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Dissertation summary 
 

Compositional and functional plant community characteristics can strongly govern some ecosystem 

processes. These community characteristics, may, in turn, be related to multiple environmental 

variables, including edaphic, climatic, and topographic conditions. However, there is still an 

incomplete understanding of how environmental conditions affect plant community composition and 

functioning and, therefore, how species composition and trait expression potentially link habitat 

conditions to ecosystem processes. This is particularly true for grasses, despite this taxon having 

considerable ecological and economic importance. The grass family (Poaceae) is a species-rich taxon, 

with close to 10 000 species occurring worldwide, and is chiefly responsible for providing the key 

ecosystem service of grazing provisioning since grass species make up the bulk of the herbaceous plant 

growth in grasslands and savannas. The grazing quality of grasses is assumed to vary strongly between 

species, with intra-specific variation in grazing quality often ignored, resulting in grass species often 

uniformly being categorized as being of high or low grazing quality. There is, however, an increasing 

debate about the validity of this approach since many grass characteristics (including plant functional 

traits; PFTs) vary intra-specifically along environmental gradients. Therefore, this study examined the 

relationship between 19 environmental factors and community composition and cover, community-

weighted mean (CWM) trait values, intra-specific trait variation and the grazing quality in two C4-

dominated savanna grass assemblages. 

This study demonstrated that the relationships between grazing quality and PFTs and environmental 

variables are typically weak and highly idiosyncratic at both the community- and species-level. Cover 

and soil (particularly soil nutrients) variables were most consistently influential environmental 

variables. Grazing quality (i.e. nutritional value) differed significantly between grass species, with large 

proportions of the variation in all grazing quality components being explained by the identity of 

species. However, within species, few environmental variables explained intra-specific variation in 

grazing quality. Additionally, plant functional traits were also weakly related to intra-specific variation 

in grazing quality. Therefore, these findings suggest that grass grazing quality and PFTs do not respond 

consistently to environmental variables frequently quantified in ecological studies and that, contrary 

to results from C3-dominated temperate grasslands, leaf dry matter content, specific leaf area and 

force to tear are not useful proxies of grazing quality. More broadly, this study highlights that there 

may be considerable intra-specific variation in grass grazing quality, but that this within-species 

variation is not related to commonly recorded environmental conditions or easily measured plant 

traits, and, therefore, remains challenging to predict. 
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Chapter 1: General introduction 
The grass family (Poaceae) is a species-rich taxon with members of this family growing worldwide 

(Moffett, 1997) and close to 10 000 species being documented globally and c. 1 000 species in 

southern Africa (Fish et al., 2015). All modern grass species evolved from a common ancestor in the 

upper Cretaceous period between 50 – 80 million years ago (Crepet and Feldman, 1991; Bennetzen, 

2007). Grasses evolved with grazing mammals and therefore developed a strong mutualistic 

relationship with grazers (Owen and Wiegert, 1981) and grasses are now an important component of 

all terrestrial grazing systems (McGranahan and Yurkonis, 2018). All species of grass grow 

herbaceously, except for bamboo (Van Oudtshoorn, 1999; Fish et al., 2015), and only a handful of 

species have been identified as possessing phenolic compounds for deterring herbivores 

(Coughenour, 1985). Grasses all share the same basic growth form, with similar morphological 

structures (Van Oudtshoorn, 1999; Fish et al., 2015). Furthermore, grasses have been shown to have 

very little genetic difference between species (Bennetzen, 2007). However, variation exists both 

between species (i.e. inter-specifically) and between individuals of the same species (i.e. intra-

specifically). For example, grass species display differences in inflorescence shapes (Van Oudtshoorn, 

1999; Fish et al., 2015), plant height (Sandel and Dangremond, 2012) and functional traits such as 

specific leaf area (SLA, leaf area per dry leaf mass ; Sandel et al., 2021). Grass species can have different 

growth statures such as short creeping- or tall tufted species and at the same time grasses can display 

considerable variation in their grazing value (Van Oudtshoorn, 1999; Hempson et al., 2015). Equally, 

different individuals of the same species can display variation even under similar conditions (e.g. 

Digitaria. eriantha can exhibit two different growth forms, clumped and stoloniferous within the same 

site; personal observation, 2019 - 2020).  

Plant functional traits (PFT's; Pérez-Harguindeguy et al., 2013) are measurable attributes an individual 

plant possesses which can undergo change and, in turn, affect the fitness of the individual (Violle et 

al., 2007), however, these traits can vary greatly not only between species but also within species 

(Albert et al., 2011). Plant functional traits provide insights into plant life-history strategies (Sandel 

and Low, 2019), and into variation in growth, survival, and reproduction (Weiher et al., 1999). At 

broader scales, plant functional traits can also act as proxies for ecosystem services (Zirbel et al., 2017), 

such as primary production (Pérez-Harguindeguy et al., 2013) and carbon and nitrogen cycling (Garnier 

et al., 2004). Plant functional traits are affected by environmental conditions and provide an easily 

monitored indication of the response of plants to changes in environmental conditions (Violle et al., 

2007; Pérez-Harguindeguy et al., 2013). The trait values a species or individual possesses reflects the 

functional needs for survival and persistence under local environmental conditions (Díaz and Cabido, 

1997). For example, low specific leaf area(SLA) in grasses globally is correlated to high temperatures 
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(Roybal and Butterfield, 2018), since plants with low SLA generally have thicker cell walls which allow 

for survival in extreme temperatures (Lambers et al., 2008). Additionally, at a more local scale, SLA 

can be positively correlated to grazing intensity, with high SLA grasses being more palatable (Moreno 

García et al., 2014). However, the drivers and extent of inter-and intra-specific variation in PFTs are 

poorly understood for grasses (Roybal and Butterfield, 2019) and especially in southern Africa (Roybal 

and Butterfield, 2018). 

Functional traits can vary on two levels: between different species (inter-specific variation; BTV) or 

between individuals of the same species (intraspecific variation; ITV). Functional traits typically vary 

more strongly inter-specifically, with, for example, up to 75% of the variation in plant functional traits 

being contributed by inter-specific trait variation at the community level (Siefert et al., 2015). In 

theory, environmental conditions exert selective pressures on species and filter out those with 

unsuitable trait values (Keddy, 1992). Consequently, environmental conditions limit the range of 

values of each trait present (i.e. BTV in the community; Lavorel and Garnier, 2002). Since functional 

traits are generally quite different between species, the influence of environmental factors driving 

within-species trait variation (i.e. ITV) is typically overwhelmed by differences between species (i.e. 

species turnover; Pescador et al., 2015). 

At the same time, functional traits also vary between individuals of the same species (Andrade et al., 

2014), with ITV contributing substantially towards trait variation observed within plant species (25-

32% at the community level; Siefert et al., 2015; Roybal and Butterfield, 2018). Intra-specific variation 

represents the plasticity and genetic variation in individuals of a single species, with phenotypic 

plasticity impacting the ability of these individuals to respond to local environmental conditions 

through non-genetic changes in their morphology and physiology (Wellstein et al., 2013). Intra-specific 

variation, therefore, allows for the survival and reproduction of a species under different 

environmental conditions (Byars et al., 2007). Hence, increased ITV potentially allows for optimum 

species performance, under a greater range of environmental conditions, and as a result supporting a 

well-functioning ecosystem (Albert et al., 2010). The inclusion of ITV allows for better predictions 

regarding the environmental drivers of trait variation at the community level (e.g. response of 

communities to extreme drought; Jung et al., 2014), and could, for example, influence predictions of 

food web dynamics (Bolnick et al., 2011). By using community-level trait values, our understanding of 

how much each species contributes to the community-level trait variation (i.e. ITV + BTV, weighted by 

species abundance) could be improved (Garnier et al., 2004). Community weighted means (CWM) 

could also potentially reveal the most important environmental drivers of functional traits at the 

community level and offer new insights into how communities respond to environmental changes 

(Jung et al., 2014). 
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Intra-specific variation in functional traits has been found to be strongly correlated with some 

environmental variables, including soil type, moisture availability, mean annual rainfall and 

temperature (Witkowski and Lamont, 1991; Wright et al., 2004; Roybal and Butterfield, 2019). Intra-

specific trait variation is strongly impacted by small scale changes in environmental conditions such as 

temperature, aridity, light availability, as well as biotic relationships including herbivory (Westerband 

et al., 2021). Responses in the ITV of traits related to the size of plants in reaction to grazing has also 

been demonstrated recently, but PFTs related to plant growth and water usage show inconsistent 

relationships with grazing (Whitworth‐Hulse et al., 2016). Moreover, environmental variables in 

general show inconsistent patterns as to how they are related to PFTs and how strong their 

relationships are with PFTs (Gerdol, 2005; Albert et al., 2010; Kichenin et al., 2013; Westerband et al., 

2021). 

A diversity of PFTs can be measured but only a handful are considered to be clearly ecologically 

relevant across different scales and between habitats (Kattge et al., 2020), with traits such as SLA and 

leaf dry matter content (LDMC, dry mass of a leaf divided by the wet mass of the leaf) being considered 

the most suitable for the study of variation in resource use in plants (Wilson et al., 1999a). Both SLA 

and LDMC are variable at the inter-and intra-specific level (Garnier et al., 2001), with SLA, generally 

being more variable than LDMC (Wellstein et al., 2013). With higher SLA values it is expected that a 

plant would display higher growth rates, higher photosynthetic rates, and decreased investments into 

secondary metabolites, and, as a result, decreased leaf lifespan (Wilson et al., 1999a; Pérez-

Harguindeguy et al., 2013), and increased herbivory (Coley et al., 1985). The increased growth rates 

can also allow for rapid regrowth after herbivory events allowing the plant to tolerate grazing 

(Coughenour, 1985; Adler et al., 2004). In contrast, species with high LDMC values typically display the 

opposite trend with lower growth rates, lower photosynthetic rates, longer leaf lifespan and reduced 

herbivory rates expected (Pérez-Harguindeguy et al., 2013). Along environmental gradients, 

contrasting trends are generally observed between SLA and LDMC, with changes in environmental 

conditions leading to an increase in the values of one trait while decreasing the other trait’s values 

(Wellstein et al., 2013). Likewise, high SLA values are expected from individuals in highly productive 

environments with high water and nutrient availability, while high LDMC values are typically common 

in disturbed and unproductive environments (Wilson et al., 1999a; Pérez-Harguindeguy et al., 2013). 

However, while SLA and LDMC influence the same biological features these traits can be impacted 

differently by changes in environmental conditions (Schöb et al., 2012). Further, since these traits are 

not directly correlated with each other, they provide different insights into the drivers of variation in 

PFTs (Pérez-Harguindeguy et al., 2013).  
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Other traits to consider, particularly in terms of herbivory, are leaf thickness (LT), leaf width (LW) and 

force to tear (FT, force in N required to break leaf by pulling force divided by the width of the leaf). 

These traits are avoidance traits which prevent excessive biomass being lost to herbivores (Adler et 

al., 2004). Force to tear (i.e. toughness) is a strong avoidance trait since generally, a strong negative 

relationship exists between palatability and the toughness of foliar biomass (Cornelissen et al., 1999). 

Leaf thickness is often measured as an integrative metric of the physical properties of leaves and is a 

key factor influencing SLA, with thicker leaves having lower SLA (Pérez-Harguindeguy et al., 2013). 

Thick leaves allow for optimization of photosynthesis in dry, hot, and nutrient-poor environments, 

since in thicker leaves the gains obtained through photosynthesis outweigh losses experienced due to 

respiration and transpiration (Pérez-Harguindeguy et al., 2013). Leaf thickness, LW and FT are used to 

express the physical strength of leaves and the ability of leaves to survive mechanical damage such as 

herbivory (Pérez-Harguindeguy et al., 2013).  

The grazing value of grasses can be defined as the advantage obtained by a grazing animal when 

feeding on a specific grass individual. The grazing value of grasses is an important component in 

grazing systems which is influenced by environmental variables such as temperature, precipitation, 

and atmospheric CO2 concentrations as well as biological factors, such as the developmental stage of 

grass plants (Duru et al., 2008; Craine et al., 2010; McGranahan and Yurkonis, 2018).  An exact grazing 

value is however not often calculated since the grazing value of grass can be impacted by various plant 

components, including the grass’ nutritional value, ability to regrow after grazing, acceptability by 

grazers, leaf production and digestibility of grass biomass (Van Oudtshoorn, 1999), palatability and 

grazing capacity (Barnes et al., 1984). However, grazing quality (i.e. a term used synonymously with 

grass nutritional value in this dissertation) can be measured and is often summarized by three key 

components: digestibility, crude protein (CP) and fibre content (Khaled et al., 2006). Digestibility 

(measured in vitro) is the most often studied of the three key components (Tasset et al., 2019), and is 

considered to be the best measurement of grazing quality (Habermann et al., 2019). Crude protein 

which consists of amino nitrogen, nucleic acids, nitrates, and nitrites (Habermann et al., 2019), is 

important for good body condition and growth of herbivores and is positively related to the 

digestibility of grass biomass (Hughes et al., 2014). The fibre content of grass biomass is made up of 

neutral detergent fibre (NDF) which consists of hemicellulose, cellulose and lignin and acid detergent 

fibre (ADF) which consists of cellulose and lignin (Habermann et al., 2019). Higher levels of NDF and 

ADF results in reduced digestibility (Habermann et al., 2019), which in turn reduces the grazing quality 

of the grass biomass (Ball et al., 2001). During the wet season, the crude protein levels, and digestibility 

of grass biomass peak (Hughes et al., 2014) and generally decreases as the grasses reach maturity 

(Rosser et al., 2013; Grev et al., 2017). The fibre and lignin content on the other hand peaks during the 
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dry season (Hughes et al., 2014). Traditionally, expensive, and time-consuming wet chemical analyses 

were the only method available for determining the grazing quality of grass samples. However, near-

infrared reflectance spectroscopy (NIRS) offers an accurate, time- and cost-efficient (Corson et al., 

1999) method for determining CP and fibre content fractions, which can provide accurate estimates 

of digestibility. By obtaining accurate grazing quality values a better understanding of how 

environmental conditions impact the grazing quality could be achieved. Furthermore, the importance 

of the different components of grazing quality could be revealed and a better understanding 

developed of how these components interact, which will allow for effective management of grazing 

regimes in grassy ecosystems.  

In contrast to PFTs, grazing quality is typically only considered to vary at the species level, ignoring 

potential intra-specific variation (Van Oudtshoorn, 1999). Traditionally in South Africa, grass species 

have been assigned a categorical grazing value (i.e. low, average, or high; Fig. 1) with the emphasis 

being placed on inter-specific differences in grazing value (i.e. BTV in grazing quality; Van Oudtshoorn, 

1999). Consequently, some grass species are considered good for grazing and others not, with all 

individuals of a species assumed to have the same grazing quality irrespective of local environmental 

conditions and ecotypes (Van Oudtshoorn, 1999; Truter and Venter, 2017; Van Oudtshoorn, 2019). 

However, there is an increasing debate about the validity of this approach as several grass 

characteristics (including PFTs and morphology) do vary strongly with environmental conditions (e.g. 

soil conditions, water availability and temperature; Roybal and Butterfield, 2018; Van Oudtshoorn, 

2019). Indeed, environmental conditions are also expected to drive intra-specific variation in the 

grazing quality of grasses, since, for example, the crude protein levels of Panicum maximum increase 

under water-stressed conditions (Marais, 2005). Therefore, it is expected that the grazing quality of 

grasses varies at both the inter-and intra-specific levels (Fig. 1.1). For example, a common grass found 

in Limpopo province of  South Africa, Schmidtia pappophoroides, is classified as having a high grazing 

quality (Van Oudtshoorn, 1999), despite this grass also exhibiting low grazing quality in nutrient-poor 

areas (personal communication Truter, 2019). Exploring the relationships between PFTs and grazing 

quality could alter our understanding of spatial variation in, and environmental drivers of, grazing 

quality in grassy environments. Functional traits are easy to measure, and the development of new 

Near-Infrared Reflectance Spectroscopy (NIRS) technology allows for rapid and affordable 

measurements of the grazing quality of grass material and has been widely used for the measurement 

of various factors impacting the digestibility of forages (Corson et al., 1999). However, NIRS technology 

has predominantly been used for livestock forage quality analysis (Park et al., 1998; Nousiainen et al., 

2004) with very few studies examining the grazing quality of natural vegetation. Thus, the combination 
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of these methods opens the door to novel studies, including the possibility of using PFTs as time- and 

cost-efficient proxies of grazing quality. 

Various authors have demonstrated a negative link between LDMC and grazing quality at the species 

(Khaled et al., 2006; Pontes et al., 2007; Duru et al., 2008; Andueza et al., 2010; Tasset et al., 2019) 

and community-level (CWM; Gardarin et al., 2014). However, these studies have all been conducted 

in French grasslands, which represent a small fraction of the world's grassy ecosystems and are 

dominated by C3 grasses whereas African savannas are dominated by C4 grasses (Ratnam et al., 2011). 

Therefore, it is important to know the extent to which PFTs can be used as proxies for the grazing 

quality of grasses in other ecosystems. Specific leaf area and LDMC have the greatest potential as 

proxies for grazing quality as these traits directly relate to primary production and resource use 

(Garnier et al., 2001). It is generally expected that high SLA and low LDMC correspond to high grazing 

quality due to low concentrations of tough cell wall components such as fibre, cellulose, and 

hemicellulose (Wilson et al., 1999a; Cornelissen et al., 2003; Khaled et al., 2006; Pontes et al., 2007; 

Whitworth‐Hulse et al., 2016). Specific leaf area has a negative correlation with the bulk density of 

leaves which is determined by the abundance of structural components (i.e. lignin, cellulose, and 

hemicellulose) in cell walls relative to the volume of cell contents (Wilson et al., 1999a; Cornelissen et 

al., 2003; Whitworth‐Hulse et al., 2016), which theoretically should allow for the prediction of grazing 

quality from SLA (Duru et al., 2004). A positive relationship is known to exist between SLA and 

digestibility of grasses (Duru et al., 2004; Pontes et al., 2007), as well as between leaf area and 

digestibility of P. maximum in a pasture system (Da Silva et al., 2019). Indeed, it has also been shown 

that the relationship between SLA and grazing intensity (i.e. the level of herbivory in an area) is positive 

while the relationship between LDMC and grazing intensity is negative (Peco et al., 2005; Saatkamp et 

al., 2010). This suggests that plants with high SLA are prone to grazing and that these plants 

compensate for high defoliation rates through increased growth rates (Westoby, 1998).  

Leaf thickness and FT are positively related to the toughness of leaves and are thus expected to be 

negatively related to grazing quality, as tougher leaves offer greater resistance to mechanical damage 

(Pérez-Harguindeguy et al., 2013). However, these traits are not often linked to the grazing quality of 

grasses (i.e. CP, digestibility, and fibre content) even though the toughness of leaf material can be 

considered as one of the most important factors impacting grazing quality, through the general 

acceptability by grazers (Theron and De V. Booysen, 1966). For a grazer to be impacted by CP, 

digestibility, and fibre content, of grass material, the ingestion of grass material must take place. 

Therefore, it is vital that assessments of grazing quality additionally take this potentially important 

component of grazing quality into account. The combination of growing interest in the variation of 
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grazing quality, and PFTs, as well as the relatively recent availability and validation of NIRS, elicited a 

novel question: is there a link between PFTs and the grazing quality of grasses (Fig. 1.1)? 
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Dissertation aims and structure 

The main objective of this study was to investigate and compare the environmental drivers of leaf 

functional traits, grass cover, grass species richness and grazing quality (i.e. grass characteristics) at 

the community and species level using savanna grasses as the focus taxonomic group. In chapter 1, I 

have reviewed the literature on these grass characteristics and how the variation in these 

characteristics is related to environmental conditions at the species- and community-level. In Chapter 

2 I investigate what drives spatial variation in grass assemblages, both at the species- and community-

level, with a focus on cover, composition and PFTs at Lapalala Wilderness Nature Reserve (LWNR; Fig. 

1.1). The different grass characteristics were expected to show variable relationships with 

environmental variables between the species- and community-levels as well as between different 

species. The knowledge gained from this study will result in an improved understanding of influential 

environmental variables of grass characteristics. Chapter 3 builds on Chapter 2’s focus on PFTs, 

expanding it to also include grazing quality, by asking what environmental factors are related to 

variation in grass PFTs and grazing quality at the inter-and intraspecific level at Welgevonden Game 

Reserve (WGR). Additionally, in this chapter, I examine which environmental factors influence the 

variation in PFTs and grazing quality at the species- and community-level. Finally, in this chapter, I test 

if PFTs are strongly related to grazing quality (Fig. 1.1). Chapter 4 synthesises the results from Chapters 

2 and 3.  

 

Figure 1.1 Links between the different components of this study and which dataset was used. Solid lines indicate 

well-established relationships in the literature and dashed lines show speculative relationships. LWNR = Lapalala 

Wilderness Nature Reserve, WGR = Welgevonden Game reserve and PFTs = Plant functional traits. 
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This study took place at two nature reserves, LWNR and WGR, situated in the Waterberg biosphere 

reserve in the Limpopo province of South Africa (Fig. 1.2). Lapalala Wilderness Nature Reserve is a 

45,000-ha reserve (23°51′S 28°18′E), and Welgevonden Private Game reserve is a 36,000-ha reserve 

located 60 km SW of LWNR (24°10’S 27°45’E). These reserves share similar patterns in annual 

precipitation levels, with predominantly summer rainfall (Hulsman et al., 2010; Zwerts et al., 2015). 

The main vegetation type of both reserves is classified as Waterberg Mountain Bushveld,  however, 

WGR also has large areas of Waterberg Magaliesberg Summit Sourveld (Mucina and Rutherford, 

2006), resulting in more open vegetation in portions of WGR. Both reserves support various grazers 

such as blue wildebeest (Connochaetes taurinus), plains zebra (Equus quagga), eland (Tragelaphus 

oryx), Cape buffalo (Syncerus caffer), white rhinoceros (Ceratotherium simum) and African elephant 

(Loxodonta africana). 

 

 

Figure 1.2 Limpopo province of South Africa, with the locations of the two study sites (A). Red star = Lapalala 

Wilderness Nature Reserve, Yellow star = Welgevonden Game Reserve. Landscape pictures of the vegetation in 

LWNR (B) and WGR (C). 
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Chapter 2: Limited consistency in drivers of savanna grass characteristics at both the 

community and species-level1 

Abstract 
Compositional and functional plant community characteristics can strongly govern some ecosystem 

processes. These community characteristics, may, in turn, be related to multiple environmental 

variables, including edaphic, climatic, and topographic conditions. However, there is still an 

incomplete understanding of how environmental conditions affect plant community composition and 

functioning and, therefore, how species composition and trait expression potentially link habitat 

conditions to ecosystem processes. This is particularly true for grasses, despite this taxon having 

considerable ecological and economic importance. Therefore, this study examined the relationship 

between 19 environmental factors and community composition and cover, community-weighted 

mean (CWM) trait values, and intra-specific trait variation in a savanna grass assemblage. However, in 

this study, several different environmental variables were related to variation in grass characteristics 

at the community and the species level, but only a small subset of variables related to grass 

characteristics in multiple analyses. Soil potassium content was the only variable that was consistently 

influential across multiple species and all characteristics, having, for example, a positive effect on 

(CWMLDMC) and a negative effect on (CWMSLA). Soil pH, sand fraction, bare ground cover, woody cover 

and woody debris cover were also strongly related to grass assemblage characteristics, while variables 

related to moisture had very little influence on these characteristics. Inconsistencies between the 

response of dominant grass species compared to the responses of the entire grass assemblage to 

environmental conditions suggest that shifts in individual species are not necessarily matched by 

community-level shifts along abiotic gradients. These results, therefore, highlight the challenges of 

forecasting the impacts of changing environmental conditions on grass assemblages, and the 

complexity of designing management plans for this ecologically and economically important taxon. 

 

 

  

1 This chapter has been submitted as a manuscript to Austral Ecology and is currently under review:  
de Beer, A.J., Truter, W.F., Womack. C.W., le Roux, P.C., Limited consistency in drivers of savanna grass 
characteristics at both the community and species-level. 
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Introduction 
Various compositional and functional plant community characteristics can strongly govern ecosystem 

services and functions (including, e.g. primary production, pollination, nutrient cycling and erosion 

control; Schmitz et al., 2015; Faucon et al., 2017; Zirbel et al., 2017). These plant community 

characteristics may, in turn, be related to multiple environmental variables, including edaphic (e.g. soil 

nutrient levels), climatic (e.g. temperature and precipitation) and topographic conditions (e.g. slope 

and aspect; Kardol et al., 2010; Faucon et al., 2017; Zirbel et al., 2017; Bouchenak-Khelladi et al., 2020). 

Traditional proxies of ecosystem structure, such as species composition and canopy cover, may 

therefore provide easily measured surrogates for some ecosystem processes (Kardol et al., 2010; 

Zirbel et al., 2017) since they are intrinsically/causally linked to both environmental conditions and 

ecosystem-level functioning. For example, environmental gradients may be correlated with variation 

in species composition, which, in turn, affects primary production (Tilman, 1996; Symstad et al., 1998; 

Balmford et al., 2001; Gaitan et al., 2014), as well as other ecosystem functions and services (Egoh et 

al., 2008). Similarly, grass canopy cover, which is strongly influenced by abiotic habitat conditions, is 

also typically strongly correlated with primary production and is therefore also potentially a proxy for 

several ecosystem processes (e.g. soil respiration and erosion control; Symstad et al., 1998; Maestre 

et al., 2005; Gaitan et al., 2014; Van Oudtshoorn, 2019). As a result, an improved understanding of the 

environmental influences on the species composition and cover of grass communities could allow for 

enhanced predictions of ecosystem services and functioning. 

Plant functional traits (PFTs) can provide a mechanistic link between species responses and 

environmental conditions, and how variation within communities and species affect aspects of 

ecosystem functioning compared to using only species composition or measures of plant cover (Zirbel 

et al., 2017). Plant functional traits are any quantifiable features an individual plant possesses which 

can vary along environmental gradients and, in turn, affect the fitness of the individual (Violle et al., 

2007; Dong et al., 2020). As a result, PFTs indicate the physiological response of plants to changes in 

environmental conditions (Violle et al., 2007; Pérez-Harguindeguy et al., 2013), and can provide 

insights into plant life-history strategies (Sandel and Low, 2019) and variation in growth rates, survival, 

and reproduction (Weiher et al., 1999). Additionally, PFTs allow a comparison of patterns along 

environmental gradients even for communities with non-overlapping species composition (e.g. 

Kemppinen et al., 2021). Due to plant functional traits’ connection with physiological processes, these 

traits can also act as proxies for ecosystem services, such as primary production (Pérez-Harguindeguy 

et al., 2013) and carbon and nitrogen cycling (Garnier et al., 2004). As a result, PFTs have the potential 

for improving our understanding and monitoring of key ecosystem processes. However, before such 
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an approach can be applied, either at local or global scales some key aspects of functional trait ecology 

still require investigation (e.g. Kemppinen et al., 2021). 

Specific leaf area (SLA) and leaf dry matter content (LDMC) are two of the most commonly investigated 

PFTs (Kattge et al., 2020), and are variable at the inter-and intra-specific level (Garnier et al., 2001). 

Both SLA and LDMC are related to growth rate, palatability (Pontes et al., 2007) and resource use 

(Wilson et al., 1999a), but can be impacted differently by changes in environmental conditions (Schöb 

et al., 2012). Recent studies, focus more on the environmental drivers of SLA compared to LDMC, with 

edaphic (e.g. soil nutrient- and moisture levels), climatic (e.g. precipitation) and topographic variables 

(e.g. slope and aspect) being considered to be the strongest drivers of variation in these traits 

(Wellstein et al., 2013; Sandel and Low, 2019; Bouchenak-Khelladi et al., 2020; Jardine et al., 2020). 

Functional traits vary at two levels: interspecifically (between-species variation; BTV) or intra-

specifically (between individuals of the same species; ITV). Functional traits typically vary more 

strongly inter-specifically than intra-specifically, with up to 75% of the variation in PFTs being 

contributed by inter-specific trait variation at the community level (Siefert et al., 2015). Since 

environmental conditions may filter species by traits (or trait levels; Keddy, 1992), the habitat 

conditions acting on species composition, likely determine the expression of BTV within a community 

(Lavorel and Garnier, 2002). In consequence, across large geographical areas changes in species 

composition (via, e.g. species turnover) increase the level of BTV, with ITV often being masked by the 

large differences in PFTs between species (Albert et al., 2011; Pescador et al., 2015). 

Intra-specific trait variation allows for the survival and reproduction of a species (Byars et al., 2007) 

under changing environmental conditions through adaptation by microevolution over generations 

(Lajoie and Vellend, 2018; Dong et al., 2020), as well as plastic responses in morphology and physiology 

(Wellstein et al., 2013; Lajoie and Vellend, 2018). However, ITV is often assumed to be negligible in 

community-level studies since trait differences between species are thought to have a stronger 

influence on a community than differences within species (McGill et al., 2006). Intra-specific trait 

variation may, nonetheless, still contribute substantially to trait variation of communities (25-32 % of 

total variation; Albert et al., 2010; Siefert et al., 2015; Roybal and Butterfield, 2018; Mitchell et al., 

2020) and impact on community assembly (Jung et al., 2010) and ecosystem processes (Albert et al., 

2011). Moreover, ITV  can account for a greater proportion of variation in leaf traits than BTV between 

some communities, suggesting that not only species identity but also variation within a species is 

important to understand the community and ecosystem dynamics (Bouchenak-Khelladi et al., 2020). 

Indeed, the inclusion of ITV allows for better predictions regarding the environmental drivers of trait 

variation at the community level (e.g. response of communities to extreme drought; Jung et al., 2014), 
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and could, for example, influence predictions of food web dynamics (Bolnick et al., 2011). Intra-specific 

variation in functional traits has been correlated with various environmental variables (Jung et al., 

2010), including soil type, moisture availability and temperature (Witkowski and Lamont, 1991; Roybal 

and Butterfield, 2019), but no consistent patterns have yet been observed regarding which 

environmental drivers are most strongly related to ITV. 

Grass assemblages provide an excellent study system to investigate the drivers of variation in plant 

characteristics within and between species and at the community level. The Poaceae are fundamental 

to several ecosystem services which are ecologically and economically important, including carbon 

sequestration (Egoh et al., 2009; Wigley et al., 2020), erosion control, and surface water supply and 

regulation (Van Oudtshoorn, 1999; Egoh et al., 2009; Parr et al., 2014). Since grasses are a dominant 

life form in multiple biomes and can rapidly produce large amounts of biomass, the Poaceae are one 

of the most economically valuable plant families (Van Oudtshoorn, 1999; Bouchenak-Khelladi et al., 

2020). A range of environmental variables, such as edaphic (e.g. soil nutrients) and climatic (e.g. 

temperature and precipitation) conditions, act as filters of grass species composition (Sandel and 

Tsirogiannis, 2016; Bouchenak-Khelladi et al., 2020), and grass cover often shows clear relationships 

with fire frequency and soil moisture (Symstad et al., 1998; Zirbel et al., 2017). However, in contrast 

to species composition and cover, the drivers and extent of inter-and intra-specific variation in grass 

PFTs, especially in southern Africa, are poorly understood (Roybal and Butterfield, 2018; Roybal and 

Butterfield, 2019), despite, for example, grass traits being linked to various key ecosystem services 

and functions (Egoh et al., 2009; Wigley et al., 2020).  

This study investigated a species-rich C4 grass assemblage within a South African savanna system, 

identifying the environmental variables related to variation in (a) grass canopy cover, (b) grass species 

composition, and SLA and LDMC at the (c) community level and (d) species level for grass species. 

Considering the constrained morphological variation and the large geographic distribution of South 

African savanna grass species (Van Oudtshoorn, 1999; Fish et al., 2015), it is expected that a similar 

set of environmental variables will be relatively consistently related to community- and species-level 

variation in the grass assemblage. 

Materials and methods 

Study Area  

This study was performed in the Lapalala Wilderness Nature Reserve (LWNR, Fig A5), which is a 45,000-

ha reserve situated in the Melkrivier district of Limpopo South Africa (23°51′S and 28°18′E; Fig. 2.1). 

Lapalala Wilderness Nature Reserve is located within the savanna biome with vegetation comprising 

a near-continuous ground layer dominated by C4 grasses and scattered woody plants forming 

fragmented taller vegetation. Grass species contribute most of the biomass of the ground layer 
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vegetation in savannas generally (and as can be seen at this study site) and can provide considerable 

forage to grazing herbivores (Ludwig et al., 2004; de Lima et al., 2018; Guo et al., 2018). Lapalala 

Wilderness Nature Reserve supports various grazers and mixed feeders such as Blue Wildebeest 

(Connochaetes taurinus), Plains Zebra (Equus quagga), Eland (Tragelaphus oryx), Cape Buffalo 

(Syncerus caffer), White Rhinoceros (Ceratotherium simum), and African Elephant (Loxodonta 

africana; Cillié and Kruger-Burger, 1997). 

The reserve is dominated by sandy soils produced from the Kranskop subgroup of the Waterberg 

group which are low in nutrients, and some clay soils are found close to the main rivers (including, e.g. 

primary production, pollination, nutrient cycling and erosion control; Ruwanza, 2018). Rainfall at 

LWNR ranges between c. 400 – 600 mm per annum (Hulsman et al., 2010) and the vegetation of LWNR 

is classified as Waterberg Mountain Bushveld (Mucina and Rutherford, 2006).  

 

Figure 2.1 Lapalala Wilderness Nature Reserve is located within the Limpopo province of South Africa. Black 

symbols indicate relevés locations within the reserve’s borders (n = 180), with grey lines indicating contours (at 

20 m intervals) and orange lines indicating the reserve’s road network. 

Environmental data collection 

The location of one hundred and seventy 20 × 20 m sampling relevés was predetermined through a 

random stratification process to ensure sampling under a wide range of different environmental 

conditions. Each relevé was additionally constrained to be >  50 m from any human disturbance. An 
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additional 10 relevés were located within LWNR on an ad hoc basis to sample unusual conditions not 

captured by the other, randomly located, relevés.  Within each relevé,  vascular plant species 

composition, and canopy cover (%) for each species was visually estimated by one observer to allow 

for consistency. The cover (%) of bare ground, leaf litter, woody debris, rock cover and woody plant 

species was visually estimated for each relevé. The geographical coordinates as well as altitude of each 

relevé was recorded with a handheld GPS. The day of year that the sampling took place was calculated 

as the number of days from 1 January 2019. Data from all 180 relevés were used for the analysis of 

grass cover and species composition drivers (see Womack et al., 2022 for full details on relevé 

positioning and establishment). 

 

Functional trait data were simultaneously collected from a subset of 111 relevés. Specific leaf area 

and LDMC were collected from three individuals of each of the five most dominant (based on cover) 

grass species per relevé (following: Pérez-Harguindeguy et al., 2013).  

Four additional GIS-derived landscape variables, curvature, topographical wetness index (TWI), slope 

and potential solar radiation (PSR) were calculated for each relevé from a digital elevation model 

(DEM: NASA/METI/AIST/Japan Space Systems and U.S./Japan ASTER Science Team. ASTER Global 

Digital Elevation Model. 2009, distributed by NASA EOSDIS Land Processes DAAC, 

https://doi.org/10.5067/ASTER/ASTGTM.002; Table A1), using ArcGIS (ESRI 2011. ArcGIS Desktop: 

Release 10. Redlands, CA: Environmental Systems Research Institute). The northness of each relevé 

was calculated (following: Bader and Ruijten, 2008) from the aspect measurement that was recorded 

in the field. 

Soil samples were collected from the top 10 cm of soil near the four corners of each relevé (after 

removing the organic matter at the soil surface). When soil samples could not be collected at these 

locations due to the presence of rocks, fallen trees, or other natural features, soil samples were 

collected from a different location within the relevé. The soil from these four samples was pooled, 

forming a sample of c. 1 kg of soil per relevé. Soil samples were air-dried at room temperature and 

then analysed in the University of Pretoria’s Soil Laboratory for calcium (Ca), potassium (K), 

magnesium (Mg), sodium (Na), and phosphorous (P) using the Mehlich 3 extraction protocol (Ziadi 

and Tran, 2007a). The pH of each soil sample was determined using the CaCl2 method (Carter and 

Gregorich, 2008) and carbon content was determined through titration (following: Ziadi and Tran, 

2007b). Finally, the texture of each soil sample was determined by using the Hydrometer method 

(Kroetsch and Wang, 2008).  
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Plant functional trait data and community weighted means 

The three most dominant grass species within each of the 111 relevés, based on species cover within 

individual relevés, were sampled by collecting leaf material from three individuals per species by 

collecting a culm with leaves attached. Leaf material was then stored in water-tight plastic bags and 

transported to the laboratory in a dark cooler box within 8 hours. From each grass culm, a mature leaf 

blade with no herbivore or pathogen damage was subsequently selected and a c.5 cm long section 

was cut from the middle of each leaf blade. For grasses with leaves smaller than 5 cm in length, the 

entire leaf was used without the ligule. The leaf sections were then weighed using a Precisa XB 160M 

balance (Precisa Switzerland; accurate to 1 mg) to obtain the fresh weight of each leaf section. Each 

leaf section was then scanned along with a 5 cm calibration bar using a Canon MX 424 scanner (Canon, 

U.S.A; optical resolution, 1200 × 2400 dpi). ImageJ (Fiji software; Abràmoff et al., 2004) was used to 

calculate the fresh leaf area of each leaf segment after calibration using the calibration bar in each 

scanned image. All leaf material was dried at 72°C until a constant dry weight was obtained (typically 

48 hours). The dry weight of each leaf segment was determined by reweighing each segment using a 

Precisa XB 160M balance or a Radwag XA 250.4Y analytical balance (accurate to 1 mg). Subsequently, 

the SLA of each leaf segment was calculated as the fresh leaf section area divided by the leaf section 

dry mass (mm2 mg -1), and the LDMC of each leaf segment was calculated as the leaf section dry mass 

divided by the leaf section fresh mass (mg g-1).  

The community weighted mean (CWM) for each trait was determined for each relevé by multiplying 

the relative cover of each species within each relevé by the trait value of each species calculated as 

the average trait value of each species across LWNR. Grass species for which no trait data were 

collected (15 species across LWNR), were assigned trait values obtained from the average for the 

genus, tribe, or subtribe of the species using the lowest possible taxonomic rank, sampled in this study 

(Table A2). These 15 species were rare, found only in an average of 1.9% of the 111 relevés, and had 

a mean cover < 1% in the relevés in which they were present.  

Statistical analysis 

Highly correlated environmental variables were excluded before statistical analyses (i.e. see Table A1 

for a list of all variables, see Fig A1 for correlation matrix of all variables after highly correlated 

predictors were excluded). To identify the environmental variables driving variation in species- and 

community-level grass characteristics, a two-step model building process was followed. First 

univariate generalized linear models were used to test the relationships between each predictor 

variable and each response variable (i.e. the species-level and CWM values for SLA and LDMC, and 

grass canopy cover). Quadratic terms were included for all predictor variables where the more 

complex model gave a better fit based on the generalized linear models (Tables A4, A5).  
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Second, all combinations of predictor variables that were significantly related to response variables in 

univariate models were subsequently examined using a best subset modelling approach for each 

response variable, implemented using generalized linear models. This model-building approach 

compares all possible combinations of predictor variables, with the best combination(s) of predictors 

identified based on Akaike information criterion (AIC) scores. All models with a ΔAIC < 2 (difference 

between the AIC of the top-ranked model and each subsequent model) were considered to have 

substantive support (Burnham et al., 2011). As a fairly low number of variables were significant in 

univariate analysis (i.e. 9 – 11 environmental variables), other environmental variables considered as 

biologically relevant were additionally selected to be initially included in model building for each 

response variable. Woody debris was included as a potential predictor for LDMC, and TWI for SLA and 

grass canopy cover since these predictor variables were significant for other grass characteristics in 

univariate models. Additionally, slope was included as a predictor initially for SLA and LDMC, 

specifically as an additional proxy for moisture availability (which is related to some  PFTs; Wellstein 

et al., 2013; Jung et al., 2014; Chen et al., 2019) Northness was included for SLA, LDMC and grass 

canopy cover since a strong relationship between grass traits and this variable were recently 

demonstrated (Sandel and Low, 2019). Finally, altitude was also included as a predictor variable for 

SLA, LDMC and grass species composition since a relationship between these characteristics and 

altitude has also been previously demonstrated for grasses (Cabido et al., 1997; Gonzalo‐Turpin and 

Hazard, 2009; Fontana et al., 2017). All relationships were modelled using generalized linear models, 

with cover data analysed using a binomial distribution, and CWMSLA and CWMLDMC data analysed using 

a Gaussian distribution. 

Community composition, weighted by plant cover, was analysed using non-metric multidimensional 

scaling (NMDS) ordination and permutational multivariate ANOVA (PERMANOVA) tests to assess 

relationships between environmental variables and species composition based on the presence or 

absence of each grass species.  

The relationship between intra-specific variation in SLA and LDMC and environmental variables was 

tested for the nine most common grass species (i.e. species sampled in at least 10 relevés, with FT 

values from > 30 individuals) using multivariate linear mixed-effect models. In these models, relevé 

was included as a random effect to account for up to three samples. The same model building 

approach was used for the analyses of BTV. Univariate analysis was conducted at the species level and 

the environmental drivers found to have a significant effect on the PFTs of a species were included in 

the multivariate analysis for each species (Table A6). However, as few univariate drivers were 

significantly related to the PFTs of most species (Table A6), variables found to be the most important 

drivers in univariate and multivariate models of CWMSLA (leaf litter, woody plant cover, bare ground, 
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woody debris, % sand and soil K) and CWMLDMC (bare ground, rock cover, day of year, woody plant 

cover, soil K and soil P) were therefore also included as predictor variables for all species during model 

building. Quadratic terms were included where they provided the best fit in univariate models at the 

species level and where the community-level models included quadratic terms (Table A6). The best 

multivariate mixed-effect models were selected based on AIC.  

All statistical analyses were conducted using R version 4.0.2 (R Core Team, 2020), including functions 

from the car (version 3.0-9; Fox and Weisberg, 2011), lme4 (version 1.1-23; Bates et al., 2015), MuMIn 

(version 1.43.17; Barton, 2020), lmerTest (version 3.1-2; Kuznetsova et al., 2017) and vegan (version 

2.5-6; Oksanen et al., 2019) libraries. 

Results 

Community-level characteristics 

A total of 60 grass species were recorded at LWNR (see Table A3), and SLA and LDMC were collected 

from 45 species, with the number of samples per species ranging from 3 to 174 (full dataset available 

via the TRY data portal: https://www.try-db.org/de/Datasets.php Data set ID: 643).  Community-level, 

variation in SLA and LDMC (Fig. A2 and A3) were significantly related to nine and eleven predictor 

variables respectively (Table A4) in the univariate analyses. However, these relationships were 

generally weak, with the best univariate predictors being soil pH (having a positive relationship with 

CWMSLA; R2 = 0.13; Fig. 2.2-A) and soil K (having a negative relationship with CWMLDMC; R2 = 0.06; Fig. 

2.2-B). The top-ranked multivariate models contained five variables each and explained a considerably 

greater proportion of the variation in CWMSLA (R2 =0.25; Table A8) and CWMLDMC (R2 =0.25; Table A9).  

Grass canopy cover was significantly related to nine predictors in univariate models (Table A5; Fig. A4), 

with increasing grass canopy cover being observed along time (i.e. day of the year explaining the 

greatest variation in grass cover,R2 = 0.26; Fig. 2-C). The top-ranked multivariate model explained 

considerably more variation in grass canopy cover (R2 =0.64) and included five predictors (Table A12).  

Grass species composition was significantly related to six environmental variables (Fig. 2.3; Table A7). 

Day of year (R2 = 0.35) was the strongest driver, while the influence of three other environmental 

variables (soil pH, K, and sand fraction) was strongly correlated (i.e. forming a key axis of variation in 

species composition). Rock cover (R2 = 0.23) represented a third key axis of variation (Fig. 2.3).  

Soil K was the only predictor found to consistently relate to all community-level characteristics (Table 

2.1). However, bare ground and woody plant cover were consistently included in models for three of 

the four community-level characteristics (i.e. CWMSLA, CWMLDMC and grass cover) and day of year was 

included in the top-ranked models for CWMLDMC, grass cover and species composition (Table 2.1). 
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Figure 2.2 In univariate models, (a) soil pH, (b) soil potassium (K) and (c) day of year explained the greatest 

proportion of variation for CWMSLA, CWMLDMC and grass cover, respectively. The line in each panel represents 

the best fit from the univariate generalized linear model. 
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Figure 2.3 Non-metric multidimensional scaling ordination of relevés based on the grass species composition 

across Lapalala Wilderness Nature Reserve. Only the variables correlated strongly with species composition (R2 

value > 0.2; all p < 0.05) are plotted. Three dimensions were applied to the NMDS to obtain a good 

representation (stress = 0.182) of the data, with the first two axes plotted here. K = Soil potassium (K) content 

and Day = Day of year. 

 

Species-level functional traits 

Intra-specific variation in SLA was generally relatively well explained by multivariate models (range of 

marginal R2 = 0.1- 0.6; Table A10). However, ITV in SLA for two species, Eragrostis rigidior and 

Schmidtia pappophoroides (the latter being the most common and widespread grass species across 

LWNR) was not related to any of the environmental variables, with the null model containing only the 

random effect being ranked as the best model. Environmental variables which were included in the 

top models for SLA at the species level always had the same relationship with all species. For example, 

the relationship between woody debris and SLA was positive for Aristida congesta and E. rigidior 

(Table 2.1). Indeed, woody debris was the only variable that was related to SLA for multiple species 

and was also related to CWMSLA (with positive effects on SLA at both the species and community levels; 

Table 2.1).  

Models for ITV in LDMC on average included more variables than the models for SLA and performed 

slightly better (range of marginal R2 = 0.11 – 0.72; Table A11). Four environmental variables (i.e. bare 
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ground, rock cover, day of year and soil K) were related to LDMC for multiple species and CWMLDMC 

(although only day of year showed a consistently positive effect across the species- and community-

level models; Table 2.1). Across species, the effect of environmental variables on LDMC was not as 

uniform as for SLA. For example, the relationship between rock cover ITV in LDMC for A. congesta, 

Aristida stipitata, E. rigidior, and P. maximum was positive but negative for L. simplex and Setaria 

sphacelata (Table 2.1). 
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Table 2.1 Summary of predictor variables included in the top-ranked multivariate model for each response variable at the community-and intra-specific level. Green shading 
indicates variables that affected all community-level response variables. Yellow shading indicates variables that  impacted SLA at the community- (CWMSLA) and species-level. 
Blue shading indicates variables that impacted LDMC at the community- (CWMLDMC) and species-level. Only variables included in the top-ranked model for each response are 
shown. TWI = Topographical wetness index, PSR = Potential solar radiation, Soil K = soil Potassium content, Soil P = soil Phosphorous content, Soil C = soil Carbon content,% 
Sand = Sand fraction, U = valley-shaped quadratic relationship, ꓵ = hump-shaped quadratic relationship, - = negative linear relationship, + = positive linear relationship. Ari 
con = Aristida congesta, Ari sti =  Aristida stipitata, Dig eri = Digitaria eriantha, Era gum = Eragrostis gummiflua, Era rig = Eragrostis rigidior, Lou sim = Loudetia simplex, Pan 
max = Panicum maximum, Sch pap = Schmidtia pappophoroides and Set sph = Setaria sphacelata. 
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Response Community-level 

CWMSLA     +  + +  U U   
CWMLDMC     - U  U +  ꓵ   
Grass cover     - -  - +  +   

 Intra-specific level 

SLA              

Ari con       +       
Ari sti  +         -   
Dig eri +             
Era gum               
Era rig       +       
Lou sim +           -  
Pan max       U  -     
Sch pap              
Set sph       +       
LDMC              

Ari con     - + - + +  U +  
Ari sti      +  - +  U +  
Dig eri -  + -     + - + - - 
Era gum         +  - +  
Era rig      + -  +  - -  
Lou sim   +   -   +  - + + 
Pan max     - +  - + + U - + 
Sch pap   +  +      ꓵ U  
Set sph      - -  +  ꓵ +  
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Discussion 
This study demonstrates that a limited set of environmental conditions are consistently influential for 

multiple grass characteristics at both the community- and species-level, and that the majority of 

predictor variables considered in this study (all of which are ecologically relevant) are not widely or 

consistently related to variation in a savanna grass assemblage. These findings also demonstrate how 

community- and species-level variation in PFTs can show opposite responses to certain environmental 

variables, illustrating how trends in the community-level expression of traits may be comprised of 

several contrasting species-level patterns. Specific leaf area and LDMC tended to show opposite 

responses to environmental variables (in agreement with, e.g. Wellstein et al., 2013).  

Drivers of community-level characteristics  

Soil K was the only consistently influential predictor of variation in all four community-level 

characteristics (CWMSLA, CWMLDMC, grass cover and species composition). Potassium is an important 

macro-nutrient required for photosynthesis (Prajapati and Modi, 2012) and the positive relationship 

between soil K and CWMSLA observed here likely reflects how SLA is directly associated with 

photosynthetic rate (Wellstein et al., 2013), while the negative relationship with CWMLDMC  may be due 

to lower LDMC values being associated with a reduced need for resource conservation under 

improved photosynthetic rates (Van Arendonk and Poorter, 1994; Wilson et al., 1999a; Pérez-

Harguindeguy et al., 2013). The availability of K to plants is a limiting factor to primary production of 

grasses (Hejcman et al., 2013; da Silveira Pontes et al., 2015), with soil K also being positively related 

to grass canopy cover. 

In addition to soil K, there were two other soil properties, soil pH and sand fraction, that were strongly 

related to grass characteristics. Soil pH is a good proxy for soil nutrient availability (Alam et al., 1999) 

which may impact various leaf traits (Dwyer et al., 2014; Dong et al., 2020). Soil pH was strongly related 

to grass species composition in this study and exhibited a positive relationship with CWMSLA and a 

negative correlation with CWMLDMC. This agrees with findings for grass species globally (Jardine et al., 

2020), Australian woody plants (Dwyer et al., 2014), and across central African vegetation types (only 

for LDMC; Schellenberger Costa et al., 2017). However, despite soil pH being most strongly correlated 

with CWMSLA during univariate analysis, it was not included in any of the best subsets models after the 

multivariate analysis, possibly due to being fairly strongly correlated with sand fraction. Sand fraction 

can also be a proxy for soil nutrient availability and soil water retention (Nath, 2014), and the negative 

relationship between CWMSLA and sand fraction observed here agrees with the findings of (Jardine et 

al., 2020) for grasses at a global scale. These results, therefore, again reflect the importance of 

considering soil properties, including nutrient availability, when examining spatial variation in grass 

assemblages (Nixon and McMillan, 1964; Hufford et al., 2014; Jardine et al., 2020).  
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The date of sampling was related to CWMLDMC, grass cover and species composition. Due to a short 

growing season in the summer of 2018/2019, sampling started soon after the first rains and continued 

until the grasses started to senesce. The increase in CWMLDMC through the growing season was 

therefore expected since tissue density (which is positively correlated with LDMC; Duru et al., 2008) 

increases in grasses until the full expansion of a plant’s inflorescence. The date of sampling also had a 

positive relationship with grass canopy cover, reflecting the accumulation of grass biomass through 

the growing season, and was the strongest driver of grass species composition, potentially reflecting 

species-specific growth rates at the start of the growing season. 

Bare ground and rock cover were consistent predictors of three community characteristics each: bare 

ground = CWMSLA, CWMLDMC, canopy cover; rock cover = CWMLDMC, canopy cover and species 

composition. Bare ground relates to open space, possibly opened through disturbances, and available 

resources and it is, therefore, expected that species growing in areas with high bare ground cover 

would display high SLA and low LDMC to allow for fast growth and utilization of resources (Wilson et 

al., 1999a; Pérez-Harguindeguy et al., 2013). However, the opposite may equally be true where bare 

ground results from stressful environmental conditions, where tough leaves would allow for survival 

(Pérez-Harguindeguy et al., 2013; Wellstein et al., 2013; Deléglise et al., 2015). Our results, specifically 

the positive correlation between bare soil and CWMSLA, favour the former interpretation. In contrast, 

higher rock cover appears to be an indication of more stressful environments (e.g. via thinner soils 

and more extreme microclimatic conditions; Li et al., 2014), as rock cover was positively related to 

CWMLDMC. Interestingly, rock cover had an independent effect from the other significant predictors 

(and explained the greatest proportion of variation) on grass species composition, suggesting that high 

rock cover is possibly associated with unique micro-habitat conditions that support unique 

combinations of grass species. Woody plant cover was the final consistent driver of three grass 

community characteristics (CWMSLA, CWMLDMC and canopy cover), and the positive relationship 

between woody cover and SLA was expected since thinner leaves (i.e. higher SLA) provide a 

competitive advantage in low light conditions (Wellstein et al., 2013). Low light conditions under the 

canopy of taller woody species would also be expected to decrease biomass production and, 

therefore, grass canopy cover. 

Water availability was expected to be related to PFTs (particularly SLA; Dwyer et al., 2014; Jung et al., 

2014; Chen et al., 2019), but none of the variables in this study that are proxies for water availability 

(including TWI and curvature) showed any significant relationships with CWMSLA. This is in contrast to 

research that, for example, has shown that across broad scales precipitation is positively related to 

CWMSLA of native grass species (Sandel and Low, 2019). However, several variables potentially related 

to lower evaporative rates and greater soil water-holding capacity were, nonetheless, positively 
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related to CWMSLA. Woody plant cover and woody debris could influence the soil water holding 

capacity, potentially leading to their positive relationship with CWMSLA (Dwyer et al., 2014; Jardine et 

al., 2020). In contrast, higher soil carbon content would be expected to enhance soil water holding 

capacity, however, it was not found to have a significant effect on CWMSLA. These results suggest an 

incomplete understanding of how moisture-related variables impact community-level grass 

characteristics and point to the value of collecting soil moisture data whenever possible (Fay and 

Schultz, 2009).   

Drivers of ITV 

Intra-specific trait variation of SLA was consistently influenced by only one environmental variable, 

there was however consistency in the lack of multiple environmental variables being influential drivers 

of ITV in SLA. The ITV of LDMC was consistently influenced by multiple environmental variables which 

showed to have more idiosyncratic relationships when compared to ITV of SLA. Specific leaf area is a 

very plastic trait, which could explain the weak correlation between SLA and environmental variables 

at the species level (comparable with the results of; Jardine et al., 2020). Woody debris was the only 

environmental variable related to the intraspecific variation in SLA of at least two species in the 

community and the community-level SLA, with the relationship being positive in all three cases. 

Interestingly, some of the environmental variables that were related to community-level grass 

characteristics (e.g. bare ground, woody plant cover and potassium content) were not related to SLA 

at the species level. Conversely, there was a positive relationship between SLA and TWI for two of the 

most common grass species, Digitaria eriantha and Loudetia simplex, but no relationship between 

TWI and SLA at the community level, suggesting that the relationship observed for these two dominant 

species does not scale up to community-level.  

The ITV of LDMC, in contrast, was correlated with more environmental variables and in more species. 

However, unlike the relatively uniform responses of ITV in SLA, the nature of LDMC-environmental 

relationships frequently differed between species (in agreement with, for example, Zhang et al., 2020). 

For example, soil K and P had varied relationships with LDMC (e.g. soil K was positively correlated with 

ITV in LDMC for D. eriantha, but negatively for L. simplex), but both of these soil variables were 

included in all top-ranked ITV models. Indeed, the sign of LDMC-environmental relationships was only 

consistent for slope (positive in three species) and day of year (positive in eight species).  

Comparing LDMC-environment relationships at the community and species levels showed that only 

one variable, day of year, had the same relationship at both levels, with a constant increase in LDMC 

as time continues. This pattern is expected since high LDMC is characterized by having large amounts 

of structural tissues (Dong et al., 2020), which increases in grass leaf material as the growing season 

continues (Duru et al., 2008). Some other variables were also influential at both the species- and 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

31 
 

community-level but did not show consistent relationships. For example, there was a positive 

relationship between S. pappophoroides and bare ground, but a negative relationship with CWMLDMC 

(similar patterns were observed for rock cover and soil K). These inconsistencies between the response 

of dominant grass species to environmental conditions compared to the responses of the grass 

assemblage as a whole suggest that community-level shifts along environmental gradients are not 

necessarily matched by changes in trait expression by all dominant species.  

Conclusion 

The species-specific relationships grass species show with environmental conditions observed in this 

study demonstrate the challenge of predicting how grass assemblages vary spatially. Specifically, the 

lack of consistent drivers of SLA at the species- and community-level points to the need for a more 

complete understanding regarding the drivers of this trait, particularly due to SLA’s relationship with 

key ecosystem services. More generally, these results also demonstrate that community-level trait 

variation along a gradient may be comprised of multiple independent (and even inverse) species-level 

trait responses.  As a result, investigating any individual species does not necessarily describe the 

community-level pattern, but understanding how individual species react to changes in environmental 

conditions could aid in making predictions of how species, and therefore communities, vary along 

environmental gradients. 

This study provides limited empirical evidence of consistently influential environmental drivers of 

grass compositional and functional characteristics at the community- and species-level (Kuppler et al., 

2020). These findings, therefore, suggest that the environmental variables that are consistently 

related to grass characteristics (e.g. soil K) should be prioritized when examining grass communities in 

future studies to determine if this pattern scales up beyond just this study site to other grass-

dominated ecosystems. More generally, this study also highlights those measures of soil nutrient 

availability may need to be considered in future studies focusing on explaining spatial variation in grass 

characteristics.  

 

Considering that grasses are one of the most widespread plant taxa and contribute strongly to 

numerous ecosystem services (Gibson, 2009), a deeper understanding of how spatial variation in 

environmental conditions affect grass species and grass communities is of considerable practical 

value. Furthermore, the relationship between traits, grass cover and species composition, and 

ecosystem functioning and services (de Bello et al., 2010; Kardol et al., 2010; Faucon et al., 2017; Zirbel 

et al., 2017), demonstrates the importance of additionally understanding the relationships between 

these characteristics and environmental conditions for informing effective management of grassy 
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systems globally. For example, understanding if the correlation between SLA, LDMC and the grazing 

quality of grasses (see Khaled et al., 2006; Pontes et al., 2007) varies depending on soil conditions, 

could influence decisions about grazing regimes in grassy ecosystems. Species-specific trait-

environment relationships have implications for the role different grass species play within a 

community and how different dominant species contributes to grazing, forage quality, flammability, 

and regrowth (Khaled et al., 2006; Pontes et al., 2007; Ripley et al., 2015; Osborne et al., 2018). 

Ignoring species- and community-level variation in grass assemblages may lead to inaccurate 

estimates of important ecosystem functions and, therefore, poor implementation of management and 

conservation efforts in many terrestrial ecosystems. This study and others that quantify similar trait-

environment relationships, thus help to provide the understanding necessary for the future practical 

application of functional traits and other grass community characteristics in the fields of ecosystem 

functioning monitoring, rehabilitation of degraded land, and grass-dominated habitat conservation.  
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Appendix A 
Table A1 All environmental variables initially considered in this study with bolded variables being used in 

univariate analyses after the exclusion of highly correlated variables.  

Environmental variable Collection or calculation method  

Altitude  Meters above sea level (handheld GPS) Recorded during sampling 

Bare ground Visually estimated Recorded during sampling 

Leaf litter Visually estimated Recorded during sampling 

Woody debris Visually estimated Recorded during sampling 

Rock cover  Visually estimated Recorded during sampling 

Curvature  Calculated from Digital Elevation Model (DEM). 
Positive values = convex, negative values = concave 
and 0 = flat 

Calculated after sampling 

Topographical Wetness 
Index (TWI) 

Calculated from DEM Calculated after sampling 

Northness Calculated from aspect1 = North, -1 = South and 0 = 
East or West 

Calculated after sampling 

Slope Calculated from DEM as degrees from horizontal Calculated after sampling 

Potential solar radiation 
(PSR) 

Calculated from DEM Calculated after sampling 

% sand Sand fraction present in each soil sample (texture 
determination) 

Determined during soil 
analysis 

Soil Clay  Clay fraction present in each soil sample (texture 
determination) 

Determined during soil 
analysis 

Soil pH The pH of the soil in deionized water with CaCl2 Determined during soil 
analysis 

Soil K % in soil (i.e. total content) Determined during soil 
analysis 

Soil P % in soil (i.e. total content) Determined during soil 
analysis 

Soil Na % in soil (i.e. total content) Determined during soil 
analysis 

Soil C (% by weight of soil) Determined during soil 
analysis 

Woody plant cover  Calculated as total the woody plant cover per relevé Calculated after sampling 

Day of year Calculated as numbers of days from the beginning of 
the year to date of sampling 

Calculated after sampling 
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Table A2 Rare species with trait data obtained from genus, tribe, or sub-tribe. The mean cover represents the 

average cover of the species in the relevés where it was present.  

Species name SLA 

assigned 

LDMC 

assigned 

Relevés 

present 

Mean 

cover 

Taxonomic level 

at which trait 

was estimated 

Total individuals 

Andropogon huillensis 17.876 383.706 1 5.750 From genus 27 

Anthephora pubescens 20.936 319.146 1 0.125 From sub-tribe  174 

Aristida adscensionis 15.875 444.812 1 0.050 From genus 91 

Aristida junciformis 15.875 444.812 1 0.017 From genus 91 

Digitaria longiflora 20.936 319.146 14 2.463 From genus 174 

Digitaria monodactyla 20.936 319.146 1 0.175 From genus 174 

Digitaria ternata 20.936 319.146 1 0.025 From genus 174 

Elionurus muticus 19.008 391.129 10 0.493 From tribe  51 

Eragrostis capensis 15.712 405.550 1 0.075 From genus 178 

Eragrostis digitaria 15.712 405.550 2 0.925 From genus 178 

Eragrostis inamoema 15.712 405.550 1 0.650 From genus 178 

Eragrostis nindensis 15.712 405.550 1 0.050 From genus 178 

Eragrostis rehmannia 15.712 405.550 1 0.050 From genus 178 

Eragrostis superba 15.712 405.550 11 0.493 From genus 178 

Urochloa nigrescens 18.018 355.919 2 0.138 From genus 27 
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Table A3 All grass species recorded across LWNR, including the number of individuals sampled for PFT's.   

Species  Species 
Abbreviation 

Individuals 
sampled 

Andropogon chinensis And chi 24 

Andropogon eucomus And euc 3 

Andropogon huillensis And hui 0 

Anthephora pubescens Ant pub 0 

Aristida adscensionis Ari ads 0 

Aristida congesta Ari con 36 

Aristida diffusa Ari dif 55 

Aristida junciformis Ari jun 0 

Arundinella nepalensis Aru nep 3 

Brachiaria deflexa Bra def 12 

Brachiaria eruciformis Bra eru 3 

Brachiaria serrata Bra ser 13 

Cenchrus ciliaris Cen cil 12 

Chloris virgata Chl vir 3 

Chrysopogon serrulatus Chr ser 6 

Cymbopogon pospischilii Cym pos 6 

Cynodon dactylon Cyn dac 12 

Digitaria eriantha Dig eri 174 

Digitaria longiflora Dig lon 0 

Digitaria monodactyla Dig mon 0 

Digitaria ternata Dig ter 0 

Diheteropogon amplectens Dih amp 6 

Elionurus muticus Eli mut 0 

Enneagopogon cenchroides Enn cen 12 

Enteropogon macrostachyus Ent mac 6 

Eragrostis capensis Era cap 0 

Eragrostis digitaria Era dig 0 

Eragrostis gummiflua Era gum 80 

Eragrostis heteromera Era het 2 

Eragrostis inamoema Era ina 0 
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Eragrostis nindensis Era nin 0 

Eragrostis patentipilosa Era pat 6 

Eragrostis racemosa Era rac 1 

Eragrostis lehmannia Era leh 0 

Eragrostis rigidior Era rig 86 

Eragrostis superba Era sup 0 

Eustachys paspaloides Eus pas 6 

Helictotrichon turgidulum Hel tur 1 

Heteropogon contortus Het con 21 

Loudetia simplex Lou sim 164 

Melinis nerviglumis Mel ner 1 

Melinis repens Mel rep 14 

Microchloa caffra Mic caf 12 

Panicum deustum Pan deu 9 

Panicum maximum Pan max 32 

Perotis patens Per pat 5 

Schmidtia pappophoroides Sch pap 165 

Setaria sphacelata Set sph 40 

Sorghum halepense Sor hal 3 

Sporobolus festivus Spo fes 6 

Sporobolus ioclados Spo ioc 3 

Sporobolus panicoides Spo pan 12 

Sporobolus stapfianus Spo sta 3 

Themeda triandra The tri 9 

Tragus berteronianus Tra ber 21 

Urochloa mosambicensis Uro mos 12 

Urochloa nigrescens Uro nig 0 

Urochloa oligotricha Uro oli 6 

Urochloa panicoides Uro pan 9 
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Table A4 Univariate modelling results for CWM response variables. Only the univariate environmental variables that significantly explain the variation in CWM trait values 

are shown (n = 111). 

Response Predictor Best model Model R2  Model p 

CWMLDMC Bare ground Linear 0.044 0.005 

 Rock cover Quadratic 0.058 0.008 

 Topographical wetness index Linear 0.022 0.048 

 Potential solar radiation Linear 0.024 0.039 

 % Sand Quadratic 0.054 0.007 

 Soil pH  Linear 0.044 0.005 

 Soil K (%) Quadratic 0.062 0.003 

 Soil P (%) Linear 0.025 0.035 

 Soil Na (%) Quadratic 0.038 0.032 

 Woody plant cover Quadratic 0.042 0.022 

 Day of year Linear 0.040 0.007 

CWMSLA Bare ground Quadratic 0.038 0.031 

 Leaf litter Linear 0.044 0.005 

 Woody debris Quadratic 0.054 0.007 

 Potential solar radiation Linear 0.038 0.008 

 Sand Quadratic 0.077 0.001 

 Soil pH Linear 0.133 <0.001 

 Soil K (%) Quadratic 0.103 <0.001 

 Soil Na (%) Linear 0.024 0.037 

 Woody plant cover Linear 0.081 <0.001 
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Table A5 Univariate modelling results including only the environmental variables which significantly explain the 

variation in grass percentage cover (n = 180). 

 

 

Table A6 Univariate drivers of SLA and LDMC at the species level from  

Species  Significant 

univariate drivers 

(SLA) 

Marginal R2 Significant univariate 

drivers (LDMC) 

Marginal R2 

Aristida congesta Woody debris 0.37 Woody debris  0.30  
Day of year 0.33 Day of year 0.42   

 Sand fraction >0.001 

Aristida stipitata 
 

 
 

 

Digitaria eriantha Topographical 

wetness index 

0.10 Northness 0.007   
 Slope 0.11 

Eragrostis gumiflua 
 

 Day of year 0.35 

Eragrostis rigidior Woody debris 0.15 
 

 

Loudetia simplex Topographical 

wetness index 

0.09 Slope 0.09   
 Woody plant cover  0.04 

Panicum maximum Soil K (%) 0.05 Soil C 0.45  
Day of year 0.47 

 
 

Schmidtia pappophoroides 
 

 Bare ground 0.07 

Setaria sphacelata Woody debris 0.4 Woody debris 0.26  
Soil K (%) 0.01 

 
 

 

  

Response Predictor Best model Model R2 Model p 

Cover Bare ground Linear 0.155 <0.001 

 Leaf litter Linear 0.085 <0.001 

 Rock cover Linear 0.033 0.014 

 Woody debris Quadratic 0.049 0.011 

 % Sand Linear 0.034 0.013 

 Soil K (%) Linear 0.080 <0.001 

 Soil Na (%) Quadratic 0.118 <0.001 

 Woody plant cover Quadratic 0.085 <0.001 

 Day of year Quadratic 0.258 <0.001 
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Table A7 Permutational multivariate analysis of variance (PERMANOVA)  results testing the relationship between 

grass species composition and environmental variables.  TWI = topographical wetness index, PSR = Potential 

solar radiation. 

Predictor R2 P-value 

Rock cover 0.23 0.001 

% Sand  0.21 0.001 

Soil pH 0.23 0.001 

Soil K (%) 0.24 0.045 

Soil C (%) 0.23 0.028 

Day of year 0.35 0.001 

Altitude 0.07 0.003 

Bare soil 0.16 0.001 

Leaf litter 0.10 0.001 

Curvature 0.02 0.261 

Woody debris 0.02 0.138 

TWI 0.12 0.001 

Northness 0.00 0.832 

Slope 0.18 0.001 

PSR 0.04 0.02 

Soil P (%) 0.01 0.582 

Soil Na (%) 0.18 0.001 

Woody cover 0.17 0.001 
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Table A8 All best subset models based on a difference of 2 AIC values for CWM-SLA, all models are significant. + indicates a positive effect and - a negative effect by predictor 

variables on the response variables. TWI = Topographical wetness index. 
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 Response                
 

 CWMSLA                 

1     
+   

+  + - + + - 975.2 0.248  

2     
+   

+  +   
+ - 975.3 0.230  

3  +   
+   

+  + - + + - 976.1 0.252  

4  +   
+   

+  +   
+ - 976.2 0.235  

5   +  +   
+  + - + + - 976.5 0.250  

6     
+  + +  +   

+ - 976.6 0.233  

7    
- +   

+  + - + + - 976.6 0.250  

8     
+     

+ - + + - 976.6 0.233  

9   +  +   
+  +   

+ - 976.7 0.233  

10     
+  - +  + - + + - 976.7 0.250  

11    
- +   

+  +   
+ - 976.8 0.233  

12     
+   

+ - + - + + - 976.8 0.249  

13     
+   

+ - +    
- 976.9 0.232  

14     
+ +  +  + - + + - 976.9 0.249  
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Table A9 All best subset models based on a difference of 2 AIC values for CWM-SLA, all models are significant. + indicates a positive effect and - a negative effect by 

predictor variables on the response variables. 2 represents the quadratic term of the predictor.  
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 Response             

 CWMLDMC             

1  - + - + - + - +  1952.8  

0.253 

 

2  - +  + - + - +  1953.5  

0.242 

 

3  - + - + - + - + + 1953.9  

0.257 
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Table A10 All best subset models based on a difference of 2 AIC values of SLA at the species level, + indicates a positive effect and - indicates a negative effect on each species 

SLA. The conditional R2 is being indicated by the Model R2 (con) and the marginal R2 by the Model R2 (mar) column for each species and model. TWI = Topographical wetness 

index, 2 represents the quadratic term of the predictor. For E. gummiflua and S. pappophoroides, the null model was the best-ranked model. See Table A3 for full species 

names. 
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 Response                
 SLA                

1 Ari con     
+        

0.46 0.37 187.9 

2 Ari con     
+   

-     
0.48 0.41 189.3 

                 
1 Ari sti  +       

-    
0.42 0.20 225.2 

2 Ari sti  +           
0.40 0.17 225.4 

3 Ari sti   
+      

-    
0.41 0.22 225.5 

4 Ari sti  + +      
-    

0.44 0.26 226.1 

5 Ari sti   
+          

0.40 0.17 226.2 

6 Ari sti  + +          
0.42 0.22 226.7 

7 Ari sti  +       
- +   

0.45 0.22 226.8 

                 
1 Dig eri +            

0.57 0.10 1065.2 

2 Dig eri +       
+     

0.58 0.13 1066.09 

3 Dig eri +   
+         

0.58 0.16 1066.8 

                 
1 Era gum              

0.47 0.00 382.7 

2 Era gum         
-    

0.49 0.00 386.49 

                 
1 Era rig     

+        
0.42 0.15 553.3 
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1 Lou sim +          
-  0.27 0.11 987.4 

2 Lou sim +          
- - 0.28 0.11 987.6 

3 Lou sim +           
- 0.28 0.10 987.8 

4 Lou sim +            
0.27 0.09 988.5 

                 
1 Pan max     

+ - -      
0.60 0.60 196.13 

2 Pan max     
+ - -  +    

0.61 0.61 197.95 

                 
1 Sch pap             

0.21 0.00 950.4 

2 Sch pap        
-      

0.22 0.05 952.9 

                 
1 Set sph     

+        
0.72 0.40 225.2 
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Table A11 All best subset models based on a difference of 2 AIC values of SLA at the species level of LDMC at the species level, + indicates a positive effect and - indicates a 

negative effect on each species LDMC. The conditional R2 is being indicated by the Model R2 (con) and the marginal R2 by the Model R2 (mar) column for each species and 

model. TWI = Topographical wetness index, PSR = Potential solar radiation, TWI = Topographical wetness index, 2 represents the quadratic term of the predictor. See Table 

A3 for full species names. 
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 Response                  
 LDMC                  

1 Ari con    
- + - + +  + - +   

0.48 0.48 354.1 

2 Ari con    
- + +  +  +  +   

0.48 0.48 354.4 

3 Ari con    
- + - + +  -  +   

0.49 0.49 356.0 

                   
1 Ari sti     

+  - +  + - +   
0.37 0.21 389.5 

2 Ari sti       
- +  + - +   

0.34 0.23 389.5 

3 Ari sti     
+   

+  + - +   
0.36 0.18 390.2 

4 Ari sti        
+  + - +   

0.32 0.19 390.2 

5 Ari sti       
- +   

- +   
0.30 0.24 390.3 

6 Ari sti       
- +  + - +   

0.33 0.23 390.6 

                   
1 Dig eri - + -     

+ - +  -  - 0.69 0.55 1936.1 

2 Dig eri - + -     
+ - - + -  - 0.69 0.56 1936.5 

3 Dig eri - + -    
- + - +  +  - 0.69 0.56 1936.8 

4 Dig eri - + -  +   
+ - +  -  - 0.69 0.55 1936.9 

5 Dig eri - + -  +  - + - +  -  - 0.69 0.56 1937.1 

6 Dig eri - + -    
- + - - + -  - 0.69 0.56 1937.3 

7 Dig eri - + - -    
+ - +  -  - 0.69 0.55 1937.3 

8 Dig eri - + -  +   
+ - - + -  - 0.69 0.56 1937.4 

9 Dig eri - + - +    
+ - - + -  - 0.69 0.55 1937.7 
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10 Dig eri - + -  +  - + - - + -  - 0.69 0.56 1937.8 

11 Dig eri - + - +   
- + - +  +  - 0.69 0.55 1937.7 

                   
1 Era gum       

+  -  +   
0.82 0.37 795.4 

2 Era gum    
+   

+  -  +   
0.82 0.37 795.9 

3 Era gum   
-    

+  -  +   
0.82 0.37 796.0 

4 Era gum       
+  - - +   

0.82 0.36 796.4 

5 Era gum   
- +   

+  -  +   
0.83 0.36 796.5 

6 Era gum    
+   

+  - - +   
0.83 0.36 796.7 

                   
1 Era rig     

+ -  +  -  -   
0.63 0.34 966.0 

2 Era rig    
+ + -  +  -  -   

0.64 0.34 966.9 

                   
1 Lou sim +   

-   
+  -  +  + 0.42 0.30 1938.7 

2 Lou sim +  - -   
+  -  +  + 0.42 0.30 1938.8 

                   
1 Pan max    

+  - + + + - -  + 0.71 0.71 332.0 

2 Pan max    
+   

+ + - + -  + 0.70 0.70 333.2 

3 Pan max    
+  - + + +  -  + 0.72 0.72 333.4 

                   
1 Sch pap +  -      

- + + +  0.15 0.13 1977.7 

2 Sch pap +  -      
+  + +  0.15 0.11 1978.8 

3 Sch pap +  -    
+  - + + +  0.16 0.13 1979.0 

4 Sch pap + + -      
- + + +  0.16 0.13 1979.3 

                   
1 Set sph   

+ - -  +  - + +   
0.54 0.36 436.8 

2 Set sph  + + - -  +  - + +   
0.55 0.38 436.8 

3 Set sph   
+ - -  +  -  +   

0.52 0.35 437.2 

4 Set sph  + + - -  +  -  +   
0.53 0.37 437.4 

5 Set sph    
- -  +  - + +   

0.52 0.37 437.6 

6 Set sph  +  - -  +  - + +   
0.52 0.40 437.6 
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Table A12 All best subset models based on a difference of 2 AIC values of SLA at the species level for grass canopy cover. + = a positive effect,  - = a negative effect by predictor 

variables on the response variables. 
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 Response           
1 Grass cover  - - - +   

+ 0.640 155.4 

2   - - - + -  + 0.669 155.4 

3   -  - + -  + 0.624 156.3 

4   -  - +   
+ 0.592 156.4 

5  - - - - +   
+ 0.647 156.6 

6   - - - +  + + 0.644 156.6 

7   - - - + - + + 0.672 156.7 

8  - - - - + -  + 0.675 156. 8 

9   - - - + -   
0.635 156.8 
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Figure A1 Correlation matrix of all variables used after the removal of highly correlated variables. PSR = Potential solar 

radiation, Potassium = soil K (%), Sodium = soil Na (%), Carbon =  soil C (%), Phosphorus = soil P (%), TWI = Topographical 

wetness index. 
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Figure 2A All significant univariate environmental drivers of SLA at the community level. Shaded areas indicate the 95% confidence interval 
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Figure 3A All significant univariate environmental drivers of LDMC at the community level. Shaded areas indicate the 95% confidence interval. 
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Figure 4A All significant univariate environmental drivers of grass cover at the community level. Shaded areas indicate the 95% confidence interval. 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

51 
 

Chapter 3: Lining up variation: community- and species-level drivers of grazing quality 

and leaf functional traits of savanna grasses 
 

Abstract 
Grazing provisioning is a key ecosystem service, largely provided by the grass species that make up 

the bulk of the herbaceous plant growth in grasslands and savannas. The grazing quality of grasses is 

typically assumed to vary strongly between, but not within, species and, as a result, species are often 

uniformly categorized as being of high or low grazing quality. There is, however, an increasing debate 

about the validity of this approach since many grass characteristics (including plant functional traits; 

PFTs) vary intra-specifically along environmental gradients. This study, therefore, investigated (a) the 

inter-specific variation in grazing quality components, (b) the environmental drivers of intra-specific 

variation in grazing quality, (c) the environmental drivers of variation in grass leaf traits at the species- 

and community-level and (d) the relationships between PFTs and grazing quality of dominant C4 

savanna grasses. This study demonstrated that the relationships between PFTs and environmental 

variables are typically weak and highly idiosyncratic at both the community- and species-level. Grazing 

quality differed significantly between grass species, with large proportions of the variation in all 

grazing quality components being explained by the identity of species. However, within species, few 

environmental variables explained intra-specific variation in grazing quality. Additionally, plant 

functional traits were also weakly related to intra-specific variation in grazing quality. This study 

demonstrates that grass grazing quality and PFTs do not respond consistently to environmental 

variables frequently quantified in ecological studies and that, contradictory to results from C3-

dominated temperate grasslands, leaf dry matter content, specific leaf area and force to tear are not 

useful proxies of grazing quality. More broadly, this study highlights that there may be considerable 

intra-specific variation in grass grazing quality, but that this within-species variation is not related to 

commonly recorded environmental conditions or easily measured plant traits, and, therefore, remains 

challenging to predict. 
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Introduction 
Grazing provisioning is an important ecosystem service provided by herbaceous primary producers ( 

Augustine and McNaughton, 1998; Van Oudtshoorn, 1999; Bouchenak-Khelladi et al., 2020). Grasses 

make up the bulk of the herbaceous plant growth in grasslands and savannas and have developed 

growth forms and structures which allowed these plants to survive defoliation by herbivores (Van 

Oudtshoorn, 1999; Fish et al., 2015). The relative allocation of resources by grasses into growth (i.e. 

slow or fast growth rate), biomass production and defence mechanisms affect the grazing quality of 

grasses (Van Oudtshoorn, 1999; Massey et al., 2007; Fish et al., 2015). Traditionally, grass species have 

been assigned categorical grazing values (i.e. low, average, and high; Fig. 3.1), with the emphasis being 

placed on inter-specific differences in grazing quality (i.e. variation between species; Van Oudtshoorn, 

1999). Consequently, some grass species are considered “good” for grazing and others not, with all 

individuals of a species, in general, being assumed to have the same grazing quality irrespective of 

local environmental conditions and ecotypes (Van Oudtshoorn, 1999; Truter and Venter, 2017; Van 

Oudtshoorn, 2019). However, there is an increasing debate about the validity of this approach as 

several grass characteristics (including plant functional traits; PFT’s, and morphology) vary strongly 

with environmental conditions (e.g. soil conditions, water availability and temperature; Roybal and 

Butterfield, 2018; Van Oudtshoorn, 2019; Sandel et al., 2021). Therefore, it may be expected that the 

grazing quality of gasses will also vary intra-specifically along environmental gradients. Indeed grazing 

quality across species can change along temperature and precipitation gradients and may additionally 

be influenced by biological factors, such as the developmental stage of grasses (Duru et al., 2008; 

Craine et al., 2010). 

The grazing value of grasses is determined by various factors, including the grass’ nutritional value, 

ability to regrow after grazing, palatability, leaf production and digestibility of grass biomass (Van 

Oudtshoorn, 1999). However, grazing quality can typically be expressed by the nutritional value of 

grasses, often exemplified by three key components: protein content, fibre content and digestibility 

(Khaled et al., 2006), with digestibility being most often studied (Tasset et al., 2019). The protein 

content of grass biomass is important for well-maintained herbivore body condition and high protein 

content is often considered to be easily digested by herbivores (Habermann et al., 2019). The fibre 

content of grass biomass consists of two sub-components, acid detergent fibre (ADF) which is made 

up of cellulose and lignin, and neutral detergent fibre (NDF) which is made up of hemicellulose, 

cellulose, and lignin (Habermann et al., 2019). Neutral detergent fibre is an important component 

required by ruminants (Ravhuhali et al., 2019), but high concentrations of fibre (both ADF and NDF) 

reduce the digestibility of grasses (Habermann et al., 2019). At the same time, the protein content of 

grasses generally decreases with higher fibre content which increases the cut retention time and 

reduces the voluntary intake of grass material by herbivores (Adler et al., 2004). 
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Two levels of variation may be expected in grazing quality, with differences in protein and fibre 

content expected both within- and between species. While the partitioning of the variation in grazing 

quality between these two components is poorly understood, these two components of variation have 

been more intensively examined for a different set of plant attributes, plant functional traits (PFTs). 

Variation in PFTs can be split into differences between species (inter-specific variation; BTV) and 

differences between individuals of the same species (intra-specific variation; ITV; Siefert et al., 2015) 

with the former typically accounting for more variation at the community-level than the latter. Plant 

functional traits such as specific leaf area (SLA) and leaf dry matter content (LDMC) are known to be 

variable at the inter-and intra-specific level (Garnier et al., 2001), with SLA and LDMC typically showing 

a negative correlation, and with SLA generally being more variable than LDMC (Wellstein et al., 2013). 

Spatial variation in grass SLA has recently been linked to climatic (Sandel and Tsirogiannis, 2016; 

Roybal and Butterfield, 2018; Sandel et al., 2021) and edaphic variables (Jardine et al., 2020). Spatial 

variation in other less often investigated PFTs for example, force to tear (FT) have also shown 

relationships with soil nutrient levels (Bouchenak-Khelladi et al., 2020). 

Given the high cost of measuring grazing quality components directly (e.g. via laboratory-based 

chemical analyses), identifying easily measured grass characteristics that can act as proxies for grazing 

quality would be of practical value. Given the utility of PFTs for predicting a range of species- and 

community-level ecological characteristics and processes (Sandel et al., 2021; Westerband et al., 

2021), it might be possible that plant leaf traits could be correlated with variation in grazing quality 

(at the intra- and/or inter-specific level). However, despite some initial studies, it is still unclear 

whether grass PFTs are consistently related to grass grazing quality. Relationships between 

digestibility, LDMC and leaf nitrogen content (LNC) of grasses at the inter-specific (Khaled et al., 2006; 

Pontes et al., 2007; Duru et al., 2008; Andueza et al., 2010; Tasset et al., 2019) and community-level 

(Gardarin et al., 2014) have been demonstrated. However, these studies have all been conducted in 

wetlands and French grasslands, both of which represent a small fraction of the world's grassy 

ecosystems and are dominated by C3 grasses whereas tropical and subtropical savannas and 

grasslands are dominated by C4 grasses (Ratnam et al., 2011). These studies focused on the 

relationships between PFTs, digestibility and palatability, while little attention has been given to 

grazing quality components such as protein content and fibre content. 

Specific leaf area and LDMC have the greatest potential to act as proxies for grazing quality and has 

previously been linked with the digestibility of grasses (Khaled et al., 2006; Pontes et al., 2007; Duru 

et al., 2008; Andueza et al., 2010; Tasset et al., 2019). For example, plants with high SLA (and low 

LDMC) values have increased digestibility in French grasslands (Khaled et al., 2006; Pontes et al., 2007; 

Duru et al., 2008; Andueza et al., 2010; Tasset et al., 2019). Additionally, SLA and LDMC are often 
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correlated with resource use of plants (Garnier et al., 2001), with species that have high SLA and low 

LDMC expected to have high grazing quality due to low concentrations of fibre, cellulose, and 

hemicellulose (Wilson et al., 1999a; Wright et al., 2001; Khaled et al., 2006; Pontes et al., 2007; Pérez-

Harguindeguy et al., 2013; Whitworth‐Hulse et al., 2016). Indeed, it has also been shown that there is 

a positive relationship between SLA and grazing intensity (i.e. the level of herbivory in an area), while 

the relationship between LDMC and grazing intensity is negative (Peco et al., 2005; McIntyre, 2008; 

Saatkamp et al., 2010; Niu et al., 2016). This suggests that plants with high SLA and low LDMC are 

prone to grazing, but that the high growth rates associated with these trait levels enable these plants 

to compensate for high defoliation rates (Westoby, 1998).  

Another trait potentially related to grazing quality is the mechanical strength of leaves, which can be 

measured as the force required to tear a leaf (FT). Force to tear is positively related to the physical 

strength of leaves and the ability of leaves to resist mechanical damage (such as herbivory; Wright and 

Cannon, 2001; Pérez-Harguindeguy et al., 2013). Additionally, high leaf toughness is generally 

positively related to fibre content and therefore, decreased nutritional value to herbivores (Coley, 

1983). Indeed, leaf toughness (as measured through FT) has recently been related to decreased grazer 

densities (Bouchenak-Khelladi et al., 2020) and increased selectivity for less tough individuals by 

invertebrate herbivores and sheep (Cornelissen et al., 1999; Cingolani et al., 2005). However, FT has 

not often been linked to the grazing quality of grasses (i.e. protein content, digestibility, and fibre 

content). 

Therefore, this study will investigate (a) inter-specific variation in grazing quality components of 12 

dominant savanna grass species (b) the environmental drivers of variation in the grazing quality of 

these grasses, (c) the environmental drivers of species- and community-level variation in grass leaf 

traits, and (d) the relationships between PFTs and the components of grazing quality.  
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Methods 

Study area 

Welgevonden Game Reserve (WGR) is a 36,000-ha reserve situated in the Vaalwater district (24°10’S 

27°45’E, Fig. 3.1; Zwerts et al., 2015) in the Limpopo province of South Africa. The topography of WGR 

consists of hills with occasional flat plateaus and open plains (Thompson et al., 2016). The geology of 

WGR is made up of the Waterberg group consisting mainly of coarse red clastic strata (Bumby, 2000). 

Welgevonden Game Reserve receives an annual rainfall of c. 620 mm, with the majority of this rain 

falling during the summer months (Zwerts et al., 2015). The reserve has an elevation gradient spanning 

from 1200 m a.s.l. in the north to 1450 m a.s.l. in the south. The vegetation of WGR is largely classified 

as Waterberg Mountain Bushveld (i.e. savanna vegetation), although WGR also contains areas of more 

open Waterberg Magaliesberg Summit Sourveld (i.e. grassland) at higher elevations (Mucina and 

Rutherford, 2006). The ground layer vegetation of WGR consists mainly of tall-growing grass which is 

considered to have low nutrient levels due to the acidic soils of the reserve (Thompson et al., 2016). 

However, WGR does support various large-bodied grazers and mixed feeders such as Plains Zebra 

(Equus quagga), Blue Wildebeest (Connochaetes taurinus), Eland (Tragelaphus oryx), Cape Buffalo 

(Syncerus caffer), White Rhinoceros (Ceratotherium simum) and African Elephant (Loxodonta 

africana). 

 

 

Figure 3.1 Location of Welgevonden Game Reserve (WGR) in the Limpopo province of South Africa, with the 

inset showing the border of the reserve and the locations of all the study’s relevés (n = 65). Contour lines are 

shown at 20 m intervals.  
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Data collection 

Of the 120 permanent transects used by WGR management for vegetation monitoring, a subset of 65 

locations were selected by spatial thinning (i.e. excluding c. half of the transect lines that were closest 

to each other), repeating this process within each of the six vegetation units identified by WGR 

management. The number of transects surveyed per vegetation type was proportional to the cover of 

each vegetation type in the reserve. Non-metric multidimensional scaling (i.e. NMDS = stress 0.25) 

was subsequently used to analyse grass species composition data collected in 2019 by WGR 

management from each of these transects. Transects underwent a second selection process where 

transects with very similar species composition were additionally excluded (to maximize the range of 

environmental conditions sampled). The final selection of transects provided a good representation 

of the grass species compositional space (Fig. B1), and these transects were then identified as 

locations to survey the relevés used in this study. Four ad hoc sites were additionally surveyed based 

on observations in the field which suggested that these sites were different in terms of species 

composition and/or environmental conditions compared to the other sites. 

At each of the 61 selected transects, as well as at the four ad hoc sites, a 20 × 20 m relevé was surveyed 

with the GPS coordinates for the transect being used as the southwestern corner of the relevé (Fig. 

3.1). Coordinates of each corner and the centre of the relevé were recorded using a Garmin eTrex 30 

(Garmin International, Kansas City USA) handheld GPS. Soil samples were collected close to the four 

corners of each relevé. After the removal of organic material at the soil surface, soil from the four 

corners was pooled to make up a c. 1 kg sample per relevé. Soil depth was recorded as the average 

depth that a metal rod with a 1 cm diameter could be inserted into the ground by hand at three 

random locations within each relevé.  

All grass and tree species rooted within each relevé were identified and the % canopy cover of each 

species was visually estimated. Additional environmental variables were recorded for each relevé in 

the field with rock cover, bare soil cover, woody debris cover, leaf litter cover and woody canopy cover 

(i.e. %) being visually estimated (Table B1). Dung counts of bulk grazers (White rhino and Plains Zebra) 

were conducted in each relevé, and a grazing score was assigned to each relevé based on the level of 

grazing observed on the grasses in the relevé (score of 0 = no signs of grazing and 5 = very high levels 

of grazing observed). Both of these parameters were used as proxies for the level of grazing taking 

place in each relevé but were weakly correlated (Spearman rank coefficient = 0.19, p = 0.13; Fig. B2). 

The sampling date for each relevé was calculated as the number of days since the first day of sampling 

(1 February 2021 = 1, 9 March =36). 
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GIS and soil data 

The ASTER Global Digital Elevation (DEM) Model V003 with a 30 m resolution 

(https://doi.org/10.5067/ASTER/ASTGTM.003) was used to calculate GIS-derived variables for WGR 

through the use of QGIS 3.12 (QGIS.org, 2021). The elevation of the centre coordinates for each relevé 

was extracted from the DEM. The Topographic Wetness Index (TWI) was calculated using the 

Topographic Wetness Index tool (SAGA-GIS; Conrad, 2003), and the slope, aspect, and curvature of 

each relevé were calculated using the Slope Aspect Curvature tool (SAGA-GIS; Conrad, 2001). The 

northness of each relevé was calculated by using the aspect obtained from the DEM (following; Bader 

and Ruijten, 2008). Potential Direct Incidence Radiation (PDIR) was calculated from each relevés 

latitude, slope, and aspect (following; McCune and Keon, 2002; McCune, 2007). 

Soil samples were air-dried and passed through a 2 mm sieve. Each soil sample was then analysed to 

determine texture through the standard hydrometer method (following; Kroetsch and Wang, 2008), 

pH using the H2O method (following; AgriLASA, 2004), concentrations of Ca, K, Mg, Na, and P through 

the Melich-3 extraction protocol (following; Ziadi and Tran, 2007a), and soil carbon (C) content via 

titration (following; Ziadi and Tran, 2007b). 

Grazing quality and PFT data 

Grass species in each relevé with at least 5 % canopy cover were sampled for grazing quality analysis, 

and species with at least 12 replicates across WGR were subsequently selected (resulting in 183 

biomass samples from 12 species). Entire individual plants were cut at c. 7 cm above the ground, and 

culms and inflorescence were excluded from each sample by cutting the culms above the foliar 

biomass. Biomass samples were collected per species and dried at 60  Cͦ for 48h (following; Deléglise 

et al., 2015), after which each sample was milled to 1 mm particle size using a Retsch cyclone mill 

(Retsch GmbH, Haan Germany). All samples were subsequently subjected to four Near-infrared 

Reflectance Spectrophy (NIRS) scans using a Perten DA 7250 NIR analyser (PerkinElmer Billerica, 

Massachusetts USA) operating at 750 – 2000 nm. Average values for the grazing quality components: 

% ADF, % NDF, protein content, % Ca, % P, and % fat was calculated from the four scans. Eight samples 

per species were used to conduct wet chemistry analysis performed by the African Forage, Fodder, 

Feed and Food Quality Reference Laboratory (AF4RICA LAB) at the University of Pretoria to confirm 

the values obtained for grazing quality components by the NIRS analysis. The filter bag technique was 

used for the determination of ADF (Ankom, 2017) and NDF (Ankom, 2014). Protein content was 

determined from N content (obtained by the Dumas method; Horneck and Miller, 1997). The % Ca 

and % P was obtained by following the (perchloric acid method; Miller and Kalra, 1998). The % fat was 

determined using the high-temperature solvent extraction procedure (AOCS, 2009). Of the six grazing 
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quality metrics, three were considered as core proxies of grazing quality (NDF, ADF and protein 

content) based on previous studies (Khaled et al., 2006; Tasset et al., 2019). 

Grass species with at least 5% cover in each relevé were also sampled for the measurement of leaf 

functional traits. Individuals of rarer species were also opportunistically sampled, resulting in a final 

data set with PFT measurements for 1020 individuals of 62 species (Table B2). Three individuals per 

species were sampled within a relevé for PFT’s by collecting leaves from the basal biomass of each 

individual, although, for annual grass species (e.g. Setaria pumila) leaf material was collected from the 

grass culm. Leaf material was wrapped in a damp tissue paper at the base of the leaf sheath and stored 

in a dark cooler box to allow for rehydration and maintained freshness (following; Pérez-Harguindeguy 

et al., 2013). Two leaf blades per individual with no clear pathogen or herbivore injury were selected, 

with a section of approximately 5 cm in length cut from the centre of one leaf blade per individual 

used for the measurement of PFT's. For grass species with leaves smaller than 5 cm in length (e.g. 

Microchloa caffra), the entire leaf was used (excluding the ligule and the sharp tip to allow for more 

accurate area calculations.  The leaf section cut from the first leaf blade of each individual was weighed 

using a Precisa 12100 D SuperBal-series (Precisa gravimetrics, Dietikon Switzerland) balance (1 mg 

accuracy) to determine fresh mass. A one-sided scan of each leaf section was conducted using an HP 

OfficeJet Pro 8710 (HP development company, Palo Alto CA USA) flatbed scanner (1200 dpi resolution) 

to determine the fresh leaf area using ImageJ (Abràmoff et al., 2004). Each leaf section was then dried 

at 60  Cͦ for 48h (i.e. until a constant weight was reached), and the oven-dried weight of each segment 

was subsequently obtained using a Precisa XB 160M (Precisa gravimetrics, Dietikon Switzerland) 

balance (1mg accuracy). Some leaf segments (c. 40 out of 1020) were reweighed with a more sensitive 

Sartorius M-power (Sartorius AG, Goettingen Germany) balance (0.1 mg accuracy) due to the sample’s 

dry mass being< 1 mg. For each leaf segment, LDMC was calculated as the oven-dried weight divided 

by the fresh weight (mg g-1) and SLA which was calculated as the fresh leaf area divided by the oven-

dried weight (mm mg-1). The second leaf blade of each individual was used to measure the leaf width 

(LW) at approximately the middle point of the leaf blade using digital vernier callipers. Each leaf blade 

was subsequently subjected to a longitudinal pulling force to obtain the peak breaking force measured 

by a Sauter RS-232 FH 10 (Sauter international, Balingen Germany) force gauge (maximum force 10 

N). Samples that broke at a force greater than the upper limit of the force gauge (c. 385 out of 1020) 

were assigned the highest peak breaking force (i.e. 10.97 N) obtained for a leaf blade before the upper 

limit of the force gauge was reached.  The force to tear was calculated as the peak breaking force 

divided by the leaf width (i.e. N mm 1). All PFT’s were measured and calculated following standard 

protocols (Pérez-Harguindeguy et al., 2013). 
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Community-level metrics calculations 

The community weighted mean (CWM) was calculated for each PFT in each relevé by multiplying the 

average trait value of each grass species by the relative cover of each species for each relevé. For grass 

species for which no trait data were collected (17 species across WGR), trait values were estimated 

from the average trait value of the genus, tribe, subtribe, or subfamily the species belongs to (using 

the lowest possible taxonomic rank possible; Table B3). These 17 species were found in only 2 % of 

the 65 relevés and had a mean cover of 1.2 % in these relevés (Table B3).  

Statistical analysis 

Highly correlated environmental variables and highly correlated grazing quality components were 

identified and excluded from further analyses (Fig. B2 and Fig. B3). Linear models were used to test 

the relationships between all grazing quality components and species identity. A principal component 

analysis (PCA) was conducted to visually compare the grazing quality of the 12 most common grass 

species. 

Due to a large set of potential predictor variables (24 variables; Table B1), a two-step model building 

process was used to identify environmental variables most strongly correlated to variation in grazing 

quality and leaf traits at the community- and species-level. Univariate generalized linear mixed effect 

models were first used to test the relationship between each environmental variable (Table B1) and 

the core grazing quality components (i.e. ADF, NDF and protein content). Species identity was included 

as a random effect (to account for multiple samples of the same species being collected). Univariate 

generalized linear mixed effect models were also used to test the relationship between each 

environmental variable (Table B1) and PFTs (i.e. LDMC, SLA and FT) for the 10 most common grass 

species (i.e. each with at least 30 leaf trait measurements across WGR) and each environmental 

variable (Table B1). The relevé identity was set as a random effect (to account for multiple samples 

being collected from relevés). For each univariate analysis, the null model (including only the random 

effect), a linear model and a quadratic model were compared for each environmental predictor 

variable, with the best model (i.e. null, linear, and quadratic) identified by the lowest Akaike's 

Information Criterion (AIC) score.  Multivariate generalized linear mixed effect models were used next 

to test the relationships between all the variables where a linear or quadratic model performed better 

than the null model and each grazing quality component or PFT (with quadratic terms included for 

predictors based on the univariate analysis results). Due to a large number of variables being selected 

as influential predictors of grass protein content during univariate analyses, variables with R2 values 

less than 0.013 were additionally excluded from multivariate models.  
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This same two-step model building approach was also used to analyse the relationships between the 

environmental variables and the CWM values of each leaf trait (using generalized linear models due 

to the lack of random effects in these models). 

Finally, linear mixed-effect models were used to test the relationships between core grazing quality 

components and PFTs (LDMC, SLA and FT), while including species identity as a random effect. All 

statistical analyses were conducted using R version 4.0.2 (R Core Team, 2020), including functions 

from the car (version 3.0-9;  Fox and Weisberg, 2019), lme4 (version 1.1-23; Bates et al., 2015), MuMIn 

(version 1.43.17; Barton, 2020), lmerTest (version 3.1-2; Kuznetsova et al., 2017), ggplot2 (version 

3.3.5; Wickham, 2011), ggfortify (version 4.12; Tang et al., 2016), ggpubr (version 0.4.0; Kassambara 

and Kassambara, 2020) and vegan (version 2.5-6; Oksanen et al., 2019) libraries. 

Results 

Grazing quality differs between grass species 

The core grazing quality components differed significantly between species (Table 3.1), with large 

proportions of variation being explained by species identity (R2 = 0.51 – 0.95). However, when 

considering all grazing quality components simultaneously, most grasses did not differ strongly in 

terms of grazing quality components with most of the species being clustered together with similar 

grazing qualities (Fig. 3.3). Of the 12 dominant species examined, four species were distinct in terms 

of their grazing quality: Cynodon dactylon had higher fat content and lower fibre content than the 

other species, while Digitaria eriantha had high protein, Ca, and P content. In contrast, Eragrostis 

gummiflua and Schmidtia pappophoroides displayed higher ADF and NDF content than the majority 

of the other species.   

Grazing quality is weakly related to environmental variables 

Environmental variables generally had weak relationships with the core grazing quality components. 

The best multivariate models of grass ADF and NDF included just soil C which explained only 0.5 % and 

1.8 % of the variation in ADF and NDF, respectively (Table 3.2; see Table B4 for univariate model 

results). The best multivariate model for grass protein content included four environmental variables 

(soil pH, soil C, soil Ca and clay content), with only soil Ca having a positive relationship with protein 

content and soil pH, soil C and clay content having negative relationships with protein content . This 

model explained 10.6 % of the variation in this component of grazing quality. None of the core grazing 

quality components had significant relationships with any of the PFTs measured in this study at the 

species level (Fig. 13B). 
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Table 3.1 Grazing quality components differed between species. ADF = acid detergent fibre and NDF = neutral 

detergent fibre. 

Predictor Response F value R2 P-value 

Species identity ADF 159.2 0.905 <0.001*** 
 NDF 38.1 0.692 <0.001*** 
 Protein content 21.1 0.549 <0.001*** 
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Figure 3.2 Variation in the core grazing quality components between species: A) ADF = acid detergent fibre, B)  NDF = neutral detergent fibre, and C) protein content. Species not 

sharing matching letters differ significantly.  
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Figure 3.3 Principal component analysis (PCA) of the grazing quality of the 12 dominant grass species based on six grazing quality components (blue arrows). The PCA explains 

44.2 % of the variation in grazing quality on the first axis and 29.5 % on the second axis. Ellipses indicate the 95 % confidence interval of each species, ADF = acid detergent fibre 

and NDF = neutral detergent fibre. 
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Table 3.2 Top-ranked multivariate model for each grazing quality component. Symbols indicate the nature of 

the effect each environmental variable has on the corresponding response variable (+ = positive relationship, - 

= negative relationship, ꓵ = humped-shape relationship, U = valley-shape relationship. See Table B5 for detailed 

results.  
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ADF    ꓵ  0.005 
NDF    ꓵ  0.018 
Protein content - -  + U 0.106 

 

PFTs show idiosyncratic relationships with some environmental variables 

For each species-trait combination, there were different predictors included in the best-fit models, 

with marginal R2 values ranging between 0.02 and 0.51 (Tables B6 – B9). In the species-level 

multivariate models of LDMC, the marginal R2 values ranged between 0.08 and 0.46 (Table 3.3). Six 

environmental variables (woody debris, northness, TWI, soil C, soil K and sampling date) were included 

in models of LDMC of at least three of the dominant species (Table 3.3). Only three environmental 

variables (leaf litter, dung count and soil Na) were related to LDMC at both the community- and 

species-level.  

There were generally fewer environmental variables related to SLA than to LDMC, at the species level 

(Table 3.3). Marginal R2 values for the multivariate SLA models ranged between 0.03 and 0.46, with 

only two variables (PDIR and curvature) being included in models of SLA of at least three species. Soil 

pH was the only environmental variable that was related to SLA at both the community- and species-

level (Table 3.3). Force to tear had no environmental variables which were found to be influential 

drivers across multiple species or at both the community- and species-level. The marginal R2 values of 

the multivariate models of FT ranged between 0.14 and 0.27 at the species level (Table 3.3). However, 

for five species (Digitaria eriantha, Eragrostis curvula, Melinis repens, Schizachyrium jeffreysii and 

Trachypogon spicatus), no environmental variables were included in the top-ranked model, suggesting 

a lack of a clear environmental influence on variation in leaf strength.
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Table 3.3 Top-ranked multivariate model for all traits at the community- and species-level. Shading highlights consistently present relationships: blue = influential driver at 

both the community level and species level for a trait, yellow = influential drivers of at least two traits at the community level, green = variables that were influential drivers 

for at least three species. CWM = community weighted mean, LDMC = leaf dry matter content, SLA = specific leaf area, FT = force to tear, Soil Ca = soil Calcium content, Soil 

Mg = soil Magnesium content, Soil Na = soil Sodium content, + = positive linear relationship, - = negative linear relationship, U = valley shaped quadratic relationship and ꓵ 

= humped shaped quadratic relationship. Ari sca = Aristida scabrivalvis, Dig eri = Digitaria eriantha, Dih amp = Diheteropogon amplectens, Era cur = Eragrostis curvula, Lou 

sim = Loudetia simplex, Mel rep = Melinis repens, Sch jef = Schizachyrium jeffreysii, Sch pap = Schmidtia pappophoroides, Set spa = Setaria sphacelata, Tra spi = Trachypogon 

spicatus, Null = Null model is the top-ranked model for the species trait combination and NA = no variables were found to be influential at the univariate level. 
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LDMC - CWMLDMC    -        +  U      U     0.45 
Ari sca -  -   -   -  ꓵ  U  ꓵ +        - 0.19 
Dig eri           -          +   + 0.12 
Dih amp   ꓵ - -   +        U        - 0.26 
Era cur  U -       +               0.46 
Lou sim   - ꓵ     -       U -   +     0.42 
Mel rep          ꓵ       -     + - - 0.17 
Sch jef  -     +                 - 0.10 
Sch pap   U     -  +  -           -  0.26 
Set spa   -                   +   0.08 
Tra spi -  +        ꓵ     U - -       0.28 

SLA - CWMSLA  +          -  U -   + -      0.62 
Ari sca        U       -          0.24 
Dig eri        -  ꓵ      +         0.17 
Dih amp   +          -        -  +  0.40 
Era cur -        U ꓵ     ꓵ          0.46 
Lou sim               U     +  U   0.39 
Mel rep                      +   0.07 
Sch jef         -                0.03 
Sch pap        U  -               0.28 
Set spa         +              U  0.21 
Tra spi                           
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Table 3.3 continued                          
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FT - CWMFT            +  U   - -       0.51 
Ari sca               ꓵ     -     0.23 
Dig eri                         Null 
Dih amp        ꓵ                 0.20 
Era cur (NA)                         Null 
Lou sim     -                    0.21 
Mel rep                         Null 
Sch jef                          Null 
Sch pap        -       U          0.14 
Set spa         U ꓵ               0.27 
Tra spi                          Null 
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PFTs – generally explained little variation at the community-level  

Relatively little variation in CWMLDMC, CWMSLA and CWMFT was explained by individual predictor 

variables (R2 range = 0.03 – 0.32, mean ± SD =0.12 ± 0.08; Table B9). Soil Ca was the strongest predictor 

of CWMLDMC (R2 = 0.21) and CWMFT (R2 = 0.28) with both traits being negatively related to soil Ca. 

Woody cover was the strongest predictor of variation in CWMSLA (R2 = 0.32; Fig. 3.4), with a positive 

relationship with SLA.  

Four environmental variables (dung count, soil depth, soil Ca and soil Na) were influential drivers of 

multiple leaf traits at the community-level (Table 3.3 – yellow shading), explaining 20 – 63 % of the 

variation in PFTs and having impacts across the majority of traits. The best model for CWMLDMC (R2 = 

0.45; Table 3.3) included four environmental variables (leaf litter, dung count, soil depth and soil Na) 

with all predictors, except leaf litter, being positively related with CWMLDMC. The best model for 

CWMSLA (R2 = 0.62; Table 3.3) included six environmental variables (bare soil, dung count, soil depth, 

soil pH, soil Ca and soil Mg), with three variables (bare soil, soil depth and soil Ca) having a positive 

relationship with CWMSLA. For CWMFT the best model (R2 = 0.51; Table 3.3) included four 

environmental variables (dung count, soil depth, soil K and soil Ca), of which two variables (dung count 

and soil depth) had positive relationships with CWMFT.  
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Figure 3.4 Most influential univariate predictor variables for each community-level response variable, shaded 

area indicate the 95% confidence interval. CWMLDMC = community weighted mean leaf dry matter content, 

CWMSLA = community weighted mean specific leaf area, CWMFT = community weighted mean force to tear, and 

Soil Ca = soil Calcium content. 
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Discussion 
Considerable variation in grazing quality was observed at the inter- and intra-specific levels, with the 

intra-specific variation being poorly explained by environmental conditions. For functional traits and 

core grazing quality components in this study, the general trend was highly idiosyncratic and mostly 

weak trait-environment and grazing quality-environmental relationships, at the species- and 

community-level (in agreement with Albert et al., 2010; Jessen et al., 2020; Sandel et al., 2021). 

Additionally, the PFTs investigated in this study show no potential as proxies for grass grazing quality. 

The magnitude of inter-specific variation in the grazing quality of wild grass species in this study agrees 

with previous research (e.g. Beyene and Mlambo, 2012; Ravhuhali et al., 2019). The large proportions 

of variation in the core grazing quality components explained at the inter-specific level (up to 91 %) 

indicate that species identity alone can provide a good estimate of the grazing quality of grasses (at 

least at the landscape scale). The grass species in this study generally had high ADF and NDF values 

and low protein content, which is in common with data from other mature African C4 grasses (Mlay 

et al., 2006; Beyene and Mlambo, 2012; Ravhuhali et al., 2019). Grass species with low protein content 

and high fibre content are expected to be difficult for herbivores to digest (Ravhuhali et al., 2019) and, 

therefore, have lower overall grazing quality. Moreover, while leaf Ca and P are not core grazing 

quality components, both are important macrominerals required by grazers (McDowell and 

Arthington, 2005). All grass species in this study had Ca contents lower than the critical threshold level 

for ruminants and only two grass species, D. eriantha and S. sphacelata, reached the minimum critical 

level of P for ruminants (McDowell and Arthington, 2005).  

In terms of grazing quality, four grass species were distinct from the other species in this study.  

Cynodon dactylon and D. eriantha are expected to be of high grazing quality due to the high protein 

content of these species, while E. gummiflua and S. pappophoroides appear to be of low grazing 

quality due to their high ADF and NDF. This study, however, shows that there is no simple trade-off 

between protein content and fibre content, revealing potentially more complex relationships between 

grazing quality components. This finding cautions against the assignment of grazing quality based on 

just a single grazing quality component (e.g. considering a species to have good grazing quality based 

solely on protein content) and highlights that multiple grazing quality components need to be 

considered simultaneously. 

Intra-specific variation in the core grazing quality components was poorly related to environmental 

variables, with only soil variables being moderately influential. Soil nutrient levels are known to impact 

the protein content of plants (Buxton, 1996) and the pH of soil is a good proxy for soil nutrient 

availability (Alam et al., 1999). Surprisingly, however, soil pH had a negative relationship with protein 
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content. This was an unexpected relationship since the soils at WGR are acidic and better nutrient 

availability would be expected under more neutral conditions. Light intensity, diurnal temperature 

range and water availability may also impact the protein content of grasses (Buxton, 1996; Da Silva et 

al., 2019), but no influence of PDIR or TWI, which are proxies of solar radiation and water availability, 

on grass protein content was observed. Temperature is also an important factor impacting protein 

content since lower temperatures decrease the maturation rate of grasses and are, therefore, 

expected to increase the protein content in plants (Buxton, 1996). Finally, time of harvest will typically 

also impact the grazing quality of grasses (Rosser et al., 2013; Hughes et al., 2014; Grev et al., 2017), 

but in this study, no relationship was found between sampling date and any of the grazing quality 

components. This likely reflects that the grasses in this study were all in their mature growth phase 

throughout the sampling period (Rosser et al., 2013). These results add to our understanding of which 

environmental conditions may influence intra-specific variation in grass grazing quality, but overall 

this issue remains poorly explored in the literature, despite the potential for, for example, changing 

environmental conditions to alter local and landscape-scale grazing quality.  

The PFTs investigated in this study had no relationships with any core grazing quality components. 

Therefore, for C4 savanna grasses LDMC, SLA and FT are not useful proxies of grazing quality. The 

forages selected by herbivores often have high SLA along with low LDMC and leaf toughness, a trend 

likely linked to the high palatability (i.e. grazing value Elger and Willby, 2003; Adler et al., 2004; 

Cingolani et al., 2005) and not necessarily to the grazing quality of the plant material. Therefore, 

alternative PFTs should be investigated for their potential to act as proxies for grazing quality. 

PFTs at the species- and community-level  

Highly idiosyncratic relationships between environmental variables and PFTs were observed within 

species, a trend recently demonstrated for grasses elsewhere (Roybal and Butterfield, 2019; Sandel et 

al., 2021) and other plant growth forms (Albert et al., 2010). This result was, nonetheless, still 

somewhat unexpected since closely related species are expected to have similar trait-environment 

relationships (Gerdol, 2005). Leaf dry matter content was correlated with more environmental 

variables than the other PFTs across the 12 dominant species, but only northness and soil K had 

consistent relationships with LDMC across species. Leaf dry matter content is a good measure of 

resource use strategies in plants (Wilson et al., 1999b; Wellstein et al., 2013) and is negatively related 

to plant growth rate (Albert et al., 2010). The overall negative relationship between the LDMC of 

species and soil K (which is an important macronutrient required for photosynthesis and growth; 

Prajapati and Modi, 2012), possibly reflects grasses exhibiting faster growth rates under higher 

nutrient concentrations.  
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Equator-facing slopes receive higher levels of solar radiation, making these slopes generally hotter and 

drier (Sandel and Low, 2019). Relevés with north facing aspects (i.e. northness) had higher LDMC (i.e. 

reflecting increased structural components) and lower SLA would be beneficial to species since it 

would lower water loss rates (Jung et al., 2014; Deléglise et al., 2015). However, TWI, which is a 

measure of potential soil moisture content, was mostly negatively related to LDMC. Topography also 

impacts other underlying environmental variables such as nutrient availability, temperature, and wind 

exposure, which could ultimately alter the relationships between LDMC and topography (Moeslund 

et al., 2013). Higher LDMC was also observed for species in relevés with higher sand fractions, possibly 

reflecting that sandy soils typically have lower water holding capacity (Nath, 2014). In contrast, soil 

carbon content, litter cover, and woody debris, which are typically associated with greater soil 

moisture-holding capacity, had highly variable relationships with LDMC at the species level (Nath, 

2014). 

Sampling date was negatively related to LDMC in several species, despite being expected to have a 

positive relationship with this trait since structural tissues typically increase in grass leaf blades 

through the growing season (Duru et al., 2008; Dong et al., 2020; see also Chapter 2). This unexpected 

result may, however, reflect that trait values can shift from season to season depending on the change 

in conditions (Sandel et al., 2021). For example, the onset and duration of the rainy season would 

impact the growth stage and growth rate of grasses during sampling which, in turn, could affect the 

rate of change in PFTs. Cooler, wetter periods are expected to delay the maturation of grasses (Buxton, 

1996) and, as a result, the structural tissues in leaf blades can remain low, resulting in more consistent 

PFT values being observed throughout the sampling season. 

 Soil pH is an important factor affecting the availability of soil nutrients (Alam et al., 1999; Dong et al., 

2020), as well as impacting various plant traits (Dwyer et al., 2014; Dong et al., 2020). Specific leaf area 

was negatively correlated with soil pH for two species (in contrast to grass species globally having a 

positive relationship of SLA with soil pH; Jardine et al., 2020). Although not all species exhibited the 

same environment- functional trait relationships, SLA and FT always exhibited opposite relationships 

with the same variables. Force to tear was not related to environmental conditions in several species. 

This agrees with the findings of Jardine et al. (2020) where the FT of grasses globally was only weakly 

related to soil nutrients. Interestingly relationships between environmental variables at the 

community-level for SLA and FT were always opposite, a relationship recently demonstrated for other 

grass species (Jardine et al., 2020). This result likely reflects how higher SLA is associated with rapid 

growth and utilization of soil nutrients, and how higher FT (i.e., toughness) is associated with leaf 

longevity and resource conservation (Diaz et al., 2004; Pérez-Harguindeguy et al., 2013; Jardine et al., 

2020). 
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Few environmental variables were consistently related to leaf traits, but a subset of predictor variables 

explained variation in community-level trait expression relatively well for all leaf traits. The best 

models at the community-level generally included fewer variables compared to the species level 

models and explained between 3 and 59 % more variation in PFTs. This potentially indicates that 

predictions of assemblage characteristics are more accurate than species-level characteristics. High 

LDMC and FT are related to leaf toughness and the ability to withstand physical damage such as 

herbivory (Augustine and McNaughton, 1998; Adler et al., 2004; Pérez-Harguindeguy et al., 2013), and 

the positive relationship between dung count (a proxy of grazing) and these traits at the community-

level support this. However, there was no relationship between the grazing level of relevés and these 

traits, suggesting that in this system dung count may potentially reflect a different form of physical 

stress like trampling.  

Conclusion 
This study shows that variation in grazing quality chiefly occurs at the species-level and that grazing 

management actions based on dominant species are likely to represent most of the variation in grazing 

quality. Intra-specific variation was, nonetheless, observed for grazing quality components, although 

it is unclear to what degree environmental conditions drive this variation within species. This finding 

suggests that some key environmental variables were potentially not measured in this study. 

Moreover, grass leaf traits were not related to core grazing quality components, at least at the 

landscape scale studied here. Therefore, future studies focusing on this topic should aim to sample 

along broader gradients, since, for example, temperature and precipitation have been shown to 

impact protein and fibre content (Buxton, 1996). Additionally, other traits such as leaf nitrogen 

content (Deléglise et al., 2015; Tasset et al., 2019), plant size traits (Pérez-Harguindeguy et al., 2013) 

and growth form (Whitworth‐Hulse et al., 2016) should likely also be investigated if searching for trait-

grazing quality relationships that might be useful for implementation in the grazing regime 

management, for example, allowing for quick determination of an areas’ grazing capacity. 

Only a limited number of environmental variables were consistently related to PFTs at the community- 

and species-level, with idiosyncratic trait-environmental relationships typically observed in this study. 

This demonstrates the difficulty of understanding which environmental variables influence variation 

in PFTs (in agreement with Albert et al., 2010; Kichenin et al., 2013; Sandel et al., 2021). Nonetheless, 

this study has contributed to addressing the current knowledge gaps about the trait- and grazing 

quality-environmental relationships (Albert et al., 2010; Kichenin et al., 2013; Westerband et al., 

2021), demonstrating how soil variables are most often influential in these relationships in this system. 

This new knowledge suggests that some trait- and grazing quality-environmental relationships may be 

relatively more robust to use in guiding management actions (e.g. soil variables are more consistently 

related to traits and grazing quality compared to other environmental variables). Finally, while this 
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study was focused at a fairly local scale, expanding the study area to a regional- or even continental-

scale would allow for larger variation in environmental variables to be observed, and it might then be 

clearer to identify the conditions that drive variation in grazing quality and PFTs. 
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Appendix B 
Table B1 All environmental variables included in the initial univariate analyses after highly correlated variables 

were excluded.  

Environmental variable Collection or calculation method 

Rock cover  Visually estimated (%) 
Bare soil cover Visually estimated (%) 
Woody debris cover Visually estimated (%) 
Leaf litter cover Visually estimated (%) 
Woody cover  Visually estimated (%) 
Elevation Calculated from Digital Elevation Model (DEM), in m above sea level  
Slope Calculated from DEM as degrees from horizontal 
PDIR Calculated from DEM, scale = 0.81 – 1.16, higher values = higher 

potential radiation 
Curvature Calculated from DEM, - values = concave, positive values = convex 
Northness Calculated from aspect 

1 = North, -1 = South and 0 = East or West 
TWI Calculated from DEM scale = 0.7 – 13.8, Smaller values = less wet 
Dung count Dung pads of Plains Zebra, White Rhinoceros and Cape Buffalo 

counted per relevé 
Grazing level Visually estimated  1 = few signs of grazing to 5 = high levels of grazing 
Soil depth Measured using a 1 cm in diameter, 60 cm long metal rod 
Soil pH Obtained using the H2O method 
Soil C Obtained through titration (mg/kg 
Soil K Obtained through the Melich-3 extraction protocol (mg/kg) 
Soil Ca Obtained through the Melich-3 extraction protocol (mg/kg) 
Soil Mg Obtained through the Melich-3 extraction protocol (mg/kg) 
Soil Na Obtained through the Melich-3 extraction protocol (mg/kg) 
Soil P Obtained through the Melich-3 extraction protocol (mg/kg) 
Sand fraction Obtained through the standard hydrometer method (%) 
Clay fraction Obtained through the standard hydrometer method (%) 
Sampling date First day of sampling = 1 and last day of sampling = 36 
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Table B2 The grass species recorded in this study and the number of individuals sampled for the measurement 

of plant functional traits(PFTs) and grazing quality (GQ). 

Species name 

Individuals  
sampled 
(PFTs) 

Individuals 
sampled 
(GQ) Species name  

Individuals  
sampled 
(PFTs 

 Individuals 
sampled 
(GQ) 

Andropogon chinensis 24 NA Eragrostis viscosa 6  NA 

Andropogon schirensis 30 NA Eustachys paspaloides 0  NA 

Aristida adscensionis 6 NA Fingerhuthia africana 0  NA 

Aristida canenscens 21 NA Heteropogon contortus 27  NA 

Aristida congesta barbicollis 9 NA Hyparrhenia filipendula 21  NA 

Aristida congesta congesta 27 NA Hyparrhenia hirta 12  NA 

Aristida diffusa 27 NA Loudetia pediculata 12  NA 

Aristida scabrivalvis 39 13 Loudetia simplex 85  26 

Aristida stipitata 8 NA Melinis nerviglumis 1  NA 

Aristida transvaalensis 0 NA Melinis repens 60  17 

Bewsia biflora 0 NA Microchloa caffra 3  NA 

Brachiaria brizantha 9 NA Miscanthus junceus 3  NA 

Brachiaria deflexa 0 NA Monocymbium ceresiiforme 3  NA 

Brachiaria nigropedata 3 NA Panicum coloratum 3  NA 

Brachiaria serrata 3 NA Panicum ecklonii 0  NA 

Chloris virgata 0 NA Panicum maximum 18  NA 

Cymbopogon nardus 3 NA Panicum natalense 3  NA 

Cynodon dactylon 30 13 Perotis patens 6  NA 

Digitaria brazzae 0 NA Pogonarthria squarrosa 6  NA 

Digitaria eriantha 59 15 Schizachyrium jeffreysii 78  21 

Digitaria longiflora 6 NA Schizachyrium sanguineum 24  NA 

Digitaria monodactyla 3 NA Schmidtia pappophoroides 33  11 

Digitaria sanguinalis 0 NA Setaria lindenbergiana 3  NA 

Diheteropogon amplectens 51 15 Setaria pumila 6  NA 

Eleusine coracana 2 NA Setaria sphacelata  33  11 

Enneapogon cenchroides 0 NA Sporobolus africanus 0  NA 

Eragrostis acrea 2 NA Sporobolus festivus 6  NA 

Eragrostis bicolor 3 NA Sporobolus fimbriatus 0  NA 

Eragrostis chloromelas 18 NA Sporobolus ioclados 0  NA 

Eragrostis curvula 45 14 Sporobolus pyramidalis 6  NA 

Eragrostis gummiflua 30 10 Sporobolus stapfianus 3  NA 

Eragrostis inamoena 3 NA Themeda triandra 3  NA 

Eragrostis lapula 3 NA Trachypogon spicatus 60  20 

Eragrostis lehmanniana 3 NA Tragus berteronianus 0  NA 

Eragrostis patentipilosa 0 NA Trichoneura grandiglumis 2  NA 

Eragrostis racemosa 3 NA Triraphis andropogonoides 0  NA 

Eragrostis rigidior 9 NA Tristachya leucothrix 3  NA 

Eragrostis supurba 0 NA Urochloa mosambicensis 4  NA 

Eragrostis trichophora 3 NA Urochloa panicoides 3  NA 
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Table B3 Species for which no leaf functional trait data were collected, the number of relevés each of these 

species was present in, the mean cover each species in each relevé where it was present, and the taxonomic 

level used for the estimation of traits for each species (subsequently used in the calculation of CWM values for 

each relevé.  

Species Relevés 
present 

Mean cover in relevés 
where present 

Taxonomic level used for trait 
estimation prior to CMW 
calculation 

Aristida transvaalensis 1 3.0 From genus 
Brachiaria deflexa 1 2.0 From genus 
Bewsia biflora 1 0.5 From tribe (Cynodonteae) 
Chloris virgata 3 0.5 From subtribe (Eleusininae) 
Digitaria brazzae 1 1.0 From genus 
Digitaria sanguinalis 1 1.0 From genus 
Enneapogon cenchroides 1 3.0 From tribe (Eragrostideae) 
Eragrostis patentipilosa 4 0.6 From genus 
Eragrostis superba 3 2.0 From genus 
Eustachys paspaloides 1 0.5 From subtribe (Eleusininae) 
Fingerhuthia africana 1 0.5 From tribe (Eragrostideae) 
Panicum ecklonii 1 2.0 From genus 
Sporobolus africanus 3 1.2 From genus 
Sporobolus fimbriatus 1 0.5 From genus 
Sporobolus ioclados 1 1.0 From genus 
Tragus berteronianus 7 0.9 From tribe (Cynodonteae) 
Triraphis andropogonoides 3 1.5 From subfamily (Chloridoideae) 
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Table B4 Univariate model results for each grazing quality component × predictor combination, presenting only 

the linear or quadratic models which performed better than the associated null model. ADF = acid detergent 

fibre, NDF = Neutral detergent fibre, Lin = Linear model, Quad = Quadratic model, Soil C = Carbon content Soil K 

= Potassium content, Ca = Calcium content, Mg = Magnesium content, Soil Na = Sodium content, Soil P = 

Phosphorous content, PDIR = Potential Direct Incidence Radiation, TWI = Topographic wetness index, - = 

negative linear relationship, + = positive linear relationship, U = valley shaped quadratic relationship, ꓵ = humped 

shaped quadratic relationship. 

Response Predictor Best 
model 

AIC null 
model 

AIC 
linear 
model 

AIC 
quadratic 
model 

Marginal R2 Relationship 

ADF Soil C Quad 655.2 655.1 649.0 0.005 ꓵ 

NDF Bare soil Quad 888.1 889.6 887.4 0.008 U 

 Woody debris Lin 888.1 885.8 887.5 0.007 + 

 Leaf litter Lin 888.1 885.9 88709 0.007 + 

 Woody cover Lin 888.1 884.6 886.3 0.009  + 

 Soil depth Lin 888.1 884.6 885.7 0.015 - 

 Soil C Quad 888.1 886.4 882.6 0.018 ꓵ 

Protein Bare soil Quad 618.5 613.9 611.2 0.036 ꓵ 

 Leaf litter Lin 618.5 614.5 616.1 0.017 - 

 Woody cover Quad 618.5 619.9 609.1 0.034 U 

 Elevation Quad 618.5 618.4 617.6 0.012 U 

 Slope Quad 618.5 620.3 617.0 0.013 ꓵ 

 Curvature Quad 618.5 611.1 608.4 0.032 U 

 TWI Lin 618.5 617.1 618.7 0.008 - 

 Soil pH Lin 618.5 615.1 616.8 0.016 - 

 Soil C Lin 618.5 615.7 616.8 0.013 + 

 Soil Ca Quad 618.5 614.9 607.4 0.035 U 

 Soil Mg Quad 618.5 619.0 609.9 0.029 U 

 Soil Na Quad 618.5 619.5 616.8 0.013 ꓵ 

 Soil P Lin 618.5 606.7 606.9 0.033 + 

 Sand fraction Quad 618.5 620.3 609.3 0.030 U 

 Clay fraction Quad 618.5 618.1 597.3 0.056 U 
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Table B5 Best subset of multivariate models for protein content based on AIC scores (i.e. models with AIC scores 

differing less than 2). Soil C = Soil Carbon content Soil P = Phosphorus content, Soil Ca = Soil Calcium content, + 

= positive linear relationship, - = negative linear relationship, U = valley shaped quadratic relationship. 
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Response          
Protein content  - -  + U 608.2  1 
  -  +  U 608.6  2 
  -  +  - 608.9  3 
     U - 609.4  4 
    +  U 604.4  5 
 - -   +  604.4  6 
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Table B6 Species level univariate model results, best model LDMC × species × predictor combination presenting 

only the linear or quadratic models which performed better than the associated null model. Lin = Linear model, 

Quad = Quadratic model, Soil C = Carbon content Soil K = Potassium content, Ca = Calcium content, Mg = 

Magnesium content, Soil Na = Sodium content, Soil P = Phosphorous content, PDIR = Potential Direct Incidence 

Radiation, TWI = Topographic wetness index, - = negative linear relationship, + = positive linear relationship, U 

= valley shaped quadratic relationship, ꓵ = humped shaped quadratic relationship, LDMC = leaf dry matter 

content. 

Response Predictor Best 
model 

AIC null 
model 

AIC 
linear 
model 

AIC 
quadratic 
model 

Marginal R2 Relationship 

LDMC        
Aristida scabrivalvis Rock cover Quad 479.9 480.4 478.2 0.13 ꓵ 

 Woody debris Lin 479.9 478.5 479.6 0.09 + 
 Elevation Quad 479.9 481.5 479.5 0.11 U 
 Curvature Lin 479.9 478.7 480.4 0.08 + 
 TWI Lin 479.9 478.2 478.9 0.09 - 
 Grazing Quad 479.9 481.5 479.1 0.11 ꓵ 

 Soil pH Lin 479.9 477.76 478.7 0.10 + 
 Soil C Lin 479.9 477.8 477.8 0.10 - 
 Sampling 

date 
Quad 479.9 481.3 481.3 0.14 ꓵ 

        
Digitaria eriantha TWI Lin 671.1 669.9 671.8 0.05 - 

 Soil K Lin 671.1 670.5 671.6 0.05 + 
 Soil P Lin 671.1 669.1 670.3 0.07 + 
 Sampling 

date 
Lin 671.1 670.4 672.2 0.05 + 

        
Diheteropogon amplectens Woody debris Quad 569.1 569.3 567.3 0.11 ꓵ 

 Leaf litter Lin 569.1 563.5 565.4 0.15 - 
 Woody cover Quad 569.1 568.0 565.7 0.14 ꓵ 

 Elevation Lin 569.1 569.1 570.6 0.04 + 
 PDIR Lin 569.1 567.8 569.8 0.07 + 
 Soil C Quad 569.1 568.2 567.0 0.12 ꓵ 

 Soil K Lin 569.1 568.9 570.6 0.05 + 
 Soil Ca Lin 569.1 568.9 570.5 0.05 + 
 Sampling 

date 
Lin 569.1 566.1 566.7 0.10 + 

        
Eragrostis curvula Bare soil Quad 566.3 566.6 566.0 0.14 ꓵ 

 Woody debris Lin 566.3 560.9 562.9 0.23 - 
 Northness Lin 566.3 565.8 567.3 0.09 + 
        
Loudetia simplex Woody debris Lin 1042.3 1037.4 1039.3 0.11 - 

 Leaf litter Quad 1042.3 1042.5 1037.3 0.14 U 
 Woody cover Lin 1042.3 1038.8 1039.5 0.09 - 
 Elevation Quad 1042.3 1043.5 1041.8 0.08 ꓵ 

 Curvature Lin 1042.3 1042.3 1044.1 0.04 - 
 TWI Lin 1042.3 1038.9 1040.0 0.09 - 
 Soil depth Quad 1042.3 1038.0 1040.0 0.15 U 
 Soil C Quad 1042.3 1042.1 1036.4 0.08 U 
 Soil K Lin 1042.3 1040.3 1041.6 0.07 - 
 Soil Ca Lin 1042.3 1036.4 1042.3 0.13 - 
 Soil Mg Lin 1042.3 1035.6 1037.6 0.14 - 
 Soil Na Lin 1042.3 1040.4 1041.5 0.07 - 
 Sand fraction Quad 1042.3 1042.7 1041.3 0.08 ꓵ 
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 Sampling 
date 

Quad 1042.3 1042.3 1042.2 0.07 U 

        
Melinis repens Elevation Lin 712.8 707.6 709.6 0.11 + 

 Northness Quad 712.8 714.6 711.8 0.08 ꓵ 

 Soil K Lin 712.8 707.2 708.8 0.12 - 
 Soil Ca Lin 712.8 712.7 712.1 0.05 - 
 Soil Mg Quad 712.8 714.1 712.1 0.07 ꓵ 

 Sand fraction Lin 712.8 712.18 713.1 0.04 - 
 Clay content Lin 712.8 711.8 713.5 0.05 - 
 Sampling 

date 
Lin 712.8 711.8 713.3 0.05 - 

        
Schizachyrium jeffreysii Bare soil Lin 935.5 935.0 936.8 0.03 - 

 Slope Lin 935.5 933.6 935.6 0.05 + 
 Sampling 

date 
Quad 935.5 935.9 933.0 0.08 U 

        
Schmidtia pappophoroides Woody debris Quad 414.1 415.9 411.1 0.18 U 

 PDIR Lin 414.1 409.2 410.2 0.19 - 
 Northness Lin 414.1 411.0 412.9 0.14 - 
 Dung count Quad 414.1 415.4 414.0 0.11 U 
 Clay content Lin 414.1 413.2 414.2 0.07 - 
        
Setaria sphacelata  Woody debris Lin 397.6 397.4 399.3 0.06 - 

 Sand fraction Lin 397.6 397.4 398.3 0.06 + 
        
Trachypogon spicatus Rock cover Lin 694.7 694.2 696.1 0.04 + 

 Woody debris Lin 694.7 694.0 694.6 0.05 + 
 TWI Quad 694.7 695.5 692.5 0.10 ꓵ 

 Soil depth Quad 694.7 693.7 693.6 0.09 U 
 Soil C Quad 694.7 696.4 694.4 0.07 ꓵ 

 Soil K Lin 694.7 691.4 692.3 0.09 - 
 Soil Ca Quad 694.7 695.4 694.0 0.08 U 
 Soil Mg Quad 694.7 695.2 691.5 0.12 U 
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Table B7 Species level univariate model results, best model SLA × species × predictor combination presenting 

only the linear or quadratic models which performed better than the associated null model. Lin = Linear model, 

Quad = Quadratic model, Soil C = Carbon content Soil K = Potassium content, Ca = Calcium content, Mg = 

Magnesium content, Soil Na = Sodium content,  Soil P = Phosphorous content, PDIR = Potential Direct Incidence 

Radiation, TWI = Topographic wetness index, - = negative linear relationship, + = positive linear relationship, U 

= valley shaped quadratic relationship, ꓵ = humped shaped quadratic relationship, SLA = specific leaf area. 

Response Predictor Best 
model 

AIC 
null 
model 

AIC 
linear 
model 

AIC 
quadratic 
model 

Marginal R2 Relationship 

SLA        
Aristida scabrivalvis Woody debris Lin 244.3 243.1 243.5 0.11 - 

 Leaf litter Quad 244.3 246.3 243.9 0.14 ꓵ 

 Elevation Quad 244.3 246.0 244.0 0.14 ꓵ 

 Slope Lin 244.3 243.1 244.5 0.11 + 
 PDIR Quad 244.3 246.0 243.2 0.15 U 
 TWI Lin 244.3 244.3 246.3 0.07 + 
 Dung count Lin 244.3 242.8 244.7 0.11 + 
 Grazing Quad 244.3 242.4 231.6 0.38 U 
 Soil pH Lin 244.3 240.6 241.3 0.18 - 
 Soil P Lin 244.3 243.6 245.4 0.09 + 
 Clay content Lin 244.3 242.6 243.3 0.13 - 
        
        
Digitaria eriantha Rock cover Lin 419.8 418.6 419.8 0.05 + 

 PDIR Lin 419.8 419.2 420.4 0.04 + 
 Northness Quad 419.8 418.6 416.6 0.11 ꓵ 

 Dung count Quad 419.8 420.5 414.7 0.02 U 
 Soil C Lin 419.8 419.7 421.6 0.04 + 
 Soil Mg Quad 419.8 420.1 419.2 0.08 U 
 Sand fraction Lin 419.8 419.3 419.4 0.04 + 
        
Diheteropogon amplectens Rock cover Quad 310.3 310.1 308.9 0.15 U 

 Woody cover Lin 310.3 309.1 310.6 0.10 + 
 Dung count Quad 310.3 311.4 308.9 0.15 ꓵ 

 Grazing Lin 310.3 310.3 311.9 0.06 - 
 Soil P Lin 310.3 309.2 309.3 0.09 - 
 Clay fraction Lin 310.3 309.4 311.4 0.09 + 
        
Eragrostis curvula Rock cover Lin 248.8 248.5 249.9 0.09 + 

 Woody debris Quad 248.8 249.9 248.4 0.15 ꓵ 

 Curvature Quad 248.8 249.9 242.1 0.31 U 
 Northness Quad 248.8 249.3 243.5 0.28 ꓵ 

 Soil depth Lin 248.8 248.4 250.0 0.09 - 
 Soil pH Quad 248.8 249.9 248.4 0.15 ꓵ 

        
Loudetia simplex Bare soil Lin 488.0 487.9 489.6 0.03 + 

 Woody debris Lin 488.0 482.7 483.9 0.11 + 
 Woody cover Lin 488.0 487.4 488.5 0.04 + 
 Elevation Quad 488.0 488.4 486.0 0.09 U 
 TWI Lin 488.0 487.2 489.0 0.05 - 
 Grazing Lin 488.0 486.9 488.3 0.05 - 
 Soil pH Quad 488.0 487.1 475.4 0.22 U 
 Soil K Quad 488.0 486.0 484.2 0.12 U 
 Soil Ca Quad 488.0 472.0 468.2 0.28 U 
 Soil Mg Quad 488.0 470.2 465.8 0.30 U 
 Soil Na Lin 488.0 487.2 489.2 0.05 + 
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 Soil P Quad 488.0 484.3 478.0 0.19 U 
 Sand fraction Quad 488.0 486.2 466.6 0.30 U 
 Clay fraction Quad 488.0 488.3 483.1 0.13 U 
        
Melinis repens Woody cover Lin 408.1 406.7 408.7 0.07 + 

 Elevation Lin 408.1 401.4 403.4 0.16 - 
 Soil K Lin 408.1 403.8 405.6 0.12 + 
 Soil Ca Lin 408.1 406.9 407.6 0.07 + 
 Soil Mg Quad 408.1 409.9 407.9 0.08 U 
 Sand fraction Lin 408.1 406.9 408.5 0.07 + 
 Clay fraction Lin 408.1 407.7 409.4 0.05 + 
        
Schizachyrium jeffreysii Bare soil Quad 530.2 530.8 529.9 0.05 ꓵ 

 Leaf litter Lin 530.2 528.9 530.9 0.04 + 
 Woody cover Lin 530.2 526.5 528.2 0.07 + 
 Elevation Lin 530.2 530.1 532.0 0.03 - 
 Slope Lin 530.2 527.5 529.1 0.06 - 
 Curvature Lin 530.2 529.9 530.0 0.03 - 
 Soil P Quad 530.2 529.6 527.3 0.08 U 
 Sampling date Quad 530.2 532.2 528.0 0.08 ꓵ 

        
Schmidtia pappophoroides Rock cover Quad  256.8 257.4 256.6 0.11 U 

 Elevation Quad 256.8 255.3 251.4 0.24 U 
 PDIR Quad 256.8 252.2 249.8 0.27 U 
 Northness Lin 256.8 255.3 257.2 0.10 + 
 Soil depth Quad 256.8 257.6 254.5 0.17 ꓵ 

 Clay content Lin 256.8 256.4 257.2 0.07 + 
        

Setaria sphacelata  Leaf litter Quad 201.9 203.9 200.9 0.14 U 

 Elevation Lin 201.9 195.8 197.8 0.22 - 
 Curvature Lin 201.9 198.5 200.4 0.15 + 
 Soil Ca Lin 201.9 201.6 203.0 0.07 + 
 Soil Na Lin 201.9 199.4 201.3 0.13 + 
 Sampling date Quad 201.9 203.9 199.6 0.17 U 
        
Trachypogon spicatus Woody cover Quad 342.2 341.5 341.5 0.07 ꓵ 

 TWI Quad 342.2 344.1 341.4 0.07 U 
 Soil Ca Quad 342.2 342.0 337.1 0.14 ꓵ 

 Soil Mg  Quad 342.2 343.6 338.9 0.11 ꓵ 
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Table B8 Species level univariate model results, best model FT × species × predictor combination presenting only 

the linear or quadratic models which performed better than the associated null model. Lin = Linear model, Quad 

= Quadratic model, Soil C = Carbon content Soil K = Potassium content, Ca = Calcium content, Mg = Magnesium 

content, Soil Na = Sodium content,  Soil P = Phosphorous content, PDIR = Potential Direct Incidence Radiation, 

TWI = Topographic wetness index, - = negative linear relationship, + = positive linear relationship, U = valley 

shaped quadratic relationship, ꓵ = humped shaped quadratic relationship, FT = force to tear. 

Response Predictor Best 
model 

AIC null 
model 

AIC 
linear 
model 

AIC 
quadratic 
model 

Marginal R2 Relationship 

FT        
Aristida scabrivalvis Elevation Quad 169.8 168.7 168.5 0.15 U 

 TWI Quad 169.8 171.5 169.4 0.13 ꓵ 

 Soil pH Quad 169.8 170.3 169.5 0.13 ꓵ 

 Soil C Lin 169.8 168.0 170.0 0.12 - 
 Soil K Quad 169.8 165.3 162.9 0.27 ꓵ 

 Soil Mg Lin 169.8 168.3 169.6 0.11 - 
 Soil Na Lin 169.8 169.3 170.0 0.08 - 
        
Digitaria eriantha Rock cover Quad 82.8 81.4 75.0 0.25 ꓵ 

 Woody debris Quad 82.8 84.4 82.6 0.10 ꓵ 

 Leaf litter Quad 82.8 80.9 80.5 0.15 ꓵ 

 Woody cover Lin 82.8 81.5 83.1 0.08 + 
 Dung count Lin 82.8 82.8 82.9 0.05 + 
 Grazing Quad 82.8 82.7 82.0 0.12 ꓵ 

 Soil depth Lin 82.8 80.1 82.1 0.12 - 
 Soil pH Lin 82.8 81.2 82.3 0.09 + 
 Soil C Quad 82.8 80.5 79.7 0.17 ꓵ 

        
Diheteropogon amplectens Rock cover Lin 4.0 4.0 5.8 0.07 - 

 Slope Quad 4.0 -4.7 -7.2 0.34 ꓵ 

 PDIR Quad 4.0 5.4 0.4 0.20 U 
 Soil pH Lin 4.0 3.3 5.1 0.08 + 
 Clay content Lin 4.0 3.8 4.5 0.07 - 
        
Eragrostis curvula NA       

        
Loudetia simplex Bare soil  Quad  248.2 247.8 247.8 0.06 U 

 Woody debris Lin 248.2 242.5 244.4 0.11 - 
 Woody cover Lin 248.2 233.2 235.2 0.21 - 
 Elevation Lin 248.2 245.1 245.9 0.07 + 
 TWI Lin 248.2 247.4 248.2 0.04 + 
 Grazing Quad 248.2 250.0 248.1 0.06 ꓵ 

 Soil C Lin 248.2 247.9 249.4 0.03 - 
 Soil Ca Lin 248.2 241.3 241.7 0.12 - 
 Soil Mg Lin 248.2 241.9 243.6 0.12 - 
        
Melinis repens Leaf litter Quad 118.8 117.8 114.9 0.12 ꓵ 

 Soil P Lin 118.8 118.4 119.7 0.04 + 
        
Schizachyrium jeffreysii Woody debris Lin 128.0 127.6 129.0 0.03 - 

 Grazing Lin 128.0 127.6 127.6 0.02 + 
 Soil C Lin 128.0 127.5 128.4 0.03 - 
 Soil Ca Lin 128.0 127.5 127.9 0.03 - 
 Soil Mg Lin 128.0 127.4 128.8 0.03 - 
 Sampling date Quad 128.0 129.4 122.0 0.12 ꓵ 
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Schmidtia pappophoroides Elevation Quad 107.9 108.9 105.7 0.17 U 

 PDIR Lin 107.9 105.4 106.5 0.13 + 
 Soil depth Quad 107.9 108.8 107.1 0.13 ꓵ 

 Soil pH Lin 107.9 107.6 109.5 0.07 + 
 Soil C Lin 107.9 107.4 108.4 0.07 - 
 Sand fraction Quad 107.9 109.8 107.6 0.12 ꓵ 

        

Setaria sphacelata  Rock cover Lin 94.4 92.5 94.5 0.16 + 

 Woody debris Quad 94.4 95.4 94.2 0.16 ꓵ 

 Leaf litter Quad 94.4 92.2 90.3 0.28 ꓵ 

 Curvature Lin 94.4 92.6 94.5 0.16 - 
 Northness Quad 94.4 96.1 94.1 0.16 U 
 TWI Quad 94.4 96.1 90.4 0.28 U 
 Soil depth Lin 94.4 92.5 97.1 0.16 - 
 Soil P Lin 94.4 93.7 95.6 0.11 + 
        
Trachypogon spicatus Bare soil Quad 146.0 146.8 144.1 0.09 U 

 Leaf litter Lin 146.0 145.6 147.1 0.04 - 
 Dung count Lin 146.0 145.8 147.1 0.04 + 
 Grazing Lin 146.0 144.6 146.6 0.06 + 
 Soil depth Quad 146.0 147.6 145.7 0.07 U 
 Soil Na Lin 146.0 143..8 145.2 0.07 + 
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Table B9 Community weighted mean univariate model results, best model for each trait CWM and predictor 

combination presenting only the linear or quadratic models which performed better than the associated null 

model. Lin = Linear model, Quad = Quadratic model, Soil K = Potassium content, Ca = Calcium content, Mg = 

Magnesium content, Soil Na = Sodium content, Soil C = Carbon content, Soil P = Phosphorous content, PDIR = 

Potential Direct Incidence Radiation, - = negative linear relationship, + = positive linear relationship, U = valley 

shaped quadratic relationship, ꓵ = humped shaped quadratic relationship. 

Response Predictor Best model AIC null 
model 

AIC 
linear 
model 

AIC 
quadratic 
model 

Marginal R2 Relationship 

CWMLDMC Leaf litter Lin 647.50 647.46 649.01 0.031 - 

 Woody cover Lin 647.50 645.52 645.70 0.059 - 

 Dung count Lin 647.50 641.02 642.99 0.122 + 

 Soil depth Quad 647.50 646.00 642.51 0.129 ꓵ 

 Soil pH Lin 647.50 646.88 648.88 0.040 - 

 Soil K Lin 647.50 644.86 644.93 0.069 - 

 Soil Ca Quad 647.50 638.60 635.83 0.214 ꓵ 

 Soil Mg Lin 647.50 635.18 636.23 0.198 - 

 Soil Na Quad 647.50 648.88 644.86 0.097 ꓵ 

 Sand fraction Lin 647.50 645.59 647.54 0.058 - 

 Clay fraction Lin 647.50 641.85 642.74 0.111 - 
CWMSLA        

 Bare soil Lin 335.13 330.54 331.55 0.096 + 

 Woody debris Quad 335.13 329.77 329.27 0.141 U 

 Woody cover Quad 335.13 316.40 313.76 0.323 ꓵ 

 Elevation Lin 335.13 320.25 322.08 0.229 - 

 Dung count Lin 335.13 324.50 325.14 0.177 - 

 Grazing Lin 335.13 334.89 335.84 0.034 - 

 Soil depth Quad 335.13 335.96 325.81 0.185 U 

 Soil pH Quad 335.13 333.93 333.75 0.079 ꓵ 

 Soil K Lin 335.13 334.31 336.17 0.042 + 

 Soil Ca Quad 335.13 315.42 314.67 0.314 U 

 Soil Mg Lin 335.13 325.31 326.48 0.166 + 
CWMFT        

 Rock cover  Quad 123.13 120.62 114.07 0.182 U 

 Woody cover Quad 123.13 121.89 118.33 0.126 U 

 Elevation Lin 123.13 121.58 123.58 0.053 + 

 PDIR Lin 123.13 122.48 124.58 0.034 - 

 Northness Quad 123.13 122.96 119.44 0.112 ꓵ 

 Dung count Lin 123.13 115.58 117.04 0.137 + 

 Soil depth Quad 123.13 114.92 106.82 0.268 ꓵ 

 Soil pH Quad 123.13 115.06 114.20 0.180 U 

 Soil K Lin 123.13 114.76 115.38 0.147 - 

 Soil Ca Quad 123.13 105.66 105.23 0.286 ꓵ 

 Soil Mg Lin 123.13 106.50 107.44 0.249 - 

 Soil Na Lin 123.13 122.39 124.10 0.041 - 

 Soil P Quad 123.13 124.44 122.81 0.064 U 

 Sand fraction Lin 123.13 122.03 123.80 0.046 - 

 Clay fraction Lin 123.13 118.96 120.14 0.091 - 
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Table B10 Best subset of multivariate models for CWMLDMC based on AIC scores (i.e. models with AIC scores 

differing less than 2). CWMLDMC = community weighted mean leaf dry matter content, Soil K =  Potassium content, 

Soil Mg = Magnesium content, Soil Ca = Calcium content, Soil Na = Sodium content, + = positive linear 

relationship, - = negative linear relationship, U = valley shaped quadratic relationship. 
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Response               
CWMLDMC -  + ꓵ     ꓵ   622.9 0.45 1 

 -  + ꓵ   -  ꓵ   623.5 0.46 2 
 -  + ꓵ     ꓵ   623.5 0.43 3 
 -  + ꓵ     ꓵ  - 623.6 0.44 4 
 -  + ꓵ     ꓵ  - 624.3 0.45 5 
 -  + ꓵ   -  ꓵ   624.4 0.45 6 
 -  + ꓵ     ꓵ -  624.5 0.43 7 
 -  + ꓵ     ꓵ   624.5 0.43 8 
 - + + ꓵ   -  ꓵ   624.6 0.45 9 
 -  + ꓵ   -  ꓵ   624.7 0.45 10 
 -  + ꓵ     ꓵ -  624.9 0.45 11 
 -  + ꓵ   -  ꓵ  - 624.9 0.46 12 

 

Table B11 Best subset of multivariate models for CWMSLA based on AIC scores (i.e. models with AIC scores 

differing less than 2). CWMSLA = community weighted mean specific leaf area, Soil K = Potassium content, Soil  

Mg = Magnesium content, Soil Ca = Calcium content, Soil Na = Sodium content, + = positive linear relationship, 

- = negative linear relationship, U = valley shaped quadratic relationship. 
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Response              
CWMSLA +   -  ꓵ -  + - 288.2 0.62 1 

 +  U -    + + - 288.3 0.62 2 
 +  + -  ꓵ   + - 288.5 0.62 3 
 + ꓵ U -  ꓵ   + - 288.6 0.63 4 
 +  U - +    + - 289.1 0.62 5 
 +  U -    + + - 289.3 0.60 6 
 +  + -  ꓵ -  +  289.5 0.61 7 
 +  + -  ꓵ   +  289.7 0.60 8 
 +  + -  ꓵ  + + - 289.7 0.61 9 
 +  + - + ꓵ   +  289.9 0.61 10 
 + ꓵ U -    + + - 289.9 0.62 11 
 +  U -  ꓵ   +  289.9 0.61 12 
 +  + -  ꓵ - + +  290.0 0.61 13 
 + - U -    + + - 290.0 0.62 14 
 +  + -  U   +  290.1 0.58 15 
 +  U -   - + + - 290.1 0.61 16 
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Table B12 Best subset of multivariate models for CWMFT based on AIC scores (i.e. models with AIC scores differing 

less than 2). CWMFT  = community weighted mean force to tear, Soil K =  Potassium content, Soil  Mg = Magnesium 

content, Soil Ca =  Calcium content, Soil Na = Sodium content, + = positive linear relationship, - = negative linear 

relationship and ꓵ = humped shaped quadratic relationship. 
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Response            
CWMFT  + U  - -   87.3 0.51 1 

   U   - -  88.4 0.48 2 
  + U   - -  88.4 0.49 3 
   U  - -   88.5 0.48 4 
 -  U   - -  88.5 0.50 5 
   U   -   88.6 0.46 6 
 -  U  - -   88.7 0.50 7 
   U   -   88.9 0.48 8 
   U   - - - 89.0 0.49 9 
  + U   -   89.0 0.48 10 
   U   - -  89.1 0.49 11 
   U + - -   89.1 0.49 12 
   U +  - -  89.1 0.49 13 
 - + U  -    89.1 0.49 14 

 

Table B13 Linear mixed effect models result predicting the relationships between PFT’s and grazing quality 

components. LDMC = leaf dry matter content, SLA = specific leaf area, FT = force to tear, ADF = acid detergent 

fibre, NDF = neutral detergent fibre. 

Predictor Response Model F Model P Marginal R2 

LDMC Protein content 0.24 0.626 0.01 

 ADF 0.63 0.427 0.00 
 NDF 0.46 0.499 0.00 
SLA Protein content 2.65 0.105 0.01 

 ADF 0.51 0.474 0.00 
 NDF 0.34 0.558 0.00 
FT Protein content 2.57 0.111 0.02 

 ADF 1.03 0.311 0.00 
 NDF 0.00 0.989 0.00 
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Figure B1 Non-metric multidimensional scaling based on grass species composition and cover used for the 

stratification process of the WGR transect lines. Red symbols indicate the final 65 selected transects and green 

symbols the excluded transects. 
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Figure B2 Correlation matrix of all environmental variables TWI = topographic wetness index, PDIR = potential 

direct incoming radiation. 
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Figure B3 Correlation matrix of all plant functional traits and grazing quality components. ADF = acid detergent 

fibre, NDF = neutral detergent fibre, LW = leaf width, LT, = leaf thickness, LDMC = leaf dry matter content, SLA 

= specific leaf area and FT = force to tear. 
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Chapter 4: General conclusion 
 

In the Waterberg region of the South African savanna ecosystem, environmental conditions were 

related to grass species composition and cover (Chapter 2), and community-level and intra-specific 

variation in grass functional traits (Chapters 2 and 3). The strength and nature of these relationships 

varied considerably, and most relationships were idiosyncratic. Grazing quality varied greatly between 

species and some variation was also observed within species, but intra-specific variation in grazing 

quality was not strongly related to environmental conditions. The PFTs investigated in this study had 

no significant relationships with three core grazing quality components: protein content, acid 

detergent fibre, and neutral detergent fibre. These PFTs are, therefore, unsuitable to act as proxies of 

grass grazing quality.  

Across both study sites, there was only a single environmental variable, bare soil, that had a consistent 

impact on SLA at the community level (i.e. CWMSLA, Table 4.1, Fig. 4.1). Similarly, at the species-level, 

no environmental variables were consistently related to SLA in the four species that were dominant in 

both LWNR and WGR. The lack of consistency in trait-environment relationships between sites 

suggests that the relationships documented for each reserve are not robust (i.e. are geographically 

localized), highlighting the challenges of accurately extrapolating trait-environment relationships 

between sites, even when within the same geographic region and/or the same biome (although see; 

Kemppinen et al., 2021). In contrast, LDMC was related to six environmental variables in species that 

are common in both reserves (Table 4.1). Moreover, whenever the same environmental variables 

impacted the same traits between the reserves, at the species- or community-levels, their 

relationships with the respective PFTs were always consistent, highlighting that some trait-

environmental relationships are comparable, albeit relatively weak, between sites. For example, at 

both sites the LDMC of D. eriantha was negatively related to TWI, suggesting that across both 

environments this grass species reduced investment in structural plant cell components in wetter 

environments. In situ measurements of more proximally and ecophysiologically relevant 

environmental variables (e.g. soil moisture and soil temperature) could potentially provide better tools 

for comparing trait-environmental relationships between sites compared to several of the more distal 

variables (e.g. derived from remotely sensed data) used in this study (Lembrechts et al., 2020).
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Table 4.1 Trait-environmental relationships at the community- and species-level from the best fit models (combined from Chapters 2 and 3; only showing the species and 

community traits recorded at both sites). LWNR = Lapalala Wilderness Nature Reserve, WGR = Welgevonden Game Reserve, CWMSLA = community weighted mean specific 

leaf area, CWMLDMC = community weighted mean leaf dry matter content, Dig eri = Digitaria eriantha, Lou sim = Loudetia simplex, Sch pap = Schmidtia pappophoroides, Set 

sph = Setaria sphacelata U = valley shaped quadratic relationship and ꓵ = humped shaped quadratic relationship. - = negative linear relationship and + = positive linear 

relationship. PDIR = potential direct incidence radiation, TWI = topographic wetness index. Blue = same environmental variable impacting the same trait at the community-

level in both LWNR and WGR, Yellow = same environmental variable impacting the same trait at the species-level in both LWNR and WGR. 
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Site Response                         
LWNR CWMLDMC U -   U            ꓵ       + 
WGR CWMLDMC    -        +  U      U     
LWNR CWMSLA  + +  +            U     ꓵ   
WGR CWMSLA  +          -  U -   + -      
 Species SLA                         
LWNR Dig eri           +      +        
WGR Dig eri        -  U      +         
LWNR Lou sim           +          -    
WGR Lou sim               ꓵ     +  ꓵ   
LWNR Sch pap                         
WGR Sch pap        ꓵ  -               
LWNR Set sph   +                      
WGR Set sph         +              ꓵ  
 Species LDMC                         
LWNR Dig eri       + -   -      U    +   + 
WGR Dig eri           -          +   + 
LWNR Lou sim  -     +         + -    +   + 
WGR Lou sim   - ꓵ     -       ꓵ -   +     
LWNR Sch pap  +     +          ꓵ    U    
WGR Sch pap   ꓵ     -  +  -           -  
LWNR Set sph -  -  +            ꓵ    +    
WGR Set sph   -                   +   
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Figure 4.1 A schematic summarizing the number of relationships for each trait-environmental variable combination for each reserve at the species- and community-level. 

The top section = the total number of trait-environmental relationships excluding reserve or species identity at the community- and species-level. LWNR = Lapalala Wilderness 

Nature Reserve, WGR = Welgevonden Game Reserve, CWMSLA = community weighted mean specific leaf area, CWMLDMC = community weighted mean leaf dry matter content, 

PDIR = potential direct incidence radiation, TWI = topographic wetness index. Bottom section = the percentage of possible trait-environmental relationships as trait 

relationships that were included in top-ranked models for each response variable. The links between the two sections indicate which variables from the top section was 

classified in which broad environmental group in the bottom section. Green indicates a low proportion of influential relationships out of all potential trait relationships with 

yellow and orange indicating higher proportions of influential relationships out of all proportions and red ultimately indicating a high proportion of influential relationships 

out of all potential proportions.
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When excluding species that were common in both reserves, a diversity of relationships between traits 

and environmental conditions were observed (Fig. 4.1). These results help fill the gaps in our 

understanding of trait-environment relationships for savanna grasses and provide insight into which 

environmental variables are important drivers of functional traits in this assemblage. Where consistent 

trait-environmental relationships can be identified, these relationships provide an opportunity for use 

in ecosystem service monitoring and land management. For example, LDMC, SLA and FT (i.e. resource 

use- and conversion-related traits) could be used to monitor how grasses, and as a result biomass 

production would respond to changes in environmental conditions. More broadly, consolidating 

variables into groups (e.g. soil variables vs topographic variables; Fig. 4.1) may also reveal some general 

patterns, including that cover- and soil variables were, overall, relatively important drivers of SLA and 

LDMC at the community level. However, being able to include multiple studies into such a 

consolidation would provide more reliable results. 

Some traits and environmental variables have more consistent relationships than others. At the 

species level, for example, LDMC was more frequently correlated with environmental variables than 

SLA. This suggests that LDMC may be a more practical choice when investigating the impact of 

environmental variables on traits, since this trait appears more sensitive to environmental variation 

and, therefore, may be useful for monitoring the reaction of individual species (or species 

assemblages) to changing conditions. Another practical implication of these results stems from the 

observation that more species showed a relationship between sampling date and LDMC at LWNR 

where sampling was conducted over a longer time frame compared to the sampling in WGR. This 

reiterates the importance of sampling within a single season and in as short a time frame as possible 

when investigating LDMC (and other related traits). A sampling strategy that favours collecting data 

over as short a period as possible will reduce the potentially confounding impact of plant growth and 

age on traits. Moreover, irrespective of the duration of a sampling campaign, sampling date should be 

considered in analyses to control for such temporal effects that could otherwise obscure environment-

trait relationships 
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The large differences in the proportion of variation in grass characteristics at the species- and 

community-level explained by models in this study (Fig. 4.2) show that some important environmental-

trait relationships have been identified, but others may still need to be uncovered. Interestingly the 

lowest R2 values at both study sites at the species-level are for SLA in S. pappophoroides, the most 

widespread species in LWNR (but scarcer in WGR). This result may reflect the species’ widespread 

distribution in LWNR, highlighting the species ability to survive in a wide range of conditions without 

showing clear trends in leaf characteristics. However, the patchy distribution of S. pappophoroides in 

WGR suggests that the species is limited to specific environmental conditions (potentially, 

environmental conditions similar to those common in LWNR). Using S. pappophoroides as an exemplar 

species, it is clear that much further research is required to understand which environmental variables 

are influential on the traits, distribution, and grazing quality of the dominant grass species. 
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Figure 4.2 Links between the different components of this study. Marginal R2   values are from the best model for each grass characteristic, at the community-level the 

range of R2 values indicate the lowest- to the highest value for the best model for multiple traits and at the species-level for multiple traits and species.  LWNR (in blue) = 

Lapalala Wilderness Nature Reserve, WGR (in red)  = Welgevonden Game reserve, PFTs = Plant functional traits.
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In this study, I found that the categorization of grass species into two or three grazing quality classes 

(i.e. high vs low grazing quality) has some merit since the species identity of grasses accounted for a 

large proportion of the variation in grazing quality. For example, species identity explained up to 91 % 

of the variation in ADF content. Based on the data reported in Chapter 3, I have calculated a coarse 

grazing quality index (GQI) for each of the 12 species investigated at WGR, assigning a value for protein 

content and crude fibre (see Table 4.2). Of the 12 species investigated, four species could clearly be 

differentiated based on their grazing quality components (Fig. 3.3 in Chapter 3). Schmidtia 

pappophoroides and E. gummiflua had high ADF and NDF values and, largely as a result, have the 

lowest grazing quality index values (GQI; Fig. 4.3). In contrast, D. eriantha had the highest protein 

content, and C. dactylon had the lowest ADF and relatively high protein content (giving both species 

high GQI scores; Fig. 4.3). This agrees with the earlier commercialization of both D. eriantha and C. 

dactylon. However, this study also suggests that the general idea of dividing grass species into low, 

average, and high grazing quality categories is not optimal, with a more continuous grazing quality 

index allowing for better division of grass species based on their grazing quality (Fig. 4.3). There was 

only a weak correlation between the GQI determined in this study and the grazing quality category 

previously assigned in the literature to species (Fig. 4.3), suggesting that these classifications may be 

of limited value at a national or regional scale. However, the grazing quality categories assigned to 

grass species also typically take other components, such as palatability, into account and are therefore 

not necessarily directly comparable with the GQI values calculated here. As a result, there is 

considerable scope for an improved GQI which takes all the grazing quality and grazing quality 

components of grasses into account. 

Table 4.2 Categories used to calculate the grazing quality index of each species. Categories are assigned based 

on % crude fibre and crude protein. The two category values are added up per species to obtain a grazing quality 

index out of 10. 

Category value 1 2 3 4 5 

Crude fibre (%) < 55 < 50 < 45 < 40 < 35 
Protein content (%) < 3 < 6 < 9 < 12 < 15 
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Figure 4.3 Grazing quality index calculated for each dominant grass species at WGR compared to grazing 

quality categories obtained from literature. The letters above each bar indicate grazing quality categories 

obtained from literature, L = low grazing quality, A = average grazing quality and H = high grazing quality. 

Intra-specific variation in grazing quality was inadequately explained by environmental variables. The 

variation in ADF and NDF within species could only be weakly related to a single environmental variable 

(soil Ca), and a maximum of 11% of the variation in protein content could be explained. Therefore, 

despite the broad range of environmental variables used in this study, strong relationships between 

grazing quality components and environmental conditions could not be identified. Several other 

environmental variables could, however, still be considered in these analyses, including climatic 

conditions (which can potentially vary markedly across the spatial extents examined here; Bennie et 

al., 2008; Scherrer and Körner, 2011). The intra-specific variation in grazing quality could also 

potentially stem from genetic differences between populations and individuals in populations, but this 

is poorly examined in grasses (although see e.g. Valliant et al., 2007; Hagl et al., 2020). Another possible 

factor that could impact grazing quality is biotic interactions. For example, legume plants that can fix 

nitrogen, growing in close approximation of grasses that could impact the protein content of the 

grasses (Schwinning and Parsons, 1996, see also e.g. Paciullo et al., 2017 as an example of shading by 

trees affecting grass grazing quality). 

Plant functional traits could not be significantly related to any of the core grazing quality components. 

Other PFTs to potentially consider in future studies should include leaf nitrogen content, specifically 

due to its strong relationship with protein content (and its potential link to soil nitrogen content). 
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However, since leaf nitrogen content cannot readily be measured in the field and typically requires 

laboratory analyses post-collection (although see Ecarnot et al., 2013), measuring this trait may not 

necessarily be pragmatic. Leaf area is another PFT that could potentially be related to protein content 

and is more easily measured in the field. Other traits with potential relationships with grazing quality 

are plant size traits (Pérez-Harguindeguy et al., 2013) and growth form (Whitworth‐Hulse et al., 2016), 

and these traits may, therefore, be worth further investigation in this context. 

This study provides insight into the relationships between different PFTs, grazing quality components 

and environmental variables at the species- and community-level. As a result, my findings give some 

new insights into these relationships and point to the importance of future studies examining how 

PFTs, environmental variables and grazing quality are interrelated (especially in ecosystems where 

knowledge on this topic is completely lacking). More practically, this study provides information on 

which grass species from this system can objectively be considered to be good grazing species. Other 

wild grass species, as well as other PFTs, should be investigated in future studies to enable us to get a 

better understanding of the relationships between these different components (and specifically to 

determine if any functional traits can be used as easily measured proxies for grass grazing quality). 

Increased knowledge of the relationships between PFTs, grazing quality, environmental conditions at 

the inter-and intra-specific level may be able to inform decisions on the management of grazing 

regimes. For example, using this information to determine grazing capacity, stocking rates and the 

minimum requirements per grazing animal on a particular grazing area. By doing so we will be able to 

monitor and ensure that one of the most important ecosystem services, grazing provisioning, can be 

more adequately and sustainably provided in the future.
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