogas production models incorporating
the concept of a multi-stage AD reaction mechanism inclusive of the factors that affect the same, mainly the
pH and temperature parameters. This is as well being presented herein as a future research work direction.

There is need of taking a multi-objective approach when it comes to the techno-economic analysis of the
anaerobic biogas production process. The modelling and optimisation will be more effective if all technical
and economic parameters and conditions are employed. Given the current bid to combat climate change
world-over, environmental aspects such as CO, equivalent emissions avoided can also be incorporated into
the overall techno-economic analysis and this will contribute immensely towards the research and develop-
ment of anaerobic biogas production technology.

The application of anaerobic digestion does not only tackle waste management issues, but also comes
with a new paradigm to energy generation. Anaerobic digestion, co-digestion in particular, has sparked a
lot of interest among scientists because of its good potential health implications, environmental merits, eco-
nomic advantages, and most importantly its enhanced waste-to-energy biogas generation yields (Van et al.,

2020). However, its adoption world over at large scale is still at infancy especially when it comes to the man-
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agement of solid wastes by municipalities among other commercial biogas production entities. Widespread
awareness of this technology needs to be extensively accelerated for commercial adoption worldwide given

its renewable nature and many other benefits.

6. Conclusions

The status, current trends and future perspectives in the field of biogas production with regards to co-
digestion, modelling, and optimisation were reviewed in this study. Co-digestion needs a great deal of
further research on varied feedstocks and optimal mix ratios. Modelling and optimisation incorporating co-
digestion feedstock seasonal variations is yet to be studied. Control of process conditions is key to achieving
optimal biogas. Hybridisation of biogas with conventional and non-conventional energy sources needs to
be explored in depth. The majority of research investigations are centred on mono-digestion. Coupling of

co-digestion, modelling, and optimisation needs significant further research and investigations.
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