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ABSTRACT 

Path planning for mobile robot navigation in workspaces with varying obstacles 

complexity levels was addressed in this research. The domain problem is that for a 

specific class of obstacles referred to as the concave shaped and lengthy obstacles, the 

likelihood of local minima trap occurring is often significantly high. For instance, a labyrinth 

premised on concave shaped obstacles often misleads a navigating robot into the 

concave hollow region in a bid for the robot to reach its desired target point. Apart from 

the use of reactive algorithms, for an autonomous navigation process which is often 

premised on continuous path trajectory development, the literature clearly alleges that 

most non-reactive algorithms get trapped in the concave hollow and along the edges of 

lengthy obstacles.  The purpose of this research is to adapt a reactive mobile robot (MR) 

navigation algorithm premised on the Hybrid Virtual Force Field (HVFF) concept for the 

exploration of robot navigation in both developed and literature based obstacle 

constrained workspaces. The obstacles considered in this research work are mostly 

premised on concave shaped and lengthy obstacles cul-de-sac. The HVFF approach 

evolved from the Virtual Force Field (VFF) approach which is premised on the Potential 

Field Method (PFM). This method of path planning operates by utilizing the resultant of 

forces emanating from the combination of repulsive and attractive forces acting on a 

navigating robot. The algorithmic validation was carried out via the conduct of simulation 

trials using the Python software. The simulations conducted span across newly developed 

workspaces and literature based workspaces for a comparative study. Furthermore, the 

behaviour of the robot navigation with and without the HVFF algorithm per workspace 

was presented. Of a particular interest was the navigation time with and without the HVFF 

algorithm per workspace. The results obtained in all the simulations showed a much 

efficient navigation completion time with the use of the HVFF algorithm. Efficiency in 

arriving at the target point implies that the robot was able to come out of the local minima 

trap each time it entered the hollow region of a concave shaped obstacle or around the 

edges of a lengthy stretched out obstacle. The time difference recorded between 

deploying the HVFF approach and not deploying the HVFF algorithm across the different 

simulations conducted spanned between 14.27 to 287.44 seconds which corresponds to 

a percentage gain time of 31.87% and 89.70% including a simulation with an unending 

target point (TP) arrival time for the without HVFF algorithm. As the concave trap 

increased in its depth, the tendency of the robot to escape from the trap becomes much 

more difficult. The outputs of this research justify the effectiveness and efficiency of the 

HVFF algorithm.      

Key Words: Mobile Robot, HVFF Algorithm, Concave Obstacles, Target Point, Hybrid 

Approach. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Background to the study 

Mobile robot (MR) navigation and obstacle avoidance (OA) has over the years gained 

the attention of researchers, manufacturers, enthusiasts and operators of robotic 

vehicles stated by Li and Savkin in 2018 [1]. MRs have widely been deployed in 

everyday human activities including manufacturing, agriculture, military, medicine, and 

several other domains. Safe navigation is an essential requirement for MRs in their 

respective environments. Therefore, research on autonomous robot navigation as 

they move from one point to another in a given workspace without making contact with 

obstacles is fundamental for their physical and functional safety in an environment 

littered with obstacles. Abiyev et al [2] stated that these obstacles often act as 

navigation obstructers along the path between the robot and its target point (TP). The 

robot navigation space can be littered with both static obstacles (SOs) and dynamic 

obstacles (DOs) of varying convex and concave shapes resulting in cul-de-sac 

capable of creating a local minima problem. Furthermore, workspace obstacles can 

be further classified as being virtual, real, concave, convex, static or dynamic with the 

aid of sensing devices and algorithmic procedures. 

The problem of robot navigation can be summarised using the three principal 

questions viz: where am I?", where am I going?", and how should I get there?" 

Question one is about localisation, question two is goal or TP centred while the third 

question is about planning a path that results in achieving the defined goal. 
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Investigations of the latter two questions often come under the domain of path planning 

(PP) and OA.  

The use of reactive hybrid navigation algorithms is beginning to take the centre stage 

in the MR path planning problem for enhanced intelligence. The integration of different 

navigation techniques has the ability to produce more efficient and effective navigation 

results. Olunloyo and Ayomoh [38] proposed a hybrid approach referred to as the 

Hybrid Virtual Force Field (HVFF) approach. This technique like a few others, has the 

benefit of high TP attainment. A MR constrained by this methodology can generally 

arrive at its TP without colliding with the workspace obstacles [39]. One of the most 

significant merits of using reactive navigation algorithms is that they are usually online 

compliant i.e. they have the ability to make the robot self-governing hence, making it 

capable of coping in unstructured workspace domains in a bid to be fully autonomous 

while navigating. To achieve its goal, the robot must be able to perceive its 

environment sufficiently to allow it navigate safely. In recent times, some areas of 

success have been reported in the literature but nonetheless research in autonomous 

MR navigation may be well off the infancy stage however, far-fetched from the desired 

target of attaining the human dexterity. Extensive research is still on going for 

improvement in this research space to make its widespread use in all facets of the 

human endeavor possible.      

Robot PP, in a wider sense may well be alluded to as the method of distinguishing 

impediments free configurations inside a given workspace in arrangement to upgrade 

a collision free path from its start position to its TP. To be beyond any doubt, PP for 

MRs is an intricate issue that also requires smoothness and clearances besides 

guaranteeing a collision-free path with minimum traveling distance. Two crucial 
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classification recommended by Fu et al [3] to portray the robotic PP issue are Obstacle 

Limitation and Path Limitation. Obstacle Limitations show that there are a few focuses 

in space which are occupied and are not free for the MR to pass through. Path 

Limitations are more often than not given as points on a path which the MR must take 

after. As a robotic vehicle translates and orientates her member components at 

different points with time and in space, while accomplishing an assigned task, it does 

this in some defined paths ensuring that obstacles are avoided both locally and 

globally. Local and global path planning are next discussed below: 

1.1.1 Local Path Planning (sensor based planning)  

Sometimes information may not be available at the inception of tackling an issue in 

this way we must illuminate the issue in stages as data is continuously made 

accessible. Sensor-based planning is a vital work when situations alter with time, are 

obscure, or there are mistakes in the robotic equipment. A postieri information can be 

utilised to discover the next trajectory in a path (by collecting data about the results of 

the previous trajectory) or may also be utilised to guide the MR in a random sense 

when investifating an environment. These techniques correspond to an “execute and 

evaluate” methodology. The information feedback in such cases is acquired with the 

help of sensors while the sensors utilised may range from vision frameworks to contact 

switches.  

1.1.2 Global Path Planning (information based planning)  

It is much simpler to solve an issue in a case if all the information needed about the 

workspace is available at the beginning and prior to the onset of movement. In robotics 

we may plan paths before their execution if we have adequate information of the 
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environment. The PPs before execution facilitates solutions of a shorter path time, 

more efficient dynamics, and absolute collision evasion. When working in this mode, 

a priori information (i.e. known before) is utilised. Techniques are available to solve a 

variety of problems, when given a priori information. A few of the knowledge which we 

utilise for a priori PP may come from diverse sources such as vision frameworks, 

designing details, or CAD programs. Such a priori information may moreover be 

pertinent to moving objects, in the event that they have an unsurprising recurrence or 

movement. However, a priori information cannot be utilised for eccentric or arbitrary 

moving objects. 

1.2 Problem Statement 

The robot navigation problem is that which focuses on an autonomous MR navigating 

from an initial position to an endpoint without colliding with objects in sight along its 

trajectory of navigation. The robot navigation problem can be divided into two sub-

categories viz: The local minima navigation problem where the MR moves in an 

environment with unknown obstacle information and the global minima problem, where 

the MR meander’s in a workspace with prior knowledge of the obstacles’ information 

and the environment as a whole. MRs must complete some complicated tasks in a 

time-efficient manner and avoid virtual obstacles (VOs) and real obstacles (ROs).  

Hence one of the problems is that of the total travel time minimisation of a MR amidst 

a workplace with obstacles. Over the years researchers have pioneered several 

methodologies for MR navigation. An in-depth information of individual algorithms for 

navigation given by Patle [5] highlight the following gaps: 
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● Limited research in DOs, multi TPs, multi robots environment: Limited research 

has been accounted for particularly in an environment consisting of DOs, multi 

TPs, real-time experiments, and multi robots framework. 

● Few papers on hybrid approaches 

The complexity in MR navigation has been increasing gradually due to changing 

environments. As a result, among the specific issues to be addressed in this research 

is the problem of cul-de-sac traps which are caused by deep concave-shaped 

obstacles. Imagine a real-life environment where an MR fall into a 1km deep concave-

shaped obstacle only to realise while it is inside the obstacle that the target is behind 

the obstacle. This scenario can be put in perspective in mining industry where MRs 

are used to do inspection where it is dangerous for humans.  Figure 1 and Figure 2 

show a local minima trap (LMT) by a deep concave-shaped obstacle and a lengthy 

obstacle respectively, where R represents the MR and T the target. A real-life scenario 

can be in mines where MRs are deployed to do a safety inspection.  

 

Figure 1: LMT by a concave-shaped obstacle 
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Figure 2: LMT by a Lengthy obstacle 

1.3 Research Questions 

 How can an optimal navigation algorithm for a robotic vehicle in a domain of 

obstacles be actualised?  

 How can a robotic vehicle avoid the local minima traps (LMTs) amidst VOs and 

ROs?  

 What specific optimisation control metrics are required to effectively deploy a 

real robotic vehicle to a test environment?  

1.4 Research Aim 

This study is aimed at adapting a reactive MR navigation algorithm premised on the 

HVFF concept to deep concave and lengthy obstacles cul-de-sac randomly distributed 

in developed workspaces as a measure towards addressing the local minima problem 

posed by these categories of obstacles.  
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1.5 Research Objectives 

The objectives of this research are to: 

 Explore and adapt the HVFF concept for effectiveness and efficiency studies of 

robot navigation in workspaces with concave or lengthy-stretched out 

obstacles.  

 Adapt the HVFF algorithm to a multi-target point navigation problem  

 Validate the HVFF algorithmic performance in the different workspaces using 

simulation trials premised on the Python software. 

 

1.6 Motivation 

The introduction of robotised subsystems had grown gradually since the Third 

Industrial Revolution (3IR) because of their profitability and comfort. A significant part 

of the time base is determined to the inclinations these structures have and give less 

thought to their system unpredictability with the change in atmosphere plans. 

Therefore, the 3IR has left the thin scene with systems unequipped for the adaptable 

and independent end. An enormous bit of the genuinely steady organisations across 

metropolitan territories, structures, adventures, and present-day motorisation cannot 

pick or prepare decisions in an anticipative manner. As needs are, there are pointless 

deficiencies similarly to obtained costs in the steady movement of these genuinely 

strong organisations. Inefficient information about the complexity of robots in industrial 

production may result in a poor assessment of installing measures that could redesign 

MRs and how profitable/economical they can be.  Change in environmental conditions 

has increased system complexities in industrial automation. Planning and coordination 

of MRs and automated guided vehicles (AVGs) in workspaces in which these utilities 
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are deployed is very vital. Accordingly, there is a need to introduce smartness into 

these systems so they can have the option to confer among themselves and their 

incorporating areas with enlargement to have the alternative to recognise, act, portray, 

and qualifying conditions. These require  

1.7 Scope of the Research 

This research will focus on the efficient robot vehicle navigation model amidst 

workplaces with obstacles. The scope will consist of mathematical algorithms, 

programming using python, and thorough theoretical research to investigate 

methodologies needed for navigating a MR to enable it to cope in real-world situations 

consisting of obstacles. 

1.8 Limitations of the Research 

 This research focus is on a productive robot vehicle route model in an objective 

area amid workspace snags. Two major constraints towards achieving the time-

efficient objective include the path length and obstacle state 

identification/avoidance especially when they are along the robot's line of sight. 

 The navigation environment considered for the robot is an unknown 

environment in which the robot acquires basic obstacle information such as 

position and geometry through sensory inputs. 

 The programming algorithms will be validated through simulation trials. 

 

1.9 Delimitations of the Research 

 The global navigation path will not be looked at since the research will look at 

an unknown environment. 
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 Due to current circumstances linked to the pandemic, the real-world application 

will not be considered for validation instead simulation environment will be 

used. 

1.10 Notations 

The following table gives the notations used in Chapter Three. 

Table 1: Mathematical Notations 

No Symbol Meaning No Symbol Meaning 

1 𝑥𝑟 x-coordinate of the robot 15 𝑈𝑎𝑡𝑡
𝑥 (𝑞𝑟) x-component of attractive 

potential generated by 
goal state 

2 𝑦𝑟 y-coordinate of the robot 16 𝑈𝑎𝑡𝑡
𝑦

(𝑞𝑟) The goal state y-
component of attractive 
potential  

3 𝑖 Grid-line occupied by robot 
on x-axis 

17 𝑈𝑥(𝑞𝑟) Resultant potential in the 
x-axis 

4 𝑗 Grid-line occupied by robot 
on y-axis 

18 𝑈𝑦(𝑞𝑟) Resultant potential in the 
y-axis 

5 𝑐𝑖,𝑗 Dynamic window cells 19 𝑈𝑎𝑡𝑡(𝑞𝑟) Total attractive potential 
from the target point 

6 𝑥𝑡 x-coordinate of the robot 
goal state 

20 𝑈𝑟𝑒𝑝(𝑞𝑟) Total repulsive potential 
from obstacles 

7 𝑦𝑡 y-coordinate of the robot 
goal state 

21 𝑞𝑟 Configuration space 
describing the current 
position of the robot 

8 𝑥𝑜 x-coordinate of the obstacle 
in robot’s active window 

22 𝑞𝑡 Configuration space 
describing target point 

9 𝑦𝑜 y-coordinate of the obstacle 
in robot’s active window 

23 𝑈𝑟𝑒𝑝
𝑥 (𝑞𝑟) x-component of repulsive 

potential 

10 𝑑𝑡 Robot distance from the goal 
state 

24 𝑈𝑟𝑒𝑝
𝑦

(𝑞𝑟) y-component of repulsive 
potential 

11 𝑑𝑜 Robot distance from an 
obstacle 

   

12 𝑥𝑔𝑟𝑖𝑑 Grid-line similar on the x-axis 
of the robot compartment 

   

13 𝑦𝑔𝑟𝑖𝑑 Grid-line similar on the y-axis 
of the robot compartment 

   

14 𝐹𝑐𝑟 Repulsive force variable of 
sensed obstacle 
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1.11 Organisation of the Research 

The remaining chapters of this research are structured in the following way: Chapter 

Two gives a literature review where the review gives an in-depth understanding of the 

methodologies that already exist to develop optimum MR navigation models. Chapter 

Three gives the research approach that will be taken to meet the objectives of this 

research. The Chapter presents the chosen methodology from the thorough literature 

review in Chapter Two. Chapter Four gives the simulation runs results and discussion 

of results. Chapter Five it is the conclusion, research findings, and future work. 

1.12 Chapter Summary 

The introductory chapter gave background study to this research and clear details of 

the problem that will be addressed and gave the objectives. It further gives the 

motivation, limitations and scope of this research. And the aim of this research work 

is to at adapt a reactive MR navigation algorithm premised on the HVFF concept to 

deep concave and lengthy obstacles cul-de-sac randomly distributed in developed 

workspaces as a measure towards addressing the local minima problem posed by 

these categories of obstacles.  

 

 

 

 

 

 

 

 

 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

 

 

11 

 

CHAPTER TWO 

LITERATURE REVIEW 

 

2.1 Introduction 

This chapter reviews exploration and applications on a scope of subjects of 

significance for portable robots and AGVs route amid obstacles. The utilisation of MRs, 

and AGVs specifically, is developing as the scope of robot applications in industrial 

facilities, clinics, places of business, and so on increments [4]. The objective of this 

literature review is to analyse techniques/methods that currently exist for the MR 

navigation in an environment where OA is required. The chosen technique will be used 

to build up an ideal robot vehicle navigation model in an objective area amid a 

workspace with obstacles. 

2.2 Review 

The review gives an in-depth understanding of the methodologies that already exist to 

develop optimum MR navigation models. This review aims to further find gaps that still 

exist in research for MR navigation problems and add the latest research work from 

2019 to 2021 that is not included in techniques reviewed in the paper [5]. Over the 

years researchers have applied several methodologies to addressing MR navigation 

amidst obstacles [6]. The following was extracted from the research papers.  

 The problem/s solved in the field of research  

 How the problems were solved  

 Who solved these problems  

 Limitations and outcomes of the research  
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 Possible future work 

2.2.1 Simultaneous Localization and Mapping (SLAM) 

SLAM refers to methodologies that solve the issue of constructing the map of the 

workplace with no prior knowledge and localizing MR into this map without any human 

involvement [7]. This technique was applied in MR navigation for OA in 2014 by 

Moreno-Armendariz and Calvo [8]. Iizuka et al [9] in the same year did a study that 

used the SLAM technique in MR navigation in presence of moving obstacles. The 

technique was combined with an artificial potential field (APF). The hybrid approach 

was a success since the MR did not collide with obstacles till it reached the target point 

(TP).  Their future work will focus on deploying the technique in real-time application. 

Sqalli et al [10] used the technique for OA for an improvement of RN. Moreover, 

several other studies extended research in using this technique for RN [11-13]. 

2.2.2 Light Detection and Ranging (LiDAR) Technique 

LiDAR is a dynamic eminent distance detecting innovation, arranged as a range 

estimation sensor that consistently sends a beam of light utilising pivoting radiates at 

a steady rate and registers the distance between the objective and itself with high 

precision. Local navigation methods use sensors for the position and orientation of a 

MR. In the autonomous industry, the LiDAR technique is often utilised for automation. 

LiDAR works autonomously when contrasted with the GPS framework; along these 

lines, it has the capacity of planning the climate. LiDAR can be utilised freely yet when 

combined with different sensors it gives improved outcomes [14].  

In 2017, Ghorpade et al [15] proposed an efficient OA model using the 2D LiDAR 

technique for a MR. The objective was to accomplish acceptable constant execution 
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and improve the precision of OA focused on independent mechanical frameworks 

intended for military applications. The proposed strategy extricates spatial data from 

laser point-cloud utilising division and bunching strategies. The convex body 

calculation was used to recognise the precise geometry of the impediment. Convex-

shaped objects were considered for this research as SOs. The proposed OA and 

obstacle identification technique used a basic numerical model and productively 

accomplished great ongoing execution. The unwavering quality of the model was 

simulated in MATLAB. The technique was made economical, portable, and robust 

because of the inclusion of Raspberry pi 3 in the system. In the future, the work will 

focus on improving the handling time of the proposed model. 

In 2019, Madhavan and Adharsh [16] extended this work using 2D LiDAR. A deliberate 

methodology was utilised to dodge impediments on the guideline of least expense 

work. The simulation results classified obstacles to be circular, quadrilateral, and 

linear-shaped. The future work will consider dynamic OA. Moreover, Baras et al [17] 

used LiDAR and Raspberry Pi to address navigation problems while the autonomous 

vehicle avoided impediments. The paper considered an environment with static 

impediments. The experiments were conducted in real-time in presence of multiple 

impediments of various sizes and shapes. Future adjustments to their algorithm might 

be made to anticipate impediments movement and explore more efficiently in a 

dynamic workspace. Moreover, other real-time experiments were conducted for OA 

using 2D LiDAR in 2020 by Dong et al [18] and Ren Yee et al [19]. The papers 

considered both concave and convex-shaped obstacles. Dong et al [18] future work 

will focus on 3D models for MR navigation. One of the key factors is that the 

researchers used hardware that is less expensive for the 2D LiDAR technique. 
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2.2.3 Vector Field Histogram (VFH) Technique 

The VFH technique was pioneered by Borenstein and Koren [20]. The technique was 

found to be very robust, efficient, and not sensitive to readings. Moreover, Ulrich and 

Borenstein improved the VFH in 1998 [21] and 2000 [22]. The technique is intended 

to diminish the restriction of potential-field strategies, for example, robot motions while 

dodging the obstacles [23]. The VFH technique is another method of RN utilised to 

solve the PP of MRs. In 2014, Yim and Park [24] used VFH in MR navigation. Their 

simulations considered SOs which were convex shaped. Furthermore, Kumar and 

Kaleeswari [25] implemented the VFH in a robot where DOs and SOs were 

considered. The experiments were conducted in real-time and their future work will 

consider the use of potential field strategy. 

In 2019, Alagic et al [26] proposed a modified VFH technique in a MR framework. Their 

VFH calculation gave both local movement arranging and obstruction evasion 

dependent on ready sensor estimations. The adequacy of the proposed system was 

confirmed in both static and dynamic obscure conditions. The acquired results 

demonstrated the capability of the VFH calculation in exploring the portable MR from 

the beginning to the objective location evading impact with impediments. The 

drawback with this technique is that local route planning does not give the best results 

when it comes to travel time and distance covered. Similarly, Diaz and Marin [27] 

improved on the algorithm proposed by Ulrich and Borenstein [21]. The experiments 

used two robots in the presence of convex-shaped obstacles. 
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2.2.4 Artificial Potential Field (APF)/ Virtual Force Field (VFF) Technique  

The APF way of arranging innovation previously proposed by Khatib is based on a 

basic level and appropriate for constant control [28]. The APF technique is known as 

the VFF technique. This VFF technique was pioneered by Borenstein and Koren [29]. 

Moreover, this technique has been broadly used in research for route planning, robot 

optimisation, and MR navigation. However, the drawback with APF is that it falls into 

the local minima trap (LMT) and neglects to arrive at the objective. The essential 

thought of the APF technique is to make the robot move using forces such that 

obstacles produce a repulsive force (RF) and the objective delivers an attractive force 

(AF) on a MR. Complete forces of the AF and the RF control the moving of the MR. 

Along these lines, the MR can effectively maintain a strategic distance from 

obstructions and arrive at the objective. Furthermore, the following functions below are 

imperative in understanding the APF technique [30].  

Assume the position of a robot is given as 𝑃𝑟 = (𝑥, 𝑦), and the position of the goal is 

given as 𝑃𝑔 = (𝑥, 𝑦), then the attractive potential (AP) function is defined in Equation 

(2.1).  

                                 𝑈𝑎 =  𝑤𝑎 ∗  (𝑃𝑟 − 𝑃𝑔)2                                                             (2.1) 

The repulsive potential (RP) function is defined in Equation (2.2), the RP expands to 

prevent the robot from hitting the impediment. 

                                  𝑈𝑟𝑒𝑝 = {0 
1

2
∗ 𝜂 ∗ (

1

𝜌
−

1

𝜌0
)2                                                      (2.2)                                  

Such that η is a positive constant, ρ is a minimum length between an obstacle and a 

robot, 𝜌0 is a maximum effective length of one impediment. There is no effect for a 
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robot when the length between a robot and an impediment is bigger than 𝜌0. Then the 

total potential field is defined as follows: 

                                      𝑈𝑡 =  𝑈𝑎 + ∑ 𝑈𝑟𝑒𝑝                                                              (2.3)                                                              

In 2015, a paper by Chiang et al [31] proposed the route-guided artificial potential field-

stochastic reachable (APF-SR) strategy for successful routes in complex situations. 

The problem of guidance for a robot was in both inactive impediments as well as 

various dynamic and stochastic impediments. The obstacles were concave and 

convex-shaped. The strategy works by beginning with a sampling-based method to 

recognise a substantial, collision freeway within the nearness of inactive impediments. 

Then the APF is used to move the robot through moving impediments. This technique 

is successful where the APF method alone fails by falling into traps. This work was 

extended in 2017 by Malone et al [32] for route planning in a highly intricate and 

dynamic workplace with impediments. 

Additionally, Sudhakara et al [33] investigated the OA and guidance pathway of a 

wheeled portable robot using the amended APF technique. In their work, this 

technique does not think about the impact of RFs and AFs. The great point of 

proposing this technique was to beat the issue that the traditional APF could not adjust 

to the complex direction of arranging and falling prey to LMTs. Simulations were done 

in recursive U-formed, long divider, unstructured, labyrinth-like, and jumbled 

situations. The results showed that the proposed enhanced APF may very well be 

adequately used in the direction arranging of wheeled portable robots and can be 

applied progressively in real-time situations. The great advantage of the proposed 

improved APF is that the calculation adjusts well in both straightforward and complex 
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conditions with a short travel time. Similarly, Lu et al [34] proposed an algorithm 

dependent on the improved APF to tackle the issue of local optimum. Another paper 

that focused on the improvement of the APF method is by Lin et al [35].  

Moreover, a discrete artificial potential field (DAPF) technique for portable robot PP 

was introduced by Lazarowska [36]. The DAPF calculation utilises the idea of an APF 

and alters it for use in a discrete setup space. The outcomes of investigations showed 

that the DAPF calculation is fit for finding a crash-free way for a portable robot in both 

dynamic and static conditions. The advantage of this technique is the close ongoing 

activity, which makes it helpful for pragmatic applications. Future works will focus on 

trials with multiple DOs. In 2021, Shin and Kim [37] pioneered a hybrid approach that 

combines positioning risk (PR) and the APF technique. The results showed that the 

PR-APF method generated more than 90% success paths while the APF failed to 

generate 50% success paths. The simulations were tested using MR and aerially in 

real-time. The limitation of this technique is a failure if a lot of positioning errors occur. 

The figure below (figure 3) shows the flow of this proposed algorithm.  

 

Figure 3: The flowchart of the PR-APF methodology, adapted from [37] 
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2.2.5 Hybrid Virtual Force Field (HVFF) Technique 

A general new pattern in research work of portable robot optimisation, route planning, 

navigation, and obstacle avoidance is the hybrid approach. The explanation behind 

that is to accomplish preferable outcomes over-utilising the techniques independently. 

One of the hybrid approaches is known as the hybrid virtual force field (HVFF). This 

approach integrates the virtual obstacle concept (VOC), virtual goal concept (VGC), 

and VFF. The HVFF technique was pioneered by Olunloyo and Ayomoh to take care 

of the MR route issue for either a totally or halfway known static workplace of 

impediments [38].  

In 2009, one of their research papers was focused on the overall issue of DOs in an 

obscure environment with extraordinary consideration given to the class of curved 

molded impediments and extensive impediments for which the VFF method is known 

to be inclined to LMTs. In their other paper, the HVFF technique was created and 

adjusted to LMT in SOs of the inward class is a somewhat known environment. Their 

findings validated that the HVFF technique is robust and versatile. Furthermore, it has 

the benefits of high productivity and viability as far as objective state achievement. 

Regardless of how much a workspace is bunched with impediments of various shapes 

or sizes, MR constrained by this methodology can generally arrive at the objective 

state without crashing into impediments given a possible way exists [39]. An outline of 

how the conventional VFF is combined with VGC and VOC is presented in Figure 4 

below. 
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Figure 4: HVFF methodology flowchart, adapted from [38] 

In 2010, Olunloyo and Ayomoh [40] further used the HVFF method to address the 

nearby minima robot route issue brought about by one or the other a curved or 

protracted impediment from a novel point of view. This was done through techniques 

that can empower a robot to check and arrange impediments into nearby or non-

nearby minima causative impediments, stomach muscle initio, from the robot's 

underlying situation, preceding route. Such a methodology endeavors to impersonate 

human knowledge whereby on recognising a nearby minima causative obstacle an 

individual rather than continue into the trap, promptly suspends further route along its 

planned line of direction and reclassifies another way of route. 
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Moreover, in 2011[41] the HVFF technique was extended from the work presented in 

[40]. The extension incorporates route productivity concentrated between the current 

route plots ensuring papers on the constructed model and summed-up model 

conducted in a dynamic obstacle (DO) environment. The two figures (Figures 5 and 6) 

below show some of the obstacle sketches that were used in the paper ref [40]. The 

other characteristics of these obstacles’ geometry are the lengths, height, and other 

features that can be extracted using sensor methods to identify the obstacles.  

 

 

Figure 5: Concave obstacle sketch, adapted from [40] 

 

Figure 6: Straight obstacle sketch, adapted from [40] 
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2.2.6 Fuzzy Logic (FL) Technique 

The FL technique was introduced by Zadeh [42] and extensively used in engineering. 

This technique plays a huge role in the domain of robotics. Many researchers have 

successfully used this technique to guide the MR in a certain environment. FL control 

is very appropriate for minimal effort portable robots that do not need extremely 

complex routes since FL is a mix of numerous types of rational estimations of the 

sources of info. The FL systems are motivated by human thinking, which is dependent 

on recognition. The FL technique that was behavior-based was designed by Qing-

yong et al [43]. One of the behaviors included obstacle avoidance behavior in a MR. 

Jaradat et al [44] investigated a MR in a dynamic surrounding that had static and 

moving objects using a hybrid approach. They integrated FL with APF and the results 

found were simulated under a dynamic environment. Under the considered approach, 

it was seen from the simulated scenarios that the proposed approach had the 

alternative to give the robot a crash-free approach to carefully show up on the moving 

goal. One disadvantage of this technique is the LMT, where the robot was caught in a 

position sitting tight for a hindrance or the objective to change their positions which 

does not happen in static conditions. Moreover, Pandey et al [45] developed an FL 

technique for taking care of the movement arranging issue of a portable robot in the 

presence of various states of SOs to discover crash freeway. The outcomes showed 

that the proposed technique empowers the portable MR to securely arrive at the 

objective without impacting. In the future, the current technique can be improved by 

streamlining with the assistance of optimisation algorithms. 

In 2016, Almasri et al [46] created crash evasion and line train procedures for portable 

robot routes in dynamic and static conditions with the joining of FL combination. The 
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crash shirking method utilised vicinity sensors to distinguish SOs and DOs. The 

proposed technique was effectively tried in the Webots Pro test system and 

progressively explored. Furthermore, Singh and Thongam [47] investigated the issue 

of OA in the route of the portable robot by building up an advanced FL deduction 

framework. In their research energy was diminished by decreasing the trip time to 

arrive at the objective. The reliability, verification, and novelty of the utilised technique 

were simulated in the FL tool kit of MATLAB. 

Additionally, in 2019 Batti et al [48] extended the use of FL for OA in labyrinth 

workspace. The future work would consider combining this approach with algorithms 

like a genetic algorithm (GA) or neural network (NN) to produce better results. Mohanty 

et al [49] proposed a new model called Takagi-Sugeno (T-S) FL to address the issue 

of route planning. The model was validated in simulation and real-time experiments. 

Figure 7 below shows the navigation space consisting of various obstacles considered 

in their study. Future work will focus on dynamic conditions using multiple robots. 

 

Figure 7: Navigation Space, adapted from [49] 

Recently, Oleiwi et al [50] research paper addressed the MR navigation and route 

planning problem. They addressed the improvement of the FL technique by applying 

it in a complex environment that involves more than two DOs. The environment is 
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considered unknown and known DOs. The results obtained through simulations 

outline that newly improved FL overcame all limitations that were presented prior by 

other researchers. Hence, future work will consider the application in drones. 

2.2.7 Neural Network (NN) Technique 

The NN is a huge plan of equivalent spread planning segments (neurons) related to 

graph geology. Learning in the neural association can be controlled or independent. 

Coordinated learning vocations portrayed plan information, while independent learning 

uses simply the least information without pre-classification. Solo learning counts offer 

less computational multifaceted nature and less precision than directed learning 

estimations. The neural association could convey the data irrefutably in the loads, 

resulting in learning. The NN had filled quickly in the domain of recognising objects 

and obstacle discovery in a picture. Recently, the issue of recognising obstacles in the 

robot navigation system is important [51]. The most popular methodology used to 

solve this problem in the past years has been convolutional neural networks (CNN) 

[52, 53]. 

In 2011, Chi and Lee [54] in their paper various principles were actualised for the 

control technique to keep away from the obstacle effectively. The proposed framework 

with the NN control approach has illustrated the adequacy of dodging the obstacles 

and robots can explore through the direction with dependability and unwavering 

quality. In the future, to accomplish better reaction from the proposed NN approach, it 

needs further exploratory examination to have better information preparation. The 

more substantial prepared information, the better the NN framework to have. 
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In 2014, Motlagh et al [55] have proposed avoiding obstacles and the objective of 

looking for practices utilising NN. Janglova [56] addressed the issue of robot guidance 

using NN amidst objects. The research looked at a way of arranging and canny control 

of a self-governing robot that should move securely in a mostly organised workplace. 

This environment included quite a few obstacles of self-assertive shape and size. The 

results were simulated, and the researcher concluded that the NN technique is usable 

by and large for the movement of the robot in a self-assertive workplace. In the future, 

this strategy will be looked at for the safe movement of our trial versatile vehicle in 

indoor conditions.  

Moreover, Yu et al [57] addressed the area of an arrangement control issue with 

impact and OA for multi-robot frameworks within the sight of model vulnerabilities and 

outside unsettling influences. Although the NN has numerous benefits, the 

determination of the number of shrouded hubs in the NN should be controlled by the 

calculations. The assurance of the middle estimation of the concealed layer hub 

requires a further report. Further exploration work will principally focus on the ideal 

control issue of the various automated frameworks dependent on the NN. 

Additionally, in 2020 Saleem et al [58] roused by the benefits of the various levels 

including extraction of profound learning, their work examined the improvement of a 

CNN calculation to tackle the issue of the portable robot OA in an indoor climate. The 

eventual outcomes showed that the precision can be improved by remembering the 

MR direction for the dataset, expanding the size of information, and tuning the 

network's hyperparameters. The CNN calculation has indicated the incredible potential 

to get highway order exactness for hindrance evasion for portable robots. 
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Furthermore, Wei and Ye [59] proposed an OA framework dependent on GA-

supported OIF-Elman NN. Figure 8 shows the architecture of the OIF-Elman NN. 

 

Figure 8: OIF-Elman structure network, adapted from [59] 

The framework can manage versatile robots to finish the development and impediment 

evasion in the workspace with deterrents. Considering the information gathered by the 

MR's six infrared sensors, the framework changes its heading and changes the MR's 

movement at the following second.  The test results demonstrated that the framework 

planned by the GA-helped OIF-Elman network is more successful for OA. Another 

paper by Zhang et al [60] focused on the improvement of NN for RN in complex 

environments. 

2.2.8 Particle Swarm Optimisation (PSO) Technique 

The PSO is broadly utilised in the field of versatile robot routes tending to the planning 

and confinement issues of portable robot routes in the obscure workplace [61]. The 

utilisation of PSO assists with limiting the count and holds more steady intermingling 

attributes. In 2015, the examination of different methodologies was introduced and the 

results showed that the FL matched with PSO provides the ideal outcomes in 

separation voyaged [62]. The uses of PSO are not restricted to versatile robot routes 
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just in the guard area. Atyabi et al [63] introduced an extension of the PSO technique 

in robotics to improve the performance of this method. Their research considered the 

environment with SOs and DOs. The technique showed potential under the conditions 

that were considered; however, the method cannot be deployed in the whole domain 

of robotics. The future work would examine the effectiveness of this method under 

real-world applications with mobile robots. 

Furthermore, one of the research papers presented another PSO technique, named 

the PSO-IAC technique [64]. This algorithm was developed to determine the objective 

of coming to terms with the hindrance evasion issue for a 6- degrees of freedom (DOF) 

controller of the home assistance robot. The suggested PSO-IAC calculation 

coordinates the improved versatile idleness weight and the tightening factor with the 

standard PSO. Both the free-space and obstruction shirking states were set up for 

assessments in real-time and simulations examinations. Simulation outcomes 

demonstrated that the PSO-IAC calculation gives the quickest combination capacity. 

Lastly, the suggested control plan can cause the controller of the home assistance 

robot to show up at the objective situation with and without impediments in all 

continuous trials. 

In 2018, Meerza et al [65] built up a PSO-based robot way arranging calculation that 

has an impact shirking capacity for SOs and DOs. In the future, they will test their 

proposed calculation in a certifiable workplace. Their point was to fuse a few profound 

fortifications figuring out how to accomplish more perplexing swarm conduct. 

Additionally, Alaliyat et al [66] in their paper, proposed a powerful way of arranging 

calculations dependent on PSO, ready to manage the dynamic complex workplace. 

The outcomes indicated that, without any earlier information on the workplace, the 
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robot can accomplish its objective evading SOs and DOs. The robot moves easily and 

does not stall out even in complex dynamics. They intend to stretch out this work to 

acquire a keen robot that can learn and retain the circumstances during its route 

through the workplace. Moreover, they plan to improve the proficiency in anticipating 

the speed and course of DOs. Figure 9 shows one of the navigation setups considered 

for their simulations. 

 

Figure 9: Complex navigation space with obstacles, adapted from [66] 

In 2020, Tian et al [67] in their paper embraced remote sensor organisation to find 

robots and impediments. The technique proposed utilised an improved counterfeit 

clever calculation to design way. Their simulations used multiple robots. The 

limitations to the proposed method are the calculation of the union speed to improve 

the worldwide pursuit execution and failure to manage the circumstance that 

numerous robots may collide. In the future, hypothetical exploration of PSO calculation 

and obstruction evasion calculation to manage different testing improvement issues 

will be looked at. 
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2.2.9 Genetic Algorithm (GA) Technique 

This is a well-known technique-based enhancement instrument that follows the 

guideline of hereditary qualities and common determination found first in 1958 [68]. 

The application to the field of software engineering was introduced first in 1975 [69]. 

The utilisation of GA for the versatile robot route issue has been given to a static 

workplace. The investigation is introduced by reproduction results as they were within 

the sight of a polygonal impediment. This strategy is embraced by Xiao et al [70] to 

accomplish the objective of the route, for example, way length, way perfection, and 

OA. Many of the scientists have given routes in a static workplace simply by utilising 

GA yet the route within the sight of a moving impediment in an uncertain workplace 

[71]. To improve results in robot way arranging, numerous scientists have joined the 

use of GA along with another shrewd calculation to get a mixture approach [72]. Patle 

et al [73] state that in the future the work may stretch out to cause the crossbreed 

regulator and it to be tried for the ongoing open-air workplace. The execution of the 

suggested regulator for the submerged condition can be checked. It might likewise 

apply to the improvement of the self-ruling vehicle for the different ecological 

conditions. 

In 2018, Germi et al [74] paper tended to be an alteration to the first potential field 

calculation to better the exhibition of the calculation in dynamic conditions. The change 

depended on adding deterrent elements as a term to the shock field. The adaptiveness 

of the GA stems from changing the proportion of the populace created by each 

strategy. Additionally, Choueiry et al [75] research paper introduced a survey of the 

path planning enhancement issue and a calculation for robot way arranging in a static 

environment using GA as a device. The motivation behind the calculation was to 
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discover the quickest course in each number of steps while staying away from 

obstacles in the space. The calculation's exhibition was upgraded by consequently 

overlooking all recommended courses that cross the limits of the workplace. For 

enhancement and search issues, GA was utilised as a hunting instrument in figuring 

to discover precise or a surmised arrangement. Figure 10 show the flowchart of the 

proposed approach. 

 

Figure 10: Approach Flowchart, adapted from [75] 

Furthermore, Lopez-Gonzalez et al [76] utilised GA to accomplish distance-based 

development, with the usage of two unique sorts of chromosomes, one for the distance 

arrangement, and the other for impact evasion. The proposed answer for this was the 

utilisation of the consolidated preparing force of all robots in a parallel GA that 

relocates potential arrangements in request to diminish preparation time and 

accomplish agreement between the robots to an objective. 

Additionally, in 2020 Aghda and Mirfakhrae [77] consolidated the GA-FL technique 

that was utilised to improve directing. The explanation behind applying the fuzzy 

element was the vulnerability of the information data and the avoidance of 
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experiencing obstructions. To exploit the two strategies together, the joined GA-FL 

technique was utilised because in FL, the ideal nearby arrangement was found, and 

the GA was utilised to manage it.  

2.2.10 Ant Colony Optimisation (ACO) Technique 

The ACO technique is now applied to different domains of science and designing, for 

example, workshop booking, vehicle steering, quadratic task issue, mobile sales rep 

issues, diagram shading, and some more. The ACO is a technique that is applied in 

the field of the robot system, in particular the path planning of mobile robots [78]. To 

determine the automated flying vehicle course issue for a war zone, the ACO 

calculation has been introduced to resolve this issue [79]. The ACO technique is used 

for deterrent avoidance and course in exceptional conditions. The basic ACO for 

portable robot way arranging exists numerous issues, for example, absence of 

steadiness calculation, untimely convergence, more difficulty to track down an ideal 

answer for complex issues, etc. In 2011, Zhangqi et al [80] proposed improvement 

measures. Their research work applied GA to the advancement and arrangement 

boundaries of the essential ACO. The simulation outcomes showed that the improved 

ideal way length is essentially not exactly the fundamental ACO and instability is more 

modest, steadiness essentially improves.  

In 2018, Wang et al [81] in their paper the APF calculation was improved first, and the 

strategy for piecewise capacity of fascination potential was proposed to take care of 

the issue that the robot can without much of a stretch slam into the obstruction when 

the length between a robot and an objective point is huge. They too adjusted the 

shocking likely capacity to tackle the wavering issue. The improved APF calculation 
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and ACO are joined as seen in the flowchart in Figure 11. On the premise of finding 

the ideal or imperfect way, the assembly speed of ACO is improved. The limitation of 

this approach is that the model contains numerous boundaries which make it difficult 

to tune. They will discover the relations between these boundaries in future work and 

attempt to tune these boundaries by calculations. 

 

Figure 11: Improved APF combined with ACO flowchart, adapted from [81] 

Moreover, in 2019 Yi et al [82] paper produced dynamic change data as indicated by 

the contrast between the best way of the past age and the best way of the current 

cycle in ACO. In 2020, Ma et al [83] address the automated submerged vehicle two-

dimensional independent way arranging issue in the climate influenced by sea 

momentum and obstacles. The paper applied a better fireworks-ant colony hybrid 

algorithm (F-ACHA). Trial outcomes showed that this calculation can rapidly locate the 

global ideal arrangement, and the more unpredictable the workplace. The calculation 

proposed in this study gave another approach to the self-sufficient way of arranging 

submerged vehicles. 
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Additionally, Zhao [84] in his paper the ideal way of anticipating robots dependent on 

ACO was proposed by contemplating the connected writing and significant methods 

of robot way arranging in China and abroad. The paper primarily thinks that under the 

condition of detecting the current workplace, the robot powerfully keeps away from the 

hindrances and meets the necessities of the least time. Based on presenting the robot 

way of arranging the issue, the numerical model was set up for the ACO. The 

exploratory outcomes showed that the model can wisely pick a way for the robot with 

DO evasion, having the most limited time and more limited distance, and has a specific 

commitment to the smart advancement for the robot. 

2.2.11 Firefly Algorithm (FA) Technique 

The FA technique was introduced by Yang in 2008 [5]. This algorithm can also be 

called the metaheuristics algorithm and the idea comes from fireflies flashing behavior. 

In 2015, the problem of robot navigation using FA in the domain of SOs was addressed 

by Paniagua et al [85]. Three objectives were met in their paper which were route path, 

route smoothness, and route length. The future work stated that the work will be 

extended in the domain of a dynamic work environment. This problem was also 

addressed by Brand and Xiao-Hua [86] for a free collision path using FA in a simulation 

platform environment. Other researchers considered solving the underwater robot 

navigation problem [87, 88]. Moreover, many researchers have addressed the robot 

route planning and navigation problem through various hybrid algorithms that 

incorporate FA [89-91]. The hybrid algorithms are growing more and are considered 

since the individual technique does not guarantee the best solutions in some 

unstructured spaces.  For dynamic conditions under the analysis of FA, it was 
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addressed by Patle et al [92]. In 2020, Li et al [93] extended research on FA in a static 

environment. 

2.2.12 Graphical Techniques 

Over the years researchers have developed graphical techniques to also address the 

issue of RN in workplaces. These techniques are limited to static workplaces. 

Recently, a paper by Chi et al [94] used one of the graphical methods known as the 

Voronoi diagram. They addressed the issue of PP in complex workplace obstacles 

that are moving and static. The experiments were successfully run in real-time and the 

technique was robust. Another known method is cell decomposition, it was best used 

by Wahyunggoro and Cahyadi [95] in a hybrid approach with the FL method to improve 

the duration it takes to reach the TP. Similarly, Zhou and Liu [96] combined a roadmap 

approach with SLAM to address the issue of navigation for MRs. Their future work will 

focus on optimising this approach to increase accuracy. Some of the other techniques 

that exist in the domain of graphical methods are transformed space, oct trees vgraph, 

and configuration space. 

2.2.13 Vision-Based, Transient Virtual Obstacles (TVO) and Other Techniques 

Aggarwal et al [97] in their paper looked at OA using vision-based techniques by 

graphing virtual impediments. This technique is based on the intensity of each pixel in 

an image captured by a camera. The intensity value of each pixel is used to classify it 

as terrain. The pixels with the highest brightness are classified as terrain, while other 

pixels are classified as obstacles. Black dots indicated obstacles in simulations. The 

disadvantage of this technique is that the robot shows abnormal behavior, such as 

detecting false alarms when it was tested. 
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In 2019, Ravankar et al [98] presented a TVO technique in presence of VOs to change 

the methods of the robots for safe navigation. Their current implementation needs 

manually adding the VOs within the map. In the future, they are going to modify the 

rule to mechanically decide the addition and removal of VOs exploitation knowledge 

from totally different sensors. Similarly, they extended this work in 2020 [99] looking 

at temporary VOs. The main advantage of their proposed method is that there is no 

need to change the route planner when adding and removing VOs on the map. This 

allows powerful functions to prevent or guide the robot through specific passages 

without using real obstacles, changing the route planner, or reprogramming it.  

Other additional techniques include the tangent bug method was implemented by 

Yousuf and Kadri [100] in their research, which included concave and convex-shaped 

obstacles. A study by M et al [101] used a reinforcement learning technique to address 

navigation issues in MRs. Another approach called lifelong learning was used for RN 

by Liu et al [102] and Xie et al [103] used a stochastic approach for RN. Other reactive 

methodologies like bacterial forging optimisation, artificial bee colony, shuffled frog 

leaping, cuckoo search, not included in this paper can be seen in the paper ref [5].  

The above sections looked at previous research on methodologies that were used to 

address the issue of MR navigation, PP, and optimisation in robotics. Table 2 below 

summarises these methodologies and the taxonomy breakdown is as follows: 

Environment consisting of what type of obstacles, show if single or hybrid approach, 

results simulated or not, the year, geometry of obstacles, target point and robot if it 

was one or multiple. Obstacles can be VOs, SOs and DOs.  
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Table 2: Analysis of various path planning and navigation algorithms amidst obstacles 

Cv =Concave, Cx = Convex, SR = Simulation Result, RTR= Real Time Result 

 

 

Ref 

No 

 

 

Techniques 

Environment consists 

of 

Technique used as Result  

 

Year 

Obstacle(s) 

Shape 

Target Point 

(TP) 

Robot 

SOs DOs VOs Stand 

Alone 

Hybrid 

 

SR RTR Cv Cx Single  

TP 

Multi  

TP 

Single 

Robot 

Multi 

Robot 

Classical Approach 

[8]  

 

 

SLAM 

Yes No No Yes No No Yes 2014 Yes Yes Yes No Yes No 

[9] No Yes No No Yes Yes No 2014 No Yes Yes No Yes No 

[10] Yes Yes No Yes No No Yes 2016 Yes Yes Yes No Yes No 

[11] Yes Yes No No Yes No Yes 2018 Yes Yes Yes No Yes No 

[12] Yes Yes No No Yes No Yes 2018 Yes Yes Yes No Yes No 

[13] Yes Yes No No Yes Yes No 2021 Yes Yes Yes No Yes No 

[15]  

 Light 

Detection 

and Ranging 

(LiDAR)   

Yes No No Yes No Yes No 2017 No Yes Yes No Yes No 

[16] Yes No No Yes No Yes No 2019 No Yes Yes No Yes No 

[17] Yes No No Yes No No Yes 2019 Yes Yes Yes No Yes No 

[18] Yes Yes No Yes No Yes Yes 2020 Yes Yes Yes No Yes No 

[19] Yes Yes No Yes Yes No Yes 2020 Yes Yes Yes No Yes No 

[20]  

 

 

Vector Field 

Histogram 

(VFH) 

Yes No No Yes No No Yes 1991 No Yes Yes No Yes No 

[21] Yes No No Yes No No Yes 1998 No Yes Yes No Yes No 

[22] Yes No No Yes No Yes Yes 2000 No Yes Yes No Yes No 

[23] No Yes No Yes No No Yes 2012 No Yes Yes No Yes No 

[24] Yes No No Yes No Yes No 2014 No Yes Yes No Yes No 

[25] Yes Yes No Yes No No Yes 2016 Yes Yes Yes No Yes No 

[26] Yes Yes No Yes No Yes No 2019 No Yes Yes No Yes No 

[27] Yes Yes No Yes No No Yes 2020 No Yes Yes No No Yes 

[28]  

 

 

 

Artificial 

Potential 

Field (APF)/ 

Virtual 

Force Field 

(VFF) 

Yes No No Yes No Yes No 2014 No Yes Yes No Yes No 

[29] Yes No No Yes No No Yes 1989 Yes No Yes No Yes No 

[30] Yes No No Yes No No Yes 1985 Yes Yes Yes No Yes No 

[31] Yes Yes No No Yes Yes No 2015 Yes Yes Yes No Yes No 

[32] No Yes No No Yes Yes No 2017 Yes Yes Yes No Yes No 

[33] Yes No No Yes No Yes No 2018 Yes No Yes No Yes No 

[34] Yes No No Yes No Yes No 2020 No Yes Yes No Yes No 

[35] Yes No No Yes No Yes No 2020 Yes Yes Yes No Yes No 

[36] Yes Yes No Yes No Yes Yes 2019 No Yes Yes No Yes No 

[37] Yes No No No Yes Yes Yes 2021 Yes Yes Yes No Yes No 
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Table 2: Continued 

 

 

Ref 

No 

 

 

 

Techniques 

Environment consists 

of 

Technique used as Result  

 

 

Year 

Obstacle(s) 

Shape 

Target Point 

(TP) 

Robot 

SOs DOs VOs Stand 

Alone 

Hybrid 

 

SR RTR Cv Cx Single  

TP 

Multi  

TP 

Single 

Robot 

Multi 

Robot 

Classical Approach 

[38]  

Hybrid 

Virtual 

Force Field 

(HVFF) 

Yes No Yes No Yes Yes No 2009 Yes Yes Yes No Yes No 

[39] No Yes Yes No Yes Yes No 2009 Yes Yes Yes No Yes No 

[40] No Yes No No Yes Yes No 2010 Yes Yes Yes No Yes No 

[41] Yes No No No Yes Yes No 2011 Yes Yes Yes No Yes No 

Heuristic Approach 

[43]  

 

 

 

Fuzzy Logic 

(FL)  

Yes No No Yes No Yes No 2009 Yes Yes Yes No Yes No 

[44] Yes Yes No No Yes Yes No 2012 No Yes Yes No Yes No 

[45] Yes Yes No Yes No Yes No 2014 No Yes Yes No Yes No 

[46] Yes Yes No Yes No Yes Yes 2016 Yes Yes Yes No No Yes 

[47] Yes No No Yes No Yes Yes 2018 No Yes Yes No Yes No 

[48] Yes No No Yes No Yes No 2019 Yes Yes Yes No Yes No 

[49] Yes No No Yes No Yes Yes 2020 Yes Yes Yes No Yes No 

[50] Yes Yes No Yes No Yes No 2021 No Yes Yes Yes Yes Yes 

[54]  

 

 

Neural 

Network 

(NN) 

Yes No No Yes No No Yes 2011 No Yes Yes No Yes No 

[55] Yes No No Yes No Yes No 2014 No Yes Yes No Yes No 

[56] Yes No No Yes No Yes No 2004 Yes Yes Yes No Yes No 

[57] Yes Yes No Yes No Yes No 2019 No Yes Yes No No Yes 

[58] Yes No No Yes No No Yes 2020 Yes Yes Yes No Yes No 

[59] Yes No No No Yes Yes No 2020 Yes Yes Yes No Yes No 

[60] Yes Yes No Yes No Yes No 2020 Yes Yes Yes No Yes No 

[63]  

Particle 

Swarm 

Optimisatio

n (PSO) 

Yes Yes No Yes No Yes No 2010 No Yes Yes No Yes No 

[64] Yes Yes No Yes No Yes No 2016 No Yes Yes No Yes No 

[65] Yes Yes No Yes No Yes No 2018 Yes Yes Yes No Yes No 

[66] Yes Yes No Yes No Yes No 2019 Yes Yes Yes No Yes No 

[67] Yes Yes No Yes No Yes No 2021 Yes Yes No Yes No Yes 

[74]  

Genetic 

Algorithm 

(GA) 

Yes Yes No Yes No Yes Yes 2018 No Yes Yes No Yes No 

[75] Yes No No Yes No Yes No 2019 Yes Yes Yes No Yes No 

[76] No Yes No Yes No Yes Yes 2020 No Yes No Yes No Yes 

[77] Yes Yes No No Yes Yes No 2020 No Yes Yes No Yes No 
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Table 2: Continued 

 

 

 

Ref 

No 

 

 

 

Techniques 

Environment 

consists of 

Technique used as Result  

 

 

Year 

Obstacle(s) 

Shape 

Target Point 

(TP) 

Robot 

SOs DOs VOs Stand 

Alone 

Hybrid 

 

SR RTR Cv Cx Single  

TP 

Multi  

TP 

Single 

Robot 

Multi 

Robot 

Heuristic Approach 

[80]  

 

Ant Colony 

Optimisatio

n (ACO) 

Yes No No Yes No Yes No 2011 Yes Yes Yes No Yes No 

[81] Yes No No No Yes Yes No 2018 Yes Yes Yes No Yes No 

[82] Yes No No Yes No Yes No 2019 Yes Yes Yes No Yes No 

[83] Yes Yes No No Yes Yes No 2020 No Yes Yes No Yes No 

[84] Yes Yes No Yes No Yes No 2020 Yes Yes Yes No Yes No 

[85]  

 

 

 

Firefly 

Algorithm 

(FA) 

Yes No No Yes No Yes No 2015 Yes Yes Yes No Yes No 

[86] Yes No No Yes No Yes No 2013 No Yes Yes No Yes No 

[87] Yes No No Yes No Yes Yes 2015 No Yes No Yes No Yes 

[88] Yes No No Yes No Yes Yes 2013 No Yes No Yes No Yes 

[89] Yes No No No Yes Yes Yes 2015 No No Yes No Yes No 

[90] Yes No No No Yes Yes No 2018 No No Yes No Yes No 

[91] Yes Yes No No Yes Yes Yes 2019 Yes Yes Yes Yes Yes Yes 

[92] Yes Yes No Yes No Yes Yes 2018 Yes Yes Yes No Yes Yes 

[93] Yes No No Yes No Yes No 2020 No Yes Yes No Yes No 

Graphical Approach 

[94]  

Graphical 

Yes Yes No Yes No Yes No 2021 Yes Yes Yes No Yes No 

[95] Yes Yes No No Yes Yes No 2016 No Yes Yes No Yes No 

[96] Yes No No No Yes No Yes 2019 No Yes Yes No Yes No 

Other Approaches 

[97] Vision 

Based 

Yes No Yes Yes No No Yes 2010 No Yes Yes No Yes No 

[98]  

TVO 

No No Yes Yes No No Yes 2019 No Yes Yes No Yes No 

[99] Yes No Yes Yes No No Yes 2020 Yes Yes Yes No Yes No 

[100]  

Other 

Techniques 

Yes No No Yes No Yes No 2020 Yes Yes Yes No Yes No 

[101] Yes No No Yes No Yes No 2019 No Yes Yes No Yes No 

[102] Yes No No Yes No Yes Yes 2021 No Yes Yes No Yes No 

[103] Yes No No Yes No No Yes 2021 Yes Yes No Yes Yes No 
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2.3 Alternative Solutions 

The methodologies in Table 3 have been used to solve guidance and optimisation 

issues in mobile robots amidst obstacles. These techniques solved the problems 

closely related to the current problem of this research. Table 3 below gives the 

limitations and strengths of some of these methodologies reviewed in the literature. 

Table 3: Methodologies strengths and limitations 

Methodologies Strengths Limitations 

NN  Helps in learning capabilities. 

 Real time experiments as well as 
simulations can be conducted 

 Slow convergence 
speed 

 Complexity increases 
with layers. 

HVFF  High productivity and viability 

 Robust and Versatile 

 

APF/VFF  Robust 

 Efficient and Versatile  

 Local trap complexities 

ACO  Easy to implement. 

 Produce good outcomes in simulation. 

 Can be easily utilised for hybrid 
methodologies. 

 Require minimal control parameters 

 Convergence is slow 

PSO  Easy to implement. 

 Produce good outcomes in simulation. 

 Faster convergence 

 Performance analysis is 
complicated 

GA  Produce good results when integrated 
with other methodologies. 

 Great capability in terms optimisation 

 Produce good outcomes in simulation 

 Incompetent in a 
dynamic environment 

 Local minima problems 
cause oscillations in the 
framework 

From the review the researchers have generally utilised delicate processing methods 

when contrasted with hard registering; that is deterministic, non-deterministic, and 

evolutionary algorithms for MR route, optimisation, and OA. The disadvantages and 

advantages of these techniques were also looked at. The methods were looked at 

from an efficiency perspective and complexity level.  For this research, not all methods 
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will be considered because of the drawbacks they each have based on complexity and 

efficiency. 

2.4 Preferred Solution 

The hybrid approach is the preferred solution to achieve the objectives of this 

research. The chosen methodology from the literature review is a hybrid approach that 

adopts the concept HVFF algorithm [38-41] which integrates VGC, VFF and, VOC 

techniques. This approach minimises the drawbacks that individual techniques have 

while addressing the route and OA problem for MRs. This approach can achieve 

multiple objectives and is less costly. From the review in section 2.2, the key findings 

by researchers is that the hybrid approach is robust, effective, and tends to give better 

results. 

2.5 Chapter Summary 

In this chapter research papers were reviewed. The literature review looked at 

methodologies that solved problems closely related to that of this research. An outline 

of PP procedures for self-sufficient MRs, the benefits, and faults of these strategies 

were introduced and examined momentarily. An exhaustive conversation of each 

approach in this expansive research field of PP for MRs has been shown. An intriguing 

perspective is that the course of this research is despite the significant improvement 

in the area over recent many years, limited research has been accounted for 

particularly in multi-robotic frameworks. Most results were captured through 

simulations more than the real-world. Moreover, most research in MR navigation was 

conducted more in static environments. A large portion of the papers manages the 

subject of single advanced robotics frameworks while leaving a wide assortment of 
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regions in composed and organised multi-robotic frameworks that are yet open for 

future works. In conclusion, from the literature review the key findings by researchers 

is that the hybrid approach is robust, effective, and tends to give better results. This 

approach minimises the drawbacks that individual deterministic and stochastic 

techniques have while addressing the PP, navigation, and OA problem for MRs. The 

approach is capable to produce better results for the problem at hand and can achieve 

multiple objectives. This study is an extension of the work of Olunloyo and Ayomoh 

[39], which incorporate new SOs. The basis of introducing the new obstacles will be in 

relation to the real-life obstacle problems. 
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CHAPTER THREE 

 

RESEARCH APPROACH 

 

3.1 Chapter Overview 

This chapter presents the methodology deployed in this research. The chapter is 

divided into three sections viz: the conceptual framework which presents a 

comprehensive research roadmap for this dissertation, the theoretical framework 

which extends the conceptual framework via a detailed generic illustration of the 

governing theories associated with each of the identified research concepts and finally, 

the development of specific models in respect of the problem domain earlier articulated 

with the aid of modeling procedures as depicted in the theoretical framework. The 

chosen research methodology is premised on findings from the literature as presented 

in section 2.4 in chapter two. The methodology deployed in this research as presented 

in this chapter, is the HVFF concept for efficient robot vehicle navigation and control. 

The HVFF [38-41] is a hybrid approach that integrates the VGC, VFF and VOC 

techniques. This approach, minimises the drawbacks that most isolated individually 

operated robot navigation methodologies often encounter in their bid to navigate along 

an optimal path towards a desired target point. This algorithmic challenge is brought 

to the fore while the robot, apart from trying to sustain itself on the optimal trajectory 

is also trying to simultaneously avoid colliding with the workspace obstacles along its 

trajectory. 
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3.2 Conceptual Framework  

The research design as contained in the conceptual framework presented in figure 12, 

depicts a generalised flow of work in this research from the initial to the concluding 

phase.  Figure 12, Point 1 defines the problem and set the objectives of this research. 

This research focus on the mobile robot (MR) navigation problem with the aim of 

developing an optimum navigation algorithm. Point 2, gives an exploration and 

applications on a scope of subjects of significance for the path of MRs amidst 

obstacles. Moreover, Point 3 focus on formulating mathematical models that make up 

the methodology chosen for this research. The outlook of this methodology is given in 

Figure 13. The mathematical models are to aid with developing a solution algorithm 

for this research. Additionally, Point 4 will focus on validating the developed solution 

algorithm using the python software. Various cases with different workspaces will be 

simulated. The simulation results will be analysed by comparing some results with past 

research results. Point 5 will give research findings and make recommendations about 

future work of this research. Lastly, the methodological outlook is outlined in Figure 

13, it is divided into three sub problem blocks which connect with the research 

objectives and methods.  
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Figure 12: Conceptual framework: Research Comprehensive Outlook 

  

Figure 13: Conceptual framework: Research Methodological Outlook 
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3.3 Theoretical Framework 

This section presents a detailed set of theoretical models in respect of the conceptual 

framework. Sub-section 3.3.1 contains the theoretical representations of the VFF 

algorithm, Sub-section 3.3.2 contains the theoretical representation of VGC and VOC 

algorithms, and lastly subsection 3.3.3 gives the HVFF methodology steps.   

3.3.1 VFF algorithm  

The method of route and obstacle evasion of a MR is performed by the VFF 

algorithm. Similar to the APFs, the VFF technique pivots with relation to the concept 

of attraction and repulsion. It further employs a two-dimensional cartesian lattice 

framework to communicate to the work environment inside which the MR is restricted 

to explore. A certainty value (CV) is assigned to each compartment within the work 

environment, indicating the accuracy of the computation as to whether an obstruction 

is detected on a certain block inside the work environment. In an endeavor to resolve a 

few of the issues related to APFs, the VFF technique was pioneered. One of the 

issues concerned with VFF is that of LMT. Olunloyo and Ayomoh [39] solved this 

problem utilising the HVFF method. 

To itemise VFF technique in [38], let 𝑞𝑟  describe the layout space of the robot in 2D 

range such that 𝑞𝑟  =  𝑓(𝑥𝑟 , 𝑦𝑟) where 𝑥𝑟  ≡ 𝑖 𝑎𝑛𝑑 𝑦𝑟 ≡ 𝑗, which follows this directional 

representation 𝑞𝑟  =  𝑞𝑟(𝑖)   +  𝑞𝑟(𝑗). Additionally, if vector operator ∇ given by ∇ =

 𝑖
𝜕

𝜕𝑥
 +  𝑗

𝜕

𝜕𝑦
 is looked at, then: 

∇(𝑞𝑟)  =  (𝑖
𝜕𝑞𝑟

𝜕𝑥
 +  𝑗

𝜕𝑞𝑟

𝜕𝑦
)                                                      (3.1) 

And if in every motion point the MR R is subjected to forces from SOs and target 

position then the resultant potential will be represented as follows; 𝑈𝑎𝑡𝑡(𝑞𝑟) – the sum 
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of AP and 𝑈𝑟𝑒𝑝(𝑞𝑟) – the sum of RP. Moreover, the gradient of 𝑈 at 𝑞𝑟 is defined below 

where ∇U(𝑞𝑟) is a vector that faces the direction of the quickest change of U at layout 

𝑞𝑟. 

∇𝑈(𝑞𝑟) = [
𝜕𝑈

𝜕𝑥
  

𝜕𝑈

𝜕𝑦
]

𝑇

                                                    (3.2)  

Additionally, force potentials can be split into x and y axes in form of attraction and 

repulsion such that they are defined as follows and Figure 14 below show the force 

diagram for the robot: 

𝑈𝑎𝑡𝑡(𝑞𝑟)  =  𝑈𝑎𝑡𝑡
𝑥 (𝑞𝑟) + 𝑈𝑎𝑡𝑡

𝑦
(𝑞𝑟)                                    (3.3) 

𝑈𝑟𝑒𝑝(𝑞𝑟)  =  𝑈𝑟𝑒𝑝
𝑥 (𝑞𝑟) + 𝑈𝑟𝑒𝑝

𝑦
(𝑞𝑟)                                  (3.4) 

 

Figure 14: Vector Force Diagram illustration for the robot  

 

Furthermore, assuming that 

𝑑𝑡 =  √((𝑥𝑡  − 𝑥𝑟)2 + (𝑦𝑡  − 𝑦𝑟)2)                              (3.5) 
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Where, 𝑑𝑡  = robot distance from the target point and the layout space for robot is 

given as 𝑞𝑟(𝑥𝑟 , 𝑦𝑟) and for the target point it is given as 𝑞𝑡(𝑥𝑡 , 𝑦𝑡). And 𝑥𝑟  =  1, . . , (𝑛 −

1), 𝑛 𝑎𝑛𝑑 𝑦𝑟  =  1, . . . , (𝑛 − 1), 𝑛.  

Such that                                      𝑑𝑡  =  ‖𝑞𝑡  − 𝑞𝑟‖                                                 (3.6)                                                                                             

If 𝑞𝑟(𝑥𝑟) 𝑎𝑛𝑑 𝑞𝑟(𝑦𝑟)  are direction considered the following is depicted respectively: 

                                    𝑑𝑡  =  ‖𝑞𝑡  − 𝑞𝑟‖  =  
(𝑥𝑡−𝑥𝑟)

√∑ (𝑥𝑡−𝑥𝑟)2𝑛
𝑟=1

                                         (3.7) 

                                   𝑑𝑡  =  ‖𝑞𝑡  − 𝑞𝑟‖  =  
(𝑦𝑡−𝑦𝑟)

√∑ (𝑦𝑡−𝑦𝑟)2𝑛
𝑟=1

                                          (3.8) 

From Equation (3.7) and Equation (3.8) the following is depicted: 

    ∇𝑑𝑡(𝑞𝑟(𝑥𝑟, 𝑦𝑟))  =  
(𝑞𝑡 −𝑞𝑟)

√∑ (𝑥𝑡−𝑥𝑟)2𝑛
𝑟=1   + √∑ (𝑦𝑡−𝑦𝑟)2𝑛

𝑟=1  
 =  

𝑞𝑡 −𝑞𝑟

‖𝑞𝑡 −𝑞𝑟‖
                                    (3.9)                                                                                               

 

As a result, AP is as follows: 

 𝑈𝑎𝑡𝑡
𝑥 (𝑞𝑟)  =  

(𝑥𝑡−𝑥𝑟)

𝑑𝑡
                                                                (3.10) 

𝑈𝑎𝑡𝑡
𝑦

(𝑞𝑟)  =  
(𝑦𝑡−𝑦𝑟)

𝑑𝑡
                                                               (3.11)                                                                                                          

Furthermore, in similar context RP is represented following the work of [29]: 

  𝑈𝑟𝑒𝑝
𝑥 (𝑞𝑟)  =  𝑈𝑟𝑒𝑝

𝑥 (𝑞𝑟)  +  
𝐹𝑐𝑟

3
 ∗  

𝑐𝑖𝑗

𝑑𝑜
2  ∗  

𝑥𝑔𝑟𝑖𝑑 −𝑥𝑜

𝑑𝑜
                                                        (3.12) 

   𝑈𝑟𝑒𝑝
𝑦

(𝑞𝑟)  =  𝑈𝑟𝑒𝑝
𝑦

(𝑞𝑟)  +  
𝐹𝑐𝑟

3
 ∗  

𝑐𝑖𝑗

𝑑𝑜
2  ∗  

𝑦𝑔𝑟𝑖𝑑 −𝑦𝑜

𝑑𝑜
                                                       (3.13)                                                                                                                                                                                                                                                                                   

Where: 

                                Fcr = 
3∗relangle

do
                                                                         (3.14) 

Equation (3.14) is activated when obstacles are sensed in the dynamic window of a 

robot (𝑐𝑖𝑗). Without obstacles Equation (3.14) the outcome is zero and the repulsive 
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initial value is also zero. This is following the presumption that the MR preferably starts 

from a condition of rest where it is uninformed of its current circumstance. Such that 

the following is considered:                                                                                             

𝑐𝑖𝑗  = {
0 𝑛𝑜 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑛 𝑟𝑜𝑏𝑜𝑡′𝑠 𝑎𝑐𝑡𝑖𝑣𝑒 𝑤𝑖𝑛𝑑𝑜𝑤

1 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑛 𝑟𝑜𝑏𝑜𝑡′𝑠 𝑎𝑐𝑡𝑖𝑣𝑒 𝑤𝑖𝑛𝑑𝑜𝑤       
 

If 𝑐𝑖𝑗  = 1 and  

if  𝑑𝑡 > 0,  

then 𝑑𝑜 =  √((𝑥𝑟  − 𝑥𝑜)2 + (𝑦𝑟  − 𝑦𝑜)2)                                             (3.15) 

Where 𝑑𝑜  = robot distance from the obstacle? The position of an obstacle is 

represented by 𝑥𝑜 𝑎𝑛𝑑 𝑦𝑜  

As a result, the following Equations (3.14) and (3.15) mean the RP in the x and y 

direction. The route way of the MR is controlled by these two factors as they together 

decide the MR's new situation as it explores from one state-space towards the TP.   

𝑈𝑥(𝑞𝑟)  =  𝑈𝑎𝑡𝑡
𝑥 (𝑞𝑟)  +  𝑈𝑟𝑒𝑝

𝑥 (𝑞𝑟)                                                                         (3.16)         

𝑈𝑦(𝑞𝑟)  =  𝑈𝑎𝑡𝑡
𝑦

(𝑞𝑟)  +  𝑈𝑟𝑒𝑝
𝑦

(𝑞𝑟)                                                                               (3.17) 

3.3.2 VGC and VOC algorithm 

The drawback of using the traditional VFF algorithm alone is the issue of LMTs. Hence, 

VGC and VOC are adopted to solve the problems interlinked with the use of the VFF 

algorithm. Although there has been built up within the writing that either of these 

concepts may be utilised freely, the double utilisation of both concepts as an 

indispensable portion of the arrangements prepare is novel.  
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Additionally, an outline of how the conventional VFF is combined with VGC and VOC 

will be given as illustrated in Figure 15. VGC and VOC focus on guiding the robot to 

the objective point using sensors to avoid obstacles. Cases for VOC consider the 

acceptable distance of a robot from the obstacles while moving towards the objective 

point. Firstly, the VOC regarding this study is a proactive technique that guarantees 

that the MR is not pulled in into a corner locale of obstacles that have no outlet. It 

is pivoted on the concept of totally blocking off such paths that may lead the MR to 

a LMT. The approach [38] proposed for the representation of VOC is the concept 

of meeting vertices. This includes the presentation of a modern line that closes the 

edges of the impediments that outline the LMT. The crossing point of the line of the 

location of the target from the robot with this modern line represents the most 

remote area the virtual obstacle (VO) can be put from the robot; something else it is 

located right following to the robot along the line of the location of the objective from 

the MR. 

To itemise VOC from [38], firstly, there is a need to identify if the VO is needed 

therefore the VOC function is defined as VOC = 𝑓(𝐼𝐿𝑆).  Where 𝐼𝐿𝑆  is a file for 

portraying the statue of the line of locating from the objective position regarding 

capture attempts by obstacles that might cause a LMT such that the following is 

observed: 

𝐼𝐿𝑆  = {
0  𝑙𝑖𝑛𝑒 𝑜𝑓 𝑙𝑜𝑐𝑎𝑡𝑒 𝑖𝑠 𝑛𝑜𝑡 𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑 𝑏𝑦 𝑎𝑛 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒

    1  𝑙𝑖𝑛𝑒 𝑜𝑓 𝑙𝑜𝑐𝑎𝑡𝑒 𝑖𝑠 𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑 𝑏𝑦 𝑎𝑛 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒             
 

If 𝐼𝐿𝑆  <> 0 then VOC is actioned. 

Moreover, positioning of the VO takes the following steps: 
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Step One: Find the vertices at the corners of the impediments that frame the passage 

into suspected marginal traps.  

Step Two: Extend a line between vertices at the corners of the obstacle. 

Step Three: Sketch a straight line from the MR’s location to the specified TP. This 

appears as the normal direction of the MR to the TP accepting that there was no 

obstacle. 

Step Four: On the off chance that line in Step Three converges to a line in Step Two 

at any point along with Step Two, it infers that the MR’s common direction is in course 

of a trap. 

Steps One-Four are confirmation steps as to whether the VOC ought to be started. 

When confirmed that the MR’s direction is within the course of a trap, then Step Five 

is triggered. 

Step Five: This presents a VO at the current position of the MR. It is done by utilising 

a few shapes of generation rule as a control command to obstruct MR motion. This 

anticipates the MR from moving within the heading of LMT and consequently 

encourages the possible minimisation of travel time. Quickly after this step, 

continuation is to actualise the VGC as itemised underneath by letting 𝑓𝑣𝑜𝑐 =  1. 

Furthermore, to itemise VGC from [38] accepting a protest at a self-assertive position 

say 𝑝𝑖,𝑗 is seen from an interpreted position 𝑝𝑖+1,𝑗+1 at that point the perceivability of 

this question at its starting state 𝑝𝑖,𝑗 from its current state, 𝑝𝑖+1,𝑗+1 shapes a critical 

address postured by the VGC. This VGC in [38] pivots on the concept of relative 

perceivability. It works on the guideline of falling back from a first known location to a 

recently explored location. The essential objective of the VGC in this setting is to lead 
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the MR from a point where the VO was enacted to the ultimate TP through the help of 

one or more brief goals referred to as virtual objectives. The number of virtual 

objectives and their relative location could be a work of the geometry of the 

impediment’s interference the perceivability of MR from the objective state. The 

degree of perceivability of a question from its beginning location 𝑝𝑖,𝑗 as prior portrayed, 

relative to its unused location 𝑝𝑖+𝑛,𝑗+𝑛 determines whether the modern location ought 

to be considered a virtual location of the protest. On the off chance that the object’s 

perceivability is darkened at point 𝑝𝑖+𝑛,𝑗+𝑛 at that point going before point 𝑝𝑖+𝑛−1,𝑗+𝑛−1 

is considered for the virtual location of the question. For this reason, the middle 

focuses between 𝑝𝑖,𝑗 , and 𝑝𝑖+𝑛,𝑗+𝑛 are chosen along and near to the vertices of the 

mediating impediment limit. 

The procedure for the VGC is as follows: 

Firstly, check the need for a virtual goal such that if 𝑓𝑣𝑜𝑐 𝑜𝑟 𝑇𝑛𝑠𝑜 =  1 then virtual goal 

is needed. Hence, the following is observed: 

𝑓𝑣𝑜𝑐  = {
0    𝑉𝑂 𝑛𝑜𝑡 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑  
1    𝑉𝑂  𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑         

 

Where 𝑇𝑛𝑠𝑜  has been presented to depict the circumstances that happen when the 

MR and TP are at inverse closes of the space in between two barely dispersed 

impediments. 

Finding the virtual goal takes the following steps: 

Step One: Find the objective position. 

Step Two: Find the position of the robot. 

Step Three: From the objective location, fall back along an anticipated line of locating 

towards the MR location skirting the border of the mediating impediment.  
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Step Four: Find and locate virtual objectives at suitable focus along the line of locating 

as backtracking is in progress from the genuine objective to the MR location. The 

precise area of each virtual objectives is a function of two factors: ( 𝑣𝑟𝑔, 𝑑). Such that, 

𝑣𝑟𝑔 either portrays the relative perceivability of the foremost later virtual objective from 

the immediately preceding virtual objective or the relative perceivability of virtual 

objective from the objective. And d is the removal between the virtual goal and the 

impediment edge discouraging MR’s line of locate from the real objective. 

Imperative parameter which is vital to end the method of presenting virtual goal is 𝑣𝑚𝑟 

which speaks to the relative perceivability of the foremost later virtual objective from 

the robot. Such that the following is observed: 

𝑣𝑚𝑟  = {
0 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑔𝑜𝑎𝑙 𝑛𝑜𝑡 𝑣𝑖𝑠𝑖𝑏𝑙𝑒                
1 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑔𝑜𝑎𝑙 𝑣𝑖𝑠𝑖𝑏𝑙𝑒                       

 

In case 𝑣𝑚𝑟  =  0  at that point no more virtual goal is required; be that as it may if 

𝑣𝑚𝑟 = 1 at that point another virtual goal is required. This cycle is rehash until 𝑣𝑚𝑟 = 0. 

3.3.3 HVFF Methodological Steps 

The itemisation of how the VOC and VGC concepts are combined with the VFF 

technique to form the pioneered hybrid approach by giving a guide diagram of the 

working model of the general algorithm is shown in Figure 15. 

Step One: The step starts by lining up the robot to face the target point. The module 

permits the formation of a two-dimensional work environment of measurement X by Y 

and selects a settled point of reference for the workspace. The accentuation is the 

accessibility of the work environment. A route environment may be customary or 

unpredictably formed: what is vital is the accessibility and outline of the boundaries of 
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the work environment. Where this errand is taken after by the recognisable roof of a 

point inside the work environment which serves as a point of reference for the MR 

route. Reference point aid the MR to know it claims relative location, and those of the 

objective state or TP, and the work environment with obstacles. 

Step Two: The step looks at analysing the environment. Furthermore, the module 

performs workspace mapping to identify areas that cause navigation problems to the 

conventional VFF concept. Such areas are characterised by navigation barriers that 

cause LMTs. After identifying areas that are prone to the occurrence of local minima, 

their relative position vectors are obtained from the reference point. This information 

is encoded in the MR's information base before the navigation exercise begins. The 

significance of this point is that the proposed algorithm is partially applicable to 

the known surrounding, where some prior knowledge of the navigation space 

is required. 

 

Figure 15: Flowchart for the methodology HVFF, adapted from [38] 
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Step Three: This step is the decision step for obstacle identification. The step primarily 

serves as a sequel to the above Step Two, which determines whether to enable or 

disable certain algorithms in a control sub-unit because of a survey exercise in Step 

Two. If the work environment is not likely to be a LMT, Step Four is initiated. But if the 

navigation trap is in doubt Step Four is skipped and goes to Step Five where VOC, 

VGC, and VFF are implemented. Hence, the aim is to combine Step Two with Step 

Four or Step Five depending on the event that may be. 

Step Four: This step implements the conventional VFF technique at startup. If the 

result of the study of the work environment in Step Two is such that it is unlikely to 

capture local minima, go from the third step to the fourth. At this moment, the 

navigation environment is referred to as a completely unfamiliar environment as the 

MR’s navigation controls are fully reactive and no prior knowledge of obstacles in the 

work environment is required. If the result of the work environment is such that a LMT 

is likely to happen, then the algorithm proceeds from the third step to the last one. 

Step Five: The step is actioned when the LMT arises from the underlying shape 

constraints. In this step, VOC, VGC, and VFF are implemented together. At this stage, 

the navigation environment is categorised as little known surrounding because the 

robot investigation at the objective location relies on prior knowledge of some of the 

obstacles in the work environment. 

3.4 Model Development and Solving 

The problem undressed in this research work will be carried out using the hybrid 

method. The algorithm will address the concept of objective target and avoiding 

obstacles for MR path planning. The aim is to add value in developing an optimum 
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algorithm for MR navigation that will optimise the total travel time of a MR from the 

start point to the TP in the domain of obstacles. 

3.4.1 Assumptions and Navigation Modelling 

In this study, the navigation environment considered for the MR is an unknown 

environment in which the MR acquires obstacle information such as position and 

geometry through sensory inputs. The constraints are obstacles and route length. The 

additional assumptions considered in this research include: 

 All obstacle coordinates and geometry are automatically detected by the robot. 

 Neither new targets nor obstacles can be added to the workspace once the 

robot is in motion. 

 A robot has prior knowledge of the target location. 

3.4.2 Mathematical Modelling 

3.4.2.1 Static Scenario MR Distance from TP 

Step I: Robot distance from TP 

This step looks at the model that calculates the robot distance from objective point 

(TP) in the work environment.  

 𝑑𝑇𝑃 =  √((𝑥𝑇𝑃  − 𝑥𝑟)2 + (𝑦𝑇𝑃  − 𝑦𝑟)2)                                             (3.18) 

Step II: Identifying static impediments 

This looks at the procedure to identify static impediments in a workspace. The 

procedure is adopted from the research paper by Ayomoh et al [3] investigated an 

effective robot optimum route modelling in a multi-target space. Close to the current 

study, the issue was that of developing an ideal model to minimise the complete travel 
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duration of a MR as it visits its desired TPs amidst workspace obstructions. A hybrid 

modelling approach was used to address the problem in a multi-objective domain. 

Consider a 2D work environment defined by  𝑥 𝑎𝑛𝑑 𝑦 such that they linked to origin 

point O. Hence, the following is observed(𝑥𝑟 , 𝑦𝑟)  = 𝑓(𝑥𝑟 , 𝑦𝑟). Furthermore, take set of 

virtual radiation objects with equal length of 𝑙(𝑚) which is radiated by the travelling 

robot (r) at a certain velocity (v).  Then the underlying situation moving robot (r) 

comparative with static obstruction straightforwardly in the middle of the robot and an 

ideal objective point is given as 𝑙𝑛. This length proceeds inside an example of decrease 

after some time to: 𝑙𝑛−1 , 𝑙𝑛−2 and hence 𝑙𝑛−3 units of length. This is depicted in Figure 

13. Moreover, consider that 𝑣 =
𝑑

𝑑𝑡
(𝑠) for moving robot at the same velocity (v) 

therefore  𝑠 =  [𝑙4  −  𝑙3  =  𝑙3  −  𝑙2  = 𝑙2 − 𝑙1] as a result, [𝑙(𝑖+𝑛) −  𝑙(𝑖+𝑛−1)]  =

 [𝑙(𝑖+𝑛−1) −  𝑙(𝑖+𝑛−2)]. It is further observed that after travel time 𝑡𝑖 the robot covers 

[𝑙(𝑖+𝑛) −  𝑙(𝑖+𝑛−1)] in the distance and the radiation cone length of the assumes new 

length l(m) as observed in Figure 16. If these remaining parts hold in ensuing distances 

covered, it suggests the deterrent is static comparative with the robot. The supposition 

holds if there should arise an occurrence of non-uniform speed as seen below: 

𝑎 =  
𝑑

𝑑𝑡
(𝑣)  =  

𝑑

𝑑𝑡𝑖
(𝑠𝑖) , 𝑓𝑜𝑟 𝑖 =  {1, . . , 𝑛 − 1, 𝑛} 𝑎𝑛𝑑 𝑡𝑖 ≠ 𝑡𝑖+1 

In this case, the robot covers a distance(s) between any two stretches at different 

times notwithstanding, the overall length of the radiation object from the robot's 

situation to the hindrances is likewise used to distinguish the static conduct of the 

obstacle. Hence, the conditions of computational steps to detect if an obstacle is static 

are such that it considers the following: 

// Consider (𝑥𝑟 , 𝑦𝑟) 𝑎𝑡 𝑡 = 0 −  𝑟𝑜𝑏𝑜𝑡 𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝑠 𝑡𝑜 𝑚𝑜𝑣𝑒, 𝑎𝑙𝑠𝑜  
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(𝑥𝑜𝑏𝑠, 𝑦𝑜𝑏𝑠) 𝑎𝑡 𝑡 = 0  −  𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝑠. 

At t > 0, if robot (r) co-ordinate (𝑥𝑟+𝑖, 𝑦𝑟+𝑖) ≠  (𝑥𝑟 , 𝑦𝑟) , 

obstacles co-ordinate (𝑥𝑜𝑏𝑠+𝑖, 𝑦𝑜𝑏𝑠+𝑖) =  (𝑥𝑜𝑏𝑠, 𝑦𝑜𝑏𝑠)  

and if [𝑙(𝑖+𝑛) −  𝑙(𝑖+𝑛−1)]  =  [𝑙(𝑖+𝑛−1) −  𝑙(𝑖+𝑛−2)] then obstacle is static//   

 

 

Figure 16: Static Obstacle Detection, adapted from [3] 

 

3.4.2.2 Repulsive OA and Goal Seeking Navigation Algorithm 

This algorithm assumes that the MR (r) is standing in a hill on a plane and it has to 

reach a goal downhill by rolling towards it. If there are obstacles in between the 

algorithm use the analogy of gravity or electrostatic field in which the MR and the 

obstacles are both of the same charge. So they repel each other proportionally, which 

is the concept taken from the VFF technique explained in section 3.3.1. As the MR 

gets closer to an obstacle the RF keeps increasing until it is great that the MR cannot 

touch the obstacle but avoids it and move on. 
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Step I: Global Functions 

This step give the two global equations used in repulsive algorithm. The first equation 

(Equation 3.20) is the normalisation vector which calculate the unit vector and the 

second equation calculates the RF between the MR and the obstacle.  Algorithm 1 

and 2 give the pseudocode for their calculation. Algorithm 2 determine the RF between 

two points and returns the vector. Where 𝑑 is the distance between two points, 

𝑣𝑥 𝑎𝑛𝑑 𝑣𝑦  represents vectors units for x and y, and 𝐺𝑜 gravitational constant value of 

an obstacle. 

 Normalise Vector 

                                𝑑 =  √(𝑣𝑥
2 + 𝑣𝑦

2)                                                              (3.19) 

                                𝑣 = ⟨
𝑣𝑥

𝑑
,

𝑣𝑦

𝑑
⟩                                                                 (3.20) 

Algorithm 1   Nomalise Vector 

1 
2 
3 
4 
5 

procedure NormaliseVector (input vector) 

    use Equation 3.19 to calculate d (distance) 

    compute the vector using Equation 3.20 

    end 

end 

Take the output as the normalised vector  

 

 

 The Obstacle RF 

                                 𝐹𝑐𝑟 =  
𝐺𝑜

𝐶𝑉
                                                                   (3.21) 

                           𝑈𝑛𝑖𝑡_𝑉𝑒𝑐𝑡𝑜𝑟 =  ⟨
𝑥𝑟−𝑥𝑜

𝑑𝑜
,

𝑦𝑟−𝑦𝑜

𝑑𝑜
⟩                                                      (3.22) 
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Algorithm 2   Obstacle Force 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

𝑃𝑟  = 𝑀𝑅 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

𝑃𝑜  = 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 
CV = Certainty Value 

rSafe = safety radius (it is introduced to cater to robot actual dimensions) 

procedure ObstacleForce (Pr, Po, rSafe) 

    use Equation 3.15 to calculate 𝑑𝑜 

    if  𝑑𝑜 ≤ rSafe  then 

         Assign CV the value 0 

    else 

          CV is computed by 𝑑𝑜 minus rSafe squared  

          And gravity force is maximum when 𝑑𝑜 is equal to rSafe 

    use Equation 3.21 to compute repulsive force proportional to 
1

𝑐𝑣
 

    use Equation 3.22 to compute unit vector 

    multiply Equation 3.21 with Equation 3.22 to get force vector 

    end 

end 

Take the output as force vector and unit vector 
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Step II: Repulsive OA Algorithm 

This step will give the pseudocode for the repulsive OA navigation algorithm on how it 

is implemented. 

Algorithm 3   OA Navigation Algorithm 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

Class Navigation: 

    procedure initial (Pr, Po, rSafe) 

         set MR position 

         set goal position 

         set a safety radius to cater to robot actual dimensions 

         create an empty list of obstacles 

         end 

    procedure Navigate 
    determine the best route to goal and return this direction vector by default 

         set steering vector 

         set own position of the MR 

         compute direct vector to the goal using Equation 3.18 

         if length of obstacles list is > 0 then there are obstacles in sight 

                for each obstacle in the list do 

                      generate the repulsive gravitational force in Algorithm 2 

                      then generate the steering vector 

          use normalised vector return to the recommended steering vector  

          based on this the MR turn into whatever is recommended 

          end 

     procedure SetGoal 
      create a new goal to assist the robot when trapped deep in a long 

      extreme size  concave partially trying the concept of VGC 

           end 

end 
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Step III: Goal Seeking Algorithm 

This step will give the pseudocode for the TP navigation algorithm. 

Algorithm 4   TP Navigation Algorithm 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Class GoalSeeker(input MR): 

    procedure initial (Pr, Po,) 

         set MR position 

         set goal position 

         set a safety radius to cater to robot actual dimensions 

         initiate Algorithm 3 by inputting  Pr, Po and rSafe   

         create a list of currently visible obstacles 

         when in goal seek mode check for traps as the MR move towards the TP 

         when trapped apply Algorithm 3 while updating the steering vector to the TP      

         end 

end 

 

3.4.3 Solution 

The general mathematical model that will be utilised to decide the plausibility of robot 

colliding with impediments in the workspace is given in section 3.3.  The optimal 

solution that will be used to achieve the objectives of this study is the HVFF approach 

that applies the VFF technique combined with the VGC technique. Figure 17 below 

shows the solution algorithm flowchart of the approach that will be used in this study 

towards the aim of developing an optimum algorithm for MR navigation in complex 

environments. The computational algorithm that will be validated is MR navigation in 

the domain of SOs; such that the robot is to identify the sequential order in which the 

target point is to be visited. The output results will be compared with the published 

work that used a similar approach. Computation algorithm below is proposed for the 

solution to the problem of cul-de-sac traps which are caused by concave-shaped 

obstacles. These traps can be observed in real-life environments such as mines which 

are normally unstructured and complex. Mining environments have deep concaves of 

which in some areas humans cannot explore fully hence a need for MRs to do those 
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tasks. In these areas an MR still needs to navigate optimally and detect lengthy or 

concaved obstacles. The cases presented in the next chapter test for that optimality 

by starting with easily detectable obstacles to non-detectible ones.  

[Pre-Route Phase] 

 Step I: The robot adjusts its detecting view to the wanted TP. 

[Navigation and Obstacle Location Phase] 

 Step II: The robot explores the TP and constantly check for the presence of 

impediments along its route. 

 Step III: If a deterrent is available, the robot figures its Euclidean separation 

from the obstacle. Where the Euclidean robot distance from impediment is 

defined by Equation (3.15). 

 Step IV: Robot checks impediments as moves towards the TP. 

 Step V: If the impediment is present follow section 3.4.2 model procedure which 

incorporates the robot using sensory inputs to sense the impediments. 

 [Obstacle Avoidance Phase] 

 Step VI: If the impediment cause LMT or blocks the path, implement Algorithm 

3 which is taken from the VFF technique explained in section 3.3.1, and 

integrate the VGC technique explained in section 3.3.2 for effective OA.   

 Step VII: If there are no obstacles continue navigating to the TP 

 Step VIII: End 
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Figure 17: Solution algorithm flowchart 

3.5 Chapter Summary 

This chapter gave an in-depth of the research approach divided into a conceptual 

framework, theoretical framework, model development, and solving. The chapter gave 

an overview of how this research will be approached and addressed in detail to meet 

the objectives of this paper. The modelling approach in addressing the objectives of 

this research is as follows: It will start with mathematical algorithms development using 

vectors and geometry and hybrid approach which adapt the concept of the HVFF for 

development of an optimum algorithm. Lastly, the developed solution algorithm will be 

used in coding programs for running simulations and validation purpose in the next 

chapter.   
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Introduction 

This chapter gives validation of our solution algorithm, simulations were conducted 

both on recently created workspaces and few chosen workspaces created by prior 

researchers in ref [41]. The simulations were implemented using PyCharm which uses 

python language. The chapter further gives an analysis and discussion of simulated 

results.  

4.2 Model Validation and Results 

The first three cases are created workspaces looking at a concave-shaped obstacle 

with different sizes that create LMT for a MR. The fourth case is the mixed workspace 

scenario of SOs with two TPs. The last two cases are reproduced workspaces chosen 

from previous research work. The TP in the workspace is the black and white flag, MR 

is the small blue robot and the black circles represent the obstacles. Simulation results 

were shown in three-phase figures: The initial phase where the MR is at rest, the 

middle phase where the MR is in motion and the MR’s trail is black dotted, and the last 

phase is when the MR reaches the TP where the MR’s is red dotted. In all cases time 

is calculated in seconds from the initial point to the TP and results are shown in Tables 

4 to 9. 

Figures 18 to 41 are mazes initially created in this work to illustrate the completeness 

and generalised applicability of our algorithm in complex spaces with SOs. 

Comparison with the outcomes of other researchers’ work ref [41] is as shown in 
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Figure 42 to Figure 56. The comparison was carried out by duplicating their 

workspaces in terms of the shape, estimate, and location of the impediments within 

the particular workspaces. In any case, it was not continuously conceivable to replicate 

the chosen workspaces precisely to scale in this research work. This is because of the 

non-accessibility of point-by-point data such as the impediment measurements and in 

a few cases, the workspace measurements. All things considered, the need of this 

study is to be able to replicate such workspace to a reasonable level for validation. 

Furthermore, the chosen workspaces for this work are for the most part those that 

customarily see complex or where prior researchers recorded challenges in exploring 

the MR to the TP. The objective in doing this is to be able to validate by and large the 

adequacy of our approach relative to a few existing models. The autonomous robot 

deployed in this study is an animated robot picked as an image is presented in the 

appendix myriads of codes. The speed was set to five with the robot safety radius of 

50 and range reduction of four if trapped, to reduce the detection range to avoid getting 

lost. 

4.2.1 Case 1: A simple and easily detectable concave obstacle  

The workspace created for this case has a simple and easily detectable concave-

shaped static obstacle. Figures 18 to 22 show the simulated results. 
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Figure 18: Developed Problem Sample Space01 

 

Figure 19: Progressive Solution for developed Sample Space01 (without HVFF) 
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Figure 20: Final Solution for developed Sample Space01 (without HVFF) 

 

Figure 21 : Progressive Solution for developed Sample Space01 (with HVFF) 
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Figure 22: Final Solution for developed Sample Space01 (with HVFF) 

Table 4: Results for Case 1 

Time  Without HVFF With HVFF 

Time (seconds) from initial 
point to the target point  

46.52 26.90 

 

4.2.2 Case 2: An intermediate size “not easily detectable” concave obstacle 

The workspace created for this case has an intermediate size “not easily detectable” 

concave-shaped static obstacle. Figure 23 to Figure 27 show the simulated results. 
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Figure 23: Developed Problem Sample Space02 

 

 

Figure 24: Progressive Solution for developed Sample Space02 (without HVFF) 
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Figure 25:  Progressive Solution for developed Sample Space02 (MR got trapped) 
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Figure 26: Progressive Solution for developed Sample Space02 (with HVFF) 

 

Figure 27: Final Solution for developed Sample Space02 (with HVFF) 
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Table 5: Results for Case 2 

Time  Without HVFF With HVFF 

Time (seconds) from initial 
point to the TP  

MR got trapped until the 
simulation runs was 

stopped. 

33.02 

 

4.2.3 Case 3: An extreme size undetectable concave obstacle    

The workspace created for this case has an extreme size undetectable concave-

shaped static obstacle. Figure 28 to Figure 32 show the simulated results. 

 

Figure 28: Developed Problem Sample Space03 
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Figure 29: Progressive Solution for developed Sample Space03 (without HVFF) 

 

Figure 30: Progressive Solution for developed Sample Space03 (MR got trapped) 
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Figure 31: Progressive Solution for developed Sample Space03 (with HVFF) 

 

Figure 32: Final Solution for developed Sample Space03 (with HVFF) 
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Table 6: Results for Case 3 

Time  Without HVFF With HVFF 

Time (seconds) from initial 
point to the TP  

MR got trapped (Infinite 
seconds) until simulation 

was stopped. 

53.20 

 

4.2.4 Case 4: Multiple Target Points Workspace scenario with static obstacles 

The workspace created for this case has simple and easily detectable concave-

shaped SOs with two TPs. Figure 33 to Figure 41 show the simulated results. 

 

Figure 33: Developed Problem Sample Space04 
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Figure 34: Progressive Solution (First TP) for developed Sample Space04 (without 

HVFF) 
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Figure 35: Final Solution (First TP) for developed Sample Space04 (without HVFF) 
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Figure 36: Progressive Solution (Second TP) for developed Sample Space04 

(without HVFF) 
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Figure 37: Final Solution (Second TP) for developed Sample Space04 (without 

HVFF) 
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Figure 38:  Progressive Solution (First TP) for developed Sample Space04 (With 

HVFF) 
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Figure 39: Final Solution (First TP) for developed Sample Space04 (with HVFF) 

 

Figure 40: Progressive Solution (Second TP) for developed Sample Space04 (with 

HVFF) 
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Figure 41:  Final Solution (Second TP) for developed Sample Space04 (with HVFF) 

Table 7: Results for Case 4 

Time  Without HVFF With HVFF 

Time (seconds) from initial 
point to the TP 1 

40.79 31.80 

Time (seconds) from TP 1 
to TP 2 

44.77 30.50 
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4.2.5 Case 5: Lengthy & Concave Obstacles workspace scenario from paper Ref 

[41] 

The workspace created for this case, it has mixed SOs (not easily detectable) which 

is a reproduced workspace from paper Ref [41]. Figure 42 to Figure 49 show the 

simulated results. 

 

Figure 42: Developed Problem Sample Space05 
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Figure 43: Progressive Solution for developed Sample Space05 (without HVFF) 

 

Figure 44: Progressive Solution for developed Sample Space05 (MR got rapped) 
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Figure 45: Progressive Solution for developed Sample Space05 (with HVFF) 

 

Figure 46: Progressive Solution for developed Sample Space05, adapted from [41] 
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Figure 47: Progressive Solution for developed Sample Space05, adapted from [41] 

 

Figure 48: Final Solution for developed Sample Space05 (with HVFF) 
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Figure 49: Final Solution for developed Sample Space05, adapted from [41] 

Table 8: Results for Case 5 

Time  Without HVFF With HVFF 

Time (seconds) from initial 
point to the TP  

MR got trapped for at 
least 300.35 seconds, the 

simulation runs was 
stopped. 

43.37 
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4.2.6 Case 6: Additional workspace scenario with static obstacle from paper Ref 

[41] 

The workspace created for this case, it has a static obstacle (not easily detectable) 

which is a reproduced workspace from paper Ref [41]. Figure 50 to Figure 56 show 

the simulated results. 

 

Figure 50: Developed Problem Sample Space06 
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Figure 51: Progressive Solution for developed Sample Space06 (without HVFF) 

 

Figure 52: Progressive Solution for developed Sample Space06 (with HVFF) 
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Figure 53: Progressive Solution for developed Sample Space06, adapted from [41] 

 

Figure 54: Final Solution for developed Sample Space06 (without HVFF) 
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Figure 55: Final Solution for developed Sample Space06 (with HVFF) 
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Figure 56: Final Solution for developed Sample Space06, adapted from [41] 

Table 9: Results for Case 6 

Time  Without HVFF With HVFF 

Time (seconds) from initial 
point to the TP  

79.25 44.91 

 

4.3 Analysis and Discussion of Results 

Case 1 in the simulation series depicts navigation towards a simple concave shaped 

obstacle. Figure 18 presents the initialised workspace which comprises the robot, 

concave shaped obstacle along the trajectory of robot’s navigation and the TP. Figure 

19 presents a workspace with the navigating robot displaying a trajectory along the 

shortest path depicted by a straight line. This navigation is without the HVFF algorithm 
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in place. The sense of direction is towards the hollow section of the concave hollow 

directly ahead of the TP. Figure 20 presents a navigation clip showing the robot’s 

trajectory in the concave trap, some oscillatory forth back motion, trajectory of the 

robot off the concave trap and at the TP.  

Sequel to the above discussion on case 1 without the use of HVFF algorithm, the 

current discussion presents MR navigation towards the same simple concave shaped 

obstacle with the HVFF algorithm in place. Figure 21 presents the navigation trajectory 

of the moving robot. The robot’s trajectory was diverted off the concave trap with the 

aid of the VGC which is an integral part of the HVFF concept. On reaching the virtual 

goal (VG), the robot is now redirected to the real goal or the desired TP. The travel 

time of the robot without the HVFF concept is 46.52seconds while a duration of 26.90 

was recorded with the deployment of the HVFF concept. In both scenarios i.e. with 

and without HVFF, the robot was able to reach it is TP however, at a shorter time with 

the use of the HVFF concept.  

Case 2 in the simulation series depicts navigation towards an intermediate concave 

shaped obstacle (i.e. a concave shape with an enhanced difficulty). Figure 23 presents 

the initialised workspace which comprises the robot, concave shaped obstacle along 

the trajectory of the robot’s navigation and the TP. Figure 24 presents a workspace 

with the navigating robot displaying a trajectory along the shortest path depicted by a 

straight line. This navigation is without the HVFF algorithm in place. The sense of 

direction like the previous is towards the hollow end of the concave directly ahead of 

the TP. Figure 25 presents a navigation frame showing the robot’s trajectory in the 

concave trap with back forth oscillatory motion. The robot was trapped in the concave 
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hollow. This was observed for a period of 320.46 seconds after which the simulation 

was stopped.    

Following the above discussion on case 2 simulation without the use of HVFF 

algorithm, the discussion herein this subsection presents the MR navigation towards 

the same intermediate concave shaped obstacle and TP however, with the HVFF 

algorithm in place. Figure 26 shows the navigation trajectory of the robot towards the 

virtual goal (VG). The robot’s trajectory was diverted off the concave trap with the aid 

of the VGC upon which the HVFF concept hinges. On reaching the virtual goal (VG), 

the robot was redirected to the desired TP as shown in figure 27. The travel time of 

the robot with the HVFF concept was 33.02seconds. Unlike in the simple scenario of 

concave obstacle, the robot got stuck here in the intermediate concave obstacle 

without the use of the HVFF algorithm.  

Case 3 in the simulation series depicts navigation of the MR towards an undetectable 

concave shaped obstacle (i.e. a concave shape with an extremely wide apart vertex) 

as presented in figure 28. The initialised workspace in figure 28 comprises the robot, 

concave shaped obstacle along the trajectory of the robot’s navigation and the TP. 

Figure 29 presents a workspace with the navigating robot displaying a trajectory along 

the shortest path depicted by a straight line. This navigation is without the HVFF 

algorithm in place. The sense of direction like the previous is towards the hollow end 

of the concave directly ahead of the TP. Figure 30 shows a trapped MR in the concave 

hollow with a back forth oscillatory motion. This directionless motion of the MR 

continued endlessly. This was observed for quite a long period without any sign of 

escape of the MR from the local minima trap. The simulation was eventually truncated.    
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Presented in the navigation control of figure 31 is the HVFF concept with the VGC 

actively in place. Figure 26 shows the navigation trajectory of the robot towards the 

virtual goal (VG). The robot’s trajectory was diverted off the concave trap with the aid 

of the VG. On reaching the VG as shown in figure 31, the robot was redirected to the 

desired TP figure 32. The travel time of the robot with the HVFF concept in place was 

53.20seconds. Based on the outcome of the last two simulation cases, it can be 

inferred that as the complexity of the concave shaped obstacle increases based on its 

width and depth, the likelihood of a MR getting stuck in the local minima trap 

significantly increases. 

Case 4 in the simulation series depicts navigation of the MR in an environment of a 

few cascaded “simple concave shaped obstacles” amidst multiple TPs (2 Target 

Points). This is as represented in the initialised workspace shown in figure 33. 

Following this is figure 34 which presents the trajectory of a navigating robot without 

the HVFF algorithm. The robot got into the first simple concave trap, manoeuvred its 

way out and proceeded towards the first target point (TP1) as presented in figure 35. 

From this point, the robot continued to the second target point (TP2). Firstly, the robot 

got into a second local minima trap presented by the second concave obstacle. 

However, it got out of this in figure 36 and proceeded to the second target point (TP2) 

as shown in figure 37. The entire navigation duration from the start point of the robot 

through TP1 and TP2 was 85.56 seconds as distinctly presented in table 7.       

Furthermore, in respect of case 4 simulation series, figure 38 presents the MR 

navigation from its initial position to TP1 with the aid of the HVFF algorithm. Unlike in 

the earlier discuss of case 4 without the HVFF concept, the navigation trajectory herein 

is premised on the prompting of the VG. Firstly, the MR was routed via the VG 
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placement as seen in figure 38. This continued to the first target point (TP1) in figure 

39. Following this was the prompting and placement of a second VG as shown in figure 

40. This finally led the robot to TP2 as presented in figure 41. The combined navigation 

time with the HVFF algorithm was 62.30seconds as presented in table 7. It’s obvious 

from the developed and presented workspaces as contained in this dissertation that 

the HVFF controlled navigation is quite efficient.  

Presented in figure 42, case 5 in the simulation series is the initialised workspace 

combining both a concave shaped and a lengthy obstacle. Unlike the previous 

workspaces contained in figures 18 to 41, the current workspace was adapted from 

the literature. Figure 43 presents the navigation trajectory of the MR towards the target 

point without the use of the HVFF concept. Figure 44 shows a further progressive 

motion of the robot however with the robot running into a trap and never reaching the 

TP. On deploying the HVFF concept as seen in figure 45, the MR went in pursuit of 

the optimally positioned VG. This was in a bid to recover a MR navigation result from 

an adapted literature based labyrinth (see figures 46 and 47). Figure 48 presents the 

navigation trajectory of the MR to the TP in an optimised route at a duration of 

43.37seconds as presented in table 8.This is in agreement with the output obtained 

from the literature as shown in figure 49.        

Case 6 in the simulation series depicts navigation of the MR in a literature adapted 

concave shaped obstacle. The goal herein is to recover or improve on the navigation 

trajectory obtained in the literature. Figure 50 presents the initial workspace showing 

the robot and TP. Figure 51 shows the navigation of the MR into the concave hollow 

trap and its outward motion towards the TP not without some forth back oscillatory 

navigation while in the concave trap. This is a case of navigation without the HVFF 
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concept. Figure 52 presents the trajectory of the robot to the TP. The overall time spent 

by the robot herein from start to completion is 79.25 seconds as contained in table 9.  

Figure 53 on the other hand presents the navigation of the robot via the use of the 

HVFF algorithm. The robot was directed along the optimal path of the VG as seen in 

figure 53. This is in conformance with the output from the literature figure 54 and in a 

bid to show navigation trajectory optimality. The final navigation of the robot to the TP 

is as presented in figure 55 at a much shorter time of 44.91 seconds (see table 9). 

Figure 56 is a presentation of the complete navigation trajectory of the robot as 

obtained from the literature.           

4.4 Chapter Summary 

This chapter has presented simulation cases and results by validating the solution 

algorithm of this work. The results showed that the solution algorithm is effective but it 

is not time efficient without HVFF. The simulation time results of solution algorithm 

with HVFF are very efficient and effective as discussed in the previous section. 

Furthermore, it is also noticeable from Cases 2, 3, 5 and 6 that the complexity of 

concave-shaped and lengthiness of static obstacles increases the likelihood of MR 

getting struck in the local minimal trap. 
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CHAPTER FIVE 

 

CONCLUSION AND FUTURE RESEARCH WORK 

 

5.1 Chapter Overview  

This chapter has detailed out a summary of the research work as presented in this 

dissertation. The research has presented an optimum mobile robot navigation model 

amidst static concave shaped and lengthy stretched out obstacles in a given 

navigation workspace. Furthermore, algorithmic validation was carried out on a single 

TP as well as multi TPs. The outcome of the simulated results as presented for each 

developed workspace as presented in the earlier chapters showed the efficacy of the 

algorithmic solutions. The use of reactive algorithms such as the HVFF technique has 

proven to be quite effective in trajectory control of robotic vehicles in obstacle 

constrained navigation problem domain.  

5.2 Conclusion 

This research has presented the deployment of the HVFF algorithm for MR navigation 

in an obstacle constrained workspace dominated with concave shaped or lengthy 

(stretched-out) obstacles. The degree of effectiveness of the HVFF algorithm in 

respect of MR optimum trajectory development in a workspace with this class of 

obstacles is remarkably high. As the level of constraint posed by workspace objects 

increased, the robot navigation success to the TP generally experienced some 

significant level of difficulties. However, on comparing the navigation output between 

the HVFF controlled trajectory and the non-HVFF i.e. conventional navigation 

trajectory, it was observed that the robot either never reached the TP or spent so much 
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time trying to reach the TP after several back forth oscillations in the case of a 

conventional navigation approach. However, the scenario with the HVFF algorithm 

was such that the robot navigation recorded a significantly lesser travel duration to the 

TP.  

Apart from validating the HVFF algorithm on developed workspaces, comparative 

studies was carried out on some existing literature workspaces comprising concave 

and lengthy obstacles. In all of these validations, the behaviour of the robot navigation 

with and without the HVFF algorithm per workspace was presented. Of a special 

interest is the navigation time of the MR with and without the HVFF algorithm per 

workspace as presented in table 10. The first simulation gave a completion time 

difference of 19.62 seconds resulting in a percentage time gain of 42.18% for the 

HVFF algorithm over the non-HVFF algorithm. The second simulation presented a 

navigation time difference of 287.44 seconds between the HVFF and non-HVFF 

algorithms. This resulted in a percentage time gain of 89.7% in favour of the HVFF 

algorithm over the non-HVFF algorithm. The third case of simulation presented an 

undefined navigation time difference between the HVFF and non-HVFF algorithm. 

This was premised on the fact that the non-HVFF algorithm was unable to get the MR 

out of the concave trap all through the monitoring duration. The outcome herein clearly 

shows the edge of the HVFF algorithm over the non-HVFF algorithm. The fourth case 

of simulation presented a cumulative navigation time difference of 23.26 seconds 

between the HVFF and non-HVFF algorithm. This resulted in an equivalent of 53.91% 

time gain in respect of the HVFF algorithm. The fifth and sixth cases respectively 

presented a simulation time difference of 256.98 and 34.34 seconds between the 
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HVFF and non-HVFF algorithm. This resulted in an equivalent of 85.56% and 43.33% 

time gain respectively in respect of the HVFF algorithm.  

Table 10: Summary of Navigation Travel Duration and Percentage Gain in Efficiency 
 

Simulation 
Cases 

Workspace 
Type 

Completion 
Time (Non-
HVFF 
Approach) 

Completion 
Time (HVFF 
Approach) 

Time 
Difference 

Percentage 
(%) 
Difference 
in Time 

Case 1 Simple 

concave 

46.52 26.90 19.62 42.18 

Case 2 Intermediate 

concave 

320.46 33.02 287.44 89.70 

Case 3 Advanced 

concave 
∞ 53.3 undefined undefined 

Case 4 Multi-Target 

Points (TP1) 

40.79 31.80 8.99 22.04 

Case 4 Multi-Target 

Points (TP2) 

44.77 30.50 14.27 31.87 

Case 5 Lengthy 

Obstacle 

300.35 43.37 256.98 85.56 

Case 6 Concave 

Shaped   

79.25 44.91 34.34 43.33 

 

Research Objectives Addressed 

 Explore and adapt the HVFF concept for effectiveness and efficiency studies of 

robot navigation in workspaces with concave or lengthy-stretched out obstacles 

– Chapter 4, page: 66-75 (Case 1 to 3) and  84 – 92 (Case 5 to 6) 

 Adapt the HVFF algorithm to a multi-target point navigation problem – Chapter 

4 (Case 4), page: 76 – 83.  

 Validate the HVFF algorithmic performance in the different workspaces using 

simulation trials premised on the Python software - Chapter 4 (Case 1-6), page: 

66 – 92.  
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5.3 Future Research Work 

This subsection presents some future work to be considered in a bid to extend this 

research. Future work herein would focus on the following underlisted tasks: 

i. Local Minima Trap Entry Prevention during MR navigation: The current research did 

not effectively deploy the virtual obstacle concept (VOC) which is capable of 

preventing the navigating robot from getting into a local minima trap orchestrated by a 

concave obstacle in particular. In most instances, the HVFF approach works with both 

the VGC and VOC. This can greatly impact on the overall navigation efficiency and 

effectiveness.  

ii. Dynamic Obstacles Navigation Analysis: The need to explore a workspace scenario 

with a cluster of dynamic obstacles or a mixed scenario of static and dynamic 

obstacles has been reserved for a future research.   

iii. Real Vehicle Deployment of Navigation Algorithm: The deployment of the HVFF 

scheme on real robotic vehicles is already in the pipeline. Three robotic vehicles were 

recently acquired for deployment of the HVFF algorithm and control of these vehicles 

autonomously. 
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CODING APPENDIX 

 

Main py-game simulation code 

''A Python Class to implement a very basic Pygame Plotting 

Arena. Plot various objects, animate them, scaling, dealing 

with mouse inputs, Updating etc''' 

 

import pygame, sys, math 

from pygame.locals import * 

import Sprites as spr 

import random 

 

pygame.init() 

class PyArena: 

    def __init__(self, w = 800,h = 800, bgColor = "Grey", axisColor = "Grey", TIMER_DELAY = 30): 

        '''Create a Pygame Arena, TIMER_DELAY sets the freq of screen updating in milliseconds''' 

        self.w = w 

        self.cx = w//2 

        self.h = h 

        self.cy = h//2 

        self.bgColor = bgColor # the background color 

        self.axisColor = axisColor # Color of the axes 

        self.delay = TIMER_DELAY # The screen refresh  delay im milliseconds  

        self.screen = pygame.display.set_mode((self.w, self.h)) 

        self.clock = pygame.time.Clock() 

        pygame.time.set_timer(USEREVENT+1, TIMER_DELAY) # Start the timer, assign it a USEREVENT 

        self.counter = 0 # Init a counter to keep track of time passed 

        self.obstacles = [] # Empty list to hold all the sprites 

        self.robots = [] 

        self.goals = [] 

        self.swarming = False # One robot or Swarm? 

        self.manualBotID = 0 # Which bot is currently under manual control 

 

    def ReDraw(self): 

        '''ReDraw on the Objects on the Screen''' 
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        self.screen.fill(pygame.Color(self.bgColor)) # Clear the screen 

     

        #draw the axes 

        pygame.draw.lines(self.screen, pygame.Color(self.axisColor), False, ((self.cx,0),(self.cx,self.h))) # 

Y Axis 

        pygame.draw.lines(self.screen, pygame.Color(self.axisColor), False, ((0,self.cy),(self.w,self.cy))) # 

X Axis 

 

        # Update and then Draw all the sprites 

        for sprites in self.obstacles, self.goals, self.robots: 

 

            for sprite in sprites: 

 

                if self.counter % 7 == 0: #Sprites update every 00 ms 

                    sprite.Update(self.obstacles)  

                    ''' Update all the sprites,  Fixed sprites  

                    do nothing during Update(). Robots may need to re-position, scan for targets, 

                    zombie sprites may just move a little...''' 

             

                sprite.PygameDraw(self.screen)  

                ''' Each sprite must be able to draw itself onto the screen 

                Rather than sprites passing info to this class, and implementing 

                the draw function here, it's simpler if every sprite knows  

                how to draw itself. Thus we can have different sub-classes of sprites 

                with different drawing attributes, and we can add 

                more sub-classes in the future that implement other drawing 

                attributes, without having to change any of the code here''' 

 

        #After everything is re-drawn, update the screen 

        pygame.display.update()     

    def GetManualBot(self): 

        '''Returns the currently active robot under 

        manual control''' 

 

        return self.robots[self.manualBotID] 
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    def ObeyRobotCommands(self,event): 

        '''Deal with any User genrated Robot Commands''' 

        bot = self.GetManualBot() # Find the robot currently under manual control 

        if event.key == pygame.K_UP: # UP Arrow pressed, step robot forwards 

            bot.StepForward(1) 

        if event.key == pygame.K_DOWN: # Down arrow pressed, step robot backwards 

            bot.StepBackward(1) 

        if event.key == pygame.K_LEFT: #Left arrow pressed turn left 

            bot.TurnLeft() 

        if event.key == pygame.K_RIGHT: # Right arrow pressed turn right 

            bot.TurnRight() 

        if event.key == pygame.K_a: # Toggle the robot's auto mode 

            bot.ToggleAutoControl() 

    def AddObstacles(self, event): 

        '''Add any user genrated obstacles''' 

         

        if event.key == pygame.K_o: # On pressing 'O' key, an obstacle is added at the mouse curcor 

            pos = self.WH2XY(pygame.mouse.get_pos()) 

            nObs = len(self.obstacles) # New sprite will have ID = len(obstacles) + 1 

            self.obstacles.append(spr.Sprite(nObs + 1, pos)) # Add an obstacle at the mouse position 

 

            # Lines below added for debugging pruposes 

            '''print("Creating....,") 

            for s in self.obstacles: 

                print(s.pos)'' 

    def  Add_MoveGoal(self, event): 

        '''Move the goal or if in swarming mode, add more goals''' 

 

        if event.key == pygame.K_g: # On pressing 'G' key, the goal is moved to the mouse cursor posn 

            pos = self.WH2XY(pygame.mouse.get_pos()) 

            if self.swarming == True: #multiple robots and goals 

                pass 

            else: 

                self.goals[0].SetPos(pos) 
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                self.robots[0].SetGoal(pos) # Single robot single goal seeking 

                self.robots[0].SetSpeed(5) # Get the robot moving 

    def Update(self): 

        '''Perform all mandatory repeated tasks''' 

       #Deal with user inputs 

 

        for event in pygame.event.get(): 

            if event.type == USEREVENT+1: #Timer has ticked 

                self.counter += 1 # Increment the counter 

                # Re-Draw the screen 

                self.ReDraw() # ReDraw will also update ALL sprites 

 

            if event.type == pygame.QUIT or ( 

                    event.type == pygame.KEYDOWN and event.key == pygame.K_q):  # USER CLOSES 

PROGRAM 

                pygame.quit() 

                sys.exit() 

                

            if event.type == pygame.KEYDOWN: # Deal with User Commands 

                 

                #Obey User Robot Commands 

                self.ObeyRobotCommands(event) 

 

                #Obey User Goal Commands 

                self.Add_MoveGoal(event) 

 

                #Add User Generated Obstacles 

                self.AddObstacles(event) 

             

    def WH2XY(self,screenWH): 

        '''Convert a pygame Screen WH coordinates to Coordinate axis 

        XY value tuple''' 

        return (screenWH[0] - self.cx, self.cy - screenWH[1]) 

    def AddDebugObstacles(self, t): 

        '''Create a bunch of obstacles for debugging purposes'''         

        for pos in t: 
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            nObs = len(self.obstacles) # New sprite will have ID = len(obstacles) + 1 

            self.obstacles.append(spr.Sprite(nObs + 1, pos)) # Add an obstacle at the mouse position 

if __name__ == "__main__": 

    arena1 = PyArena() # Create an Arena 

     

    wmax, hmax = arena1.screen.get_width(), arena1.screen.get_height() 

     

    #Create a goal 

    pos = arena1.WH2XY((200,150)) 

    goal1 = spr.Sprite(500, pos) 

    goal1.SetImage("images/goal1.png") 

    arena1.goals.append(goal1) 

 

    # Create a robot 

    pos = arena1.WH2XY((90, 700)) 

    rob1 = spr.GoalSeeker(1000, pos) 

    rob1.SetImage("images/robot11.png") 

    rob1.SetHeading(random.randint(0,360)) 

    rob1.SetSpeed(5) 

    rob1.SetSensor(300, 70) 

    rob1.SetGoal(goal1.GetPos()) 

    arena1.robots.append(rob1) 

 

 

 

 

    while True: 

        arena1.Update() 

 

 

        # print(spr.Robot.__init__(spr.Robot, "Test", [100]).trail) 
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Repulsive Navigation Code 

 

'''Python class that implements Repulsive Obstacle  

Avoidance and Goal Seeking Navigation''' 

import math 

import pdb 

#Define gravitational constants 

G_GOAL = 1.0 

G_OBS = 1.0 

#Define global functions 

def NormaliseVector(v): 

    '''Return the normalised vector''' 

    d = math.sqrt(v[0]*v[0] + v[1]*v[1]) 

    return [v[0]/d, v[1]/d] 

#p1 robot position 

#p2 goal position 

def ObstacleForce(p1, p2, rSafe): 

    '''Determine the gravitational force between two 

    points. Returns a vector''' 

    d = math.sqrt(float(math.pow((p1[0] - p2[0]),2) + math.pow((p1[1] - 

p2[1]),2))) # distance 

    if d <= rSafe: # if the obstacle is closer than rSafe, make sure dSqr 

is a valid value 

        dSqr = 0.000001 # if inside safety radius, dSqr should be very very 

small 

    else: 

        dSqr = math.pow((d - rSafe),2) # Gravity force is maximum when d = 

rSafe 

 

    F = G_OBS/dSqr # Repulsive force proportional to 1/dSqr, the force that 

the obstacle and mobile robot repel each other. 

                   #the greater the force makes the robot not to touch the 

obstacle and move in a different direction searching for the goal 

    unit_vec = [(p1[0] - p2[0])/d, (p1[1] - p2[1])/d] 

    f_vec = (unit_vec[0] * F, unit_vec[1] * F)  

    return f_vec, unit_vec 

 

#implementation code 

class RepulsorNav: 

    def __init__(self, p1, p2, rSafe = 2): 

        '''Create the instance of this class''' 

        self.ownPos = p1 #robot position 

        self.goalPos = p2 #goal position 

        self.safetyRadius = rSafe # introduce a safety radius to cater to 

robot actual dimensions 

        self.obstacles = [] # create an empty list of obstacles 

 

    def __str__(self): 

        '''default print function''' 

        return "Default Print not defined yet" 

 

    def SetOwnPos(self, p): 

        '''Update own position''' 

        self.ownPos = p 

 

    def UpdateObstacles(self, obs): 

        '''Update the list of obstacles in sight''' 

        self.obstacles = obs 
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    def Navigate(self, edgeholding = False): 

        '''Determine the best route to goal and 

        return this direction vector 

        By default, the navigator will not do edgeholding ''' 

         

        steerVec = [0,0] #steering vector 

        x1, y1 = self.ownPos 

        if edgeholding == False: 

            steerVec = [self.goalPos[0] - x1, self.goalPos[1] - y1]  #calc 

direct vector to goal 

 

        if len(self.obstacles) > 0: #if there are obstacles in 'sight' 

            for obs in self.obstacles: #iterate through all obstacles 

                obsForce, unit_vec = ObstacleForce(self.ownPos, obs, 

self.safetyRadius) 

                #print("OwnPos {op}, Obstacle {ob}, Unit Vec {uv}, ObsForce 

{obf}".format(op=self.ownPos,ob=obs,uv = unit_vec, obf=obsForce)) 

 

                steerVec = [steerVec[0] + obsForce[0] , steerVec[1] + 

obsForce[1]] 

         

        v = NormaliseVector(steerVec) # output the normailised recommended 

vector 

        c1 = ((math.pi/2) - math.atan2(v[1], v[0]))%(2 * math.pi) # Course 

to Steer 

         

        return v,c1 #based on this the robot turn into whatever is 

recommended 

 

    def SetGoal(self, newGoal): 

        '''Go to a new goal''' 

        self.goalPos = newGoal  #use this partially to assist the robot 

when trapped in deep concave and trapped. this set new goal as virtaual 

goal. 

 

if __name__ == "__main__": 

     

    op = [0,0] 

    gp = [10,10] 

 

    r1 = RepulsorNav(op,gp) 

 

    obstacles = [[6,2]]#, [6, 4.2], [6,12], [17,8]] 

 

    r1.UpdateObstacles(obstacles) 

 

    r1.Navigate() 

 

Sprites Code 

 

'''Sprite class implements basic Sprite functionality 

for display in a PyGame Arena''' 

 

import pygame, math 

from pygame.locals import * 

import RepulsorNav as rpn # Goal Seeking and Obstacle Avoidance Class 
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import time 

 

# Define constants 

 

HDG_MARKER_LENGTH = 20 # length of heading marker to plot on screen 

ROBOT_SAFETY_RADIUS = 50 # Safety circle around the robot 

RANGE_REDUCTION = 4 # If trapped, reduce the detection range to avoid 

getting lost 

#Define global functions 

 

def PlotBearing(pos1, pos2): 

        '''Returns the bearing in degrees of pos2 [x2, y2] 

        from pos1 [x1, y1] on an equal scale plot''' 

        dx = float(pos2[0] - pos1[0]) 

        dy = float(pos2[1] - pos1[1]) 

        b = math.atan2(dy,dx) 

 

        if b <=0: 

            final = math.pi/2 + abs(b) 

        elif b > 0: 

            final = (math.pi/2 - b)%(math.pi * 2) 

 

        return final 

 

def FindCentreBearing(hdg, rec): 

    '''Given two bearing lines, find the central bearing''' 

 

    h = (math.sin(hdg), math.cos(hdg)) 

    r = (math.sin(rec), math.cos(rec)) 

 

    f = (h[0] + r[0], h[1] + r[1]) 

 

    theta = math.atan2(f[1], f[0]) 

 

    if theta <=0: 

        final = (math.pi/2 + abs(theta)) 

    elif theta > 0: 

        final = (math.pi/2 - theta)%(math.pi * 2)    

    return final 

 

 

def Distance2D(p1, p2): 

    '''Returns the 2D distance between two points''' 

    x1, y1 = p1[0], p1[1] 

    x2, y2 = p2[0], p2[1] 

    d = math.sqrt(math.pow(x1 - x2,2) + math.pow(y1 - y2,2)) 

    return d 

 

class Sprite: 

    '''Parent class for all plotting objects''' 

    def __init__(self, ID, pos, radius = 20, lineThick = 3, color = 

"Black"): 

        self.ID = ID 

        self.pos = pos 

        self.color = color 

        self.radius = radius 

        self.lineThickness = lineThick 

        self.hasImage = False # By default, sprites are not associated with 

any image 
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    def __str__(self): 

        txt = "Sprite, ID={i}, Pos={p}, color = 

{c}".format(i=self.ID,p=self.pos, c= self.color) 

        return txt 

     

    def SetImage(self, imgFile): 

        '''Assign an image to this sprite''' 

        try: 

            self.image = pygame.image.load(imgFile) # Load an image 

            self.hasImage = True 

        except: 

            print("Error Loading Image for Sprite ID 

{i}".format(i=self.ID)) 

            raise 

            self.hasImage = False 

     

    def GetPos(self): 

        '''Returns the position tuple of the Sprite''' 

        return self.pos 

 

    def XY2WH(self, cx, cy, plotXY): 

        '''Convert a normal XY coordinate tuple to Pygame's WH so that 

        it fits nicely on the Corrdinate Axis''' 

 

        return (cx + plotXY[0], cy - plotXY[1]) 

 

    def SetPos(self, pos): 

        '''Set a new position for this sprite''' 

        self.pos = pos 

 

    def Update(self, obstacles): 

        '''If anything needs to be updated at regular intervals, 

        put it here... 

        Arguments: counter value, counter increment delay (milliseconds) 

        Dead sprites usually dont need to update anything at all. 

        Active Sprites can overload this Update() method and do whatever 

they 

        need to at each update.''' 

 

        pass 

 

    def PygameDraw(self, screen, hdg = 0): 

        '''Draw itself onto the screen argument. Child Classes can 

implement 

        overloaded PygameDraw() methods for more complex drawing operations 

         

        Hdg (degrees) argument is used to rotate the image CCW before 

drawing ''' 

        cx, cy = screen.get_height()//2, screen.get_width()//2 

 

        drawPos = self.XY2WH(cx, cy, self.pos) 

         

        if self.hasImage: # Draw the sprite's image 

             

            img = pygame.transform.rotate(self.image, -hdg) 

            imgSize = img.get_size()[0]//2 

            screen.blit(img, ((self.XY2WH(cx,cy,self.pos))[0] - imgSize,  

                (self.XY2WH(cx, cy, self.pos)[1] - imgSize))) # draw image 

 

        else: # Draw a circle shape 
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            pygame.draw.circle(screen,  

                    pygame.Color(self.color),  

                    drawPos,  

                    self.radius,  

                    self.lineThickness) 

 

#Define Robot Class 

 

 

class Robot(Sprite): #  

    def __init__(self, ID, pos, goal = (0,0), color = 

pygame.Color("Black")): 

        '''Create instance of robot class''' 

        #Initialise attirbutes of Parent Sprite Classs 

        Sprite.__init__(self, ID, pos, color) 

        self.SetHeading(math.radians(0)) # Internal to this class, heading 

is in radians  

        self.stepTaken = False # just a flag to help with keyboard control 

see pygame.K_UP 

 

        self.trail = [] # A record of robot's position 

        self.TIME_COUNT = 0 # counter to keep track of life time elapsed 

 

    def __str__(self): 

        t = "Robot Pos {p1}, Going to {g}, heading {c}, speed 

{s}".format(p1 = self.pos, g = self.repulsorNav.goalPos, c = 

math.degrees(self.hdg), s = self.spd) 

 

        return t 

 

    def PygameDraw(self, screen): 

        '''Overloaded function of the Parent Sprite class 

        PygameDraw() Function. The robot needs to draw all its  

        extra items like heading marker, visible obstacles etc. and then  

        finally call the parent class PygameDraw function to draw its 

        body/ image''' 

 

        # Draw the heading marker 

        cx, cy = screen.get_height()//2, screen.get_width()//2 

        p1 = self.XY2WH(cx, cy, self.marker[0]) 

        p2 = self.XY2WH(cx, cy, self.marker[1]) 

        pygame.draw.lines(screen, pygame.Color("Black"), False, (p1, p2)) # 

Robot's heading marker 

 

        #TO DO Draw the Robot's Trail 

        for pos in self.trail: 

            if self.runMode == "Finished": 

                pygame.draw.circle(screen, pygame.Color("Red"), 

self.XY2WH(cx, cy, pos), 2, 1) 

            else: 

                pygame.draw.circle(screen, pygame.Color(self.color), 

self.XY2WH(cx, cy, pos), 2, 1) 

 

 

        # Draw the robot's body by calling PygameDraw in the parent class 

        super().PygameDraw(screen, math.degrees(self.hdg)) # pygame takes 

rotation angle in degrees 

    

    def SetSpeed(self, speed): 
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        '''Set the robot's speed''' 

        self.spd = speed 

 

    def SetHeading(self, hdg): 

        '''Set the robot's heading. Heading Agument is in radians!!!''' 

        self.hdg = hdg 

        self.ResetHeadingMarker() 

 

    def ResetHeadingMarker(self): 

        '''Recalculate the heading marker''' 

         

        self.marker = (self.pos, (self.pos[0] + HDG_MARKER_LENGTH * 

math.sin(self.hdg), self.pos[1] + HDG_MARKER_LENGTH * math.cos(self.hdg))) 

 

    def ResetStepFlag(self): 

        '''Flip the value of stepTaken Flag''' 

        self.stepTaken = False 

        

    def GetHeadingMarker(self): 

        '''Returns the heading marker tuple''' 

        return self.marker 

 

    def SetSensor(self, r1, a1): 

        '''Set the parameters of the Robot's Sensor''' 

        self.sensor_range = r1 

        self.sensor_angle = a1 

     

    def StepForward(self, nSteps = 1): 

        '''The robot steps  

        forward nSteps at a time''' 

        sx = self.pos[0] + nSteps * self.spd * math.sin(self.hdg) 

        sy = self.pos[1] + nSteps * self.spd * math.cos(self.hdg) 

        self.pos = (int(sx),int(sy)) 

        #print("Step Taken:{s}".format(s=self.pos)) 

        self.stepTaken = True 

        self.ResetHeadingMarker() 

        self.trail.append(self.pos) # add position to trail 

 

    def StepBackward(self, n): 

        '''The robot steps backwards''' 

        self.spd *= -1 # reverse the speed 

        self.StepForward(nSteps = n) # take a step forward (with negative 

speed) 

        self.spd *= -1 # set the speed to its orginal value 

        self.stepTaken = True 

        self.ResetHeadingMarker() 

        self.trail.append(self.pos) # add position to trail 

 

 

    def ResetStepFlag(self): 

        '''Flip the value of stepTaken Flag''' 

        self.stepTaken = False 

 

 

 

    def TurnRight(self, angle = 10): 

        '''The robot turns clockwise''' 

        self.hdg = (self.hdg + 0.01745 * angle) % (math.pi * 2) # default 

is turn 5 degrees at a time 

        self.ResetHeadingMarker() 
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    #def TurnLeft(self, angle=10): 

        ''' turns anti-clockwise''' 

        #self.TurnRight(angle * -1)  # turn right, but with a negative 

angle 

       # self.ResetHeadingMarker() 

 

 

    def ToggleAutoControl(self): 

        '''Set whether the robot will navigate in Automatic mode or manual 

control''' 

        self.autoControl = not(self.autoControl) 

 

 

#Define GoalSeeker Class 

 

class GoalSeeker(Robot): 

    def __init__(self, ID, pos, goal = (0,0), color = 

pygame.Color("Black")): 

        Robot.__init__(self, ID, pos, color) 

        self.size = ROBOT_SAFETY_RADIUS 

        self.goal = goal 

        self.repulsorNav = rpn.RepulsorNav(self.pos, self.goal, 

                rSafe = self.size) # create a repulsor algorithm 

        self.visible_obstacles = [] # list of currently visible obstacles 

        self.runMode = "GoalSeek" # Start off in goal seeking mode 

        self.runState = "Clear" # Start off with no obstacles in "sight" 

        self.autoControl = False # Run in manual mode 

        self.trapHistory = [] # List of flags showing if last ten steps 

were 'trapped' or not 

        self.maxEdgeHoldTime = 200 # How long to continue edheholding if 

goal is not reached 

 

    def __str__(self): 

        '''Default print''' 

        return "Not coded yet" 

 

    def PygameDraw(self, screen): 

        '''Overloaded function of parent class. Draw only the factors 

affecting 

        the Repulsor Algorithm''' 

         

        cx, cy = screen.get_height()//2, screen.get_width()//2 

 

        # Draw visible obstacles 

        for obs in self.visible_obstacles: 

            pygame.draw.circle(screen, pygame.Color("Black"), 

self.XY2WH(cx, cy, obs.pos), 20, 5) 

          

        #Call parent class and draw robot related everything else 

        super().PygameDraw(screen) 

 

    def SetGoal(self, goal): 

        '''Set the Goal for the seeking algorithm''' 

        self.goal = goal 

        self.repulsorNav.SetGoal(self.goal) 

        self.runMode = "GoalSeek" # Start Seeking the goal 

        self.trapHistory = [] # Clear the trap history 

 

    def ClearOfTrap(self): 
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        '''Check if the robot is clear of trap''' 

          

        f1 = self.trapTrack > 3 * self.size # Walked enough from trap 

        f2 = abs(PlotBearing(self.pos, self.goal) - 

self.goalBrgFromTrap)%360 < math.radians(40) # returned to goal line 

        f3 = Distance2D(self.goal, self.pos) < self.goalDistFromTrap # 

Closer to goal than at trap point 

        f4 = not(f3) and len(self.visible_obstacles) == 0 # We cleared the 

trap from the opposite side 

         

        print(f1, f2, f3) 

 

        if (f1 * f2 * f3) or f4: # If all three conditions are met..... 

            self.trapHistory = [] # we are no longer trapped 

            return True 

        else: 

            return False 

 

    def IsTrapped(self): 

        '''Returns True if the robot thinks it is trapped behind an 

obstacle(s)''' 

     

        if len(self.trail) > 30: # Go at least 20 steps before chekcing if 

trapped or not 

            d =  Distance2D(self.trail[-1], self.trail[-20]) 

            if d < self.size: #if robot is not making headway 

         

                self.trapHistory.append(True) # record the 'trap' 

                if len(self.trapHistory) > 20: # start checking after 10 

steps 

                    # print(self.trapHistory) 

                    self.trapHistory.pop(0) # get rid of the earliest flag 

                 

                    sum = 0 

                    #print(self.trapHistory) 

                    for i in range(len(self.trapHistory)): 

                        sum += self.trapHistory[i] 

                    if sum > 5: # if more than 5 entries are 'true' 

                        #we are trapped. Record the necessary trap 

parameters and return True 

                        self.trapPoint = self.pos 

                        self.goalBrgFromTrap = PlotBearing(self.trapPoint, 

self.goal) 

                        self.goalDistFromTrap = Distance2D(self.pos, 

self.goal) 

                        return True 

                    else: 

                        return False 

                else: 

                    return False 

            else: 

                return False 

        else: 

            return False 

    

    def Update(self, obstacles): 

   

        '''Update the robot's status''' 

         

        #Print the current state 
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        print("ID:{id}, Goal:{g}, Run Mode:{r}, Run State:{s}".format(id = 

self.ID, g = self.goal, r= self.runMode, s = self.runState)) 

        #Refresh the visible obstacles 

         

        self.visible_obstacles = [] # Clear the list of visible obstacles 

for this robot 

        

        '''Normally we run in simple "GoalSeek" mode. If the Robot gets 

trapped, 

        then it records the Goal Vector Lien and changes to "EdgeHold" 

mode. 

        It does not return to "GoalSeek" until it re-joins the original 

Goal Vector Line''' 

 

        if Distance2D(self.pos, self.goal) >= self.size/2: # Robot still 

needs to go closer to goal 

             

            if self.runMode == "GoalSeek": 

                # print("IsTrapped returned:", self.IsTrapped()) 

                if self.IsTrapped():# Trapped in Goal Seek Mode 

                    self.runState = "Trapped" # Record the change of 

Running State  

                    v1,v2 = self.pos, self.goal 

                    self.savedGoalVector = rpn.NormaliseVector([v1[0] - 

v2[0],v1[1] - v2[1]]) 

                    self.runMode = "EdgeHold" #Change to Edge Holding Mode 

of Operation 

                    self.trapTrack = 0 # Reset the length of track stepped 

record from this trap 

                    self.trapTime = time.time() # record the time when the 

robot started Edgeholding 

                    self.trapHistory = [] # Reset the trap history 

                    self.Update(obstacles) # REDO this step after setting 

mode to EdgeHold 

 

                else: # In GoalSeek Mode, but not trapped 

                    #Update visible obstacles 

                    for obs in obstacles: 

                        if Distance2D(self.pos, obs.pos) <= 

self.sensor_range: # if the robot can 'see' the obstacle 

                            dOG = Distance2D(obs.pos, self.goal) 

                            dG = Distance2D(self.pos, self.goal) 

                            if dOG <= dG: # if the obstacle is closer to 

the goal than the robot... 

                                self.visible_obstacles.append(obs) 

 

 

                    if len(self.visible_obstacles) > 0: 

                        self.runState = "Evade" 

                    else: 

                        self.runState = "Clear" 

        

 

                    #Update Navigator and Calculate Recommended Steering 

Vector 

                    self.repulsorNav.SetOwnPos(self.pos) # update own 

position to navigation algorithm 

                    self.repulsorNav.UpdateObstacles([i.pos for i in 

self.visible_obstacles]) 

                    recVector, recHdg = self.repulsorNav.Navigate() # 
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Recommended vector to steer 

                    self.SetHeading(FindCentreBearing(self.hdg, recHdg)) 

#Turn halfway to recommended heading 

 

            elif self.runMode == "EdgeHold": 

                 

                #Update visble Obstacles. Reduce sensor range to cut out 

excess clutter 

 

                if time.time() - self.trapTime > self.maxEdgeHoldTime: 

                    self.runMode = "GoalSeek" # After two minutes of 

Edgeholding, and we have still not rached the goal, try "GoalSeeking"again 

 

                for obs in obstacles: 

       

                    if Distance2D(self.pos, obs.pos) <= 

self.sensor_range/RANGE_REDUCTION: 

                        self.visible_obstacles.append(obs) 

                 

                #Steer by Repulsion without including the goal direction 

                #Determine the current goal vector 

                #if CurGoalVec X savedGoalVec is almost = 0, we areback on 

the line 

                #so, change back to "GoalSeek" Mode 

 

                if self.ClearOfTrap(): # Clear of Trap. Go back to 

Goalseeking mode 

                    self.runMode = "GoalSeek" 

                    self.Update(obstacles) # REDO this step after setting 

mode to GoalSeek 

 

                else: # Still in trap, continue edgeholding 

 

                    self.trapTrack += self.spd # increment the track 

stepped from this trap                     

                    self.repulsorNav.SetOwnPos(self.pos) # update own 

position to navigation algorithm 

             

                    if len(self.visible_obstacles) > 0: 

                        self.repulsorNav.UpdateObstacles([i.pos for i in 

self.visible_obstacles]) 

                        recVector, recHdg = 

self.repulsorNav.Navigate(edgeholding = True) # Tell navigator we are 

edgeholding 

                        self.SetHeading(recHdg + math.pi/2.1) # turn right 

and head out of trap 

                    

        else: # we are close enough to the goal to stop 

            self.runMode = "Finished" 

            self.hdg = 0 

            self.spd = 0 

                 

        #If in AUTO control, Step Forward 

 

        if self.autoControl == True: 

            self.StepForward()  
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