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22

23 The Kruger National Park (KNP) is home to the last genetically viable, minimally managed 

24 population of African wild dogs (Lycaon pictus, wild dogs) in South Africa. Until 2004, this 

25 population remained stable, but since has been declining. In this study, we aimed to improve our 

26 understanding of the ecology of KNP wild dogs by estimating the relative contribution of 

27 different prey types to their diet across landscape types. Based on a Bayesian mixing model, we 

28 assessed wild dog diet and foraging preferences using stable isotope analysis (SIA). We sampled 

29 73 individuals from 40 packs found in six different landscape types. In thickets, packs 

30 predominantly prey on small browsing and mixed feeding species (accounting for ~73% of their 

31 diet), but occasionally hunt large grazers (~24%), and large browsers (~3%). In open landscape 

32 types where lions (Panthera leo) are more or less absent, such as in the Lowveld sour bushveld, 

33 wild dogs prey on large browsers and large grazers (~67%). Our results demonstrate that KNP 

34 wild dogs occupy a broader ecological niche than previously thought, with small browsers 

35 forming an integral part of their diet. We also present the first data describing differences in wild 

36 dog diet-tissue discrimination factors for tail hair and whiskers compared to respective stable 

37 nitrogen (δ15N) and carbon (δ13C) values obtained from feces of captive wild dogs, as well as 

38 from those of South Africa’s broader managed metapopulation. While these data should be 

39 considered preliminary, we suggest that until wild dog diet-tissue discrimination factors are 

40 calculated through a controlled feeding study, that the discrimination factors calculated for the 

41 grey wolf (Canis lupus) should be used for wild dog related isotope studies, rather than the often-

42 cited values for red foxes (Vulpes vulpes). 

43

44 Keywords: African wild dog; diet; feces; hair; isotopic discrimination; Kruger National Park; 

45 stable isotope analysis; South Africa; trophic ecology; whiskers.
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46 INTRODUCTION

47 African wild dogs (Lycaon pictus), hereafter wild dogs, are the most endangered 

48 carnivore in South Africa, and the second-most endangered carnivore on the African continent 

49 (Davies-Mostert et al. 2016). Due to an increasing human population, wild dogs have become 

50 patchily distributed across a fragmented landscape of conservation areas, with vast terrain 

51 previously used by wild dogs being transformed into agricultural, urban, and game-breeding 

52 areas (Mills et al. 1998; Creel and Creel 2002; Davies-Mostert et al. 2015). Major anthropogenic 

53 threats to the species include high rates of snaring by poachers, introduction of diseases from 

54 domesticated animals, road accidents, and direct persecution derived from conflict with wildlife 

55 farmers (Woodroffe et al. 2007a; Gusset et al. 2008; Woodroffe and Sillero-Zubriri 2020). 

56 Compounding these issues is that wild dogs naturally live in low densities, even when prey 

57 species are abundant, and are in direct competition with other intra-guild predators such as lions 

58 (Panthera leo) and spotted hyenas (Crocuta crocuta; Creel and Creel 2002; Woodroffe et al. 

59 2007a). This makes it difficult for packs to persist in most protected areas that also maintain high 

60 densities of other predator species. In these areas, wild dogs need to survive by resource 

61 partitioning and avoiding lions and spotted hyenas (Mills and Gorman 1997; Miller et al. 2013; 

62 Swanson et al. 2014), with the exception of Hluhluwe-iMfolozi Park (HiP) in South Africa, 

63 where both wild dogs and lions have maintained consistently high densities (Somers et al. 2017; 

64 Marneweck 2020).

65 In South Africa, efforts to minimize the extinction risk of wild dogs resulted in the wild 

66 dog managed metapopulation program being implemented in 1998. This program is aimed at 

67 creating a second, genetically-viable population of wild dogs outside of the last viable, relatively 

68 unmanaged population occurring within the Kruger National Park (KNP; Mills et al. 1998; 
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69 Davies-Mostert et al. 2015; Tensen et al.2019). Such management involves periodic 

70 translocation of wild dogs between game reserves that host packs to mimic natural dispersal 

71 events and gene flow as closely as possible, and avoid deleterious effects associated with a 

72 genetic bottleneck (Mills et al. 1998; Gusset et al. 2006). Overall, this approach has been 

73 successful in increasing the number of wild dogs in South Africa, with the managed 

74 metapopulation growing from 17 individuals in 1998 to 202 in 2005 (Davies-Mostert et al. 

75 2015). To date, the South African population remains small but somewhat stable at ~500 

76 individuals (Nicholson et al. 2020), while maintaining levels of genetic variability comparable 

77 with natural systems, with the current managed metapopulation maintaining ~95% of its 

78 heterozygosity (Tensen et al. 2019).

79 Of particular conservation concern is that wild dogs in the KNP, a population considered 

80 of global conservation and genetic significance (Creel et al. 2004; Tensen et al. 2016; Kuiper et 

81 al. 2018), are declining at ~3% per annum (Nicholson et al. 2020). Nicholson et al. (2020) 

82 therefore suggested that management actions to assist the KNP wild dog population be 

83 considered. Information on foraging preferences can aid in understanding species-specific animal 

84 behavior and physiological processes, as well as assist in structuring and implementing relevant 

85 conservation measures (Webster et al. 2002; West et al. 2006; Crawford et al.2008). For 

86 carnivores in particular, dietary information has traditionally been gathered by means of gut 

87 content analysis (Pezzo et al. 2003; Valdmann et al. 2005), from kill sites (Marucco et al. 2008; 

88 Webb et al. 2008), and the investigation of fecal contents for the remains of prey species 

89 (Darimont et al. 2004; Latham et al. 2013). Data derived from these methods have become the 

90 primary source of knowledge on the trophic ecology of African wild dogs (Creel and Creel 2002; 

91 van Dyk and Slotow 2003; Woodroffe et al. 2007b; Davies-Mostert et al. 2013). Such 
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92 approaches are not always logistically feasible, because they require long-term field excursions 

93 (Avenant and Nel 2002), which become increasingly difficult when investigating animals that 

94 occupy large home ranges (Bothma and Coertze 2004), such as wild dogs (Creel and Creel 

95 2002). The invasive nature of gut content analysis also is not appropriate when study species are 

96 of conservation concern (Darimont and Reimchen 2002), and observations of fecal contents may 

97 not always be reliable because prey items differ in their digestibility (Lockie 1959; Darimont and 

98 Reimchen 2002).

99 Stable isotope analysis (SIA) is a useful tool in trophic ecology, and has become 

100 increasingly popular as a means to complement traditional methods used to study community 

101 structure and predator-prey interactions (Roth and Hobson 2000; Codron et al. 2007; McLaren et 

102 al. 2015). Ratios of the stable isotopes of nitrogen (15N/14N or δ15N) and carbon (13C/12C or δ13C) 

103 are used frequently in such studies. Stable nitrogen isotope ratios change predictably with trophic 

104 level (e.g., isotopically light 14N is excreted in urine; DeNiro and Epstein 1981; Peterson and Fry 

105 1987), while stable carbon isotope ratios show very little change with trophic position and reflect 

106 sources of primary productivity (DeNiro and Epstein 1978; Vogel 1978). Stable isotope analysis 

107 is advantageous when examining metabolically inert tissue types (such as whiskers, hair, 

108 feathers, and nails), because dietary information from all assimilated food sources over the 

109 period of tissue growth is integrated (Roth and Hobson 2000; Voigt et al. 2014; McLaren et al. 

110 2015). Correctly used, SIA can be used to illustrate relatively non-biased links between primary 

111 and secondary consumers that otherwise are often challenging to demonstrate (Codron et al. 

112 2007). A critical limitation to such analyses is that there currently is little information regarding 

113 species-specific isotopic discrimination factors, which account for shifts in stable isotope ratios 

114 once dietary sources are assimilated into different consumer tissue types (McLaren et al. 2015).
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115 Based on data derived from direct observations of hunts, as well as scat analysis, wild 

116 dogs in the KNP have been reported to act as rate maximizing optimal foragers; specializing on 

117 impala (Aepyceros melampus) and kudu (Tragelaphus strepsiceros; Reich 1981; Mills 1992; 

118 Mills and Gorman 1997), and showing an affinity for thicket and woodland landscape types 

119 (Mills and Biggs 1993). Wild dog packs in another South African metapopulation managed 

120 reserve (HiP), use dense landscape types to ambush and trap prey, making smaller browser 

121 species amongst the most profitable to be killed (Krüger et al. 1999). Similarly, wild dogs in 

122 northern Kenya, have been shown to feed predominantly on a small browsing species such as 

123 Kirk’s dik-dik (Madoqua kirkii), with this species making up ~70% of their diet outside of 

124 protected areas (Woodroffe et al. 2007b).

125 In this study, we aimed to improve our understanding of the trophic ecology of KNP wild 

126 dog packs by assessing the relative contribution of different prey groups to their diet across 

127 landscape types. These landscape types have been defined based on specific geomorphology, soil 

128 composition, climate, vegetation pattern and associated fauna, and form defined units for 

129 management practices in the KNP (Gertenbach 1983). This was undertaken using a Bayesian 

130 isotope mixing model based on the isotopic analysis of tail hair samples from 73 individuals 

131 across 40 packs collected between January 2009 and December 2018. To our knowledge, there 

132 currently is only one published study using SIA as it pertains to the trophic ecology of wild dogs 

133 (Crossey et al. 2020); in the current study we thus present preliminary estimates of wild dog diet-

134 tissue isotopic discrimination factors. These estimates, based on samples collected from captive 

135 wild dogs, as well as from animals forming part of South Africa’s managed metapopulation 

136 outside of the KNP, were calculated using feces as a proxy of dietary content not integrated by 

137 individuals (Crawford et al. 2008), and drawing comparisons between the fecal values obtained 
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138 with both tail hair and whisker δ15N and δ13C values, respectively. We predicted that wild dog 

139 diet would differ between landscape types, as the profitability of hunting prey species varies with 

140 environmental factors, and that wild dog diet-tissue discrimination factor estimates would be 

141 similar to those calculated for grey wolves (Canis lupus; McLaren et al. 2015), the closest 

142 phylogenetic relative of wild dogs (Gopalakrishnan et al. 2018) for which we could find 

143 published data.  

144

145 MATERIALS AND METHODS

146 Ethical clearance and sampling permits.— This study was undertaken with the approval 

147 of the University of Pretoria Animal Ethics Committee (Ethics clearance number: EC015-18), 

148 and followed the guidelines of the American Society ofMammalogists (ASM) pertaining to 

149 ethical research involving live animals (Sikes et al. 2016). Hair, whisker and fecal samples from 

150 wild dogs within the managed metapopulation were obtained with permission from the 

151 Endangered Wildlife Trust (EWT; data sharing agreement number: 270). All hair samples 

152 obtained from the SANParks Biobank at Skukuza in KNP were acquired througha data sharing 

153 agreement, as well as with a Threatened or Protected Species Ordinary Permit (Permit number: 

154 O 27732).

155 Sampling sites and study animals.—The KNP (covering ~2,000,000 ha) is situated in the 

156 Lowveld semi-arid savanna in the north-eastern corner of South Africa (Fig. 1). At ~300m above 

157 sea level, rainfall is highly seasonal and mainly occurs during the austral summer (October – 

158 March), with April – November being dry. Mean annual rainfall varies from between 500 – 700 

159 mm in the south of the park, to between 300 – 500 mm in the north (Venter et al. 2003). We 
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160 obtained tail hair samples from 73 wild dogs across 40 different packs (Table 1), which were 

161 stored at the SANParks Skukuza Biobank, KNP. These samples represent the period between 

162 January 2009 and December 2018, and were collected opportunistically throughout the park. 

163 Global positioning system (GPS) co-ordinates were recorded for each wild dog sampled. Wild 

164 dogs are co-operative hunters, hunting and feeding as a group (Creel and Creel 2002), and 

165 individuals within packs feed on the same prey items. We therefore considered packs, rather than 

166 individuals, as our sampling units. Packs were determined to be independently sampled based on 

167 the collection of samples from known individuals. Each wild dog pack sampled was assigned to 

168 a landscape type (Gertenbach 1983; Table 1) based on the GPS co-ordinates indicating their 

169 sampling location (Fig. 1).

170 We carried out a preliminary investigation into wild dog diet-tissue discrimination factors 

171 using opportunistically collected whisker, tail hair, and fecal samples from 13 wild dogs 

172 immobilized either for translocation or routine veterinary purposes from April to July 2018. 

173 These individuals were all sampled in South Africa, and included captive wild dogs from the 

174 Johannesburg Zoo (n=3), Gauteng Province; temporarily captive wild dogs being readied for 

175 release into larger reserves in short-term holding facilities at Zimanga Private Game Reserve 

176 (n=4) and Tembe Elephant Park (n=1; both in KwaZulu Natal Province); and free ranging wild 

177 dogs from Madikwe Game Reserve (n=1), North West Province, and HiP (n=4) in KwaZulu 

178 Natal.  To ensure a minimally invasive means of sampling, samples were collected by trimming 

179 the tail hair/whisker as close to the base of the follicle as possible. Approximately 5g of fecal 

180 material from each of these wild dogs was collected and frozen within 24 h post-defecation at -

181 20°C until further processing.
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182 Stable isotope analysis.—All frozen fecal samples were lyophilized, then ground and 

183 sieved using a metal strainer (mesh size: 20μm). This was undertaken to separate fecal powder 

184 from undigested material, such as large pieces of bone, hair, and grass (Fiess et al. 1999), which 

185 potentially could interfere with fecal stable isotope values. Whisker and tail hair samples were 

186 cleaned by suspending them in a 2:1 chloroform: ethanol solution in an ultrasonic bath for 15 

187 minutes. The solvent then was decanted, and samples dried overnight at 70°C. Fecal powder, tail 

188 hair, and whiskers (whiskers sampled from base to tip, up to a maximum of six segments) were 

189 weighed as aliquots of ~0.4 – 0.6 mg using a micro-balance (Mettler Toledo Mk5; Mettler 

190 Toledo, Columbus, Ohio), and placed in tin capsules pre-cleaned in toluene. Samples were 

191 combusted at 1020°C in an elemental analyzer (Flash EA1112 Series), coupled to a Delta V Plus 

192 stable light isotope ratio mass spectrometer via a ConFlo IV system (all equipment supplied by 

193 Thermo Fisher, Bremen, Germany). Two laboratory running standards and a blank sample were 

194 run after every 11 unknown samples (Merck Gel and DL-Valine). These running standards are 

195 calibrated against international standards (IAEA-CH-3, IAEA-CH-6, IAEA-CH-7, IAEA N-1, 

196 IAEA N-2, IAEA NO-3) produced by the International Atomic Energy Association (IAEA), and 

197 NBS22 (produced by the United States National Bureau of Standards). The precision for δ15N 

198 was <0.05‰, and <0.06‰ for δ13C. All results are referenced to Vienna Pee Dee Belemnite for 

199 carbon isotope values, and to air for nitrogen isotope values (Bond and Hobson 2012). Results 

200 are expressed in delta notation using a per mille scale (‰) using the following standard equation 

201 (Coplen 2011):

202 δX = [(Rsample/Rstandard)-1]

203 (where, X= 15N or 13C and R represents 15N/14N or 13C/12C, respectively).
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204 Statistical analyses.—Values for δ15N and δ13C from tail hair and feces were obtained 

205 from samples run in duplicate. Whisker samples yielded three to six sub-sampled segments 

206 depending on the whisker length/density.  We used a one-way analysis of variance (ANOVA) 

207 (Scheffe 1999), followed by Holm-Sidak’s pair wise t-tests (Wenge and Romano 2007) to test 

208 for differences in δ15N and δ13C signatures between tail hair, whiskers, and fecal samples from 

209 the same individual. Preliminary indicators for wild dog diet-tissue discrimination factors were 

210 calculated using the mean ± standard deviation (SD) of δ13C and δ15N values calculated for each 

211 sample type, with mean δ13C and δ15N for tail hair and whiskers subtracted from respective fecal 

212 values (as a proxy of diet; Crawford et al. 2008), to give isotopic diet-tissue discrimination 

213 estimates (Table 2). Differences in mean δ15N and δ13C tail hair values from wild dog packs 

214 sampled in different landscape types in the KNP also were tested using a one way ANOVA 

215 (Scheffe 1999), followed by Holm-Sidak’s pair wise t-tests (Wenge and Romano 2007) to isolate 

216 which values from specific landscape types significantly differed from others. Statistical 

217 significance was set at alpha (α) = 0.05 and inferred at P<0.05. We computed these statistical 

218 analyses using algorithms in Sigma Plot Version 14.0 (Systat Software 2017).

219 Isotopic discrimination factor estimates.—Our preliminary isotopic discrimination 

220 results, calculated from mean δ13C and δ15N values for tail hair subtracted from respective fecal 

221 values, suggest that there is an ~ +4.4‰ difference in δ13C, and +1.6‰ difference in δ15N values 

222 between wild dog feces and tail hair. However, these results are not fully representative of total 

223 dietary information integrated over the period of tail hair growth, with feces only exhibiting a 

224 snapshot of short-term dietary information. In addition, the growth rates for wild dog whiskers 

225 and tail hair are currently unknown, and these data should therefore be interpreted with caution. 

226 We could also not account for differences in the isotopic composition of wild dog diet across 
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227 geographic locations, as well as any variation in diet between individuals sampled in this portion 

228 of the study (eight of which we sampled in captivity and five of which were free-ranging). For 

229 this reason, we used isotopic discrimination factors from the closest phylogenetic relative of the 

230 wild dog (the grey wolf), for which published data were available (McLaren et al. 2015). Isotopic 

231 diet-tissue discrimination factors of +4.3‰ for δ13C and +3.1 for δ15N, as calculated for wolf hair 

232 over a four-month controlled feeding study were thus applied for respective tail hair values in 

233 our study (McLaren et al. 2015).  

234 Stable isotope analysis in R (SIAR).—In order to assess the relative contribution of prey 

235 types to wild dog diet across landscape types in the KNP, we used the package Stable Isotope 

236 Analysis in R (SIAR) version 4.1.3 (Parnell and Jackson 2011) in the software program R (R 

237 Core Team 2016). The SIAR package fits data on animal isotopes to their dietary habits using a 

238 Bayesian isotope mixing model. This is based on a Gaussian likelihood, solving for the most 

239 likely set of dietary proportions when given the isotopic ratios in a set of possible food sources 

240 and a set of consumers (Parnell and Jackson 2011). Upper and lower estimates for the proportion 

241 of prey groups contributing to wild dog diet in the different landscape types are reported with a 

242 95% confidence interval, and illustrations were produced using Sigma Plot Version 14.0 (Systat 

243 Software, San Jose, CA, USA).

244 Published data for different KNP prey species, classified into isotopically distinct (δ13C 

245 and δ15N) prey groups, characterizing the isotopic composition of a predator’s diet, were used in 

246 the development of our model (Table 2). These data were obtained from Codron et al. (2007), 

247 with prey groups from KNP categorized as follows: 1) C3 large-bodied browsers (>100 kg, 

248 comprising southern giraffe, Giraffa camelopardalis; and kudu, Tragelaphus strepsiceros); 2) C3 

249 small-bodied browsers (<100 kg, including bushbuck, Tragelaphus scriptus; steenbok, 
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250 Raphicerus campestris; and grey duiker, Sylvicapra grimmia); 3) C4 large-bodied grazers 

251 (Burchell’s zebra, Equus burchellii; African buffalo, Syncerus caffer; blue wildebeest, 

252 Connochaetes taurinus; waterbuck, Kobus ellipsiprymnus; reedbuck, Redunca arundinum; and 

253 sable antelope, Hippotragus niger); and 4) C3/C4 mixed feeding impala, Aepyceros melampus, as 

254 the most abundant and predominant mixed feeding herbivore found in the KNP. 

255 For the SIAR, we calculated mean and SD δ13C and δ15N values for wild dog packs 

256 sampled in different landscape types of the KNP (Gertenbach 1983). This resulted in wild dog 

257 packs being grouped into one of the following six separate categories: i) those sampled in 

258 Phalaborwa sandveld (n = 1); ii) Mixed Combretum/Terminalia sericea woodland (mixed 

259 woodlands; n = 12); iii) Lowveld sour bushveld (n = 5); iv) Malelane mountain bushveld (n = 8); 

260 v) Thickets of the Sabie and Crocodile River (thickets; n = 13); and vi) Sclerocarya birrea 

261 caffra/Acacia nigrescens savanna (savanna; n = 1; Gertenbach 1983; Table 1; Fig. 1). Packs from 

262 the Phalaborwa sandveld and Sclerocarya birrea caffra/Acacia nigrescens savanna were 

263 excluded from analyses in SIAR as the sample size was too small (n = 1 in each case) to estimate 

264 intra group variance.

265

266 RESULTS

267 We found statistically significant differences between both the δ15N (F2,36= 8.49; n=13; 

268 P<0.05) and δ13C (F2,36= 50.49; n=13; P<0.05) values obtained from the different biological 

269 sample types. Tail hair and whiskers did not significantly differ either in their δ15N values 

270 (t11=0.33; n=13; P>0.05) or δ13C values (t11=0.22; n=13; P>0.05), but had significantly different 

271 δ13C (tail hair: t11=8.81; n=13; P<0.05; whisker: t11=8.59; n=13; P<0.05) and δ15N (tail hair: 
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272 t11=3.72; n=13; P<0.05; whisker: t11=3.39; n=13; P<0.05) values compared to the respective 

273 values obtained from fecal matter. Our preliminary wild dog isotopic diet-tissue discrimination 

274 estimates were +4.4‰ and +4.3‰ for tail hair and whisker δ13C values, respectively, as well as 

275 +1.6‰ and +1.4‰ for respective δ15N values (Table 3). 

276 Stable isotope results (mean ± SD) obtained from wild dogs sampled in the different KNP 

277 landscape types are summarized in Table 1. Our results showed significant differences in δ15N 

278 (F3=11.62; n=38; P<0.01) values between wild dog packs found in the different landscape types 

279 of KNP, but δ13C values did not differ significantly for wild dog packs across landscape types 

280 (F3=0.41; n=38; P>0.05). Differences in δ15N values were only significant for wild dogs from 

281 Lowveld sour bushveld versus those occurring in mixed woodlands (t4,11=5.13; n=17; P<0.05), 

282 thickets (t4,12=5.41; n=18; P<0.01), and Malelane mountain bushveld (t4,6=3.03; n=12; P<0.05), 

283 with all other pair wise comparisons yielding P>0.05.

284 Estimates for the proportion of prey groups contributing to wild dog diet in the different 

285 landscape types are reported with a 95% confidence interval (Fig. 2). Our results show distinct 

286 differences in wild dog diet across KNP landscape types. Differences in the proportion of each 

287 prey group related to the landscape type within which wild dogs were sampled were largest for: 

288 i) Large browsers in thickets (~3%) and mixed woodlands (1-3%) versus Lowveld sour bushveld 

289 (31 – 33%); ii) Small browsers, which were lowest in the Lowveld sour bushveld (21 – 23%) and 

290 highest in thickets (39 – 40%); iii) Large grazers, which varied from 7– 8% for wild dogs 

291 sampled in mixed woodland, to 23 – 24% in both thicket and Malelane mountain bushveld, 

292 respectively; and iv) Impala, which was lowest for packs sampled in Lowveld sour bushveld (15 

293 – 17%) and highest in mixed woodland (61 – 62%; Fig.2). 
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294 DISCUSSION

295 Diet-tissue isotopic discrimination estimates.—McLaren et al. (2015) demonstrated that 

296 grey wolf whiskers and guard hairs show stable carbon diet-to-tissue isotopic discrimination of 

297 +4.31 and + 4.25‰, with nitrogen diet-tissue isotopic discrimination factors of +3.05 and 

298 +3.09‰, respectively. Our preliminary wild dog diet-tissue discrimination estimates for carbon 

299 closely match those of grey wolves for both whiskers (+4.3‰) and hair (+4.4‰). The 

300 discrimination factors for nitrogen calculated in our study (+1.4 for whiskers and +1.6 for tail 

301 hair) are two times lower than those obtained for grey wolves. As diet composition ultimately 

302 determines the source of amino acids for tissue synthesis, and subsequent carbon and nitrogen 

303 discrimination factors (Martínez del Rio et al. 2009; Parng et al. 2014), we speculate that 

304 variation in lipid proportion and protein quality in our wild dogs’ diet may explain the 

305 differences in the respective nitrogen discrimination factors (Caut et al. 2009).

306 We also consider that there are species-specific differences in the physiological processes 

307 that affect isotopic fractionation. In particular, variability in δ15N values is known to be greater 

308 for individuals from different species raised on the same diet, than for individuals of the same 

309 species raised on a different diet (DeNiro and Epstein 1981). The selection of discrimination 

310 factors can influence estimated diet proportions when using Bayesian mixing models (Derbridge 

311 et al. 2012). As a result, taxon-, tissue-, and diet-specific discrimination factors for each study 

312 species should be determined through controlled feeding studies (Caut et al. 2009; McLaren et al. 

313 2015). Based on the close phylogenetic relationship between wild dogs and grey wolves 

314 (Gopalakrishnan et al. 2018), we are confident in our choice of isotopic discrimination factors for 

315 grey wolves, over the commonly cited values for captive red foxes (Vulpes vulpes; Roth and 

316 Hobson 2000). We therefore suggest that grey wolf isotopic discrimination factors (McLaren et 
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317 al. 2015) be used for future studies attempting to address wild dog-based SIA questions, at least 

318 until wild dog-specific diet-tissue discrimination factors can be more reliably calculated.  

319 Dietary differences.—It has been suggested that wild dogs in KNP mainly prey upon 

320 impala and kudu (the most abundant medium-to-large sized prey in the park; Reich 1981; Mills 

321 1992; Mills and Gorman 1997). Our results suggest that prey preferences of wild dogs in KNP 

322 differ significantly across their used landscape types. Marneweck et al. (2019) calculated home 

323 range sizes for 19 of the packs included in our study over the same period as our sampling was 

324 undertaken. The data presented by these authors show that the packs we sampled maintain home 

325 ranges that include several different landscape types outlined by Gertenbach (1983). It may 

326 therefore be the case that the landscape type within which we sampled wild dog packs is not the 

327 only landscape type used by these packs while hunting. Despite the possibility for this overlap, 

328 and the high likelihood that packs spend an unequal amount of time either moving through or 

329 hunting in different landscape types, our results indicate significant variation in the diet of wild 

330 dogs depending on the landscape type where they were sampled.

331 Growth and isotopic turnover rates for wild dog hair have not been investigated. 

332 However, McLaren et al. (2015) demonstrated that grey wolf hair does not grow continuously, 

333 growing more slowly in the period from 60 – 120 days than from days 0 – 60. In addition, these 

334 authors demonstrated that grey wolf hair grown over a 60-day period exhibited significantly 

335 different δ13C values compared to day zero, but a significant difference could not be detected 

336 between days 60 – 120. Assuming that wild dog hair grows in a similar fashion to that of grey 

337 wolves, the stable isotope values of wild dog hair represent a long-term dietary signal, and this is 

338 representative of the average cumulative diet of packs (thus elucidating their most commonly 

339 consumed prey species).The model we generated predicted that large browsers (predominantly 
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340 kudu in the case of wild dogs (Mills 1992; Mills and Gorman 1997; Creel and Creel 2002), and 

341 impala combined contribute 50% or more to wild dog diet in both mixed woodland and Lowveld 

342 sour bushveld. Whereas a combination of small browsers and large grazers comprise up to 55% 

343 and 64% of wild dog diet in Malelane mountain bushveld and thicket, respectively.

344 In our study, the highest number of packs sampled in a single landscape type were found 

345 in thicket (13), with mixed woodland a close second (12). In thicket, our model predicts that 

346 small browsers (~40%) contribute almost as much as impala (~33%) to wild dog diet. This is 

347 congruent with the results of Krüger et al. (1999), who found that in HiP, nyala (Tragelaphus 

348 angasii, a mixed-feeder similar to impala), as well as red duiker (Cephalophus natalensis), and 

349 bushbuck (both browsers), are the most profitable species to be targeted in dense habitat types. 

350 This comes as the profitability of prey types differ with various factors (such as the size and 

351 vulnerability of  prey across different landscape types), with wild dogs adjusting their prey 

352 selection based on ease of prey-capture (Reich 1981). In dense habitats in HiP, wild dogs use 

353 ambush techniques to flush prey, and chases seldom exceed 1 km (Krüger et al. 1999; similar 

354 behavior has also been recorded for packs in the Selous Game Reserve in Tanzania—Creel and 

355 Creel 1995). The higher proportion of small browsers consumed by packs sampled in KNP 

356 thickets may also be a result of impala behavior, because they are known to avoid dense habitat 

357 types due to an increased risk of predation (Ford et al. 2004). Such a reliance of wild dogs on 

358 small browsers as a major part of their diet has not been reported previously for packs in the 

359 KNP. These results are rather similar to those for wild dogs in northern Kenya, where Woodroffe 

360 et al. (2007b) showed that packs living outside of protected areas feed predominantly (~70%) on 

361 Kirk’s dik-dik (a small browsing antelope ~15% that of a wild dog’s body weight), with impala 

362 estimated to be the second most consumed species in these areas. The hunting of small browsing 
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363 prey species in thicket and dense vegetation types could also prove beneficial if KNP packs are 

364 adopting similar hunting strategies to those recorded by Hubel et al. (2016) for wild dog packs in 

365 dense habitat types in Botswana. These authors suggested that a hunting strategy that makes use 

366 of several simultaneous, opportunistic chases, where packs pursue multiple smaller prey items, 

367 may be the key to their hunting success in closed habitat types. 

368 We found that large grazers make up ~24% of wild dog diet for packs sampled in the 

369 dense thicket landscape type. Creel and Creel (2002) demonstrated that wild dogs in Selous 

370 Game Reserve exhibit prey preferences based on pack size, with smaller packs disinclined to 

371 hunt larger prey such as Burchell’s zebra and blue wildebeest, but larger packs hunting blue 

372 wildebeest proportionately to the rate at which they encountered them. These authors reported 

373 that in 85% of the hunting incidences they observed there were successful kills when wild dogs 

374 chased their prey into dense vegetation. This most likely is because fleeing prey must make 

375 decisions as to the best route around an obstacle, in some cases freezing altogether, whereas wild 

376 dogs, which often are more agile, are able to follow the exact line taken by their target without 

377 needing to make independent decisions (Estes and Goddard 1967; Creel and Creel 2002). The 

378 use of dense vegetation as a potential obstacle for prey is likely a key factor assisting some KNP 

379 wild dog packs to hunt large grazers in these areas. This is not surprising because wild dogs have 

380 been known to kill prey species as large as eland (Taurotragus oryx; an animal weighing on 

381 average >400 kg) by using man-made fences and structures as a means of trapping prey (van 

382 Dyk and Slotow 2003; Davies-Mostert et al. 2013).

383 Wild dogs hunt for~3.5 hours per day, but would need to increase their hunting activity to 

384 12 hours per day to meet energy requirements should they lose a quarter of their food to 

385 kleptoparasitism (Gorman et al. 1998). This poses a serious risk to wild dogs, which naturally 
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386 live in low densities, and show a negative relationship in density as hyena and lion numbers 

387 increase (Fanshawe and Fitzgibbon 1993; Creel and Creel 1996; Mills et al. 1998). Wild dogs in 

388 KNP lose a large number of kills to kleptoparasitism by spotted hyenas and lions, particularly in 

389 open habitats where visibility is good (Kruuk 1972; Fanshawe and Fitzgibbon 1993). In densely 

390 wooded areas both in Selous Game Reserve and KNP, however, spotted hyenas are rarely able to 

391 take food from wild dog packs (Mills and Biggs 1993; Creel and Creel 1995). Hunting in 

392 thickets in the KNP likely plays the dual role of allowing wild dogs to manage their energy 

393 requirements through opportunistic and ambush hunting strategies, where chase durations are 

394 reduced, while simultaneously avoiding kleptoparasitism by spotted hyenas and lions (Davies et 

395 al. 2021). In mixed woodland, where visibility is greater than in thickets, but still poor enough to 

396 confer an advantage in kleptoparasitism avoidance, our model shows that wild dogs are acting as 

397 rate maximizers. Here, it appears that packs are trading-off the benefits of opportunistic hunting, 

398 and instead acting as foraging specialists, hunting the most abundant medium-to-large-sized prey 

399 species available (Ginsberg and Macdonald 1990), with impala comprising ~62% of their diet. 

400 As seen for the packs sampled in thicket, small browsers still make up a sizable portion of wild 

401 dog diet for packs sampled in the mixed woodland landscape type (26-27%).  

402 Approximately 39% of natural pup mortality, and 43% of natural adult wild dog mortality 

403 in KNP is caused by lions (van Heerden et al. 1995). In addition, Mills and Gorman (1997) 

404 demonstrated that KNP wild dogs avoid habitats chosen by lions, and Swanson et al. (2014) 

405 showed declines in the wild dog population of the Serengeti National Park, Tanzania, as lion 

406 numbers tripled between 1966 and 1998. Lions tend to select their habitat based on the density of 

407 their favoured prey (blue wildebeest, buffalo, and Burchell’s zebra), which has resulted in KNP 

408 lion prides showing a strong affinity for savanna, where these prey species are abundant 
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409 (Gertenbach 1983; Mills and Gorman 1997; Marneweck et al. 2019). It therefore is not surprising 

410 that we only were able to collect a single sample from a wild dog in open savanna, with 

411 Marneweck et al. (2019) finding no wild dog home ranges along the eastern boundary of the 

412 KNP, and these areas being almost completely avoided by wild dog packs.

413 As the name suggests, the Lowveld sourveld is characterized by the presence of sour 

414 grass species, such as Hyperthelia dissolute, and generally is avoided by buffalo (Gertenbach 

415 1983). In this landscape type, where lion density is comparatively lower than in savanna (Mills 

416 and Gorman 1997), packs that we sampled seem to predominantly feed on large browsers (31 – 

417 33%; Mills 1992; Mills and Gorman 1997; Creel and Creel 2002), and large grazers (~34%). 

418 Small browsers still make up a substantial proportion of their diet (up to 23%), but it is likely 

419 that in the relative absence of lions, wild dogs find it more profitable to hunt larger prey species 

420 more regularly than smaller species, particularly if their pack size is large enough (Creel and 

421 Creel 1995; Courchamp and Macdonald 2001). Mills and Gorman (1997) demonstrated that 

422 Lowveld sour bushveld and Malelane mountain bushveld both are preferred by KNP wild dogs, 

423 despite impala showing no preference for these landscape types. They suggested that the absence 

424 of impala is countered by the presence of kudu (the second-most conspicuous prey species) in 

425 both of these landscape types. Our model supports these findings for the Lowveld sour bushveld, 

426 indicating that kudu make up a sizeable portion of wild dog diet in this landscape type (31 – 

427 33%), but also suggests that the presence of small browsers (29 – 31%) may make up for the 

428 fewer impala being present in the Malelane mountain bushveld.

429 Rogers et al. (2020) showed that SIA modelling approaches that analyze whole hair 

430 samples, and not serially sectioned tissue segments, are unlikely to overestimate dietary niche 

431 breadth, but have the potential to underestimate niche breadth estimates for species occupying 
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432 broad isotopic niches, and which exhibit temporal variations in diet. Wild dogs exhibit temporal 

433 variation in diet, both seasonally, and particularly during droughts (Creel and Creel 2002; 

434 Skinner and Chimimba 2005). We, therefore, are confident in the accuracy of our model’s 

435 prediction that KNP wild dogs occupy a broader dietary niche than previously reported. 

436 However, our results may represent an under-estimate of the breadth of wild dog foraging 

437 preferences in the park. We suggest that such preferences may be better elucidated using wild 

438 dog-specific diet-tissue discrimination factors (as well as hair and whisker growth rates), 

439 whereafter SIA can be more readily integrated with other traditional sampling methodologies for 

440 monitoring the species. 

441 The results of our study show a higher level of adaptability in the foraging behavior of 

442 wild dogs in KNP than previously reported, with small browsers comprising a greater percentage 

443 of wild dog diet than was originally thought. These results may be considered preliminary, 

444 because investigations into specific wild dog diet-tissue discrimination factors could improve the 

445 robustness of the assumptions upon which our model were based. 

446
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649

650

651 Fig. 1.—Landscape types of the Kruger National Park, South Africa (Gertenbach 1983) in which 

652 African wild dog (Lycaon pictus) packs were sampled. Star symbols indicate the location where 

653 each pack was sampled and lines indicate the presence of tarred roads in the Park. 

654
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656 Fig. 2.—Stacked bar plots reporting the upper and lower 95% confidence intervals of the 

657 estimated proportion of prey species consumed by African wild dog (Lycaon pictus) packs 

658 sampled in different landscape types in the Kruger National Park, South Africa (Gertenbach 

659 1983). 

660

661

662

663
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665 Table 1.—African wild dog (Lycaon pictus) tail hair carbon (δ13CVPDB) and nitrogen (δ15NAir) 

666 stable isotope values (mean ± SD) calculated for 40 packs sampled in different landscape types 

667 (Gertenbach 1983) in the Kruger National Park, South Africa.  

Pack tissue data

δ13CVPDB (‰) δ15NAir (‰)Landscape type Wild dogs 

sampled (n)

Packs 

sampled (n) Mean SD Mean SD

Mixed Combretum/

Terminalia sericea 

woodland

25 12 -14.7 2.0 +11.4 0.6

Lowveld sour bushveld 7 5 -15.1 0.7 +9.2 0.9

Malelane mountain 

bushveld

10 8 -15.2 1.2 +10.6 1.2

Thickets of the Sabie & 

Crocodile River

27 13 -15.2 1.0 +11.5 0.7

Sclerocarya birrea 

caffra/Acacia nigrescens 

savanna

1 1 -16.5 - +11.7 -

Phalaborwa sandveld 3 1 -16.3 0.2 +12.3 0.2

668
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669 Table 2.—Converted muscle estimate carbon (δ13CVPDB) and nitrogen (δ15NAir) stable isotope 

670 values (mean ± SD) calculated for presumptive prey species of African wild dog (Lycaon pictus) 

671 packs in the Kruger National Park, South Africa.  *Data for prey species were obtained from hair 

672 samples collected and analyzed by Codron et al. (2007), and categorized into: Large browsers 

673 (southern giraffe, Giraffa camelopardalis, and kudu, Tragelaphus strepsiceros); Small browsers 

674 (bushbuck, Tragelaphus scriptus; steenbok, Raphicerus campestris; and grey duiker, Sylvicapra 

675 grimmia; and Large grazers (Burchell’s zebra, Equus burchellii; African buffalo, Syncerus 

676 caffer; blue wildebeest, Connochaetes taurinus; waterbuck, Kobus ellipsiprymnus; reedbuck, 

677 Redunca arundinum; and sable antelope, Hippotragus niger). 

Converted muscle estimates

δ13CVPDB (‰) δ15NAir (‰)Prey species Hair samples (n)

Mean SD Mean SD

Large browsers 26 -24.6 1.2 +5.8 2.0

Small browsers 8 -24.8 0.9 +7.2 2.4

Large grazers 100 -12.2 0.8 +6.7 1.1

Aepyceros melampus 42 -17.1 3.3 +8.0 2.1

678
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679 Table 3.—Calculated carbon (δ13CVPDB) and nitrogen (δ15NAir) stable isotope values (mean ± 

680 SD) for different biological tissue types (feces, tail hair, and whiskers) and accompanying diet-

681 tissue discrimination factor estimates for 13African wild dogs (Lycaon pictus) from South 

682 Africa.

δ13CVPDB (‰) δ15NAir (‰)Biological 

tissue

n

Mean SD Mean SD

δ13C diet-tissue 

discrimination 

factor estimate

δ 15N diet-tissue 

discrimination 

factor

estimate

Feces 13 -17.6 1.6 +11.0 1.2 - -

Tail hair 13 -13.2 1.3 +12.6 1.1 +4.4 +1.6

Whiskers 13 -13.3 0.8 +12.4 0.9 +4.3 +1.4

683

684
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Landscape types of the Kruger National Park, South Africa (Gertenbach 1983) in which African wild dog 
(Lycaon pictus) packs were sampled. Star symbols indicate the location where each pack was sampled and 

lines indicate the presence of tarred roads in the Park. 
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Stacked bar plots reporting the upper and lower 95% confidence intervals of the estimated proportion of 
prey species consumed by African wild dog (Lycaon pictus) packs sampled in different landscape types in the 

Kruger National Park, South Africa (Gertenbach 1983). 
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