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Abstract 
In most applications, parametric monitoring schemes are used to monitor the majority of 
industrial and non-industrial processes in order to improve the quality of the outputs or services. 
However, parametric monitoring schemes are known to underperform when the normality 
assumption is not met or when there is not enough information about the symmetry or 
asymmetry nature of the process underlying distribution. Hence, in this paper, a new 
nonparametric Phase II Shewhart-type double sampling (DS) monitoring scheme based on the 
precedence statistic is proposed in order to efficiently monitor quality processes when the 
underlying process distribution departs from normality. The performance is investigated using 
the average run-length (ARL), standard deviation of the run-length (SDRL), expected ARL 
(EARL) and expected average number of observations to signal (EANOS) and the average 
sample sizes (ASS) metrics. The latter metrics are computed using Monte Carlo simulation and 
exact formulae. In general, it is shown that the new DS precedence scheme outperforms the 
existing basic Shewhart precedence scheme with and without supplementary runs-rules in 
many situations. A real-life illustrative example based on a filling process of milk bottles is 
provided to demonstrate the application and implementation of the new DS precedence 
monitoring scheme. 
 
Keywords: Asymmetric / symmetric distributions; Control chart; Distribution-free; Double 
sampling; Order statistics; Phase I; Phase II; Precedence scheme; Robustness. 
 

1. Introduction 

Statistical process monitoring (SPM) is a field of quality control that uses statistical tools (or 

methods) to monitor and control industrial and non-industrial processes; in this field, an 

application of a collection of statistical techniques are implemented to ensure that high quality 

products are produced, see Montgomery1. A control chart / monitoring scheme is the most used 

tool in SPM application due to its visual appeal and ease of implementation. For some recent 

contributions to different types of monitoring schemes, see for instance Chen2, Katebi and 

Moghadam3 and, Sunthornwat and Areepong4. The basic Shewhart monitoring scheme is a one 

rule statistical tool used to detect a shift (or change) in the process parameter and it is highly 
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recommended because of its simplicity and high efficiency in monitoring large shifts in the 

process parameter. Despite these qualities, the Shewhart scheme is criticized because of its 

slowness in detecting small-to-moderate shifts in the process parameter.  

To improve the Shewhart scheme’s ability towards detection of small-to-moderate process 

shifts while maintaining its strength towards the detection of large process shifts, Croasdale5 

introduced a double sampling (DS) procedure in a SPM context. Croasdale5’s DS scheme is 

based on two unconnected samples of sizes 𝑛ଵ and 𝑛ଶ (where 𝑛ଵ   𝑛ଶ), used in stages 1 and 

2, respectively. Later on, Daudin6 developed a new DS scheme based on a master sample of 

size n which is divided into two connected samples of sizes 𝑛ଵ and 𝑛ଶ (i.e. 𝑛 ൌ 𝑛ଵ  𝑛ଶ). The 

sample of size 𝑛ଵ is used in stage 1, while in stage 2, the two samples are combined. Since 

then, many researchers have been developing the DS monitoring scheme; for some recent 

developments, see for example: 3, 7-12. Daudin6 and Costa13 reported that the DS 𝑋ത monitoring 

scheme perform better than the Shewhart 𝑋ത scheme; hence, these two articles and others, 

suggest that for parametric schemes, the DS-type schemes are superior to the basic Shewhart-

type schemes. Note though, there is no research work that addresses the latter for nonparametric 

schemes; therefore, the objective of this paper is, in part, to investigate whether this is also the 

case for nonparametric schemes. 

Most of the research works in SPM are based on parametric settings (or assumptions). In this 

case, the control limits and properties of these types of schemes are easy to compute and they 

are mostly based on exact formulae or closed-form expressions. Monitoring schemes based on 

these settings are named parametric schemes and they perform better when the underlying 

process distribution is normally distributed or when the data follow a specific distribution. 

When these assumptions are violated, the performance of parametric schemes degrades 

considerably. To solve this problem, distribution-free (or nonparametric) schemes are 

recommended. A monitoring scheme is said to be a distribution-free scheme if the 

characteristics of its in-control (IC) run-length distribution remain the same (or approximately 

closer to each other) across all continuous distributions. These schemes are designed using 

nonparametric tests such as the sign, signed rank, Wilcoxon rank-sum, Mann-Whitney, median, 

etc. For a recent overview of nonparametric monitoring schemes, readers are referred to 

Chakraborti and Graham14 and, Koutras and Triantafyllou15. Distribution-free schemes are 

preferred because of their IC robustness and attractive properties under non-normal underlying 

process distributions. However, nonparametric charts are expected to be less sensitive than 
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their parametric counterparts when the underlying process distribution is normal or specified 

prior to their design (see for example, Chakraborti and Graham14).  

When underlying process parameters are known (i.e. Case K), monitoring can immediately 

take place; however, when parameters are unknown (i.e. Case U), monitoring schemes require 

two phases in their design. The control limits and the process parameters are determined in 

Phase I when the process is considered to be IC and the actual process monitoring is achieved 

in Phase II. For more details on Phase II nonparametric monitoring schemes, readers are 

referred to the review paper by Chakraborti and Graham14. While some of the nonparametric 

schemes are designed under the assumption of Case K (i.e. the sign and signed-rank statistics), 

most of these schemes are designed under the assumption of Case U (i.e. the precedence, 

exceedance, Mann-Whitney, Wilcoxon rank-sum). 

The precedence and exceedance monitoring schemes are a class of nonparametric Phase II 

monitoring schemes that can be used to monitor the 𝑗௧ order statistic of a continuous process 

distribution, where 𝑗 is a non-zero integer; see Chakraborti et al16. For memory-type (i.e. 

exponentially weighted moving average (EWMA), cumulative sum (CUSUM) and generally 

weighted moving average (GWMA)) schemes based on the precedence or exceedance 

statistics, readers need to consult Graham et al17,18,19, Mukherjee et al20, Chakraborty et al21 and 

Karakani et al22. For the one-sided basic and weighted precedence schemes, Balakrishnan et 

al23 used the Lehmann alternatives approach to formulate exact expressions to calculate some 

of the run-length distribution metrics. For the Shewhart-type schemes, Chakraborti et al24 

reported that the basic Shewhart precedence scheme is slow in detecting small shifts in the 

process parameter. To solve this problem, they proposed the 2-of-2 standard runs-rules (SRR) 

precedence schemes. Thereafter, Malela-Majika et al25 further investigated the 2-of-2 SRR and 

improved runs-rules (IRR) precedence schemes based on the minimum and median statistics. 

More recently, Malela-Majika et al26,27 studied the generalized 2-of-(h+1) and w-of-w one- and 

two-sided SRR and IRR precedence schemes (with integers ℎ  0 and 𝑤  1). The focus of 

this paper is on the Shewhart-type precedence monitoring schemes.  

Note that the only two nonparametric DS schemes that exist are for Case K using the EWMA 

scheme based on the sign statistic. That is, Yang and Wu28,29 proposed the DS EWMA sign 

schemes for separately monitoring the location and scale parameters of quality characteristics 

from symmetric and asymmetric distributions. While the Case U scenario for the parametric 

DS schemes literature has a number of studies (see for instance: 30-39); currently, there exists 

no research work that addresses the Case U scenario for nonparametric DS schemes. Therefore, 
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in this paper, the DS Shewhart-type scheme based on the precedence statistic for Case U 

scenarios is proposed.  

The rest of this paper is organized as follows: in Section 2, the theoretical foundation of the DS 

precedence schemes and its operational procedure are presented. The sensitivity analysis of the 

proposed scheme is discussed in Section 3 and its performance is compared to some existing 

Shewhart precedence schemes. A real-life illustrative example is provided in Section 4 and the 

concluding remarks are given in Section 5. 

 

2. Design of the basic and double sampling precedence schemes 

2.1 Basic precedence monitoring scheme 

Assume that a reference (i.e. Phase I) random sample of size 𝑚, 𝑋 ൌ ሼ𝑋, 𝑖 ൌ 1, 2,…, 𝑚ሽ, is 

available from the in-control (IC) process with an unknown c.d.f. (cumulative distribution 

function) 𝐹ሺ𝑥ሻ. Let 𝑌 ൌ ሼ𝑌௧, 𝑡 ൌ 1, 2,…; 𝑘 ൌ 1, 2, …, 𝑛ሽ be a 𝑡௧ test (or Phase II) sample 

of size 𝑛 with c.d.f. 𝐺ሺ𝑦ሻ which is of the same nature as the one of the Phase I sample with a 

difference in the location parameter, that is, 𝐹ሺ𝑥ሻ ൌ 𝐺ሺ𝑥  𝛿ሻ where 𝛿 is the shift in the 

location parameter; see Chakraborti et al16. When 𝛿 ൌ 0, the process is said to be IC; in this 

case, 𝐹ሺ𝑥ሻ ൌ 𝐺ሺ𝑥ሻ. Otherwise, the process is said to be out-of-control (OOC). For simplicity 

in the notations, 𝐹ሺ𝑥ሻ and 𝐺ሺ𝑦ሻ are simply denoted by 𝐹 and 𝐺 henceforth. Note that the 

Phase II samples are assumed to be independent and identically distributed (i.i.d.) of one 

another and of the Phase I sample. 

The basic two-sided precedence monitoring is a class of nonparametric monitoring schemes 

that uses the 𝑗௧ quantiles of the test sample as the charting statistics. The most used quantiles 

are the minimum, median and maximum statistics where 𝑗 ൌ 1, 
ାଵ

ଶ
 (assuming that n is odd) 

and n, respectively. A single charting statistic of the precedence scheme denoted as 𝑌ሺ:ሻ is 

compared to the lower and upper control limits (denoted as 𝐿𝐶𝐿 and 𝑈𝐶𝐿), where 𝑌ሺ:ሻ 

represents the 𝑗௧ order statistic of a test sample of size 𝑛. The 𝐿𝐶𝐿 and 𝑈𝐶𝐿 of the precedence 

monitoring scheme are estimated from the IC Phase I sample such that 𝐿𝐶𝐿 ൌ 𝑋ሺ:ሻ and  

𝑈𝐶𝐿 ൌ 𝑋ሺ:ሻ where 𝑎 and 𝑏 are two non-zero positive constant known as charting constants 

such that 1  𝑎 ൏ 𝑏  𝑚. The basic precedence scheme gives a signal if a single point plots 

either on or above the 𝑈𝐶𝐿 or, on or below the 𝐿𝐶𝐿 . Otherwise, the process is considered to be 

IC. The basic precedence scheme is known to be slow in detecting large shifts in the process. 

In the effort to solve this problem and at the same time improve the sensitivity of the existing 
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basic precedence scheme towards the detection of small-to-moderate shifts, in this paper, a DS 

precedence monitoring scheme is introduced in the next subsection.  

2.2 Double sampling precedence scheme designs and operation 

The proposed DS precedence monitoring scheme is a two-stage precedence scheme which is 

divided into five charting regions as shown in Figure 1: 𝐴 ൌ ൫െ∞, 𝑋ሺమ:ሻ൧ ∪ ሾ𝑋ሺమ:ሻ, ∞ሻ, 

𝐵 ൌ ൫𝑋ሺమ:ሻ, 𝑋ሺభ:ሻ൧ ∪ ሾ𝑋ሺభ:ሻ, 𝑋ሺమ:ሻሻ and 𝐶 ൌ ሺ𝑋ሺభ:ሻ, 𝑋ሺభ:ሻሻ in Stage 1, and 𝐷 ൌ

൫െ∞, 𝑋ሺభ:ሻ൧ ∪ ሾ𝑋ሺమ:ሻ, ∞ሻ and 𝐸 ൌ ሺ𝑋ሺభ:ሻ, 𝑋ሺమ:ሻሻ in the Stage 2, where 𝑋ሺℓ:ሻ 

represents the ℓ௧ (ℓ ∈ ሼ𝑎ଶ, 𝑎ଵ, 𝑏ଵ, 𝑏ଶ, 𝑐ଵ, 𝑐ଶሽ) order statistic of the reference (or Phase I) sample 

of size 𝑚 and ℓ represents the position of the order statistic on the reference sample (and it is 

also referred to as the charting constant). 

 

Stage 1 Stage 2 

First sample (size 𝑛ଵ) Combined sample (size 𝑛ଵ  𝑛ଶ) 
Figure 1. Charting regions of the DS precedence scheme  

 

Chakraborti and Van der Laan40 showed that the IC probability distribution of the precedence 

statistics is symmetric. Therefore, the choices of the charting constants 𝑎ଶ, 𝑎ଵ, 𝑏ଵ, 𝑏ଶ, 𝑐ଵ and 

𝑐ଶ of the DS precedence scheme are such that in stage 1,  𝑎ଶ ൌ 𝑚 െ 𝑏ଶ  1, 𝑎ଵ ൌ 𝑚 െ 𝑏ଵ  1 

and in stage 2, 𝑐ଵ ൌ 𝑚 െ 𝑐ଶ  1. Thus, the stage 1’s outer lower and upper control limits 

(denoted as 𝑂𝐿𝐶𝐿 and 𝑂𝑈𝐶𝐿) and inner lower and upper control limits (denoted as 𝐼𝐿𝐶𝐿 and 

𝐼𝑈𝐶𝐿) as well as the stage 2’s 𝐿𝐶𝐿 and 𝑈𝐶𝐿 of the DS precedence scheme are estimated from 

the IC reference (i.e. Phase I) sample of size 𝑚 as follows: 𝑂𝐿𝐶𝐿 ൌ 𝑋ሺమ:ሻ , 𝐼𝐿𝐶𝐿 ൌ 𝑋ሺభ:ሻ, 

𝐼𝑈𝐶𝐿 ൌ 𝑋ሺభ:ሻ, 𝑂𝑈𝐶𝐿 ൌ 𝑋ሺమ:ሻ, 𝐿𝐶𝐿 ൌ 𝑋ሺభ:ሻ  and 𝑈𝐶𝐿 ൌ 𝑋ሺమ:ሻ. In Phase II, at each 

sampling time, a sample of size 𝑛 is collected (i.e. 𝑌௧,) and split into two subsamples 𝑌ଵ௧ and 

𝑌ଶ௧ (𝑝 ൌ 1, 2, …, 𝑛ଵ and 𝑞 ൌ 1, 2, …, 𝑛ଶ) of sizes 𝑛ଵ and 𝑛ଶ (𝑛ଶ  𝑛ଵ), respectively. Once 
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the two subgroups are formed, then the Phase II operation procedure of the DS precedence 

scheme is as follows: 

1. Take a sample of size 𝑛ଵ and compute 𝑌ሺ:భሻ at the  𝑡௧ sampling time of the first 

sample. For simplicity, in this paper, it is assumed that 𝑛ଵ is odd i.e. 𝑛ଵ ൌ 2𝑟  1 

(where 𝑟 is a positive integer) so that 𝑗 ൌ 𝑟  1 corresponds to the unique test sample 

median of the 𝑌ଵ௧ sample in stage 1. 

2. If 𝑌ሺ:భሻ ∈ 𝐶, the process is considered to be IC.    

3. If 𝑌ሺ:భሻ ∈ 𝐴, the process is said to be OOC.   

4. If 𝑌ሺ:భሻ ∈ 𝐵, take a second sample of size 𝑛ଶ. 

5. At the 𝑡௧ sampling time, compute the plotting statistic of the combined sample, 𝑌ሺ:ሻ. 

We assume that 𝑛ଶ is even so that 𝑛 (ൌ 𝑛ଵ  𝑛ଶ) gives an odd number, i.e. 𝑛 ൌ 2𝑠  1 

(where 𝑠 is a positive integer) so that ℎ ൌ 𝑠  1 corresponds to the unique test sample 

median. 

6. The process is declared OOC at stage 2, if 𝑌ሺ:ሻ ∈ 𝐷. Otherwise, the process is said to 

be IC. 

The flow chart given in Figure 2 summarizes the operational procedure of the proposed DS 

precedence scheme. 
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Step 7 

 
 
 
 

 

Figure 2: Flow chart illustrating the operation of the DS precedence scheme  

 

 

Specify m, n, 𝑛ଵ, 𝑛ଶ, 𝐴𝑆𝑆 and 
𝐴𝑅𝐿 

The stage 1 control limits: Search for 𝑎ଶ, 𝑎ଵ, 𝑏ଵ and 𝑏ଶ 
such that attained 𝐴𝑆𝑆 value is equal to the pre-specified 
value of the 𝐴𝑆𝑆. Thus, 𝑂𝐿𝐶𝐿 ൌ 𝑋ሺమ:ሻ , 𝐼𝐿𝐶𝐿 ൌ
𝑋ሺభ:ሻ, 𝐼𝑈𝐶𝐿 ൌ 𝑋ሺభ:ሻ and 𝑂𝑈𝐶𝐿 ൌ 𝑋ሺమ:ሻ. 
 
The stage 2 control limits: Search for 𝑐ଵ and 𝑐ଶ such that 
the attained 𝐴𝑅𝐿 is much closer or equal to the nominal 
𝐴𝑅𝐿. Thus, 𝐿𝐶𝐿 ൌ 𝑋ሺభ:ሻ and 𝑈𝐶𝐿 ൌ 𝑋ሺమ:ሻ. 

At the next sampling point, collect 𝑌௧ sample of size 𝑛 split into two 
subsamples of sizes 𝑛ଵand 𝑛ଶ (with 𝑛ଶ  𝑛ଵ), 𝑌ଵ௧ and 𝑌ଶ௧. Use 𝑌ଵ௧ to 

compute 𝑌ሺ:భሻ (where 𝑗 ൌ భାଵ

ଶ
) in Stage 1.  

Is 𝑌ሺ:భሻ ∈ 𝐴? 

Is 𝑌ሺ:భሻ ∈ C?  

No 

Yes

Yes 

No

Is 𝑌ሺ:భሻ ∈ B?  
No

Use 𝑌௧ to compute 𝑌ሺ:ሻ in Stage 2 
and check if 𝑌ሺ:ሻ ∈ D?  

No

Yes

Issue an OOC signal and then take corrective action to find and 
remove assignable causes. Thereafter, return to Step 2. 

Yes 
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3. Sensitivity analysis of the DS precedence scheme  

3.1 Run-length properties of the DS precedence scheme 

The sensibility of the DS precedence monitoring scheme depends on the combination (𝑚, 𝑛ଵ, 

𝑛ଶ, 𝑛ത, 𝑎ଶ, 𝑎ଵ, 𝑏ଵ, 𝑏ଶ, 𝑐ଵ, 𝑐ଶ). There are three main steps in the search of the optimal design 

parameters of the proposed scheme. Firstly, the IC average sample size (𝐴𝑆𝑆) and nominal IC 

average run-length (𝐴𝑅𝐿) values are set to some pre-specified values, say 𝑛ത and 𝑁𝐴𝑅𝐿, 

respectively. Note that the 𝑁𝐴𝑅𝐿 must be set to some high recommended values such as 200, 

370 and 500. Secondly, search for the stage 1 charting constants 𝑎ଶ, 𝑎ଵ, 𝑏ଵ and 𝑏ଶ that provide 

an attained 𝐴𝑆𝑆 value much closer or equal to 𝑛ത. Finally, search for the stage 2 charting 

constants 𝑐ଵ and 𝑐ଶ such that the combination (𝑚, 𝑛ଵ, 𝑛ଶ, 𝑛ത, 𝑎ଶ, 𝑎ଵ, 𝑏ଵ, 𝑏ଶ, 𝑐ଵ, 𝑐ଶ) yields the 

attained 𝐴𝑅𝐿 value much closer or equal to the 𝑁𝐴𝑅𝐿 value and yields the smallest OOC 

(𝐴𝑅𝐿ఋ) for some specific shift value. Therefore, the optimization model is given by 

Min
,భ,మ,ത,మ,భ,భ,మ,భ,మ

𝐴𝑅𝐿ఋ (1) 

subject to  

𝐴𝑆𝑆 ൎ 𝑛ത (2) 

and  

𝐴𝑅𝐿 𝑁𝐴𝑅𝐿 (3) 

For the DS precedence scheme with unknown process parameters (hereafter, Case U), in the 

ideal case, the combination (𝑚, 𝑛ଵ, 𝑛ଶ, 𝑛ത, 𝑎ଶ, 𝑎ଵ, 𝑏ଵ, 𝑏ଶ, 𝑐ଵ, 𝑐ଶ) is determined such that the 

attained 𝐴𝑅𝐿 and 𝐴𝑆𝑆 values are equal to 𝑁𝐴𝑅𝐿 and 𝑛ത, respectively. However, since the 

charting constants are integers, we may not get control limits that exactly yield 𝑁𝐴𝑅𝐿 and 𝑛ത 

values. In such case, we recommend using control limits that yield attained 𝐴𝑅𝐿 and 𝐴𝑆𝑆 

which are the closest to 𝑁𝐴𝑅𝐿 and 𝑛ത values, respectively.  

In Phase II, the process is said to be OOC in stage 1 if the charting statistic 𝑌ሺ:భሻ  𝑂𝑈𝐶𝐿  or 

𝑌ሺ:భሻ  𝑂𝐿𝐶𝐿  and in stage 2, the process is considered to be OOC if 𝑌ሺ:ሻ  𝑈𝐶𝐿 or 𝑌ሺ:ሻ 

𝐿𝐶𝐿 . The Phase II random variable 𝑌 follows a beta distribution with parameters 𝑗 and 𝑛ଵ െ

𝑗  1 in stage 1, and 𝑗 and 𝑛 െ ℎ  1 in stage 2 (see Gibbons and Chakraborti41 and Malela-

Majika et al26,27). The conditional probabilities that the charting statistic plots in regions 𝐴, 𝐵, 

𝐶, 𝐷 and 𝐸 are defined by  

𝑝 ൌ 𝑃൫𝑌ሺ:భሻ  𝑋ሺమ:ሻห𝑋ሺమ:ሻ ൌ 𝑥ሺమ:ሻ൯  𝑃൫𝑌ሺ:భሻ  𝑋ሺమ:ሻห𝑋ሺమ:ሻ ൌ 𝑥ሺమ:ሻ൯ (4) 

𝑝 ൌ 2ൣ𝑃൫𝑌ሺ:భሻ  𝑋ሺమ:ሻห𝑋ሺమ:ሻ ൌ 𝑥ሺమ:ሻ൯ െ 𝑃൫𝑌ሺ:భሻ  𝑋ሺభ:ሻห𝑋ሺభ:ሻ ൌ 𝑥ሺభ:ሻ൯൧ (5) 

𝑝 ൌ 𝑃൫𝑌ሺ:భሻ  𝑋ሺభ:ሻห𝑋ሺభ:ሻ ൌ 𝑥ሺభ:ሻ൯ െ 𝑃൫𝑌ሺ:భሻ  𝑋ሺభ:ሻห𝑋ሺభ:ሻ ൌ 𝑥ሺభ:ሻ൯ (6) 
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𝑝 ൌ 𝑃൫𝑌ሺ:ሻ  𝑋ሺభ:ሻห𝑋ሺభ:ሻ ൌ 𝑥ሺభ:ሻ൯  𝑃൫𝑌ሺ:ሻ  𝑋ሺమ:ሻห𝑋ሺమ:ሻ ൌ 𝑥ሺమ:ሻ൯ (7) 

and  

𝑝ா ൌ 𝑃൫𝑌ሺ:ሻ  𝑋ሺమ:ሻห𝑋ሺమ:ሻ ൌ 𝑥ሺమ:ሻ൯ െ 𝑃൫𝑌ሺ:ሻ  𝑋ሺభ:ሻห𝑋ሺభ:ሻ ൌ 𝑥ሺభ:ሻ൯. (8) 

Thus, (4)-(8) can also be written as: 

𝑝 ൌ 𝐼൫1 െ 𝛹൫𝑈ሺమ:ሻ൯, 𝑗, 𝑛ଵ െ 𝑗  1൯  𝐼൫𝛹൫𝑈ሺమ:ሻ൯, 𝑗, 𝑛ଵ െ 𝑗  1൯, (9) 

𝑝 ൌ 2 ൣ𝐼൫𝛹൫𝑈ሺమ:ሻ൯, 𝑗, 𝑛ଵ െ 𝑗  1൯ െ 𝐼൫𝛹൫𝑈ሺభ:ሻ൯, 𝑗, 𝑛ଵ െ 𝑗  1൯൧, (10) 

𝑝 ൌ 𝐼൫𝛹൫𝑈ሺభ:ሻ൯, 𝑗, 𝑛ଵ െ 𝑗  1൯ െ 𝐼൫𝛹൫𝑈ሺభ:ሻ൯, 𝑗, 𝑛ଵ െ 𝑗  1൯, (11) 

𝑝 ൌ 𝐼൫1 െ 𝛹൫𝑈ሺభ:ሻ൯, ℎ, 𝑛 െ ℎ  1൯  𝐼൫𝛹൫𝑈ሺమ:ሻ൯, ℎ, 𝑛 െ ℎ  1൯, (12) 

and  

𝑝ா ൌ 𝐼൫𝛹൫𝑈ሺమ:ሻ൯, ℎ, 𝑛 െ ℎ  1൯ െ 𝐼൫𝛹൫𝑈ሺభ:ሻ൯, ℎ, 𝑛 െ ℎ  1൯, (13) 

respectively, where 𝐼ሺ. , . , . ሻ denotes the incomplete beta function and 𝑈ሺℓ:ሻ represents the ℓ௧ 

(ℓ∈{𝑎ଶ, 𝑎ଵ, 𝑏ଵ, 𝑏ଶ, 𝑐ଵ, 𝑐ଶ}) order statistic of a sample of size 𝑚 from the Uniform(0,1) 

distribution and 𝛹 ൌ 𝐺𝐹ିଵ is a conversion (or transformation) function that depends on the 

c.d.f. 𝐹 and 𝐺. It is important to know that the process is IC if 𝐺 ≡ 𝐹. In this case,  𝛹ሺ𝑢ሻ ൌ

𝐺𝐹ିଵሺ𝑢ሻ ൌ 𝑢 for any 𝑢 ∈ ሺ0,1ሻ. Note that 𝑝 represents the conditional probability of taking 

the second sample which is also known as the conditional probability of going to stage 2 

(denoted as 𝑝ଶ). Therefore, the unconditional average sample size (𝐴𝑆𝑆) for a specific shift is 

defined by  

𝐴𝑆𝑆ሺ𝛿ሻ ൌ න න ሺ𝑛ଵ  𝑛ଶ𝑝ଶሻ 𝑓భమ

௧



ଵ


ሺ𝑢, 𝑡ሻ𝑑𝑢 𝑑𝑡 (14) 

where 𝛿 is the shift (or change) in the location parameter, with 𝑝ଶ defined in (10) and  

𝑓భమ
ሺ𝑢, 𝑡ሻ ൌ

𝑚!
ሺ𝑏ଵ െ 1ሻ! ሺ𝑏ଶ െ 𝑏ଵ െ 1ሻ! ሺ𝑚 െ 𝑏ଶሻ!

𝑡భିଵሺ𝑡 െ 𝑢ሻమିభିଵሺ1 െ 𝑡ሻିమ 

is the joint p.d.f. (probability distribution function) of the 𝑏ଵ
௧ and 𝑏ଶ

௧ order statistics in a 

sample of size m from the Uniform (0,1) distribution; see Chakraborti et al24 for more details 

on the latter joint p.d.f. The attained 𝐴𝑆𝑆 is computed by setting 𝛿 to zero in (14). Again, the 

stage 1 charting constants 𝑎ଶ, 𝑎ଵ, 𝑏ଵ and 𝑏ଶ are computed such that the 𝐴𝑆𝑆 ൎ 𝑛ത. 

In this paper, the Monte Carlo simulation is used to determine the stage 2 charting constants 

(i.e. 𝑐ଵ and 𝑐ଶ) and compute the run-length characteristics of the proposed DS precedence 

scheme. Thus, the Monte Carlo algorithm steps are as follows: 
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Step 1: Specify the Phase I sample size (m), Phase II sample sizes (𝑛ଵ and 𝑛ଶ), number of 

simulations (𝜔), the stage 1 charting statistics (𝑎ଶ, 𝑎ଵ, 𝑏ଵ and 𝑏ଶ) that yield the 

𝐴𝑆𝑆 ൎ 𝑛ത.  

Step 2: Set 𝑐ଶ (i.e. a positive integer) such that 


ଶ
൏ 𝑐ଶ ൏ 𝑚 and compute the corresponding 

value of 𝑐ଵ (𝑐ଵ ൌ 𝑚 െ 𝑐ଶ  1). For instance, when m = 100, if 𝑐ଶ ൌ 84, then 𝑐ଵ ൌ

100 െ 84  1 ൌ 17. 

Step 3: Generate a Phase I sample 𝑋 of size m from some specific p.d.f. (such as the N(0,1)). 

The estimated control limits are given by  𝑂𝐿𝐶𝐿 ൌ 𝑋ሺమ:ሻ, 𝐼𝐿𝐶𝐿 ൌ 𝑋ሺభ:ሻ, 𝐼𝑈𝐶𝐿 ൌ

𝑋ሺభ:ሻ, 𝑂𝑈𝐶𝐿 ൌ 𝑋ሺమ:ሻ, 𝐿𝐶𝐿 ൌ 𝑋ሺభ:ሻ  and 𝑈𝐶𝐿 ൌ 𝑋ሺమ:ሻ. For instance, from our 

previous example in Step 2, the stage 2 control limits will be given by 𝐿𝐶𝐿 ൌ

𝑋ሺଵ:ଵሻ and 𝑈𝐶𝐿 ൌ 𝑋ሺ଼ସ:ଵሻ. 

Step 4: Randomly generate a Phase II test sample, 𝑌௧, of size n (from the same distribution 

as the one of the Phase I sample), then split into two subsamples, 𝑌ଵ௧ and 𝑌ଶ௧, of 

sizes 𝑛ଵ and 𝑛ଶ, respectively. Here, the Phase II sample is generated from the N(𝛿,1) 

distribution where 𝛿 represents the shift in the process location. Compute the 

charting statistic 𝑌ሺ:భሻ in stage 1. Compare 𝑌ሺ:భሻ to the stage 1 control limits. If 

𝑌ሺ:భሻ plots in region 𝐶 (i.e. the process is IC), we have to generate the next test 

sample and compute the next charting statistic which is also compared to the control 

limits. This process continues until we get an OOC signal and record the number of 

samples that plotted IC. This number represents one value of the run-length 

distribution.  

Step 5: However, if 𝑌ሺ:భሻ plots in region 𝐵, compute the charting statistic 𝑌ሺ:ሻ in stage 2 

from the combined sample (i.e. 𝑌௧) and compare it to the stage 2 control limits 

obtained in Step 2. If 𝑌ሺ:ሻ plots in region 𝐸 (i.e. the process is IC), we have to return 

to Step 4. Otherwise, if 𝑌ሺ:ሻ plots in region 𝐷, the process is OOC and record the 

number of samples that plotted in IC in both stages 1 and 2. The computed value 

denotes a single value of the run-length distribution.  

Step 6: Steps 4 and 5 must be repeated 𝜔 times and then go to the next step. 

Step 7: Using the unconditional run-length (URL) values obtained in Step 6, we compute the 

unconditional 𝐴𝑅𝐿 (UARL) as follows: 

𝑈𝐴𝑅𝐿 ൌ
1
𝜔

 𝑈𝑅𝐿.

ఠ

ୀଵ
 (15)
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Step 8: For 𝛿 = 0, if the 𝐴𝑅𝐿 value is much closer to 𝑁𝐴𝑅𝐿, record the control limits 𝑂𝐿𝐶𝐿  

, 𝐼𝐿𝐶𝐿 , 𝐼𝑈𝐶𝐿 , 𝑂𝑈𝐶𝐿 , 𝐿𝐶𝐿  and 𝑈𝐶𝐿. If not, then repeat the previous Steps 2 to 7. 

Step 9: Finally, to calculate the OOC run-length properties, implement Step 3 to 7 using the 

control limits found in Step 8 by varying the shift parameter (i.e. 𝛿 = 0 until 2.5 in 

increments of 0.25). Note that 𝛿 = 0 provides the IC 𝑈𝐴𝑅𝐿 values and 𝛿 ് 0 provides 

the OOC 𝑈𝐴𝑅𝐿 values and in this paper, these are simply denoted as 𝐴𝑅𝐿 and 

𝐴𝑅𝐿ఋ, respectively. 

Note that other characteristics of the run-length distribution can be computed using PROC 

UNIVARIATE in SAS®9.4 and in this study, 𝜔=50000. 

The 𝐴𝑅𝐿 metric is much criticized when it comes to the assessment of the performance of a 

control chart for a range of shifts or overall performance (see for example Ou et al42). Therefore, 

in this paper, the expected 𝐴𝑅𝐿 value is also used to assess the overall performance of the DS 

precedence scheme. The 𝐸𝐴𝑅𝐿 is mathematically defined by 

𝐸𝐴𝑅𝐿 ൌ
1
∆

 𝐴𝑅𝐿ሺ𝛿ሻ

ఋೌೣ

ఋୀఋ

, (16) 

where 𝛿୫୧୬ and 𝛿୫ୟ୶ are the lower and upper bound of the 𝛿 in location parameter, 

respectively, 𝐴𝑅𝐿ሺ𝛿ሻ is the 𝐴𝑅𝐿 value for a specific 𝛿 and ∆ represents the number of 

increments between 𝛿୫୧୬ and 𝛿୫ୟ୶. The smaller the 𝐴𝑅𝐿 or 𝐸𝐴𝑅𝐿, the better the performance 

of a monitoring scheme. 

The average number of observation to signal (ANOS) is also used to investigate the properties 

of the DS precedence scheme. The ANOS and expected ANOS (EANOS) are mathematically 

defined by 

𝐴𝑁𝑂𝑆ሺ𝛿ሻ ൌ 𝐴𝑆𝑆ሺ𝛿ሻ ∙ 𝐴𝑅𝐿ሺ𝛿ሻ (17) 

and  

𝐸𝐴𝑁𝑂𝑆 ൌ
1
∆

 𝐴𝑁𝑂𝑆ሺ𝛿ሻ

ఋೌೣ

ఋୀఋ

, (18) 

respectively; where the 𝐴𝑆𝑆ሺ𝛿ሻ and 𝐴𝑅𝐿ሺ𝛿ሻ are defined in (14) and (15), respectively.  

 

3.2 Determination of the charting constants  

The stage 1 charting constants 𝑎ଶ, 𝑎ଵ, 𝑏ଵ and 𝑏ଶ are determined by setting (14) to the pre-

specified 𝐴𝑆𝑆 value (i.e. 𝑛ത). Note that since the charting constants are integers, it might be 

possible that the charting constant do not yield the exact pre-specified 𝑛ത value. In this case, it 
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is recommended to choose the charting constant that yields the attained 𝐴𝑆𝑆 value as close as 

possible to 𝑛ത. In this paper, (14) is used in Mathcad®14 to determine the stage 1 charting 

constants. From Table 1, it is shown that, when m = 100, 𝑛ଵ ൌ 3 and 𝑛ଶ ൌ 6, then the charting 

constants (𝑎ଶ, 𝑎ଵ, 𝑏ଵ, 𝑏ଶ) = (33, 45, 56, 68), (16, 38, 63, 85) and (18, 45, 56, 83) so that the DS 

precedence scheme yields an attained 𝐴𝑆𝑆 value of 5, 6 and 6.99 (ൎ 7), respectively. 

The stage 2 charting constants 𝑐ଵ and 𝑐ଶ are determined such that the combination (𝑎ଶ, 𝑎ଵ, 𝑏ଵ, 

𝑏ଶ, 𝑐ଵ, 𝑐ଶ) yields an attained 𝐴𝑅𝐿 that is closer or equal to 𝑁𝐴𝑅𝐿. For instance, for 𝑁𝐴𝑅𝐿 

value of 500, when m = 100, 𝑛ଵ ൌ 3 and 𝑛ଶ ൌ 12, it is found that (𝑎ଶ, 𝑎ଵ, 𝑏ଵ, 𝑏ଶ, 𝑐ଵ, 𝑐ଶ) = (12, 

22, 79, 89, 18, 83) so that the DS precedence scheme yields attained 𝐴𝑆𝑆 and 𝐴𝑅𝐿 values of 

5 and 505.73, where the probability of moving to stage 2 (i.e. 𝑝ଶ) is 0.1663. Table 1 displays 

the charting constants, 𝑝ଶ, attained 𝐴𝑆𝑆, 𝐴𝑅𝐿 and IC standard deviation of the run-length 

(𝑆𝐷𝑅𝐿) values of the DS precedence scheme when  𝑚 ∈ ሼ100,500ሽ, 𝑛ଵ ∈ ሼ3,5ሽ, 𝑛ଶ ∈ ሼ6,12ሽ, 

𝑛ത ∈ ሼ5,6,7ሽ and 𝑁𝐴𝑅𝐿 ∈ {200, 370, 500}. 

From Table 1, it can be seen that the larger the Phase I sample size, the closer the attained 𝐴𝑅𝐿 

value to the 𝑁𝐴𝑅𝐿 and the smaller the 𝑆𝐷𝑅𝐿 value, which means there is more stability in 

the performance of the DS precedence scheme for larger Phase I sample sizes. When m and 𝑛ଵ 

are kept fixed, the larger the value of 𝑛ଶ, the higher is the variability in the IC run-length values. 

The wider (narrower) the distance between the IUCL, OUCL, OLCL and ILCL, the larger 

(smaller) is the probability of moving to stage 2. 
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Table 1. Charting constants, 𝑝ଶ values, attained 𝐴𝑆𝑆, 𝐴𝑅𝐿 and 𝑆𝐷𝑅𝐿 values of the DS precedence chart 
when 𝑚 ∈ ሼ100,500ሽ, 𝑛ଵ ∈ ሼ3,5ሽ, 𝑛ଶ ∈ ሼ6,12ሽ with 𝑛ത ∈ ሼ5,6,7ሽ and 𝑁𝐴𝑅𝐿 ∈ {200,370,500} 

   Stage 1 charting constants 
𝒑𝟐 𝑨𝑺𝑺𝟎 

Stage 2 charting constants  

m 𝒏𝟏 𝒏𝟐 𝒂𝟐 𝒂𝟏 𝒃𝟏 𝒃𝟐 𝒄𝟏 𝒄𝟐 𝑨𝑹𝑳𝟎 𝑺𝑫𝑹𝑳𝟎 
100 3 

6 
  

33 45 56 68 0.3334 5.00 13 88 228.78 468.88
        12 89 341.23 683.66
        11 90 535.17 1264.82
    16 38 63 85 0.4997 6.00 14 87 173.10 335.21
        12 89 374.26 766.11
        11 90 585.62 1411.87
    18 45 56 83 0.6654 6.99 13 88 224.94 424.23
        12 89 344.04 798.78
          11 90 535.71 1206.00
    

12 

12 22 79 89 0.1663 5.00 20 81 239.69 515.65
       19 82 350.05 926.88
       18 83 505.73 1171.83
    26 36 65 75 0.2502 6.00 20 81 187.01 385.16
       18 83 387.77 889.76
       17 84 607.36 1569.00
    33 45 56 83 0.6654 7.00 19 82 231.91 541.10
       18 83 352.34 970.92
       17 84 537.36 1556.78
 5 

6 

4 6 95 97 0.0035 5.02 50 51 363.12 829.69
     40 61 509.71 1127.10
   21 29 72 80 0.1657 5.99 16 85 212.88 432.90
       15 86 315.98 653.44
       14 87 469.23 1047.63
    14 32 69 87 0.3331 7.00 16 85 207.97 395.58

        15 86 299.53 603.13
           14 87 452.19 1011.14
     

12 

4 6 95 97 0.0035 5.03 50 51 365.19 726.58
        44 57 504.02 1103.20
   23 27 74 78 0.0829 6.00 22 79 182.26 396.29
      20 81 375.31 966.34
        19 82 565.77 1579.44
     6 23 78 95 0.1671 7.00 22 79 199.64 444.83
        20 81 408.88 944.14
        19 82 616.36 1617.39
500 3  

 
 
 
6 
 
 
 

167 94 334 407 0.3334 5.00 66 435 197.48 220.52
        57 444 383.79 443.71
        54 447 496.82 583.38
     89 194 307 412 0.5 6.00 65 436 197.15 221.41
        57 444 358.33 411.59
        53 448 502.80 591.09
     32 198 303 469 0.6668 7.00 64 437 208.08 234.14
        57 444 360.60 421.52
           53 448 500.26 586.21
     

12 

14 90 411 487 0.1667 5.00 103 398 202.44 230.89
        92 409 362.08 618.48
        87 414 500.06 618.48
     62 130 371 439 0.2499 6.00 98 403 201.09 235.91
        89 412 378.17 450.87
        85 416 510.21 609.22
     16 131 370 485 0.3335 7.00 98 403 200.01 234.20
        89 412 371.81 439.51
         85 416 511.37 610.63
   5 

6 

30 34 467 471 0.0018 5.01 236 265 201.29 224.66
        161 340 372.89 421.60
        138 363 502.19 567.88
   77 199 302 424 0.5684 6.00 76 425 201.52 230.30
      68 433 362.63 424.97
      64 437 504.53 597.62
     123 185 316 378 0.3336 7.00 77 424 193.21 222.57
        68 433 375.53 444.27
           64 437 518.06 623.26
     

12 

35 38 463 466 0.0017 5.01 212 289 200.89 222.76
        174 327 369.57 419.03
        159 342 503.24 578.24
   84 112 389 417 0.0835 6.00 107 394 194..64 226.56
      98 403 363.87 432.92
      94 407 484.71 585.04
     87 134 367 414 0.1668 7.00 105 396 202.35 234.70
        97 404 358.91 438.90
           93 408 485.00 588.56
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Figure 3 displays the IC and OOC probability of taking a second sample (i.e. moving to stage 

2) for different sample sizes when 𝑛ത ∈ ሼ5,6,7ሽ. From Figure 3(a), it can be seen that when the 

triplet (𝑚, 𝑛ଵ, 𝑛ଶ) is kept fixed, the larger (smaller) the value of 𝑛ത, the higher (lower) is the IC 

value of 𝑝ଶ. For small and moderate shifts, the larger (smaller) the value of 𝑛ത, the higher 

(smaller) are the OOC values of 𝑝ଶ. Moreover, the OOC 𝑝ଶ values remain almost the same for 

large shifts in the process location. Figure 3(b) shows that when 𝑛ത is kept fixed, the IC 𝑝ଶ 

remains almost the same, regardless of the Phase I sample size. For small and moderate shifts, 

the smaller the Phase I sample size, the higher are the OOC 𝑝ଶ values. For large shifts, the 

OOC 𝑝ଶ remains almost the same regardless of the Phase I sample size.   

(a) ሺ𝑚, 𝑛ଵ, 𝑛ଶሻ ൌ (100, 3, 6) for different 𝑛ത values (b) ሺ𝑛ଵ, 𝑛ଶ, 𝑛തሻ ൌ (3,6,5) for different m values 
Figure 3. The probability of moving to stage 2 (i.e. 𝑝ଶ values)  

 

3.3 IC performance and robustness analysis 

Nonparametric schemes are usually preferred over their parametric counterparts because of 

their IC robustness property. A monitoring scheme is said to be robust when the IC 

characteristics of the run-length distribution are the same across all continuous probability 

distributions. Thus, to check the robustness of the DS precedence scheme various probability 

distributions (symmetric, heavy-tailed and skewed) are considered in this paper. To be more 

precisely, the following were used: (i) the standard normal distribution (denoted as N(0,1)) to 

study the effect of symmetric distributions, (ii) the Student’s t-distribution with degrees of 

freedom v = 3 and 12 (denoted t(v)) to study the effect of symmetric distributions with heavier 

tails, (iii) gamma distribution with parameters 𝛼 ൌ 1 and 3 and 𝛽 ൌ 1 (denoted as GAM(𝛼,𝛽)) 

to study the effect of skewed distributions, and (iv) double exponential distribution with 
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parameters 𝜇 ൌ0 and 𝛽 ൌ1 (denoted as DEXP(𝜇,𝛽)) to investigate the effect of symmetric 

distributions with higher peak.   

In Table 2, the robustness of the DS precedence scheme is investigated through the IC 

characteristics of the run-length distribution (𝐴𝑅𝐿, 𝑆𝐷𝑅𝐿, 5th, 25th, 50th, 75th and 95th 

percentiles of the run-length (𝑃𝑅𝐿) denoted as 𝑃ହ, 𝑃ଶହ, 𝑃ହ, 𝑃ହ, 𝑃ଽହ, respectively) when 𝑚 ∈

ሼ100, 500ሽ, 𝑛ଵ ∈ ሼ3,5ሽ, 𝑛ଶ ൌ 6 and 𝑛ത ∈ ሼ5,7ሽ for a 𝑁𝐴𝑅𝐿 value of 500 under different 

distributions. From Table 2, it can be observed that for 𝑛ത = 5, the combination (𝑚, 𝑛ଵ, 𝑛ଶ, 𝑎ଶ, 

𝑎ଵ, 𝑏ଵ, 𝑏ଶ, 𝑐ଵ, 𝑐ଶ) = (100, 3, 6, 33, 45, 56, 68, 11, 90) yields an attained 𝐴𝑅𝐿 values of 535.18, 

523.17, 533.94, 539.73, 530.69 and 531.18 under the N(0,1), t(3), t(12), GAM(1,1), GAM(3,1) 

and DEXP(0,1) distributions, respectively, and the combination (𝑚, 𝑛ଵ, 𝑛ଶ, 𝑎ଶ, 𝑎ଵ, 𝑏ଵ, 𝑏ଶ, 𝑐ଵ, 

𝑐ଶ) = (500, 3, 6, 167, 94, 334, 407, 54, 447) yields attained 𝐴𝑅𝐿 values of 496.82, 496.62, 

496.85, 495.38, 494.97 and 495.96 under the N(0,1), t(3), t(12), GAM(1,1), GAM(3,1) and 

DEXP(0,1) distributions, respectively. In addition, when (𝑚, 𝑛ଵ, 𝑛ଶ, 𝑎ଶ, 𝑎ଵ, 𝑏ଵ, 𝑏ଶ, 𝑐ଵ, 𝑐ଶ) = 

(500, 3, 6, 167, 94, 334, 407, 54, 447), the 𝑃ହ value under the N(0,1), t(3), t(12), GAM(1,1), 

GAM(3,1) and DEXP(0,1) distributions, is equal to 21, 23, 22, 23, 23 and 22, respectively. This 

is also true for other characteristics of the run-length distribution (see Table 2). These findings 

reveal that attained the IC characteristics of the run-length distribution are much closer to each 

other in each case. Therefore, the proposed DS precedence scheme is IC robust. Moreover, the 

larger the Phase I sample size the closer the attained 𝐴𝑅𝐿 values to the 𝑁𝐴𝑅𝐿 value of 500 

and to each other. This shows that the DS precedence scheme is more robust for large sample 

sizes. 
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Table 2. IC robustness of the DS precedence chart when 𝑚 ∈ ሼ100, 500ሽ, 𝑛ଵ ∈ ሼ3,5ሽ, 𝑛ଶ ൌ 6 
and 𝐴𝑆𝑆 ∈ ሼ5,7ሽ for an nominal 𝐴𝑅𝐿 value of 500 under different distributions 

(𝒏𝟏,𝒏𝟐) m 𝑨𝑺𝑺𝟎 𝒂𝟐 𝒂𝟏 𝒃𝟏 𝒃𝟐 𝒄𝟏 𝒄𝟐 Distribution 𝑨𝑹𝑳𝟎 𝑺𝑫𝑹𝑳𝟎 𝑷𝟓 𝑷𝟐𝟓 𝑷𝟓𝟎 𝑷𝟕𝟓 𝑷𝟗𝟓 

(3,6) 

100 

5 33 45 56 68 11 90 

N (0,1) 535.18 1164.82 12 76 213 546 1996
t (3) 523.17 1100.88 12 75 212 547 1968
t (12) 533.94 1190.94 12 73 211 543 2011 
GAM (1,1) 539.73 1204.47 12 74 212 459 1974
GAM (3,1) 530.69 1238.17 12 75 214 539 1958
DEXP (0,1) 531.18 1267.15 12 75 212 540 1979

7 18 45 56 83 11 90 

N (0,1) 535.71 1206.10 13 76 214 546 1974 
t (3) 539.83 1248.75 12 75 210 546 2027
t (12) 546.14 1308.20 13 77 214 550 2043
GAM (1,1) 547.65 1386.00 12 75 215 555 2038
GAM (3,1) 540.40 1350.21 12 74 212 548 2016
DEXP (0,1) 546.81 1369.89 12 75 213 555 2081

500 

5 167 94 334 407 54 447 

N (0,1) 496.82 583.38 21 122 306 643 1588
t (3) 496.62 577.94 23 125 308 656 1589
t (12) 496.85 583.89 22 124 310 655 1595
GAM (1,1) 495.38 585.54 23 125 309 651 1595 
GAM (3,1) 494.97 575.03 23 126 311 653 1578
DEXP (0,1) 495.96 580.57 22 125 311 656 1587

7 32 198 303 469 53 448 

N (0,1) 500.26 586.21 22 125 314 662 1626
t (3) 496.20 580.49 22 124 310 652 1588 
t (12) 501.34 583.52 22 127 315 666 1603
GAM (1,1) 499.72 585.19 22 126 313 660 1602
GAM (3,1) 504.44 587.71 23 127 314 664 1619
DEXP (0,1) 499.95 587.50 22 125 312 659 1597 

(5,6) 

100 

5 4 6 95 97 40 61 

N (0,1) 506.53 1048.70 13 79 219 541 1856
t (3) 507.33 1053.37 13 79 218 542 1859
t (12) 509.67 1024.30 13 79 220 549 1883
GAM (1,1) 507.15 1020.15 14 79 219 546 1873 
GAM (3,1) 508.37 1060.98 13 80 220 545 1835
DEXP (0,1) 511.26 1003.00 14 79 220 553 1900

7 14 32 69 87 14 87 

N (0,1) 450.89 913.94 11 63 177 454 1657
t (3) 458.63 1129.48 11 64 180 460 1690
t (12) 453.97 1094.48 10 63 180 460 1648
GAM (1,1) 450.30 966.30 10 63 180 459 1660
GAM (3,1) 455.04 1010.26 10 63 181 461 1647
DEXP (0,1) 456.81 1010.78 11 65 180 462 1698

500 

5 30 34 467 471 138 363 

N (0,1) 497.22 568.80 23 127 317 660 1575 
t (3) 498.96 568.39 23 130 319 660 1583
t (12) 499.47 571.77 23 129 317 664 1576
GAM (1,1) 501.07 570.83 23 130 318 669 1600
GAM (3,1) 500.67 581.86 22 129 317 662 1594 
DEXP (0,1) 502.21 567.36 23 127 317 674 1609

7 123 185 316 378 64 437 

N (0,1) 519.42 616.32 23 129 322 676 1695
t (3) 518.48 625.84 23 127 317 673 1687
t (12) 521.80 626.08 23 128 322 678 1696 
GAM (1,1) 522.39 627.58 23 128 322 684 1697
GAM (3,1) 520.62 624.62 23 128 319 683 1691
DEXP (0,1) 522.96 617.96 24 130 325 687 1693

 

3.4 Out-of-control performance analysis 

The first step in the investigation of the performance profile of a nonparametric monitoring 

scheme is to check whether it is IC robust. Since the DS precedence scheme is IC robust, it is 

of interest to compare its sensitivity under different probability distributions and with other 

existing schemes. In this section, Monte Carlo simulations are used to compute the 

characteristics of the run-length distribution of the DS precedence scheme as explained in 

Section 3.1. Tables 3 and 4 present the 𝐴𝑅𝐿ఋ  profile of the DS precedence monitoring scheme 

when 𝑚 ∈ ሼ100, 500ሽ, 𝑛ଶ ∈ ሼ6,12ሽ, 𝑛ത ∈ ሼ5, 7ሽ for a 𝑁𝐴𝑅𝐿 value of 500 under the N(0,1), t(3), 
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t(12), GAM(1,1), GAM(3,1) and DEXP(0,1) distributions with 𝑛ଵ ൌ 3 and 5. The findings in 

Tables 3 and 4 can be summarized as follows: 

 The DS precedence scheme performs better for large Phase I sample sizes regardless of 

the sample size. For instance, under the t(3) distribution, for 𝛿 ൌ 0.25 and (𝑛ത,𝑛ଵ,𝑛ଶ) = 

(5,3,6) when m = 100 and 500, the DS precedence scheme gives a signal for the first 

time on the 270th and 143th subgroups, respectively. This shows that the larger the value 

of m the more sensitive is the monitoring scheme. 

 When m, 𝑛ത and 𝑛ଵ are kept fixed, the larger the value of 𝑛ଶ, the more sensitive is the 

scheme, especially for large 𝑛ത and small 𝑛ଵ values.  

 For small stage 1 sample size, say 𝑛ଵ ൌ 3, when m and 𝑛ଶ are kept fixed, there is no 

significant difference in the performance of the DS precedence scheme as 𝑛ത increases 

(see Table 3). However, as 𝑛ଵ increases, say 𝑛ଵ ൌ 5, when m and 𝑛ଶ are kept fixed, the 

performance of the DS precedence scheme increases as 𝑛ത increases (see Table 4). This 

is achieved at the expense of the inspection and production costs. 

 When m, 𝑛ത and 𝑛ଶ are kept fixed, the larger the stage 1 sample size 𝑛ଵ, the less sensitive 

is the scheme. In this case, it is recommended to use reasonably large 𝑛ത values to 

improve the performance; but keep in mind high costs of inspection and production. 

 Under the t-distribution, the DS precedence scheme performs better for small degrees 

of freedom. Thus, the larger the degrees of freedom, the less sensitive is the scheme. 

 The DS precedence scheme performs worst under skewed distributions especially for 

small shifts in the location parameter. Under the GAM(𝛼,𝛽), the DS precedence scheme 

is 𝐴𝑅𝐿-biased. This can be remedied by increasing the Phase I sample size or the shape 

parameter. The larger the shape parameter, the better is the performance. 

 It can also be noticed that, when 𝑚=100, under the GAM(𝛼,𝛽) distribution, the 

proposed DS precedence scheme performs worst for small shifts in the location 

parameter (especially, when 𝛿  0.25) regardless of the magnitude of the shape 

parameter (𝛼) and average sample size (𝑛ത). However, as 𝛼 and 𝑛ത increase, the 

sensitivity of the DS precedence scheme under the GAM(𝛼,𝛽) distribution increases as 

well but not to the extent of surpassing its sensitivity under the normal, t and double 

exponential distributions. Therefore, for small shifts, it is recommended to use high 

reasonable 𝑛ത values to increase its sensitivity under small shifts. For moderate shifts, 

the DS precedence scheme performs better under the GAM(𝛼,𝛽) distribution as 

compared to its performance under the DEXP(0,1) distribution. For large shifts in the 
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process parameter, the performance is the same regardless of the nature of the 

underlying process distribution.   

 The DS precedence scheme performs better under symmetric distributions with heavier 

tails. Thus, the DS precedence scheme is more sensitive under the t-distribution than 

the N(0,1), GAM(1,1), GAM(3,1) and DEXP(0,1) distributions. However, under 

symmetric distributions, the performance deteriorates as the peak of the distribution get 

higher. Therefore, the DS precedence scheme performs better under the N(0,1) 

distribution than the DEXP(0,1) distribution.  

 
Table 3. OOC ARL profile of the DS precedence scheme when 𝑚 ∈ ሼ100, 500ሽ, 𝑛ଵ ൌ 3, 𝑛ଶ ∈

ሼ6,12ሽ, 𝑛ത ∈ ሼ5, 7ሽ for a 𝑁𝐴𝑅𝐿 value of 500 under different distributions 
  m 100 500 
(𝒏𝟏,𝒏𝟐) 𝑛ത Distribution 0.25 0.50 0.75 1.00 1.50 2.00 0.25 0.50 0.75 1.00 1.50 2.00 

(3,6) 

5 

N (0,1) 262.51 56.33 13.54 4.76 1.48 1.05 171.75 37.14 10.46 4.05 1.42 1.04 
t (3) 270.35 55.48 8.71 2.40 1.05 1.00 143.32 20.50 4.29 1.67 1.03 1.00
t (12) 276.70 62.82 14.05 4.58 1.39 1.04 175.65 36.34 9.93 3.72 1.32 1.03
GAM (1,1) 660.06 303.76 88.95 30.12 4.25 1.31 380.15 120.15 38.15 13.40 2.43 1.06
GAM (3,1) 519.05 177.22 50.39 15.70 2.68 1.17 305.78 84.11 25.93 9.05 2.00 1.07
DEXP (0,1) 421.78 217.66 86.28 29.87 4.32 1.40 310.69 113.24 38.41 13.80 2.51 1.18

7 

N (0,1) 264.41 56.90 13.93 4.76 1.47 1.05 174.20 36.99 10.45 4.09 1.41 1.04
t (3) 266.23 53.94 8.67 2.38 1.05 1.00 146.29 21.33 4.45 1.70 1.03 1.00
t (12) 272.00 62.15 14.21 4.67 1.39 1.04 179.70 37.44 9.94 3.72 1.32 1.03
GAM (1,1) 610.87 288.55 92.83 34.35 4.42 1.32 385.77 122.73 39.63 14.13 2.56 1.07 
GAM (3,1) 530.81 182.73 50.33 15.54 2.66 1.17 309.49 86.18 26.73 9.29 2.05 1.08
DEXP (0,1) 414.89 212.61 87.00 29.96 4.43 1.40 315.30 117.65 40.28 14.50 2.60 1.18

(3,12) 

5 

N (0,1) 194.43 30.47 6.72 2.64 1.22 1.04 127.35 21.63 5.99 2.60 1.27 1.06
t (3) 133.44 10.87 2.19 1.24 1.03 1.01 68.23 7.21 2.05 1.27 1.04 1.01 
t (12) 189.31 27.86 5.99 2.33 1.17 1.03 121.31 19.23 5.23 2.30 1.21 1.04
GAM (1,1) 583.41 119.29 24.95 5.96 1.20 1.00 257.07 53.70 13.22 4.11 1.16 1.00
GAM (3,1) 417.92 77.63 16.09 4.51 1.28 1.01 209.98 41.65 10.66 3.76 1.30 1.02
DEXP (0,1) 335.09 103.77 23.43 6.12 1.39 1.08 228.31 52.00 13.02 4.10 1.37 1.11 

7 

N (0,1) 348.23 113.78 29.06 6.38 1.31 1.02 123.50 19.94 5.37 2.29 1.15 1.02
t (3) 145.56 11.65 2.04 1.13 1.00 1.00 65.94 6.43 1.78 1.15 1.02 1.00
t (12) 196.61 27.15 5.34 2.00 1.06 1.00 117.49 17.95 4.60 2.01 1.11 1.02
GAM (1,1) 630.48 129.74 26.73 6.19 1.22 1.00 254.42 50.08 11.69 3.38 1.04 1.00 
GAM (3,1) 474.00 86.93 15.65 4.23 1.19 1.00 207.27 39.68 9.71 3.27 1.13 1.00
DEXP (0,1) 348.23 113.78 29.06 6.38 1.31 1.02 221.83 49.63 11.58 3.47 1.22 1.05
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Table 4. OOC ARL profile of the DS precedence scheme when 𝑚 ∈ ሼ100, 500ሽ, 𝑛ଵ ൌ 5, 𝑛ଶ ∈
ሼ6,12ሽ, 𝑛ത ∈ ሼ5, 7ሽ for a 𝑁𝐴𝑅𝐿 value of 500 under different distributions   

  m 100 500 
(𝒏𝟏,𝒏𝟐) 𝑛ത Distribution 0.25 0.50 0.75 1.00 1.50 2.00 0.25 0.50 0.75 1.00 1.50 2.00 

(5,6) 

5 

N (0,1) 346.88 152.37 59.35 20.34 2.84 1.14 187.62 45.15 14.59 6.08 2.03 1.22
t (3) 299.18 90.97 26.86 10.02 2.64 1.35 177.01 38.13 10.58 3.69 1.25 1.02 
t (12) 319.76 113.78 34.55 12.23 2.74 1.34 197.11 48.15 15.16 6.15 1.94 1.17
GAM (1,1) 709.13 401.70 197.14 89.25 22.70 6.14 377.86 132.99 53.49 25.01 6.72 2.20
GAM (3,1) 598.62 287.57 105.00 45.63 9.62 2.82 321.16 99.84 36.81 15.88 4.21 1.67
DEXP (0,1) 423.01 272.57 156.14 83.03 22.24 5.92 317.24 129.67 53.83 25.68 6.80 2.22 

7 

N (0,1) 198.02 36.96 8.30 3.20 1.23 1.02 154.06 28.61 7.68 3.05 1.22 1.01
t (3) 169.45 21.12 3.75 1.41 1.01 1.00 109.52 12.95 2.79 1.31 1.01 1.00
t (12) 201.61 36.72 8.20 2.92 1.17 1.01 154.27 27.23 7.06 2.71 1.15 1.01
GAM (1,1) 542.72 164.31 41.11 12.64 1.93 1.04 334.20 87.86 25.21 8.14 1.57 1.00
GAM (3,1) 487.40 102.54 25.34 7.57 1.59 1.03 269.02 63.16 17.51 5.96 1.48 1.02
DEXP (0,1) 320.61 138.10 44.37 12.49 2.00 1.10 285.87 86.11 25.28 8.40 1.65 1.06

(5,12) 

5 

N (0,1) 342.65 149.66 54.23 19.74 2.64 1.16 155.53 34.53 11.37 5.11 1.86 1.18
t (3) 292.96 88.12 26.14 10.10 2.64 1.35 125.45 25.77 7.57 2.9 1.17 1.01
t (12) 317.29 107.98 34.23 12.2 2.75 1.33 159.89 35.29 11.53 5.03 1.76 1.14 
GAM (1,1) 706.77 396.68 193.01 90.02 22.65 6.05 297.00 89.59 36.45 18.14 5.09 1.78
GAM (3,1) 547.47 269.42 106.05 45.15 9.53 2.82 255.21 71.28 26.06 11.78 3.45 1.49
DEXP (0,1) 412.45 259.28 155.02 84.16 21.58 6.07 262.1 87.64 37.09 18.15 5.07 1.82

7 

N (0,1) 211.03 27.5 5.75 2.24 1.13 1.01 104.13 15.63 4.18 1.89 1.08 1.01 
t (3) 138.26 9.07 1.86 1.14 1.01 1.00 50.11 4.70 1.48 1.08 1.00 1.00
t (12) 207.49 25.51 5.01 1.97 1.09 1.01 96.65 13.68 3.6 1.67 1.05 1.00
GAM (1,1) 553.71 123.58 20.16 4.66 1.11 1.00 201.55 35.83 7.71 2.32 1.01 1.00
GAM (3,1) 484.12 74.24 13.58 3.65 1.15 1.00 170.27 29.01 6.81 2.39 1.05 1.00 
DEXP (0,1) 381.59 104.91 21.13 4.77 1.23 1.04 187.56 35.29 7.73 2.47 1.11 1.02

 

Figure 4 displays the 𝐸𝐴𝑅𝐿 profile of the DS precedence profile under different distributions 

when 𝑚 ∈ {100, 500}, 𝑛ത ∈{5,7} and 𝛿 ൌ 0.25, 0.5, 0.75, 1, 1.5 and 2 for a 𝑁𝐴𝑅𝐿 value of 

500. In terms of the overall performance, when m is kept fixed, for small stage 1 sample size, 

there is a slight difference in the overall performance of the DS precedence scheme as the 𝑛ത 

value increases. However, as the stage 1 sample size increases, there is a significant difference 

in the performance of the DS precedence scheme as 𝑛ത value increases. In this case, the larger 

the 𝑛ത value, the more sensitive the scheme becomes. Figure 4 also reveals that the larger the 

Phase I sample size, the better is the overall performance of the proposed DS precedence 

scheme. Since the minimum EARL value is yielded under the t-distribution, it can be deduced 

that the DS precedence scheme is more sensitive under symmetric distribution with heavy tails 

regardless of the sample sizes. 
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(a) (𝑛ଵ,𝑛ଶ)=(3,6) (b) (𝑛ଵ,𝑛ଶ)=(5,6)  

(c) (𝑛ଵ,𝑛ଶ)=(3,12) (d) (𝑛ଵ,𝑛ଶ)=(5,12) 
Figure 4. 𝐸𝐴𝑅𝐿 profile of the DS precedence scheme when 𝛿 ∈ ሼ 0.25, 0.5, 0.75, 1, 1.5, 2ሽ, 𝑚 ∈ 

{100, 500} and 𝑛ത ∈{5,7} for a 𝑁𝐴𝑅𝐿 value of 500  
 

The pattern and findings in terms of the 𝐸𝐴𝑁𝑂𝑆 remains the same regardless of the Phase I 

sample size. Figure 5 displays the 𝐸𝐴𝑁𝑂𝑆 profile of the DS precedence scheme under different 

distributions when 𝑚 ൌ 500, (𝑛ଵ, 𝑛ଶ) = (3,12) , 𝑛ത ∈{5,7} and 𝛿 ൌ 0.25 (0.25) 3 for a 𝑁𝐴𝑅𝐿 

value of 500. Thus, Figure 5 shows that the smaller 𝑛ത, the better the 𝐸𝐴𝑁𝑂𝑆 profile. In other 

words, the DS precedence scheme is cost effective for small 𝑛ത.   
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Figure 5. 𝐸𝐴𝑁𝑂𝑆 profile of the DS precedence scheme when 𝛿 ൌ 0.25 (0.25) 3, 𝑚 ൌ500, (𝑛ଵ, 𝑛ଶ) 
= (3,12) and 𝑛ത ∈{5,7} for a 𝑁𝐴𝑅𝐿 value of 500

 

3.5 Comparison with the existing Shewhart precedence scheme 

In this section, the proposed DS precedence scheme is compared to the existing basic Shewhart 

precedence scheme (denoted as 1-of-1) by Chakraborti et al16 and the 2-of-2 SRR precedence 

scheme (denoted as 2-of-2) by Chakraborti et al24 and Malela-Majika et al25. The performances 

of the competing schemes are computed when 𝑚 ൌ 500 and 𝑛 ൌ 5 (which is equivalent to 𝑛ത ൌ 

5 for the proposed scheme) under normal and non-normal distributions. Assuming that 𝑁𝐴𝑅𝐿 

= 500, 𝑚 ൌ 500 and (𝑛ଵ,𝑛ଶ) = (3,6) so that 𝑛ത ൌ 5, the OOC performance comparison of the 

competing schemes in terms of the ARL and EARL values under the N(0,1) and t(3) 

distributions are displayed in Figures 6 and 7, respectively.  

Figure 6 shows that the proposed DS precedence scheme is superior to both the 1-of-1 and 2-

of-2 precedence schemes regardless of the nature of the distribution. In addition, it is observed 

that the 2-of-2 precedence scheme outperforms the 1-of-1 precedence scheme for small shifts 

in the process parameter and the converse is true for large shifts. Figure 7 reveals that the DS 

precedence scheme has a better overall performance when compared to both the 1-of-1 and 2-

of-2 precedence schemes regardless of the type of distribution. The 2-of-2 outperforms the 1-

of-1 precedence scheme in terms of the EARL values. The 2-of-2 and DS precedence schemes 

perform better under the t(3) distribution; however, the 1-of-1 precedence scheme performs 

better under the N(0,1) distribution. 
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(a) N(0,1) distribution (b) t(3) distribution 
Figure 6. 𝐴𝑅𝐿 comparison of three precedence monitoring scheme under the N(0,1) and t(3) 

distributions when 𝛿 ൌ 0.25 (0.25) 2, 𝑚 ൌ 500 and 𝑛ത ൌ 5 for a 𝑁𝐴𝑅𝐿 value of 500 
 

Figure 7. 𝐸𝐴𝑅𝐿 comparison of three precedence monitoring schemes under the N(0,1) and t(3) 
distributions when (𝛿,𝛿௫) = (0.25, 2),  𝑚 ൌ 500 and 𝑛ത ൌ 5 for a 𝑁𝐴𝑅𝐿 value of 500

 

4. Illustrative example 

To illustrate the implementation and application of the DS precedence monitoring scheme, the 

data on a production process of 500 milliliters (ml) milk bottles adopted from Castagliola et 

al43, where the quality characteristic of interest is the volume (in ml) of milk within each bottle. 

The data contains two datasets for which the goodness of fit test for normality is not rejected. 

The first dataset has twenty retrospective or Phase I samples, each of size n = 5, collected when 

the process was considered to be IC, that is, m =100. The second dataset contains twenty test 

(i.e. Phase II) samples each of size 5. In this example, each test (i.e. Phase II) sample is 
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considered to be a master sample which is then divided into two subgroups of sizes 1 and 4 

(i.e. 𝑛ଵ = 1 and 𝑛ଶ = 4), in Stages 1 and 2, respectively, such that 𝑛 = 𝑛ଵ  𝑛ଶ  = 5.  

For a 𝑁𝐴𝑅𝐿 value of 370 and a pre-specified 𝑛ത value of 3, the stage 1 charting constants 𝑎ଶ, 

𝑎ଵ, 𝑏ଵ and 𝑏ଶ are equal to 10, 36, 65 and 91, respectively, so that the DS precedence scheme 

yields an attained 𝐴𝑆𝑆 value of 3.06 with the following estimated stage 1 control limits: 

𝑂𝐿𝐶𝐿 ൌ 𝑋ሺଵ:ଵሻ = 498.83, 𝐼𝐿𝐶𝐿 ൌ 𝑋ሺଷ:ଵሻ = 499.71, 𝐼𝑈𝐶𝐿 ൌ 𝑋ሺହ:ଵሻ = 500.26 and 

𝑂𝑈𝐶𝐿 ൌ 𝑋ሺଽଵ:ଵሻ = 501.51. The corresponding stage 2 charting constants 𝑐ଵ and 𝑐ଶ are equal 

to 6 and 95, respectively, so that the estimated stage 2 control limits are given by: 𝐿𝐶𝐿 ൌ

𝑋ሺ:ଵሻ = 498.59 and 𝑈𝐶𝐿 ൌ 𝑋ሺଽହ:ଵሻ = 501.83. A plot of the stages 1 and 2 charting statistics 

(i.e. 𝑌ሺ:భሻ and 𝑌ሺ:ሻ) of the DS precedence scheme are shown in Figure 8. It is seen that at the 

first, second and third sampling points, the DS precedence scheme plotted in region C (i.e. the 

IC region) when 𝑡 ൌ 1, 2 and 3. At the fourth and fifth sampling points, the process moved to 

stage 2. The stage 2 charting statistics at the fourth and fifth sampling times plotted in region 

E (i.e. the IC region) when 𝑡 ൌ 4 and 5. At the sixth sampling point of stage 1, the charting 

statistic plotted in region A, indicating that the process is OOC. Thus, the DS precedence 

scheme was able to detect a shift in the process location on the sixth subgroup. 

 

Figure 8. The Phase II DS precedence monitoring scheme for the filling process of 500 ml milk bottles
 

5. Concluding remarks 

In this paper, a new nonparametric DS monitoring scheme based on the precedence statistic is 

introduced. The DS precedence scheme is a two-stage monitoring scheme that uses the 𝑗௧ 

order statistic in stage 1 and the ℎ௧ order statistic in stage 2 as the charting statistics. The 
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performance of the DS precedence scheme is investigated using the following run-length 

properties metrics: 𝐴𝑅𝐿, 𝑆𝐷𝑅𝐿, 𝑃𝑅𝐿, 𝐸𝐴𝑅𝐿 and 𝐸𝐴𝑁𝑂𝑆. It is observed that the proposed 

scheme has attractive run-length properties and better overall performance especially for large 

Phase I sample sizes. However, for small Phase I sample sizes, the performance of the DS 

precedence scheme degrades and the attained 𝐴𝑅𝐿 is too far away from the desired 𝑁𝐴𝑅𝐿 

value. To improve the sensitivity of the proposed scheme, it is observed that when the stage 1 

test sample is small, it is better to use small 𝑛ത values since there is no significant increase in 

the sensitivity of the proposed scheme by using large 𝑛ത values. However, for a large stage 1 

test sample, reasonably large 𝑛ത values can be used. Note though, very large 𝑛ത values are not 

recommended as they lead to high inspection and production costs since the expected total 

sample size at each sampling point is large. It is observed that the performance of the proposed 

scheme tend to improve for a large 𝑛ଶ test sample with a small stage 1 test sample and 

reasonably large 𝑛ത values. Finally, it is shown that the proposed scheme performs better than 

the existing Shewhart precedence scheme with and without runs-rules. 

For future research purpose, the proposed scheme can be studied using the side-sensitive design 

(see for example Motsepa et al39). Moreover, to further improve its performance, the synthetic 

or group-runs double sampling monitoring scheme based on the precedence statistics can also 

be studied. Other charting statistics (e.g. sign, signed-rank, exceedance, Wilcoxon rank sum, 

etc.) can be integrated with the double sampling procedure to form other new efficient 

nonparametric monitoring schemes. Given the work of Yang and Wu28,29, other nonparametric 

memory-type double sampling schemes can also be introduced in the SPM literature.  
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