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Abstract

Wildlife conservation is crucial in preventing endangered species from becoming ex-

tinct, and disease outbreaks is one of the biggest threats. Rabies is one of the devastating

viruses that can almost be impossible to control once an outbreak occurs. There is no

effective treatment or cure of rabies once symptoms show. In this work, we propose

euthanasia of infected Lycaon pictus dogs as a control strategy to reduce the spread

of the virus. We propose a simple deterministic SEI-type rabies model that takes into

account the contaminated environment and the euthanasia of infectious dogs to better

understand the transmission and progression dynamics of the disease, as well as to seek

to predict the effectiveness of this control strategy. Qualitative analysis and numerical

simulations are provided to support our findings.

1 Introduction

There are numerous effective conservation measures that contribute to the on-going preser-

vation and protection of wildlife. Disease outbreaks are one of the biggest threats especially

to endangered animals, [1]. In this regard, wildlife conservation is crucial in preventing en-

dangered species from becoming extinct. Among the world’s most endangered carnivores is

the African wild dog - the Lycaon pictus, [2, 3]. In general, most social animals such as the

Lycaon pictus are more vulnerable to diseases such as rabies owing to their close proximity.

The study of animal viruses is of importance and a lot of these viruses result in diseases

that are economically devastating. This is particularly important in cases where the wildlife-

human-domestic population connections are nearly impossible to ignore. These diseases

include the Ebola hemorrhagic virus, West Nile virus encephalitis, rabies, etc. The research

has critical contribution to the better understanding of disease progression and transmission

dynamics: their replication, evolution, molecular biology as well as interaction with the

host. Such research helps in controlling the virus from spreading uncontrollably in case of

outbreaks. Some animals can be treated after getting infected but unfortunately there are

some diseases with no cure, and may be a danger to all wildlife leading to the extinction of

some species.
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Rabies is a severe zoonotic disease often causing a fatal outcome. It is caused by represen-

tative of a virus in the genus Lyssavirus, family Rhabdoviridae. A family of Rhabdoviruses

can replicate in vertebrates and invertebrates as well as in vitro in certain cold-blooded

tissues. It is a virus that infects the Central Nervous System (CNS), referred to as En-

cephalomyelitis, and consequently, reaches the brain. Ebola virus is also one of the zoonotic

viruses originating in wildlife [4], and its emergence is associated with environment, [5]. In

[1], the authors proposed the hypothesis that most emerging pathogens originate in wildlife

and spillover into human hosts due to several ecological, demographic and socio-economic

changes.

Rabies virus is primarily transmitted from a vector through a bite or by saliva touching

an open wound of a susceptible animal. Although all mammals are prone to getting the

virus infection, only certain domestic and wildlife species are the main reservoirs of rabies.

Transmission can also be a result of predation [6]. In continents such as Africa and Asia,

dogs (including stray domestic dogs) are the major vectors of the rabies virus and usually

come in contact with wild animals such as yellow mongooses [7], foxes, jackals [8], skunks,

bats, coyotes [9], wolves [10], etc. Geographic expansion has also been identified as one of

the explanations for emergence of rabies in wild dogs in the Serengeti [2]. Several basic

reproduction ratios, R0, values have been reported in the literature, e.g. [1.8,2.1] for hyenas

in the Serengeti [11], [1.0,2.0] in domestic dogs from around the word [12], etc. This supports

the indemnity of rabies, in what is referred to as the environment in the study.

To prevent, control or respond to outbreak casualties, intervention strategies have to

be introduced. These strategies include both control (e.g., vaccination) and treatment of

wild animal diseases as well as rehabilitation and rescuing of either infected or susceptible

animals: which is often referred to as wildlife medicine. These implemented endeavours are

to either help in conserving threatened species or to boost an animals welfare. The use of

vaccination as one of the application of wildlife medicine is employed to prevent threatened

free-living animals species from getting diseases or viruses resulting to unfavored outcomes

such as extinction or ecosystem distractionss, [13]. Different ethical perspectives regarding

human interventions for the welfare of wild animals is still a continuous subject matter, [14].

It is evident that without any conservation involvement a multitude of wild animals are

prone to contracting a virus or disease, consequently, becoming extinct. According to nature

reserves or wildlife preserves, ideally, they would not interfere with the ecosystem. However,

if necessary interventions are not executed then there could be a great loss of wildlife. Due to

disease outbreaks, wildlife preserves have been involved in projects that develop nanochips

that sense or detect infections and any abnormalities in animals’ circulatory system. Such

technology also helps in deciding whether or not to intervene and what type of intervention

strategy is necessary.

There were two reported outbreaks of rabies in the Madikwe Game Reserve (South Africa)

resulting in the reduction of a pack of 23 to just 3 [15, 16]. Other reports came from the

western boundary of Kruger National Park [17], and in most of those cases it is suspected

that domestic dog populations served as reservoirs of rabies outbreaks. The work [18] reports
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some of the recent interventions and management mitigations recommendations linked to the

most recent outbreak in the Limpopo-Lipadi Private Game Reserve in Botswana.

Once an outbreak occurs, some human intervention measures may potentially be harmful,

as a result, the decision to interfere should not be based solely on welfare basis. Generally,

there are more or less three modes of conduct: no intervention, vaccination or humanly put

to death.

(a) No intervention: If an animal can recover with no treatment necessary.

(b) Vaccination: This strategy is aimed at reducing or eliminating virus shedding.

(c) Euthanasia: If there is no possibility that an animal will recover and/or may be a danger

to other surrounding animals.

Several mathematical models for rabies transmission in animals or between humans and

animals can be found in the literature, see for example [19–23], to name a few. However, to

the best of our knowledge, non of the existing models consider, in the transmission dynamics,

the contribution of other rabies hosts, outside the African wild dogs, and the intervention

strategy such as euthanasia of infected dogs. The proposed work investigates the dynamics

and control of rabies in (wild dogs) Lycaon pictus, and the effects of spillover from domestic

stray dogs or other canines. In a study of rabies outbreak in the Madikwe game reserve, the

authors in [15] proposed euthanasia as a way of lowering the contacts between infected and

susceptible dogs as an alternative to isolating the susceptible wild dogs on the grounds that

this could cause unnecessary stress on the animals and interfere with the monitoring process.

In this work, we will test this hypothesis by developing a deterministic model of rabies

transmission in African wild dogs in a controlled environment such as a game reserve. In

particular, we propose the culling of infectious dogs as an intervention to a disease outbreak.

The structure of this work is as follows: we begin in Section 2 where the mathematical

model is formulated and we also outline the modeling assumptions. In Section 3 we study

the qualitative analysis of the model in terms of the stability/instability of equilibria and

bifurcation. A similar analysis is also presented in Section 4 where we ignore the environ-

mental contributions. A sensitivity analysis based on the threshold parameter, the basic

reproduction number, is presented in Section 5. In Section 6, we provide a discussion in

terms of the proposed control measures. Numerical simulations to support our theoretical

results are also provided throughout the work.

2 Mathematical model formulation

To formulate a feasible model, the following key considerations are highlighted. First, in

addition to the direct dog-to-dog contacts, we wish to address the contribution of the en-

vironment in the transmission process. In the current context, environment refers to other

rabies hosts other than the wild dogs (Lycaon pictus), without explicitly taking into account

the specific traits of each host. Our motivation is as follows:
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(a) Due to human geographic expansion, people are now settling in areas previously reserved

for wildlife. In such cases, there are potential contacts between stray dogs and wild

animals.

(b) In natural habitats, other than dogs there are several additional rabies hosts capable of

transmitting the rabies virus. These include the yellow mongooses, foxes, skunks, bats

and coyotes.

Secondly, as a control measure, we propose culling of infectious wild dogs. Clinical symp-

toms of rabies in wild dogs include swollen head and neck, restlessness, apparent hydrophobia,

discoordination, stiff gait, listlessness, diarrhoea and progressive ataxia, [4]. These signs can

be used for the targeted intervention. Furthermore, we have the following assumptions:

(a) We assume that reproduction only occurs in the susceptible class. In particular, in the

absence of the disease, the population obeys the logistic growth.

(b) We are investigating African wild dogs (Lycaon pictus) in a habitat that might be a

nature reserve or wildlife preserve, and assuming that the life span of a dog in its rabid

stage is very short.

(c) All infected dogs will die, i.e., no recovery after being infected.

The dog population is divided into three disjoint compartments: the density (dogs per

100 square meters) of dogs susceptible to rabies virus, s(t), the density of exposed dogs

(infected but not yet infectious) are placed in the e(t) class, and the density of rabid dogs

are in the compartment i(t). Moreover, we include the possibility of dogs getting infected

through contaminated environment, where the virus density is denoted by p(t). Some of the

hosts contributing to the contaminated environment are generally inaccessible for parenteral

vaccination. In the current study, contaminated environment refers to un-owned stray dogs

and other wildlife carnivores [24]. The flow diagram of the transmission and progression

dynamics of rabies disease among African wild dogs is given below in Fig. 1.
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Figure 1: Compartmental diagram describing the interaction between the density of suscep-
tible dogs s(t), the density of exposed dogs e(t), the density of infectious rabid dogs i(t), and
the environment p(t).
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The corresponding system of differential equations are

ds

dt
= rs (1− s/k)− λ(i)s − βpsp,

de

dt
= λ(i)s + βpsp− (σ + µ)e,

di

dt
= σe− (α+ δ + µ)i,

dp

dt
= ξi− γp,

(1)

where

η(t) = s(t) + e(t) + i(t),

is the total population of wild dogs at time t ≥ 0. The susceptible dogs may acquire the

virus through being in contact with infected dogs at the rate βi, or by contact with infected

environment at the rate βp. In the formulation, λ(i) is the force of infection. For example,

if λ(i) =
iβi

1 + νi
we have the Holling type II incidence and λ(i) = iβi the bilinear incidence

when ν = 0 which is a non-negative saturation factor that measures the effect of rabid wild

dogs losing their senses and moving out of the pack. In addition, r is the intrinsic growth

rate of susceptible wild dogs, k is the carrying capacity of the dogs, σ is the rate at which

infected dogs become infectious, µ is the natural death rate for the dog population, and α is

the mortality due to the disease. In this model we assume there is some human intervention,

i.e., rabid dogs are removed at a rate δ. We denote the shedding rate of infectious dogs

to the environment by ξ and γ to denote the natural decay rate of the rabies virus in the

environment. The parameters ξ and γ also takes into account the way infected carcasses are

disposed, [4].

A remark regarding the choice of parameters in Table 1 is required. These are the baseline

parameters used in the numerical simulations, including the sensitivity analysis in Section

5. Some of them are based on the values reported in the literature, [25, 21, 22, 26, 27], and

some of them are estimated based on the available knowledge on the virus. Despite so much

literature on rabies in wild dogs, parameter estimation remains a critical issue. The global

population of African wild dogs (Lycaon pictus) has significantly declined over the last 2

decades with current estimates of 6600 individuals, including approximately 1400 mature

individuals, [27]. In spite of the decline in numbers, wild dogs are currently found in many

parts of Africa. The time between births is usually 12 - 14 months with an average of 10

pups and maximum age of 11 years, [26]. Pup mortality is likely to be very high. Based on

the literature on jackals [22], we assume the life span of wild dogs to be in the range 2 − 5

years. In the period 1998 to 2017, the population density in Kruger National Park ranged

between 1.5 - 2.0 dogs per 100 km2, [27]. The average for Serengeti (Kenya) and Hwange

(Zimbabwe) is 1.5 adult wild dogs per 100 km2, [26]. Based on this information, here we

take k = 10. The reported per capita rate for the average viral incubation period has been

reported to be 13 days (σ ≈ 28 year−1) in Europen foxes [21] and 20 days (σ ≈ 18 year−1)
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in jackals [22]. Without much information for African wild dogs, we estimate the incubation

period to be 13 days. The life expectancy of rabid dogs is very short. In [25] they reported

average of 5 days for Europen foxes, i.e., α = 73 year−1. The same value was reported by

[22] for jackals. In Table 1 we summarise the description of the parameters for model (1).

Clinical symptoms observed in infected wild dogs are similar, with minor variations. In a

study by [3], they observed that sick individuals would maintain normal behavior including

participating in hunts, but sometimes wander off by themselves but rejoin the group within a

few hours. This is reflected in the paper by the choice of the Holling type II contact function.

The model does not explicitly follow the behavior of each canid as these are all considered

under the environment. We are only interested in their contribution to the spread of the

virus. Different modelling approaches have been adopted in the literature to describe how

the behaviour of infected dogs influence the transmission of the virus. In [20, 21], a spatial

model was proposed, where a diffusion term was included in the rabid dogs compartment to

simulate the random motion of infected dogs. In the current formulation, we assume this

behavioural change can be included by considering a general nonlinear incidence function

λ(i). Throughout, we assume λ(i) is a twice differentiable function satisfying the following

conditions:

λ(i) ≥ 0, λ′(i) ≥ 0, λ′′(i) ≤ 0, for all i ≥ 0. (2)

In addition, λ(0) = 0. The above assumptions express the idea that, as the contact rate

increases, the number of new infections increases, [28]. We note that the conditions in (2)

satisfies the mass action formulation, moreover, we also wish to investigate the effects of

behavioural changes in the transmission process. In particular, by the use of Holling type II

functional response - which also satisfies the monotonicity conditions in (2).

System (1) is closed by specifying the following initial conditions

s(0) = s0 ≥ 0, e(0) = e0 ≥ 0, i(0) = i0 ≥ 0, p(0) = p0 ≥ 0. (3)

3 Qualitative analysis

In this section we consider model (1), for a general force of infection function λ(i) satisfying

the hypotheses outlined in (2). We start with the well-posedness result which we state as

follows.

Theorem 1. Assume λ(i) satisfies the conditions in (2). System (1) defines a dynamical

system on the biologically feasible region

Ω =
{

(s, e, i, p) ∈ R
4
+ : s+ e+ i ≤ η†, p ≤ p†

}

where η† =
k(r + 1)

ω
and p† =

ξk(r + 1)

γω
with ω = min{1, µ}.
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Table 1: Description and values of the parameters of the model.

Parameter Baseline
Value

Source Description

µ 0.5 [26] average per capita death rate, [1/year]
a 1.0 [22] average per capita birth rate
r a− µ calculated net population growth rate
α 73 [22] the mortality due to the disease and 1/α

average life expectancy of a rabid dog
σ 13 [25] 1/σ average viral incubation period
δ 10 estimate culling rate
βi 79 [25] contact rate between rabid dog and sus-

ceptible dog
βp 2 estimate contact rate between susceptible dog and

infected environment
ξ 2.5 estimate shedding rate of infectious dogs
γ 8 estimate decay rate of virus in the environment
k 10 estimate wild dog carrying capacity

Proof. We show that for any initial data satisfying (3), the system possesses for all t ≥ 0, a

unique solution which lies in Ω.

First we show that Ω is a positively invariant set. In particular, no trajectories leave Ω by

crossing one of its faces. On the contrary, let us assume there exists t1 > 0 such that s(t1) = 0

and s′(t1) < 0 with s(t) > 0, e(t) > 0, i(t) > 0 p(t) > 0 for all t ∈ (0, t1). The first equation

in (1) gives
ds

dt
(t1) = 0, which is a contradiction. Furthermore,

de

dt

∣

∣

∣

e=0
> 0,

di

dt

∣

∣

∣

i=1
> 0 and

dp

dt

∣

∣

∣

p=0
> 0 within Ω, then by Proposition 2.1 of [29], Ω is positively invariant.

In the second step we use the prior estimates below together with the fact that the

right hand of the system is a locally Lipschitz function. It follows from the first equation of

the system (1) that s′(t) ≤ rs(t) (1− s/k), which implies that lim sup
t→∞

s(t) ≤ k. Then for

sufficiently large t, we have

d(s(t) + e(t) + i(t))

dt
= rs(1− s/k)− µe− (µ+ δ + α)i

= rs(t)−
r

k
s2(t) + s(t)− s(t)− µe− (µ+ δ + α)i(t)

≤ (r + 1)s(t)− ω(s(t) + e(t) + i(t)).

Hence, we have lim sup
t→∞

η(t) ≤
k(r + 1)

ω
= η†. The above results show that the solution

(s(t), e(t), i(t)) is nonnegative and uniformly bounded for any positive initial values. Conse-

quently, i(t) ≤ η†. Substituting this in the fourth equation of system (1) gives

dp

dt
≤ ξη† − γp.
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Application of the Gronwall Inequality, [30], yields,

p(t) ≤
ξη†

γ

(

1− e−γt
)

+ p0e
−γt

=
ξη†

γ
+

(

p(0)−
ξη†

γ

)

e−γt,

from which

p(t) ≤ p†, whenever p(0) ≤ p†.

Combining the above two steps we conclude that (1) defines a dynamical system on the

biologically feasible region Ω.

3.1 Computation of R0

Setting the right hand side of system (1) to zero, one can verify that EDFE = (k, 0, 0, 0)

is a a disease-free equilibrium of the system. As is the case with compartmental models,

we use the next generation matrix approach to find the basic reproduction number to be

used in the stability analysis of the equilibria. Here the basic reproduction number, denoted

by R0 gives a number of secondary cases one infectious dog will produce in a population

consisting of only susceptible dogs in its infectious stage. The sources of infection are the

two compartments, i and p.

We consider the equations where the infection progress in the form

dx

dt
= F(x)− V(x),

where x = (e, i, p)t, and

F(x) =







s(λ(i) + pβp)

0

0






, V(x) =







(σ + µ)e

(α+ δ + µ)i− σe

γp− ξi






.

Then

JF (x) =







0 sλ′(i) sβp

0 0 0

0 0 0






, JV(x) =







σ + µ 0 0

−σ α+ δ + µ 0

0 −ξ γ






,

such that

F = JF (EDFE) =







0 kλ′(0) kβp

0 0 0

0 0 0






, V = JV(EDFE) =







σ + µ 0 0

−σ α+ δ + µ 0

0 −ξ γ






.

The next generation matrix is given by the spectral radius of FV −1 from which we deduce
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that

R0 =
σkλ′(0)

(σ + µ)(µ + δ + α)
+

σβpkξ

γ(σ + µ)(µ + δ + α)

=
σkλ′(0)

φψ
+
σβpkξ

γφψ
, (4)

with φ = σ+µ and ψ = µ+δ+α. Notice that we haveR0 = R0,d+R0,p whereR0,d =
σkλ′(0)

φψ

is the contribution of the dog-to-dog contacts and R0,p =
σβpkξ

γφψ
is the contribution of the

dog-environment-dog contacts.

Remark 1. It is clear that increasing the culling rate δ, increasing the decay rate γ of the

rabies virus in the environment as well as decreasing the shedding rate ξ will decrease the

value of R0. Decreasing γ is not easy in general. This will involve the proper disposal of

carcasses in an environment full of carnivores.

Following [31], we have the following result

Theorem 2. When R0 < 1, the disease-free-equilibrium EDFE, is locally asymptotically

stable, while unstable when R0 > 1.

We can improve on the previous result and show that the disease-free-equilibrium is glob-

ally asymptotically stable when R0 < 1. Following the work of [32], we rewrite the system

by splitting the compartments into x = (s), vector representing of all compartments of the

non-infected or non-transmitting dogs (i.e., susceptible) and the vector y = (e, i, p)t, repre-

senting the state of all compartments of infected by the virus, i.e., exposed dogs, infectious

dogs and the environment. We denote x = (x, y) the state of the system. That is

dx

dt
= f(x, y),

dy

dt
= g(x, y),

such that g(x, 0) = 0. Let us now consider the system

dx

dt
= f(x, 0) = rs(1− s/k). (5)

This is a well known logistic equation for which x∗ = k is a globally asymptotically stable

equilibrium. Now consider

g(x, y) =







λ(i)s+ βpsp− φe

σe− ψi

ξi− γp






,
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such that the Jacobian is

Jg(x, y) =







−φ λ′(i)s βps

σ −ψ 0

0 ξ −γ






,

and, the Jacobian at disease-free-equilibrium, is

Jg(x
∗, 0) =







−φ λ′(0)k βpk

σ −ψ 0

0 ξ −γ






. (6)

Clearly Jg(x
∗, 0) is an M-matrix and Ω is the feasible region. Then we rewrite g(x, y) is the

following way

g(x, y) =







−φ λ′(0)k βpk

σ −ψ 0

0 ξ −γ






y −







kλ′(0)i − λ(i)s + βpp(k − s)

0

0






. (7)

We know k ≥ s, thus, it remains to show that kλ′(0)i− λ(i)s ≥ 0. In fact, we have

kλ′(0)i − λ(i)s = ik

(

λ′(0)−
λ(i)

i

s

k

)

≥ ik
(

λ′(0)− λ′(i)
s

k

)

= ikλ′(0)

(

1−
λ′(i)

λ′(0)

s

k

)

≥ 0,

where we have used the assumption that λ′′(i) ≤ 0 from (2), i.e., λ′(i) is a monotonically

decreasing function, and the inequality iλ′(i) ≤ λ(i), for all i, from [33, Proposition 4.1]. We

have the following result:

Theorem 3. The disease-free equilibrium point EDFE is globally asymptotically stable for

R0 < 1 and unstable for R0 > 1.

3.2 Existence of endemic equilibrium

The system always has a disease-free-equilibrium EDFE = (k, 0, 0, 0) which exists for all

parameter values. The other equilibria are solutions of the system,

rs(1− s/k)− λ(i)s − βpsp = 0,

λ(i)s + βpsp− φe = 0,

σe− ψi = 0,

ξi− γp = 0.

(8)

Proposition 1. Assume R0 > 1. There exists a unique equilibrium EEE = (s∗, e∗, i∗) ∈ R
3
>0.

Proof. Recall the properties of λ(i) as given in (2) with λ(0) = 0. If s 6= 0, equation (8)2

gives

s∗ =
φe∗

λ(i∗) + βpp∗
.
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On the other hand, (8)3 and (8)4 give

e∗ =
ψ

σ
i∗, and p∗ =

ξ

γ
i∗

respectively. Hence, using (8)1, the endemic equilibrium is a solution to

H(i∗) := r

(

1−
φψi∗

σk(λ(i∗) + βpξi∗/γ)

)

− (λ(i∗) + βpξi
∗/γ) = 0. (9)

Differentiating with respect to i∗ we have

H ′(i∗) = −
rφψ

σk

[

λ(i∗)− i∗λ′(i∗)

(λ(i∗) + βpξi∗/γ)2
− (λ′(i∗) + βpξ/γ)

]

≥ 0,

where we have used the hypotheses (2) and the fact that λ(i∗) − i∗λ′(i∗) ≥ 0 as shown

in [33, Proposition 4.1]. Clearly H(i∗) is a monotonically decreasing function on (0,+∞).

Furthermore,

lim
i∗→0+

H(i∗) = r

(

1−
φψ

σk(λ′(i∗) + βpξ/γ)

)

= r

(

1−
1

R0

)

,

which is positive for R0 > 1. Now we need to show that for some large i∗, H(i∗) < 0. From

(2), there are two cases to consider: first case where λ(i∗) is not bounded, and the second

case where λ(i∗) is bounded.

Assuming λ(i∗) is not bounded, then there exists i∗1 such that λ(i∗1) +
βpξ

γ
i∗1 = r, from

which we have H(i∗) < 0 for all i∗ ≥ i∗1.

In the second case, we assume λ(i∗) is bounded, so that from (2),
i∗

λ(i∗) + βpξi∗/γ
is

unbounded on (0,+∞). In this case, there exists i∗2 > 0 such that
i∗2

λ(i∗
2
) + βpξi∗2/γ

=
σk

φψ
which gives H(i∗) < 0 for all i∗2 ≥ i∗.

For both cases, there is a unique positive equilibrium EEE for R0 > 1. We also notice

that there is no endemic equilibria for R0 < 1.

3.3 Stability of endemic equilibrium

To study the local stability of the endemic equilibrium EEE, we assume, for analytical tracte-

bility, that the force of infection function takes the simplest form λ(i) = iβi. Under this

mass action formulation, the conditions in (2) are satisfied. We will proceed via numerical

simulations to show that the stability result established here holds for any λ(i) satisfying the
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monotonicity conditions (2). The Jacobian matrix evaluated at EEE is as follows,

J(Eee) =















−r
s∗

k
0 −βis

∗ −βps
∗

βii
∗ + βpp

∗ −φ βis
∗ βps

∗

0 σ −ψ 0

0 0 ξ −γ















=

















−r
s∗

k
0 −βis

∗ −βps
∗

r

(

1−
s∗

k

)

−φ βis
∗ βps

∗

0 σ −ψ 0

0 0 ξ −γ

















.

In terms of the basic reproduction ratio, we have

J(EEE) =

















−
r

R0

0 −
βik

R0

−
βpk

R0
r

R0

(R0 − 1) −φ
βik

R0

βpk

R0

0 σ −ψ 0

0 0 ξ −γ

















,

where

R0 =
σkβi
φψ

+
σβpkξ

γφψ
.

The first term represents transmission via dog-to-dog contacts, R0,d, and the second term de-

notes dog-to-environment contacts, R0,p. The trace is clearly negative and the characteristic

equation of the Jacobian matrix is

λ4 + b1λ
3 + b2λ

2 + b3λ+ b4 = 0, (10)

where the coefficients of (10) are

b1 =
r

R0

+ (γ + φ+ ψ),

b2 =
r

R0

(γ + φ+ ψ) + γ(φ+ ψ) +
φψ

R0

R0,p,

b3 =
r

R0

γ(φ+ ψ) +
rφψ

R2
0

R0,p +
rσβik

R2
0

(R0 − 1) ,

b4 =
rγφψ

R2
0

(R0 − 1)(γβi + ξβp).

All the coefficients bi, are positive for R0 > 1. Secondly, the Routh-Hurwitz determinant is

given by

12



∆3 = b3b2b1 − b23 − b21b4,

=
r2
R4

0

(rφψ(γ + φ+ ψ)(R0,p +R0,d(R0 − 1))− σβikφψ(R0 − 1)(R0,p +R0,d(R0 − 1)))

+
r

R3
0

(

r2γ(φ+ ψ)(γ + φ+ ψ) + rφψ(γ + φ+ ψ)2(R0,p +R0,d(R0 − 1))
)

+
r

R3
0

(

(φψ)2(γ + φ+ ψ)(Rp2
0

+R0,d(R0 − 1))− rγσβik(R0 − 1)(φ+ ψ)
)

+
r

R2
0

[

rγ(φ+ ψ)(γ + φ+ ψ)2 + γφψ(φ + ψ)(γ + φ+ ψ) (2R0,p +R0,d(R0 − 1))
]

−
rγφψ

R2
0

(R0 − 1)(γβi + ξβp)(r + γ + φ+ ψ) +
rγ2

R0

(φ+ ψ)2(γ + φ+ ψ).

We can see that the Routh-Hurwitz determinants can be negative and the stability follows

from [34, Theorem 2]. All the conditions of the Theorem are satisfied and we only need to

show that ∆3 can be zero. In Fig. 2 we provide a sketch of ∆3 as a function of δ to show

that ∆3 can be negative for some values of δ, i.e., ∆3 = 0 at some critical value δc. Hence

EEE can become unstable through a Hopf bifurcation leading to oscillatory solutions.

0 2 4 6 8 10
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

3
10

6

c

Figure 2: Plot of ∆3 as a function of the culling rate δ. Clearly ∆3 can be negative which
can lead to the instability of EEE.

We further explore the existence of Hopf bifurcation by providing simulations of the

culling rate, δ, versus the density of susceptible dogs. The simulations illustrating the the-

oretical results are provided in Fig. 3. We use the initial values of parameters as given in

Table 1, and modify them as explained below, to get the different highlighted cases. In the

figures, we choose the force of infection, λ(i) such that

λ(i) =
βii

1 + νi
.

Two cases are presented: first case with ν = 0, such that the mass formulation discussed

above holds; and ν = 0.1 such that behavioural changes of infected dogs are taken into

account. It is clear that sustained oscillations will still exist in the absence of behavioural

effects and culling. However, increasing the two parameters will remove oscillatory solutions.
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(a) Bifurcation with respect to R0. (b) Bifurcation with respect to δ.

Figure 3: Bifurcation showing illustrating the maxima and minima of susceptible dogs. The
parameters are chosen such that ν = 0 for the broken curve and ν = 0.1 for the solid curve.

4 Rabies-free environment

In this section, we assume that the environment is virus free, i.e., all contacts between the

infected environment and the susceptible dogs does not result in any rabies transmission.

Consequently, the model takes the following form

ds

dt
= rs (1− s/k)− λ(i)s,

de

dt
= λ(i)s − (σ + µ)e,

di

dt
= σe− (δ + µ+ α)i,

(11)

where all the parameters are defined as outlined before. The basic reproduction number for

system (11) reduces to

R0,d =
σkλ′(0)

φψ
.

Proposition 2. We have the following result:

1. The model (11) has a disease-free equilibrium PDFE = (k, 0, 0).

2. If R0,d ≤ 1, there is no endemic equilibrium.

3. If R0,d > 1, there exists a unique endemic equilibrium PEE = (s∗, e∗, i∗),

which is a solution to

r

(

1−
φψi∗

σkλ(i∗)

)

− λ(i∗) = 0. (12)

Following the qualitative analysis of model (1), from the previous section, we will state

the following result without proof.
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Theorem 4. The disease-free equilibrium PDFE is globally asymptotically stable for R0,d < 1

and unstable for R0,d > 1.

To study the local stability of the endemic equilibrium PEE, we consider the Jacobian

evaluated at (s∗, e∗, i∗) as follows,

J(s∗, e∗, i∗) =









−r
s∗

k
0 −λ′(i∗)s∗

λ(i∗) −φ λ′(i∗)s∗

0 σ −ψ









.

The trace is negative. The characteristic equation for J(PEE) is given by

λ3 + n1λ
2 + n2λ+ n3 = 0, (13)

where the coefficients are given by

n1 = (ψ + φ) + r
s∗

k
,

n2 = (φψ − λ′(i∗)s∗σ) + r
s∗

k
(φ+ ψ),

n3 = s∗
( r

k

[

φψ − s∗λ′(i∗)σ
]

+ λ(i∗)λ′(i∗)σ
)

.

Proposition 3. Assume R0,d > 1. Then all the roots of (13) have negative real part.

Proof. Consider the coefficients of equation (13) above. To prove this result, it is sufficient to

show that φψ−λ′(i∗)s∗σ ≥ 0. Bearing in mind the assumptions (2) and λ(i∗)− i∗λ′(i∗) ≥ 0,

we have

φψ − λ′(i∗)s∗σ = φψ − λ′(i∗)σ
ψφ

λ(i∗)σ
i∗ =

φψ

λ(i∗)

[

λ(i∗)− i∗λ′(i∗)
]

≥ 0,

where we have used the equilibrium relationship s∗ =
φψ

λ(i∗)σ
i∗. Thus we conclude that all

the roots of (13) have negative real part.

The first assumption of the Rough-Hurwitz is verified. Next we consider the Hurwitz

determinant given by

∆2(δ) = n1n2 − n3

=
ψφ

λ(i∗)

(

ψ + φ+
rφψ

kσλ(i∗)
i∗
)

(

[

λ(i∗)− i∗λ′(i∗)
]

+
r

kσ
(φ+ ψ)i∗

)

−
ψφ

λ(i∗)

(

[

λ(i∗)− i∗λ′(i∗)
]

+
r

kσ
(φ+ ψ)i∗

)

We observe that ∆2(δ) can become negative which implies that ∆2(δc) = 0 for some

parameter value δc.

Theorem 5. Assume R0,d > 1, the endemic equilibrium PEE can become unstable through a

Hopf bifurcation leading to oscillatory solutions.
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The proof of this result follows [35, page 162]. We illustrate the results of Theorem 5 in

Fig. 4. For R0,d = 1.939, the endemic equilibrium PEE is locally asymptotically stable and

for R0,d = 10.21, the equilibrium is unstable.
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(a) Local stability for R0 < R0c. (b) Oscillaroty solution for R0 > R0c.

Figure 4: Existence of Hopf bifurcation for the reduced model.

The critical/threshold value, R0c, refers to the onset of Hopf bifurcation. From a math-

ematical point of view, it is important to identify this critical value as it highlights the

dynamics when the disease may appear to disappear. In the next sections we discuss the

results of the model in terms of the control measures.

5 Sensitivity analysis

We now perform a sensitivity analysis on the basic reproduction number, R0, in order to

capture how the ratio responds to changes in the parameters, furthermore, gain understand-

ing into the disease control strategy and the transmission dynamics described by model (1).

The changes in or sensitivity of R0 with respect to a parameter q is mathematically given

by

ϕq
R0

=
∂R0

∂q
.

The concept of sensitivity only looks at local computation while all parameters, q included,

are kept constant. That is, sensitivity does not consider the simultaneous variation of all

parameters. Thus, we will make use of the percentage change in R0 with respect to the

percentage change in the parameter q, referred to as elasticity. Particularly,

εqR0
=
∂R0

∂q

q

R0

.

The elasticity of R0 with respect to q is negative if R0 is decreasing with respect to q, and

positive if R0 is increasing with respect to q. The local sensitivity analysis on the basic
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reproduction ratio R0 leads to the following

εσR0
=

µ

σ + µ
, εkR0

= 1, ε
βp

R0
=

βpξ

γλ′(0) + βpξ
,

εξR0
=

βpξ

γλ′(0) + βpξ
, εµR0

= −µ
(µ+ δ + α) + (σ + µ)

(µ+ δ + α)(σ + µ)
, εδR0

=
−δ

µ+ δ + α
,

εαR0
=

−α

µ+ δ + α
, εγR0

=
−σβpkξ

γσkλ′(0) + σβpkξ
, εβi

R0
=

βiγ

βiγ + βpξ
.

The analytic derivation given above can be numerically approximated. Thus, the result of

such an analysis is shown below in Table 2.

Table 2: Sensitivity index of R0 with respect to each parameter.
Parameter Sensitivity index

µ -0.04375
α -0.9799
σ 0.03704
ξ 0.007849
δ -0.01342
βi 0.9922
βp 0.007849
k 1
γ 0.007849

We easily observe that different parameters have different extent of the effect on R0. For

example, having that εαR0
= −0.9799 means that 1% increase in α will result in 0.9799%

decrease in R0. From Table 2 we see that an increase in σ, ξ, βp, γ, βi and k will result to

an increase in R0 with βi and k having the most significant effect. On the other hand, an

increase in µ, δ and α decreases R0.
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(a) Bifurcation with respect to R0. (b) Bifurcation with respect to δ.

Figure 5: Bifurcation showing the effects of increasing the culling rate. Parameters are
chosen as in Table 1 with βi = 10.

From the sensitivity analysis, we know that R0 decreases when δ increases. As shown in

Fig. 5, we observe that for small values of R0 or for R0 values less than one, the susceptible
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population reach the carrying capacity, whereas, the number of susceptible dogs decreases

as R0 increases. Moreover, from (b), as δ increases the susceptible population also increase

to a carrying capacity which implies that the infected/infectious decrease.

6 Discussion

Wildlife intervention has always been a topical issue. However, faced with potential popu-

lation extinction, vaccination or culling are some of the possible intervention strategies for

wildlife, [4]. Other strategies include the prevention of domestic dogs from entering conser-

vation areas, but this is not always possible due to many factors such as human geographical

locations. The proposed model takes into account culling as a prevention strategy and envi-

ronment as one of the reservoir for the virus.
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(a) ν = 0.1. (b) ν = 0.

Figure 6: Bifurcation diagram showing the maxima and minima of susceptible dogs for
R0 > R0c. The parameters are chosen to simulate bifurcation curves with environmental
contribution (broken curve) and without environmental contributions (solid curve).

The proposed model suggests culling can reduce the possible periodic behaviour of the

system, see Fig. 3. This suggests that it is possible to stop culling prematurely as the disease

may appear to disappear. Similar oscillations have been observed in rabies models for fox

populations, see [25, 36]. However, the model presented here is different from these works.

In particular, in addition to spatial considerations, their model assumed infected individuals

contribute in the reproduction. No intervention strategies or environmental considerations

are included in the model.

Earlier models, see for example [36], used spatial movement to take into account the be-

havioural changes in rabid dogs. The current model assumes a general transmission function

satisfying conditions in (2). This includes the mass action incidence βisi and the satu-

ration incidence βi
i

1 + νi
as special cases. Numerical simulations in Fig. 6 suggest that

more susceptible dogs are present when the mass action formulation is used as compared to

the saturation incidence. Furthermore, the amplitude of the observed oscillations are less

pronounced when saturating incidence is used.
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The proposed work investigated the dynamics and control of rabies in (wild dogs) Lycaon

pictus, and the effects of spillover from domestic stray dogs or other canines. The model

does not explicitly follow the behavior of other canids (outside the Lycaon pictus) as these

are all considered under the environment. We clearly see that neglecting the environmental

contribution can lead to the underestimation of the severity of the disease. We remark that

mathematical models are not there to replace field experts, but can be crucial in improving

the knowledge on the biological system through testing certain hypothesis and designing

appropriate experiments. It is important to note that these are only approximations of the

reality and their predictability will always be subject to some uncertainty. Under the current

reported parameter values, R0 remains in the interval [1, 2] indicating the endemicity of the

rabies virus among African wild dogs. See Fig. 7. In this case, the average population

density is one wild dog per 100 km2.
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Figure 7: Time series profiles, (a), and phase plot, (b) for the case R0 = 1.828.

7 Conclusions

In this paper, a simple SEI deterministic model for rabies epidemic was presented in which

the population growth is logistic in the absence of the disease. The force of infection is

given by a general nonlinear incidence function satisfying monotonicity conditions (2). We

proved that the disease-free equilibrium is globally asymptotically stable for R0 < 1 and

unstable for R0 > 1. The endemic equilibrium is locally asymptotically stable for R0 < R0c.

In particular, for R0 > 1, the endemic equilibrium can become unstable through Hopf

bifurcation leading to oscillatory solutions. The spread of the virus is controlled ifR0 remains

less than one. To conclude, while controlling the disposal of dead caucuses or controlling the

movement of stray domestic animals can reduce the devastation of the disease, culling can

be an effective tool to control the disease.
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