
i

Mobile Robot Optimum Trajectory Development using a

Hybrid Reactive Navigation Model

By

Ngwenya Thabang

Submitted in partial fulfilment of the requirements for the degree,

Master of Engineering (Industrial and Systems Engineering)

In the Faculty of Engineering Built Environment and Information Technology

November 2021

Supervisor:

Dr MK Ayomoh

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

ii

ABSTRACT

Path planning for mobile robot navigation in workspaces with varying obstacles

complexity levels was addressed in this research. The domain problem is that for a

specific class of obstacles referred to as the concave shaped and lengthy obstacles, the

likelihood of local minima trap occurring is often significantly high. For instance, a labyrinth

premised on concave shaped obstacles often misleads a navigating robot into the

concave hollow region in a bid for the robot to reach its desired target point. Apart from

the use of reactive algorithms, for an autonomous navigation process which is often

premised on continuous path trajectory development, the literature clearly alleges that

most non-reactive algorithms get trapped in the concave hollow and along the edges of

lengthy obstacles. The purpose of this research is to adapt a reactive mobile robot (MR)

navigation algorithm premised on the Hybrid Virtual Force Field (HVFF) concept for the

exploration of robot navigation in both developed and literature based obstacle

constrained workspaces. The obstacles considered in this research work are mostly

premised on concave shaped and lengthy obstacles cul-de-sac. The HVFF approach

evolved from the Virtual Force Field (VFF) approach which is premised on the Potential

Field Method (PFM). This method of path planning operates by utilizing the resultant of

forces emanating from the combination of repulsive and attractive forces acting on a

navigating robot. The algorithmic validation was carried out via the conduct of simulation

trials using the Python software. The simulations conducted span across newly developed

workspaces and literature based workspaces for a comparative study. Furthermore, the

behaviour of the robot navigation with and without the HVFF algorithm per workspace

was presented. Of a particular interest was the navigation time with and without the HVFF

algorithm per workspace. The results obtained in all the simulations showed a much

efficient navigation completion time with the use of the HVFF algorithm. Efficiency in

arriving at the target point implies that the robot was able to come out of the local minima

trap each time it entered the hollow region of a concave shaped obstacle or around the

edges of a lengthy stretched out obstacle. The time difference recorded between

deploying the HVFF approach and not deploying the HVFF algorithm across the different

simulations conducted spanned between 14.27 to 287.44 seconds which corresponds to

a percentage gain time of 31.87% and 89.70% including a simulation with an unending

target point (TP) arrival time for the without HVFF algorithm. As the concave trap

increased in its depth, the tendency of the robot to escape from the trap becomes much

more difficult. The outputs of this research justify the effectiveness and efficiency of the

HVFF algorithm.

Key Words: Mobile Robot, HVFF Algorithm, Concave Obstacles, Target Point, Hybrid

Approach.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

iii

Table of Contents

ABSTRACT ... ii

CHAPTER ONE ... 1

INTRODUCTION ... 1

1.1 Background to the study ... 1

1.1.1 Local Path Planning (sensor based planning) ... 3

1.1.2 Global Path Planning (information based planning) ... 3

1.2 Problem Statement ... 4

1.3 Research Questions ... 6

1.4 Research Aim ... 6

1.5 Research Objectives .. 7

1.6 Motivation ... 7

1.7 Scope of the Research ... 8

1.8 Limitations of the Research .. 8

1.9 Delimitations of the Research ... 8

1.10 Notations .. 9

1.11 Organisation of the Research ..10

1.12 Chapter Summary ...10

CHAPTER TWO ...11

LITERATURE REVIEW ..11

2.1 Introduction ..11

2.2 Review ..11

2.2.1 Simultaneous Localization and Mapping (SLAM) .. 12

2.2.2 Light Detection and Ranging (LiDAR) Technique .. 12

2.2.3 Vector Field Histogram (VFH) Technique .. 14

2.2.4 Artificial Potential Field (APF)/ Virtual Force Field (VFF) Technique 15

2.2.5 Hybrid Virtual Force Field (HVFF) Technique .. 18

2.2.6 Fuzzy Logic (FL) Technique ... 21

2.2.7 Neural Network (NN) Technique ... 23

2.2.8 Particle Swarm Optimisation (PSO) Technique .. 25

2.2.9 Genetic Algorithm (GA) Technique ... 28

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

iv

2.2.10 Ant Colony Optimisation (ACO) Technique .. 30

2.2.11 Firefly Algorithm (FA) Technique ... 32

2.2.12 Graphical Techniques .. 33

2.2.13 Vision-Based, Transient Virtual Obstacles (TVO) and Other Techniques 33

2.3 Alternative Solutions ..38

2.4 Preferred Solution ..39

2.5 Chapter Summary ...39

CHAPTER THREE ...41

RESEARCH APPROACH...41

3.1 Chapter Overview ..41

3.2 Conceptual Framework ..42

3.3 Theoretical Framework ..44

3.3.1 VFF algorithm ... 44

3.3.2 VGC and VOC algorithm .. 47

3.3.3 HVFF Methodological Steps ... 51

3.4 Model Development and Solving ...53

3.4.1 Assumptions and Navigation Modelling .. 54

3.4.2 Mathematical Modelling... 54

3.4.2.1 Static Scenario MR Distance from TP ... 54

3.4.2.2 Repulsive OA and Goal Seeking Navigation Algorithm .. 56

3.4.3 Solution .. 60

3.5 Chapter Summary ...62

CHAPTER FOUR ...63

RESULTS AND DISCUSSION ...63

4.1 Introduction ..63

4.2 Model Validation and Results ..63

4.2.1 Case 1: A simple and easily detectable concave obstacle ... 64

4.2.2 Case 2: An intermediate size “not easily detectable” concave obstacle 67

4.2.3 Case 3: An extreme size undetectable concave obstacle ... 71

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

v

4.2.4 Case 4: Multiple Target Points Workspace scenario with static obstacles 74

4.2.5 Case 5: Lengthy & Concave Obstacles workspace scenario from paper Ref [41] 82

4.2.6 Case 6: Additional workspace scenario with static obstacle from paper Ref [41] 87

4.3 Analysis and Discussion of Results ...91

4.4 Chapter Summary ...96

CHAPTER FIVE ..97

CONCLUSION AND FUTURE RESEARCH WORK ...97

5.1 Chapter Overview ..97

5.2 Conclusion ...97

5.3 Future Research Work ... 100

REFERENCES ... 101

CODING APPENDIX .. 111

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

vi

List of Figures

Figure 1: LMT by a concave-shaped obstacle ... 5

Figure 2: LMT by a Lengthy obstacle .. 6

Figure 3: The flowchart of the PR-APF methodology, adapted from [37] 17

Figure 4: HVFF methodology flowchart, adapted from [38] ... 19

Figure 5: Concave obstacle sketch, adapted from [40] .. 20

Figure 6: Straight obstacle sketch, adapted from [40] .. 20

Figure 7: Navigation Space, adapted from [49] ... 22

Figure 8: OIF-Elman structure network, adapted from [59] ... 25

Figure 9: Complex navigation space with obstacles, adapted from [66] ... 27

Figure 10: Approach Flowchart, adapted from [75]... 29

Figure 11: Improved APF combined with ACO flowchart, adapted from [81] 31

Figure 12: Conceptual framework: Research Comprehensive Outlook .. 43

Figure 13: Conceptual framework: Research Methodological Outlook.. 43

Figure 14: Vector Force Diagram illustration for the robot ... 45

Figure 15: Flowchart for the methodology HVFF, adapted from [38] ... 52

Figure 16: Static Obstacle Detection, adapted from [3] ... 56

Figure 17: Solution algorithm flowchart .. 62

Figure 18: Developed Problem Sample Space01 ... 65

Figure 19: Progressive Solution for developed Sample Space01 (without HVFF) 65

Figure 20: Final Solution for developed Sample Space01 (without HVFF) 66

Figure 21 : Progressive Solution for developed Sample Space01 (with HVFF) 66

Figure 22: Final Solution for developed Sample Space01 (with HVFF) .. 67

Figure 23: Developed Problem Sample Space02 ... 68

Figure 24: Progressive Solution for developed Sample Space02 (without HVFF) 68

Figure 25: Progressive Solution for developed Sample Space02 (MR got trapped) 69

Figure 26: Progressive Solution for developed Sample Space02 (with HVFF) 70

Figure 27: Final Solution for developed Sample Space02 (with HVFF) .. 70

Figure 28: Developed Problem Sample Space03 ... 71

Figure 29: Progressive Solution for developed Sample Space03 (without HVFF) 72

Figure 30: Progressive Solution for developed Sample Space03 (MR got trapped) 72

Figure 31: Progressive Solution for developed Sample Space03 (with HVFF) 73

Figure 32: Final Solution for developed Sample Space03 (with HVFF) .. 73

Figure 33: Developed Problem Sample Space04 ... 74

Figure 34: Progressive Solution (First TP) for developed Sample Space04 (without HVFF) 75

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

vii

Figure 35: Final Solution (First TP) for developed Sample Space04 (without HVFF) 76

Figure 36: Progressive Solution (Second TP) for developed Sample Space04 (without HVFF) . 77

Figure 37: Final Solution (Second TP) for developed Sample Space04 (without HVFF) 78

Figure 38: Progressive Solution (First TP) for developed Sample Space04 (With HVFF) 79

Figure 39: Final Solution (First TP) for developed Sample Space04 (with HVFF) 80

Figure 40: Progressive Solution (Second TP) for developed Sample Space04 (with HVFF) 80

Figure 41: Final Solution (Second TP) for developed Sample Space04 (with HVFF) 81

Figure 42: Developed Problem Sample Space05 ... 82

Figure 43: Progressive Solution for developed Sample Space05 (without HVFF) 83

Figure 44: Progressive Solution for developed Sample Space05 (MR got rapped) 83

Figure 45: Progressive Solution for developed Sample Space05 (with HVFF) 84

Figure 46: Progressive Solution for developed Sample Space05, adapted from [41] 84

Figure 47: Progressive Solution for developed Sample Space05, adapted from [41] 85

Figure 48: Final Solution for developed Sample Space05 (with HVFF) .. 85

Figure 49: Final Solution for developed Sample Space05, adapted from [41] 86

Figure 50: Developed Problem Sample Space06 ... 87

Figure 51: Progressive Solution for developed Sample Space06 (without HVFF) 88

Figure 52: Progressive Solution for developed Sample Space06 (with HVFF) 88

Figure 53: Progressive Solution for developed Sample Space06, adapted from [41] 89

Figure 54: Final Solution for developed Sample Space06 (without HVFF) 89

Figure 55: Final Solution for developed Sample Space06 (with HVFF) .. 90

Figure 56: Final Solution for developed Sample Space06, adapted from [41] 91

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

viii

List of Tables

Table 1: Mathematical Notations ... 9

Table 2: Analysis of various path planning and navigation algorithms amidst obstacles 35

Table 3: Methodologies strengths and limitations ... 38

Table 4: Results for Case 1 .. 67

Table 5: Results for Case 2 .. 71

Table 6: Results for Case 3 .. 74

Table 7: Results for Case 4 .. 81

Table 8: Results for Case 5 .. 86

Table 9: Results for Case 6 .. 91

Table 10: Summary of Navigation Travel Duration and Percentage Gain in Efficiency 99

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

ix

List of Acronyms

3IR - Third Industrial Revolution

LMT – Local Minima Trap

MR – Mobile Robot

AVGs - Automated Guided Vehicles

LiDAR - Light Detection and Ranging

VFH - Vector Field Histogram

VFF- Virtual Force Filed

NN - Neural Network

RF – Repulsive Force

RN – Robot Navigation

FA – Firefly Algorithm

AF – Attractive Force

AP – Attractive Potential

RP – Repulsive Potential

PSO - Particle Swarm Optimisation

RO - Real Obstacle

ACO - Ant Colony Optimisation

GA - Genetic Algorithm

APF - Artificial Potential Field

HVFF - Hybrid Virtual Force Field

VOC - Virtual Obstacle Concept

VO – Virtual Obstacle

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

x

PP – Path Planning

OA - Obstacle Avoidance

SO – Static Obstacle

TP – Target Point

DO – Dynamic Obstacle

VGC - Virtual Goal Concept

F-ACHA - Fireworks-Ant Colony Hybrid Algorithm

DAPF - Discrete Artificial Potential Field

CNN - Convolutional Neural Network

IMU - Inertial Estimation Unit

JPSO - Jumping Mechanism Particle Swarm Optimisation

SGOA - Safety Gap Obstacle Avoidance

PGA - Parallel Genetic Algorithm

UAV - Unmanned Aerial Vehicle

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1

CHAPTER ONE

INTRODUCTION

1.1 Background to the study

Mobile robot (MR) navigation and obstacle avoidance (OA) has over the years gained

the attention of researchers, manufacturers, enthusiasts and operators of robotic

vehicles stated by Li and Savkin in 2018 [1]. MRs have widely been deployed in

everyday human activities including manufacturing, agriculture, military, medicine, and

several other domains. Safe navigation is an essential requirement for MRs in their

respective environments. Therefore, research on autonomous robot navigation as

they move from one point to another in a given workspace without making contact with

obstacles is fundamental for their physical and functional safety in an environment

littered with obstacles. Abiyev et al [2] stated that these obstacles often act as

navigation obstructers along the path between the robot and its target point (TP). The

robot navigation space can be littered with both static obstacles (SOs) and dynamic

obstacles (DOs) of varying convex and concave shapes resulting in cul-de-sac

capable of creating a local minima problem. Furthermore, workspace obstacles can

be further classified as being virtual, real, concave, convex, static or dynamic with the

aid of sensing devices and algorithmic procedures.

The problem of robot navigation can be summarised using the three principal

questions viz: where am I?", where am I going?", and how should I get there?"

Question one is about localisation, question two is goal or TP centred while the third

question is about planning a path that results in achieving the defined goal.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2

Investigations of the latter two questions often come under the domain of path planning

(PP) and OA.

The use of reactive hybrid navigation algorithms is beginning to take the centre stage

in the MR path planning problem for enhanced intelligence. The integration of different

navigation techniques has the ability to produce more efficient and effective navigation

results. Olunloyo and Ayomoh [38] proposed a hybrid approach referred to as the

Hybrid Virtual Force Field (HVFF) approach. This technique like a few others, has the

benefit of high TP attainment. A MR constrained by this methodology can generally

arrive at its TP without colliding with the workspace obstacles [39]. One of the most

significant merits of using reactive navigation algorithms is that they are usually online

compliant i.e. they have the ability to make the robot self-governing hence, making it

capable of coping in unstructured workspace domains in a bid to be fully autonomous

while navigating. To achieve its goal, the robot must be able to perceive its

environment sufficiently to allow it navigate safely. In recent times, some areas of

success have been reported in the literature but nonetheless research in autonomous

MR navigation may be well off the infancy stage however, far-fetched from the desired

target of attaining the human dexterity. Extensive research is still on going for

improvement in this research space to make its widespread use in all facets of the

human endeavor possible.

Robot PP, in a wider sense may well be alluded to as the method of distinguishing

impediments free configurations inside a given workspace in arrangement to upgrade

a collision free path from its start position to its TP. To be beyond any doubt, PP for

MRs is an intricate issue that also requires smoothness and clearances besides

guaranteeing a collision-free path with minimum traveling distance. Two crucial

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3

classification recommended by Fu et al [3] to portray the robotic PP issue are Obstacle

Limitation and Path Limitation. Obstacle Limitations show that there are a few focuses

in space which are occupied and are not free for the MR to pass through. Path

Limitations are more often than not given as points on a path which the MR must take

after. As a robotic vehicle translates and orientates her member components at

different points with time and in space, while accomplishing an assigned task, it does

this in some defined paths ensuring that obstacles are avoided both locally and

globally. Local and global path planning are next discussed below:

1.1.1 Local Path Planning (sensor based planning)

Sometimes information may not be available at the inception of tackling an issue in

this way we must illuminate the issue in stages as data is continuously made

accessible. Sensor-based planning is a vital work when situations alter with time, are

obscure, or there are mistakes in the robotic equipment. A postieri information can be

utilised to discover the next trajectory in a path (by collecting data about the results of

the previous trajectory) or may also be utilised to guide the MR in a random sense

when investifating an environment. These techniques correspond to an “execute and

evaluate” methodology. The information feedback in such cases is acquired with the

help of sensors while the sensors utilised may range from vision frameworks to contact

switches.

1.1.2 Global Path Planning (information based planning)

It is much simpler to solve an issue in a case if all the information needed about the

workspace is available at the beginning and prior to the onset of movement. In robotics

we may plan paths before their execution if we have adequate information of the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4

environment. The PPs before execution facilitates solutions of a shorter path time,

more efficient dynamics, and absolute collision evasion. When working in this mode,

a priori information (i.e. known before) is utilised. Techniques are available to solve a

variety of problems, when given a priori information. A few of the knowledge which we

utilise for a priori PP may come from diverse sources such as vision frameworks,

designing details, or CAD programs. Such a priori information may moreover be

pertinent to moving objects, in the event that they have an unsurprising recurrence or

movement. However, a priori information cannot be utilised for eccentric or arbitrary

moving objects.

1.2 Problem Statement

The robot navigation problem is that which focuses on an autonomous MR navigating

from an initial position to an endpoint without colliding with objects in sight along its

trajectory of navigation. The robot navigation problem can be divided into two sub-

categories viz: The local minima navigation problem where the MR moves in an

environment with unknown obstacle information and the global minima problem, where

the MR meander’s in a workspace with prior knowledge of the obstacles’ information

and the environment as a whole. MRs must complete some complicated tasks in a

time-efficient manner and avoid virtual obstacles (VOs) and real obstacles (ROs).

Hence one of the problems is that of the total travel time minimisation of a MR amidst

a workplace with obstacles. Over the years researchers have pioneered several

methodologies for MR navigation. An in-depth information of individual algorithms for

navigation given by Patle [5] highlight the following gaps:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

5

● Limited research in DOs, multi TPs, multi robots environment: Limited research

has been accounted for particularly in an environment consisting of DOs, multi

TPs, real-time experiments, and multi robots framework.

● Few papers on hybrid approaches

The complexity in MR navigation has been increasing gradually due to changing

environments. As a result, among the specific issues to be addressed in this research

is the problem of cul-de-sac traps which are caused by deep concave-shaped

obstacles. Imagine a real-life environment where an MR fall into a 1km deep concave-

shaped obstacle only to realise while it is inside the obstacle that the target is behind

the obstacle. This scenario can be put in perspective in mining industry where MRs

are used to do inspection where it is dangerous for humans. Figure 1 and Figure 2

show a local minima trap (LMT) by a deep concave-shaped obstacle and a lengthy

obstacle respectively, where R represents the MR and T the target. A real-life scenario

can be in mines where MRs are deployed to do a safety inspection.

Figure 1: LMT by a concave-shaped obstacle

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

6

Figure 2: LMT by a Lengthy obstacle

1.3 Research Questions

 How can an optimal navigation algorithm for a robotic vehicle in a domain of

obstacles be actualised?

 How can a robotic vehicle avoid the local minima traps (LMTs) amidst VOs and

ROs?

 What specific optimisation control metrics are required to effectively deploy a

real robotic vehicle to a test environment?

1.4 Research Aim

This study is aimed at adapting a reactive MR navigation algorithm premised on the

HVFF concept to deep concave and lengthy obstacles cul-de-sac randomly distributed

in developed workspaces as a measure towards addressing the local minima problem

posed by these categories of obstacles.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

7

1.5 Research Objectives

The objectives of this research are to:

 Explore and adapt the HVFF concept for effectiveness and efficiency studies of

robot navigation in workspaces with concave or lengthy-stretched out

obstacles.

 Adapt the HVFF algorithm to a multi-target point navigation problem

 Validate the HVFF algorithmic performance in the different workspaces using

simulation trials premised on the Python software.

1.6 Motivation

The introduction of robotised subsystems had grown gradually since the Third

Industrial Revolution (3IR) because of their profitability and comfort. A significant part

of the time base is determined to the inclinations these structures have and give less

thought to their system unpredictability with the change in atmosphere plans.

Therefore, the 3IR has left the thin scene with systems unequipped for the adaptable

and independent end. An enormous bit of the genuinely steady organisations across

metropolitan territories, structures, adventures, and present-day motorisation cannot

pick or prepare decisions in an anticipative manner. As needs are, there are pointless

deficiencies similarly to obtained costs in the steady movement of these genuinely

strong organisations. Inefficient information about the complexity of robots in industrial

production may result in a poor assessment of installing measures that could redesign

MRs and how profitable/economical they can be. Change in environmental conditions

has increased system complexities in industrial automation. Planning and coordination

of MRs and automated guided vehicles (AVGs) in workspaces in which these utilities

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

8

are deployed is very vital. Accordingly, there is a need to introduce smartness into

these systems so they can have the option to confer among themselves and their

incorporating areas with enlargement to have the alternative to recognise, act, portray,

and qualifying conditions. These require

1.7 Scope of the Research

This research will focus on the efficient robot vehicle navigation model amidst

workplaces with obstacles. The scope will consist of mathematical algorithms,

programming using python, and thorough theoretical research to investigate

methodologies needed for navigating a MR to enable it to cope in real-world situations

consisting of obstacles.

1.8 Limitations of the Research

 This research focus is on a productive robot vehicle route model in an objective

area amid workspace snags. Two major constraints towards achieving the time-

efficient objective include the path length and obstacle state

identification/avoidance especially when they are along the robot's line of sight.

 The navigation environment considered for the robot is an unknown

environment in which the robot acquires basic obstacle information such as

position and geometry through sensory inputs.

 The programming algorithms will be validated through simulation trials.

1.9 Delimitations of the Research

 The global navigation path will not be looked at since the research will look at

an unknown environment.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

9

 Due to current circumstances linked to the pandemic, the real-world application

will not be considered for validation instead simulation environment will be

used.

1.10 Notations

The following table gives the notations used in Chapter Three.

Table 1: Mathematical Notations

No Symbol Meaning No Symbol Meaning

1 𝑥𝑟 x-coordinate of the robot 15 𝑈𝑎𝑡𝑡
𝑥 (𝑞𝑟) x-component of attractive

potential generated by
goal state

2 𝑦𝑟 y-coordinate of the robot 16 𝑈𝑎𝑡𝑡
𝑦

(𝑞𝑟) The goal state y-
component of attractive
potential

3 𝑖 Grid-line occupied by robot
on x-axis

17 𝑈𝑥(𝑞𝑟) Resultant potential in the
x-axis

4 𝑗 Grid-line occupied by robot
on y-axis

18 𝑈𝑦(𝑞𝑟) Resultant potential in the
y-axis

5 𝑐𝑖,𝑗 Dynamic window cells 19 𝑈𝑎𝑡𝑡(𝑞𝑟) Total attractive potential
from the target point

6 𝑥𝑡 x-coordinate of the robot
goal state

20 𝑈𝑟𝑒𝑝(𝑞𝑟) Total repulsive potential
from obstacles

7 𝑦𝑡 y-coordinate of the robot
goal state

21 𝑞𝑟 Configuration space
describing the current
position of the robot

8 𝑥𝑜 x-coordinate of the obstacle
in robot’s active window

22 𝑞𝑡 Configuration space
describing target point

9 𝑦𝑜 y-coordinate of the obstacle
in robot’s active window

23 𝑈𝑟𝑒𝑝
𝑥 (𝑞𝑟) x-component of repulsive

potential

10 𝑑𝑡 Robot distance from the goal
state

24 𝑈𝑟𝑒𝑝
𝑦

(𝑞𝑟) y-component of repulsive
potential

11 𝑑𝑜 Robot distance from an
obstacle

12 𝑥𝑔𝑟𝑖𝑑 Grid-line similar on the x-axis
of the robot compartment

13 𝑦𝑔𝑟𝑖𝑑 Grid-line similar on the y-axis
of the robot compartment

14 𝐹𝑐𝑟 Repulsive force variable of
sensed obstacle

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

10

1.11 Organisation of the Research

The remaining chapters of this research are structured in the following way: Chapter

Two gives a literature review where the review gives an in-depth understanding of the

methodologies that already exist to develop optimum MR navigation models. Chapter

Three gives the research approach that will be taken to meet the objectives of this

research. The Chapter presents the chosen methodology from the thorough literature

review in Chapter Two. Chapter Four gives the simulation runs results and discussion

of results. Chapter Five it is the conclusion, research findings, and future work.

1.12 Chapter Summary

The introductory chapter gave background study to this research and clear details of

the problem that will be addressed and gave the objectives. It further gives the

motivation, limitations and scope of this research. And the aim of this research work

is to at adapt a reactive MR navigation algorithm premised on the HVFF concept to

deep concave and lengthy obstacles cul-de-sac randomly distributed in developed

workspaces as a measure towards addressing the local minima problem posed by

these categories of obstacles.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

11

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

This chapter reviews exploration and applications on a scope of subjects of

significance for portable robots and AGVs route amid obstacles. The utilisation of MRs,

and AGVs specifically, is developing as the scope of robot applications in industrial

facilities, clinics, places of business, and so on increments [4]. The objective of this

literature review is to analyse techniques/methods that currently exist for the MR

navigation in an environment where OA is required. The chosen technique will be used

to build up an ideal robot vehicle navigation model in an objective area amid a

workspace with obstacles.

2.2 Review

The review gives an in-depth understanding of the methodologies that already exist to

develop optimum MR navigation models. This review aims to further find gaps that still

exist in research for MR navigation problems and add the latest research work from

2019 to 2021 that is not included in techniques reviewed in the paper [5]. Over the

years researchers have applied several methodologies to addressing MR navigation

amidst obstacles [6]. The following was extracted from the research papers.

 The problem/s solved in the field of research

 How the problems were solved

 Who solved these problems

 Limitations and outcomes of the research

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

12

 Possible future work

2.2.1 Simultaneous Localization and Mapping (SLAM)

SLAM refers to methodologies that solve the issue of constructing the map of the

workplace with no prior knowledge and localizing MR into this map without any human

involvement [7]. This technique was applied in MR navigation for OA in 2014 by

Moreno-Armendariz and Calvo [8]. Iizuka et al [9] in the same year did a study that

used the SLAM technique in MR navigation in presence of moving obstacles. The

technique was combined with an artificial potential field (APF). The hybrid approach

was a success since the MR did not collide with obstacles till it reached the target point

(TP). Their future work will focus on deploying the technique in real-time application.

Sqalli et al [10] used the technique for OA for an improvement of RN. Moreover,

several other studies extended research in using this technique for RN [11-13].

2.2.2 Light Detection and Ranging (LiDAR) Technique

LiDAR is a dynamic eminent distance detecting innovation, arranged as a range

estimation sensor that consistently sends a beam of light utilising pivoting radiates at

a steady rate and registers the distance between the objective and itself with high

precision. Local navigation methods use sensors for the position and orientation of a

MR. In the autonomous industry, the LiDAR technique is often utilised for automation.

LiDAR works autonomously when contrasted with the GPS framework; along these

lines, it has the capacity of planning the climate. LiDAR can be utilised freely yet when

combined with different sensors it gives improved outcomes [14].

In 2017, Ghorpade et al [15] proposed an efficient OA model using the 2D LiDAR

technique for a MR. The objective was to accomplish acceptable constant execution

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

13

and improve the precision of OA focused on independent mechanical frameworks

intended for military applications. The proposed strategy extricates spatial data from

laser point-cloud utilising division and bunching strategies. The convex body

calculation was used to recognise the precise geometry of the impediment. Convex-

shaped objects were considered for this research as SOs. The proposed OA and

obstacle identification technique used a basic numerical model and productively

accomplished great ongoing execution. The unwavering quality of the model was

simulated in MATLAB. The technique was made economical, portable, and robust

because of the inclusion of Raspberry pi 3 in the system. In the future, the work will

focus on improving the handling time of the proposed model.

In 2019, Madhavan and Adharsh [16] extended this work using 2D LiDAR. A deliberate

methodology was utilised to dodge impediments on the guideline of least expense

work. The simulation results classified obstacles to be circular, quadrilateral, and

linear-shaped. The future work will consider dynamic OA. Moreover, Baras et al [17]

used LiDAR and Raspberry Pi to address navigation problems while the autonomous

vehicle avoided impediments. The paper considered an environment with static

impediments. The experiments were conducted in real-time in presence of multiple

impediments of various sizes and shapes. Future adjustments to their algorithm might

be made to anticipate impediments movement and explore more efficiently in a

dynamic workspace. Moreover, other real-time experiments were conducted for OA

using 2D LiDAR in 2020 by Dong et al [18] and Ren Yee et al [19]. The papers

considered both concave and convex-shaped obstacles. Dong et al [18] future work

will focus on 3D models for MR navigation. One of the key factors is that the

researchers used hardware that is less expensive for the 2D LiDAR technique.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

14

2.2.3 Vector Field Histogram (VFH) Technique

The VFH technique was pioneered by Borenstein and Koren [20]. The technique was

found to be very robust, efficient, and not sensitive to readings. Moreover, Ulrich and

Borenstein improved the VFH in 1998 [21] and 2000 [22]. The technique is intended

to diminish the restriction of potential-field strategies, for example, robot motions while

dodging the obstacles [23]. The VFH technique is another method of RN utilised to

solve the PP of MRs. In 2014, Yim and Park [24] used VFH in MR navigation. Their

simulations considered SOs which were convex shaped. Furthermore, Kumar and

Kaleeswari [25] implemented the VFH in a robot where DOs and SOs were

considered. The experiments were conducted in real-time and their future work will

consider the use of potential field strategy.

In 2019, Alagic et al [26] proposed a modified VFH technique in a MR framework. Their

VFH calculation gave both local movement arranging and obstruction evasion

dependent on ready sensor estimations. The adequacy of the proposed system was

confirmed in both static and dynamic obscure conditions. The acquired results

demonstrated the capability of the VFH calculation in exploring the portable MR from

the beginning to the objective location evading impact with impediments. The

drawback with this technique is that local route planning does not give the best results

when it comes to travel time and distance covered. Similarly, Diaz and Marin [27]

improved on the algorithm proposed by Ulrich and Borenstein [21]. The experiments

used two robots in the presence of convex-shaped obstacles.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

15

2.2.4 Artificial Potential Field (APF)/ Virtual Force Field (VFF) Technique

The APF way of arranging innovation previously proposed by Khatib is based on a

basic level and appropriate for constant control [28]. The APF technique is known as

the VFF technique. This VFF technique was pioneered by Borenstein and Koren [29].

Moreover, this technique has been broadly used in research for route planning, robot

optimisation, and MR navigation. However, the drawback with APF is that it falls into

the local minima trap (LMT) and neglects to arrive at the objective. The essential

thought of the APF technique is to make the robot move using forces such that

obstacles produce a repulsive force (RF) and the objective delivers an attractive force

(AF) on a MR. Complete forces of the AF and the RF control the moving of the MR.

Along these lines, the MR can effectively maintain a strategic distance from

obstructions and arrive at the objective. Furthermore, the following functions below are

imperative in understanding the APF technique [30].

Assume the position of a robot is given as 𝑃𝑟 = (𝑥, 𝑦), and the position of the goal is

given as 𝑃𝑔 = (𝑥, 𝑦), then the attractive potential (AP) function is defined in Equation

(2.1).

 𝑈𝑎 = 𝑤𝑎 ∗ (𝑃𝑟 − 𝑃𝑔)2 (2.1)

The repulsive potential (RP) function is defined in Equation (2.2), the RP expands to

prevent the robot from hitting the impediment.

 𝑈𝑟𝑒𝑝 = {0
1

2
∗ 𝜂 ∗ (

1

𝜌
−

1

𝜌0
)2 (2.2)

Such that η is a positive constant, ρ is a minimum length between an obstacle and a

robot, 𝜌0 is a maximum effective length of one impediment. There is no effect for a

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

16

robot when the length between a robot and an impediment is bigger than 𝜌0. Then the

total potential field is defined as follows:

 𝑈𝑡 = 𝑈𝑎 + ∑ 𝑈𝑟𝑒𝑝 (2.3)

In 2015, a paper by Chiang et al [31] proposed the route-guided artificial potential field-

stochastic reachable (APF-SR) strategy for successful routes in complex situations.

The problem of guidance for a robot was in both inactive impediments as well as

various dynamic and stochastic impediments. The obstacles were concave and

convex-shaped. The strategy works by beginning with a sampling-based method to

recognise a substantial, collision freeway within the nearness of inactive impediments.

Then the APF is used to move the robot through moving impediments. This technique

is successful where the APF method alone fails by falling into traps. This work was

extended in 2017 by Malone et al [32] for route planning in a highly intricate and

dynamic workplace with impediments.

Additionally, Sudhakara et al [33] investigated the OA and guidance pathway of a

wheeled portable robot using the amended APF technique. In their work, this

technique does not think about the impact of RFs and AFs. The great point of

proposing this technique was to beat the issue that the traditional APF could not adjust

to the complex direction of arranging and falling prey to LMTs. Simulations were done

in recursive U-formed, long divider, unstructured, labyrinth-like, and jumbled

situations. The results showed that the proposed enhanced APF may very well be

adequately used in the direction arranging of wheeled portable robots and can be

applied progressively in real-time situations. The great advantage of the proposed

improved APF is that the calculation adjusts well in both straightforward and complex

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

17

conditions with a short travel time. Similarly, Lu et al [34] proposed an algorithm

dependent on the improved APF to tackle the issue of local optimum. Another paper

that focused on the improvement of the APF method is by Lin et al [35].

Moreover, a discrete artificial potential field (DAPF) technique for portable robot PP

was introduced by Lazarowska [36]. The DAPF calculation utilises the idea of an APF

and alters it for use in a discrete setup space. The outcomes of investigations showed

that the DAPF calculation is fit for finding a crash-free way for a portable robot in both

dynamic and static conditions. The advantage of this technique is the close ongoing

activity, which makes it helpful for pragmatic applications. Future works will focus on

trials with multiple DOs. In 2021, Shin and Kim [37] pioneered a hybrid approach that

combines positioning risk (PR) and the APF technique. The results showed that the

PR-APF method generated more than 90% success paths while the APF failed to

generate 50% success paths. The simulations were tested using MR and aerially in

real-time. The limitation of this technique is a failure if a lot of positioning errors occur.

The figure below (figure 3) shows the flow of this proposed algorithm.

Figure 3: The flowchart of the PR-APF methodology, adapted from [37]

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

18

2.2.5 Hybrid Virtual Force Field (HVFF) Technique

A general new pattern in research work of portable robot optimisation, route planning,

navigation, and obstacle avoidance is the hybrid approach. The explanation behind

that is to accomplish preferable outcomes over-utilising the techniques independently.

One of the hybrid approaches is known as the hybrid virtual force field (HVFF). This

approach integrates the virtual obstacle concept (VOC), virtual goal concept (VGC),

and VFF. The HVFF technique was pioneered by Olunloyo and Ayomoh to take care

of the MR route issue for either a totally or halfway known static workplace of

impediments [38].

In 2009, one of their research papers was focused on the overall issue of DOs in an

obscure environment with extraordinary consideration given to the class of curved

molded impediments and extensive impediments for which the VFF method is known

to be inclined to LMTs. In their other paper, the HVFF technique was created and

adjusted to LMT in SOs of the inward class is a somewhat known environment. Their

findings validated that the HVFF technique is robust and versatile. Furthermore, it has

the benefits of high productivity and viability as far as objective state achievement.

Regardless of how much a workspace is bunched with impediments of various shapes

or sizes, MR constrained by this methodology can generally arrive at the objective

state without crashing into impediments given a possible way exists [39]. An outline of

how the conventional VFF is combined with VGC and VOC is presented in Figure 4

below.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

19

Figure 4: HVFF methodology flowchart, adapted from [38]

In 2010, Olunloyo and Ayomoh [40] further used the HVFF method to address the

nearby minima robot route issue brought about by one or the other a curved or

protracted impediment from a novel point of view. This was done through techniques

that can empower a robot to check and arrange impediments into nearby or non-

nearby minima causative impediments, stomach muscle initio, from the robot's

underlying situation, preceding route. Such a methodology endeavors to impersonate

human knowledge whereby on recognising a nearby minima causative obstacle an

individual rather than continue into the trap, promptly suspends further route along its

planned line of direction and reclassifies another way of route.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

20

Moreover, in 2011[41] the HVFF technique was extended from the work presented in

[40]. The extension incorporates route productivity concentrated between the current

route plots ensuring papers on the constructed model and summed-up model

conducted in a dynamic obstacle (DO) environment. The two figures (Figures 5 and 6)

below show some of the obstacle sketches that were used in the paper ref [40]. The

other characteristics of these obstacles’ geometry are the lengths, height, and other

features that can be extracted using sensor methods to identify the obstacles.

Figure 5: Concave obstacle sketch, adapted from [40]

Figure 6: Straight obstacle sketch, adapted from [40]

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

21

2.2.6 Fuzzy Logic (FL) Technique

The FL technique was introduced by Zadeh [42] and extensively used in engineering.

This technique plays a huge role in the domain of robotics. Many researchers have

successfully used this technique to guide the MR in a certain environment. FL control

is very appropriate for minimal effort portable robots that do not need extremely

complex routes since FL is a mix of numerous types of rational estimations of the

sources of info. The FL systems are motivated by human thinking, which is dependent

on recognition. The FL technique that was behavior-based was designed by Qing-

yong et al [43]. One of the behaviors included obstacle avoidance behavior in a MR.

Jaradat et al [44] investigated a MR in a dynamic surrounding that had static and

moving objects using a hybrid approach. They integrated FL with APF and the results

found were simulated under a dynamic environment. Under the considered approach,

it was seen from the simulated scenarios that the proposed approach had the

alternative to give the robot a crash-free approach to carefully show up on the moving

goal. One disadvantage of this technique is the LMT, where the robot was caught in a

position sitting tight for a hindrance or the objective to change their positions which

does not happen in static conditions. Moreover, Pandey et al [45] developed an FL

technique for taking care of the movement arranging issue of a portable robot in the

presence of various states of SOs to discover crash freeway. The outcomes showed

that the proposed technique empowers the portable MR to securely arrive at the

objective without impacting. In the future, the current technique can be improved by

streamlining with the assistance of optimisation algorithms.

In 2016, Almasri et al [46] created crash evasion and line train procedures for portable

robot routes in dynamic and static conditions with the joining of FL combination. The

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

22

crash shirking method utilised vicinity sensors to distinguish SOs and DOs. The

proposed technique was effectively tried in the Webots Pro test system and

progressively explored. Furthermore, Singh and Thongam [47] investigated the issue

of OA in the route of the portable robot by building up an advanced FL deduction

framework. In their research energy was diminished by decreasing the trip time to

arrive at the objective. The reliability, verification, and novelty of the utilised technique

were simulated in the FL tool kit of MATLAB.

Additionally, in 2019 Batti et al [48] extended the use of FL for OA in labyrinth

workspace. The future work would consider combining this approach with algorithms

like a genetic algorithm (GA) or neural network (NN) to produce better results. Mohanty

et al [49] proposed a new model called Takagi-Sugeno (T-S) FL to address the issue

of route planning. The model was validated in simulation and real-time experiments.

Figure 7 below shows the navigation space consisting of various obstacles considered

in their study. Future work will focus on dynamic conditions using multiple robots.

Figure 7: Navigation Space, adapted from [49]

Recently, Oleiwi et al [50] research paper addressed the MR navigation and route

planning problem. They addressed the improvement of the FL technique by applying

it in a complex environment that involves more than two DOs. The environment is

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

23

considered unknown and known DOs. The results obtained through simulations

outline that newly improved FL overcame all limitations that were presented prior by

other researchers. Hence, future work will consider the application in drones.

2.2.7 Neural Network (NN) Technique

The NN is a huge plan of equivalent spread planning segments (neurons) related to

graph geology. Learning in the neural association can be controlled or independent.

Coordinated learning vocations portrayed plan information, while independent learning

uses simply the least information without pre-classification. Solo learning counts offer

less computational multifaceted nature and less precision than directed learning

estimations. The neural association could convey the data irrefutably in the loads,

resulting in learning. The NN had filled quickly in the domain of recognising objects

and obstacle discovery in a picture. Recently, the issue of recognising obstacles in the

robot navigation system is important [51]. The most popular methodology used to

solve this problem in the past years has been convolutional neural networks (CNN)

[52, 53].

In 2011, Chi and Lee [54] in their paper various principles were actualised for the

control technique to keep away from the obstacle effectively. The proposed framework

with the NN control approach has illustrated the adequacy of dodging the obstacles

and robots can explore through the direction with dependability and unwavering

quality. In the future, to accomplish better reaction from the proposed NN approach, it

needs further exploratory examination to have better information preparation. The

more substantial prepared information, the better the NN framework to have.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

24

In 2014, Motlagh et al [55] have proposed avoiding obstacles and the objective of

looking for practices utilising NN. Janglova [56] addressed the issue of robot guidance

using NN amidst objects. The research looked at a way of arranging and canny control

of a self-governing robot that should move securely in a mostly organised workplace.

This environment included quite a few obstacles of self-assertive shape and size. The

results were simulated, and the researcher concluded that the NN technique is usable

by and large for the movement of the robot in a self-assertive workplace. In the future,

this strategy will be looked at for the safe movement of our trial versatile vehicle in

indoor conditions.

Moreover, Yu et al [57] addressed the area of an arrangement control issue with

impact and OA for multi-robot frameworks within the sight of model vulnerabilities and

outside unsettling influences. Although the NN has numerous benefits, the

determination of the number of shrouded hubs in the NN should be controlled by the

calculations. The assurance of the middle estimation of the concealed layer hub

requires a further report. Further exploration work will principally focus on the ideal

control issue of the various automated frameworks dependent on the NN.

Additionally, in 2020 Saleem et al [58] roused by the benefits of the various levels

including extraction of profound learning, their work examined the improvement of a

CNN calculation to tackle the issue of the portable robot OA in an indoor climate. The

eventual outcomes showed that the precision can be improved by remembering the

MR direction for the dataset, expanding the size of information, and tuning the

network's hyperparameters. The CNN calculation has indicated the incredible potential

to get highway order exactness for hindrance evasion for portable robots.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

25

Furthermore, Wei and Ye [59] proposed an OA framework dependent on GA-

supported OIF-Elman NN. Figure 8 shows the architecture of the OIF-Elman NN.

Figure 8: OIF-Elman structure network, adapted from [59]

The framework can manage versatile robots to finish the development and impediment

evasion in the workspace with deterrents. Considering the information gathered by the

MR's six infrared sensors, the framework changes its heading and changes the MR's

movement at the following second. The test results demonstrated that the framework

planned by the GA-helped OIF-Elman network is more successful for OA. Another

paper by Zhang et al [60] focused on the improvement of NN for RN in complex

environments.

2.2.8 Particle Swarm Optimisation (PSO) Technique

The PSO is broadly utilised in the field of versatile robot routes tending to the planning

and confinement issues of portable robot routes in the obscure workplace [61]. The

utilisation of PSO assists with limiting the count and holds more steady intermingling

attributes. In 2015, the examination of different methodologies was introduced and the

results showed that the FL matched with PSO provides the ideal outcomes in

separation voyaged [62]. The uses of PSO are not restricted to versatile robot routes

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

26

just in the guard area. Atyabi et al [63] introduced an extension of the PSO technique

in robotics to improve the performance of this method. Their research considered the

environment with SOs and DOs. The technique showed potential under the conditions

that were considered; however, the method cannot be deployed in the whole domain

of robotics. The future work would examine the effectiveness of this method under

real-world applications with mobile robots.

Furthermore, one of the research papers presented another PSO technique, named

the PSO-IAC technique [64]. This algorithm was developed to determine the objective

of coming to terms with the hindrance evasion issue for a 6- degrees of freedom (DOF)

controller of the home assistance robot. The suggested PSO-IAC calculation

coordinates the improved versatile idleness weight and the tightening factor with the

standard PSO. Both the free-space and obstruction shirking states were set up for

assessments in real-time and simulations examinations. Simulation outcomes

demonstrated that the PSO-IAC calculation gives the quickest combination capacity.

Lastly, the suggested control plan can cause the controller of the home assistance

robot to show up at the objective situation with and without impediments in all

continuous trials.

In 2018, Meerza et al [65] built up a PSO-based robot way arranging calculation that

has an impact shirking capacity for SOs and DOs. In the future, they will test their

proposed calculation in a certifiable workplace. Their point was to fuse a few profound

fortifications figuring out how to accomplish more perplexing swarm conduct.

Additionally, Alaliyat et al [66] in their paper, proposed a powerful way of arranging

calculations dependent on PSO, ready to manage the dynamic complex workplace.

The outcomes indicated that, without any earlier information on the workplace, the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

27

robot can accomplish its objective evading SOs and DOs. The robot moves easily and

does not stall out even in complex dynamics. They intend to stretch out this work to

acquire a keen robot that can learn and retain the circumstances during its route

through the workplace. Moreover, they plan to improve the proficiency in anticipating

the speed and course of DOs. Figure 9 shows one of the navigation setups considered

for their simulations.

Figure 9: Complex navigation space with obstacles, adapted from [66]

In 2020, Tian et al [67] in their paper embraced remote sensor organisation to find

robots and impediments. The technique proposed utilised an improved counterfeit

clever calculation to design way. Their simulations used multiple robots. The

limitations to the proposed method are the calculation of the union speed to improve

the worldwide pursuit execution and failure to manage the circumstance that

numerous robots may collide. In the future, hypothetical exploration of PSO calculation

and obstruction evasion calculation to manage different testing improvement issues

will be looked at.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

28

2.2.9 Genetic Algorithm (GA) Technique

This is a well-known technique-based enhancement instrument that follows the

guideline of hereditary qualities and common determination found first in 1958 [68].

The application to the field of software engineering was introduced first in 1975 [69].

The utilisation of GA for the versatile robot route issue has been given to a static

workplace. The investigation is introduced by reproduction results as they were within

the sight of a polygonal impediment. This strategy is embraced by Xiao et al [70] to

accomplish the objective of the route, for example, way length, way perfection, and

OA. Many of the scientists have given routes in a static workplace simply by utilising

GA yet the route within the sight of a moving impediment in an uncertain workplace

[71]. To improve results in robot way arranging, numerous scientists have joined the

use of GA along with another shrewd calculation to get a mixture approach [72]. Patle

et al [73] state that in the future the work may stretch out to cause the crossbreed

regulator and it to be tried for the ongoing open-air workplace. The execution of the

suggested regulator for the submerged condition can be checked. It might likewise

apply to the improvement of the self-ruling vehicle for the different ecological

conditions.

In 2018, Germi et al [74] paper tended to be an alteration to the first potential field

calculation to better the exhibition of the calculation in dynamic conditions. The change

depended on adding deterrent elements as a term to the shock field. The adaptiveness

of the GA stems from changing the proportion of the populace created by each

strategy. Additionally, Choueiry et al [75] research paper introduced a survey of the

path planning enhancement issue and a calculation for robot way arranging in a static

environment using GA as a device. The motivation behind the calculation was to

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

29

discover the quickest course in each number of steps while staying away from

obstacles in the space. The calculation's exhibition was upgraded by consequently

overlooking all recommended courses that cross the limits of the workplace. For

enhancement and search issues, GA was utilised as a hunting instrument in figuring

to discover precise or a surmised arrangement. Figure 10 show the flowchart of the

proposed approach.

Figure 10: Approach Flowchart, adapted from [75]

Furthermore, Lopez-Gonzalez et al [76] utilised GA to accomplish distance-based

development, with the usage of two unique sorts of chromosomes, one for the distance

arrangement, and the other for impact evasion. The proposed answer for this was the

utilisation of the consolidated preparing force of all robots in a parallel GA that

relocates potential arrangements in request to diminish preparation time and

accomplish agreement between the robots to an objective.

Additionally, in 2020 Aghda and Mirfakhrae [77] consolidated the GA-FL technique

that was utilised to improve directing. The explanation behind applying the fuzzy

element was the vulnerability of the information data and the avoidance of

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

30

experiencing obstructions. To exploit the two strategies together, the joined GA-FL

technique was utilised because in FL, the ideal nearby arrangement was found, and

the GA was utilised to manage it.

2.2.10 Ant Colony Optimisation (ACO) Technique

The ACO technique is now applied to different domains of science and designing, for

example, workshop booking, vehicle steering, quadratic task issue, mobile sales rep

issues, diagram shading, and some more. The ACO is a technique that is applied in

the field of the robot system, in particular the path planning of mobile robots [78]. To

determine the automated flying vehicle course issue for a war zone, the ACO

calculation has been introduced to resolve this issue [79]. The ACO technique is used

for deterrent avoidance and course in exceptional conditions. The basic ACO for

portable robot way arranging exists numerous issues, for example, absence of

steadiness calculation, untimely convergence, more difficulty to track down an ideal

answer for complex issues, etc. In 2011, Zhangqi et al [80] proposed improvement

measures. Their research work applied GA to the advancement and arrangement

boundaries of the essential ACO. The simulation outcomes showed that the improved

ideal way length is essentially not exactly the fundamental ACO and instability is more

modest, steadiness essentially improves.

In 2018, Wang et al [81] in their paper the APF calculation was improved first, and the

strategy for piecewise capacity of fascination potential was proposed to take care of

the issue that the robot can without much of a stretch slam into the obstruction when

the length between a robot and an objective point is huge. They too adjusted the

shocking likely capacity to tackle the wavering issue. The improved APF calculation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

31

and ACO are joined as seen in the flowchart in Figure 11. On the premise of finding

the ideal or imperfect way, the assembly speed of ACO is improved. The limitation of

this approach is that the model contains numerous boundaries which make it difficult

to tune. They will discover the relations between these boundaries in future work and

attempt to tune these boundaries by calculations.

Figure 11: Improved APF combined with ACO flowchart, adapted from [81]

Moreover, in 2019 Yi et al [82] paper produced dynamic change data as indicated by

the contrast between the best way of the past age and the best way of the current

cycle in ACO. In 2020, Ma et al [83] address the automated submerged vehicle two-

dimensional independent way arranging issue in the climate influenced by sea

momentum and obstacles. The paper applied a better fireworks-ant colony hybrid

algorithm (F-ACHA). Trial outcomes showed that this calculation can rapidly locate the

global ideal arrangement, and the more unpredictable the workplace. The calculation

proposed in this study gave another approach to the self-sufficient way of arranging

submerged vehicles.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

32

Additionally, Zhao [84] in his paper the ideal way of anticipating robots dependent on

ACO was proposed by contemplating the connected writing and significant methods

of robot way arranging in China and abroad. The paper primarily thinks that under the

condition of detecting the current workplace, the robot powerfully keeps away from the

hindrances and meets the necessities of the least time. Based on presenting the robot

way of arranging the issue, the numerical model was set up for the ACO. The

exploratory outcomes showed that the model can wisely pick a way for the robot with

DO evasion, having the most limited time and more limited distance, and has a specific

commitment to the smart advancement for the robot.

2.2.11 Firefly Algorithm (FA) Technique

The FA technique was introduced by Yang in 2008 [5]. This algorithm can also be

called the metaheuristics algorithm and the idea comes from fireflies flashing behavior.

In 2015, the problem of robot navigation using FA in the domain of SOs was addressed

by Paniagua et al [85]. Three objectives were met in their paper which were route path,

route smoothness, and route length. The future work stated that the work will be

extended in the domain of a dynamic work environment. This problem was also

addressed by Brand and Xiao-Hua [86] for a free collision path using FA in a simulation

platform environment. Other researchers considered solving the underwater robot

navigation problem [87, 88]. Moreover, many researchers have addressed the robot

route planning and navigation problem through various hybrid algorithms that

incorporate FA [89-91]. The hybrid algorithms are growing more and are considered

since the individual technique does not guarantee the best solutions in some

unstructured spaces. For dynamic conditions under the analysis of FA, it was

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

33

addressed by Patle et al [92]. In 2020, Li et al [93] extended research on FA in a static

environment.

2.2.12 Graphical Techniques

Over the years researchers have developed graphical techniques to also address the

issue of RN in workplaces. These techniques are limited to static workplaces.

Recently, a paper by Chi et al [94] used one of the graphical methods known as the

Voronoi diagram. They addressed the issue of PP in complex workplace obstacles

that are moving and static. The experiments were successfully run in real-time and the

technique was robust. Another known method is cell decomposition, it was best used

by Wahyunggoro and Cahyadi [95] in a hybrid approach with the FL method to improve

the duration it takes to reach the TP. Similarly, Zhou and Liu [96] combined a roadmap

approach with SLAM to address the issue of navigation for MRs. Their future work will

focus on optimising this approach to increase accuracy. Some of the other techniques

that exist in the domain of graphical methods are transformed space, oct trees vgraph,

and configuration space.

2.2.13 Vision-Based, Transient Virtual Obstacles (TVO) and Other Techniques

Aggarwal et al [97] in their paper looked at OA using vision-based techniques by

graphing virtual impediments. This technique is based on the intensity of each pixel in

an image captured by a camera. The intensity value of each pixel is used to classify it

as terrain. The pixels with the highest brightness are classified as terrain, while other

pixels are classified as obstacles. Black dots indicated obstacles in simulations. The

disadvantage of this technique is that the robot shows abnormal behavior, such as

detecting false alarms when it was tested.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

34

In 2019, Ravankar et al [98] presented a TVO technique in presence of VOs to change

the methods of the robots for safe navigation. Their current implementation needs

manually adding the VOs within the map. In the future, they are going to modify the

rule to mechanically decide the addition and removal of VOs exploitation knowledge

from totally different sensors. Similarly, they extended this work in 2020 [99] looking

at temporary VOs. The main advantage of their proposed method is that there is no

need to change the route planner when adding and removing VOs on the map. This

allows powerful functions to prevent or guide the robot through specific passages

without using real obstacles, changing the route planner, or reprogramming it.

Other additional techniques include the tangent bug method was implemented by

Yousuf and Kadri [100] in their research, which included concave and convex-shaped

obstacles. A study by M et al [101] used a reinforcement learning technique to address

navigation issues in MRs. Another approach called lifelong learning was used for RN

by Liu et al [102] and Xie et al [103] used a stochastic approach for RN. Other reactive

methodologies like bacterial forging optimisation, artificial bee colony, shuffled frog

leaping, cuckoo search, not included in this paper can be seen in the paper ref [5].

The above sections looked at previous research on methodologies that were used to

address the issue of MR navigation, PP, and optimisation in robotics. Table 2 below

summarises these methodologies and the taxonomy breakdown is as follows:

Environment consisting of what type of obstacles, show if single or hybrid approach,

results simulated or not, the year, geometry of obstacles, target point and robot if it

was one or multiple. Obstacles can be VOs, SOs and DOs.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

35

Table 2: Analysis of various path planning and navigation algorithms amidst obstacles

Cv =Concave, Cx = Convex, SR = Simulation Result, RTR= Real Time Result

Ref

No

Techniques

Environment consists

of

Technique used as Result

Year

Obstacle(s)

Shape

Target Point

(TP)

Robot

SOs DOs VOs Stand

Alone

Hybrid

SR RTR Cv Cx Single

TP

Multi

TP

Single

Robot

Multi

Robot

Classical Approach

[8]

SLAM

Yes No No Yes No No Yes 2014 Yes Yes Yes No Yes No

[9] No Yes No No Yes Yes No 2014 No Yes Yes No Yes No

[10] Yes Yes No Yes No No Yes 2016 Yes Yes Yes No Yes No

[11] Yes Yes No No Yes No Yes 2018 Yes Yes Yes No Yes No

[12] Yes Yes No No Yes No Yes 2018 Yes Yes Yes No Yes No

[13] Yes Yes No No Yes Yes No 2021 Yes Yes Yes No Yes No

[15]

 Light

Detection

and Ranging

(LiDAR)

Yes No No Yes No Yes No 2017 No Yes Yes No Yes No

[16] Yes No No Yes No Yes No 2019 No Yes Yes No Yes No

[17] Yes No No Yes No No Yes 2019 Yes Yes Yes No Yes No

[18] Yes Yes No Yes No Yes Yes 2020 Yes Yes Yes No Yes No

[19] Yes Yes No Yes Yes No Yes 2020 Yes Yes Yes No Yes No

[20]

Vector Field

Histogram

(VFH)

Yes No No Yes No No Yes 1991 No Yes Yes No Yes No

[21] Yes No No Yes No No Yes 1998 No Yes Yes No Yes No

[22] Yes No No Yes No Yes Yes 2000 No Yes Yes No Yes No

[23] No Yes No Yes No No Yes 2012 No Yes Yes No Yes No

[24] Yes No No Yes No Yes No 2014 No Yes Yes No Yes No

[25] Yes Yes No Yes No No Yes 2016 Yes Yes Yes No Yes No

[26] Yes Yes No Yes No Yes No 2019 No Yes Yes No Yes No

[27] Yes Yes No Yes No No Yes 2020 No Yes Yes No No Yes

[28]

Artificial

Potential

Field (APF)/

Virtual

Force Field

(VFF)

Yes No No Yes No Yes No 2014 No Yes Yes No Yes No

[29] Yes No No Yes No No Yes 1989 Yes No Yes No Yes No

[30] Yes No No Yes No No Yes 1985 Yes Yes Yes No Yes No

[31] Yes Yes No No Yes Yes No 2015 Yes Yes Yes No Yes No

[32] No Yes No No Yes Yes No 2017 Yes Yes Yes No Yes No

[33] Yes No No Yes No Yes No 2018 Yes No Yes No Yes No

[34] Yes No No Yes No Yes No 2020 No Yes Yes No Yes No

[35] Yes No No Yes No Yes No 2020 Yes Yes Yes No Yes No

[36] Yes Yes No Yes No Yes Yes 2019 No Yes Yes No Yes No

[37] Yes No No No Yes Yes Yes 2021 Yes Yes Yes No Yes No

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

36

Table 2: Continued

Ref

No

Techniques

Environment consists

of

Technique used as Result

Year

Obstacle(s)

Shape

Target Point

(TP)

Robot

SOs DOs VOs Stand

Alone

Hybrid

SR RTR Cv Cx Single

TP

Multi

TP

Single

Robot

Multi

Robot

Classical Approach

[38]

Hybrid

Virtual

Force Field

(HVFF)

Yes No Yes No Yes Yes No 2009 Yes Yes Yes No Yes No

[39] No Yes Yes No Yes Yes No 2009 Yes Yes Yes No Yes No

[40] No Yes No No Yes Yes No 2010 Yes Yes Yes No Yes No

[41] Yes No No No Yes Yes No 2011 Yes Yes Yes No Yes No

Heuristic Approach

[43]

Fuzzy Logic

(FL)

Yes No No Yes No Yes No 2009 Yes Yes Yes No Yes No

[44] Yes Yes No No Yes Yes No 2012 No Yes Yes No Yes No

[45] Yes Yes No Yes No Yes No 2014 No Yes Yes No Yes No

[46] Yes Yes No Yes No Yes Yes 2016 Yes Yes Yes No No Yes

[47] Yes No No Yes No Yes Yes 2018 No Yes Yes No Yes No

[48] Yes No No Yes No Yes No 2019 Yes Yes Yes No Yes No

[49] Yes No No Yes No Yes Yes 2020 Yes Yes Yes No Yes No

[50] Yes Yes No Yes No Yes No 2021 No Yes Yes Yes Yes Yes

[54]

Neural

Network

(NN)

Yes No No Yes No No Yes 2011 No Yes Yes No Yes No

[55] Yes No No Yes No Yes No 2014 No Yes Yes No Yes No

[56] Yes No No Yes No Yes No 2004 Yes Yes Yes No Yes No

[57] Yes Yes No Yes No Yes No 2019 No Yes Yes No No Yes

[58] Yes No No Yes No No Yes 2020 Yes Yes Yes No Yes No

[59] Yes No No No Yes Yes No 2020 Yes Yes Yes No Yes No

[60] Yes Yes No Yes No Yes No 2020 Yes Yes Yes No Yes No

[63]

Particle

Swarm

Optimisatio

n (PSO)

Yes Yes No Yes No Yes No 2010 No Yes Yes No Yes No

[64] Yes Yes No Yes No Yes No 2016 No Yes Yes No Yes No

[65] Yes Yes No Yes No Yes No 2018 Yes Yes Yes No Yes No

[66] Yes Yes No Yes No Yes No 2019 Yes Yes Yes No Yes No

[67] Yes Yes No Yes No Yes No 2021 Yes Yes No Yes No Yes

[74]

Genetic

Algorithm

(GA)

Yes Yes No Yes No Yes Yes 2018 No Yes Yes No Yes No

[75] Yes No No Yes No Yes No 2019 Yes Yes Yes No Yes No

[76] No Yes No Yes No Yes Yes 2020 No Yes No Yes No Yes

[77] Yes Yes No No Yes Yes No 2020 No Yes Yes No Yes No

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

37

Table 2: Continued

Ref

No

Techniques

Environment

consists of

Technique used as Result

Year

Obstacle(s)

Shape

Target Point

(TP)

Robot

SOs DOs VOs Stand

Alone

Hybrid

SR RTR Cv Cx Single

TP

Multi

TP

Single

Robot

Multi

Robot

Heuristic Approach

[80]

Ant Colony

Optimisatio

n (ACO)

Yes No No Yes No Yes No 2011 Yes Yes Yes No Yes No

[81] Yes No No No Yes Yes No 2018 Yes Yes Yes No Yes No

[82] Yes No No Yes No Yes No 2019 Yes Yes Yes No Yes No

[83] Yes Yes No No Yes Yes No 2020 No Yes Yes No Yes No

[84] Yes Yes No Yes No Yes No 2020 Yes Yes Yes No Yes No

[85]

Firefly

Algorithm

(FA)

Yes No No Yes No Yes No 2015 Yes Yes Yes No Yes No

[86] Yes No No Yes No Yes No 2013 No Yes Yes No Yes No

[87] Yes No No Yes No Yes Yes 2015 No Yes No Yes No Yes

[88] Yes No No Yes No Yes Yes 2013 No Yes No Yes No Yes

[89] Yes No No No Yes Yes Yes 2015 No No Yes No Yes No

[90] Yes No No No Yes Yes No 2018 No No Yes No Yes No

[91] Yes Yes No No Yes Yes Yes 2019 Yes Yes Yes Yes Yes Yes

[92] Yes Yes No Yes No Yes Yes 2018 Yes Yes Yes No Yes Yes

[93] Yes No No Yes No Yes No 2020 No Yes Yes No Yes No

Graphical Approach

[94]

Graphical

Yes Yes No Yes No Yes No 2021 Yes Yes Yes No Yes No

[95] Yes Yes No No Yes Yes No 2016 No Yes Yes No Yes No

[96] Yes No No No Yes No Yes 2019 No Yes Yes No Yes No

Other Approaches

[97] Vision

Based

Yes No Yes Yes No No Yes 2010 No Yes Yes No Yes No

[98]

TVO

No No Yes Yes No No Yes 2019 No Yes Yes No Yes No

[99] Yes No Yes Yes No No Yes 2020 Yes Yes Yes No Yes No

[100]

Other

Techniques

Yes No No Yes No Yes No 2020 Yes Yes Yes No Yes No

[101] Yes No No Yes No Yes No 2019 No Yes Yes No Yes No

[102] Yes No No Yes No Yes Yes 2021 No Yes Yes No Yes No

[103] Yes No No Yes No No Yes 2021 Yes Yes No Yes Yes No

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

38

2.3 Alternative Solutions

The methodologies in Table 3 have been used to solve guidance and optimisation

issues in mobile robots amidst obstacles. These techniques solved the problems

closely related to the current problem of this research. Table 3 below gives the

limitations and strengths of some of these methodologies reviewed in the literature.

Table 3: Methodologies strengths and limitations

Methodologies Strengths Limitations

NN  Helps in learning capabilities.

 Real time experiments as well as
simulations can be conducted

 Slow convergence
speed

 Complexity increases
with layers.

HVFF  High productivity and viability

 Robust and Versatile

APF/VFF  Robust

 Efficient and Versatile

 Local trap complexities

ACO  Easy to implement.

 Produce good outcomes in simulation.

 Can be easily utilised for hybrid
methodologies.

 Require minimal control parameters

 Convergence is slow

PSO  Easy to implement.

 Produce good outcomes in simulation.

 Faster convergence

 Performance analysis is
complicated

GA  Produce good results when integrated
with other methodologies.

 Great capability in terms optimisation

 Produce good outcomes in simulation

 Incompetent in a
dynamic environment

 Local minima problems
cause oscillations in the
framework

From the review the researchers have generally utilised delicate processing methods

when contrasted with hard registering; that is deterministic, non-deterministic, and

evolutionary algorithms for MR route, optimisation, and OA. The disadvantages and

advantages of these techniques were also looked at. The methods were looked at

from an efficiency perspective and complexity level. For this research, not all methods

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

39

will be considered because of the drawbacks they each have based on complexity and

efficiency.

2.4 Preferred Solution

The hybrid approach is the preferred solution to achieve the objectives of this

research. The chosen methodology from the literature review is a hybrid approach that

adopts the concept HVFF algorithm [38-41] which integrates VGC, VFF and, VOC

techniques. This approach minimises the drawbacks that individual techniques have

while addressing the route and OA problem for MRs. This approach can achieve

multiple objectives and is less costly. From the review in section 2.2, the key findings

by researchers is that the hybrid approach is robust, effective, and tends to give better

results.

2.5 Chapter Summary

In this chapter research papers were reviewed. The literature review looked at

methodologies that solved problems closely related to that of this research. An outline

of PP procedures for self-sufficient MRs, the benefits, and faults of these strategies

were introduced and examined momentarily. An exhaustive conversation of each

approach in this expansive research field of PP for MRs has been shown. An intriguing

perspective is that the course of this research is despite the significant improvement

in the area over recent many years, limited research has been accounted for

particularly in multi-robotic frameworks. Most results were captured through

simulations more than the real-world. Moreover, most research in MR navigation was

conducted more in static environments. A large portion of the papers manages the

subject of single advanced robotics frameworks while leaving a wide assortment of

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

40

regions in composed and organised multi-robotic frameworks that are yet open for

future works. In conclusion, from the literature review the key findings by researchers

is that the hybrid approach is robust, effective, and tends to give better results. This

approach minimises the drawbacks that individual deterministic and stochastic

techniques have while addressing the PP, navigation, and OA problem for MRs. The

approach is capable to produce better results for the problem at hand and can achieve

multiple objectives. This study is an extension of the work of Olunloyo and Ayomoh

[39], which incorporate new SOs. The basis of introducing the new obstacles will be in

relation to the real-life obstacle problems.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

41

CHAPTER THREE

RESEARCH APPROACH

3.1 Chapter Overview

This chapter presents the methodology deployed in this research. The chapter is

divided into three sections viz: the conceptual framework which presents a

comprehensive research roadmap for this dissertation, the theoretical framework

which extends the conceptual framework via a detailed generic illustration of the

governing theories associated with each of the identified research concepts and finally,

the development of specific models in respect of the problem domain earlier articulated

with the aid of modeling procedures as depicted in the theoretical framework. The

chosen research methodology is premised on findings from the literature as presented

in section 2.4 in chapter two. The methodology deployed in this research as presented

in this chapter, is the HVFF concept for efficient robot vehicle navigation and control.

The HVFF [38-41] is a hybrid approach that integrates the VGC, VFF and VOC

techniques. This approach, minimises the drawbacks that most isolated individually

operated robot navigation methodologies often encounter in their bid to navigate along

an optimal path towards a desired target point. This algorithmic challenge is brought

to the fore while the robot, apart from trying to sustain itself on the optimal trajectory

is also trying to simultaneously avoid colliding with the workspace obstacles along its

trajectory.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

42

3.2 Conceptual Framework

The research design as contained in the conceptual framework presented in figure 12,

depicts a generalised flow of work in this research from the initial to the concluding

phase. Figure 12, Point 1 defines the problem and set the objectives of this research.

This research focus on the mobile robot (MR) navigation problem with the aim of

developing an optimum navigation algorithm. Point 2, gives an exploration and

applications on a scope of subjects of significance for the path of MRs amidst

obstacles. Moreover, Point 3 focus on formulating mathematical models that make up

the methodology chosen for this research. The outlook of this methodology is given in

Figure 13. The mathematical models are to aid with developing a solution algorithm

for this research. Additionally, Point 4 will focus on validating the developed solution

algorithm using the python software. Various cases with different workspaces will be

simulated. The simulation results will be analysed by comparing some results with past

research results. Point 5 will give research findings and make recommendations about

future work of this research. Lastly, the methodological outlook is outlined in Figure

13, it is divided into three sub problem blocks which connect with the research

objectives and methods.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

43

Figure 12: Conceptual framework: Research Comprehensive Outlook

Figure 13: Conceptual framework: Research Methodological Outlook

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

44

3.3 Theoretical Framework

This section presents a detailed set of theoretical models in respect of the conceptual

framework. Sub-section 3.3.1 contains the theoretical representations of the VFF

algorithm, Sub-section 3.3.2 contains the theoretical representation of VGC and VOC

algorithms, and lastly subsection 3.3.3 gives the HVFF methodology steps.

3.3.1 VFF algorithm

The method of route and obstacle evasion of a MR is performed by the VFF

algorithm. Similar to the APFs, the VFF technique pivots with relation to the concept

of attraction and repulsion. It further employs a two-dimensional cartesian lattice

framework to communicate to the work environment inside which the MR is restricted

to explore. A certainty value (CV) is assigned to each compartment within the work

environment, indicating the accuracy of the computation as to whether an obstruction

is detected on a certain block inside the work environment. In an endeavor to resolve a

few of the issues related to APFs, the VFF technique was pioneered. One of the

issues concerned with VFF is that of LMT. Olunloyo and Ayomoh [39] solved this

problem utilising the HVFF method.

To itemise VFF technique in [38], let 𝑞𝑟 describe the layout space of the robot in 2D

range such that 𝑞𝑟 = 𝑓(𝑥𝑟 , 𝑦𝑟) where 𝑥𝑟 ≡ 𝑖 𝑎𝑛𝑑 𝑦𝑟 ≡ 𝑗, which follows this directional

representation 𝑞𝑟 = 𝑞𝑟(𝑖) + 𝑞𝑟(𝑗). Additionally, if vector operator ∇ given by ∇ =

 𝑖
𝜕

𝜕𝑥
 + 𝑗

𝜕

𝜕𝑦
 is looked at, then:

∇(𝑞𝑟) = (𝑖
𝜕𝑞𝑟

𝜕𝑥
 + 𝑗

𝜕𝑞𝑟

𝜕𝑦
) (3.1)

And if in every motion point the MR R is subjected to forces from SOs and target

position then the resultant potential will be represented as follows; 𝑈𝑎𝑡𝑡(𝑞𝑟) – the sum

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

45

of AP and 𝑈𝑟𝑒𝑝(𝑞𝑟) – the sum of RP. Moreover, the gradient of 𝑈 at 𝑞𝑟 is defined below

where ∇U(𝑞𝑟) is a vector that faces the direction of the quickest change of U at layout

𝑞𝑟.

∇𝑈(𝑞𝑟) = [
𝜕𝑈

𝜕𝑥

𝜕𝑈

𝜕𝑦
]

𝑇

 (3.2)

Additionally, force potentials can be split into x and y axes in form of attraction and

repulsion such that they are defined as follows and Figure 14 below show the force

diagram for the robot:

𝑈𝑎𝑡𝑡(𝑞𝑟) = 𝑈𝑎𝑡𝑡
𝑥 (𝑞𝑟) + 𝑈𝑎𝑡𝑡

𝑦
(𝑞𝑟) (3.3)

𝑈𝑟𝑒𝑝(𝑞𝑟) = 𝑈𝑟𝑒𝑝
𝑥 (𝑞𝑟) + 𝑈𝑟𝑒𝑝

𝑦
(𝑞𝑟) (3.4)

Figure 14: Vector Force Diagram illustration for the robot

Furthermore, assuming that

𝑑𝑡 = √((𝑥𝑡 − 𝑥𝑟)2 + (𝑦𝑡 − 𝑦𝑟)2) (3.5)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

46

Where, 𝑑𝑡 = robot distance from the target point and the layout space for robot is

given as 𝑞𝑟(𝑥𝑟 , 𝑦𝑟) and for the target point it is given as 𝑞𝑡(𝑥𝑡 , 𝑦𝑡). And 𝑥𝑟 = 1, . . , (𝑛 −

1), 𝑛 𝑎𝑛𝑑 𝑦𝑟 = 1, . . . , (𝑛 − 1), 𝑛.

Such that 𝑑𝑡 = ‖𝑞𝑡 − 𝑞𝑟‖ (3.6)

If 𝑞𝑟(𝑥𝑟) 𝑎𝑛𝑑 𝑞𝑟(𝑦𝑟) are direction considered the following is depicted respectively:

 𝑑𝑡 = ‖𝑞𝑡 − 𝑞𝑟‖ =
(𝑥𝑡−𝑥𝑟)

√∑ (𝑥𝑡−𝑥𝑟)2𝑛
𝑟=1

 (3.7)

 𝑑𝑡 = ‖𝑞𝑡 − 𝑞𝑟‖ =
(𝑦𝑡−𝑦𝑟)

√∑ (𝑦𝑡−𝑦𝑟)2𝑛
𝑟=1

 (3.8)

From Equation (3.7) and Equation (3.8) the following is depicted:

 ∇𝑑𝑡(𝑞𝑟(𝑥𝑟, 𝑦𝑟)) =
(𝑞𝑡 −𝑞𝑟)

√∑ (𝑥𝑡−𝑥𝑟)2𝑛
𝑟=1 + √∑ (𝑦𝑡−𝑦𝑟)2𝑛

𝑟=1
 =

𝑞𝑡 −𝑞𝑟

‖𝑞𝑡 −𝑞𝑟‖
 (3.9)

As a result, AP is as follows:

 𝑈𝑎𝑡𝑡
𝑥 (𝑞𝑟) =

(𝑥𝑡−𝑥𝑟)

𝑑𝑡
 (3.10)

𝑈𝑎𝑡𝑡
𝑦

(𝑞𝑟) =
(𝑦𝑡−𝑦𝑟)

𝑑𝑡
 (3.11)

Furthermore, in similar context RP is represented following the work of [29]:

 𝑈𝑟𝑒𝑝
𝑥 (𝑞𝑟) = 𝑈𝑟𝑒𝑝

𝑥 (𝑞𝑟) +
𝐹𝑐𝑟

3
 ∗

𝑐𝑖𝑗

𝑑𝑜
2 ∗

𝑥𝑔𝑟𝑖𝑑 −𝑥𝑜

𝑑𝑜
 (3.12)

 𝑈𝑟𝑒𝑝
𝑦

(𝑞𝑟) = 𝑈𝑟𝑒𝑝
𝑦

(𝑞𝑟) +
𝐹𝑐𝑟

3
 ∗

𝑐𝑖𝑗

𝑑𝑜
2 ∗

𝑦𝑔𝑟𝑖𝑑 −𝑦𝑜

𝑑𝑜
 (3.13)

Where:

 Fcr =
3∗relangle

do
 (3.14)

Equation (3.14) is activated when obstacles are sensed in the dynamic window of a

robot (𝑐𝑖𝑗). Without obstacles Equation (3.14) the outcome is zero and the repulsive

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

47

initial value is also zero. This is following the presumption that the MR preferably starts

from a condition of rest where it is uninformed of its current circumstance. Such that

the following is considered:

𝑐𝑖𝑗 = {
0 𝑛𝑜 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑛 𝑟𝑜𝑏𝑜𝑡′𝑠 𝑎𝑐𝑡𝑖𝑣𝑒 𝑤𝑖𝑛𝑑𝑜𝑤

1 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑛 𝑟𝑜𝑏𝑜𝑡′𝑠 𝑎𝑐𝑡𝑖𝑣𝑒 𝑤𝑖𝑛𝑑𝑜𝑤

If 𝑐𝑖𝑗 = 1 and

if 𝑑𝑡 > 0,

then 𝑑𝑜 = √((𝑥𝑟 − 𝑥𝑜)2 + (𝑦𝑟 − 𝑦𝑜)2) (3.15)

Where 𝑑𝑜 = robot distance from the obstacle? The position of an obstacle is

represented by 𝑥𝑜 𝑎𝑛𝑑 𝑦𝑜

As a result, the following Equations (3.14) and (3.15) mean the RP in the x and y

direction. The route way of the MR is controlled by these two factors as they together

decide the MR's new situation as it explores from one state-space towards the TP.

𝑈𝑥(𝑞𝑟) = 𝑈𝑎𝑡𝑡
𝑥 (𝑞𝑟) + 𝑈𝑟𝑒𝑝

𝑥 (𝑞𝑟) (3.16)

𝑈𝑦(𝑞𝑟) = 𝑈𝑎𝑡𝑡
𝑦

(𝑞𝑟) + 𝑈𝑟𝑒𝑝
𝑦

(𝑞𝑟) (3.17)

3.3.2 VGC and VOC algorithm

The drawback of using the traditional VFF algorithm alone is the issue of LMTs. Hence,

VGC and VOC are adopted to solve the problems interlinked with the use of the VFF

algorithm. Although there has been built up within the writing that either of these

concepts may be utilised freely, the double utilisation of both concepts as an

indispensable portion of the arrangements prepare is novel.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

48

Additionally, an outline of how the conventional VFF is combined with VGC and VOC

will be given as illustrated in Figure 15. VGC and VOC focus on guiding the robot to

the objective point using sensors to avoid obstacles. Cases for VOC consider the

acceptable distance of a robot from the obstacles while moving towards the objective

point. Firstly, the VOC regarding this study is a proactive technique that guarantees

that the MR is not pulled in into a corner locale of obstacles that have no outlet. It

is pivoted on the concept of totally blocking off such paths that may lead the MR to

a LMT. The approach [38] proposed for the representation of VOC is the concept

of meeting vertices. This includes the presentation of a modern line that closes the

edges of the impediments that outline the LMT. The crossing point of the line of the

location of the target from the robot with this modern line represents the most

remote area the virtual obstacle (VO) can be put from the robot; something else it is

located right following to the robot along the line of the location of the objective from

the MR.

To itemise VOC from [38], firstly, there is a need to identify if the VO is needed

therefore the VOC function is defined as VOC = 𝑓(𝐼𝐿𝑆). Where 𝐼𝐿𝑆 is a file for

portraying the statue of the line of locating from the objective position regarding

capture attempts by obstacles that might cause a LMT such that the following is

observed:

𝐼𝐿𝑆 = {
0 𝑙𝑖𝑛𝑒 𝑜𝑓 𝑙𝑜𝑐𝑎𝑡𝑒 𝑖𝑠 𝑛𝑜𝑡 𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑 𝑏𝑦 𝑎𝑛 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒

 1 𝑙𝑖𝑛𝑒 𝑜𝑓 𝑙𝑜𝑐𝑎𝑡𝑒 𝑖𝑠 𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑 𝑏𝑦 𝑎𝑛 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒

If 𝐼𝐿𝑆 <> 0 then VOC is actioned.

Moreover, positioning of the VO takes the following steps:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

49

Step One: Find the vertices at the corners of the impediments that frame the passage

into suspected marginal traps.

Step Two: Extend a line between vertices at the corners of the obstacle.

Step Three: Sketch a straight line from the MR’s location to the specified TP. This

appears as the normal direction of the MR to the TP accepting that there was no

obstacle.

Step Four: On the off chance that line in Step Three converges to a line in Step Two

at any point along with Step Two, it infers that the MR’s common direction is in course

of a trap.

Steps One-Four are confirmation steps as to whether the VOC ought to be started.

When confirmed that the MR’s direction is within the course of a trap, then Step Five

is triggered.

Step Five: This presents a VO at the current position of the MR. It is done by utilising

a few shapes of generation rule as a control command to obstruct MR motion. This

anticipates the MR from moving within the heading of LMT and consequently

encourages the possible minimisation of travel time. Quickly after this step,

continuation is to actualise the VGC as itemised underneath by letting 𝑓𝑣𝑜𝑐 = 1.

Furthermore, to itemise VGC from [38] accepting a protest at a self-assertive position

say 𝑝𝑖,𝑗 is seen from an interpreted position 𝑝𝑖+1,𝑗+1 at that point the perceivability of

this question at its starting state 𝑝𝑖,𝑗 from its current state, 𝑝𝑖+1,𝑗+1 shapes a critical

address postured by the VGC. This VGC in [38] pivots on the concept of relative

perceivability. It works on the guideline of falling back from a first known location to a

recently explored location. The essential objective of the VGC in this setting is to lead

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

50

the MR from a point where the VO was enacted to the ultimate TP through the help of

one or more brief goals referred to as virtual objectives. The number of virtual

objectives and their relative location could be a work of the geometry of the

impediment’s interference the perceivability of MR from the objective state. The

degree of perceivability of a question from its beginning location 𝑝𝑖,𝑗 as prior portrayed,

relative to its unused location 𝑝𝑖+𝑛,𝑗+𝑛 determines whether the modern location ought

to be considered a virtual location of the protest. On the off chance that the object’s

perceivability is darkened at point 𝑝𝑖+𝑛,𝑗+𝑛 at that point going before point 𝑝𝑖+𝑛−1,𝑗+𝑛−1

is considered for the virtual location of the question. For this reason, the middle

focuses between 𝑝𝑖,𝑗 , and 𝑝𝑖+𝑛,𝑗+𝑛 are chosen along and near to the vertices of the

mediating impediment limit.

The procedure for the VGC is as follows:

Firstly, check the need for a virtual goal such that if 𝑓𝑣𝑜𝑐 𝑜𝑟 𝑇𝑛𝑠𝑜 = 1 then virtual goal

is needed. Hence, the following is observed:

𝑓𝑣𝑜𝑐 = {
0 𝑉𝑂 𝑛𝑜𝑡 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑
1 𝑉𝑂 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑

Where 𝑇𝑛𝑠𝑜 has been presented to depict the circumstances that happen when the

MR and TP are at inverse closes of the space in between two barely dispersed

impediments.

Finding the virtual goal takes the following steps:

Step One: Find the objective position.

Step Two: Find the position of the robot.

Step Three: From the objective location, fall back along an anticipated line of locating

towards the MR location skirting the border of the mediating impediment.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

51

Step Four: Find and locate virtual objectives at suitable focus along the line of locating

as backtracking is in progress from the genuine objective to the MR location. The

precise area of each virtual objectives is a function of two factors: (𝑣𝑟𝑔, 𝑑). Such that,

𝑣𝑟𝑔 either portrays the relative perceivability of the foremost later virtual objective from

the immediately preceding virtual objective or the relative perceivability of virtual

objective from the objective. And d is the removal between the virtual goal and the

impediment edge discouraging MR’s line of locate from the real objective.

Imperative parameter which is vital to end the method of presenting virtual goal is 𝑣𝑚𝑟

which speaks to the relative perceivability of the foremost later virtual objective from

the robot. Such that the following is observed:

𝑣𝑚𝑟 = {
0 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑔𝑜𝑎𝑙 𝑛𝑜𝑡 𝑣𝑖𝑠𝑖𝑏𝑙𝑒
1 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑔𝑜𝑎𝑙 𝑣𝑖𝑠𝑖𝑏𝑙𝑒

In case 𝑣𝑚𝑟 = 0 at that point no more virtual goal is required; be that as it may if

𝑣𝑚𝑟 = 1 at that point another virtual goal is required. This cycle is rehash until 𝑣𝑚𝑟 = 0.

3.3.3 HVFF Methodological Steps

The itemisation of how the VOC and VGC concepts are combined with the VFF

technique to form the pioneered hybrid approach by giving a guide diagram of the

working model of the general algorithm is shown in Figure 15.

Step One: The step starts by lining up the robot to face the target point. The module

permits the formation of a two-dimensional work environment of measurement X by Y

and selects a settled point of reference for the workspace. The accentuation is the

accessibility of the work environment. A route environment may be customary or

unpredictably formed: what is vital is the accessibility and outline of the boundaries of

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

52

the work environment. Where this errand is taken after by the recognisable roof of a

point inside the work environment which serves as a point of reference for the MR

route. Reference point aid the MR to know it claims relative location, and those of the

objective state or TP, and the work environment with obstacles.

Step Two: The step looks at analysing the environment. Furthermore, the module

performs workspace mapping to identify areas that cause navigation problems to the

conventional VFF concept. Such areas are characterised by navigation barriers that

cause LMTs. After identifying areas that are prone to the occurrence of local minima,

their relative position vectors are obtained from the reference point. This information

is encoded in the MR's information base before the navigation exercise begins. The

significance of this point is that the proposed algorithm is partially applicable to

the known surrounding, where some prior knowledge of the navigation space

is required.

Figure 15: Flowchart for the methodology HVFF, adapted from [38]

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

53

Step Three: This step is the decision step for obstacle identification. The step primarily

serves as a sequel to the above Step Two, which determines whether to enable or

disable certain algorithms in a control sub-unit because of a survey exercise in Step

Two. If the work environment is not likely to be a LMT, Step Four is initiated. But if the

navigation trap is in doubt Step Four is skipped and goes to Step Five where VOC,

VGC, and VFF are implemented. Hence, the aim is to combine Step Two with Step

Four or Step Five depending on the event that may be.

Step Four: This step implements the conventional VFF technique at startup. If the

result of the study of the work environment in Step Two is such that it is unlikely to

capture local minima, go from the third step to the fourth. At this moment, the

navigation environment is referred to as a completely unfamiliar environment as the

MR’s navigation controls are fully reactive and no prior knowledge of obstacles in the

work environment is required. If the result of the work environment is such that a LMT

is likely to happen, then the algorithm proceeds from the third step to the last one.

Step Five: The step is actioned when the LMT arises from the underlying shape

constraints. In this step, VOC, VGC, and VFF are implemented together. At this stage,

the navigation environment is categorised as little known surrounding because the

robot investigation at the objective location relies on prior knowledge of some of the

obstacles in the work environment.

3.4 Model Development and Solving

The problem undressed in this research work will be carried out using the hybrid

method. The algorithm will address the concept of objective target and avoiding

obstacles for MR path planning. The aim is to add value in developing an optimum

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

54

algorithm for MR navigation that will optimise the total travel time of a MR from the

start point to the TP in the domain of obstacles.

3.4.1 Assumptions and Navigation Modelling

In this study, the navigation environment considered for the MR is an unknown

environment in which the MR acquires obstacle information such as position and

geometry through sensory inputs. The constraints are obstacles and route length. The

additional assumptions considered in this research include:

 All obstacle coordinates and geometry are automatically detected by the robot.

 Neither new targets nor obstacles can be added to the workspace once the

robot is in motion.

 A robot has prior knowledge of the target location.

3.4.2 Mathematical Modelling

3.4.2.1 Static Scenario MR Distance from TP

Step I: Robot distance from TP

This step looks at the model that calculates the robot distance from objective point

(TP) in the work environment.

 𝑑𝑇𝑃 = √((𝑥𝑇𝑃 − 𝑥𝑟)2 + (𝑦𝑇𝑃 − 𝑦𝑟)2) (3.18)

Step II: Identifying static impediments

This looks at the procedure to identify static impediments in a workspace. The

procedure is adopted from the research paper by Ayomoh et al [3] investigated an

effective robot optimum route modelling in a multi-target space. Close to the current

study, the issue was that of developing an ideal model to minimise the complete travel

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

55

duration of a MR as it visits its desired TPs amidst workspace obstructions. A hybrid

modelling approach was used to address the problem in a multi-objective domain.

Consider a 2D work environment defined by 𝑥 𝑎𝑛𝑑 𝑦 such that they linked to origin

point O. Hence, the following is observed(𝑥𝑟 , 𝑦𝑟) = 𝑓(𝑥𝑟 , 𝑦𝑟). Furthermore, take set of

virtual radiation objects with equal length of 𝑙(𝑚) which is radiated by the travelling

robot (r) at a certain velocity (v). Then the underlying situation moving robot (r)

comparative with static obstruction straightforwardly in the middle of the robot and an

ideal objective point is given as 𝑙𝑛. This length proceeds inside an example of decrease

after some time to: 𝑙𝑛−1 , 𝑙𝑛−2 and hence 𝑙𝑛−3 units of length. This is depicted in Figure

13. Moreover, consider that 𝑣 =
𝑑

𝑑𝑡
(𝑠) for moving robot at the same velocity (v)

therefore 𝑠 = [𝑙4 − 𝑙3 = 𝑙3 − 𝑙2 = 𝑙2 − 𝑙1] as a result, [𝑙(𝑖+𝑛) − 𝑙(𝑖+𝑛−1)] =

 [𝑙(𝑖+𝑛−1) − 𝑙(𝑖+𝑛−2)]. It is further observed that after travel time 𝑡𝑖 the robot covers

[𝑙(𝑖+𝑛) − 𝑙(𝑖+𝑛−1)] in the distance and the radiation cone length of the assumes new

length l(m) as observed in Figure 16. If these remaining parts hold in ensuing distances

covered, it suggests the deterrent is static comparative with the robot. The supposition

holds if there should arise an occurrence of non-uniform speed as seen below:

𝑎 =
𝑑

𝑑𝑡
(𝑣) =

𝑑

𝑑𝑡𝑖
(𝑠𝑖) , 𝑓𝑜𝑟 𝑖 = {1, . . , 𝑛 − 1, 𝑛} 𝑎𝑛𝑑 𝑡𝑖 ≠ 𝑡𝑖+1

In this case, the robot covers a distance(s) between any two stretches at different

times notwithstanding, the overall length of the radiation object from the robot's

situation to the hindrances is likewise used to distinguish the static conduct of the

obstacle. Hence, the conditions of computational steps to detect if an obstacle is static

are such that it considers the following:

// Consider (𝑥𝑟 , 𝑦𝑟) 𝑎𝑡 𝑡 = 0 − 𝑟𝑜𝑏𝑜𝑡 𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝑠 𝑡𝑜 𝑚𝑜𝑣𝑒, 𝑎𝑙𝑠𝑜

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

56

(𝑥𝑜𝑏𝑠, 𝑦𝑜𝑏𝑠) 𝑎𝑡 𝑡 = 0 − 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝑠.

At t > 0, if robot (r) co-ordinate (𝑥𝑟+𝑖, 𝑦𝑟+𝑖) ≠ (𝑥𝑟 , 𝑦𝑟) ,

obstacles co-ordinate (𝑥𝑜𝑏𝑠+𝑖, 𝑦𝑜𝑏𝑠+𝑖) = (𝑥𝑜𝑏𝑠, 𝑦𝑜𝑏𝑠)

and if [𝑙(𝑖+𝑛) − 𝑙(𝑖+𝑛−1)] = [𝑙(𝑖+𝑛−1) − 𝑙(𝑖+𝑛−2)] then obstacle is static//

Figure 16: Static Obstacle Detection, adapted from [3]

3.4.2.2 Repulsive OA and Goal Seeking Navigation Algorithm

This algorithm assumes that the MR (r) is standing in a hill on a plane and it has to

reach a goal downhill by rolling towards it. If there are obstacles in between the

algorithm use the analogy of gravity or electrostatic field in which the MR and the

obstacles are both of the same charge. So they repel each other proportionally, which

is the concept taken from the VFF technique explained in section 3.3.1. As the MR

gets closer to an obstacle the RF keeps increasing until it is great that the MR cannot

touch the obstacle but avoids it and move on.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

57

Step I: Global Functions

This step give the two global equations used in repulsive algorithm. The first equation

(Equation 3.20) is the normalisation vector which calculate the unit vector and the

second equation calculates the RF between the MR and the obstacle. Algorithm 1

and 2 give the pseudocode for their calculation. Algorithm 2 determine the RF between

two points and returns the vector. Where 𝑑 is the distance between two points,

𝑣𝑥 𝑎𝑛𝑑 𝑣𝑦 represents vectors units for x and y, and 𝐺𝑜 gravitational constant value of

an obstacle.

 Normalise Vector

 𝑑 = √(𝑣𝑥
2 + 𝑣𝑦

2) (3.19)

 𝑣 = ⟨
𝑣𝑥

𝑑
,

𝑣𝑦

𝑑
⟩ (3.20)

Algorithm 1 Nomalise Vector

1
2
3
4
5

procedure NormaliseVector (input vector)

 use Equation 3.19 to calculate d (distance)

 compute the vector using Equation 3.20

 end

end

Take the output as the normalised vector

 The Obstacle RF

 𝐹𝑐𝑟 =
𝐺𝑜

𝐶𝑉
 (3.21)

 𝑈𝑛𝑖𝑡_𝑉𝑒𝑐𝑡𝑜𝑟 = ⟨
𝑥𝑟−𝑥𝑜

𝑑𝑜
,

𝑦𝑟−𝑦𝑜

𝑑𝑜
⟩ (3.22)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

58

Algorithm 2 Obstacle Force

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

𝑃𝑟 = 𝑀𝑅 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑃𝑜 = 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
CV = Certainty Value

rSafe = safety radius (it is introduced to cater to robot actual dimensions)

procedure ObstacleForce (Pr, Po, rSafe)

 use Equation 3.15 to calculate 𝑑𝑜

 if 𝑑𝑜 ≤ rSafe then

 Assign CV the value 0

 else

 CV is computed by 𝑑𝑜 minus rSafe squared

 And gravity force is maximum when 𝑑𝑜 is equal to rSafe

 use Equation 3.21 to compute repulsive force proportional to
1

𝑐𝑣

 use Equation 3.22 to compute unit vector

 multiply Equation 3.21 with Equation 3.22 to get force vector

 end

end

Take the output as force vector and unit vector

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

59

Step II: Repulsive OA Algorithm

This step will give the pseudocode for the repulsive OA navigation algorithm on how it

is implemented.

Algorithm 3 OA Navigation Algorithm

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

Class Navigation:

 procedure initial (Pr, Po, rSafe)

 set MR position

 set goal position

 set a safety radius to cater to robot actual dimensions

 create an empty list of obstacles

 end

 procedure Navigate
 determine the best route to goal and return this direction vector by default

 set steering vector

 set own position of the MR

 compute direct vector to the goal using Equation 3.18

 if length of obstacles list is > 0 then there are obstacles in sight

 for each obstacle in the list do

 generate the repulsive gravitational force in Algorithm 2

 then generate the steering vector

 use normalised vector return to the recommended steering vector

 based on this the MR turn into whatever is recommended

 end

 procedure SetGoal
 create a new goal to assist the robot when trapped deep in a long

 extreme size concave partially trying the concept of VGC

 end

end

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

60

Step III: Goal Seeking Algorithm

This step will give the pseudocode for the TP navigation algorithm.

Algorithm 4 TP Navigation Algorithm

1
2
3
4
5
6
7
8
9
10

Class GoalSeeker(input MR):

 procedure initial (Pr, Po,)

 set MR position

 set goal position

 set a safety radius to cater to robot actual dimensions

 initiate Algorithm 3 by inputting Pr, Po and rSafe

 create a list of currently visible obstacles

 when in goal seek mode check for traps as the MR move towards the TP

 when trapped apply Algorithm 3 while updating the steering vector to the TP

 end

end

3.4.3 Solution

The general mathematical model that will be utilised to decide the plausibility of robot

colliding with impediments in the workspace is given in section 3.3. The optimal

solution that will be used to achieve the objectives of this study is the HVFF approach

that applies the VFF technique combined with the VGC technique. Figure 17 below

shows the solution algorithm flowchart of the approach that will be used in this study

towards the aim of developing an optimum algorithm for MR navigation in complex

environments. The computational algorithm that will be validated is MR navigation in

the domain of SOs; such that the robot is to identify the sequential order in which the

target point is to be visited. The output results will be compared with the published

work that used a similar approach. Computation algorithm below is proposed for the

solution to the problem of cul-de-sac traps which are caused by concave-shaped

obstacles. These traps can be observed in real-life environments such as mines which

are normally unstructured and complex. Mining environments have deep concaves of

which in some areas humans cannot explore fully hence a need for MRs to do those

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

61

tasks. In these areas an MR still needs to navigate optimally and detect lengthy or

concaved obstacles. The cases presented in the next chapter test for that optimality

by starting with easily detectable obstacles to non-detectible ones.

[Pre-Route Phase]

 Step I: The robot adjusts its detecting view to the wanted TP.

[Navigation and Obstacle Location Phase]

 Step II: The robot explores the TP and constantly check for the presence of

impediments along its route.

 Step III: If a deterrent is available, the robot figures its Euclidean separation

from the obstacle. Where the Euclidean robot distance from impediment is

defined by Equation (3.15).

 Step IV: Robot checks impediments as moves towards the TP.

 Step V: If the impediment is present follow section 3.4.2 model procedure which

incorporates the robot using sensory inputs to sense the impediments.

 [Obstacle Avoidance Phase]

 Step VI: If the impediment cause LMT or blocks the path, implement Algorithm

3 which is taken from the VFF technique explained in section 3.3.1, and

integrate the VGC technique explained in section 3.3.2 for effective OA.

 Step VII: If there are no obstacles continue navigating to the TP

 Step VIII: End

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

62

Figure 17: Solution algorithm flowchart

3.5 Chapter Summary

This chapter gave an in-depth of the research approach divided into a conceptual

framework, theoretical framework, model development, and solving. The chapter gave

an overview of how this research will be approached and addressed in detail to meet

the objectives of this paper. The modelling approach in addressing the objectives of

this research is as follows: It will start with mathematical algorithms development using

vectors and geometry and hybrid approach which adapt the concept of the HVFF for

development of an optimum algorithm. Lastly, the developed solution algorithm will be

used in coding programs for running simulations and validation purpose in the next

chapter.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

63

CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Introduction

This chapter gives validation of our solution algorithm, simulations were conducted

both on recently created workspaces and few chosen workspaces created by prior

researchers in ref [41]. The simulations were implemented using PyCharm which uses

python language. The chapter further gives an analysis and discussion of simulated

results.

4.2 Model Validation and Results

The first three cases are created workspaces looking at a concave-shaped obstacle

with different sizes that create LMT for a MR. The fourth case is the mixed workspace

scenario of SOs with two TPs. The last two cases are reproduced workspaces chosen

from previous research work. The TP in the workspace is the black and white flag, MR

is the small blue robot and the black circles represent the obstacles. Simulation results

were shown in three-phase figures: The initial phase where the MR is at rest, the

middle phase where the MR is in motion and the MR’s trail is black dotted, and the last

phase is when the MR reaches the TP where the MR’s is red dotted. In all cases time

is calculated in seconds from the initial point to the TP and results are shown in Tables

4 to 9.

Figures 18 to 41 are mazes initially created in this work to illustrate the completeness

and generalised applicability of our algorithm in complex spaces with SOs.

Comparison with the outcomes of other researchers’ work ref [41] is as shown in

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

64

Figure 42 to Figure 56. The comparison was carried out by duplicating their

workspaces in terms of the shape, estimate, and location of the impediments within

the particular workspaces. In any case, it was not continuously conceivable to replicate

the chosen workspaces precisely to scale in this research work. This is because of the

non-accessibility of point-by-point data such as the impediment measurements and in

a few cases, the workspace measurements. All things considered, the need of this

study is to be able to replicate such workspace to a reasonable level for validation.

Furthermore, the chosen workspaces for this work are for the most part those that

customarily see complex or where prior researchers recorded challenges in exploring

the MR to the TP. The objective in doing this is to be able to validate by and large the

adequacy of our approach relative to a few existing models. The autonomous robot

deployed in this study is an animated robot picked as an image is presented in the

appendix myriads of codes. The speed was set to five with the robot safety radius of

50 and range reduction of four if trapped, to reduce the detection range to avoid getting

lost.

4.2.1 Case 1: A simple and easily detectable concave obstacle

The workspace created for this case has a simple and easily detectable concave-

shaped static obstacle. Figures 18 to 22 show the simulated results.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

65

Figure 18: Developed Problem Sample Space01

Figure 19: Progressive Solution for developed Sample Space01 (without HVFF)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

66

Figure 20: Final Solution for developed Sample Space01 (without HVFF)

Figure 21 : Progressive Solution for developed Sample Space01 (with HVFF)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

67

Figure 22: Final Solution for developed Sample Space01 (with HVFF)

Table 4: Results for Case 1

Time Without HVFF With HVFF

Time (seconds) from initial
point to the target point

46.52 26.90

4.2.2 Case 2: An intermediate size “not easily detectable” concave obstacle

The workspace created for this case has an intermediate size “not easily detectable”

concave-shaped static obstacle. Figure 23 to Figure 27 show the simulated results.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

68

Figure 23: Developed Problem Sample Space02

Figure 24: Progressive Solution for developed Sample Space02 (without HVFF)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

69

Figure 25: Progressive Solution for developed Sample Space02 (MR got trapped)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

70

Figure 26: Progressive Solution for developed Sample Space02 (with HVFF)

Figure 27: Final Solution for developed Sample Space02 (with HVFF)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

71

Table 5: Results for Case 2

Time Without HVFF With HVFF

Time (seconds) from initial
point to the TP

MR got trapped until the
simulation runs was

stopped.

33.02

4.2.3 Case 3: An extreme size undetectable concave obstacle

The workspace created for this case has an extreme size undetectable concave-

shaped static obstacle. Figure 28 to Figure 32 show the simulated results.

Figure 28: Developed Problem Sample Space03

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

72

Figure 29: Progressive Solution for developed Sample Space03 (without HVFF)

Figure 30: Progressive Solution for developed Sample Space03 (MR got trapped)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

73

Figure 31: Progressive Solution for developed Sample Space03 (with HVFF)

Figure 32: Final Solution for developed Sample Space03 (with HVFF)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

74

Table 6: Results for Case 3

Time Without HVFF With HVFF

Time (seconds) from initial
point to the TP

MR got trapped (Infinite
seconds) until simulation

was stopped.

53.20

4.2.4 Case 4: Multiple Target Points Workspace scenario with static obstacles

The workspace created for this case has simple and easily detectable concave-

shaped SOs with two TPs. Figure 33 to Figure 41 show the simulated results.

Figure 33: Developed Problem Sample Space04

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

75

Figure 34: Progressive Solution (First TP) for developed Sample Space04 (without

HVFF)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

76

Figure 35: Final Solution (First TP) for developed Sample Space04 (without HVFF)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

77

Figure 36: Progressive Solution (Second TP) for developed Sample Space04

(without HVFF)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

78

Figure 37: Final Solution (Second TP) for developed Sample Space04 (without

HVFF)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

79

Figure 38: Progressive Solution (First TP) for developed Sample Space04 (With

HVFF)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

80

Figure 39: Final Solution (First TP) for developed Sample Space04 (with HVFF)

Figure 40: Progressive Solution (Second TP) for developed Sample Space04 (with

HVFF)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

81

Figure 41: Final Solution (Second TP) for developed Sample Space04 (with HVFF)

Table 7: Results for Case 4

Time Without HVFF With HVFF

Time (seconds) from initial
point to the TP 1

40.79 31.80

Time (seconds) from TP 1
to TP 2

44.77 30.50

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

82

4.2.5 Case 5: Lengthy & Concave Obstacles workspace scenario from paper Ref

[41]

The workspace created for this case, it has mixed SOs (not easily detectable) which

is a reproduced workspace from paper Ref [41]. Figure 42 to Figure 49 show the

simulated results.

Figure 42: Developed Problem Sample Space05

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

83

Figure 43: Progressive Solution for developed Sample Space05 (without HVFF)

Figure 44: Progressive Solution for developed Sample Space05 (MR got rapped)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

84

Figure 45: Progressive Solution for developed Sample Space05 (with HVFF)

Figure 46: Progressive Solution for developed Sample Space05, adapted from [41]

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

85

Figure 47: Progressive Solution for developed Sample Space05, adapted from [41]

Figure 48: Final Solution for developed Sample Space05 (with HVFF)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

86

Figure 49: Final Solution for developed Sample Space05, adapted from [41]

Table 8: Results for Case 5

Time Without HVFF With HVFF

Time (seconds) from initial
point to the TP

MR got trapped for at
least 300.35 seconds, the

simulation runs was
stopped.

43.37

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

87

4.2.6 Case 6: Additional workspace scenario with static obstacle from paper Ref

[41]

The workspace created for this case, it has a static obstacle (not easily detectable)

which is a reproduced workspace from paper Ref [41]. Figure 50 to Figure 56 show

the simulated results.

Figure 50: Developed Problem Sample Space06

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

88

Figure 51: Progressive Solution for developed Sample Space06 (without HVFF)

Figure 52: Progressive Solution for developed Sample Space06 (with HVFF)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

89

Figure 53: Progressive Solution for developed Sample Space06, adapted from [41]

Figure 54: Final Solution for developed Sample Space06 (without HVFF)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

90

Figure 55: Final Solution for developed Sample Space06 (with HVFF)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

91

Figure 56: Final Solution for developed Sample Space06, adapted from [41]

Table 9: Results for Case 6

Time Without HVFF With HVFF

Time (seconds) from initial
point to the TP

79.25 44.91

4.3 Analysis and Discussion of Results

Case 1 in the simulation series depicts navigation towards a simple concave shaped

obstacle. Figure 18 presents the initialised workspace which comprises the robot,

concave shaped obstacle along the trajectory of robot’s navigation and the TP. Figure

19 presents a workspace with the navigating robot displaying a trajectory along the

shortest path depicted by a straight line. This navigation is without the HVFF algorithm

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

92

in place. The sense of direction is towards the hollow section of the concave hollow

directly ahead of the TP. Figure 20 presents a navigation clip showing the robot’s

trajectory in the concave trap, some oscillatory forth back motion, trajectory of the

robot off the concave trap and at the TP.

Sequel to the above discussion on case 1 without the use of HVFF algorithm, the

current discussion presents MR navigation towards the same simple concave shaped

obstacle with the HVFF algorithm in place. Figure 21 presents the navigation trajectory

of the moving robot. The robot’s trajectory was diverted off the concave trap with the

aid of the VGC which is an integral part of the HVFF concept. On reaching the virtual

goal (VG), the robot is now redirected to the real goal or the desired TP. The travel

time of the robot without the HVFF concept is 46.52seconds while a duration of 26.90

was recorded with the deployment of the HVFF concept. In both scenarios i.e. with

and without HVFF, the robot was able to reach it is TP however, at a shorter time with

the use of the HVFF concept.

Case 2 in the simulation series depicts navigation towards an intermediate concave

shaped obstacle (i.e. a concave shape with an enhanced difficulty). Figure 23 presents

the initialised workspace which comprises the robot, concave shaped obstacle along

the trajectory of the robot’s navigation and the TP. Figure 24 presents a workspace

with the navigating robot displaying a trajectory along the shortest path depicted by a

straight line. This navigation is without the HVFF algorithm in place. The sense of

direction like the previous is towards the hollow end of the concave directly ahead of

the TP. Figure 25 presents a navigation frame showing the robot’s trajectory in the

concave trap with back forth oscillatory motion. The robot was trapped in the concave

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

93

hollow. This was observed for a period of 320.46 seconds after which the simulation

was stopped.

Following the above discussion on case 2 simulation without the use of HVFF

algorithm, the discussion herein this subsection presents the MR navigation towards

the same intermediate concave shaped obstacle and TP however, with the HVFF

algorithm in place. Figure 26 shows the navigation trajectory of the robot towards the

virtual goal (VG). The robot’s trajectory was diverted off the concave trap with the aid

of the VGC upon which the HVFF concept hinges. On reaching the virtual goal (VG),

the robot was redirected to the desired TP as shown in figure 27. The travel time of

the robot with the HVFF concept was 33.02seconds. Unlike in the simple scenario of

concave obstacle, the robot got stuck here in the intermediate concave obstacle

without the use of the HVFF algorithm.

Case 3 in the simulation series depicts navigation of the MR towards an undetectable

concave shaped obstacle (i.e. a concave shape with an extremely wide apart vertex)

as presented in figure 28. The initialised workspace in figure 28 comprises the robot,

concave shaped obstacle along the trajectory of the robot’s navigation and the TP.

Figure 29 presents a workspace with the navigating robot displaying a trajectory along

the shortest path depicted by a straight line. This navigation is without the HVFF

algorithm in place. The sense of direction like the previous is towards the hollow end

of the concave directly ahead of the TP. Figure 30 shows a trapped MR in the concave

hollow with a back forth oscillatory motion. This directionless motion of the MR

continued endlessly. This was observed for quite a long period without any sign of

escape of the MR from the local minima trap. The simulation was eventually truncated.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

94

Presented in the navigation control of figure 31 is the HVFF concept with the VGC

actively in place. Figure 26 shows the navigation trajectory of the robot towards the

virtual goal (VG). The robot’s trajectory was diverted off the concave trap with the aid

of the VG. On reaching the VG as shown in figure 31, the robot was redirected to the

desired TP figure 32. The travel time of the robot with the HVFF concept in place was

53.20seconds. Based on the outcome of the last two simulation cases, it can be

inferred that as the complexity of the concave shaped obstacle increases based on its

width and depth, the likelihood of a MR getting stuck in the local minima trap

significantly increases.

Case 4 in the simulation series depicts navigation of the MR in an environment of a

few cascaded “simple concave shaped obstacles” amidst multiple TPs (2 Target

Points). This is as represented in the initialised workspace shown in figure 33.

Following this is figure 34 which presents the trajectory of a navigating robot without

the HVFF algorithm. The robot got into the first simple concave trap, manoeuvred its

way out and proceeded towards the first target point (TP1) as presented in figure 35.

From this point, the robot continued to the second target point (TP2). Firstly, the robot

got into a second local minima trap presented by the second concave obstacle.

However, it got out of this in figure 36 and proceeded to the second target point (TP2)

as shown in figure 37. The entire navigation duration from the start point of the robot

through TP1 and TP2 was 85.56 seconds as distinctly presented in table 7.

Furthermore, in respect of case 4 simulation series, figure 38 presents the MR

navigation from its initial position to TP1 with the aid of the HVFF algorithm. Unlike in

the earlier discuss of case 4 without the HVFF concept, the navigation trajectory herein

is premised on the prompting of the VG. Firstly, the MR was routed via the VG

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

95

placement as seen in figure 38. This continued to the first target point (TP1) in figure

39. Following this was the prompting and placement of a second VG as shown in figure

40. This finally led the robot to TP2 as presented in figure 41. The combined navigation

time with the HVFF algorithm was 62.30seconds as presented in table 7. It’s obvious

from the developed and presented workspaces as contained in this dissertation that

the HVFF controlled navigation is quite efficient.

Presented in figure 42, case 5 in the simulation series is the initialised workspace

combining both a concave shaped and a lengthy obstacle. Unlike the previous

workspaces contained in figures 18 to 41, the current workspace was adapted from

the literature. Figure 43 presents the navigation trajectory of the MR towards the target

point without the use of the HVFF concept. Figure 44 shows a further progressive

motion of the robot however with the robot running into a trap and never reaching the

TP. On deploying the HVFF concept as seen in figure 45, the MR went in pursuit of

the optimally positioned VG. This was in a bid to recover a MR navigation result from

an adapted literature based labyrinth (see figures 46 and 47). Figure 48 presents the

navigation trajectory of the MR to the TP in an optimised route at a duration of

43.37seconds as presented in table 8.This is in agreement with the output obtained

from the literature as shown in figure 49.

Case 6 in the simulation series depicts navigation of the MR in a literature adapted

concave shaped obstacle. The goal herein is to recover or improve on the navigation

trajectory obtained in the literature. Figure 50 presents the initial workspace showing

the robot and TP. Figure 51 shows the navigation of the MR into the concave hollow

trap and its outward motion towards the TP not without some forth back oscillatory

navigation while in the concave trap. This is a case of navigation without the HVFF

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

96

concept. Figure 52 presents the trajectory of the robot to the TP. The overall time spent

by the robot herein from start to completion is 79.25 seconds as contained in table 9.

Figure 53 on the other hand presents the navigation of the robot via the use of the

HVFF algorithm. The robot was directed along the optimal path of the VG as seen in

figure 53. This is in conformance with the output from the literature figure 54 and in a

bid to show navigation trajectory optimality. The final navigation of the robot to the TP

is as presented in figure 55 at a much shorter time of 44.91 seconds (see table 9).

Figure 56 is a presentation of the complete navigation trajectory of the robot as

obtained from the literature.

4.4 Chapter Summary

This chapter has presented simulation cases and results by validating the solution

algorithm of this work. The results showed that the solution algorithm is effective but it

is not time efficient without HVFF. The simulation time results of solution algorithm

with HVFF are very efficient and effective as discussed in the previous section.

Furthermore, it is also noticeable from Cases 2, 3, 5 and 6 that the complexity of

concave-shaped and lengthiness of static obstacles increases the likelihood of MR

getting struck in the local minimal trap.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

97

CHAPTER FIVE

CONCLUSION AND FUTURE RESEARCH WORK

5.1 Chapter Overview

This chapter has detailed out a summary of the research work as presented in this

dissertation. The research has presented an optimum mobile robot navigation model

amidst static concave shaped and lengthy stretched out obstacles in a given

navigation workspace. Furthermore, algorithmic validation was carried out on a single

TP as well as multi TPs. The outcome of the simulated results as presented for each

developed workspace as presented in the earlier chapters showed the efficacy of the

algorithmic solutions. The use of reactive algorithms such as the HVFF technique has

proven to be quite effective in trajectory control of robotic vehicles in obstacle

constrained navigation problem domain.

5.2 Conclusion

This research has presented the deployment of the HVFF algorithm for MR navigation

in an obstacle constrained workspace dominated with concave shaped or lengthy

(stretched-out) obstacles. The degree of effectiveness of the HVFF algorithm in

respect of MR optimum trajectory development in a workspace with this class of

obstacles is remarkably high. As the level of constraint posed by workspace objects

increased, the robot navigation success to the TP generally experienced some

significant level of difficulties. However, on comparing the navigation output between

the HVFF controlled trajectory and the non-HVFF i.e. conventional navigation

trajectory, it was observed that the robot either never reached the TP or spent so much

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

98

time trying to reach the TP after several back forth oscillations in the case of a

conventional navigation approach. However, the scenario with the HVFF algorithm

was such that the robot navigation recorded a significantly lesser travel duration to the

TP.

Apart from validating the HVFF algorithm on developed workspaces, comparative

studies was carried out on some existing literature workspaces comprising concave

and lengthy obstacles. In all of these validations, the behaviour of the robot navigation

with and without the HVFF algorithm per workspace was presented. Of a special

interest is the navigation time of the MR with and without the HVFF algorithm per

workspace as presented in table 10. The first simulation gave a completion time

difference of 19.62 seconds resulting in a percentage time gain of 42.18% for the

HVFF algorithm over the non-HVFF algorithm. The second simulation presented a

navigation time difference of 287.44 seconds between the HVFF and non-HVFF

algorithms. This resulted in a percentage time gain of 89.7% in favour of the HVFF

algorithm over the non-HVFF algorithm. The third case of simulation presented an

undefined navigation time difference between the HVFF and non-HVFF algorithm.

This was premised on the fact that the non-HVFF algorithm was unable to get the MR

out of the concave trap all through the monitoring duration. The outcome herein clearly

shows the edge of the HVFF algorithm over the non-HVFF algorithm. The fourth case

of simulation presented a cumulative navigation time difference of 23.26 seconds

between the HVFF and non-HVFF algorithm. This resulted in an equivalent of 53.91%

time gain in respect of the HVFF algorithm. The fifth and sixth cases respectively

presented a simulation time difference of 256.98 and 34.34 seconds between the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

99

HVFF and non-HVFF algorithm. This resulted in an equivalent of 85.56% and 43.33%

time gain respectively in respect of the HVFF algorithm.

Table 10: Summary of Navigation Travel Duration and Percentage Gain in Efficiency

Simulation
Cases

Workspace
Type

Completion
Time (Non-
HVFF
Approach)

Completion
Time (HVFF
Approach)

Time
Difference

Percentage
(%)
Difference
in Time

Case 1 Simple

concave

46.52 26.90 19.62 42.18

Case 2 Intermediate

concave

320.46 33.02 287.44 89.70

Case 3 Advanced

concave
∞ 53.3 undefined undefined

Case 4 Multi-Target

Points (TP1)

40.79 31.80 8.99 22.04

Case 4 Multi-Target

Points (TP2)

44.77 30.50 14.27 31.87

Case 5 Lengthy

Obstacle

300.35 43.37 256.98 85.56

Case 6 Concave

Shaped

79.25 44.91 34.34 43.33

Research Objectives Addressed

 Explore and adapt the HVFF concept for effectiveness and efficiency studies of

robot navigation in workspaces with concave or lengthy-stretched out obstacles

– Chapter 4, page: 66-75 (Case 1 to 3) and 84 – 92 (Case 5 to 6)

 Adapt the HVFF algorithm to a multi-target point navigation problem – Chapter

4 (Case 4), page: 76 – 83.

 Validate the HVFF algorithmic performance in the different workspaces using

simulation trials premised on the Python software - Chapter 4 (Case 1-6), page:

66 – 92.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

100

5.3 Future Research Work

This subsection presents some future work to be considered in a bid to extend this

research. Future work herein would focus on the following underlisted tasks:

i. Local Minima Trap Entry Prevention during MR navigation: The current research did

not effectively deploy the virtual obstacle concept (VOC) which is capable of

preventing the navigating robot from getting into a local minima trap orchestrated by a

concave obstacle in particular. In most instances, the HVFF approach works with both

the VGC and VOC. This can greatly impact on the overall navigation efficiency and

effectiveness.

ii. Dynamic Obstacles Navigation Analysis: The need to explore a workspace scenario

with a cluster of dynamic obstacles or a mixed scenario of static and dynamic

obstacles has been reserved for a future research.

iii. Real Vehicle Deployment of Navigation Algorithm: The deployment of the HVFF

scheme on real robotic vehicles is already in the pipeline. Three robotic vehicles were

recently acquired for deployment of the HVFF algorithm and control of these vehicles

autonomously.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

101

REFERENCES

[1] Li H and Savkin AV. 2018. An algorithm for safe navigation of mobile robots by a

sensor network in dynamic cluttered industrial environments. Robotics and

Computer Integrated Manufacturing. no: 54, pp 65-82

[2] Abiyev R, Ibrahim D and Erin B. 2010. Navigation of mobile robots in the presence

of obstacles. Advances in Engineering Software. no :41, pp 1179-1186.

[3] Fu KS, Gonzalez RC and Lee CSG. 1987. Robotics: Control, Senisng, Vision and

Intelligence. McGraw Hill.

[4] Shneier, M. and Bostelman, R. 2015. Literature Review of Mobile Robots for

Manufacturing. [Online]. Available at

https://nvlpubs.nist.gov/nistpubs/ir/2015/NIST.IR.8022.pdf. [Accessed 22

September 2020].

[5] Patle BK, Babu GL, Pandey A, Parhi DRK and Jagedeesh A. 2019. A review: On

path planning strategies for navigation of mobile robot. Defence Technology.

no:15, pp 582-606.

[6] Pandey A, Pandey S and Parhi DR. 2017. Mobile robot navigation and obstacle

avoidance techniques: A review. pp 96-105.

[7] Taheri H and Xia ZC. 2021. SLAM; definition and evolution. Engineering

Applications of Artificial Intelligence.

[8] Moreno-Armendariz MA and Calvo H. 2014. Visual SLAM and Obstacle Avoidance

in Real Time for Mobile Robots Navigation. International Conference on

Mechatronics, Electronics and Automotive Engineering. pp 44-49.

[9] Iizuka S, Nakamura T and Suzuki S. 2014. Robot navigation in dynamic

environment using Navigation function APF with SLAM. 10th France-Japan/ 8th

Europe-Asia Congress on Mecatronics (MECATRONICS2014- Tokyo). pp 89-92.

[10] Sqalli MT et al. 2016. Improvement of a tele-presence robot autonomous

navigation Using SLAM algorithm. International Symposium on Micro-Nano

Mechatronics and Human Science (MHS). pp 1-7.

[11] Song K et al. 2018. Navigation Control Design of a Mobile Robot by Integrating

Obstacle Avoidance and LiDAR SLAM. IEEE International Conference on

Systems, Man, and Cybernetics (SMC). pp 1833-1838.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://nvlpubs.nist.gov/nistpubs/ir/2015/NIST.IR.8022.pdf

102

[12]Kim P, Chen J and Cho YK. 2018. SLAM-driven robotic mapping and registration

of 3D point clouds. Automation in Construction. pp 38-48.

[13] Liu Z. 2021 .Implementation of SLAM and path planning for mobile robots under

ROS framework. 6th International Conference on Intelligent Computing and Signal

Processing (ICSP). pp 1096-1100.

[14] Gul F, Rahiman W and Alhady SSN. 2019. A comprehensive study for robot

navigation techniques. Cogent Engineering.

[15] Ghorpade D, Thakare AD and Doiphode S. 2017. Obstacle Detection and

Avoidance Algorithm for Autonomous Mobile Robot using 2D LiDAR. International

Conference on Computing, Communication, Control and Automation (ICCUBEA).

pp 1-6.

[16] Madhavan TR and Adharsh M. 2019. Obstacle Detection and Obstacle Avoidance

Algorithm based on 2-D RPLiDAR. International Conference on Computer

Communication and Informatics (ICCCI). pp 1-4.

[17] Baras N, Nantzios G, Ziouzios D and Dasygenis M. 2019. Autonomous Obstacle

Avoidance Vehicle Using LIDAR and an Embedded System. 8th International

Conference on Modern Circuits and Systems Technologies (MOCAST). pp 1-4.

[18] Dong H, Weng CY, Guo C, Yu H and Chen IM. 2020. Real-time Avoidance

Strategy of Dynamic Obstacles via Half Model-free Detection and Tracking with

2D Lidar for Mobile Robots. IEEE/ASME Transactions on Mechatronics.

[19] Ren Yee PD, Pinrath N and Matsuhira N. 2020. Autonomous Mobile Robot

Navigation Using 2D LiDAR and Inclined Laser Rangefinder to Avoid a Lower

Object. 59th Annual Conference of the Society of Instrument and Control

Engineers (SICE). pp. 1404-1409

[20] Borenstein J and Koren Y. 1991. The vector field histogram–fast obstacle

avoidance for mobile robots. IEEE Transactions on Robotics and Automation. pp.

278–288.

[21] Ulrich I and Borenstein J. 1998. VFH+: reliable obstacle avoidance for fast mobile

robots. Proceedings 1998 IEEE International Conference on Robotics and

Automation. pp. 1572-1577.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

103

[22] Ulrich I and Borenstein J. 2000. VFH/sup */: local obstacle avoidance with look-

ahead verification. IEEE International Conference on Robotics and Automation.

pp. 2505-2511.

[23] Babinec A, Dekan M, Duchon F and Vitko A. 2012. Modifications of VFH

Navigation Methods for Mobile Robots. Procedia Engineering. no:48, pp 10-14.

[24] Yim WJ and Park JB. 2014. Analysis of mobile robot navigation using vector field

histogram according to the number of sectors, the robot speed and the width of

the path. 14th International Conference on Control, Automation and Systems

(ICCAS 2014). pp. 1037-1040.

[25] Kumar JS and Kaleeswari R. 2016. Implementation of Vector Field Histogram

based obstacle avoidance wheeled robot. Online International Conference on

Green Engineering and Technologies (IC-GET). pp. 1-6.

[26] Alagic E, Velagic J and Osmanovic A. 2019. Design of Mobile Robot Motion

Framework based on Modified Vector Field Histogram. International Symposium

ELMAR. pp 135-138.

[27] Diaz D and Marin L. 2020. VFH+D: An Improvement on the VFH+ Algorithm for

Dynamic Obstacle Avoidance and Local Planning. IFAC-PapersOnLine. pp 9590-

9595.

[28] Zhou L and Li W. 2014. Adaptive Artificial Potential Field Approach for Obstacle

Avoidance Path Planning. Seventh International Symposium on Computational

Intelligence and Design. pp 429-432.

[29] Borenstein, J. and Koren, Y. 1989. Real-time Obstacle Avoidance for Fast Mobile

Robots. IEEE Transactions on Systems, Man, and Cybernetics. pp 1179-1187.

[30] Khatib O. 1985.Real-time Obstacle Avoidance for Manipulators and Mobile

Robots. The International Journal of Robotics Research. no: 1, pp 90-98.

[31] Chiang H, Malone N, Lesser K, Oishi M and Tapia L. 2015. Path-guided artificial

potential fields with stochastic reachable sets for motion planning in highly dynamic

environments. IEEE

International Conference on Robotics and Automation (ICRA). pp 2347- 2354.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://www.sciencedirect.com/science/article/pii/S1877705812045419#!
https://www.sciencedirect.com/science/article/pii/S1877705812045419#!
https://www.sciencedirect.com/science/article/pii/S1877705812045419#!

104

[32] Malone N, Chiang H, Lesser K, Oishi M and Tapia L. 2017. Hybrid Dynamic Moving

Obstacle Avoidance Using a Stochastic Reachable Set-Based Potential Field.

IEEE Transactions on Robotics. no: 5, pp 1124-1138.

[33] Sudhakara P, Ganaphy V, Priyadharshini B and Sundaran K. 2018. Obstacle

Avoidance and Navigation Planning of a Wheeled Mobile Robot using Amended

Artificial Potential Field Method. Procedia Computer Science. no:133, pp 998 –

1004.

[34] Lu XS, Li E and Guo R. 2020. An Obstacles Avoidance Algorithm Based on

Improved Artificial Potential Field. IEEE International Conference on

Mechatronics and Automation (ICMA). pp. 425-430.

[35] Lin X, Wang Z and Chen X. 2020. Path Planning with Improved Artificial Potential

Field Method Based on Decision Tree. 27th Saint Petersburg International

Conference on Integrated Navigation Systems (ICINS). pp. 1-5.

[36] Lazarowska A. 2019. Discrete Artificial Potential Field Approach to Mobile Robot

Path Planning. IFAC PapersOnLine. no:52, pp 277-282.

[37] Shin Y and Kim E. 2021. Hybrid path planning using positioning risk and artificial

potential fields. Aerospace Science and Technology. pp 106-640.

[38] Olunloyo VOS and Ayomoh MKO. 2009. Autonomous Mobile Robot Navigation

Using Hybrid Virtual Force Field Concept. European Journal of Scientific Research

(EJSR). no:31, pp 204-228.

[39] Olunloyo VOS, Ayomoh MKO and Ibidapo-Obe O. 2009. A path planning model

for an autonomous vehicle in an unstructured obstacle domain. Proceedings of the

14th IASTED International Conference. pp 180 – 187.

[40] Olunloyo VOS and Ayomoh MKO. 2010. A Hybrid Path Planning Model for

Autonomous Mobile Vehicle Navigation. 25th International Conference of

CAD/CAM, Robotics & Factories of the Future Conference. pp 1 – 12.

[41] Olunloyo VOS and Ayomoh MKO. 2011. An Efficient Path Planning Model in an

Unstructured Obstacle Domain. Proceedings of the IASTED International

Conference Robotics and Applications. pp 38-45.

[42] Zadeh LA. 1975. The Concept of a Linguistic Variable and its Application to

Approximate Reasoning–I. Information Science. no:8, pp 199–249.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

105

[43] Qing–yong BAO, Shun–ming LI, Wei–yan S and Mu-jin AN. 2009.A Fuzzy

Behavior–Based Architecture for Mobile Robot Navigation in Unknown

Environments. International Conference on Artificial Intelligence and

Computational Intelligence. pp 257–261.

[44] Jaradat M, Garibeh M and Feilat EA. 2012. Autonomous mobile robot planning

using

 hybrid fuzzy potential field. Soft Computing. no:15, pp 153–164.

[45] Pandey RK, Sonkar KK, and Parhi DR. 2014. Path planning navigation of mobile

robot with obstacles avoidance using fuzzy logic controller. IEEE 8th International

Conference on Intelligent Systems and Control (ISCO). pp 39-41.

[46] Almasri MM, Elleithy KM and Alajlan AM. 2016. Development of efficient obstacle

avoidance and line following mobile robot with the integration of fuzzy logic system

in static and dynamic environments. IEEE Long Island Systems, Applications and

Technology Conference (LISAT). pp 1-6.

[47] Singh NH and Thongam K. 2018. Mobile Robot Navigation Using Fuzzy Logic in

Static Environments. Procedia Computer Science. no:125, pp 11-17.

[48] Batti H, Jabeur CB and Seddik H. 2019. Mobile Robot Obstacle Avoidance in

labyrinth Environment Using Fuzzy Logic Approach. International Conference on

Control, Automation and Diagnosis (ICCAD). pp 1-5.

[49] Mohanty PK, Kundu S, Srivastava S and Dash RN. 2020. A New T-S Model Based

Fuzzy Logic Approach For Mobile Robots Path Planning. IEEE International

Women in Engineering (WIE) Conference on Electrical and Computer Engineering

(WIECON-ECE). pp 476-480.

[50] Oleiwi BK, Mahfuz A and Roth H. 2021. Application of Fuzzy Logic for Collision

Avoidance of Mobile Robots in Dynamic-Indoor Environments. 2nd International

Conference on Robotics, Electrical and Signal Processing Techniques (ICREST).

pp 131 -136.

[51] Verbitsky NS, Chepin EV and Gridnev AA. 2018. Experimental studies of a

convolutional neural network for application in the navigation system of a mobile

robot. Procedia Computer Science. no:145, pp 611-616.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

106

[52] Ribeiro D, Mateus A, Miraldo P and Nascimento JC. 2017. A real-time deep

learning pedestrian detector for robot navigation. Autonomous Robot Systems and

Competitions (ICARSC). pp 165–171.

[53] Pershina Z, Kazdorf and Abrosimov V. 2018. Application of algorithms for object

recognition based on deep convolutional neural networks for visual navigation of

a mobile robot. 2018 25th Saint Petersburg International Conference on Integrated

Navigation Systems (ICINS). pp. 1–2.

[54] Chi K and Lee MR. 2011. Obstacle avoidance in mobile robot using Neural

Network. International Conference on Consumer Electronics, Communications

and Networks (CECNet). pp 5082-5085.

[55] Motlagh O, Nakhaeinia D, Tang SH, Karasfi B and Khaksar W. 2014. Automatic

navigation of mobile robots in unknown environments. Neural Computing and

Applications. no:24, pp1569–1581.

[56] Janglova D. 2004. Neural networks in mobile robot motion. International Journal

of Advanced Robotic Systems. no:1, pp 15-22.

[57] Yu J, Ji J, Miao Z and Zhou J. 2019. Neural network-based region reaching

formation control for multi-robot systems in obstacle environment.

Neurocomputing. no:333, pp 11-21.

[58] Saleem KA, Jabri AA, Maashri WA, Maawali and Mesbah M. 2020. Obstacle-

Avoidance Algorithm Using Deep Learning Based on RGBD Images and Robot

Orientation. 7th International Conference on Electrical and Electronics

Engineering (ICEEE). pp 268-272.

[59] Wei Hand Ye Q. 2020. Mobile Robot Obstacle Avoidance System Based on GA-

Aided OIF-Elman Network. 4th International Conference on Robotics and

Automation Sciences (ICRAS). pp 6-10.

[60] Tang X, Li L and Jiang B. 2014. Mobile robot SLAM method based on multi-agent

particle swarm optimized particle filter.

[61] Algabri M, Hassan M, Hedjar R and Alsulaiman M. 2015.Comparative study of soft

computing technique for mobile robot navigation in an environment.

[62] Atyabi A, Phon-Amnuaisuk S, Ho CK. 2010. Applying area extension PSO in

Robotic Swarm. J Intell Robot Syst. no:58, pp 253-285.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

107

[63] Lin C, Li TS, Kuo P and Wang Y. 2016. Integrated particle swarm optimization

algorithm-based obstacle avoidance control design for home service robot.

Computers and Electrical Engineering. no:56, pp 748 – 762.

[64] Meerza SIA, M. Islam M and Uzzal MM. 2018. Optimal Path Planning Algorithm

for Swarm of Robots Using Particle Swarm Optimization Technique. 3rd

International Conference on Information Technology, Information System and

Electrical Engineering (ICITISEE). pp 330-334.

[65] Alaliyat S,Oucheikh R and Hameed I. 2019. Path Planning in Dynamic

Environment Using Particle Swarm Optimization Algorithm. 8th International

Conference on Modeling Simulation and Applied Optimization (ICMSAO). pp. 1-5.

 [66] Tian S, Li Y, Kang Y and Xia J. 2021. Multi-robot path planning in wireless sensor

networks based on jump mechanism PSO and safety gap obstacle avoidance.

Future Generation Computer Systems. no:118, pp 37-47.

[67] Bremermann HJ. 1958. The evolution of intelligence. The Nervous system as a

model of its environment. Washington, Seattle: Dept. Mathematics, University

[68] Holland JH. 1975. Adaptation in natural and artificial systems. University of

Michigan Press.

[69] Xia J, Michalewicz Z, Zhang L and Trojanowski K. 1997. Adaptive evolutionary

planner/ navigator for mobile robot. Transcation on Evolutionary Computation.

[70] Shi P and Cui Y. Dynamic path planning for mobile robot based on genetic

algorithm in unknown environment. Proceedings of the Chinese Control and

decision Conference.

[71] Patle BK, Babu L G,Pandey A,Parhi DRK and Jagadeesh A. 2019. Review: On

path planning strategies for navigation of mobile robot. Defence Technology.

no:15, pp 582-606.

[72] Patle BK, K Parhi DR, Jagadeesh A and Kashyap SK. 2018. Matrix-binary codes

based genetic algorithm for path planning of mobile robot. Computers and

Electrical Engineering. no: 67, pp 708-728.

[73] Germi SB, Khosravi MA and Fard RF. 2018. Adaptive GA-based Potential Field

Algorithm for Collision-free Path Planning of Mobile Robots in Dynamic

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

108

Environments. 6th RSI International Conference on Robotics and Mechatronics

(IcRoM). pp. 28-33.

[74] Choueiry S, Owayjan M, Diab H and Achkar R. 2019. Mobile Robot Path Planning

Using Genetic Algorithm in a Static Environment. Fourth International Conference

on Advances in Computational Tools for Engineering Applications (ACTEA). pp 1-

6.

[75] Lopez-Gonzalez A, Campana JAM and Martinez EGH. 2020. Multi robot distance

based formation using Parallel Genetic Algorithm. Applied Soft Computing Journal.

no:86, pp 105- 929.

[76] Aghda SAF and Mirfakhraei M. 2020. Improved routing in dynamic environments

with moving obstacles using a hybrid Fuzzy-Genetic algorithm. Future Generation

Computer System. no:112, pp 250-257.

[77] Guan-Zheng T, Huan HE and Aaron S. 2007. Ant colony system algorithm for real

time globally optimal path planning of mobile robots.

[78] Chen Y, Su F and Shen LC. 2009. Improved ant colony algorithm based on PRM

for UAV route planning.

[79] Zhangqi W, Xiaoguang Z and Qingyao H. 2011. Mobile Robot Path Planning based

on Parameter Optimization Ant Colony Algorithm. Procedia Engineering. no:15,

pp 2738 – 2741.

[80] Wang H, Wang ZA, Yu L, Wang X and Liu C. 2018. Ant Colony Optimization with

Improved Potential Field Heuristic for Robot Path Planning. 37th Chinese Control

Conference (CCC). pp. 5317-5321.

[81] Yi Z, Yanan Z and Xiangde L. 2019. Path Planning of Multiple Industrial Mobile

Robots Based on Ant Colony Algorithm. 16th International Computer Conference

on Wavelet Active Media Technology and Information Processing. pp. 406-409.

[82] Ma Y et al. 2020. Obstacle avoidance path planning of unmanned submarine

vehicle in ocean current environment based on improved firework-ant colony

algorithm. Computers and Electrical Engineering. no:87, pp 106- 773.

[83] Zhao H. 2020. Optimal Path Planning for Robot Based on Ant Colony Algorithm.

International Wireless Communications and Mobile Computing (IWCMC). pp 671-

675.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

109

[84] Paniagua AH, Rodriguez MAV, Ferruz J and Pavon N. 2015. Solving the multi-

objective path planning problem in mobile robotics with a firefly-based approach.

Soft Comput. no:21 , pp 949-964.

[85] Brand M and Yu X. 2013. Autonomous robot path optimisation using firefly

algorithm. International conference on machine learning and cybernetics. pp 1028-

1032.

[86] Sutantyo D and Levi P. 2015. Decentralized underwater multi robot communication

using bio-inspired approaches. Artif Life Robot. no: 20, pp 152-158.

[87] Sutantyo D, Levi P, Moslinger C and Read M. 2013. Collective-adaptive levy flight

for underwater multi-robot exploration. International conference on mechatronics

and automation. pp 456 – 462.

[88] Mitic M and Miljkovic Z. 2015. Bio-inspired approach to learning robot motion

trajectories and visual control commands. Expert Syst Appl. No: 42, pp 2624-2637.

[89] Sadhu AK, Konar A, Bhattacharjee T and Das S. 2018. Synergism of firefly

algorithm and Q-learning for robot arm path planning. Swarm and Evolutionary

Computation.

[90] Patle BK, Patel B, Pandey A, Sahu O and Parhi DRK. 2019. Analysis of Firefly-

Fuzzy Hybrid Controller for Wheeled Mobile Robot. 3rd International Conference

on Computing and Communications Technologies (ICCCT). pp 187-194.

[91] Patle BK, Pandey A, Jagadeesh A and Parhi DRK. 2018. Path planning in

uncertain environment by using firefly algorithm. Defence Technology. no: 14, pp

691-701.

[92] Li F, Fan X and Hou Z. 2020. A Firefly Algorithm with Self-Adaptive Population

Size for Global Path Planning of Mobile Robot. IEEE Access. pp. 168951-168964.

[93] Chi W, Wang J, Ding Z, Chen G and Sun L. 2021. A Reusable Generalized Voronoi

Diagram Based Feature Tree for Fast Robot Motion Planning in Trapped

Environments. IEEE Sensors Journal.

[94] Wahyunggoro O and Cahyadi AI. 2016. Quadrotor path planning based on

modified fuzzy cell decomposition algorithm. Telkomnika. no:14, pp 655-664.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

110

[95] Zhou C and Liu J. 2019. Navigation System for Mobile Robot using RGBD Sensor

based on Probabilistic Roadmaps. IEEE 4th Advanced Information Technology,

Electronic and Automation Control Conference (IAEAC). pp 1258-1261.

[96] Aggarwal A, Kukreja A and Chopra P. 2010. Vision based collision avoidance by

plotting a virtual obstacle on depth map. IEEE International Conference on

Information and Automation. pp 532-536.

[97] Ravankar A, Ravankar A, Hoshino Y and Kobayashi Y. 2019. Virtual Obstacles for

Safe Mobile Robot Navigation. 8th International Congress on Advanced Applied

Informatics (IIAI-AAI). pp 552-555.

[98] Ravankar A, Ravankar A, Hoshino Y, Watanabe M and Rawankar A. 2020.

Transient Virtual Obstacles for Safe Robot Navigation in Indoor Environments.

International Institute of Applied Informatics. pp 59-69.

[99] Zhang Y, Ge R, Lyu L, Zhang J, Lyu C and Yang X. 2020. A Virtual End-to-End

Learning System for Robot Navigation Based on Temporal Dependencies. IEEE

Access. pp 134111-134123, 2020.

[100] Yousuf S and Kadri MB. 2020. Implementation of Modified Tangent Bug

Navigation Algorithm for Front Wheel Steered and Differential-Drive

Robots. International Symposium on Recent Advances in Electrical Engineering

& Computer Sciences (RAEE & CS). pp 1-6.

[101] M MJ, Mathew R and Hiremath SS. 2019. Reinforcement Learning Based

Approach for Mobile Robot Navigation. International Conference on

Computational Intelligence and Knowledge Economy (ICCIKE). pp 523-526.

[102] Liu B, Xiao X and Stone P. 2021. A Lifelong Learning Approach to Mobile Robot

Navigation. IEEE Robotics and Automation Letters. no 2, pp 1090-1096.

[103] Xie L et al. 2021. Learning with Stochastic Guidance for Robot Navigation. IEEE

Transactions on Neural Networks and Learning Systems. no 1, pp 166-176.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

111

CODING APPENDIX

Main py-game simulation code

''A Python Class to implement a very basic Pygame Plotting

Arena. Plot various objects, animate them, scaling, dealing

with mouse inputs, Updating etc'''

import pygame, sys, math

from pygame.locals import *

import Sprites as spr

import random

pygame.init()

class PyArena:

 def __init__(self, w = 800,h = 800, bgColor = "Grey", axisColor = "Grey", TIMER_DELAY = 30):

 '''Create a Pygame Arena, TIMER_DELAY sets the freq of screen updating in milliseconds'''

 self.w = w

 self.cx = w//2

 self.h = h

 self.cy = h//2

 self.bgColor = bgColor # the background color

 self.axisColor = axisColor # Color of the axes

 self.delay = TIMER_DELAY # The screen refresh delay im milliseconds

 self.screen = pygame.display.set_mode((self.w, self.h))

 self.clock = pygame.time.Clock()

 pygame.time.set_timer(USEREVENT+1, TIMER_DELAY) # Start the timer, assign it a USEREVENT

 self.counter = 0 # Init a counter to keep track of time passed

 self.obstacles = [] # Empty list to hold all the sprites

 self.robots = []

 self.goals = []

 self.swarming = False # One robot or Swarm?

 self.manualBotID = 0 # Which bot is currently under manual control

 def ReDraw(self):

 '''ReDraw on the Objects on the Screen'''

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

112

 self.screen.fill(pygame.Color(self.bgColor)) # Clear the screen

 #draw the axes

 pygame.draw.lines(self.screen, pygame.Color(self.axisColor), False, ((self.cx,0),(self.cx,self.h))) #

Y Axis

 pygame.draw.lines(self.screen, pygame.Color(self.axisColor), False, ((0,self.cy),(self.w,self.cy))) #

X Axis

 # Update and then Draw all the sprites

 for sprites in self.obstacles, self.goals, self.robots:

 for sprite in sprites:

 if self.counter % 7 == 0: #Sprites update every 00 ms

 sprite.Update(self.obstacles)

 ''' Update all the sprites, Fixed sprites

 do nothing during Update(). Robots may need to re-position, scan for targets,

 zombie sprites may just move a little...'''

 sprite.PygameDraw(self.screen)

 ''' Each sprite must be able to draw itself onto the screen

 Rather than sprites passing info to this class, and implementing

 the draw function here, it's simpler if every sprite knows

 how to draw itself. Thus we can have different sub-classes of sprites

 with different drawing attributes, and we can add

 more sub-classes in the future that implement other drawing

 attributes, without having to change any of the code here'''

 #After everything is re-drawn, update the screen

 pygame.display.update()

 def GetManualBot(self):

 '''Returns the currently active robot under

 manual control'''

 return self.robots[self.manualBotID]

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

113

 def ObeyRobotCommands(self,event):

 '''Deal with any User genrated Robot Commands'''

 bot = self.GetManualBot() # Find the robot currently under manual control

 if event.key == pygame.K_UP: # UP Arrow pressed, step robot forwards

 bot.StepForward(1)

 if event.key == pygame.K_DOWN: # Down arrow pressed, step robot backwards

 bot.StepBackward(1)

 if event.key == pygame.K_LEFT: #Left arrow pressed turn left

 bot.TurnLeft()

 if event.key == pygame.K_RIGHT: # Right arrow pressed turn right

 bot.TurnRight()

 if event.key == pygame.K_a: # Toggle the robot's auto mode

 bot.ToggleAutoControl()

 def AddObstacles(self, event):

 '''Add any user genrated obstacles'''

 if event.key == pygame.K_o: # On pressing 'O' key, an obstacle is added at the mouse curcor

 pos = self.WH2XY(pygame.mouse.get_pos())

 nObs = len(self.obstacles) # New sprite will have ID = len(obstacles) + 1

 self.obstacles.append(spr.Sprite(nObs + 1, pos)) # Add an obstacle at the mouse position

 # Lines below added for debugging pruposes

 '''print("Creating....,")

 for s in self.obstacles:

 print(s.pos)''

 def Add_MoveGoal(self, event):

 '''Move the goal or if in swarming mode, add more goals'''

 if event.key == pygame.K_g: # On pressing 'G' key, the goal is moved to the mouse cursor posn

 pos = self.WH2XY(pygame.mouse.get_pos())

 if self.swarming == True: #multiple robots and goals

 pass

 else:

 self.goals[0].SetPos(pos)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

114

 self.robots[0].SetGoal(pos) # Single robot single goal seeking

 self.robots[0].SetSpeed(5) # Get the robot moving

 def Update(self):

 '''Perform all mandatory repeated tasks'''

 #Deal with user inputs

 for event in pygame.event.get():

 if event.type == USEREVENT+1: #Timer has ticked

 self.counter += 1 # Increment the counter

 # Re-Draw the screen

 self.ReDraw() # ReDraw will also update ALL sprites

 if event.type == pygame.QUIT or (

 event.type == pygame.KEYDOWN and event.key == pygame.K_q): # USER CLOSES

PROGRAM

 pygame.quit()

 sys.exit()

 if event.type == pygame.KEYDOWN: # Deal with User Commands

 #Obey User Robot Commands

 self.ObeyRobotCommands(event)

 #Obey User Goal Commands

 self.Add_MoveGoal(event)

 #Add User Generated Obstacles

 self.AddObstacles(event)

 def WH2XY(self,screenWH):

 '''Convert a pygame Screen WH coordinates to Coordinate axis

 XY value tuple'''

 return (screenWH[0] - self.cx, self.cy - screenWH[1])

 def AddDebugObstacles(self, t):

 '''Create a bunch of obstacles for debugging purposes'''

 for pos in t:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

115

 nObs = len(self.obstacles) # New sprite will have ID = len(obstacles) + 1

 self.obstacles.append(spr.Sprite(nObs + 1, pos)) # Add an obstacle at the mouse position

if __name__ == "__main__":

 arena1 = PyArena() # Create an Arena

 wmax, hmax = arena1.screen.get_width(), arena1.screen.get_height()

 #Create a goal

 pos = arena1.WH2XY((200,150))

 goal1 = spr.Sprite(500, pos)

 goal1.SetImage("images/goal1.png")

 arena1.goals.append(goal1)

 # Create a robot

 pos = arena1.WH2XY((90, 700))

 rob1 = spr.GoalSeeker(1000, pos)

 rob1.SetImage("images/robot11.png")

 rob1.SetHeading(random.randint(0,360))

 rob1.SetSpeed(5)

 rob1.SetSensor(300, 70)

 rob1.SetGoal(goal1.GetPos())

 arena1.robots.append(rob1)

 while True:

 arena1.Update()

 # print(spr.Robot.__init__(spr.Robot, "Test", [100]).trail)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

116

Repulsive Navigation Code

'''Python class that implements Repulsive Obstacle

Avoidance and Goal Seeking Navigation'''

import math

import pdb

#Define gravitational constants

G_GOAL = 1.0

G_OBS = 1.0

#Define global functions

def NormaliseVector(v):

 '''Return the normalised vector'''

 d = math.sqrt(v[0]*v[0] + v[1]*v[1])

 return [v[0]/d, v[1]/d]

#p1 robot position

#p2 goal position

def ObstacleForce(p1, p2, rSafe):

 '''Determine the gravitational force between two

 points. Returns a vector'''

 d = math.sqrt(float(math.pow((p1[0] - p2[0]),2) + math.pow((p1[1] -

p2[1]),2))) # distance

 if d <= rSafe: # if the obstacle is closer than rSafe, make sure dSqr

is a valid value

 dSqr = 0.000001 # if inside safety radius, dSqr should be very very

small

 else:

 dSqr = math.pow((d - rSafe),2) # Gravity force is maximum when d =

rSafe

 F = G_OBS/dSqr # Repulsive force proportional to 1/dSqr, the force that

the obstacle and mobile robot repel each other.

 #the greater the force makes the robot not to touch the

obstacle and move in a different direction searching for the goal

 unit_vec = [(p1[0] - p2[0])/d, (p1[1] - p2[1])/d]

 f_vec = (unit_vec[0] * F, unit_vec[1] * F)

 return f_vec, unit_vec

#implementation code

class RepulsorNav:

 def __init__(self, p1, p2, rSafe = 2):

 '''Create the instance of this class'''

 self.ownPos = p1 #robot position

 self.goalPos = p2 #goal position

 self.safetyRadius = rSafe # introduce a safety radius to cater to

robot actual dimensions

 self.obstacles = [] # create an empty list of obstacles

 def __str__(self):

 '''default print function'''

 return "Default Print not defined yet"

 def SetOwnPos(self, p):

 '''Update own position'''

 self.ownPos = p

 def UpdateObstacles(self, obs):

 '''Update the list of obstacles in sight'''

 self.obstacles = obs

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

117

 def Navigate(self, edgeholding = False):

 '''Determine the best route to goal and

 return this direction vector

 By default, the navigator will not do edgeholding '''

 steerVec = [0,0] #steering vector

 x1, y1 = self.ownPos

 if edgeholding == False:

 steerVec = [self.goalPos[0] - x1, self.goalPos[1] - y1] #calc

direct vector to goal

 if len(self.obstacles) > 0: #if there are obstacles in 'sight'

 for obs in self.obstacles: #iterate through all obstacles

 obsForce, unit_vec = ObstacleForce(self.ownPos, obs,

self.safetyRadius)

 #print("OwnPos {op}, Obstacle {ob}, Unit Vec {uv}, ObsForce

{obf}".format(op=self.ownPos,ob=obs,uv = unit_vec, obf=obsForce))

 steerVec = [steerVec[0] + obsForce[0] , steerVec[1] +

obsForce[1]]

 v = NormaliseVector(steerVec) # output the normailised recommended

vector

 c1 = ((math.pi/2) - math.atan2(v[1], v[0]))%(2 * math.pi) # Course

to Steer

 return v,c1 #based on this the robot turn into whatever is

recommended

 def SetGoal(self, newGoal):

 '''Go to a new goal'''

 self.goalPos = newGoal #use this partially to assist the robot

when trapped in deep concave and trapped. this set new goal as virtaual

goal.

if __name__ == "__main__":

 op = [0,0]

 gp = [10,10]

 r1 = RepulsorNav(op,gp)

 obstacles = [[6,2]]#, [6, 4.2], [6,12], [17,8]]

 r1.UpdateObstacles(obstacles)

 r1.Navigate()

Sprites Code

'''Sprite class implements basic Sprite functionality

for display in a PyGame Arena'''

import pygame, math

from pygame.locals import *

import RepulsorNav as rpn # Goal Seeking and Obstacle Avoidance Class

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

118

import time

Define constants

HDG_MARKER_LENGTH = 20 # length of heading marker to plot on screen

ROBOT_SAFETY_RADIUS = 50 # Safety circle around the robot

RANGE_REDUCTION = 4 # If trapped, reduce the detection range to avoid

getting lost

#Define global functions

def PlotBearing(pos1, pos2):

 '''Returns the bearing in degrees of pos2 [x2, y2]

 from pos1 [x1, y1] on an equal scale plot'''

 dx = float(pos2[0] - pos1[0])

 dy = float(pos2[1] - pos1[1])

 b = math.atan2(dy,dx)

 if b <=0:

 final = math.pi/2 + abs(b)

 elif b > 0:

 final = (math.pi/2 - b)%(math.pi * 2)

 return final

def FindCentreBearing(hdg, rec):

 '''Given two bearing lines, find the central bearing'''

 h = (math.sin(hdg), math.cos(hdg))

 r = (math.sin(rec), math.cos(rec))

 f = (h[0] + r[0], h[1] + r[1])

 theta = math.atan2(f[1], f[0])

 if theta <=0:

 final = (math.pi/2 + abs(theta))

 elif theta > 0:

 final = (math.pi/2 - theta)%(math.pi * 2)

 return final

def Distance2D(p1, p2):

 '''Returns the 2D distance between two points'''

 x1, y1 = p1[0], p1[1]

 x2, y2 = p2[0], p2[1]

 d = math.sqrt(math.pow(x1 - x2,2) + math.pow(y1 - y2,2))

 return d

class Sprite:

 '''Parent class for all plotting objects'''

 def __init__(self, ID, pos, radius = 20, lineThick = 3, color =

"Black"):

 self.ID = ID

 self.pos = pos

 self.color = color

 self.radius = radius

 self.lineThickness = lineThick

 self.hasImage = False # By default, sprites are not associated with

any image

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

119

 def __str__(self):

 txt = "Sprite, ID={i}, Pos={p}, color =

{c}".format(i=self.ID,p=self.pos, c= self.color)

 return txt

 def SetImage(self, imgFile):

 '''Assign an image to this sprite'''

 try:

 self.image = pygame.image.load(imgFile) # Load an image

 self.hasImage = True

 except:

 print("Error Loading Image for Sprite ID

{i}".format(i=self.ID))

 raise

 self.hasImage = False

 def GetPos(self):

 '''Returns the position tuple of the Sprite'''

 return self.pos

 def XY2WH(self, cx, cy, plotXY):

 '''Convert a normal XY coordinate tuple to Pygame's WH so that

 it fits nicely on the Corrdinate Axis'''

 return (cx + plotXY[0], cy - plotXY[1])

 def SetPos(self, pos):

 '''Set a new position for this sprite'''

 self.pos = pos

 def Update(self, obstacles):

 '''If anything needs to be updated at regular intervals,

 put it here...

 Arguments: counter value, counter increment delay (milliseconds)

 Dead sprites usually dont need to update anything at all.

 Active Sprites can overload this Update() method and do whatever

they

 need to at each update.'''

 pass

 def PygameDraw(self, screen, hdg = 0):

 '''Draw itself onto the screen argument. Child Classes can

implement

 overloaded PygameDraw() methods for more complex drawing operations

 Hdg (degrees) argument is used to rotate the image CCW before

drawing '''

 cx, cy = screen.get_height()//2, screen.get_width()//2

 drawPos = self.XY2WH(cx, cy, self.pos)

 if self.hasImage: # Draw the sprite's image

 img = pygame.transform.rotate(self.image, -hdg)

 imgSize = img.get_size()[0]//2

 screen.blit(img, ((self.XY2WH(cx,cy,self.pos))[0] - imgSize,

 (self.XY2WH(cx, cy, self.pos)[1] - imgSize))) # draw image

 else: # Draw a circle shape

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

120

 pygame.draw.circle(screen,

 pygame.Color(self.color),

 drawPos,

 self.radius,

 self.lineThickness)

#Define Robot Class

class Robot(Sprite): #

 def __init__(self, ID, pos, goal = (0,0), color =

pygame.Color("Black")):

 '''Create instance of robot class'''

 #Initialise attirbutes of Parent Sprite Classs

 Sprite.__init__(self, ID, pos, color)

 self.SetHeading(math.radians(0)) # Internal to this class, heading

is in radians

 self.stepTaken = False # just a flag to help with keyboard control

see pygame.K_UP

 self.trail = [] # A record of robot's position

 self.TIME_COUNT = 0 # counter to keep track of life time elapsed

 def __str__(self):

 t = "Robot Pos {p1}, Going to {g}, heading {c}, speed

{s}".format(p1 = self.pos, g = self.repulsorNav.goalPos, c =

math.degrees(self.hdg), s = self.spd)

 return t

 def PygameDraw(self, screen):

 '''Overloaded function of the Parent Sprite class

 PygameDraw() Function. The robot needs to draw all its

 extra items like heading marker, visible obstacles etc. and then

 finally call the parent class PygameDraw function to draw its

 body/ image'''

 # Draw the heading marker

 cx, cy = screen.get_height()//2, screen.get_width()//2

 p1 = self.XY2WH(cx, cy, self.marker[0])

 p2 = self.XY2WH(cx, cy, self.marker[1])

 pygame.draw.lines(screen, pygame.Color("Black"), False, (p1, p2)) #

Robot's heading marker

 #TO DO Draw the Robot's Trail

 for pos in self.trail:

 if self.runMode == "Finished":

 pygame.draw.circle(screen, pygame.Color("Red"),

self.XY2WH(cx, cy, pos), 2, 1)

 else:

 pygame.draw.circle(screen, pygame.Color(self.color),

self.XY2WH(cx, cy, pos), 2, 1)

 # Draw the robot's body by calling PygameDraw in the parent class

 super().PygameDraw(screen, math.degrees(self.hdg)) # pygame takes

rotation angle in degrees

 def SetSpeed(self, speed):

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

121

 '''Set the robot's speed'''

 self.spd = speed

 def SetHeading(self, hdg):

 '''Set the robot's heading. Heading Agument is in radians!!!'''

 self.hdg = hdg

 self.ResetHeadingMarker()

 def ResetHeadingMarker(self):

 '''Recalculate the heading marker'''

 self.marker = (self.pos, (self.pos[0] + HDG_MARKER_LENGTH *

math.sin(self.hdg), self.pos[1] + HDG_MARKER_LENGTH * math.cos(self.hdg)))

 def ResetStepFlag(self):

 '''Flip the value of stepTaken Flag'''

 self.stepTaken = False

 def GetHeadingMarker(self):

 '''Returns the heading marker tuple'''

 return self.marker

 def SetSensor(self, r1, a1):

 '''Set the parameters of the Robot's Sensor'''

 self.sensor_range = r1

 self.sensor_angle = a1

 def StepForward(self, nSteps = 1):

 '''The robot steps

 forward nSteps at a time'''

 sx = self.pos[0] + nSteps * self.spd * math.sin(self.hdg)

 sy = self.pos[1] + nSteps * self.spd * math.cos(self.hdg)

 self.pos = (int(sx),int(sy))

 #print("Step Taken:{s}".format(s=self.pos))

 self.stepTaken = True

 self.ResetHeadingMarker()

 self.trail.append(self.pos) # add position to trail

 def StepBackward(self, n):

 '''The robot steps backwards'''

 self.spd *= -1 # reverse the speed

 self.StepForward(nSteps = n) # take a step forward (with negative

speed)

 self.spd *= -1 # set the speed to its orginal value

 self.stepTaken = True

 self.ResetHeadingMarker()

 self.trail.append(self.pos) # add position to trail

 def ResetStepFlag(self):

 '''Flip the value of stepTaken Flag'''

 self.stepTaken = False

 def TurnRight(self, angle = 10):

 '''The robot turns clockwise'''

 self.hdg = (self.hdg + 0.01745 * angle) % (math.pi * 2) # default

is turn 5 degrees at a time

 self.ResetHeadingMarker()

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

122

 #def TurnLeft(self, angle=10):

 ''' turns anti-clockwise'''

 #self.TurnRight(angle * -1) # turn right, but with a negative

angle

 # self.ResetHeadingMarker()

 def ToggleAutoControl(self):

 '''Set whether the robot will navigate in Automatic mode or manual

control'''

 self.autoControl = not(self.autoControl)

#Define GoalSeeker Class

class GoalSeeker(Robot):

 def __init__(self, ID, pos, goal = (0,0), color =

pygame.Color("Black")):

 Robot.__init__(self, ID, pos, color)

 self.size = ROBOT_SAFETY_RADIUS

 self.goal = goal

 self.repulsorNav = rpn.RepulsorNav(self.pos, self.goal,

 rSafe = self.size) # create a repulsor algorithm

 self.visible_obstacles = [] # list of currently visible obstacles

 self.runMode = "GoalSeek" # Start off in goal seeking mode

 self.runState = "Clear" # Start off with no obstacles in "sight"

 self.autoControl = False # Run in manual mode

 self.trapHistory = [] # List of flags showing if last ten steps

were 'trapped' or not

 self.maxEdgeHoldTime = 200 # How long to continue edheholding if

goal is not reached

 def __str__(self):

 '''Default print'''

 return "Not coded yet"

 def PygameDraw(self, screen):

 '''Overloaded function of parent class. Draw only the factors

affecting

 the Repulsor Algorithm'''

 cx, cy = screen.get_height()//2, screen.get_width()//2

 # Draw visible obstacles

 for obs in self.visible_obstacles:

 pygame.draw.circle(screen, pygame.Color("Black"),

self.XY2WH(cx, cy, obs.pos), 20, 5)

 #Call parent class and draw robot related everything else

 super().PygameDraw(screen)

 def SetGoal(self, goal):

 '''Set the Goal for the seeking algorithm'''

 self.goal = goal

 self.repulsorNav.SetGoal(self.goal)

 self.runMode = "GoalSeek" # Start Seeking the goal

 self.trapHistory = [] # Clear the trap history

 def ClearOfTrap(self):

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

123

 '''Check if the robot is clear of trap'''

 f1 = self.trapTrack > 3 * self.size # Walked enough from trap

 f2 = abs(PlotBearing(self.pos, self.goal) -

self.goalBrgFromTrap)%360 < math.radians(40) # returned to goal line

 f3 = Distance2D(self.goal, self.pos) < self.goalDistFromTrap #

Closer to goal than at trap point

 f4 = not(f3) and len(self.visible_obstacles) == 0 # We cleared the

trap from the opposite side

 print(f1, f2, f3)

 if (f1 * f2 * f3) or f4: # If all three conditions are met.....

 self.trapHistory = [] # we are no longer trapped

 return True

 else:

 return False

 def IsTrapped(self):

 '''Returns True if the robot thinks it is trapped behind an

obstacle(s)'''

 if len(self.trail) > 30: # Go at least 20 steps before chekcing if

trapped or not

 d = Distance2D(self.trail[-1], self.trail[-20])

 if d < self.size: #if robot is not making headway

 self.trapHistory.append(True) # record the 'trap'

 if len(self.trapHistory) > 20: # start checking after 10

steps

 # print(self.trapHistory)

 self.trapHistory.pop(0) # get rid of the earliest flag

 sum = 0

 #print(self.trapHistory)

 for i in range(len(self.trapHistory)):

 sum += self.trapHistory[i]

 if sum > 5: # if more than 5 entries are 'true'

 #we are trapped. Record the necessary trap

parameters and return True

 self.trapPoint = self.pos

 self.goalBrgFromTrap = PlotBearing(self.trapPoint,

self.goal)

 self.goalDistFromTrap = Distance2D(self.pos,

self.goal)

 return True

 else:

 return False

 else:

 return False

 else:

 return False

 else:

 return False

 def Update(self, obstacles):

 '''Update the robot's status'''

 #Print the current state

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

124

 print("ID:{id}, Goal:{g}, Run Mode:{r}, Run State:{s}".format(id =

self.ID, g = self.goal, r= self.runMode, s = self.runState))

 #Refresh the visible obstacles

 self.visible_obstacles = [] # Clear the list of visible obstacles

for this robot

 '''Normally we run in simple "GoalSeek" mode. If the Robot gets

trapped,

 then it records the Goal Vector Lien and changes to "EdgeHold"

mode.

 It does not return to "GoalSeek" until it re-joins the original

Goal Vector Line'''

 if Distance2D(self.pos, self.goal) >= self.size/2: # Robot still

needs to go closer to goal

 if self.runMode == "GoalSeek":

 # print("IsTrapped returned:", self.IsTrapped())

 if self.IsTrapped():# Trapped in Goal Seek Mode

 self.runState = "Trapped" # Record the change of

Running State

 v1,v2 = self.pos, self.goal

 self.savedGoalVector = rpn.NormaliseVector([v1[0] -

v2[0],v1[1] - v2[1]])

 self.runMode = "EdgeHold" #Change to Edge Holding Mode

of Operation

 self.trapTrack = 0 # Reset the length of track stepped

record from this trap

 self.trapTime = time.time() # record the time when the

robot started Edgeholding

 self.trapHistory = [] # Reset the trap history

 self.Update(obstacles) # REDO this step after setting

mode to EdgeHold

 else: # In GoalSeek Mode, but not trapped

 #Update visible obstacles

 for obs in obstacles:

 if Distance2D(self.pos, obs.pos) <=

self.sensor_range: # if the robot can 'see' the obstacle

 dOG = Distance2D(obs.pos, self.goal)

 dG = Distance2D(self.pos, self.goal)

 if dOG <= dG: # if the obstacle is closer to

the goal than the robot...

 self.visible_obstacles.append(obs)

 if len(self.visible_obstacles) > 0:

 self.runState = "Evade"

 else:

 self.runState = "Clear"

 #Update Navigator and Calculate Recommended Steering

Vector

 self.repulsorNav.SetOwnPos(self.pos) # update own

position to navigation algorithm

 self.repulsorNav.UpdateObstacles([i.pos for i in

self.visible_obstacles])

 recVector, recHdg = self.repulsorNav.Navigate() #

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

125

Recommended vector to steer

 self.SetHeading(FindCentreBearing(self.hdg, recHdg))

#Turn halfway to recommended heading

 elif self.runMode == "EdgeHold":

 #Update visble Obstacles. Reduce sensor range to cut out

excess clutter

 if time.time() - self.trapTime > self.maxEdgeHoldTime:

 self.runMode = "GoalSeek" # After two minutes of

Edgeholding, and we have still not rached the goal, try "GoalSeeking"again

 for obs in obstacles:

 if Distance2D(self.pos, obs.pos) <=

self.sensor_range/RANGE_REDUCTION:

 self.visible_obstacles.append(obs)

 #Steer by Repulsion without including the goal direction

 #Determine the current goal vector

 #if CurGoalVec X savedGoalVec is almost = 0, we areback on

the line

 #so, change back to "GoalSeek" Mode

 if self.ClearOfTrap(): # Clear of Trap. Go back to

Goalseeking mode

 self.runMode = "GoalSeek"

 self.Update(obstacles) # REDO this step after setting

mode to GoalSeek

 else: # Still in trap, continue edgeholding

 self.trapTrack += self.spd # increment the track

stepped from this trap

 self.repulsorNav.SetOwnPos(self.pos) # update own

position to navigation algorithm

 if len(self.visible_obstacles) > 0:

 self.repulsorNav.UpdateObstacles([i.pos for i in

self.visible_obstacles])

 recVector, recHdg =

self.repulsorNav.Navigate(edgeholding = True) # Tell navigator we are

edgeholding

 self.SetHeading(recHdg + math.pi/2.1) # turn right

and head out of trap

 else: # we are close enough to the goal to stop

 self.runMode = "Finished"

 self.hdg = 0

 self.spd = 0

 #If in AUTO control, Step Forward

 if self.autoControl == True:

 self.StepForward()

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

