
Impact of climate smart agriculture on farm productivity under 
extreme weather events in Malawi 

BY 

Innocent Pangapanga-Phiri 

Thesis Submitted in Partial Fulfilment of the Requirement for the Degree of the 
Doctor of Philosophy (PhD) in Environmental Economics 

Department of Agricultural Economics, Extension and Rural Development 
 Faculty of Natural and Agricultural Sciences 

University of Pretoria,  
Pretoria 

January 2022 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  



 ii 

DEDICATION 
 

To Inka PANGAPANGA, my dearest daughter, 
Lucy PANGAPANGA, my one and only youthful wife,  
Christopher Abbolf PANGAPANGA, my only brother, 

Shawo Aaron MKWALA, I know you are smiling seeing me reach this far. 
Jubilant Mirriam Eliness MWENELUPEMBE, my fondly mum, 

Yafika Kiliness Nandofi NAKAUNDI, I call her my beloved mother and mbuya, and 
Tonnex Whitemore Chiza MWENELUPEMBE, my uncle. 

  

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 iii 

DECLARATION 
 

I, Innocent PANGAPANGA-PHIRI, declare that the Thesis, which I hereby 
submit in partial fulfilment for the requirement of the Degree of the Doctor of 
Philosophy (PhD) in Environmental Economics, at the University of Pretoria, is my work 
and has not previously been submitted by me for the award of a degree at this or any 
other tertiary institution. Noticeably, the second chapter of this Thesis has been 
formally published in the peer reviewed Elsevier International Journal of Disaster Risk 
Reduction, (https://doi.org/10.1016/j.ijdrr.2021.102322). Besides, the fourth chapter on 
the effect of tropical cyclones –related floods on farm productivity is undergoing third 
peer review with the Taylor and Francis Journal of Climate and Development. I take 
responsibility of any error of inaccuracies, found in this Thesis. 
 

              31.01.2022 
Innocent PANGAPANGA-PHIRI       …………………   ………………… 

Name     Signature    Date 
  

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 iv 

ACKNOWLEDGEMENT 
 

First, I am grateful to God for the gift of life and time. Second, I am deeply 
indebted to my supervisor, Professor Eric Dada Mungatana, for his academic and 
fatherly guidance throughout my doctoral studies at the University of Pretoria. 
Professor Eric, I would like to be like you when mentoring students and others in 
Environmental Economics. Third, I profoundly thank the University of Pretoria (UP), the 
Departments of Agricultural and Applied Economics (AAE) as well as Environmental 
and Natural Resource Management (ENRM) of the Lilongwe University of Agriculture 
and Natural Resources (LUANAR)-Bunda College of Agriculture (BCA), and the 
Regional Universities Forum for Capacity Building in Agriculture (RUFORUM) for 
granting me the three-year PhD scholarship in Environmental Economics. Fourth, I am 
also thankful to the World Bank, for allowing me work on various Bank projects in the 
Sub-Sahara African Region, during my study period, including the PhD Fellowship 
study in Land Economics and Advanced Impact Evaluation at the University of Cape 
Town. Fifth, I am also obliged to the National Statistics Office (NSO) (i.e. Mrs. Lizzie 
Chikoti) and the World Bank, Living Standard Measurement Study team (that is Dr. 
Talip Kilic, Heather Moyland), for making the data on the Integrated Household 
Survey/Integrated Surveys on Agriculture (LSMS/ISA), publically available. Six, I am 
grateful for my one and only loved youthful wife, Lucy Pangapanga, aka lulu, my 
dearest daughter, Inka Pangapanga, my only brother, Christopher Abbolf, and 
Yankhonda Pangapanga-Sichali. Lastly, I am very thankful to the following people: 
Uncle Tonnex WC Mwenelupembe; Sir Francis Nkoka; Prof. Charles Jumbe, Prof. MAR 
Phiri; Prof. Alexendar Kalimbira; Zione Kalumikiza; Austin Tibu; Madalitso Nkhata; 
Priscila Kandoole; Hope Nfunie; Anwar Musa; Lumbani Banda; Alanda Venter, Inlaw 
Henry Thangalimodzi, and Pastor Charles Thangalimodzi for the everyday checking on 
the progress of this study.  
  

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 v 

IMPACT OF CLIMATE SMART AGRICULTURE ON FARM PRODUCTIVITY UNDER 
EXTREME WEATHER EVENTS IN MALAWI. 

 
BY 

 
Innocent Pangapanga-Phiri 

 
Degree : Doctor of Philosophy in Environmental Economics 
Department  :  Agricultural Economics, Extension and Rural Development 
Faculty :  Natural and Agricultural Sciences 
University : University of Pretoria 
Supervisor : Professor Eric Dada MUNGATANA 
 

ABSTRACT 
Agricultural productivity in Malawi continues to decline and frustrate the food 

security agenda despite massive investments, namely, farm input subsidy programs 
and climate-smart agriculture (CSA) –related practices. Households have further 
adopted integrated pest management (IPM), and sustainable landscape management 
(SLM) strategies, which are responsive to extreme weather events, like droughts, fall 
armyworms (FAW), and tropical cyclones -related floods (TCRFs). High poverty levels, 
poor agricultural practices, fragmented landholding sizes, missing credit markets, and 
declining soil fertility are some of the fundamental constraints limiting household 
agricultural productivity. Additionally, extreme weather events have exasperated the 
situation, pushing more households into further food insecurity and poverty. In 
containing the negative effects of different extreme weather events, Government of 
Malawi and other stakeholders, including households, have adopted various CSA, IPM, 
and SLM-related practices, such as, organic manure application, intercropping, timely 
planting, improved crop varieties, mulching, zero tillage, soil and water conservation, 
liming, and chemical pesticides’ application. Though CSA, IPM, and SLM –related 
practices have presented opportunities to address the adverse effects of the extreme 
weather events, households fail to derive the maximum potential farm productivity. 
Furthermore, households engaging in rural – urban migration (RUM), as a climate 
adaptive strategy, do not yield the intended results due to missing market 
infrastructures for improved agricultural inputs and outputs.  

This thesis, thus, examines the impacts of climate smart agriculture on 
household farm productivity under varying extreme weather events by posing four 
empirical questions: (i) Do drought, FAW, and TCRFs significantly affect farm 
productivity? (ii) Do household and farm-level factors, namely, age, education, total 
farm size, and soil types drive the adoption of CSA, IPM, and SLM-related practices 
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under the different extreme weather events? (iii) Do CSA, IPM and SLM-related 
practices substantially induce farm productivity? Finally, (iv) does RUM, which is an 
climate adaptive strategy, improve the technical efficiency of maize production in the 
study area under extreme weather events? This thesis uses data from the Integrated 
Household Panel Survey, compiled by the National Statistics Office (NSO) and the 
World Bank, between 2010 and 2020. 

In this thesis, Chapter two (2) employs the conditional fixed effect logit model, 
the panel-based Cobb-Douglas stochastic frontier analysis (SFA) model, and the triple-
hurdle panel-based Tobit regression model to investigate the drivers of CSA 
practices’ adoption and their influence on the technical efficiency of maize 
production under drought episodes. Chapter three (3) adopts the panel-based 
Endogenous Switching Regression (ESR) to interrogate the effects of FAW and IPM-
related practices on farm productivity and food security. Similarly, Chapter four (4) 
applies the ESR to ascertain the impact of TCRFs and SLM-related practices on the farm 
productivity. Chapter five (5) uses the two-stage panel based Tobit regression to 
examine the influence of RUM on the technical efficiency of maize production under 
extreme weather events.  

The results from Chapter two (2) show that households affected by drought are 
76 percent more likely to adopt organic manure and 29 percent more probable to 
invest in soil and water conservation techniques relative to their counterparts. Based 
on panel-based ESR model, Chapter three (3) demonstrates that FAW significantly 
reduces farm productivity by 12 percent, on the one hand, but enhanced the likelihood 
of adopting IPM –related practices by 6 percent, on the other hand. The study reveals 
that adoption of IPM –related practices improves farm productivity by at least 21 
percent. Findings from Chapter four (4) show that TCRF reduces farm productivity by 
31 percent while augmenting the likelihood of investing in SLM-related practices, 
which consequently enhance farm productivity by 27 percent. Moreover, after 
interacting TCRFs and SLM, chapter (4) reveals that 24 percent improvement in farm 
productivity. Unless RUM is interacted with the adoption of other CSA –related 
practices, chapter five (5) reveals that RUM negatively and considerably influences 
maize farm productivity by 9 percent due to low family labour supply.  

The thesis concludes that droughts, FAW, TCRFs, and RUM have negative and 
significant effects on farm productivity. Households affected by any extreme weather 
events are distinctly more likely to adopt any of the CSA, IPM, and SLM-related 
practices, which positively enhance farm productivity and ultimately improve 
household food security.  Consequently, the study recommends an extension delivery 
mechanism that significantly promotes the adoption of any of the CSA, IPM, and SLM-
related practices to improve the household farm productivity, which would eventually 
boost food security under different extreme weather events. Furthermore, the study 
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proposes creation of accessible credit markets, which should allow households access 
farm inputs, namely, hired labour, inorganic fertilizer, and improved crop varieties, 
critical for the sustainable adoption of various CSA, or IPM, or SLM –related practices 
in the study area.  

The study results inform the policy making process in Malawi in four broad-
ways. First, it provides evidence regarding the drivers of CSA, IPM, and SLM-related 
practices’ adoption and their effects on farm productivity. These adaptation 
strategies are appropriate when the climate models project frequent, intense, and 
severe extreme weather events in Malawi in the coming decades. Second, the study 
isolates the most efficient adaptation practices, which enhance farm productivity and 
minimize the dis-adoption decision of the CSA, IPM, and SLM-related practices at the 
household level. Third, the study enhances climate-resilient farm productivity under 
different extreme weather events. Additionally, the study findings mainstream 
indigenous experiences in climate adaptation, ensuring CSA, IPM, and SLM-related 
practices’ suitability, flexibility, and sustainability. Ultimately, the study results are 
relevant to the current debate on achieving the Sustainable Development Goal (SDGs) 
on agricultural productivity under different extreme weather events. 
 
Key words: Farm Productivity; Climate-Smart Agriculture; Integrated Pest and 
Sustainable Land Management; Rural-Urban Migration; Panel-Based Stochastic 
Frontier Analysis; Panel-Based Endogenous Switching Regression Model; Conditional 
Fixed Effect Model; Triple Hurdle Tobit Model. 
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CHAPTER ONE 
 

GENERAL INTRODUCTION 
 
1. Introduction 

 
In this Chapter one, the study presents the context, regarding agricultural 

production and productivity in Sub-Sahara Africa (SSA) and Malawi. This Chapter 
further discusses the effect of extreme weather events on agricultural productivity. It 
also highlights the influence of weather events on the adoption of various climate-
smart agricultural (CSA) –related practices. Finally, this Chapter highlights the rationale 
of the study, the problem statement, the objectives, research questions; the general 
methodology, and the organization of the study.  
 

1.1 Study Context 
 

Globally, agricultural production, which is the transformation of various input 
combinations into desired outputs (Kumbhakar et al., 2015), is increasing with maize 
almost tripling from 476.8 million tonnes in 1989 to over 1.1 billion tonnes in 2016 
(FAO, 2018, see Figure 1. 1). Similarly, in Africa, maize production has doubled from 
41.6 million tonnes in 1989 to over 84.2 million tonnes in 2016, and fostering higher 
agricultural productivity is one of the core Africa strategies for overall development 
(Deininger and Binswanger, 1995; Binswanger and Townsend 2000, FAO, 2014). The 
increase in global agricultural production is largely attributed to increased use of 
inorganic fertilizers, improved crop varieties, and agricultural intensification (Singh et 
al., 2020; World Bank, 2020). Agriculture constitutes 20 percent of the Africa’s Gross 
Domestic Product (GDP) and contributes about 60 percent of employment (World 
Bank, 2014, 2010; Pangapanga and Mungatana, 2021). It forms half of the total export 
earnings and about 85 percent of the population in rural African countries, like Malawi, 
Lesotho, Swaziland, and others, depend on agriculture for their livelihood security 
(World Bank, 2014).  

However, Sub Sahara Africa (SSA) has seen a declining trend in agricultural 
production from 12.8 million metric tonnes in 1989 to 8.0 million metric tonnes in 2016 
(Benson et al., 2021). SSA agricultural performance has been falling further behind 
other developing regions in the world (Benin, 2016, see Figure 1. 1). Low use of 
fertilizer, traditional crop varieties, small land holding sizes, and marginal land 
cultivation partly limit agricultural production in SSA (Chauvin et al., 2012). For 
instance, the average use of fertilizer per hectare in SSA is only 16kg instead of 200kg 
(African Union [AU], 2020). Furthermore, SSA has not thoroughly mainstreamed the 
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role of indigenous knowledge in formulating effective agricultural-related climate 
change adaptation strategies (Nyadzi et al., 2021; Makondo and Thomas, 2018). 
Moreover, SSA agriculture is rain-fed dependent rendering it vulnerable to climate and 
weather variability (FAO, 2014). Additionally, SSA is facing 20 percent higher extreme 
heat waves (African Union, 2020) in 2020 than two decades ago, with the 
undernourished people rising by almost 10 percent between 2014 and 2020 (World 
Bank, 2020). These realities, including recent high food prices in many SSA countries, 
have renewed the concern for knowledge gaps, regarding suitable strategies for 
revamping and maintaining higher agricultural productivity (Benin, 2016).  

In response to the declining agricultural production, SSA has aligned its 
agricultural programmes with the Comprehensive Africa Agricultural Development 
(CAADP) and the Sustainable Development Goals (SDGs) of the United Nations to 
enhance resilience of rural agricultural production systems to negative effects of 
different extreme weather events (Pangapanga and Mungatana, 2021), namely, 
droughts, floods, dry spells, and pest outbreaks (World Bank, 2020; AU, 2020). SSA 
countries have further made reference to employing narratives, lessons, and 
technologies, viz., adoption of high yielding varieties, and modern management 
practices, achieved under the Green Revolution successes in Asia and India (Benin, 
2016). Unfortunately, the SSA suffers from low adoption of improved agricultural 
practices. For example, only 15 percent of agricultural suitable land has sustainable 
land management (SLM) –related practices and under 10 percent is irrigated, 
indicating the need to increase agricultural public expenditure (World Bank, 2020). This 
financial support should equally enhance access to agricultural inputs, promote 
technology adoption, and augment investment in resilience building towards different 
extreme weather events (AU, 2020; MoAIWD, 2018; DoDMA; 2018).  
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Figure 1. 1. Maize production for the World, Africa and Southern Africa between 1989 and 2016 

Source: FAOStat (2020) 

 
1.2 Agricultural production in Malawi 

 
Agriculture in Malawi predominantly drives the economy (World Bank, 2020, 

2018, 2016; Mapemba et al., 2020; GoM, 2018), contributing one third of the GDP and 
80 percent of the total export earnings (National Statistics Office [NSO], 2020, 2018). 
About 64 percent of employment emanate from agriculture and women forms over 70 
percent of its workforce (AU, 2020; FAO, 2015). Agricultural production is the main 
source of livelihood for rural households in Malawi (Lipper et al., 2018; GoM, 2017; 
Amadu et al., 2020). It also defines the pace and direction of the country economic 
growth (GoM, 2018; Tchale, 2009). For example, the underperformance of the 
agriculture sector in 2016 and 2018 resulted into a decline in economic growth (see 
Figure 1.2). Studies by Amare et al (2015), and Ravallion and Datt (1999) demonstrate 
that improving agricultural production is therefore the main pathway of addressing 
poverty in most developing countries. In other words, the agricultural production 
determines Malawian livelihoods, food security, and poverty incidences (NSO, 2020). 
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Figure 1. 2. Agricultural and economic (GDP) growth in Malawi between 2011 and 2018 

Source: FAOStat (2020) 

The country’s agricultural sector is categorized into smallholder and estate 
sub-sectors (GoM, 2018). The smallholder sub-sector, which cultivates on communal 
land, makes up 78 percent of agricultural sector while estate, which cultivates on 
leasehold and freehold land, accounts for 22 percent (Asfaw et al., 2016) of agricultural 
land. There are about 3.3 million hectares under smallholder agriculture and 1 million 
hectares under estate sub-sectors (Deininger and Xia, 2017; NSO, 2007). While the 
estate sub-sector largely cultivates commercial crops, viz., tobacco, sugar, and tea, for 
exports, smallholders predominantly produce food crops, like maize, rice, cassava, 
sweet potatoes, and sorghum, for subsistence requirement and surplus for sale 
(MoAWID, 2018). Smallholder sub-sector dominates the agricultural sector output by 
80 percent, and 90 percent of the total value additions in agriculture (GoM, 2021; NSO, 
2020). Almost 83 percent of smallholder farmers stay in rural areas and currently farm 
on land holding size of 0.5 hectare, which has declined from 1.53 hectares in 1970s 
due to population pressure (NSO, 2020). Half of the farming households cultivate local 
and recycled maize varieties, which are highly susceptible to weather events, such as 
fall armyworms, floods, and drought episodes. African Union (2020) states that 
smallholder subsistent farmers are heavily affected by the effects of extreme weather 
events. However, the ecosystems which they rely on for food production is increasingly 
degraded. In addition, most smallholder farmers are poor, cultivates on rain-fed 
agriculture, and have limited access to improved agricultural inputs, such as, hybrid 
varieties and inorganic fertilizers (NSO, 2018, 2020). In terms of land user-rights across 
gender, women cultivate only 0.4 of a hectare while men farm on 0.8 of a hectare (NSO, 
2020).  
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Figure 1. 3. Agricultural production and area expansion in Malawi between 1989 and 2017 

Source: FAOStat (2020) 
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1.3 Agricultural productivity in Malawi 
 

Augmenting higher agricultural productivity, which is measured as a ratio of 
quantity of produced outputs to a given quantity of inputs (see Muyanga and Jayne, 
2019; Aragon et al., 2019; Djougnessi, 2018; Kumbhakar et al., 2015), is one of the 
collective core economic development and growth strategies in Malawi (MoAIWD, 
2018). However, over the past decades, agricultural productivity has been erratic in the 
country despite massive agricultural investments and displaying an increasing trend 
(see Figure 1.3). On the one hand, the dwindling agricultural productivity is attributed 
to declining soil fertility, land fragmentation due to rapid population growth, 
communal land tenure system, limited improved agricultural technologies, 
uncoordinated SLM -related practices, unaffordable chemical pesticides, limited 
agricultural extension services, underdevelopment of markets, and poorly maintained 
infrastructure (Kilic et al., 2021; Lipper et al., 2018; GoM, 2017; Mapila et al., 2012). 
Further, the country has the lowest labour productivity in the SSA (FAO, 2017, 2016, 
2014, 2013, 2010), with per capita labour productivity (US$ 209.0) being three times 
below the average SSA’s (US$ 680.0) while land productivity (US$ 155.0/ha) is 
likewise lower than the average SSA land productivity (US$ 270.0/ha). This has resulted 
into rural – urban migration, where more than 40 percent of households are reported 
to have migrated to rural areas between 2010 and 2020 (NSO, 2020). Additionally, 
Malawi continues to lose soils of about 32 - 40 tonnes per hectare per year of inorganic 
fertilizer, due to excessive run-off (MoAIWD, 2018; Chirwa, 2003).  

Recently, on the other hand, agricultural productivity in the country has been 
deteriorating due to climate and weather variability (CWV) (McCarthy et al., 2021; 
Asfaw et al., 2016; Asfaw and Maggio, 2017; Kilic et al., 2015). Archeologically, the 
country location along the East African Rift Valley and effect of El Nina and LA Nina 
are among the main factors influencing its vulnerability to extreme climate and 
weather events (World Bank, 2015, 2016, 2018, 2020). Accordingly, Mwase et al. (2013) 
argue that the country optimal harvest is associated with favourable climate and 
weather conditions. Distinctly, the country has experienced higher agricultural 
production during the years of 2006, 2009, 2011, and 2014 when the country had 
favourable rainfalls and temperatures (see Figure 1.3). While, it has observed a 
reduction in maize production in 2015, 2016, and 2018 during the years of floods, 
droughts, and pest outbreaks, respectively. These extreme weather events have 
demonstrated varying negative effects on household welfare, especially, food security. 
In 2015, over 0.24 million households became food insecure due to floods (World Bank, 
2015). In 2016, drought pushed over 1.4 million households into food insecurity (World 
Bank, 2016). In 2018, almost 0.2 million households became food insecure due to fall 
armyworms (FAW) and having an annual economic loss of US$ 0.23 – 0.56 million 
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(World Bank, 2020). In 2019, tropical cyclone Idai affected over a million people (World 
Bank, 2019). Sadly, climate predictive models have repeatedly illustrated increasing 
frequency, intensity, and prolonging extreme weather events, exerting huge cost to 
lives, property, and pressure to the country fiscal policy (DoDMA, 2018). 

 
1.4 Climate-Smart Agriculture in Malawi 

 
Climate-Smart Agriculture (CSA) presents an excellent opportunity for 

improving farm productivity at household level and enhance the role of agricultural 
production in national development agenda (Martey et al., 2020; Marenya et al., 2020; 
Phiri, 2020, Tufa et al., 2019; MoAIWD, 2018; Lipper et al., 2014; Vermeulen et al., 2012; 
Nyadzi et al., 2021; Maganga et al., 2021; Pangapanga and Mungatana, 2021). Lipper 
et al. (2014), FAO (2010, 2013), and World Bank (2020) define CSA as technique that 
transforms and reorients agricultural development towards CWV, which (i) principally 
and sustainably increases agricultural production and productivity; and (ii) adapts and 
enhances resilience to climate and weather variability. Consequently, stakeholders, 
including the Government of Malawi, non-government organizations, and households 
have designed various CSA, including the integrated pest management (IPM), and the 
sustainable landscape management (SLM) –related practices (McCarthy et al., 2021; 
Day et al., 2017; Teklewold and Mekonnen, 2017).  

The IPM is a CSA –related approach which economically suppress pest 
population, by using techniques that minimize harm to the environment, including 
people (Day et al., 2017). In addition, the IPM –related practices are climate and 
weather events’ sensitive, where they are heavily applied during pest infestation, 
which is induced by climate and weather variability (Day et al.,2017). Similarly, the SLM 
is the CSA adaptive method that enhances and maintains the quality of soil, water, and 
air resources through socially and economically acceptable agricultural practices for 
realising higher agricultural production and productivity (McCarthy et al., 2021). 
Households have essentially adopted SLM practices through undertaking soil and 
water conservation structures, agroforestry, manure and lime application, improved 
crop varieties, cereal legume intercropping, crop rotations, and mulching on the farm 
(MoAIWD, 2018). Likewise, households have adopted these SLM practices, which are 
responsive to climate weather variability. Besides, some households have engaged in 
climate driven rural-urban migration (RUM) to alleviate the adverse effects of extreme 
weather events (Anglewicz, 2012; Anglewicz et al., 2017; Adams and Cuecuecha, 2013, 
2010; Adams and Page, 2005; Chilimampunga, 2006). Households re-invest the 
remittances from migrants in CSA -related practices (Anglewicz and Myroniuk, 2018).  

Furthermore, the country has strongly aligned its national agricultural policies 
with the CAADP and SDGs of the United Nations (McCarthy et al., 2021), where they 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 - 8 - 

have advocated for the adoption of the CSA, IPM, and SLM-related practices to build 
resilient agricultural production systems at household level (MoAIWD, 2018; Amadu et 
al., 2020). Moreover, the country has increased the national agricultural budget from 
six percent in 2005 to at least 10 percent in 2006 onwards (African Union [AU], 2020), 
where stakeholders have invested over US$ one billion in various CSA, IPM, and SLM-
related practices between 2008 and 2020 (World Bank, 2010, 2020; DoDMA, 2018). 
Additionally, the country’s farm input subsidy programmes have increased the use 
of fertilizer from 27kg in 2004 to over 50kg per hectare (ha) in 2006 (MoAIWD, 2018, 
AU, 2020). Recently, the country has further increased access to affordable farm inputs 
by horizontally expanding the number of beneficiaries (AER, 2021).  

Nevertheless, agricultural production and productivity have continued to 
deteriorate, remained below the potential productivity, and highly correlated with 
CWV, with total production annually fluctuating between 2.37 and 3.98 million metric 
tons, thereby failing to meet the household food demand (NSO, 2020; Kilic et al., 2013). 
The challenge, however, is that households have implemented, translated, and named 
these CSA, IPM, and SLM -related practices differently (McCarthy et al., 2021; Chinseu 
et al., 2018; Fisher et al., 2018). Some farmers have even abandoned some already 
embraced CSA, IPM, and SLM -related practices due to information irregularity, low 
production, and limited research (Holden et al., 2018; BisYishay and Mobaraka, 2014; 
Pangapanga and Mungatana, 2021). Moreover, the current CWV discussions have 
partially mainstreamed indigenous knowledge in formulating the adoption of the CSA-
related practices that are locally effective, suitable, and affordable (Nyadzi et al., 2021; 
Makondo and Thomas, 2018; Belfer et al., 2017; Fairhead et al., 2017). Moreover, 
households opting for RUM have not realised the benefits from investing the 
remittances in CSA practices (NSO, 2020; Chilimapunga, 2006; de Fuente, 2010).  

Following the above frustrations from the implementation of various CSA, IPM, 
SLM, and RUM, the adoption of these practices has become short-lived (DoDMA, 2018; 
MoAIWD, 2018; Fisher et al., 2018; Schafsma et al., 2019; World Bank, 2015, 2016, 2018, 
2019, 2020). Consequently, households have failed to derive optimal benefits from the 
adoption of CWA-related practices, which are supposed to enhance farm productivity 
(Martey et al., 2020; Khataza et al., 2018). Furthermore, the debacles associated with 
CWV and under-performance of various CSA, IPM, and SLM-related practices have led 
to selling of household assets; reducing dietary diversity, food consumption, and 
access to quality food; declining agricultural income, and further creating poverty 
traps, which have increased food insecurity and long-term malnutrition (World Bank, 
2020; 2018; DoDMA, 2018; AU, 2020). Nonetheless, limited research on drivers of CSA, 
IPM, and SLM-related practices is one of the main facilitators to low acceptance and 
further abandonment of the already adopted practices (Amadu et al., 2020). 
Additionally, previous studies on farm productivity have concentrated on one crop, for 
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instance, maize (Katengeza et al., 2018; Khataza et al., 2018; Asfaw et al., 2016; 
Pangapanga et al., 2012), instead of examining all crops (Muyanga and Jayne, 2019; 
Aragon et al., 2019). Moreover, households have lacked information on the benefits of 
these CSA, IPM, SLM, and RUM, especially under different extreme weather events 
(McCarthy et al., 2021, Kilic et al., 2021; de Fuente, 2010). 

It is in the prior context, that this study largely examines the influence of CSA, 
IPM, SLM, and RUM on farm productivity under different extreme weather events. 
Specifically, the study disentangles the drivers of the adoption of CSA, IPM, and SLM –
allied practices under different extreme weather events. Second, it unpacks the effect 
of extreme weather events, viz., drought, tropical cyclones induced floods, and fall 
armyworms on farm productivity. Lastly, the study interrogates the contribution of 
CSA, IPM, SLM, and RUM on farm productivity. Consequently, the study informs the 
existing policy making processes in four broad-ways, namely, (i) enhances adoption of 
CSA, IPM, and SLM-related practices under different extreme weather events, (ii) 
minimises household abandonment of already adopted strategies, (iii) augments 
climate resilient farm productivity, and (iv) promotes mainstreaming of field experience 
in programming and implementation of CSA, IPM, SLM, and RUM. Ultimately, the study 
findings are appropriate to the realisation of Malawi Vision 2063 and the United 
Nations’ SDGs’2030 targets on improving agricultural productivity, under different 
extreme weather events.  
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1.5 Problem Statement and Rationale 
 

Agricultural productivity in Malawi continues to decline (Kilic, et al., 2013; 
McCarthy et al., 2021) and frustrate the food security agenda (World Bank, 2020; 2018) 
despite massive investments including farm input subsidy programmes, CSA-related 
practices, integrated pest management (IPM), sustainable landscape management 
(SLM) and rural-urban migration (RUM) (DoDMA, 2018; Truen et al., 2016; Pangapanga 
and Mungatana, 2021; Chilimapunga, 2006). Over 10 percent of the national domestic 
resource envelope is appropriated to agriculture programmes, viz., the farm input 
subsidy (FISP 2004 - 2020), the agricultural sector wide approaches (2011 – 2020), the 
Greenbelt initiatives (GBI 2004 - 2020), and the affordable input program (AIP 2020 - 
2021) (GoM, 2021). Besides, in the recent past, households have adopted various CSA-
related practices (Kilic et al., 2021; MoAIWD, 2018, Asfaw et al., 2016) and about 15 
percent of agricultural land is under SLM -related practices (African Union, 2020). Only 
10 percent of households have adopted various climate-induced agricultural practices 
(Fisher et al., 2018; Chinseu et al., 2018). 

According to the MoAIWD (2018) and World Bank (2020), agricultural 
productivity is still volatile (AU, 2020). Moreover, farmers still yield one quarter of the 
potential production (AER, 2018; GAP, 2010) despite increasing the use of chemical 
fertilizer from 27kg/ha in 2005 to over 50kg/ha in 2018 (MoAIWD, 2018; DoDMA, 
2018). The deteriorating agricultural productivity has also been attributed to several 
constraints, viz., traditional crop varieties; poor agricultural practices; low technological 
adoption; increasing population pressure on land, and declining soil fertility (MoAIWD, 
2018; World Bank, 2019, 2018, 2016, 2015; Phiri et al., 2012). Furthermore, prolong and 
intensified occurrence of extreme weather events, namely, droughts, tropical cyclone 
–induced floods, and fall armyworms have further exasperated the declining 
agricultural productivity (McCarthy et al., 2021; DoDMA, 2018; FAO, 2018; McCarthy et 
al., 2021). For instance, households have experienced reduced farm productivity, viz., 
in 2014/2015 and 2015/2016 when different extreme weather events occurred (see 
Figure 1.4). In 2018, FAW reduced maize production for over 0.2 million households 
(DoDMA, 2018). On the other hand, during favourable weather events in 2009/2010 
and 2012/2013, households have had higher agricultural productivity (MGDS, 2018).  
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Figure 1. 4. Maize productivity in Malawi between 2001 and 2017 

Source: FAOStat (2020) 

Additionally, the negative effects of intensifying extreme weather events, 
namely, droughts, tropical cyclone –related floods, and pest infestation, on agricultural 
productivity have resulted into chronical food insecurity and malnutrition (McCarthy 
et al., 2021; MoAIWD, 2018; Asfaw et al., 2016). For instance, in 2015, about 1.1 million 
people become food insecure, due to floods in 2014/2015 cropping season (World 
Bank, 2016). In 2016, around 6.5 million people were food insecure and demanded 
immediate food assistance, following droughts in the 2015/2016 cropping season 
(DoDMA, 2018). In 2017, about 68% of households had experienced irregular rains, 
resulting into widespread crop failures (World Bank, 2020). In 2018, approximately 0.8 
million people were food insecure due to fall armyworms (FAW) (MoAIWD, 2018). FAW 
destroyed the crop vegetative and reproductive structures, thereby reducing crop 
production by 40 percent – translating into an annual economic loss of US$ 0.23 – 0.56 
million. Approximately, 0.2 people became food insecure following FAW infestation on 
the farm (DoDMA, 2018). Similarly, in 2019, tropical cyclone (TC) -related floods pushed 
over a million people into food insecurity (World Bank, 2019). Empirically, extreme 
weather events have augmented the number of affected households from 20 percent 
in 2010 to 60 percent households in 2019 (NSO, 2020).  

Unfortunately, smallholder households have relied on rain-fed farm production, 
and are on the fore-front feeling the impact of climate and weather variability (AU, 
2020). Extreme weather events have exerted additional pressure on the household 
resources forcing them to sell assets, reduce food consumption and dietary diversity, 
migrate from rural to urban areas, and opt for less preferred food types (AU, 2020; 
DoDMA, 2018; World Bank, 2020). Accordingly, the majority of rural households have 
remained poor over the past decades (NSO, 2010, 2014, 2018, 2020), where 
approximately 50 percent of the population still live below the poverty line, and 37 
percent of children are malnourished (NSO, 2020; DNHA, 2020).  
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The Government and other key stakeholders, including households, have, thus, 
adopted various CSA, IPM, and SLM-related practices to cushion farm production and 
productivity from extreme weather events (DoDMA, 2018; McCarthy et al., 2021; 
Pangapanga and Mungatana, 2021).  Some households have further partially migrated 
from rural to urban areas to fetch for income, which is sent home for adapting to 
adverse effect of extreme weather events (Chilimapunga, 2006). Households have re-
invested these remittances in modern agricultural practices, like CSA, IPM, and SLM –
related practices. Unfortunately, the adoption of these CSA, IPM, and SLM-related 
practices is not consistent with the investments made, where extreme weather events 
have continued to reduce agricultural productivity by over 10 percent (Katengeza et 
al., 2018; Thierfelder et al., 2016). Nonetheless, few studies have interrogated the 
effects of various CSA, IPM, and SLM-related practices on the farm productivity in 
Malawi. Moreover, the adoption rate of CSA, IPM, and SLM-related practices is still very 
ten (10) percent (Chinseu et al., 2018; Phiri et al., 2012) and under 20 percent of 
agricultural land is still unsustainably cultivated (AU, 2020). Awkwardly, some 
households have started abandoning some already adopted CSA, IPM, and SLM-
related practices (Fisher et al., 2018; Day et al., 2017). Furthermore, most studies have 
only investigated the effect of CSA, IPM, and SLM-related practices, based on one crop 
approach instead of farm productivity (Khataza et al., 2018, Katengeza et al., 2018; 
Muyanga and Jayne, 2019; Aragon et al., 2019; Pangapanga and Mungatana, 2021; Kilic 
et al., 2021) 

In this study, pose four (4) empirical questions are posed to addressing the 
declining farm production and productivity, which are relevant to the policy making 
processes and sparkling debate in Malawi, namely, (i) Do household (e.g. gender, 
education, mobile ownership, and credit accessibility) and farm-level (i.e. soil quality, 
type, and slope), drive the adoption of CSA-related practices? (ii) Do CSA, IPM and 
SLM-related practices (i.e. organic farming, intercropping, agroforestry, soil and water 
conservation, pesticides, and improved crop varieties) have any significant influence 
on the farm productivity? (iii) Do extreme weather events, viz., drought, TC –related 
floods, and fall armyworms substantially affect farm productivity and the adoption of 
CSA, IPM, and SLM -related practices? and (iv) Does RUM improve the technical 
efficiency of maize production in the study area under extreme weather events?  

The study uses the four-waves Malawi integrated household panel survey (IHPS) 
data, compiled by the NSO and the World Bank between 2010 and 2020 (NSO, 2020). 
The study undertakes rigorous panel-based econometric methods, viz., Conditional 
Logit, Stochastic Frontier Analysis (SFA), Endogenous Switching Regression (ESR) 
models, to address the study empirical questions. The study has published the article 
from Chapter two in the peer-reviewed Elsevier Journal of Disaster Risk Reduction 
(Pangapanga and Mungatana, 2021). An article from Chapter three on tropical 
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cyclones is also under review and language editions in the Taylor and Francis Journal 
of Climate and Development. In subsequent sections, this Chapter One presents the 
main objectives, the research questions, the general methodology adopted in the 
entire study, and finally, the study outline. 
 

1.6 Objective of the study 
 

The main objective of this study is to examine the effect of CSA, IPM, and SLM 
-related practices on the farm productivity under different extreme weather events in 
Malawi. The study has the following specific objectives: - 

1. Determining the household and farm characteristics influencing the adoption 
of CSA, IPM, and SLM -related practices under different extreme weather events. 

2. Investigating the contribution of CSA, IPM, and SLM-related practices, as well 
as RUM on the farm productivity under different extreme weather events. 

3. Assessing the effect of droughts, TC-related floods, and FAW on the farm 
productivity among adopters and non-adopters of CSA, IPM, and SLM -related 
practices. 
 

1.7 Research Questions of the study 
 

The study highlights a number of questions that contextually provide a direction 
on achieving the study main objective as follows:  

1. Do household (e.g. gender, education, mobile ownership, and credit 
accessibility) and farm-level (i.e. soil quality, type, and slope), drive the adoption 
of CSA-related practices? 

2. Do CSA, IPM and SLM-related practices (i.e. organic farming, intercropping, 
agroforestry, soil and water conservation, pesticides, and improved crop 
varieties) have any significant influence on the farm productivity?  

3. Do extreme weather events, viz., drought, TC –related floods, and fall 
armyworms substantially affect farm productivity and the adoption of CSA, IPM, 
and SLM -related practices? and  

4. Does rural-urban migration improve the technical efficiency of maize 
production under extreme weather events?  
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1.8 Conceptual Framework of the study 
 

Different authors have presented the conceptual framework differently (Ravitch 
and Riggan, 2017; Miles et al., 2016; McCartan and Rossman, 2016). For instance, 
Ravitch and Riggan (2017) have focused on the conceptual framework as an 
argumentation for the study. Miles et al. (2014) have presented the conceptual 
framework in form of presenting explanatory variables. Merriam and Tisdell (2016) 
have illustrated the conceptual framework as generating elements of the research 
design and methods. McCartan and Rossman (2016) have presented the conceptual 
framework as a variable relationship. While, Maxwell (2013) has discussed it in forms 
of explanation, and justification of the study. This study has adopted the conceptual 
framework as proposed by Miles et al. (2016) and McCartan and Rossman (2016).  

Figure 1.5 presents the conceptual framework of the study. A conceptual 
framework highlights an argument about why the study and the methods proposed 
are appropriate and rigorous (Miles et al., 2014). In this study, the CSA, IPM, SLM, and 
RUM conceptual framework is based on FAO (2010), MaCarthy et al. (2021) and Kilic 
et al. (2021) where extreme weather events form fundamental elements, influencing 
household choices and livelihoods. The study understands that several variables affect 
farm productivity. Extreme weather events, namely, droughts, tropical cyclone related 
floods (TCRFs), and fall army worms (FAW) may adversely affect farm productivity, 
thereby negating household income and food security status.  However, these extreme 
weather events may also influence the behaviour of households. Households may start 
undertaking some adaptive strategies to cushion farm productivity from the negative 
effects of various extreme weather events. Some of these adaptive strategies include 
CSA, IPM, and SLM –related practices (McCarthy et al., 2021; Kilic et al., 2021; 
Pangapanga and Mungatana, 2021). Similarly, some households may opt for RUM, as 
a climate adaptive strategy, where migrating household members generate income, 
which is sent back to household members left behind. These household members, left 
behind, then re-invest the remittances in CSA, IPM, and SLM –related practices. 

Nonetheless, the adoption of any of the various CSA, IPM, and SLM –related 
practices, including RUM is affected by several socioeconomic, institutional, and farm 
-level production factors (Asfaw et al., 2016). Socioeconomic factors like age, 
education, literacy, and gender of household head influence the understanding of the 
fundamental role played by the adopted practices on the farm. For example, some 
practices demand the household head to be literate to comprehend the instruction 
manuals. Similarly, institutional factors such as input, output, and credit markets 
influence household access to agricultural resources, namely, inorganic fertilizer 
organic manure, and improve crop seed varieties. Likewise, farm –level factors, viz., soil 
type, quality, and slope determine the type of CSA, IPM, and SLM –related practices to 
undertake. For instance, households with steep slope are more likely to adopt contour 
bunds to control excessive soil erosion. 

Figure 1.5 further illustrates that the adoption of CSA, IPM, SLM, and rural-urban 
migration may have effect on farm productivity, which further influences household 
available income and food security status (McCarthy et al., 2021). Besides, farm -level 
factors, such as labour in terms of personal days, farm holding size allocated to crops, 
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total available farm holding size, slope, soil type, and quality may likely influence farm 
productivity (Khataza et al., 2018, Katengeza et al., 2018).  
 

 
Figure 1. 5 : Conceptual Framework of the Study (FAO, 2010; MaCarthy et al., 2021; Kilic 
et al., 2021; Pangapanga and Mungatana, 2021). 
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1.9 Theoretical and Empirical Frameworks 
 

The expected random utility maximization theory informs the study analysis of 
household decision (McFadden, 1978, 1974). Formally, the study considers an 
individual household ! from a random sample of " households, who has to decide at 
time # to adopt any of the CSA, IPM, and SLM-related practices $, namely, early 
maturing varieties, intercropping, agroforestry, conservation farming, chemical 
pesticides, and soil and water conservation measures. In other words, any households 
undertaking any CSA, IPM, or SLM practice is defined as an adopter, and otherwise, 
non-adopter. An individual household attaches a utility value (&'()) to the adoption 
decision of CSA, IPM, and SLM-related practices, depending on various attributes 
associated with the practice (Wooldridge, 2016; 2002). The household is assumed to 
be rational, functional and efficient and only adopt a practice, which provides optimal 
utility (Coombs, 1964). However, preference of a utility value (&'()) depends on 
household specific characteristics, +'(), community factors ,'() viz., market access, and 
climate variables -'(), namely, temperature, rainfall, droughts, floods and fall 
armyworms (Kumbhakar and Lovell, 2000). Households are also constrained by time, 
labour, and availability of CSA, IPM, and SLM-related practices (McCarthy et al., 2016; 
Pangapanga et al., 2012; Jumbe and Angelsen, 2011; McFadden, 1974).  

The study specifies a multiplicative latent utility function [&'()(. )] of an 
individual household as in equation (1): 
 

&'() = 1(2'(), ,'(),-'(), 4, 5, 6) + 8'(),																																																								(1) 
$ = 1,2, …… , =; ! = 1,2, … , "; # = 1,2,3 

 
where 1(. ) is non-stochastic and reflects the representative taste of the 

randomly drawn individual households; 2'(), ,'(), and -'()	represent various specific 
taste characteristics of the household; 4, 6, and 5 are unknown parameters; and 8'() is 
the error term reflecting the idiosyncrasies of the individual taste for the alternatives 
CSA, IPM, and SLM -related practices with several attributes and has zero mean and 
constant variance. Households adopt CSA, IPM, and SLM -related practices $ that 
maximises utility (Jumbe and Angelsen, 2011). The study assumes the household 
adoption decision [A'()] as a binary choice variable that take the value of one if a 
household adopts any of the CSA, IPM, and SLM -related practices, $, and otherwise, 
zero (0), with a certain probability as presented in equation (2):  
 

B'C)(A'C) = 1/+'()) = BE	(&'C) > &'())																																																			(2) 
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where +'() is the vector of household characteristics, affecting the adoption 
decision of any of the CSA, IPM, and SLM –related practices. The household adoption 
decision (A'()) is displayed as in equation (3). 

  

A'() =
5G + 5(+'C) + H = 1						!1	&'C) > &'()
5G + 5(+'C) + H = 0,												otherwise

																																						(3) 

 
where 5 and H denote unknown parameters and error terms, respectively while 

&'C) and A'() as prior defined. In most choice models, random components of the utility 
expressions determine the functional form of the model (McFadden, 1974). Usually, 
they demonstrate the independent and identically distribution (IID) properties with 
type I extreme value distribution, leading into the development of multinomial related 
models. Fortunately, most multinomial logit models have an elegant closed 
mathematical structure that is easy to implement and interpret. They also saddle on 
independence of irrelevant alternative (IIA) properties (McFadden, 1974). This implies 
that households make adoption decisions of CSA, IPM, and SLM -related practice 
independent of the other alternatives. However, on the ground, households 
simultaneously adopt at least one of any of the CSA, IPM, and SLM -related practices 
in the same farm (McCarthy et al., 2021; MoAIWD, 2018), implying interdependence of 
the decision, which nullifies the application of the IIA properties in this study.  

There are several models, which address the IIA properties’ challenge, namely, 
the Random Parameter, the Conditional Logit Fixed Effect, the Nested Logit, the 
Multivariate Probit, and Mixed Logit models (Madala, 1983; Baltagi, 2005; Wooldridge, 
2002). In subsequent sub-sections, the study briefly discusses the models adopted by 
this study, namely, conditional logit fixed effect regression and SFA used in Chapter 
two (2); endogenous switching regression (ESR) model applied in Chapters three (3) 
and four (4); and panel-based SFA used in Chapter five(5).  

 
1.10 Panel-based Conditional fixed effect logit model 

 
This study examines the influence of household and farm-level characteristics 

on the adoption of CSA practices using the Conditional logit fixed effect model (Manda 
et al., 2015). It applies the Conditional logit model because the expected utilities of the 
choice decision are derived through the characteristics of the alternatives rather than 
the attributes of the individual household (Lancaster, 1966; Baltagi, 2005; Bun and 
Sarafidiz, 2013; Hoffman and Duncan, 1988; Hensher and Green, 2002; McFadden, 
1974). In contrast, the multinomial logit regression focuses on the household as a unit 
of analysis and uses the households’ characteristics as explanatory variables for the 
adoption of various CSA practices (Kangogo et al., 2021). Following Hoffman and 
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Duncan (1988), the study shows the choice probabilities for the Conditional logit fixed 
effect model as in equation (4): 
 

PSCT =
exp xSWT, ZSWT,� 	

exp xSWT, ZSWT,� 	Y
Z[C

																																																	(4) 

 
where xSWT stand for the household characteristics and zSWT for the CSA attributes, 

with the corresponding parameters vectors denoted by β. The error term in the 
Conditional logit folds an extreme value distribution and is independent across 
alternatives (Michael, 2020). The study relaxes the choice probabilities by including the 
household characteristics that are constant across the adoption of various CSA 
practices. Accounting for the related choice probabilities, it linearizes the utility 
[v xSWT, ZSWT ] of an individual household in unknown parameters as in equation (5) 
(McFadden, 1974): 

 
v xSWT, ZSWT = ∅Cv

C xSWT, ZSWT + ∅av
a xSWT, ZSWT + ⋯+ ∅Zv

Z xSWT, ZSWT 																	(5) 
 

where vZ(. ) are specified as numerical functions and  ∅Z denote unknown 
parameters, while the xSWT and ZSWT as prior defined. 
 

1.11 Panel-Based Endogenous Switching Regression Model 
 

Adoption of CSA, or IPM, or SLM –related practices is an improvements from past 
experiences of extreme weather events (MoAIWD, 2018; DoDMA, 2018; Auci et al., 
2019; Manda et al., 2015) and the decision depends solely on the household ability, 
motivation, and derived utility values (McFadden, 1974; Powers, 1993; Madala, 1983). 
However, sample selection is a common problem in empirical work and unobservable 
heterogeneity makes policy direction challenging (Malikov and Kumbhakar, 2014). 
Household characteristics are not fully observed, that some of them are endogenous, 
causing standard ordinary least square (OLS) techniques inefficient. Coincidentally, the 
use of sample selection models with binary dependent variable are pervasive in 
econometric literature (Rosenbaum and Rubin, 1983; Wooldridge, 2010; 2016; Madala, 
1983).  

The effect of sample selection –related adoption decision on household welfare has 
been studied as binary (Alene and Manyongo, 2007; Kassie et al., 2018), multinomial 
ESR (MESR) (Kassie et al., 2015, Teklewold et al., 2013; Khonje et al., 2015), and 
Propensity Score Matching (PSM) (Kassie et al., 2011). Abdulai and Huffman (2014) 
argue that PSM does correct selection bias from unobservable factors while ESR –
related model does control through the use of Inverse Mills Ratios (IMRs) 
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(Bourguignon et al., 2007). Murtazashvili and Wooldridge (2016) extended the 
standard ESR approach to panel-data structure to assess the effect of adoption on 
household outcome indicators. The Chamberlain-Mundlak Approach extends the ESR 
model through allowing heterogeneity to correlate with time varying explanatory 
variables (see Mundlak, 1978). 

The ESR -related models accounts for potential selection bias and unobserved 
heterogeneity (Wooldridge, 2010). A standard selection model has a situation where 
an outcome, 4'() is only observed when the household adopts any of the CSA, or IPM, 
or SLM –related and is best estimated using the ESR model (Powers, 1993; Lokshin and 
Sajaia, 2004). Nevertheless, estimation of selection models is complicated since 
random assignment to different treatment units is hardly possible following ethical 
reasons (Heckman, 1979). Actually, it requires the exogeneity of the treatment effects 
from the sample data to address the selection problem or any missing data problem 
(Dorfman, 1996; Dustmann and Barrachina, 2007). In other words, when all the 
variables are exogenous, then a standard OLS procedure is employed (Madala, 1983). 
However, under the inclusion of endogenous variables, the ESR is applied and accounts 
for selectivity bias by allowing two sources of endogeneity, namely, the selection 
variable and endogenous explanatory variable (Auci et al., 2019; Heckman, 1978). It is 
modelled simultaneously in two stages. First, the study estimates the probit corrected 
selection model to account for unobservable heterogeneity (Murtazashvili and 
Wooldridge, 2016). The first stage accordingly generates the IMRs (Wooldridge, 2010). 
Second, the OLS method assesses the effect of adoption, with IMRs as extra variables 
to address selection bias from the unobservable heterogeneity (Kassie et al., 2018).  In 
other words, the selection bias is addressed through incorporation of generalised 
residuals.  

Following Murtazashvili and Wooldridge (2016), Lokshin and Sajaia (2004) and 
Wooldridge (2010), the household adoption decision, assuming A'(), leads to 
observing two possible outcome regimes as in equations (6) and (7): 

 
def!ge	1 = 	4')C =∝C+∝( +')C + δA')C + j'C + k')C	if	A'() = 1																															(6) 
def!ge	2 = 	4')a =∝a+∝( +')a + δA')a + j'a + k')a		if	A'() = 0																															(7) 

 
where 4')C  and 4')a denote the outcome indicators in the two regimes for i-th 

household in year t. The outcome indicator (4'()) represents farm productivity, which 
is measured as total farm value in Malawi Kwacha divided by cultivated area (Muyanga 
and Jayne, 2019; Aragon et al., 2019). While +')	represents household characteristics 
and A')	denotes the adoption decision of various CSA, IPM, or SLM -related practices.  
An adopter in this study is any household practising one or more of the any CSA, IPM, 
or SLM related practices. �  is the treatment effect of the adoption decision. The j' is 
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the individual effect and k') is the idiosyncratic error term, which is assumed 
independent of the exogenous explanatory variables (Wooldridge, 2010).  

According to Murtazashvili and Wooldridge (2016), the two panel-based ESR 
regimes in equation (6) and (7) can be linearly combined as in equation (8): 

 
4')C =∝( +')C + o(+')C4')p 	+ δA')C + δ(A')C − A')a)4')p + j'C + 4')p(j'C − j'a) + 4')p(k')C

− k')C) 		+ k')C																					(8) 
 
where o( is equal to ∝C−∝a and takes the differences of the coefficients of 

explanatory variables in the two regimes. The 4')p is the endogenous switching variable 
at the basis of the sample selection interacting with both time constant and time 
varying variables.  Other parameters are as prior defined. The equation (8) becomes 
consistent after including the mean values of all time varying variables, as additional 
covariates, following the Mundlak device (see Mundlak, 1978). After applying the 
Mundlak device, the equation (8) can be re-presented as in equation (9): 

 
4')C =∝G +')C + oC+')C4')p 	+ δA')C + δ(G)4')p + jt + 4')p(G)jC + k')G 		

+ 4')pk')C																					(9) 
 
where G is the Mundlak device, which is the mean of the exogenous variables, 

while k'() is a vector of idiosyncratic errors of the Mundlak relationship, and j( assumes 
unknown parameters to be estimated by the model (Wooldridge, 2010).  

In this study, the standard errors in equations (6) and (9) are bootstrapped to 
control for heteroscedasticity arising from the IMRs (Murtazashvili and Wooldridge, 
2016). The treatment effect, �, reduces to the difference in intercepts between the two 
regimes if the adoption decision is a random practice (Lokshin and Sajaia, 2004; Khonje 
et al., 2015). After incorporating the Chamberlain-Mundlak technique, the study 
derives the treatment effect, which is the expected value from a panel based binary 
response correction selection model (Vela, 1998) can be written as generalised residual 
function ℎ(. ) as in equation (10): 

 
E 4'() 4')p, +'() = ℎ ∝G +')C + oC+')C4')p 	+ δ(G)4')p + jt + 4')p(G)jC + k')G 		+ 4')pk')C	  
= 4')px ∝G +')C + oC+')C 	+ δ(G) + jt + (G)jC + k')G 		+ k')C	 − (1 − 4')p)x(∝G +')C

+ oC+')C 	+ δ(G) + jt + (G)jC + k')G 		+ k')C) 
(10) 

 
where x(. ) is the IMR function while other variables are as prior defined. The IMR 

function term is characterised with zero mean and no correlation with the explanatory 
variables of the binary regression model. The study conditionally estimates the impact 
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of household adoption decision on farm productivity as illustrated in equation (11) and 
(12). 

 
E 4'(C 4')p, +'() = 1 =∝CG +')C 	+ G jCG + ΓCGℎ')p																								(11) 
E 4'(C 4')p, +'() = 0 =∝GC +')C 	+ G jGC + ΓGCℎ')p																							(12) 

 
Where ℎ')p is the generalised residuals which controls for the endogeneity of the 

selection variable, while +')C represents explanatory variables, The ∝, j, and � are 
vectors of unknown parameters to be estimated by the model, after bootstrapping the 
standard errors to control for inclusion of the generalised residuals. Following 
Wooldridge (2010), the study derives the average treatment effect on the treated 
(ATET) households and on the untreated (ATU) (Maketa et al., 2019) from equations 
(11) and (12). 

Usually, households mutually adopt at least two of the various CSA, IPM, or SLM-
related practices in the same farm, which can be modelled through a multivariate 
binary or multinomial choice regression (Wooldridge, 2010). According to Midingoyi 
et al. (2019), a multinomial treatment variables orderly arises from adoption of any 
CSA, IPM, and SLM –related practices [$ = 1,2,3, … . . , =] that yields the highest utility. 
Similarly, the adoption of CSA, IPM, and SLM –related practices involved more than 
one practice to manage the adverse effects of extreme weather events (Wollni et al., 
2010; Teklewold et al., 2013).  A Poisson regression model is often applied where the 
treatment is count data (Wooldridge, 2010; Midingoyi et al., 2019). Nonetheless, it is 
only appropriate when the occurrence of each CSA or IPM or SLM -related practices 
does not alter the likelihood of an alternative practice (Plan, 2014; Midingoyi et al., 
2019). The Poisson assumption does not hold when the probability of choosing the 
first practice highly correlate with the likelihood of selecting the second or third 
practice (Teklewold et al., 2013; Wollni et al. 2010), which is the case in this study. Binary 
ESR models have also studied the effect of adoption decision on household outcome 
indicator (Wooldridge, 2010, Kassie et al., 2015). 

Following Madala (1983), Khanal et al. (2018), Hermans et al. (2020), Asres et 
al.(2013), and Midingoyi et al. (2019), the study uses government extension services as 
an excludability restriction variable. Government extension services in Malawi provides 
information on the merits and demerits of various CSA, or IPM or SLM –related 
practices to various households (Pangapanga and Mungatana, 2021; MoAIWD, 2018; 
Hermans et al., 2020). In accordance with literature (Teklewold et al., 2013; Khonje et 
al., 2015; Kassie et al., 2018), this study empirically employs factors of production (such 
as land, fertilizer, labour, seeds), farm characteristics (i.e. soil quality, type, and slope), 
and extreme weather events as explanatory variables in the outcome equation, where 
farm productivity is the dependent variable. In addition, age, education, gender, and 
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household size are included as some of the variables in the selection equation. 
Furthermore, the study uses either binary or multiple adoption decision of CSA, or IPM, 
or SLM –related practices as dependent variable in the selection model. 
 

1.12 Panel-based Stochastic Frontier Analysis 
 

In this study, the Stochastic Frontier Analysis (SFA) assesses the effect of 
extreme weather events on farm productivity, under varying extreme weather events. 
The SFA includes the maximum output, which can be generated given a set of inputs 
and available technologies (Assefa et al., 2019; Kumbhakar and Lovell, 2000). By 
definition, production process is a black box, which mathematically accounts for a 
transformation of inputs into outputs, and has the “frontier of possible production 
bundles” (Battese, 1992). A production function is in itself devoid of any economic 
intuition (Pangapanga and Mungatana, 2021; Kumbhakar et al., 2015). However, it can 
model optimization problems, after attaching the structural properties such as weak 
monotonicity, quasi-concavity, and essentiality (Knowles, 2015).    

The econometric modelling of production functions was first developed by 
Farrell (1957) to estimate the production efficiency. Later, Meeusen and van den Broeck 
(1977) and Aigner et al (1977) individually extended and proposed the SFA. 
Mathematically, the basic panel data production function is expressed as in equation 
10, where z'{) denote output of plot (|) of the household (!)	and at time (#). In other 
words, z'{) is the farm productivity (Muyanga and Jayne, 2019; Aragon et al., 2019).  
While +({) represents production inputs ($) used by the household (!) such as land 
holding size, labour, seed, and inorganic fertilizers. The study measures land holding 
size as the available total land in hectare, seed and inorganic fertilizer are captured in 
kilogrammes, while labour is measured as adult equivalent of personal-days including 
both family and hired labour. The 5 denotes unknown parameters to be estimated by 
the model as in equation (13).  
 

z'{) = 1 +({), 5 ≡ 1 + 	,																																		(13) 

The interest of this study is to understand the effect of CSA, or IPM, or SLM -
related practices on farm productivity (Battese, 1992; Fuss et al., 1978; Pangapanga and 
Mungatana, 2021). Technical inefficiency is referred as the failure to derive crop 
production along the possibility frontier, which could either be through input 
combination or output. Households may operate away from the production possibility 
frontier (PPF) due to several factors, including the extreme weather events and the 
management style (Mango et al., 2015; Kumbhakar et al., 2015; Battese and Coelli, 
1995; Hurlin, 2010). The study captures the output and input-oriented technical 
inefficiency of maize production as specified in equation (14) and (15), respectively: 
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z'{) = 1 +({) . exp −~ , ~ ≥ 0,																															(14) 

z'{) = 1(+({). exp −Ä ) , Ä ≥ 0,																														(15) 

where ~ and Ä measure output and input oriented technical inefficiencies, 
respectively. The study derives economic effects from the production function (Varian, 
2016; Fuss et al., 1978). First, it examines the homogeneity and return to scales of 
output over increasing level of inputs. It assumes that a production function is 
homogeneous if it satisfies the monotonicity assumption and mathematically specify 
as in equation (17), where x  represents a scalar factor is +({)  denotes various input 
combinations and z'{)  is the output as in equation (16). 

xÅz'{) = 1 x+C{), … , x+Ç{) ,																																(16) 

If all inputs increase by a factor of x  as in equation 13, then output increases 
by a factor of xÅ  and the production function is homogenous of degree É in + 
(Mezgebo et al., 2021; Kumbhakar et al, 2015). If É = 1, then households operate at 
constant returns to scale.  If If É > 1, then households operate at increasing returns to 
scale and lastly If É < 1, then function observes decreasing returns to scale (Martey et 
al., 2020; Jerepo et al., 2020).   Returns to scale (RTS) only depends on +({) if the 
production function is not homogenous. This study does not derive RTS as it is affected 
by output oriented technical inefficiency. Second, Following Kumbhakar et al. (2015), 
there are only two inputs and ÖCa, with a marginal rate of technical substitution of 
1C
1a

and Ö'( is specified as in equation (17) and (18): 

ÖCa =
Üáà +a{) +C{)
Üáà âdäã

=
−1C1a +C{)1C + +a{)1a

+C{)+a{)(1CC1a
a = 21Ca1C1a + 1aa1C

a)
											(17) 

Ö'( = Ö(' =
+C{)1''

+C{)+a{)
∗
ç('
ç
,																																																																													 (18) 

In general, the value of Ö'( lies between zero and infinity for convex isoquants. 
The study observes the perfect substitution of two inputs when Ö'( infinity is, 
complementary substitution is depicted when Ö'(	is negative and always positive when 
inputs are just substitutes. The study presents Ö'( related variance-covariance matrix 
as in expression (19):  
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� =

0 1C 1a … 1é
1C
1a
1p
⋯

1CC 1Ca ⋯
1Ca 1aa ⋯
1Cp
⋯

1ap
⋯

…
⋯

1Cé
1aé
1pé
⋯

1é 1Cé 1aé 							… 1éé

,																																								(19) 

A production function exhibits some technical change due to adoption of 
various agricultural technologies, including the CSA practices. Furthermore, climate 
risks or shocks negatively affected farm production (MoAIWD, 2018; Pangapanga and 
Mungatana, 2012), thereby creating incentivises for households to adopt CSA practices 
to cushion output from the adverse effects of extreme climate and weather events 
(Pangapanga and Mungatana, 2021). The adoption of CSA practice is assumed to 
indicate any household implementing any of the various CSA practices for maize 
production. On the one hand, technical change does not depend on any input, unless 
otherwise (Simwaka et al., 2013; Tchale, 2009). On the other hand, a production 
function is affected by both inputs (+) of production, CSA practices and lessons learnt 
over time (#) , i.e. z = 1(+, #). Mathematically, technical change (Kumbhakar et al., 
2015) is illustrated as in equation (20): 

ä,(+({), #) =
Üáà1 +({), #

Ü#
,																																										(20) 

The commonly adopted production functions include the Cobb-Douglas (CD), 
the Generalised Production Function (GPF), the Transcendental, and the Translog 
Production Functions. This study adopts the CD production form because it is flexible, 
simple, interpretable, and executable (Kumbhakar, et al., 2015; Simwaka et al, 2013; 
Tchale, 2009; Chirwa, 2007). Moreover, Kumbhakar et al. (2015) states that once the 
technology is known, the same scores of technical efficiencies can be derived through 
any of the SFA production specification. The CD can therefore be linearly specified as 
in equation (21): 

áàz'{) = 5t + 5(áà+({)

é

([C

+	5(#,																											(21) 

where 	5t = áàA, +({) is the inputs of production and 5( are variables to be 
estimated by the model. The CD satisfy strictly concavity assumption when the 0 <

5( < 1	for	all	$:	1, … . , =; 0 < 5(
é
([C < 1; and A > 0 and quasi concavity when the 

unknown parameters meet the  non-negativity property for all $:	1, …… . , =. the CD 
function is homogenous of degree E = 5(	as illustrated in equation (22). 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 - 25 - 

1 +({), x = x íì1 +({) = xî1 +({) ,																						(22) 

Accordingly, the study generates the elasticity of output, returns to scale, and 
technical change as shown in expression (23), (24), and (25), respectively.  

k( =
ïáàz'{)
ïáà+({)

= 5(,																																							(23) 

däã = k(

é

([C

= 5( = E,																						(24)

é

([C

 

ä, = 	
ï ln z'{)
ï#

= 5(,																																				(25) 

There are several ways through which technical inefficiency can enter a CD 
function (Kumbhakar et al., 2015), namely, through input combinations or output. In 
this study, the technical inefficiency (−~) linearly enters the CD function as an additive 
factor as presented in equation (26).  

ln z'{) = 5t + 5(áà+({)

é

([C

+	5(# − ~,											(26) 

The study adopts the panel data methods for a number of reasons. First, the 
panel data methods thoroughly correct for the true state dependence, the 
endogeneity, and the unobserved heterogeneity (see Kumbhakar et al., 2015). Panel 
approach satisfies this heterogeneity condition by adopting time invariant individual 
(unobservable) effect ó'	and individual specific factors that do not interacted with 
other variables. Furthermore, the cross-sectional approaches pose measurement 
challenges, regarding capturing the technical efficiency in three-folds (Kumbhakar et 
al., 2015). First, they assume the technical inefficiency to be independent of the 
regressors, which is unlikely to be true. Second, the Jondrow, Lovell, Materov and 
Schmidt (JLMS)(1982) estimator as in equation (27):  

ò ~')|k') =
Öx

1 + xa
∅(ö'))

1 − ∅(ö'))
− ö') ,															(27) 

is not consistent as it hypothesizes that production output never approaches 
inefficiency as the number of individual households’ approaches infinity.  
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1.13 Study area, sample size, and sampling strategy 
  

This study is conducted in Malawi. Malawi shares the borders with Zambia in 
the North-West, Tanzania to the North-East, Mozambique to the East, South and West 
(GoM, 2017; NSO, 2020, 2014, 2012; Pangapanga and Mungatana, 2021). The country 
has three administrative regions, namely, the Northern, the Central and the Southern 
regions. The country is further sub-divided into a total of twenty-eight districts, 
namely, Chitipa, Karonga, Rumphi, Nkhatabay, Mzimba, and Mzuzu City in the 
Northern region; NKhotakota, Kasungu, Ntchisi, Dowa, Lilongwe, Salima, Mchinji, 
Dedza, and Ntcheu in the Central region; and Mangochi, Machinga, Zomba, Phalombe, 
Blantyre, Chiradzulu, Mulanje, Thyolo, Chikwawa, Nsanje, Mwanza, Balaka, and Neno 
(see Figure 1.5, NSO, 2020). Each district is divided into a Traditional Authority, which 
is further demarcated into Enumeration Areas, used for surveys and censuses (NSO, 
2014). 

The country is slightly over 11,800 square 
kilometers in size, with a population of barely 
above 18 million (NSO, 2008). Lake Malawi covers 
one-third of the total country size. The country has 
altitudes, which vary from 500 to 1500, 
temperature ranging from below 20 to 40 degrees 
Celsius, and precipitation averaging from 725 mm 
to 2500 mm across the country. Almost 90 of the 
population lives in rural areas and depend on 
agriculture for livelihood security (NSO, 2020). 
Over 80% of the foreign earnings come from 
agriculture and maize is one of the most important 
staple food crops (MoAIWD, 2018). Over 50% of 
the population report having low agricultural 
production, which is due to increasing extreme 
weather events in the country (NSO, 2018, 2020).  
  

Figure 1. 6 : The Map of Malawi 
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Originally, the NSO and the World Bank visited 3246 households in 2010/2011 
as a panel, which were later visited in 2013, 2016/2017, and 2019/2020. The 3246-panel 
based sample of 2010/2011 grew to 4000 in 2013 following splitting and new formed 
households, where the original panel was 3000. In 2016/2017, the NSO and the World 
Bank refreshed the sample to recruit new households together with the original sample 
of 1900. The study successfully matched 1300 households across the four waves that 
is 2010/2011, 2013, 2016/2017, and 2019/2020.   

This study follows the multi-stage sampling strategy of the Integrated 
Household Panel Survey (IHPS), conducted by the NSO and the World Bank between 
2010 and 2020. The NSO is the powerhouse of nationally and official representative 
household and agricultural data (NSO, 2013). Within the sampling procedure, the 
districts formed the first stage of the multi-sampling procedure. Traditional Areas 
constituted the second stage, while the Enumeration Areas formed the third stage of 
the multistage sampling procedure and were the primary sampling units. Households 
were randomly selected from the sampled Enumeration Areas. The survey asked each 
household whether they have ever experienced any extreme weather events, viz., 
droughts, tropical cyclone Idai-induced floods, and fall armyworms (Kilic et al., 2021; 
McCarthy et al. 2021).  

 
1.14 Data source, acquisition, definitions, and measurements 

 
The study uses a four-wave integrated household panel survey (IHPS) datasets, 

collected by the NSO and the World Bank between April 2010 and March 2020 (NSO, 
2020). The original raw data can be found through 
https://microdata.worldbank.org/index.php/catalog/3819/get-microdata (World 
Bank, 2022). The IHPS administered a multi-topic questionnaire to randomly sampled 
households (Kilic et al., 2021). It captured demographic factors, education, health, 
labour and time use, housing, non-farm enterprises, food security, food and non-food 
expenditures, anthropometrics, income sources and social safety nets, migration, 
durable goods and agricultural assets ownerships (NSO, 2012; 2014; 2018; 2020). 
Additionally, the IHPS collected data on agriculture, including farm sizes, coupon use, 
seeds and other inputs, crop production, marketing and storage, plot-level 
characteristics, namely, farm size, slope, soil quality and type, climate related variables 
such as rainfall, temperature, and CSA, IPM or SLM -related practices, viz, manure 
application, cereal legume intercropping, soil and water conservation, inorganic 
fertilizer, improved crop varieties, agroforestry, and conservation agriculture (Kilic et 
al., 2021; Pangapanga and Mungatana, 2021). Furthermore, the survey captured data 
on extreme weather events, namely, droughts, Tropical Cyclone related floods (TCRFs), 
fall armyworms (FAW).  
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Based on empirical studies, 
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Table 1. 1 highlights various variables selected for analytical use in this study (Kilic 
et al., 2021; McCarthy et al., 2021; Asfaw, et al., 2016; Khonje et al., 2015; Khataza et al., 
2019; Katengeza et al., 2018; Kassie et al., 2015; Kansanga et al., 2020). Household 
characteristics, namely, sex, education, labour, wage, farm size, age, remittance and 
migration may influence the decision to adopt any of the CSA, IPM, and SLM –related 
practices. The influence of household socioeconomic factors on the adoption of CSA, 
IPM, and SLM –related practices, may be either positive or negative. Besides, the study 
assumes that communal or weather-related characteristics, viz., markets, drought, 
tropical cyclone Idai, fall armyworms, rainfall, temperature, credit, and access to 
extension services may affect the decision of the household to undertake any of the 
CSA, IPM, and SLM –related practices. Furthermore, the adoption or non-adoption of 
the CSA, IPM, and SLM –related practices may likely influence farm productivity. In this 
study, an adopter is defined as any household that undertook any of the CSA, IPM, or 
SLM –related practices and vice versa. Moreover, the study assumed adoption as 
random, where a household may adopt any of the CSA, IPM, or SLM -related practices 
in one wave of the panel and dis-adopt in the other wave of the panel. In other words, 
this means any household may decide to adopt or dis-adopt any of CSA, IPM or SLM-
related practices. Data analytically, several panel data models have the capacity to 
handle such randomness sceneries of the CSA, or IPM or SLM adoption and dis-
adoption (Woodridge, 2016; Kumbhakar et al. 2015). In this study, an adopter of CSA, 
or IPM, or SLM –related practices is therefore any household that has undertaken any 
of the CSA, or IPM, or SLM –related practice in their farm-it may mean just one or 
combination of several CSA, or IPM, or SLM –related practices. 
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Table 1. 1: Definitions and measurements of variables used in this study 
CLUSTERS VARIABLES  MEASUREMENTS  EXPECTED SIGNS REFERENCES 

Household 
Characteristics 

Gender (Sex) 1=Male; 0=Female + 

NSO (2012, 2020); Kilic et al. (2021); 
McCarthy et al. (2021); Asfaw, et al. 
(2016); FAO (2010); Khonje et al. (2015); 
Khataza et al. (2019); Katengeza et al. 
(2018); Kassie et al. (2015); Kansanga et 
al. (2020); Muyanga and Jayne (2019); 
Oregano et al. (2019). 

Education  Years of schooling  + 
Household size Counts (Number) + 
Labour  Personal day in adult equivalents + 
Wage Malawi Kwacha + 
Farm size Hectare + 
Income (Remittance) Malawi Kwacha  + 
Age Years  +/- 
Marital status 1=Married; 0=Not in marriage +/- 
Migration 1= Yes; 0=No  +/- 
Literacy 1=Literate; 0=Illiterate + 

Farm 
characteristics 

Soil quality (Good) 1= Yes; 0=No  + 
Soil quality (Fair) 1= Yes; 0=No  +/- 
Soil quality (Poor) 1= Yes; 0=No  +/- 
Soil type (Clay) 1= Yes; 0=No  +/- 
Soil type (Loamy) 1= Yes; 0=No  + 
Soil type (Sandy) 1= Yes; 0=No  +/- 
Slope (Flat) 1= Yes; 0=No  + 
Slope (Gentle) 1= Yes; 0=No  +/- 
Slope (Steep) 1= Yes; 0=No  +/- 

Communal 
variables 

Input markets 1=Access; 0=No access + 
Output markets 1=Access; 0=No access + 
Access to credit 1=Access; 0=No access + 
Extension  1=Access; 0=No access + 
Rainfall Average Millimeters +/- 
Temperature Average Degree Celsius +/- 
Fall Army Warms (FAW) 1= Yes; 0=No - 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 - 3 - 

CLUSTERS VARIABLES  MEASUREMENTS  EXPECTED SIGNS REFERENCES 

Extreme 
weather events 

Drought episodes 1= Yes; 0=No  - 
Tropical Cyclone related 
Floods 

1= Yes; 0=No  
- 

CSA, IPM, and 
SLM-related 
practices 

Intercropping 1=Yes; 0=No + 
Farrow cultivation 1= Yes; 0=No  + 
Crop rotation 1= Yes; 0=No  + 
Mulching 1= Yes; 0=No  + 
Cover cropping 1= Yes; 0=No  + 
Manure application Kg/Hectare + 
Inorganic fertilizer Kg/Hectare + 
Chemical pesticides Kg/Hectare + 
Irrigation farming  1= Yes; 0=No  + 
Zero tillage 1=Yes; 0=No + 
Minimum cultivation  1=Yes; 0=No + 
Planting dates  1= Yes; 0=No  + 
Quantity of improved seeds Kg/Hectare + 
Quantity of local seeds  Kg/Hectare + 
Crop diversification  1= Yes; 0=No  + 
Planting of agroforestry trees 1= Yes; 0=No  + 
Intercropping  1= Yes; 0=No  + 
Early planting  1= Yes; 0=No  + 
High yielding varieties 1= Yes; 0=No  + 
Rural-urban migration 1=Migrated; 0=Did not migrate +/- 
Seed  kg + 

Outcome 
indicators 

Yield Kg/Hectare  +/- 
Food Security Calories/Person/Year +/- 
Farm Productivity Malawi kwacha/Hectare +/- 
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1.15 Research Strength, Limitation, Assumption and Ethics 
 

The strength of this study first relies on its rigorous methodology, examining 
the drivers of CSA, IPM, and SLM-related practices’ adoption using the Conditional 
Fixed Effect Model. Second the study unpacks the influence of various CSA, IPM, and 
SLM –related practices on farm productivity under different extreme weather events 
using the triple hurdle panel-based Tobit regression. Third, the study isolates the 
endogenous treatment effects of extreme weather events on farm productivity using 
both multinomial and panel-based probit ESR models. Four, the study interrogates the 
contribution of RUM on the farm productivity under changing extreme weather events 
through application of panel-based SFA models. The study uses the IHPS data 
compiled by the NSO and the World Bank, which has strong multi-topical components 
on socioeconomic and agriculture, critical for rural economy and is internationally 
comparable (McCarthy, et al., 2020; Asfaw, et al., 2016).  

Furthermore, the study strongly assumes that data collectors were thoroughly 
trained by the NSO and the World Bank (NSO, 2012, 2014, 2018, 2020). In addition, the 
survey got the consent from participating households to truthfully provide information 
about their household economic activities, CSA, or IPM or SLM -related practices’ 
adoptions and experience of extreme weather events (NSO, 2020). Ethically, the study 
ensured confidentiality of the households, which participated in the survey per the 
Malawi Statistics Act (GoM, 2013), which empowers the NSO to collect household and 
agricultural data for statistical and research purposes in Malawi. In addition, the study 
adhered to the ethical procedures of the University of Pretoria and best international 
practices, throughout the data compilation, processing, report writing, publication, and 
result dissemination stages.  

Although this study combines various methodologies to understand the impact 
of CSA adoption on farm production under different extreme weather events in 
Malawi, the study hardly tested some hypotheses due to use of secondary data. The 
IHPS was executed for a different objective other than for this study i.e. for welfare 
profiling in Malawi. The secondary data lacked some disaggregated data for specific 
CSA practice’ techniques. Thus, this study did not address the following research 
questions: (i) what is the effect of specific contour bunds, drainage ditches, terrenes 
and actual rate of soil erosion on farm productivity, and (ii) what concurrent application 
of organic and inorganic fertilizer was optimal to enhance farm productivity? 
Moreover, the study uses a short panel data with utmost four waves, where in some 
instances, some households could only appear in at least two waves (NSO, 2020), 
making the study fail to isolate the persistent and transient technical efficiencies of the 
farm. In addition, the study does not present the long-term effect of Covid-19 
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pandemic on farm productivity and food security because of the absence of 
longitudinal household data on the pandemic.  

Further, land is, was and will remain very critical in transforming agriculture in 
the country (MoAIWD, 2018), hence, a study, which would assess the effects of these 
specific SWC or IMV or MLI with varying land tenure systems, would become 
informative to customary land regularization policies in the country.  Therefore, the 
study suggested that future research should include such researchable hypotheses to 
thoroughly inform CSA implementation under both extreme drought episodes and 
varying land tenure systems.  In terms of fall army worms, the study does not use the 
damage of FAW on farm production as the secondary data does not collect such data. 
Future studies should accordingly attempt to assess the impact of actual FAW 
damages on farm productivity, while using then level of damage as the variable of 
interest instead of the experience of FAW. Similarly, for food security, the panel IHPS 
instrument presents different questions to the FANTA approach by FAO as well as the 
16 different food groups as prescribed by World Health Organization, hence the study 
could not use the actual nutrient values to estimate food security (NSO, 2020). Hence, 
future studies should assess the effect of extreme weather events, namely, drought, 
floods, and FAW on food security, while adopting the FANTA approach by FAO or the 
nutrient value approach by WHO.   

 
1.16 Organization of the study 

 
This study is outlined in six (6) chapters. The first Chapter highlights the study 

context, the problem statement and the rationale, the objectives, the research 
questions, and the general methodology adopted in the entire study. Chapter two (2) 
determines the drivers of the adoption of CSA –related practices and their influence 
on the technical efficiency of maize production under different drought episodes using 
the Conditional logit and panel-based SFA models, respectively. Chapter three (3) and 
four (4) investigate the effect of fall armyworms (FAW) and the tropical cyclone Idai 
(TCI) on farm productivity, respectively, using the multinomial endogenous switching 
regression model. Chapter five (5) unravels the effect of rural-urban migration on farm 
productivity using the time varying and time-invariant panel-based SFA regressions. 
Finally, Chapter six (6) provides the summary, the conclusions and the policy 
recommendations of the thesis.  
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Abstract 
 

Malawi experiences frequent, intense and prolong extreme weather events that 
affect rain-fed maize production. Thus, households have adopted various climate-
smart agriculture (CSA)-related practices to cushion maize production from the 
adverse effects of extreme weather events, particularly drought episodes. This study, 
therefore, examines the drivers of CSA practices' adoption and their influence on the 
technical efficiency of maize production under different drought episodes. The study 
finds drought episodes substantively enhancing the adoption of organic manure by 76 
percent and soil and water conservation by 29 percent, while holding other factors 
constant. The study findings reveal that households are 63 percent efficient, implying 
that they can increase current maize production by 37 percent. Based on a triple hurdle 
panel-based model, simultaneous adoption of organic manure and inorganic fertilizers 
on the same farm substantively improves technical efficiency by 18 percent and is more 
noticeable among drought-affected households. Accordingly, simultaneous adoption 
of organic and inorganic fertilizers in the same farm would enhance the effect of CSA-
related practices on the technical efficiency of maize production under different 
drought episodes.  
 
Key Words: Drought episodes, Climate-Smart Agriculture; Conditional Logit model; 
Cobb-Douglas SFA; Triple Hurdle Tobit Model; Technical Efficiency. 
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2. Introduction 
 

In this Chapter two, the study presents the context, regarding adoption of 
various climate-smart agriculture (CSA) –related practices and allied effects on the 
technical efficiency of maize production under different drought episodes; the 
problem statement and rationale of the study; the objectives, and the research 
questions of this study. The chapter also thoroughly discusses the study specific 
theoretical and empirical strategies, namely, the conditional logit fixed effect model, 
the panel based Cobb-Douglas, and the triple hurdle Tobit regression. In this chapter, 
the study further deliberates the results and discussion, the conclusion, and the policy 
recommendations. Finally, this chapter follows this thesis publication in the peer 
reviewed Elsevier’s International Journal of Disaster Risk Reduction (Pangapanga and 
Mungatana, 2021).   
 

2.1 Study Context 
 

Agriculture remains the cornerstone of Sub-Sahara Africa’s (SSA) economic 
transformation and achievement of Sustainable Development Goals (SDGs) 
(Schaafsma et al., 2019; Pangapanga and Mungatana, 2021). Several SSA countries, 
including Malawi, have adopted agriculture as their pathway out of poverty (MoAIWD, 
2018). It is the primary source of livelihood, accounting for 60 percent of the regions 
labor force and 40 percent of Gross Domestic Product (GDP) (Bjornlund et al., 2020). 
By 2050, SSA’s population is expected to double to 2.1 billion, with a 60 percent 
increase in food demand (Ittersum et al., 2016). Over the past decades, food 
production in SSA has been volatile and failed to meet the population demand due to 
high dependence on rain-fed agriculture, poor agricultural practices, and extreme 
weather events such as droughts, dry spells and floods (Food and Agricultural 
Organization [FAO], 2019). El Nino Southern Oscillation events have amplified drought 
and flood episodes in the region, and temperatures have continuously increased by 
1.6°C to 2°C, while precipitation declined by 4% between 1990 and 2018 (World Bank, 
2018). In the region, temperature is predicted to increase by 1.0 – 3.0 °C by 2060.  
Furthermore, high poverty levels and limited credit markets have exacerbated SSA’s 
vulnerability to extreme weather events (McCarthy et al., 2021). These factors have 
contributed to SSA’s weak agricultural adaptive capacity to extreme weather events 
(Kansanga et al., 2020). 

In Malawi, agriculture accounts for 28 percent of GDP, 80 percent of export 
earnings, 64 percent of the workforce, and 85 percent of household livelihoods 
(MoAWID, 2018). The sector is dualistic, comprising smallholder (70%) and estate 
(30%) sub-sectors. Smallholder farmers’ landholding sizes have diminished from 1.53 
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hectares (ha) in 1968 to 0.4 ha in 2020 following rapid population growth (National 
Statistics Office [NSO], 2020; Asfaw et al., 2016). The crop sub-sector accounts for over 
80 percent of the agricultural sector and 17 percent of GDP. As a staple food, maize 
dominates the crop sub-sector and is cultivated by over 92 percent of households 
(NSO, 2012, 2014, 2018, 2020). Women contributes 70 percent of the total labour-force 
in the crop sub-sector (Kilic et al., 2015), nevertheless, they have limited access and use 
of agricultural input, insecure land tenure systems and informal institutions governing 
farm management (Palacios-Lopez and Lopez, 2015). Despite maize production 
determining national and household food security, its impact is limited by rain-fed 
dependence, small landholding sizes, low soil fertility, and poor agricultural practices 
(Fisher et al., 2018; Kilic et al., 2015, Kilic et al., 2021). With overwhelming evidence of 
extreme weather events by 2040 (DoDMA, 2018; MoAWID, 2018) and without 
adaptation, maize production stands to be adversely affected (McCarthy et al., 2021; 
NSO, 2020; IPCC, 2018).  

In the recent past, Malawi has experienced increasing dry days by almost 27 
percent and late on-set of rainfall during main cropping seasons, resulting in crop 
failures and over 6.5 million people being food insecure (World Bank, 2016; McCarthy 
et al., 2021). Seven major drought episodes have occurred between 1990s and 2020, 
reducing maize production by 48 percent, affecting over 32 million people, and 
downscaling GDP by 21.5 percent (DoDMA, 2018). These realities, compounded by 
rapid population growth and high poverty levels, have negatively affected the technical 
efficiency of maize production and the food security status of the country (MoAWID, 
2018; NSO, 2018).  

Following the adverse effects of drought episodes on maize production, the 
Government of Malawi (GoM) and several other stakeholders, including households, 
have championed various climate change adaptation strategies (Ngwira et al., 2014). 
The Government has promoted Climate-Smart Agriculture (CSA), which integrates 
climate responsiveness in agriculture at the household level (Asfaw et al., 2016; FAO, 
2016). CSA concepts include conservation agriculture, sustainable land management, 
and agroforestry practices (Lipper et al., 2014). The main objectives of CSA are to 
enhancing agricultural productivity, adaptation, and mitigation to the adverse effects 
of climate and weather variability (FAO, 2010). For instance, conservation agriculture 
practices which are some of the CSA practices has double benefits, where it induces 
agricultural productivity and adapt to climate and weather variability. While 
sustainable land management practices have triple gains: augmenting agricultural 
production, adaptation, and mitigation against the negative effects of climate and 
weather events. While the CSA concept is new and still evolving, many of its practices 
have existed before (Lampach et al., 2021; Wagura et al., 2014; Chinseu et al., 2018; 
Thierfelder et al., 2016). Besides externally inspired CSA, households have adopted 
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locally enthused CSA practices (MoAWID, 2018). Nonetheless, the rate of adopting 
these CSA practices is still not consistent with investment, and extreme weather events 
are predicted to indisputably reduce maize production by 10 percent by 2040 
(Katengeza et al., 2018; World Bank, 2018). 

 CSA practices present an opportunity to address the effects of extreme drought 
episodes and enhance the sustainability of maize production in Malawi (World Bank, 
2018). The challenge, however, is that in Malawi, households have operationalized CSA 
practices differently, with various local translations and nomenclatures across several 
communities (Chinseu et al., 2018). Some households have even abandoned already 
adopted CSA practices due to information asymmetry on the ground (Holden et al., 
2018; BenYishay and Mobaraka, 2014). Contrary to recommendations of adopting CSA 
as a package (Vermeulen et al., 2012), most households have undertaken only two of 
the five CSA practices, and allied implementation has often been short-lived (Fisher et 
al., 2018). Consequently, farmers have failed to derive the full potential benefits of CSA 
on enhancing maize production, thereby increasing poverty incidences and food 
insecurity at the household level (Fisher et al., 2018; Khataza et al., 2018). Additionally, 
limited research on the drivers and the climate resilience of CSA has facilitated low 
adoption at the household level (Amadu et al., 2020; Kilic et al., 2015). For instance, 
only 10 percent of households have adopted some of the CSA –related practices 
(Chinseu et al., 2018). Moreover, most households lack information on the technically 
efficient CSA practices that induce maize productivity under extreme weather 
conditions (McCarthy et al., 2021; Katengeza et al., 2018). Thus, additional studies on 
the drivers and the technical efficiency of CSA practices are assertive to cope with 
extreme weather events in Malawi (Kansanga et al., 2020; Kassam et al., 2014).  

Therefore, this paper examines drivers of CSA practices’ adoption and their 
influence on the technical efficiency of maize production under extreme drought 
episodes (Pangapanga and Mungatana, 2021). It uses a panel dataset representing 
farming households in Malawi for 2010/2011 to 2016/2017. While using a conditional 
logit model (CL), the study assesses drivers of adopting various CSA practices. It also 
evaluates CSA practices’ influence on the technical efficiency of maize production 
through the application of a triple hurdle Tobit regression. This study’s contribution 
to the existing literature on extreme drought episodes is four-fold. First, it provides 
evidence regarding the drivers and the effects of CSA practices on maize production 
in Malawi. Second, it minimises CSA dis-adoption through isolating efficient CSA 
practices at household level. Third, the study enhances the adoption of climate resilient 
CSA practices that have substantial effects on the technical efficiency of maize 
production. Finally, it ensures suitability, flexibility and sustainability of CSA practices 
by mainstreaming indigenous knowledge in climate adaptation programming. Overall, 
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the study adds to the existing SDGs’ literature on improving agricultural productivity 
under intensifying weather events. 

 
2.2 Research Methodology 

 
2.2.1 Study Area 

 
The study has used data from the Integrated Household Panel Survey 

conducted in rural farming communities in Malawi by the NSO and the World Bank(see 
Figure 1.5), capturing information for households affected by extreme drought 
episodes. Malawi is a land-locked country and relies on rain-fed maize production for 
national food security. District altitudes vary from below 500 to 1500 m above sea level. 
Malawi has one annual rainy season from November to April, with average 
precipitation varying from 725 mm to 2,500 mm. It has experienced drought episodes 
since 1980s, with extreme drought events, becoming more pronounced in the recent 
past, with Chikwawa, Chiradzulu, Karonga, Mulanje, Nsanje and Phalombe being the 
most affected districts. Several models have predicted increasing vulnerability, 
intensity, magnitude and frequency of extreme drought events (DoDMA, 2018; IPCC, 
2018). Apart from the high poverty levels and limited adaptive capacity (Amadu et al., 
2020), El Niño and La Niña phenomena have further intensified the country’s climate 
vulnerability (World Bank, 2018). 

 
2.2.2 Panel-based Conditional fixed effect logit model 

 
This study derives the analytical framework of examining household adoption 

decisions over various CSA –related practices, based on the random utility theory 
(McFadden, 1974) and is described in two-fold. First, the objects of various CSA 
practices over which farmers have preferences, namely, organic manure (MAP), soil 
and water conservation (SWC), improved maize varieties (IMV) and legume 
intercropping (MLI), cushion maize production from the adverse effects of extreme 
drought episodes. Second, household attributes such as age, education, gender and 
other socioeconomic factors determine household choices over CSA practices.  

The independence of irrelevant alternatives (IIA) assumption of the multinomial 
logit (MNL) model assumes that the choice of one CSA practice does not influence the 
choice of another (Baltagi, 2005; Wooldridge, 2002; Hensher and Greene, 2002). On 
the contrary, households in the study area combine CSA practices in the same plot, 
thus ruling out use of the MNL (McCarthy et al., 2021; Chinseu et al., 2018). Several 
models that allow for correlation across various CSA practices, however, exist, viz., the 
multinomial probit (MNP) and the conditional logit (CL) (Kassie et al., 2015). The study 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 21 

adopts the CL due to its flexibility to estimate either a standard, uniform, or log-normal 
choice distribution (McFadden and Train, 2000; Geweke et al., 1994). Following 
Hoffman and Duncan (1988) and Heckman (1981), the study also considers the CL 
appropriate because household choices of various CSA –related practices are a 
function of socioeconomic characteristics. The study thus specifies the panel-based CL 
model as in equation (1).  

 

!"#$%& =

1		*+	!"#$%&∗ = -%.$%&

/

%01

+	3$4$%& +	5$ +	6$%& > 0

0	*+	!"#$%&∗ = -%.$%&

/

%01

+	3$4$%& +	5$ +	6$%& ≤ 0

																																(1) 

 
where !"#$%& takes a value of 1 if a household adopts any of the various CSA 

practices including MAP, SWC, IMV, MLI and otherwise, zero. The .$%& is a vector of 
age, education, farm size, literacy, cell-phone ownership, household size, distance to 
district headquarters, slope, soil quality and soil type. 4$%& represents dummies for 
drought experience, access to credit, and extension services. The - and 3$ are unknown 
parameters to be estimated by the model. The 5$ is treated as a random component, 
while the 6$%& is the error term, with zero mean and constant variance.  

 
2.2.3 Panel-based Cobb-Douglas Stochastic Frontier Analysis (SFA) 

 
Technical efficiency is defined as the plot manager’s ability to generate 

maximum maize output from a given technology and inputs’ combination. It further 
assumes that drought episodes partially widen the gap between the observed and 
frontier outputs, which correspondingly determine household technical inefficiency, 
ceteris paribus. However, a production function is devoid of any economic intuition 
unless it has some specified structural properties such as utility maximization (Mango 
et al., 2015; Kumbhakar et al., 2015; Sihlongonyane et al., 2014).   

 Technical efficiency has been examined using either a parametric or a non-
parametric approach (Kumbhakar et al., 2015; Mango et al., 2015). The parametric 
approach uses stochastic frontier analysis (SFA), while the non-parametric uses data 
envelopment analysis (DEA). A key advantage of the SFA over DEA is its ability to split 
the random error term’s impact from the inefficiency effect (Imad et al., 2019; 
Kumbhakar et al., 2015). Inadequate record keeping and high illiteracy rates among 
smallholder farmers popularly favour the SFA use (Mango et al., 2015). Farrell (1957) 
developed the SFA, which Aigner et al. (1977) as well as Meeusen and van den Broeck 
(1977) extended to evaluate technical efficiency across various fields. In this study, 
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following limitations on price data for rural farming households, the analysis is 
restricted to technical efficiency instead of profit efficiency.  

The SFA has been used to investigate technical efficiencies of crop production. 
Musaba and Bwacha (2014) and Mango et al. (2015) adopted the SFA to study the 
technical efficiency of smallholder farmers’ maize production in Zambia and 
Zimbabwe, respectively. Mehmood et al. (2017) employed the SFA to assess the 
influence of liquidity constraints on wheat producers’ technical efficiency in Pakistan. 
Some studies have used the SFA to examine the technical efficiency of maize 
production in Malawi, using cross-section data and with bias on demographic factors 
(Chirwa, 2008; Tchale, 2009). In this study, we use panel data to investigate the 
influence of CSA practices on the technical efficiency of maize production in Malawi, 
thereby contributing to the existing literature on improving agricultural productivity 
(Amadu et al., 2020). We adopt the Cobb-Douglas (CD) specification because of its 
flexibility, excitability and interpretability (Imad et al., 2019). Based on previous studies, 
a CD model is preferred due to the study preference of only assessing physical factors 
which enter into the production system (Tchale, 2009; Chirwa 2008). The panel-based 
maximum likelihood Cobb-Douglass SFA model is expressed as in equation (2). 

 

<=>$%& = -%<=?$%&

/

%01

+ @AB$%&

C

A0D

+ 5$ +	E$%& + F$%&																																																			(2) 

 
where  <=>$%& is the log of yield in kg/ha for plot-manager at time point. <=?$%& 

is a vector of various inputs, namely, farm size, fertilizer, seed, labor and organic 
fertilizer. In terms of farm size, the study uses total available land holding size to avoid 
collinearity problem between the left-hand side variable (<=>$%&) and the farm size. The 
B$%& denotes dummies for soil quality, slope and drought experience. The @A and -%	are 
unknown parameters, while 5$ is the individual fixed effect. The F$%& is the technical 
inefficiency which is derived through its exponential while the E$%&	 is the random error, 
with zero mean and constant variance.  
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2.2.4 Triple hurdle panel-based censored Tobit regression 
 

This study further adopts a triple hurdle panel-based censored Tobit model to 
analyse the influence of CSA on the technical efficiency of maize production under 
extreme drought episodes. In the first hurdle, the study employs a binary panel-based 
Probit model to predict the CSA practices farmers adopt, while accounting for possible 
endogeneity (Amadu et al., 2020). The study presents a panel based Probit model as 
in equation (3): 

 

#$%& = 3%H$%& +	5$ +	I$%&

/

%01

																																																																																									 (3) 

 
where #$%& takes a value of 1 if the household adopts any CSA practice as 

mentioned above, and zero otherwise. The H$%& is a vector of education, age, gender, 
farm size, household size, mobile phone, access to extension services and credit. The 
3% stands for the unknown parameters to be estimated. The I$%& is the white noise, with 
zero mean and constant variance, while the 5$	is as presented previously.  

In the second hurdle, the study uses the panel-based Cobb Douglass SFA to 
predict the technical efficiency scores which form part of the dependent variable in the 
Tobit model. In the third hurdle, the study employs a panel-based Tobit model to 
interrogate socioeconomic and institutional factors affecting maize productivity as 
specified in equation (4): 

F$%& = 31 +	 3%K$%& + L%M$%& +	5$ +	N$%&

/

%0D

																																																																				 (4) 

 
where F$%& is the technical efficiency score predicted from equation (2). K$%& is a 

vector of CSA practices values estimated from equation 3 such as .#P, "Q!, .RSand 
.TR, and M$%& is a vector that includes variables like access to subsidy and credit, land 
productivity, livestock ownership, gender, literacy, household size and marital status. 
The 3% and L% are the unknown parameters to be estimated by the model. The  N$%& is 
the error term with zero mean and constant variance, while the 5$ is as prior-defined.  
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2.2.5 Sampling and Data Acquisition 
 

The study uses the Integrated Household Panel Surveys (IHPS) dataset, 
compiled by the NSO and the World Bank between 2010 and 2017. Accordingly, the 
study adopts the IHPS multi-stage sampling procedure, covering 208 enumeration 
areas, and representative at the national, urban/rural, regional, and district levels (NSO, 
2020). The IHPS instruments include households, agriculture, fishery, and community 
questionnaires. Between 2010/2011 and 2016/2017, the IHPS asked all sampled 
households to state whether they experienced any drought episodes. Consequently, 
the study refers households reporting experience of any drought episodes as drought-
affected community (DAC) households, otherwise non-drought-affected community 
(NDAC) households. The IHPS captures data on household socioeconomic 
characteristics (such as age, marital status, education, household size, mobile phone 
ownership, credit accessibility, and extension services), extreme weather events 
(drought and dry spell) and plot characteristics (like plot area, slope, soil quality and 
type) (NSO, 2018, 2020). It also captured farm level data like labor, farm holding size, 
seed, inorganic fertilizers, CSA practices (such as organic fertilizer, soil and water 
conservation, improved maize varieties, intercropping), crops cultivated and harvest. 
The study presents and defines the variables of interest as in Table 1.1. 

After matching panel households, this study uses household sample sizes of 
1329 for 2010, 1311 for 2013, and 1193 for 2016/2017. The IHPS data shows several 
households experiencing extreme drought episodes, with half of households reporting 
the effect of extreme drought in 2010/2011, 34 percent in 2013 and 46 percent in 
2016/2017 cropping seasons. In this study, drought episodes negatively affect the 
technical efficiency of maize production, and adoption of CSA practices strengthens 
the climate resilience of maize production at the household level. Finally, this study 
complements household interviews with IHPS community (qualitative) focus group 
interviews.  
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2.3 Results and Discussions 
 

2.3.1 Summary statistics of household characteristics 
 

Table 2.1 presents summary statistics for drought-affected (DAC) and non-
drought-affected (NDAC) communities. The study shows that males (75%) headed 
most households in DAC and NDAC communities. The mean household head age is 
44 years, with a mean household size of 5 persons. Two-thirds of household heads 
have ever attended school, with the majority having attained senior primary education, 
that is from grade 5 to 8. Furthermore, the study finds that household location in 
relation to agricultural markets have a bearing on input accessibility. Almost half of 
households own a working mobile phone. The qualitative data shows that the mobile 
phones are used for accessing agricultural information from relatives, fellow farmers, 
and extension workers. These results are in line with NSO (2020). 

The study further indicates that households cultivate maize on an average farm 
size of 0.48 ha, with female farmers farming on 0.41 ha. Half of the cultivated farms 
have loamy soils, with substantial differences between DAC (63%) and NDAC (56%) 
households. About 62 percent of the households have good soil quality and flat farm. 
Female farmers produce 370 kg/ha less than their male counterparts. The study 
findings reveal significant differences of DAC maize yield between 2010 and 2017, with 
no substantial disparity among NDAC over the same period. 
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Error! Reference source not found. shows the distribution of households 
adopting various CSA –related practices. The study finds that most households (65%) 
implement two to three of the five CSA practices. Furthermore, about 76 percent of 
households apply NPK fertilizers, increasing from 37.5 kg per acre (2010) to 54 kg per 
acre (2017). More male farmers (78%) apply NPK fertilizers relative to their female 
counterparts (72%), thus explaining the depth of resource constraints among female 
farmers.  

The study also finds that 21 percent of households use organic fertilizer, 
applying on average about 178 kg per acre (see Table 2.1). The study further notes a 
considerable increase in organic fertilizer application, viz., composite, green, and 
animal manure, between 2010 (126.5 kg) and 2017 (321.6 kg). Through the existing 
agricultural policy (NAP, 2016), Government has been promoting the use of organic 
manure in agricultural production, given the high cost and unaffordability of inorganic 
fertilizers for most smallholder farmers. Besides, more than half of the households 
invest in SWC techniques such as terraces (5%), erosion control bunds (26%), sandbags 
(1%), vetiver grass (8%), water harvest bunds (1%) and ditches (4%). Smallholder 
farmers have increasingly undertaken SWC because of higher water stressing 
environment that before, forcing farmers to practices SWC which conserve water 
during drought times. Additionally, adoption of IMV rose from 46 percent in 2010 to 
56 percent in 2017. The increase in adoption of various CSA –related practices is 
attributed to the experience of previous adverse effects of drought episodes on maize 
productivity.  
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Table 2. 1: Summary statistics of household socioeconomic characteristics in Malawi 
  2010 2013 2016 POOLED 2010-2016 DIFF_TEST 
 UNIT_M TOTAL DAC NDAC TOTAL DAC NDAC TOTAL DAC NDAC TOTAL DAC NDAC MHHD FHHD DAC/NDAC M/FHHD 
Matched sample % 35% 51% 49% 34% 37% 63% 31% 46% 54%  44% 56% 75% 25%   
Gender Male=1 0.76 0.73 0.79 0.76 0.76 0.75 0.73 0.76 0.70 0.30 0.50 0.10 0.30 0.20 ***  
Married Yes=1 0.79 0.76 0.81 0.78 0.80 0.77 0.77 0.79 0.75 0.75 0.75 0.75 0.75 0.25   
HH size Number 5.04 4.86 5.22 5.55 5.75 5.44 5.47 5.58 5.37 0.78 0.78 0.78 0.97 0.20  *** 
Age Years 43.47 43.45 43.49 46.47 45.97 46.76 48.42 48.66 48.21 46.02 45.84 46.17 44.64 50.15  *** 
Literacy Yes=1 0.62 0.62 0.63 0.67 0.65 0.63 0.63 0.66 0.61 0.57 0.53 0.61 0.66 1.32  *** 
Class reached Years 6.22 5.71 6.70 6.20 5.99 6.32 5.68 5.52 5.82 5.35 5.35 5.35 5.65 0.31  *** 
Mobile phone ownership Yes=1 0.46 0.39 0.53 0.55 0.48 0.60 0.72 0.75 0.70 6.04 5.72 6.29 6.38 4.76 *** *** 
Distance to main road Km  1.05 1.13 0.98 1.07 1.19 1.00 1.02 1.07 0.98 1.19 1.19 1.19 1.15 4.46 *** *** 
Distance to ADMARC Km 7.61 8.07 7.14 7.90 8.40 7.61 7.78 7.50 8.03 1.05 1.13 0.99 1.05 1.03 ***  
Distance to HQ Km  51.14 44.50 57.93 25.24 23.18 26.42 27.30 29.62 25.29 7.76 7.98 7.59 7.48 8.60 ** *** 
Sandy soils Yes=1 0.22 0.23 0.22 0.19 0.25 0.16 0.27 0.31 0.25 0.23 0.26 0.21 0.22 0.26 *** ** 
Loamy soils Yes=1 0.53 0.57 0.48 0.54 0.47 0.58 0.59 0.63 0.56 0.55 0.56 0.54 0.56 0.52  ** 
Clay soils Yes=1 0.22 0.18 0.25 0.26 0.27 0.25 0.35 0.31 0.39 0.27 0.25 0.29 0.28 0.26 ***  
Good soils Yes=1 0.48 0.50 0.45 0.42 0.44 0.41 0.62 0.64 0.60 0.50 0.53 0.48 0.51 0.47 *** ** 
Fair soils Yes=1 0.40 0.35 0.44 0.42 0.38 0.45 0.45 0.45 0.44 0.42 0.39 0.45 0.42 0.43 ***  
Poor soils Yes=1 0.13 0.15 0.11 0.15 0.18 0.14 0.15 0.17 0.14 0.14 0.17 0.13 0.14 0.17 *** ** 
Flat slope Yes=1 0.56 0.55 0.57 0.57 0.57 0.57 0.61 0.63 0.58 0.58 0.58 0.57 0.59 0.55  ** 
Slight steep Yes=1 0.33 0.32 0.35 0.31 0.28 0.32 0.49 0.47 0.51 0.37 0.36 0.39 0.37 0.39 *  
Moderate slope Yes=1 0.08 0.10 0.06 0.09 0.12 0.08 0.15 0.16 0.15 0.11 0.12 0.09 0.11 0.10 ***  
Hilly Yes=1 0.03 0.03 0.02 0.03 0.03 0.03 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03   
Seed Kg  13.08 13.00 13.17 14.22 14.82 13.88 20.49 21.30 19.78 15.78 16.21 15.43 16.13 14.74  ** 
Labor Hours 55.90 55.39 56.42 32.33 34.54 31.05 23.42 25.01 22.04 37.73 39.66 36.18 39.62 32.07 *** *** 
Farm size Acre 1.00 0.97 1.03 0.95 0.90 0.98 1.59 1.63 1.56 1.17 1.16 1.17 1.22 1.00  *** 
Inorganic fertilizer Kg  37.46 37.09 37.85 32.22 29.94 33.54 53.72 53.16 54.20 40.73 40.30 41.07 43.90 31.25  *** 
Organic fertilizer  Kg  126.55 51.91 202.90 99.68 92.92 103.57 321.63 338.44 307.05 178.08 156.53 195.34 196.47 123.12   
Manure Application Yes=1 0.14 0.13 0.15 0.19 0.20 0.18 0.31 0.33 0.29 0.21 0.22 0.20 0.21 0.22   
NPK Fertilizer Application Yes=1 0.81 0.78 0.84 0.74 0.71 0.76 0.74 0.75 0.72 0.76 0.75 0.77 0.78 0.72 * *** 
SWC Yes=1 0.57 0.54 0.59 0.50 0.45 0.54 0.65 0.64 0.67 0.57 0.55 0.59 0.56 0.60 *** ** 
Extension Services Yes=1 0.41 0.46 0.37 0.73 0.69 0.75 0.91 0.92 0.91 0.67 0.66 0.67 0.68 0.62  *** 
Access to subsidy Yes=1 1.00 1.00 1.00 0.53 0.55 0.52 0.42 0.42 0.41 0.61 0.64 0.59 0.61 0.61 ***  
Credit Accessibility Yes=1 0.11 0.09 0.13 0.22 0.24 0.21 0.24 0.27 0.22 0.19 0.19 0.19 0.20 0.16  ** 
Improved varieties Yes=1 0.46 0.43 0.50 0.48 0.50 0.47 0.57 0.59 0.56 0.50 0.50 0.51 0.53 0.42  *** 
Intercropping Yes=1 0.44 0.55 0.33 0.57 0.63 0.53 0.66 0.63 0.69 0.45 0.51 0.40 0.42 0.53 *** *** 
Drought Yes=1 0.51 1.00 - 0.37 1.00 - 0.46 1.00 - 0.44 1.00 - 0.44 0.45   
Pest infestation Yes=1 0.09 0.12 0.06 0.23 0.29 0.19 0.13 0.24 0.04 0.15 0.21 0.10 0.16 0.11 *** *** 
Yield Kg/Acre 552.06 439.01 667.69 607.87 483.17 679.66 736.13 818.88 664.39 628.44 574.85 671.38 698.34 419.54  *** 

Note: * p<0.10, ** p<0.05, and *** p<0.01
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Figure 2. 1: Distribution of DAC and NDAC households adopting various CSA 
practices between 2010/2011 and 2016/2017] 
 

2.3.2 What factors affect the adoption of Climate Smart 
Agricultural Practices? 

 
Factors such as household head’s education, distance to district headquarters, 

slope and soil quality significantly influence households’ decision to adopt SWC –
related techniques (see Table 2.2). Furthermore, households with steep slopes, poor 
soil quality and drought experience had higher probabilities of adopting the various 
SWC techniques (see Table 2.2). Nevertheless, the study finds no significant differences 
in terms of drivers affecting SWC adoption between DAC and NDAC households. These 
results in Table 2.2 are in line with Nguyen et al. (2020), Darkhwh et al. (2019) and 
Teshome et al. (2016). 

Literacy and extension services substantially affect the IMV adoption. For 
instance, most literate households cultivate IMV due to the extension messages on the 
demerits and merits of improved varieties under different drought episodes. The study 
qualitative data confirmed that farmers have information on the merits and demerits 
of various maize varieties, which presents the freedom of choice among households. 
Interestingly, the study demonstrates that extension services and drought episodes are 
the only factors essentially influencing IMV adoption among DAC. These findings 
conform to Amondo et.(2019), Katengeza et al. (2019), and Ayedun (2019) results. 

This study further observes that gender and drought episodes significantly 
affect maize-legume intercropping decision. The study notes that several male farmers 
intercropped maize with leguminous crops relative to female farmers, where drought 
episodes significantly enhance the intercropping of maize with leguminous crops. 
Besides, the study qualitative data explains that intercropping maize with leguminous 
crops, namely, beans, Mucuna, lablab, Sesbania sesbans, chick peas, pigeon peas, and 
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cow peas, reduces run-off water and enhances nitrogen fixation. Conversely, the study 
finds slightly above half of the households (56%) still practicing maize mono-cropping 
despite increasing drought episodes. These results are similar to those of Bouwman et 
al. (2021), Timothy et al. (2017) and Simtowe et al. (2016). 

Further, the study results reveal that credit accessibility, age and drought 
experience substantively influence household adoption of organic fertilizer. The 
qualitative data demonstrates that households access credit to hire labor for 
composite manure production, which is labour intensive. Similarly, the study notes 
elder people engaging in organic fertilizer manufacturing while household with larger 
farms practise fallow cultivation as an adaptation strategy to the adverse effect of 
drought. The qualitative data indicates that households are interested in cultivating a 
farm that has higher soil fertility for improved crop production.  

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 30 

Table 2. 2: Results of Conditional Logit Regression: What factors drive the adoption of CSA practices in Malawi 
  NDAC DAC POOLED  
 SWC IMV MLI OMA SWC IMV MLI OMA SWC IMV MLI OMA 
GENDER (MALE=1) 0.038 -0.490*** 0.304* -0.189 0.113 -0.126 0.415* -0.220 0.046 -0.334** 0.363*** -0.205 
  (0.220) (-3.32) (2.200) (-0.89) (0.550) (-0.65) (2.270) (-0.69) (0.350) (-2.87) (3.320) (-1.18) 
CREDIT (ACCESS=1) 0.027 -0.121 0.014 0.438* 0.366 -0.108 0.035 0.505 0.142 -0.114 0.011 0.423* 
  (0.160) (-0.85) (0.100) (2.140) (1.670) (-0.53) (0.180) (1.670) (1.080) (-0.98) (0.090) (2.520) 
CELLPHONE(OWN=1) 0.010 -0.108 0.074 -0.166 -0.022 -0.117 0.056 -0.095 0.002 -0.112* 0.062 -0.147 
  (0.130) (-1.73) (1.230) (-1.70) (-0.18) (-1.09) (0.550) (-0.62) (0.030) (-2.08) (1.200) (-1.82) 
AGE (YEARS) -0.001 0.0120** 0.007 0.011 0.005 0.009 0.005 0.007 0.001 0.0118*** 0.00613* 0.00948* 
  (-0.11) (3.110) (1.870) (1.880) (0.870) (1.640) (1.080) (0.810) (0.200) (3.820) (2.130) (1.970) 
LITERATE (YES=1) 0.321* -0.359** 0.147 0.131 0.057 -0.241 0.326* -0.610* 0.197 -0.285** 0.226* -0.122 
  (2.050) (-2.69) (1.140) (0.640) (0.310) (-1.41) (2.020) (-2.14) (1.670) (-2.73) (2.260) (-0.74) 
HHSIZE (NUMBER) 0.035 -0.007 0.030 0.025 0.023 -0.070 0.043 -0.022 0.032 -0.027 0.036 0.012 
  (1.170) (-0.26) (1.190) (0.620) (0.580) (-1.94) (1.290) (-0.37) (1.350) (-1.30) (1.810) (0.350) 
DISTANCE TO HQ -0.470* -0.226 -0.784*** -0.142 -0.939* -0.162 -0.594 0.053 -0.542** -0.235 -0.739*** -0.080 
  (-2.01) (-1.10) (-4.18) (-0.48) (-2.29) (-0.47) (-1.79) (0.120) (-2.69) (-1.35) (-4.54) (-0.33) 
SLOPE (FLAT=1) -0.213*** -0.115 0.230* -0.098 -0.182*** -0.085 0.219 0.519 -0.007*** -0.096 0.236** 0.102 
  (-15.89) (-0.98) (2.030) (-0.55) (-11.09) (-0.55) (1.470) (1.950) (-19.48) (-1.02) (2.630) (0.700) 
SOIL QUALITY(GOOD=1) -0.280* 0.071 0.162 -0.244 -0.532** 0.086 0.145 0.086 -0.363*** 0.071 0.144 -0.126 
  (-2.09) (0.620) (1.450) (-1.39) (-3.23) (0.570) (1.000) (0.350) (-3.51) (0.780) (1.640) (-0.89) 
SOIL TYPE(CLAY=1) 0.069 0.257 0.135 0.441* 0.050 0.282 0.001 -0.265 0.070 0.260* 0.076 0.195 
  (0.410) (1.780) (0.960) (2.020) (0.270) (1.640) (0.010) (-0.92) (0.560) (2.360) (0.720) (1.130) 
EXTENSION(ACCESS=1) -0.061 0.237* 0.078 0.314 -0.123 0.370*   -0.289* -0.094 -0.081 0.276** -0.061 0.157 
  (-0.45) (2.060) (0.700) (1.690) (-0.73) (2.390) -(1.99) (-0.35) (-0.78) (3.030) (-0.70) (1.040) 
LAND AREA(HA) -0.004 -0.005 -0.007 -0.098 -0.208** 0.111 0.005 -0.093 -0.051 0.001 0.001 -0.093 
  (-0.30) (-0.96) (-0.61) (-1.54) (-2.78) (1.750) (0.320) (-1.36) (-1.29) (0.300) (0.290) (-1.94) 
DROUGHT(YES=1)         0.292** 0.231* -0.463*** 0.759*** 
          (2.770) (2.460) (-5.15) (5.150) 
CONSTANT 0.066 0.465 -0.830** -0.794** 0.600 0.541 -0.493*** 0.123 0.160 0.368 -0.857*** -0.98** 
  (0.210) (1.640) (-3.05) (-2.87) (1.500) (1.460) (-3.62) (0.190) (0.640) (1.620) (-3.93) (-2.87) 

LR(c2)  92.22*** 67.85*** 35.81*** 13.97*** 23.22*** 24.89*** 21.58*** 24.36*** 37.17*** 74.84*** 104.65*** 136.53*** 
N 2705 2705 2705 2705 1785 1785 1785 1785 4491 4491 4491 4491 

Note: t statistics in parentheses * p < 0.10, ** p < 0.05, and *** p < 0.01 
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2.3.3 Panel-based Cobb Douglas Stochastic Frontier Analysis 
 

Table 2.3 highlights the maximum likelihood estimated results of a Cobb-
Douglas Stochastic Frontier Analysis (SFA) between DAC and NDAC households. The 
study notes that slopes, soil quality, labor, inorganic fertilizer, seed, farm size, and 
drought experience significantly affect maize productivity. Households that applied 
chemical (NPK) fertilizer enhance maize productivity by at least 3 kg, ceteris paribus. 
Similarly, labor improves maize yield by 26 kg in NDAC and 35 kg in DAC households, 
while holding all other factors constant. The study findings also reveal that farm size 
yields higher returns than any factor of production, ceteris paribus. In this study, farm 
size refers to total available land in hectare for any potential household agricultural 
activities. Likewise, organic fertilizer improves maize production by 15 kg in NDAC and 
8 kg in DAC households, ceteris paribus. The study finds farms with steep slopes having 
lower maize yield of 4 kg in DAC and 8 kg in NDAC relative to farms with flat slope, 
while holding all other factors constant. The study qualitative data clarifies that farms 
with steep slopes experience excessive soil erosions, while farms with loamy soils have 
better soil structure and water filtration. Drought episodes reduce maize yield by 20 
percent, ceteris paribus, and these results are in line with McCarthy et al. (2021) and 
Asfaw et al. (2016). 

 

 
 

Figure 2. 2: Average maize yield (kg ha-1) among households affected and not affected by drought [2010 – 
2016/2017] 

 
Figure 2. 2 shows the average maize yield per hectare among households 

affected and not affected by droughts between 2010 and 2016/2017. Despite the 
negative effect of drought on maize productivity, the study observes DAC households 
descriptively report higher yield per ha than NDAC counterparts. Accordingly, the chi-
square test shows a significant correlation between yield and drought episode 
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experience, and there is a considerable difference between maize yield by DAC and 
NDAC. Among DAC households, maize yield has significantly increased from 922 kg/ha 

in 2010 to 1720 kg/ha in 2016. Focus group discussions show that the increase in yield 
is more auspicious among households, which adopted various CSA –related practices. 
In other words, descriptively, the study can speculate that the adoption of any of the 
CSA –related practices ably cushions household maize production from drought 
episodes. 
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Table 2. 3: Results of a Cobb Douglas Stochastic Frontier: the effects of drought episodes on farm productivity in Malawi  
LN_YIELD (KG/ACRE) COBB-DOUGLAS SFA 
 UNIT NDAC DAC MALE FEMALE POOLED 
LNFERTILIZER  KILOGRAM 0.0306* 0.0498** 0.087*** 0.096** 0.0348** 
  (2.16) (2.67) (4.23) (3.17) (3.05) 
LNFARMSIZE ACRE  0.485*** 0.512*** 0.611*** 0.560*** 0.493*** 
  (19.10) (16.90) (21.89) (11.51) (24.99) 
LNLABOR  HOURS 0.263*** 0.352*** 0.0102 0.094*** 0.295*** 
  (8.66) (9.03) (0.96) (3.60) (12.08) 
LNSEED  KILOGRAM 0.0124* 0.00859 0.130*** 0.142* 0.0114** 
  (2.15) (1.31) (4.34) (2.55) (2.62) 
LNMANURE KILOGRAM 0.150*** 0.0823* -0.0329 -0.142 0.115*** 
  (5.34) (2.48) (-0.73) (-1.78) (5.31) 
STEEP SLOPE  YES=1 -0.055 -0.0443 0.0715 0.128 -0.0371 
  (-1.37) (-0.92) (1.59) (1.64) (-1.20) 
SANDY SOIL YES=1 -0.123* -0.0578 -0.107* 0.0216 -0.0843* 
  (-2.46) (-1.07) (-2.04) (0.25) (-2.29) 
GOOD QUALITY YES=1 0.0820* 0.132** 0.217*** 0.313*** 0.101** 
  (2.06) (2.76) (4.95) (3.99) (3.29) 
DROUGHT  YES=1   -0.514*** -0.0514 -0.203*** 
    (-5.63) (-0.30) (-6.63) 
CONSTANT  0.883*** 0.647*** 0.641 1.079 0.806*** 
  (16.04) (10.27) (0.02) (0.03) (19.68) 
USIGMA (CONS)  4.826** 15.05* 0.683*** 0.722*** 7.406** 
  (2.61) (2.25) (21.45) (10.88) (3.27) 
VSIGMA (CONS)  0.641*** 0.715*** 0.0871*** 0.0965** 0.717*** 
  (22.07) (20.66)   (35.17) 

LR(c2)  627.04*** 409.48*** 843.61*** 202.32*** 1090.31*** 

N  2127 1705 3361 1130 4491 

Note: t statistics in parentheses * p < 0.10, ** p < 0.05, and *** p < 0.01 
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2.3.4 What is the influence of CSA adoption on the technical 
efficiency of maize production? 

 
Technical efficiency determines the potential households have to achieve 

maximum production. In this study, technical efficiency is assessed to check how far 
below are households from the potential production possibility frontier. Figure 2. 3, 
therefore, illustrates the distributions of technical efficiency for DAC and NDAC 
households. The study observes that households are 63 percent technically efficient, 
implying that households can reduce current input use by 37 percent to achieve the 
same production level. In other words, households can probably increase production 
by 37 percent given the same input combination. The student’s t-test reveals a 
substantial difference between the technical efficiency of DAC (62%) and NDAC (64%) 
households. About 74% of both DAC and NDAC households have a technical efficiency 
score above 50%. Almost 22% of DAC versus 18 percent of NDAC households have 
technical efficiency below 50%, implying more maize production loss for DAC than 
NDAC households.  

 
Figure 2. 3: Distribution of the technical efficiency score between DAC and NDAC households [2010 – 
2016/2017]
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Table 2. 4:  presents results from a triple hurdle panel-based censored Tobit 
model, which assesses the CSA –related practices’ influence on the technical 
efficiency of maize production. The Chi-square test shows that the model if good 
enough to examine the effect of CSA –related practices on the technical efficiency of 
maize production. In the first step, the study estimates the technical efficiency of maize 
productivity. In the second, the study accounts for the potential endogeneity of CSA 
choices through the use of CSA-related predicted values. In the third step, the study 
evaluates the effect of CSA practices on the technical efficiency of maize production. 
The study notes that SWC adoption significantly improves the technical efficiency of 
maize production for both DAC and NDAC households by two (2) percent and one (1) 
percent, respectively. The study qualitative data reveals that contour-farming and 
erosion control bunds conserve soil moisture and increase water infiltration rate. These 
findings are consistent with Kumawat et al. (2020)  

Similarly, the study finds cultivation of improved maize varieties other than local 
maize varieties enhancing the technical efficiency of maize production by three (3) 
percent for DAC and two (2) percent for NDAC households. The data shows that 
farmers cultivate early maturing and drought-tolerant improved maize varieties. 
Furthermore, households that intercrop maize with leguminous crops like soybeans, 
pigeon peas, Sesbania sesbans, cow peas, and common beans enhance the technical 
efficiency by two (2) percent for both DAC and NDAC. Nonetheless, the study finds 
more DAC (51%) than NDAC households (40%) intercropping maize with beans, 
pigeon peas and groundnuts. Intercropping generally enhances soil fertility through 
soil moisture retention and nitrogen fixation (Burker et al., 2019). 

Additionally, the study records that concurrently adopting organic fertilizer and 
inorganic fertilizer strongly increase the technical efficiency of maize production by 18 
percent. Furthermore, simultaneously applying organic manure and inorganic fertilizer 
is more effective and evident for DAC than NDAC households, implying the efficacy of 
the combination in managing the negative effects of droughts in the study area. This 
study also observes that land productivity positively influences the technical efficiency 
of maize production. Nevertheless, the study notices negative relationship between 
livestock ownership and credit accessibility, on the one hand, and the technical 
efficiency of maize production, on the other hand. In other words, there is limited 
complementarity between livestock, credit, and maize production (Mehmood et al., 
2017). Household heads’ gender, literacy, marital status, and family size substantively 
affect the technical efficiency of maize production. The study also finds female farmers 
less technically efficient than male farmers due to limited access to improved maize 
varieties, hired labour, and credits for procuring inorganic fertilizers. 
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Table 2. 4: Results of a Triple hurdle Tobit model: the influence of CSA adoption on the technical efficiency of maize production in Malawi 
DEP_VARIABLE: EFFICIENCY POOLED DAC NDAC MALE FEMALE 

SWC YES=1 0.102** 0.176 0.108* -0.0596 0.217 
  (2.63) (1.87) (2.02) (-1.03) -1.82 
IMV YES=1 0.180*** 0.277*** 0.160** -0.0093 0.0873 
  (4.57) (4.15) (2.64) (-0.18) -0.77 
MLI YES=1 0.0468 0.0411 0.0175** -0.0894 -0.15 
  (1.21) (0.05) (3.10) (-1.54) (-1.29) 
NPK*MAP YES=1 0.184** 0.350** 0.154 0.132 -2.176 
  (3.16) (2.86) (1.79) (0.22) (-0.74) 
NPK YES=1 0.0504*** 0.0414* 0.0674*** 0.01 0.041 
  (5.16) (2.03) (4.45) (0.85) (0.78) 
MAP YES=1 0.0313 0.0445 0.0807 -0.0658 -0.375* 
  (1.24) (0.86) (1.31) (-0.86) (-2.23) 
ACCESS TO SUBSIDY YES=1 0.011*** 0.047*** 0.066* 0.018*** 0.068*** 
  (4.32) (7.33) (2.08) (6.83) (5.34) 
LAND PRODUCTIVITY YES=1 0.048 0.064*** 0.042 0.0216 0.0375 
  (0.65) (3.49) (0.45) (0.32) (0.67) 
LIVESTOCK YES=1 -0.099*** -0.013 -0.086*** -0.018*** -0.011* 
  (-6.50) (-0.48) (-3.57) (-9.50) (-2.27) 
CREDIT YES=1 -0.0293 0.0382 -0.0455 -0.0183 0.0283 
  (-2.33) (0.18) (-2.34) (-1.11) (0.70) 
MALE Male=1 0.279*** 0.266*** 0.280***   
  (50.93) (30.26) (36.14)   
LITERACY YES=1 0.0416*** 0.0457*** 0.0465*** -0.101 -0.131 
  (8.63) (5.50) (6.63) (-1.50) (-1.04) 
HH SIZE NUMBER 0.00854*** 0.00459* 0.00651*** -0.0559*** -0.0492 
  (7.19) (2.54) (3.87) (-3.91) (-1.52) 
MARRIED YES=1 0.300*** 0.301*** 0.319*** 0.783** 0.158 
  (45.76) (29.12) (35.06) (2.65) (0.91) 

LR(c2)  19268*** 85.72*** 134.65** 167.93*** 46.70*** 

N  2127 1705 4491 3361 1130 

Note: t statistics in parentheses * p < 0.10, ** p < 0.05, and *** p < 0.01 
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2.4 Conclusion and Key Policy Recommendations 
 

Drought episodes negatively affect maize production. Hence, households 
undertake various CSA –related practices to cushion maize production from the 
adverse influence of drought episodes. This study, thus, examines the drivers of CSA 
practices’ adoption and their influence on the technical efficiency of maize 
production under extreme weather events, especially drought episodes. The study uses 
a three-wave panel dataset (2010/2011, 2013, and 2016/2017) containing 3,800 
randomly sampled households. To address the research objectives, the study adopts 
the Conditional Logit (CL) model to assess drivers of CSA practices’ adoption and the 
triple hurdle Tobit regression to evaluate CSA –related practices’ influence on the 
technical efficiency of maize production in the study area.    

Based on the CL model, the study notes that farm size, mobile phones, 
extension, slope, soil quality, and drought significantly influence the adoption of soil 
and water conservation, organic fertilizer, improved varieties and legume 
intercropping. Furthermore, drought episodes considerably enhance the adoption of 
soil and water conservation (29%), improved maize varieties (23%), and organic 
fertilizer application (76%). The study observes a strong bias of maize mono-cropping 
in the study area, especially among households with large farms. Nonetheless, the 
study findings reveals that more households intercrop maize with leguminous crops in 
DAC than in NDA communities. Besides, the study results indicates an inverse 
relationship between distance to the district office and the likelihood of adopting CSA 
–related practices due to reduced extension service visits. Additionally, the study 
depicts a negative relationship between credit accessibility and the technical efficiency 
of maize production due to limited complementarity between off and on-farm 
household activities.  

Furthermore, a Cobb-Douglass Stochastic Frontier Analysis (SFA) illustrates that 
inorganic fertilizer, farm size, labor, seed and organic manure remarkably influence 
maize productivity. Contrarily, drought episodes negatively affect maize productivity 
by around 20 percent, ceteris paribus. The study finds households being 63 percent 
technically efficient with varying scores between DAC and NDAC households, implying 
that the current technical efficiency can, on average, be improved by 37 percent. In 
terms of gender, female farmers are 5 percent less technically efficient than male 
farmers because female farmers have limited access to agricultural inputs. A triple 
hurdle panel-based censored Tobit model reveals substantive influence of adopting 
CSA –related practices on the technical efficiency of maize production. Remarkably, 
SWC and IMV enhance the technical efficiency of maize production by 9 and 15 
percent, respectively. Furthermore, the concurrent adoption of organic fertilizer and 
inorganic fertilizer in the same farm improves the technical efficiency of production by 
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18 percent and the effect is heavily observed among DAC households. The study also 
finds that household head’s literacy and marital status are critical in determining the 
technical efficiency of maize production. Additionally, DAC households (1720 kg per 
ha) have higher yields that NDAC households (1400 kg per ha) and this is attributed to 
the adoption of various CSA –related practices. 

In general, the study recommends simultaneous adoption of organic and 
inorganic fertilizer at farm-level to enhance the technical efficiency of maize 
production. Besides, the study proposes gender targeting extension services in 
promoting various CSA –related practices since women have limited access to 
agricultural inputs, insecure land tenure systems, and informal institutions governing 
farm management. Besides, the study suggests future studies to assess the effect of 
specific techniques of SWC, namely, terraces, contour bunds, vetiver grass and others 
on the technical efficiency of maize production under different drought episodes and 
land tenure security systems.   
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Abstract 
 

Fall armyworm (FAW) (Spodoptera frugiperda), an invasive lepidopteran pest, 
has caused substantial yield loss since its first detection in September 2016, thereby 
threatening the farm productivity, food security and poverty reduction initiatives in 
Malawi. Several stakeholders, including households have adopted chemical pesticides 
to control FAW, without accounting its costs on welfare, health and the environment. 
Thus, this study has used panel data endogenous switching regression model to 
investigate the impact of FAW and the integrated pest management (IPM) –related 
practices on farm productivity and food security. The study finds that FAW 
substantively reduces farm productivity by seven (7) percent and influenced the 
adoption of IPM –related practices, namely, intercropping, mulching, and agroforestry, 
by 6 percent, ceteris paribus. Interestingly, multiple adoption of the IPM -related 
practices noticeably increases farm productivity by 21 percent. After accounting for 
potential endogeneity through the endogenous switching regression model, the IPM 
practices further demonstrates tenfold more improvement on food security, implying 
the role of the IPM –related practices in containing the effect of FAW at household 
level.  
 
Key words: Hunger; Invasive Fall Army Worms; Integrated Pest Management Practices; 
Chemical Pesticides; Farm Productivity; and Food Security  
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3. Introduction 
 

In this Chapter three, the study highlights the context, regarding adoption of 
various integrated pest management (IPM) –related practices and their effects on farm 
productivity under adverse effects of fall army worms (FAW). It also focuses on country 
FAW response plan; the objectives; the research motivation; and questions guiding the 
chapter.  Furthermore, the chapter discusses the theoretical and empirical framework, 
which is the multinomial endogenous switching regression model. Lastly, the study 
presents the results and discussion, the conclusion, and the key policy 
recommendations.  
 

3.1 Study Context 
 

Fall armyworms (FAW) (Spodoptera frugiperda), an invasive lepidopteran pest, 
with its origins in the Americas, is one of the most damaging pests in Sub-Sahara Africa 
(SSA) and attacks over 80 different plant species (Tambo et al., 2020; William et al., 
2019; Cock et al., 2017; Day et al., 2017; Sparks, 1979; Yang, 2021). The FAW can feed 
on more than 353 plant species, including staple cereals, leading to crop failures and 
low food shortages and the most preferred host of FAW is maize (Sun-xiao et al., 2021). 
The FAW has quickly spread across SSA, following its natural migration capacity, 
international trade, and eased transportation (FAO, 2019; Early et al., 2018). It is also 
affected by climate and weather variability factors, widening its geographical area, 
growth rate, abundance, survival, development, and mortality (Ramirez-Cabral et al., 
2017). In 2016, the FAW was discovered in the Central and Western Africa, and 
spreading to most SSA countries (Tambo et al., 2021; Day et al., 2017; Goergen et al., 
2016; Yang, 2021). It has annually travelled at least 1600 – 2000 km (Rose et al., 1975). 
In SSA countries, warmer climates have intensified the FAW outbreak, survival, and 
growth (Baudron et al., 2019), thereby threatening the SSA food security and pushing 
more households into poverty trap (Diaz-Alvares et al., 2020; IPCC, 2018). Coupled with 
other climate and weather variabilities challenges, the rapid spread of FAW poses 
economic threats developing countries, in particular, SSA (Midingoyi et al., 2018; Day 
et al., 2017; Yunhe et al., 2021). Recently, the FAW infestation has been escalated by 
climate and weather variability (World Bank, 2018; DoDMA, 2018; MoAWID, 2018). 

An excessive FAW attack on crops have resulted into national and household 
economic yield losses in SSA, registering the crop loss of between fifteen and seventy-
three percent. In Kenya, Ghana, and Ethiopia, the FAW have reduced yield by twenty-
seven – forty-seven percent (Kumela et al., 2019; Rwomushana et al., 2018). In 
Zimbabwe, households have experienced about fifty-eight percent yield losses 
(Chimweta et al., 2019). In Zambia alone, FAW have attacked thirty-five percent of 
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cultivated crop (Granger et al., 2020). Climate models projects the FAW to intensify in 
magnitude, frequency and reduce the present yield by forty percent. Moreover, climate 
and weather variability have worsened the prevalence and adverse effect of FAW on 
household food security and wealth creation (World Bank, 2018; DoDMA, 2018; 
MoAWID, 2018; IPCC, 2018). Ultimately, without understanding climate-induced FAW 
development, survival and spread to inform its controlling strategies, most Sustainable 
Development Goals (SDGs) of ending chronic hunger by 2030 may probably become 
a mere dream for SSA countries, including Malawi. Moreover, un-managed FAW 
outbreak may influence negatively the agricultural productivity. Meanwhile, the FAW 
has resulted into an annual economic loss of US$ 2.5 to US$ 6.3 million (Abrahams et 
al., 2017).  

In Malawi, over ninety percent of the population depend on subsistent crop 
production as the main source of livelihood (MoAIWD, 2018). In September 2016, the 
country established the first FAW outbreak, which destroyed the crop vegetative and 
reproductive structures (MoAIWD, 2018; World Bank, 2018; Goergen et al., 2016). It 
reduced crop production by forty-two percent, translating into economic loss of US$ 
0.23 – 0.56 million. Consequently, approximately 6.5 million people became food 
insecure. Low adoption of FAW control practices, poor agricultural practices, and 
warmer climates have exaggerated the spread and substantial damage of FAW in 
Malawi (FAO, 2018). Temperatures, which have ranged between 20 and 35 degree 
Celsius, have influenced the FAW development, survival and rapid spread (Diaz-Alvares 
et al., 2020). In other words, FAW infestation in the country is induced by climate and 
weather variability (DoDMA, 2018). Without controlling the FAW at development 
stage, it will adversely affect the household farm production and food security 
(Kansiime et al., 2019). 

Various strategies have been recommended for managing climate induced 
FAW, including cultural, biochemical, and agronomic controls, namely, sanding, ashing, 
soup, killing, mulching, and synthetic pesticides (Danso-Abbeam and Baiyegunhi, 
2018; Food and Agricultural Organization [FAO], 2019). For instance, in 2016/2017, the 
Government of Malawi developed a national response plan towards managing the 
FAW outbreak, where chemical pesticides, namely, pyrethroids, organophosphates, 
chlorpyrifos, and cypermethrin were procured and distributed to households. These 
strategies are also climate-smart due to unpredictability of FAW infestation following 
changes in climate and weather variability (World Bank, 2018). However, these 
management strategies are effective only when households are efficiently trained and 
timely employed (FAO, 2018). Moreover, some chemical controls have environmental 
and human health risks. Furthermore, some FAW are resistant to over 30 active 
insecticides (Zhao et al., 2017). Sadly, most chemical controls have limited information 
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regarding its health effects and usage, locally inaccessible, and not affordable to rural 
households (Murray and Jepson, 2019; Midega et al., 2018).  

Climate induced agronomic and cultural control strategies, comprising the 
integrated pest management (IPM) practices, present an opportunity to households in 
Malawi (Blake et al., 2007; Pretty and Bharucha, 2015; Ekezi et al., 2011; Muriithi et al., 
2016; MoAIWD, 2018; Bateman et al., 2018; Bezu et al., 2014). They are affordable, 
accessible, and have lower risks to the environment (Baudron et al., 2019; Thierfelder 
et al., 2018; Thomson et al., 2007).  The IPM principle is not new and includes a 
combination of several practices, viz., mulching, handpicking, dusting, intercropping, 
timely planting, and improved varieties, which suppress pest outbreaks and attach, 
with minimal harm to the environment and human life (FAO, 2018).  

However, the challenges are, recommendations on most of the climate induced 
IPM-related choices in Malawi are imported and sometimes very anecdotal, making it 
difficult to domesticate their use (Tambo et al., 2019; Day et al., 2017). (Pretty and 
Bharucha, 2015; Gautam et al., 2017; Tambo et al., 2019; Day et al., 2017). Moreover, 
the FAW strain in Malawi is new and available empirical data is limited to guide 
recommendations for the effectiveness of the IPM (Chimweta et al., 2019; McGrath et 
al., 2018). Furthermore, few studies have provided households’ indigenous 
knowledge of FAW and IPM practices in Malawi (NPC, 2020; MoAIWD, 2018). Besides, 
Malawi staple food is maize, which is the most favorable condition for FAW survival 
and widespread outbreak (DiTomaso et al., 2017). Additionally, flights into Malawi from 
Kenya, Ethiopia, and South Africa, where FAW is rampant, could become a pathway for 
its further spread if climate induced IPM practices are not mainstreamed at the farm 
(Day et al., 2017). 

This study informs policy making processes on FAW in three-folds. First, the 
study assesses the effect of FAW and climate induced IPM practices on the household 
farm productivity through the endogenous switching regression (ESR) model. Second, 
the study interrogates combinations of factors which affect the adoption of IPM –
related practices, including chemical pesticides at household level. Third, while 
accounting for potential endogeneity of the IPM adoption, the study examines the 
effect of various IPM practices on household food security.  The IPM –related practices, 
which are sustainable production intensification approach, notably promote less use 
of insecticides in agricultural production. Accordingly, households enhance farm 
productivity and food security without increasing use of insecticides, thereby reducing 
its negative impact on the environment.  

The study results are also relevant to achieving the SDGs and Malawi Vision 
2063 on ending hunger and application of environmental friendly practices (Midingoyi 
et al., 2018; NPC, 2020; Zhao et al., 2017). The study findings further complement 
previous studies by adopting the farm productivity as the dependent variable measure 
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of interest, where the study goes beyond “the usual exploring factors affecting the 
IPM adoption” by estimating the effect of multiple adoption of the IPM –related 
practices on the farm productivity and food security. Previously, studies have focused 
on one crop, such as, maize, to assess the damage of FAW (Tambo et al., 2020; Kumela 
et al., 2019; McGrath et al., 2018). Moreover, previous studies have concentrated on 
interrogating the harmful effect of the applied synthetic pesticides on the 
environment, without linking it to farm (Liu et al., 1995; Okello and Swinton, 2010; 
Skevas et al., 2013; Sanglestsawai et al., 2015; Kibira et al., 2015; Isoto et al., 2008). This 
study uses data from the integrated household panel survey, which is compiled by the 
NSO and the World Bank between 2016 and 2020. 

 
3.2 Research Methodology 
 

3.2.1 Study Area, Sampling Strategy, and Data Acquisition 
 

This study is conducted in rural farming communities of Malawi (see Figure 1.5), 
who rely on crop production for household livelihoods, food security, and eventual 
poverty reduction (Kilic et al., 2021; Tambo et al., 2020; NSO, 2012, 2014, 2018, 2020). 
Malawi is 118,480 km square in size, with Lake Malawi covering one-third of its size. 
The country is subdivided into districts; with altitudes varying from below 500 to 1500 
meter above sea level. Malawi has one annual rainy season from November to April, 
with average precipitation varying from 725 mm to 2,500 mm. Households experience 
FAW, with Chikwawa, Chiradzulu, Karonga, Mulanje, Nsanje, Lilongwe, Mzimba and 
Phalombe being the most affected districts (Pangapanga and Mungatana, 2021). In 
2018, over 21% of households’ crop production was affected by FAW. Several models 
have predicted increasing vulnerability, intensity, magnitude and frequency of extreme 
weather events, namely, pest and outbreaks (Pangapanga and Mungatana, 2021; 
DoDMA, 2018; IPCC, 2018). Apart from the high poverty levels and limited adaptive 
capacity (Pangapanga and Mungatana, 2021; Amadu et al., 2020), El Niño and La Niña 
phenomena have further intensified the country’s vulnerability to climate variables, 
viz, FAW outbreaks, in particular (Pangapanga and Mungatana, 2021; World Bank, 
2018). 

The study uses the panel data compiled by the NSO and the World Bank 
between 2016 and 2020 using the Integrated Household Survey (IHPS) (Kilic et al., 
2021), which has a matched household sample size of 1289 for 2016/2017 and 1236 
for 2019/2020. The IHPS follows a multi-stage sampling procedure and has a strong 
component on agriculture. It captures data on demographic factors such as gender, 
age, education, income, and agriculture variables such as inputs of production, namely, 
farm size, seeds, fertilizer use, pesticides, organic manure and improved varieties. It 
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also administers a shock related module to the households, where each household is 
asked whether they experience any FAW in farms. In this study, households, which 
experience any FAW, are termed FAW affected households (FAH), and otherwise, non 
FAW affected households (NFAH). Similarly, households, which adopt any IPM –related 
practices, are identified as FAW IPM adopting households (FMH), and otherwise, non 
FAW IPM adapted households (NFMH). In other words, any household practicing any 
of the climate induced IPM –related practices is regarded as an adopter. For instance, 
a household is referred an adopter if the household apply only lime or ashes or a 
combination of any of the various climate induced IPM practices. The study presents 
variables definition, measurements, and expected signs for this Chapter in Table 1.1. 

 
3.2.2 Theoretical and Empirical Framework 

 
This study evaluates the effect of FAW and IPM -related practices on farm 

productivity and food security based on the rational choice theory. Technically, the 
theory assumes that a household only adopts an IPM –related practice which provides 
higher utility than the alternatives (McFadden, 1974). Thus, we compare the effect of 
FAW and related adoption on farm productivity and food security. Following Tambo 
et al. (2021), and Ragasa and Mazunda (2018), the study defines FAW adoption as the 
implementation of any IPM practices, viz. mulching, intercropping, improved crop 
varieties, chemical pesticides, landscape management strategies, and agroforestry. 
Primarily, the study measures farm productivity through converting yield per ha into a 
common monetary value for each crop, following methodologies advocated by 
Muyanga and Jayne (2019) and Aragon et al. (2019). The farm productivity procedure 
allows the aggregation of the farm-level output value divided by amount of 
cultivatable farm-size. Households in Malawi rely on farm production for livelihoods 
and food security (MoAIWD, 2018; NPC, 2020; Pangapanga and Mungatana, 2021). 
Hence the output value obtained from the farm determines household food 
consumption (Bezu et al., 2014; Shiferaw et al., 2011), which can be translated into food 
security (MoAIWD, 2018).  In Malawi, any household member who consume about 270 
kg of maize per year is food secure (NSO, 2020; MoAIWD, 2018; NPC, 2020). 

Adoption of various climate induced IPM -related practices potentially suffers 
from endogeneity problems due to non-randomness of the household decision, where 
some households self-select whether to adopt or not to adopt (Danso-Abbeam and 
Baiyengunhi, 2018). This implies that there are some other household factors, which 
may have a combined effect on the adoption decision and the farm productivity, but 
are unobservable, namely, household management ability and risk aversion. 
Application of ordinary techniques, which does not account for such unobservable 
factors may yield misleading estimates. The study, therefore, employs the endogenous 
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switching regression (ESR) and extended regression models with endogenous 
treatment assignment -related model to account for both observable and 
unobservable factors effect on the FAW management adoption decision, farm 
productivity, and food security (Andresen, 2018; Gould, 2018; Mundlak, 1978).    

Following Adela and Wooldridge (2010) and Kassie et al. (2018), lets "#$∗  denotes 
the latent utility between IPM –related practices’ adoption and non-adoption. &#$∗  is 
the adoption status of any IPM –related practices, which is made in related to the 
adverse effect of FAW on farm productivity or food security and can be written as in 
equation (1): 

 

  &#$ =
1						*+	∅-.-#$ +	0-# +	1-#$ > 0
0						*+		∅4.-#$ +	04# +	14#$ < 0    (1) 

 
where &#$ denotes one if an individual household adopts any of IPM –related 

practices, and otherwise, zero. Households may further adopt various IPM –related 
practices in an orderly form, depending on the derived utilities. In this study, household 
is named an adopter if it undertakes at least one of the IPM –related practices. The .#$ 
is a vector of socioeconomic characteristics which determine household adoption 
status. The ∅# is the vector of unknown parameters to be estimated, the 0# is the panel-
level random effect for the adoption decision, and 1#$ is the error term, and they 
(06#, 16#$) are bivariate normally related (see Wooldridge, 2010; Madala, 1983; Heckman, 
1976).  

Following Lokshin and Sajaia (2004), the adoption of IPM –related practices (&#) 
enhances farm productivity, thus improving household food security. It is assumed the 
adoption decision of IPM –related practices result into two outcome regimes of farm 
productivity (:6#$) and can be specified as in equation (2): 

 

:6#$ =
:-#$ = ∅-;-#$ + <-ℎ#$> + ?-# +	@-#$						*+		&#$ = 1
:4#$ = ∅4;4#$ + <4ℎ#$> + ?4# +	@4#$						*+		&#$ = 0

           (2) 

 
where :6#$ is the household farm productivity for time A and is a continuous 

variable. For farm productivity, the study multiplied price of each crop against its 
production quantity, this allowed the conversion of other crops to maize equivalents, 
following Muyanga and Jayne (2019) and Oregano et al. (2019). In terms of food 
security, the study generated the kilocalories from the food consumed at household, 
as defined by the Government of Malawi, where every person requires a minimum of 
2200 calories per day to be food secure (NSO, 2012, 2020; Aberman et al., 2018). 
Accordingly, the study divided the total kilocalories by the number of household 
members. The ;6#$ represents household and farm -level factors such as age, education, 
slope, soil type and quality, access to extension services, credit, farm size, and others. 
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The ℎ#$> is a vector of generalized residuals, which is computed through the first stage 
of the ESR model, that captures the IPM adoption status (Mundlak, 1978; Murtazashvili 
and Wooldridge, 2016). The ∅6 and <6 are the vector of the unknown parameters to 
be estimated as prior defined. The ?6# is the panel level random effect, while the  @6#$ is 
the observation-level error term, and are bivariate normal (see Wooldridge, 2010). It 
further allows correlation between the panel level random effect with strictly 
exogenous variables through the Mundlak (1978) device (Murtazashvili and 
Wooldridge, 2016). Contrarily, the @6#$ and 1#$ have a trivariate normal distribution 
(Khonje et al., 2015; Lokshin  and Sajaia, 2004), with mean vector zero and the 
covariance matrix (Ω) as in equation (3): 

 

Ω = covariance	 1, @-$, @4$ =
KL4 KL- KL4
KL- K-4 .
K4L . K44

       (3) 

 
where KL4 = variance (1), K-4 = var (@-$), K44= variance (@4$), KL- = covariance 

(1,	@-$), and KL4 = covariance (1, @4$). It accepts that KL4 equal to 1 and is estimable only 
up to a scalar factor (Wooldridge, 2010; Midingoyi et al., 2018). Since :-#$ and :4#$ are 
never observed simultaneously, the covariance between @-#$ and @4#$ is not defined 
(Khonje et al., 2018), never observed simultaneously and have non-zero error terms’ 
outcome, resulting in inefficient estimates when using estimated through any ordinary 
least square procedure (Rabe-Hesketh et al., 2002). In accordance with Mundlak (1978), 
the standard ESR model can be extended to a panel model and can be used to examine 
the effect of IPM practices on farm productivity and food security through estimating 
the average treatment effect on the treated (ATET) and average treatment effect on 
the untreated (ATEU). The ATET measures the difference in farm productivity between 
IPM adopters and non-adopters.  

Commonly, Propensity Score Matching (PSM) has been applied to study the 
effect of adoption decision between adopters and non-adopters (Kassie et al., 2018). 
However, PSM techniques have ignored the probable effect from unobservable 
characteristics on the household adoption, farm productivity, and eventually food 
security (Tecklewold et al., 2013; Asfaw et al., 2012). Moreover, they only use a sub-
sample, which has attained the balancing property rule. The study simultaneously 
estimates the ESR model in two stage (Heckman, 1978). In the first step, the model 
generates the Inverse Mills Ratios (IMRs) (Madala, 1983) through a probit regression, 
which capture the unobservable heterogeneity between IPM adopters and non-
adopters. Second, it incorporates the IMRs as addition variables to control for any 
potential selection bias (Kassie et al., 2018; Wooldridge, 2010) and estimates the effect 
of IPM related practices on farm productivity and food security (Ragasa and Mazunga, 
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2018). Through these two steps, the ESR model captures both unobservable and 
observable characteristics (Lokshin and Sajaia, 2004).  

According to Murtazashvili and Wooldridge (2016), the study combined the two 
panel-based ESR regimes as in equation (4):  

 

:#$- = ∅6;#$- + (∅- − 	∅4)	;#$-:#$> 	+ <-6ℎ#$> + (<-- − <-)ℎ#$>:#$> + ?#- + :#$> ?#- − ?#4
+ :#$> @#$- − @#$- 	+ @#$-																					(4) 

 
where :#$> is the endogenous switching variable at the basis of the sample 

selection. It is interacted with both time constant and time varying variables. While 
:#6$, ∅6, <-6, ?6, PQR	;#6$	are as formerly described and the whole model becomes 

consistent only after including the time varying variables’ mean values (Mundlak, 
1978; Murtazashvili and Wooldridge, 2016), as additional covariates. Following 
Murtazashvili and Wooldridge (2016), equation (4) can be estimated as presented in 
equation (5). 

 
:#6$ = ∅6;#$- + S6;#$-:#$> + <-6ℎ#$> + ∀6ℎ#$>:#$> + G?#- + :#$> G ?- + @#$-:#$>ℎ#$>

+ @#$4ℎ#$> + :#$> G @#$- 	+ @#6$																								(5) 
 
where ℎ#$>, :#$>ℎ#$>,	G, and :#$> G ?- are used as instruments in the second step 

of the ESR panel model (Mundlak, 1978). The S6 is vector of the differences (∅- − ∅4) of 
the coefficients of household and farm-level explanatory variables (Murtazashvili and 
Wooldridge, 2016). The ∀ is the difference between <-	PQR<4 of the generalized 
residuals. The G  is the Mundlak device, which is the mean value of the explanatory 
variables, while @#6$ is a vector of idiosyncratic errors of the Mundlak relationship 
(Mundlak, 1978). Other parameters and variables in equation (4) are as prior discussed. 
The treatment effect, W6 is the difference (<-- − <-4) in intercepts between the two 
regimes if the IPM adoption is a random practice (Lokshin and Sajaia, 2004). After 
incorporating the Chamberlain-Mundlak technique, the study derives the treatment 
effect, which is the expected value from a panel based ESR correction model 
(Murtazashvili and Wooldridge, 2016) as in equation (6):  

 
E :#6$ :#$>, ;#6$

= ℎ ∅6;#$- + S6;#$-:#$> + <-ℎ#$> + ∀6ℎ#$>:#$> + G?#- + :#$> G ?-
+ @#$-:#$>ℎ#$> + @#$4ℎ#$> + :#$> G @#$- 	+ @#6$  
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= :#$>Y ∅-;#$- + S-;#$-:#$> + <-ℎ#$> + ∀-ℎ#$>:#$> + G?#- + :#$> G ?- + @#$-:#$>ℎ#$>
+ @#$-ℎ#$> + :#$> G @#$- 	+ @#$-
− 1 − :#$> Y ∅4;#$4 + S4;#$4:#$> + <4ℎ#$> + ∀4ℎ#$>:#$> + G?#4 + :#$> G ?4
+ @#$4:#$>ℎ#$> + @#$4ℎ#$> + :#$> G @#$4 	+ @#$4  

(6) 
 

where ℎ(. ) is the generalized residual function exploiting the probit function in 
the first step (Murtazashvili and Wooldridge, 2016), Y(. ) is the IMR function while other 
parameters and variables are as previously defined. The IMR term is characterized with 
zero mean and no correlation with the explanatory variables of the binary regression 
model. The study further estimates the influence of IPM adoption as specified in 
equations (7) and (8) (Midingoyi et al., 2018). 

 

E :#$- :#$>, ;#6$ = 1 = K[-
\(∅-;#$- + S-;#$-:#$> … )
ℤ(∅-;#$- + S-;#$-:#$> … )

≡ ∅-;#$- 	+ G ?- + `-ℎ#$>																																													(7) 

E :#$4 :#$>, ;#6$ = 0 = K[4
\ ∅4;#$4 + S4;#$4:#$> …

(1 − ℤ) ∅4;#$4 + S4;#$4:#$> …
≡ ∅4;#$4 	+ G ?4 + `4ℎ#$>																																													(8) 

 
Equations (7) and (8) represent the ESR model’s expected actual and 

counterfactual derived effects of adopting any IPM –related practices, respectively 
(Wooldridge, 2010). \(. ) is the standard normal probability density function, ℤ(. ) the 
standard normal cumulative density function (Wooldridge, 2010). Where ℎ#$> is the 
generalised residuals which account for the endogeneity of the selection variable 
(Murtazashvili and Wooldridge, 2016), while ;#$-	cd	;#$4 represents household and farm 
-level explanatory variables. The ∅6, ?6, and `6 are vectors of unknown parameters to 
be estimated by the model, that is after bootstrapping the standard errors to control 
for inclusion of ℎ(. ) (Murtazashvili and Wooldridge, 2016). Other parameters and 
variables are as previously defined.  

In addition, the study attempts to understand the effect of FAW and IPM 
adoption on farm productivity and ultimately food security, through estimating the 
average treatment effect on the treated (ATET) and the average treatment effect on 
the untreated (ATU) (Tambo et al., 2019; Midongoyi et al., 2019; Murtazashvili and 
Wooldridge, 2016) as written in equations (10) and (11): 

 
ATET = E :#6- :#$>, ;#6$ = 1 − E :#6- :#$>, ;#6$ = 0 														(10) 
ATU = E :#64 :#$>, ;#6$ = 1 − E :#64 :#$>, ;#6$ = 0 																	(11) 
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Furthermore, literature shows that households adopt at least one of the IPM -
related practices in the same farm, which arises to a multivariate binary or multinomial 
choice regression (Kassie et al., 2018; Khonje et al., 2018; Teklewold et al., 2013). Any 
Poisson model is suitable when the treatment or the dependent variable is a count 
data (Wooldridge, 2010). However, it is only appropriate when the adoption of one 
IPM practice does not alter the adoption likelihood of an alternative practice (Plan, 
2014; Wollni et al., 2010). In this study, the adoption of one or several IPM –related 
practices may likely alter the likelihood of adopting any alternative. Hence, this study 
employ the panel-based ESR model to capture the effect of climate induced FAW and 
IPM adoption on farm productivity and food security (Kassie et al., 2018; Murtazashvili 
and Wooldridge, 2016). 

The ESR model can be fit through either a two-step least square, control 
function, or the full information maximum likelihood method. However, the first two 
estimation methods result in heteroskedastic residuals, requiring cumbersome 
adjustments to derive consistent standard errors (Wooldridge, 2010; Madala, 1983; 
Heckman, 1976; Kassie et al., 2015; Lokshin and Sajaia, 2004). This study, therefore, 
employs the full-information maximum likelihood, which uses the joint normality of 
the error terms, to simultaneously estimate the binary and continuous parts of the 
model in order to derive consistent standard errors. The signs and significance levels 
of the correlation coefficients of the outcome equations determine the presence of the 
endogenous switching (Lokshin and Sajaia, 2004).  

For the ESR model to be well identified, the selection equation should exclude 
at least one variable in the outcome equations in addition to those generated through 
various model parameters (Blundell and Powell, 2004; Chamberlain, 1980). Moreover, 
the estimation of the impact of various climate induced IPM –related practices on farm 
productivity or food security can be modelled through either an endogenous 
multinomial, or a multivariate, or a binary framework (Midingoyi et al., 2018; Kassie et 
al., 2018; Sharma and Peshin, 2016; Isoto et al., 2008; Wollni et al., 2010; Teklewold et 
al., 2013; Wooldridge, 2010). On one hand, following Midingoyi et al. (2018), the study 
can equally estimate the impact of FWA and IPM using a multinomial but ordered 
probit treatment effect framework. On the other hand, the study can evaluate the role 
of FAW and IPM –related practices on farm productivity or household food security 
using the binary treatment variables as purported by Sanglestsawai et al. (2015), 
Sharma and Peshin (2016), and Kibira et al. (2015). 

Empirically, the review of similar but previous studies has informed the 
specification and variables of interest for the study model (see McCarthy et al., 2021; 
Tambo et al., 2020; Bidzakin et al., 2019; Khonje et al., 2015; Teklewold et al., 2013; 
Kassie et al., 2015; Teklewold et al., 2013; Kassie et al., 2018; Gould, 2018; Pangapanga 
et al., 2012; Pangapanga and Mungatana, 2021). Accordingly, several factors affect the 
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climate induced IPM adoption, thus, influencing the household farm productivity and 
food security (Tecklewold et al., 2013; Amadu et a., 2020). This study, therefore, 
includes farm characteristics (soil type, quality and slope), self-reported rainfall shocks, 
farm size, inorganic fertilizers, labor, and access to credit; other household 
characteristics (family size, education, gender, and age); and geographic location, to 
assess the effect of IPM –related practices on farm productivity, which is defined and 
measured as in Table 1.1.  

Besides, the study adopts an exclusion restriction, which thoroughly identifies 
the ESR models (see Di Falco et al., 2011; Shiferaw et al., 2014; Jerop et al., 2020; 2018; 
Tesfaye and Tirivayi, 2016; and Khanal et al., 2018). In this study, access to extension 
services is used as an exclusion restriction since it is the primary source of information 
in rural Malawi, either through farmer to farmer, lead farmer, government extension 
workers (MoAIWD, 2018). For robustness of the results, the study estimates fixed and 
random effect models (see Baltagi, 2005; Wooldridge, 2010), panel-based Cobb-
Douglas SFA models (see Kumbhakar et al., 2015), and annualized ESR models (see 
Andresen, 2018; Gould, 2018) for 2016/2017 and 2019/2020. 

 
3.3  Results and Discussions 

 
3.3.1 Household characteristics 
 

Table 3.1 shows a summary statistics of characteristics between households 
affected (FAH) and not affected (NFAH) by FAW in Malawi between 2016/2017 and 
2019/2020 cropping seasons. Similarly, Table 3.1 highlights summary statistics for 
households, adopting and not adopting any FAW-related practices. The study finds 
most households (74%) are headed by males. They are, on average, aged 43 years, 
implying that they are still in their productive age. The study observes no difference in 
age and gender of the household headed, who are affected and not affected by FAW. 
Eight in ten (10) FAH and NFAH household heads have attended formal education, 
where only six in ten household heads are literate in local language, indicating that 
they can easily read and understand extension messages in written forms. Almost 85 
percent of household heads have a cell phone, which speculatively help them access 
climate-related information, namely, merits and demerits of IPM -related practices. 
Similarly, about 64 percent of FAH and 58 percent of NFAH household heads have 
accessed FAW-related extension services, allow households to differentiate the cons 
and pros of adopting different IPM-related practices, namely, pesticides, herbicides, 
agroforestry species, and improved crop varieties.  

This study notes that the average household size is 5 members. Since most 
households are resource constrained, family labour strongly determines the adoption 
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of various IPM –related practices (MoAIWD, 2018). Households cultivate on a farm size 
of 0.5 ha, which is in line with the NSO (2018, 2020). The study also finds that 
households derive about 171800 Malawi Kwacha (MWK) per hectare (ha), where by 
households, which are affected and not affected by FAW, obtain about 147000 MWK 
/ha and 160000 MWK /ha, respectively, implying FAW substantively reduced 
household agricultural income. Households, which adopt and do not adopt any IPM -
related practices got an output value of 166000 MWK/ha and 90000MWK/ha, 
respectively, indicating that the adoption of various IPM –related practices improves 
household agricultural income. On average, households plant ten (10) kg/acre of 
seeds, apply at least one bag of 50kg of chemical fertilizer, and cultivate on total farm 
size of 0.8 of ha. Households  cultivate various crops, namely, maize, millet, sorghum, 
potatoes, and leguminous crops. Maize is cultivated by over 90 percent of the 
population in the rural areas of Malawi, where the majority mix it with leguminous 
crops. Likewise, these results are in line with the findings from the NSO (2018; 2020).  
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Table 3. 1 : Summary of socioeconomic characteristics between FAH and NFHA as well as FMH and NFMH in Malawi 

    FAW EXPERIENCE IPM ADOPTION POOLED   

    NFAH FAH NON-ADAPTOR ADAPTOR MEAN STD. DEV 
Diff_FAW 

EXPERIENCE 
Diff_FAW 

ADOPTION 
GENDER Male=1 0.760 0.727 0.714 0.757 0.738 0.440  ** 
AGE Years 43.09 42.20 42.59 42.39 42.484 16.947  *** 
EDUCATION CLASS Years 5.825 5.896 5.695 6.022 5.873 4.598  *** 
MOBILE PHONE Yes=1 0.853 0.851 0.801 0.895 0.852 1.109  -0.02 
CREDIT ACCESS Yes=1 0.164 0.144 0.135 0.163 0.150 0.357 *** *** 
ACCESS EXTENSION Yes=1 0.640 0.576 0.522 0.659 0.597 0.491 * *** 
HOUSEHOLD SIZE Count 5.024 4.939 4.820 5.090 4.967 2.262  *** 
OWN LAND Yes=1 0.591 0.695 0.643 0.677 0.662 0.473   
LITERACY Yes=1 0.716 0.688 0.665 0.724 0.697 0.459   
ATTENDED SCHOOL Yes=1 0.832 0.820 0.787 0.854 0.824 0.381 ** * 
MULTIPLE ADAPTATION Count 4.983 4.274 3.662 5.207 4.503 2.216 ***  
OUTPUT VALUE Mwk/ha 160000 147063.8 90638.3 166723.4  132,061.447     59,954.900    
YIELD Kg/ha 1880 1728 1065 1959 1,551.722 6,579.336   
SEED QUANTITY Kg 9.313 9.405 9.458 9.306 9.375 4.049   
CHEMICAL (NPK) FERTILIZER Kg 69.24 61.32 46.02 78.81 63.872 230.502   
FARM SIZE IN HA Ha 0.52 0.483 0.437 0.544 0.495 0.381   

Note: * p < 0.10, ** p < 0.05, and *** p < 0.01 
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Figure 3.1 highlights summary statistics of farm-level characteristics, namely, 
slope, soil quality, and soil type in the study area. In terms of slope, approximately 55 
percent of households in the study area cultivate on crop-farms, which have flat slope, 
followed by the gentle (36%), and steep (12%) slope. In terms of soil type, the study 
notes that 54 percent of the households have farms, which are characterized by loam 
soil type, followed by sandy (26%), and clay (21%) soil types. Slightly above half of the 
households in the study areas report having good soil quality, where 37 and 14 percent 
have farms with fair and poor soil quality, respectively. Households affected and not 
affected by FAW cultivate on farm which have flat slopes by 54 and 57 percent, 
respectively. Due to adoption of various IPM –related practices, the study reveals that 
adopters have better soil quality than non-adopters. Accordingly, the qualitative data 
attributes the difference to the adoption of various IPM –related practices, namely, 
organic farming, soil and water conservation measures, agroforestry, crop residues 
incorporation, and intercropping, implemented by households in various crop farms. 
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Figure 3. 1 : Summary statistics for farm-level characteristics between FAH and NFAH as well as FMH and 
NFMH. 
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Figure 3. 2 presents percentage of households, undertaking various IPM -
related practices in the study area during 2016 - 2020. The study finds that almost 40 
percent of households in the study area undertake SWC –related measures, 
intercropping, and timely planted their crops, followed by improved varieties (36%), 
agroforestry (25%), organic fertilizer (24%), cover cropping (22%), crop residuals (18%), 
and cultivation in marginal land (16%). Unsurprisingly, the study observes that only 
two (2) percent of households reported controlling FAW using chemical pesticides and 
this is due to its associated prohibitive costs. 

The study also notes that half of the FAH intercrop various crops with 
leguminous crops, followed by timely planting (40%), SWC (40%), improved crop 
varieties (33%), agroforestry (20%), and lastly marginal land cultivation (14%) (see 
Figure 3. 2). Similarly, the study notes that household-not affected by FAW (NFAH) 
have also adopted various IPM -related practices (see Figure 3. 2). Fifty-four (54) 
percent of NFAH timely plant their crops to control for any related pest infestation, 
followed by intercropping (47%), SWC (49%), improved varieties (28%), and finally, 
pesticides (7%). This implies that households still undertake some of the IPM –related 
practices despite of being not affected by any pest. This shows that IPM –related 
practices further play other roles other than pest controlling.  
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Figure 3. 2 : Percentage distribution of households affected by FAW and adapting IPM –related practices 
to control the FAW effect on farm productivity: 2016 - 2020. 
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3.3.2 What factors influence the adoption of the IPM practices, 
2016 – 2020? 

 
Adoption of any IPM –related practices does not happen automatically. There 

are several factors which affect their adoption like age, gender, education, and literacy 
of the household head. Table 3. 2 shows results from the first stage of the ESR, 
highlighting factors affecting the adoption of IPM –related practices in the study area. 
Columns (1-3) report results from the ESR model, based on a maximum likelihood 
estimation (MLE), two step, and control function, respectively. Columns (4), (5), and (6) 
indicate ESR econometric output from the binary ESR model, purported by Lokshin 
and Sajaia (2004), multinomial ordered probit, and panel based ESR model, 
respectively. Columns (7), (8), (9), and (10) present estimates from the binary and 
multinomial ESR models for 2016 and 2020, respectively. All variables across all the 
models indicate the same expected signs, with some slight magnitude of influence on 
the adoption of various IPM –related practices. The interpretations of the results is 
based on Columns (4), (5), and (6), while the rest of the Columns are used for checking 
the robustness of the results. 

Based on the estimates results from Column (5), the study finds that FAW 
enhanced the likelihood of adopting IPM –related practices by 15 percent. Equally 
important, the Column (6) estimates revealed that FAW significantly improved 
adoption of IPM –related practices by 6 percent, ceteris paribus. These results are in 
line with aspirations stipulated by DoDMA (2018) and World Bank (2020). Furthermore, 
column (6) shows that chemical fertilizer and farm holding size substantively enhance 
farm productivity by 7 percent, while labour days significantly increase farm 
productivity by 23 percent, holding all other factors constant. However, improved crop 
varieties reduce the adoption of IPM –related practices by 37 percent, ceteris paribus, 
implying the unlikely vulnerability of improved crop varieties to FAW. Likewise, the 
study observes the same results in Column (5). Speculatively, households find 
traditional varieties less likely to stand the adverse effects of FAW. These results are in 
line with Kassie et al. (2020), Baudron et al. (2019), and Midega et al. (2018).  

In terms of farm-level characteristics, the study results reveal that households, 
with loamy and sandy soils, are more likely to adopt IPM practices by 19 percent than 
households with clay soils (see Column 6). Likewise, households with fair and poor soil 
quality are more likely to adopt IPM practices by 8 and 13 percent, respectively. 
Moreover, the study findings shows that household having farms with steep and gentle 
slope are more likely to adopt any of the IPM –related practices by 20 and 14 percent, 
correspondingly. This implies that IPM –related practices may ably control the FAW 
infestation under farms, which are steep in the study area. The PESR model results are 
in line with MESR model estimates as shown in Column (5). These results are further in 
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accordance with Tambo et al. (2019), Day et al. (2017), Pangapanga and Mungatana 
(2021), and McNamara et al. (1991). 

Furthermore, the study finds socioeconomic characteristics influencing 
household adoption decision of IPM –related practices (see Column 4). Column (4) 
reveals that female farmers are 10 percent less likely to adopt IPM -related practices. 
This is because female farmers are resource constraint (Pangapanga and Mungatana, 
2021), suggesting the need of a deliberate IPM -related approach that targets female 
farmers, in particular. Age significantly improves household adoption decision, where 
an elder person was more likely to adopt IPM -related practices, holding all other 
factors constant (Column 4). Likewise, the study notes than households with mobile 
phone are more likely to adopt IPM –related practices than household without a 
mobile phone, ceteris paribus. This is explained along the available electronic based 
extension services in the study areas. Interestedly, the study notes that households 
with large household size have positive influence on adopting any of the IPM –related 
practices. These study findings are in line with Kansiime et al. (2019) and Foster and 
Rosenzweig (2010). 
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Table 3. 2 : Results of the ESR models: Factors affecting the IPM adoption in Malawi 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
 ESR-MLE ESR-2SLS ESR-CONT ESR-FMLE MESR PESR ESR 

2016/2017 
ESR 

2019/2020 
MESR 

2016/2017 
MESR 

2019/2020 
LOG(FARMSIZE) 0.0676* 0.0751** 0.0751**  0.069** 0.0680** -0.0606*** -0.0282** 0.167*** 0.199*** 
 (2.38) (2.64) (2.62)  (2.94) (3.09) (-6.48) (-2.93) (4.74) (5.35) 
LOG(LABORDAYS) 0.0528 0.0583 0.0583  0.069** 0.235*** 0.0352 0.0640 0.166*** 0.066* 
 (1.74) (1.90) (1.86)  (2.76) (21.06) (0.77) (1.26) (4.81) (2.12) 
LOG(FERTILIZER) 0.119*** 0.123*** 0.123***  0.100*** 0.0685*** 0.0283*** 0.0437*** 0.0279 0.0128 
 (16.28) (17.04) (17.06)  (16.01) (7.67) (7.03) (10.59) (0.21) (0.87) 
LOG(SEED) -0.18*** -0.18*** -0.181***  -0.102*** -0.373*** 0.138*** 0.0652*** 0.0234 0.0372 
 (-5.03) (-5.07) (-5.01)  (-3.46) (-21.20) (15.55) (8.73) (0.59) (1.00) 
LOAMY SOIL 0.417*** 0.417*** 0.417*** 0.916*** 0.502*** 0.189*** 0.150*** 0.221*** 0.236*** 0.219** 
 (11.95) (11.91) (11.90) (14.34) (17.01) (4.40) (8.42) (10.81) (3.95) (3.01) 
SANDY SOIL 0.350*** 0.350*** 0.350*** 0.929*** 0.451*** 0.133** 0.155*** 0.164*** 0.199** 0.0402 
 (8.92) (8.89) (8.72) (6.74) (13.86) (2.80) (8.15) (7.25) (3.14) (0.52) 
FAIR SOIL 0.155*** 0.151*** 0.151*** 0.395*** 0.126*** 0.0787* 0.0448** 0.0802*** -0.0117 -0.166** 
 (4.74) (4.62) (4.55) (3.97) (4.62) (2.01) (2.71) (4.09) (-0.22) (-2.63) 
POOR SOIL 0.215*** 0.204*** 0.204*** 0.345*** 0.174*** 0.128* 0.0967*** 0.111*** 0.0140 0.196* 
 (4.68) (4.43) (4.26) (5.27) (4.57) (2.37) (4.20) (4.12) (0.19) (2.28) 
GENTLE SLOPE 0.162*** 0.162*** 0.162*** 0.343*** 0.200*** 0.138*** 0.0275 0.0234 0.0359 0.0881 
 (4.92) (4.89) (4.78) (6.57) (7.27) (3.50) (1.63) (1.19) (0.67) (1.40) 
STEEP SLOPE 0.196*** 0.195*** 0.195*** 0.652*** 0.194*** 0.200** 0.00191 -0.00916 0.0232 0.170 
 (3.66) (3.61) (3.50) (6.88) (4.44) (3.22) (0.08) (-0.30) (0.30) (1.65) 
MALE=1 0.0805* 0.0588 0.0588 0.0979*** 0.0434  -0.0204 -0.0895 -0.122** -0.0616 
 (2.26) (1.62) (1.60) (4.90) (1.46)  (-1.32) (-0.43) (-2.80) (-1.36) 
AGE  0.0259** 0.0307** 0.0307** 0.0478*** -0.001  -0.0184 -0.0279 -0.000649 0.00101 
 (2.76) (3.22) (3.20) (8.59) (-1.28)  (-0.48) (-0.47) (-0.60) (0.81) 
AGE_SQUARE -0.013*** -0.013*** -0.013*** -0.019       
 (-3.75) (-2.74) (-2.67) (-0.57)       
EDUCATION  0.00337 0.00160 0.00160 0.0190*** -0.004  0.0564 -0.0530* 0.0105* 0.0119* 
 (0.86) (0.40) (0.40) (8.21) (-1.32)  (0.31) (-2.38) (2.04) (2.23) 
OWN CELLPHONE 0.0511** 0.0216 0.0216 0.0887*** 0.050***  0.0225** 0.0324*** 0.111*** 0.0897*** 
 (2.92) (1.32) (1.37) (5.35) (3.61)  (2.67) (3.54) (5.79) (3.75) 
CREDIT ACCESS     0.020  0.0106 0.0190 -0.0154 -0.0683 
     (0.58)  (0.07) (0.96) (-0.31) (-1.15) 
HH SIZE 0.0183* 0.0171* 0.0171* 0.161*** 0.014*  0.0137 0.0182 0.0185 0.0615 
 (2.57) (2.33) (2.35) (6.69) (2.35)  (1.40) (1.64) (1.94) (0.60) 
FAW 0.106** 0.108*** 0.108** 0.119** 0.149*** 0.057* 0.0242 0.0488** 0.265*** 0.207*** 
 (3.26) (3.31) (3.29) (2.71) (4.61) (2.43) (-1.27) (2.75) (4.40) (3.37) 

LR(c2) 2218.79*** 3384.91*** 16.58*** 1493.74*** *** *** 2803.66*** 5012.04*** *** *** 

N 2525 2525 2525 2525 2525 2525 1289 1236 1289 1236 

Note: t statistics in parentheses; * p < 0.10, ** p < 0.05, and *** p < 0.01 
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3.3.3 What is the effect of FAW and IPM practices on farm 
productivity?  

 
In any farming system, household adoption of IPM –related practices is 

motivated by the utility gained on the farm productivity. Accordingly, this study 
examines the effect of IPM practices on farm productivity. Table 3.3, thus, presents 
results of the ESR model, which measures the effect of FAW and IPM -related practices 
on farm productivity in the study area. Columns (1-3) report results from the ESR 
model, based on a maximum likelihood estimation (MLE), two step, and control 
function, respectively. Columns (4- 5) indicate ESR econometric output from the ESR 
for adopters and non-adopters, respectively, as proposed by Lokshin and Sajaia (2004). 
Columns (6 - 7) show results for MESR and PESR models, correspondingly. Columns (8 
– 9) results are based on the fixed and random effect panel models. Column (10) 
presents estimates from the panel based SFA. Columns (11 – 14) present estimates 
from the binary and multinomial ESR models for 2016 and 2020, respectively. All the 
models indicate variables with the same expected signs, but demonstrating some 
slight difference in magnitude of influence on farm productivity across factors of 
interest, namely, FAW. The interpretation of the results is based on Columns (4), (5), 
(6), and (7) and the rest are used a robustness check.  

Based on the estimated results in Column (4) and (5), the FAW has an expected 
sign and significantly reduce farm productivity by 7 and 15 percent between adopters 
and non-adaptors, ceteris paribus, respectively. These results are also the same as 
when the study estimates them through the PESR in Column (7), where FAW reduces 
farm productivity by 12 percent among households affected by FAW, holding all other 
factors constant. The FAW feed on vegetative and reproductive structures of the crops, 
resulting into excessive crop damage (MoAIWD, 2018). These results are in accordance 
with Abraham et al. (2017), Day et al. (2017) and Tambo et al. (2021).  

Besides, the study observes a positive effect of IPM –related practices on farm 
productivity. Adoption of various IPM –related practices enhance farm productivity by 
21 percent, ceteris paribus (see Column 7). Correspondingly, Column (6) estimates 
revealed that multiple adoption of IPM practices increases the probability of improving 
farm productivity from 34 percent to over 160 percent, holding all other factors 
constant.  Similarly, Columns (3) and (4) depicted that farm-size, chemical fertilizer, and 
improved crop varieties substantially increase farm productivity in the study area. An 
increase in farm-size by one acre enhance farm productivity by 24 and 5 percent for 
adaptors and non-adopters, ceteris paribus, respectively. Chemical fertilizer improves 
farm productivity by 10 percent for adopters and 5 percent for non-adopters. Equally 
important, Column (7) shows that improved crop varieties and chemical fertilizer 
augment farm productivity by 31 and 17 percent, ceteris paribus, individually. These 
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results are in line with Romeris (2019) who reports improved crop varieties acting as 
FAW biological control measures.  

Furthermore, farm-level characteristics play varying contributions to towards 
farm productivity at household level (see Column 7). The study notes that poor soil 
qualities are less likely to improve farm productivity than good soil quality and this is 
heavily felt for non-adopters of IPM –related practices. These results are in accordance 
with Fisher et al. (2018), who indicate that households with poor soils do not have any 
IPM –related practices in their farms. However, Day et al. (2017) suggest that 
households with poor soils should attempt adopting the IPM –related practices to 
improve soil structure, texture, and fertility.  
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Table 3. 3 : Results of the ESR models: The effect of the FAW and IPM adoption on farm productivity in Malawi 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 

 
ESR 
MLE 

ESR 
2SLS 

ESR 
CONT 

ESR 
NADAPT 

ESR 
ADAPT 

MESR PESR FE RE 
SFA 

BC-95 
ESR 

2016/2017 
ESR 

2019/2020 
MESR 

2016/2017 
MESR 

2019/2020 
LOG(FARMSIZE) 0.238*** 0.222*** 0.222*** 0.0540 0.244*** 0.221*** 0.300*** 0.113* 0.173*** 0.467*** 0.0127 0.268*** 0.127* 0.128* 
 (16.25) (12.12) (11.63) (0.54) (12.86) (14.58) (11.37) (2.28) (4.65) (18.73) (0.12) (5.67) (2.48) (2.36) 
LOG(LABORDAYS) 0.147*** 0.131*** 0.131*** 0.819** 0.0701** 0.144*** 0.068*** 0.156 0.153* 0.0462 0.0600 0.239** 0.150** 0.132** 
 (9.39) (6.81) (6.75) (2.85) (3.20) (9.10) (3.69) (1.84) (2.36) (0.97) (0.54) (2.78) (3.15) (3.25) 
LOG(FERTILIZER) 0.0619*** 0.0315* 0.0315* 0.0496*** 0.101*** 0.057*** 0.167*** 0.240*** 0.253*** 0.216*** 0.0788 0.0519 0.112*** 0.160*** 
 (10.89) (2.47) (2.34) (4.31) (13.56) (9.65) (14.84) (11.47) (15.89) (20.09) (1.69) (1.43) (6.18) (8.56) 
LOG(SEED) 0.0557** 0.0969*** 0.0969** 0.387* 0.00279 0.0561** 0.313*** 0.763*** 0.798*** 0.177*** 0.932*** 2.377*** 0.344*** 0.427*** 
 (2.86) (3.55) (3.21) (2.47) (0.11) (2.90) (9.11) (25.77) (34.87) (12.87) (4.23) (35.44) (6.27) (8.77) 
LOAMY SOIL -0.070** -0.165*** -0.16*** -2.407*** -0.0126 -0.092** -0.0568 0.751*** 0.634*** 0.498*** -0.307 -0.196 -0.102 -0.247* 
 (-3.13) (-3.84) (-3.68) (-4.00) (0.06) (-3.21) (-1.15) (7.35) (8.23) (9.08) (-1.20) (-0.94) (-1.16) (-2.50) 
SANDY SOIL -0.0412 -0.118** -0.118** -3.238** -0.0238 -0.0642* -0.0228 0.612*** 0.470*** 0.466*** -0.748** -0.159 -0.239** -0.0229 
 (-1.79) (-3.05) (-2.96) (-2.80) (0.13) (-2.25) (-0.45) (5.37) (5.55) (7.54) (-2.79) (-0.92) (-2.61) (-0.23) 
FAIR SOIL -0.113*** -0.146*** -0.14*** -2.091* -0.139 -0.11*** -0.16*** 0.473*** 0.399*** 0.0494 -0.112 -0.142 -0.0914 -0.287*** 
 (-6.41) (-6.09) (-5.84) (-2.42) (-1.90) (-6.29) (-3.69) (5.12) (5.70) (1.00) (-0.88) (-1.25) (-1.25) (-3.38) 
POOR SOIL -0.171*** -0.215*** -0.21*** -0.742*** -0.120* -0.16*** -0.177** -0.56*** -0.42*** -0.046 -0.247 -0.196 -0.141 -0.218 
 (-6.92) (-6.48) (-6.24) (-4.04) (-2.04) (-6.52) (-3.05) (-4.27) (-4.29) (-0.66) (-1.18) (-1.22) (-1.38) (-1.90) 
GENTLE SLOPE -0.0723 -0.0284 -0.0284 -0.867*** -0.0154 -0.0084 -0.125** 0.218* 0.148* 0.0555 0.0744 0.0767 0.0805 -0.0997 
 (0.40) (-1.14) (-1.08) (-4.37) (-0.02) (-0.43) (-2.87) (2.34) (2.07) (1.11) (0.64) (0.81) (1.09) (-1.20) 
STEEP SLOPE -0.0738 -0.0398 -0.0398 -0.168*** -0.0733 -0.0161 -0.0834 -0.098 -0.065 -0.055 -0.0538 -0.188 0.0859 -0.180 
 (0.03) (-1.09) (-1.05) (-3.55) (0.73) (-0.55) (-0.13) (-0.66) (-0.59) (-0.68) (-0.34) (-1.31) (0.80) (-1.32) 
FAW -0.06*** -0.085*** -0.08*** -0.148 -0.0647* -0.14*** -0.122** -0.78*** -0.85*** -0.43*** -0.0631 -0.031 -0.314*** -0.317*** 
 (-3.52) (-3.84) (-3.84) (-1.03) (-2.14) (-6.61) (-2.78) (-8.01) (-11.8) (-8.33) (-0.49) (-0.34) (-3.46) (-3.73) 
FAW*IPM 0.061*** 0.056*** 0.056***     0.036 0.071*** 0.064***     
 (2.97) (2.27) (2.75)     (1.38) (3.50) (3.30)     
IPM ADAPTATION               
ONE PRACTICE 0.201* 0.850*** 0.850**   0.0650 0.210* 0.316*** 0.445*** 0.535*** 0.591*** 0.102 1.289*** 1.234*** 
 (2.20) (3.32) (3.13)   (0.93) (2.13) (10.56) (15.18) (7.98) (3.75) (0.13) (7.70) (6.53) 
TWO PRACTICES      0.341**       2.342*** 2.330*** 
      (2.71)       (8.69) (7.05) 
THREE PRACTICES      0.756***       3.455*** 3.479*** 
      (4.02)       (8.93) (7.18) 
FOUR PRACTICES      1.604***       4.735*** 4.793*** 
      (4.63)       (9.02) (6.64) 

LR(c2) 2218.79*** 3384.91*** 16.58*** 1493.74*** 1493.74*** *** *** 122.11*** 2841.66*** 2652.03*** 2803.66*** 5012.04*** *** *** 

N 2525 2525 2525 2525 2525 2525 2525 2525 2525 2525 1289 1235 1289 1235 

Note: t statistics in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01 
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3.3.4 What is the impact of IPM –related practices on food security? 
 

In rural areas, the main source of livelihood is crop production (MoWAID, 2018, 
NPC, 2021). Accordingly, the study investigates the impact IPM –related practices on 
the household food security using the maximum likelihood ESR treatment effect. Table 
3. 4 shows the effect of various IPM –related practices between adaptors and non-
adaptors. In general, the multiple adoption of various IPM –related practices 
significantly improve household food security by four times and there was substantial 
difference between the adopters and non-adopters. This is in line with findings by 
Tambo et al. (2021) and Shiferaw et al. (2014).  
 
Table 3. 4 : The effect of various IPM practices on household food security 

 NON-ADAPTORS ADOPTORS DIFFERENCE %TAGE CHANGE 
SWC 1.04 6.54 *** 496.2% 
MULTIPLE ADOPTION 1.32 7.85 *** 456.1% 
INTERCROPPING 1.92 8.37 *** 298.4% 
COVER CROPPING 3.73 7.29 ** 101.1% 
AGROFORESTRY 0.04 5.62 *** 99.3% 
CROP RESIDUES 4.21 6.02  43.9% 
TIMELY PLANTING 3.93 5.27  36.4% 
IMPROVED VARIETIES 4.29 5.56  11.7% 
MARGINAL LAND 5.86 1.58 *** -71.3% 
FALLOWING 4.94 1.88 *** -62.6% 
PESTICIDES 4.54 2.66 * -37.2% 

Note: * p < 0.10, ** p < 0.05, and *** p < 0.01 

 
In particular, the study finds that each IPM practice significantly improves the 

household food security. For example, the soil and water practices, such as vetiver 
glasses and lime, enhance household food security by almost five times. Intercropping 
also noticeably increase household food security by approximately three times. In 
addition, mulching, agroforestry, crop residues, timely planting, and improved crop 
varieties augment household food security by 101, 99, 44, 36, and 12 percent, 
respectively. Controversy, marginal land cultivation (71%), fallowing (63%), and 
chemical pesticides (37%) reduce household food security and these findings are in 
line with Tambo et al. (2019) and Day et al. (2017). 
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3.4 Conclusions and Key Policy Recommendations 
 

This study investigates the effect of FAW and IPM -related practices on farm 
productivity. The study uses data from an integrated household panel survey, gathered 
by the NSO and the World Bank between 2010 and 2020.  In dealing with the potential 
endogeneity, the study adopts the ESR model to estimate the actual effect of FAW and 
IPM –related practices on farm productivity, and eventually household food security. 
The study results reveal that 51 percent of households in 2010 - 2020 experience FAW. 
Accordingly, households undertake various IPM –related practices to control the effect 
of FAW, namely, sustainable land management, intercropping, and timely planting. 
IPM –related practices such as marginal cultivation harboured FAW, resulting into 
reduced farm productivity and household food security.  

Results from an ESR model show that FAW have significant and negative 
influence on farm productivity, thereby food security. On the one hand, the panel-
based ESR model results reveal that FAW reduce the farm productivity by 12 percent, 
ceteris paribus. On the other hand, households undertaking IPM -related practices 
enhance farm productivity by 21 percent, while holding all other factors constant. 
Multiple adoption of IPM –related practices augments farm productivity by 160 
percent based a multinomial ESR model, ceteris paribus. Furthermore, the study finds 
that characteristics such as farm size, improved crop varieties, loamy and sandy soil 
types, gentle, credit accessibility, and experience of FAW enhance the probability of 
adopting the IPM related practices. This study also notes that access to extension 
services considerably enhance household adoption of IPM –related practices by 14 
percent, while credit access improved the likelihood of adopting IPM –related practices 
by 26 percent, ceteris paribus. The study also finds improved crop variety augmenting 
the adoption of IPM –related practices. 

These results are relevant to the SSA and Malawi smallholder agriculture, where 
FAW have recently invaded substantial number of crop-farms, resulting in low farm 
productivity. If no policy is actioned to manage the FAW, the pest infestation would 
further push households into chronic poverty and hunger. Moreover, the study 
observes the use of IPM practices as ideal as most rural households do not have formal 
education and have limited access to extension services. Otherwise, rural households 
may abuse the use of chemical pesticides, which is harmful to human health and the 
environment. Hence, this study recommends the promotion of the IPM-led approach, 
which may likely minimise the unsustainable procurement and use of chemical 
pesticides. Additionally, the study suggests the introduction and adoption of the FAW 
resistant varieties, which have already worked elsewhere in SSA, but are not currently 
available in the country. Furthermore, the extension services should educate farmers 
on the risky healthy effect of pesticides in controlling the outbreak and spread of FAW. 
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Moreover, the study finds most households having cell phones, which could be used 
as means for reaching out with consistent FAW and IPM –related practices’ extension 
services. For future research, it is proposed that in-depth understanding of the health 
and environment effect of FAW in the study area.  
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Abstract 
 
 Tropical Cyclones–related floods (TCRFs) in Malawi have devastating effects on 
smallholder agriculture, thereby threatening household food security agenda, which is 
already constrained by poor agricultural practices, low use of improved varieties, 
unaffordable inorganic fertilizers, and fragmenting landholding sizes. Accordingly, 
households have engineered and indigenously implemented Sustainable Landscape 
Management (SLM) practices to contain the adverse effects of TCRFs on farm 
productivity. Hence, this study interrogates the effect of SLM adoption on farm 
productivity, while controlling for the potential selection bias through application of 
the Endogenous Switching Regression Model. Substantively, TCRFs reduce farm 
productivity by 31 percent, on the one hand, and influence the adoption of SLM 
practices by 27 percent, on the other hand. After interacting SLM with TCRFs, the study 
observes SLM adoption augmenting farm productivity by 24 percent, ceteris paribus. 
These study results demonstrate that SLM adoption is appropriate in enhancing farm 
productivity under intensifying TCRFs in Malawi.  

Key words: Tropical Cyclones –related Floods; Sustainable Landscape Management 
Practices; Farm Productivity; Endogeneity; Endogenous Switching Regression Model.  
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4. Introduction 
 

In Chapter four, the study lays-out the context, regarding the understanding 
the impact of tropical cyclone related floods on farm productivity in Malawi. It also 
presents the chapter research motivation; the objectives, and questions guiding the 
chapter. The chapter further highlights the specific theoretical and empirical 
framework, namely, the endogenous switching regression model. Lastly, this chapter 
discusses the results and present the conclusion and the key policy recommendations 
of the study.  
 

4.1 Study Context 
 

Tropical cyclones (TCs) have devastating economic consequences and are the 
most destructive natural hazards, globally (Knutson et al., 2020; Zhang et al., 2016). 
From 1980 to 2018, the TCs have been responsible for nearly half of natural disaster 
loss worldwide, with damage amounting to USD 2.1 trillion (Munich, 2018; Peduzzi et 
al., 2012). Over 4300 TCs-related floods (TCRFs) have occurred during the last four 
decades (IPCC, 2021), presenting both positive and negative effects on the economy 
(Klomp and Valck, 2014). On the one hand, TCRFs have brought water, improved soil 
fertility, and increased labour productivity, following the post-disaster’s 
reconstruction or restoration works (Department of Disaster Management Affairs 
[DoDMA], 2018; Kunze, 2021). On the other hand, they have eroded soil nutrients and 
microbial activities, delayed planting time, led to crop failure, and directly destroyed 
productive infrastructure, thereby negatively generating adverse income shock to the 
economy (Mohan et al., 2019; Kousky, 2014; Noy, 2009). Globally, adaptation costs 
towards TCRFs have increased from US$ 7 billion in 1980s to US$ 24 billion in 2000s, 
and is projected to around US$ 330 billion in 2050 (Thomas et al., 2018; Hirabayash et 
al., 2010; Charlotte and Clay, 2004).  

Household vulnerabilities to TCRFs have become a new normal and been 
increasing since 1970s (Guha-Sapir and Cred, 2020; Tariq et al., 2020), threatening 
individual life and livelihoods’ assets (Hallegatte and Przyluski, 2010). Scholars have 
attributed poor site selection, traditional agricultural practices, ever fragmenting 
landholding sizes, low use of improved varieties, and rapid population growth to 
amplified household vulnerability (Wu et al., 2012). Furthermore, climate and weather 
variability is another most influencing factor, in the past, present, and future decades 
(World Bank, 2020, 2010; DoDMA, 2018). Additionally, long-lasting precipitation and 
warmer air temperature have augmented the frequency and severity of the TCRFs 
(Dentener et al., 2006). In SSA, temperatures have increased, leading to high 
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probabilities of TCRFs in the region for the next decades (McCarthy et al., 2021; IPCC, 
2018). 

Historically, over twenty TCRFs have occurred in Malawi since 1980s (World 
Bank, 2020). A number of geo-climatic factors are ascribed to causing TCRFs in the 
country, namely, (i) the influence of the El Niño and La Niña phenomena, (ii) the 
variability in the water levels of the country’s three major lakes, and (iii) the broader 
hydrological network, have intensified the country’s high-level vulnerability to TCs 
(DoDMA, 2018; World Bank, 2020). In addition, the country’s location along the 
African Rift Valley, rapid population growth, climate and weather variability, and highly 
dependence on rain-fed agriculture have intensified the country’s vulnerability to the 
TCRFs (World Bank, 2019). The climates in the country are driven primary by annual 
changes in precipitation association with the movement of the inter-tropical 
convergence zone (DoDMA, 2018). Not only have the TCRFs destroyed households’ 
assets but have also negatively affected agricultural production and food security 
(Eckstein et al., 2021). Recently, the country has been ranked among the first-five most 
affected developing countries by TCRFs in 2010, 2015, and 2019 (Margolies et al., 
2019).  

In 2010, the country experienced localized flooding damages, caused by 
tropical cyclone Funso, affected 61,085 people, displaced 24,790 people, killed 14 
people, and damaged 3,813 hectares of crop land in the Northern region (DoDMA, 
2015). In 2015, the country received the highest records of rainfall, causing flooding, 
predominately in the Southern region (Giertz et al., 2015). It affected over 1.1 million 
people, displaced about 0.23 million people, killed about 106 people, while 172 people 
went reported missing (World Bank, 2021). Economically, the floods led to a total 
disaster effect of US$ 335 million (DoDMA, 2018). In 2017, tropical cyclone Dineo 
caused flooding in Malawi and damaged crop land, largely in the Southern region. In 
2019, the country suffered heavily from the tropical cyclone Idai and Kenneth (TCIK) -
related floods, affecting over 0.9 million people, displaced 0.1 million people, killed 60 
people, and injured about 672 people (World Bank, 2020). TCIK also washed away over 
100,000 hectare (ha) of cropland, submerged already mature crops, prolonged water 
lodging, facilitated cobs’ maturity, and wilted plants beyond regeneration (World 
Bank, 2019). It further damaged most crops, viz., maize, sorghum, rice, and cassava 
(Eckstein et al., 2021), ultimately, reducing agricultural production by 20% and leading 
to over 4.8 million people food insecure (World Bank, 2020).  

The prevailing above realities together with high poverty levels have led to 
engineering of TCRFs adaptation frameworks in the country (World Bank, 2018; 
MoAIWD, 2018). After each devastating TCRFs, the State President of the republic of 
Malawi has declared the country disaster prone and developed national response 
plans to recover from the disaster effects (World Bank, 2020). The Government, 
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through DoDMA, has developed various disaster risk management (DRM) frameworks, 
namely, the National Resilience Strategy 2018 -2030 (DoDMA, 2018). The country has 
also reviewed the disaster preparedness and relief Act to include the DRM actions 
(World Bank, 2018). Since early 2000s, the country has further financed recovery 
strategies, costing over US$ 1.0 billion, where the 2019 recovery initiatives demanded 
about US$ 371 million (World Bank, 2020).  

Additionally, the country has adopted and institutionalized the building back 
better concept, which spearhead climate resilient investments in various sectors, 
including agriculture such as Sustainable Landscape Management (SLM) –related 
practices (World Bank, 2020, MoAWID, 2018). Furthermore, several stakeholders, 
including households, have indigenously engineered and adapted various SLM 
practices, including flood protection infrastructure, conservation agriculture, and 
agroforestry measures (McCarthy et al., 2021; Nyadzi et al., 2021). The SLM is defined 
as the usage of soil and water resources to meet changing population needs and 
values, while ensuring long-term land –related socioeconomic and ecological services 
(Smyth and Dumanski, 1993). Practically, the SLM approach combines agricultural 
practices and policies, aiming at integrating socioeconomic and environmental 
principles, which simultaneously: (i) maintain and enhance productivity; (ii) reduce crop 
production risks; (iii) enhance soil capacity to buffer against adverse effects of TCRFs, 
and eventually, augment food security at household level (FAO, 2021, 2016).  

However, the efficacy of these SLM practices has remained doubtful, as TCRFs 
continue to negatively affect household livelihood assets (World Bank, 2019; World 
Bank; 2020; MoAIWD, 2018; Chinseu et al., 2018; Cole et al., 2019). Moreover, the 
adoption rate of the SLM practices still remains very low despite their potential 
maximum benefits (Fisher et al., 2018). Unfortunately, literature is scanty on the 
microeconomic impact of TCRFs and SLM adoption (Kunze, 2021; McCarthy et al., 
2021). Households implement these SLM practices differently due to asymmetric 
information and variant socioeconomic profiles (Chinseu et al., 2018). TCRFs have 
recently become common in Malawi, compromising agricultural productivity, food 
security, and poverty reduction initiatives (MoAWID, 2018; DoDMA, 2018; Pangapanga 
and Mungatana, 2021). Nonetheless, fewer studies have evaluated the TCRFs impacts 
on the farm productivity (World Bank, 2020). Moreover, most studies have only 
examined socioeconomic characterization of household vulnerability to TCRFs, without 
further understanding drivers of SLM adoption (McCarthy et al., 2021; Botzen et al., 
2019; Cole et al., 2019). Likewise, these studies have partially interrogated the effect of 
TCRFs at household level (Khataza et al., 2018; Katengeza et al., 2018). Otherwise, they 
have assessed the effect of TCRFs on single crop, namely, maize, instead of the entire 
farm productivity (Pangapanga and Mungatana, 2021), which may not thoroughly 
capture the effect of TCRFs on the farm. Aragon et al. (2019) and Muyanga and Jayne 
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(2019) have discussed how to capture farm productivity, which accounts for all crops 
cultivated on the farm. 

This study results are therefore relevant to the existing policy making process 
in three-fold. First, the study highlights the impact of TCRFs on farm productivity, 
thereby providing a thorough impact of the weather event on farm productivity. 
Second, the study interrogates factors driving the adoption of SLM -related practices, 
resulting into DRM programming which mainstreams indigenous knowledge and 
feedback. Lastly, the study examines the role of SLM –related practices on farm 
productivity under different episodes of TCRFs. This study differs from the previous 
assessments by adopting the farm productivity concept to holistically capture the 
impact of TCRFs on farm productivity. In addition, methodologically, the study adopts 
the ESR model, which controls for both observable and unobservable heterogeneity 
associated with the adoption of SLM practices. Furthermore, for robustness checks, the 
study executes the panel based fixed, random effect, and Cob-Douglas (CD) 
production models. The study uses the household data, compiled by the National 
Statistics Office (NSO) and the World Bank between 2010 and 2020. Ultimately, the 
study results inform the existing Sustainable Development Goals (SDGs) and Malawi 
Vision 2063 farm productivity initiatives under changing TCRFs episodes in Malawi. 
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4.2 Research Methodology 
 

4.2.1 Study area, Sampling Strategy, and Data Acquisition 
 

The study is conducted in Malawi, which is located in SSA and shares boundary 
with Mozambique to the East and South West, Tanzania to the North, and Zambia to 
the West (McCarthy et al., 2021; Kilic et al., 2021). Figure 1.5 presents the map of 
Malawi, having three regions and 28 administrative districts (NPC, 2021). Accordingly, 
districts are subdivided into traditional land administrative authorities, which are 
further demarcated into enumeration areas, for statistical purposes (NSO, 2020). The 
country has a sub-tropical climate, which is relatively dry and strongly seasonal, 
influenced by the inter-tropical convergence zone (Pangapanga and Mungatana, 
2021). It has one rainy season, which stretches from November to April. The annual 
average precipitation varies from 725 mm to 2,500mm. Low-lying areas such as the 
lower Shire valley and along the lakeshore suffers from tropical cyclone -related floods 
(TCRFs), almost annually. A winter season is evident from May to August, with mean 
temperature circulating from 4 to 20 degrees Celsius. A dry season lasts only for two 
months, namely September and October, where mean temperature varies between 25 
and 37 degree Celsius (MoAIWD, 2018).  

This study uses household data from the integrated household panel survey 
(IHPS), compiled by the NSO and the World Bank between 2010 and 2020. The survey 
is representative and adequate to explain variations at the national, regional, urban-
rural, and district levels (NSO, 2012). The dataset includes randomly sampled farm 
households, who received both the household and the agricultural questionnaires 
(Kilic et al., 2015). Households operate at least one farm land and cultivate crops, viz., 
maize, sorghum, millet, potatoes, cassava, tobacco, and leguminous crops (NSO, 2012, 
2014, 2018, 2020). Farm productivity is thoroughly measured when all cultivated crop 
on the farm are captured (Aragon et al., 2019). Thus, following Muyanga and Jayne, 
2019 and Aragon et al. (2019), the study derives farm productivity by dividing the value 
of the agricultural output of all crops by the area of land cultivated. Additionally, the 
IHPS captures data on seeds, organic manure, inorganic fertilizer, and labor in personal 
days, pesticides, and soil characteristics. The IHPS also collects socioeconomic 
information, namely, age, education, mobile-phone, credit, and access to extension 
services, and SLM –related practices (namely, zero disturbance tillage, organic manure, 
soil and water conservation structures, agroforestry, inorganic fertilizers, and improved 
crop varieties) (Kilic et al., 2012; McCarthy et al., 2021). Besides, the IHPS asks each 
household to self-report whether they have experienced any TCRFs or not. 
Accordingly, in this study, any household, affected by TCRFs is denoted as TCRFs 
affected households (TAH), and otherwise, non TAH (NTAH). Any household 
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undertaking either one or more SLM –related practices in their farm is referred as an 
adopter in this study. Similarly, Table 1.1 provides a list of definitions, measurements 
and expected signs of various variables used in this study. The definitions and 
measurements of the variables are in accordance with the NSO (2020), Midingoyi et al. 
(2019), Katengeza et al. (2018), Khataza et al. (2018), and Teklewold et al. (2013).  

 
4.2.2 Theoretical and Empirical Framework 
 

Adoption of Sustainable Landscape Management (SLM) –related practices is a 
household response from past experiences of TCRFs (DoDMA, 2018; Di Falco et al., 
2014). The adoption decision depends on the household ability, motivation, and 
derived utility values (Powers, 1993; Madala, 1983, Blundell and Powell, 2004; 
Chamberlain, 1980). The expected utility theory informs the modelling of the effect of 
the SLM –related practices on farm productivity (McFadden, 1974). The SLM practices 
include minimum tillage, fallowing, box ridges, contour riding, mulching, 
intercropping, cover crops, and crop residuals. Household choice of these practices is 
dependent on several factors, including household characteristics, namely, age, 
education, gender, access to credit, extension services, farm attributes, and tropical 
cyclone related floods. Theoretically, the expected utility of adopting SLM related 
practices is latent (McFadden, 1974) and can be observed through farm productivity.  

Following Lokshin and Sajaia (2004) and Wooldridge (2010), the study lets "#$∗ (. ) 
denotes the latent utility obtained from SLM adoption ()#*$). While )#*$ can be 
specified as in equation (1): 

 

  )#*$ =
1						./		0121#$ + 41# +	51#$ > 0
0						./		0828#$ + 48# +	58#$ < 0     [1] 

 
where )#*$	is the SLM adoption status of household . across SLM practices : in 

time ; and denotes one if an individual household can apply any of the SLM –related 
practices in their farm as prior-displayed, and otherwise, zero, in which 
.	<=><=?=@;?	1, 2, 3, … , E	households, while  :	.?	.@F=2=F	G?	1,2,3… , H	choices.  In this 
study, a household adopting at least one of the SLM –related practices is called an 
adopter. The 2#*$ is a vector of observable characteristics which determine SLM 
adoption status, viz. gender, age, education, and literacy level of the household, soil 
characteristics (soil type, quality, and slope), and experience of TCRFs. The 0* is the 
vector of unknown parameters to be estimated by the model, the 4#* is the panel-level 
random effect for adoption decision and 5#*$	is the observation-level adoption error 
term (Wooldridge, 2010). The SLM adoption ()#*$) enhances farm productivity, thus 
improving agricultural income and food security (McCarthy et al., 2021). Following 
Murtazashvili and Wooldridge (2016), the SLM adoption decision leads to two farm 
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productivity (I*#$) outcomes as in equation (2). Farm productivity is derived through 
combining all crop value in the farm to maize equivalent, following Muyanga and Jayne 
(2019) and Oregano et al. (2019). Crop value is generated through multiplying each 
crop produce in kg with its unit price in Malawi Kwacha, except for maize. Thereafter, 
this crop value of the other crops is converted to maize equivalent in terms of physical 
production qualities.  

 

I*#$ =
I1#$ = 0121#$ + J1)1#$ + <1# +	K1#$						./		)1#$ = 1
I8#$ = 0828#$ + J8)8#$ +	<8# +	K8#$						./		)8#$ = 0

  [2] 

 
where I*#$, 2*#$, )#*$, and 0* are as previously defined. The )#*$ is the estimated 

generalized residuals from equation (1) (Blundell and Powell, 2004). The <8# is the 
panel-based random effect for the adoption decision and the K*#$ is the observation-
level error term, and are bivariate norm. The K*#$ and 5#$ have a trivariate normal 
distribution, with mean vector zero and the covariance matrix (Ω) (see Powers, 1983) 
as in equation (3): 

 

Ω = covariance	 µ, K1#$, K8#$ =
VW8 VW1 VW8
VW1 V18 .
V8W . V88

   [3] 

 
where VW8 = variance (5), V18 = var (K1#$), V88= variance (K8#$), VW1 = covariance 

(5,	K1#$), and VW8 = covariance (5, K8#$). It is assumed that VW8 equal to 1 and is estimable 
only up to a scalar factor (Khonje et al., 2015, 2018; Wooldridge, 2010). Since I1#$ and 
I8#$ are never observed simultaneously, the covariance between K1 and K8 is not 
defined (Lokshin and Sajaia, 2004; Maddalla, 1983). The covariance between K*#$ and 5#  
is not defined as I1#$ and I8#$ are never observed simultaneously (Lee, 1982). Thus, the 
error terms of K1#$ and K8#$ of the outcome equation conditioned on the SLM adoption 
equation are non-zero (Lokshin and Sajaia, 2004), resulting in inefficient estimates 
when using any ordinary least square (OLS) estimation.  

Most studies have assessed the effect of household adoption decision using the 
PSM (Teklewold et al., 2013; Asfaw et al., 2016, 2012; Kassie et al., 2018; Khonje et al., 
2015). However, the PSM keeps households which have a common support between 
the SLM adopters and non-adopters (Rosenbaum et al., 1983), thus failing to capture 
unobservable characteristics. While the ESR model controls for the potential 
observable and unobserved heterogeneity through incorporation of the Inverse Mills 
Ratios (IMRs) (Madala, 1983). Through the Mundlak Approach, the standard ESR 
approach can be extended to a panel-data structure (Mundlak, 1978).  
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The ESR model is estimated simultaneously in two stages (Heckman, 1978). First, 
it generates the SLM adoption’s IMRs through estimation of the probit model, which 
account for unobservable heterogeneity (Wooldridge, 2010). Second, the OLS method 
assesses the effect of SLM adoption, with IMRs or generalized residuals as additional 
variables to control for any potential selection bias (Kassie et al., 2018). The study, 
thereafter, bootstraps the standard errors to control for heteroscedasticity arising from 
incorporation of the IMRs, (Murtazashvili and Wooldridge, 2016). In other words, 
households first adopt the SLM practice. Second, households derive improved farm 
productivity due to investments in the SLM practices. However, the adoption of SLM 
practices is influenced by several households and farm-level characteristics.  

According to Murtazashvili and Wooldridge (2016), the two panel-based ESR 
regimes in equation (2) can be combined as in equation (4):  

 
I#$1 = 0*2#$1 + (01 − 	08)	2#$1I#$Y 	+ J*)#$1 + (J1 − J8))#$1I#$Y + <#1 + I#$Y <#1 − <#8

+ I#$Y K#$1 − K#$1 	+ K#$1																					[4] 
 
where I#$Y is the endogenous switching variable at the basis of the sample 

selection interacting with both time constant and time varying variables. While 
I#*$, 0*, ]*, J*, <*, 2#*$	G@F	)#$1 are as formerly described and the whole model becomes 
consistent only after including the time varying variables’ mean values (Mundlak, 
1978), as additional covariates as in equation (5):  

 
I#$1 = 0*2#$1 + ]*2#$1I#$Y 	+ J*)#$1 + *̂)#$1I#$Y + <#1 + I#$Y G <1 + I#$Y(G)K#$1 		

+ K#*$																					[5] 
 
where ]* is a vector of the differences (01 − 08) of the coefficients of household 

and farm-level explanatory variables in the two regimes of the SLM adoption 
(Murtazashvili and Wooldridge, 2016). The G  is the Mundlak device, which is the 
mean of the explanatory variables, while K#*$ is a vector of idiosyncratic errors of the 
Mundlak relationship (Mundlak, 1978). Other parameters and variables in equation (4) 
are as prior discussed. The treatment effect, *̂ reduces to the difference (J1 − J8) in 
intercepts between the two regimes if the SLM adoption is a random practice (Lokshin 
and Sajaia, 2004). After incorporating the Chamberlain-Mundlak technique, the study 
derives the treatment effect, which is the expected value from a panel based ESR 
correction model (Murtazashvili and Wooldridge, 2016) as in equation (6):  

 
E I#*$ I#$Y, 2#*$

= ℎ 0*2#$1 + ]*2#$1I#$Y 	+ J*)#$1 + J*)#$1I#$Y + <#1 + I#$Y G <1
+ I#$Y(G)K#$1 		+ K#*$	  
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= I#$Yc 0*2#$1 + ]*2#$1I#$Y 	+ J*)#$1 + J*)#$1I#$Y + <#1 + I#$Y G <1 + I#$Y(G)K#$1 		+ K#*$
− (1 − I#$Y)c(−0*2#$1 − ]*2#$1I#$Y − J*)#$1 − J*)#$1I#$Y − <#1 − I#$Y G <1
− I#$Y G K#$1 − K#*$) 

[6] 
 

where ℎ(. ) is the generalized residual function, c(. ) is the IMR function while 
other parameters and variables in equation (5) are as previously defined. The IMR term 
is characterized with zero mean and does not correlate with any of the model 
explanatory variables. The study also estimates the impact of SLM adoption through 
generating the conditional actual and counterfactual expectations as in equation (7) 
and (8) (Wooldridge, 2010). 

 

E I#$1 I#$Y, 21#$ = 1 = VW1
e(012#$1 + ]12#$1I#$Y … )
Φ(012#$1 + ]12#$1I#$Y … )

≡ 012#$1 	+ G <1 + Γ1)#$Y																									[7] 

E I#$8 I#$Y, 28#$ = 0 = VW8
e 0828#$ + ]828#$I#$Y …

(1 − Φ) 082#$8 + ]82#$8I#$Y …
≡ 0828#$ 	+ G <8 + Γ8)#$Y																													[8] 

 
where e(. )  and Φ(. ) are standard normal density functions (Manda et al., 2015; 

Wooldridge, 2010). Where )#$Y is the generalised residuals which account for the 
endogeneity of the selection variable, while 2#$* represents household and farm -level 
explanatory variables. The 0, <, and � are vectors of unknown parameters to be 
estimated by the model, that is after bootstrapping the standard errors to control for 
inclusion of ℎ(. ) (Murtazashvili and Wooldridge, 2016). Other parameters and variables 
in equation (7) and (8) are as previously defined. The study examines the role of the 
TCRFs and the SLM adoption on farm productivity, through estimating the average 
treatment effect on the treated (ATET) and the average treatment effect on the 
untreated (ATU). Following Midongoyi et al. (2019) and Murtazashvili and Wooldridge 
(2016), the study estimates the ATET and ATU as in equation (9) and (10): 

 
ATET = E I#*1 I#$Y, 2#*$ = 1 − E I#*1 I#$Y, 2#*$ = 0 														[9] 
ATU = E I#*8 I#$Y, 2#*$ = 1 − E I#*8 I#$Y, 2#*$ = 0 																	[10] 

 
In practice, households adopt at least one of the SLM practices in the same 

farm, which arises to a multivariate binary or multinomial choice regression (Teklewold 
et al., 2013). On the one hand, any Poisson model is suitable when the treatment or 
the dependent variable is a count data (Wooldridge, 2010). It is appropriate when the 
adoption of one SLM practice does not alter the likelihood of an alternative practice 
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(Plan, 2014; Wollni et al., 2010). In this study, the adoption of one SLM practice may 
likely alter the likelihood of adopting any alternative. For example, cereal –legume 
intercropping may alter the likelihood of practicing agroforestry related SLM 
techniques. On the other hand, this study employ the panel-based ESR model to 
capture the effect of SLM adoption on farm productivity (Kassie et al., 2018). 

The study fits the ESM model using the full information to estimate the 
maximum likelihood (FIMLM), instead of the two-step least square or the limited 
information maximum likelihood estimators. The later methods result in 
heteroskedastic residuals and are potentially cumbersome (Lokshin and Sajaia, 2004). 
While the FIMLM uses the joint normality of the error terms and simultaneous 
estimation to derive consistent standard errors (Wooldridge, 2010). For robustness of 
the results, the study run binary probit, multinomial ordered probit, and panel-based 
ESR, Cobb Douglass, fixed and random effect models.  

Empirically, the study’s selection equation takes on the probit regressions and 
the outcome equation assumes the continuous or ordered regression (Kibira et al., 
2015). Previous studies (Katengeza et al., 2018; Khataza et al., 2018; Teklewold et al., 
2013) have informed the specification of the ESR model for the study. Accordingly, the 
study includes factors of production (such as fertilizer, labour, seeds), farm 
characteristics (i.e. soil quality, type, and slope), and TCRFs as explanatory variables in 
the outcome equation, where farm productivity is the dependent variable. Studies by 
Muyanga and Jayne (2019) and Aragon et al (2019) include farm size and personal-
days as the most critical explanatory factors for farm productivity. In addition, this 
study uses education, gender, age, mobile-phones, credit access, and household size 
as additional explanatory variables in the selection equation, where the adoption 
decision of SLM –related practices is the dependent variable. Following Midingoyi et 
al. (2019), the study uses access to extension services as an exclusion restriction 
variable, which provides information on the benefits of various SLM practices 
(MoAWID, 2018).  
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4.3 Results and Discussion 
 

4.3.1 Summary of household characteristics in Malawi 
 

Malawi has very diverse households with different socioeconomic and 
agricultural profiles (NSO, 2020). Table 4.1 shows the summary statistics of 
socioeconomic and farm-level characteristics of household affected (TAH) and not 
affected (NTAH) by the TCRFs in the study area. Seven out of ten households are 
headed by male, who are, on average, aged 43 years. About 80 percent of household 
heads have attended some formal education, where slightly above 60 percent of them 
properly can read and write in any local language, like Chewa, Tumbuka, Kyangonde, 
Sena, and Lhomwe.  On average, household heads have attend formal education. The 
majority of household heads in the study area have a mobile phone, which they use to 
access information from fellow farmers, relatives, and extension workers. Accordingly, 
about 60 percent of households have accessed agricultural extension services. 
Households have about five members, determining available family agricultural labour 
(NSO, 2020).  Based on the studentized t-statistics in Table 4.1, the study observes no 
statistical differences in terms of socioeconomic characteristics between TAH and 
NTAH households and the study findings are in line with NSO (2020) and McCarthy et 
al. (2021). 

Furthermore, households, in the study area, cultivated on 0.50 ha, implying that 
households have small farm holding sizes for crop production, which may never 
allocation expansion of agricultural activities. In other words, households may only 
invest in agricultural –related practices that intensify farm productivity. These results 
are statistically not difference between TAH and NTAH households (see Table 4.1). 
Moreover, the study finds that households have fragmented farm sizes due to 
population pressure, which is in line with the NSO (2020). Besides, slightly above half 
of the farms have loamy soils, seconded by sandy (26%), and clay soil type (21%). Fifty 
percent of the farms have good soil quality, followed by fair (37%) and poor (14%) soil 
quality. Approximately 55 percent of the cultivated farms have flat slope, followed by 
gentle (36%) and steep (10%) slope. These results determine the type of agricultural 
practices, which households may adopt to augment farm productivity and are 
consistent with Pangapanga and Mungatana (2021) and Asfaw et al. (2016).  

Additionally, households plant approximately 10 kg per acre of maize seeds 
equivalent and the application seed rate is not significantly different between TAH and 
NTAH households. In terms of chemical fertilizer, households apply slightly above 50kg 
per acre in the study areas, with TAH households applying 20 kg less than what NTAH 
apply, indicating resource constrained for TAH households. On the one hand, 
households derive a farm value of 132000 MWK/ha in the study area, where TAH and 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 - 92 - 

NTAH generate 160000MWK/ha and 146000 MWK/ha, respectively. This implies that 
TCRFs have a negative effect on farm productivity. The t-test also confirms a significant 
difference in crop output value obtained between TAH and NTAH households. On the 
other hand, after SLM adoption, adopters have higher crop output values than non-
adopter, where SLM adopters and non-adopters obtain 141,000 MWK/ha and 112,000 
MWK/ha, respectively (see Table 4.1). This income helps households to procure inputs, 
necessary for inducing farm productivity.  
  

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 - 93 - 

Table 4. 1 : Summary descriptive statistics of household characteristics between TAH and NTAH in Malawi 
  TCS –RELATED FLOODS  SLM POOLED DIFFERENCE (T-TEST) 

  NTAH TAH 
NON-ADOPTOR 

(NAD) 
ADOPTOR 

(AD) 
MEAN STD. DEV. NTAH v TAH NAD v AD 

GENDER 0.760 0.727 0.744 0.735 0.738 0.44     
AGE 43.09 42.2 40.77 43.26 42.484 16.947    
EDU_CLASS 5.825 5.896 6.334 5.665 5.873 4.598   
MOBILE PHONE 0.853 0.851 0.974 0.797 0.852 1.109    
CREDIT ACCESS 0.164 0.144 0.142 0.154 0.15 0.357    
ACCESS EXTENSION 0.64 0.576 0.551 0.617 0.597 0.491   ** 
HHSIZE 5.024 4.939 4.976 4.962 4.967 2.262     
OWN LAND 0.591 0.695 0.687 0.650 0.662 0.473   ** 
LITERACY 0.716 0.688 0.7 0.696 0.697 0.459     
ATTENDED SCHOOL 0.832 0.82 0.817 0.827 0.824 0.381   ** 
CLAY SOIL 0.227 0.203 0.144 0.241 0.21 0.408 **   
LOAMY SOIL 0.543 0.525 0.367 0.605 0.531 0.499   ** 
SANDY SOIL 0.275 0.245 0.165 0.295 0.255 0.436   ** 
GOOD SOIL QUALITY 0.541 0.473 0.347 0.562 0.495 0.5 **   
FAIR SOIL QUALITY 0.363 0.372 0.26 0.418 0.369 0.483   ** 
POOR SOIL QUALITY 0.159 0.123 0.08 0.159 0.135 0.341 ** ** 
FLAT SLOPE 0.574 0.545 0.46 0.596 0.554 0.497 ** ** 
GENTLE SLOPE 0.386 0.347 0.179 0.441 0.359 0.48   ** 
STEEP SLOPE 0.113 0.086 0.04 0.119 0.095 0.293   ** 
MULTIPLE ADAPTATION 4.983 4.274 2.56 5.379 4.503 2.216 ** ** 
OUTPUT VALUE 159,800 146,880 111,690 141,015 131,896.37 55,924.35 ** ** 
SEED QUANTITY 9.313 9.405 9.233 9.439 9.375 4.049    
NPK FERTILIZER 69.24 61.32 41.26 74.07 63.872 230.5 ** ** 
FARM SIZE IN HA 0.52 0.483 0.437 0.544 0.495 0.381     
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Figure 4.1 Proportional distribution of households adopting SLM practices by TAH, 
NTAH, Adopters and Non-Adopters 
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Figure 4.1 presents proportional distribution of households adopting various 
SLM –related practices across TAH, NTAH, Adopters, and non-adopters. Timely 
planting, SWC, and intercropping are the most adopted SLM –related practices in the 
study area. The larger proportion of households adopting SLM practices in NTAH can 
be attributed to the role of extension services, through government, civil services, 
farmer to farmer, lead farmers, and mobile phones, in informing households on the 
fundamental role of SLM under different TCRFs (McCarthy et al., 2021). Among SLM 
adopters, the study notes that at least one third of the households affected by TCRFs 
have adopted SWC, timely planting, intercropping, improved varieties, agroforestry, 
and cover cropping. This indicates that the SLM –related practices have an influence 
important role in augmenting farm productivity in the study area (McCarthy et al., 
2021; MoAIWD, 2018).  

Similarly, Figure 4.2 shows various SLM -related practices adopted at household 
level between 2010 and 2020. The study finds that soil and water conservation (SWC) 
measures (67%), namely, erosion control bunds and vetiver grasses are the most 
adopted practice to manage the effect of TCRFs in the study area, followed by 
intercropping (45%), improved varieties (41%), timely planting (40%), organic manure 
(23%), cover cropping (21%), agroforestry (20%), cultivation in marginal land (19%), 
crop residues (16%), and fallowing (14%). Interestingly, there is an increase in the 
proportion of households implementing various SLM –related practices in managing 
the adverse effects of TCRFs between 2010/2011 and 2019/2020. For example, the 
proportion of households using the SWC to contain the effect of TCRFs has increased 
from 50 percent in 2010 to slightly above 70 percent in 2019/2020. The number of 
households timely planting various crops has also increased from under one percent 
in 2010 to 40 percent in 2019/2020. Community interviews reveal that household 
previous experience of the TCRFs force them to opt for timely planting to avoid crop 
being submerged with water once TCRFs occur, further delaying crop planting. These 
results are similar to Kassie et al. (2015), where SLM practices are used to manage 
adverse effects of TCRFs.  
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Figure 3. 2 Proportional distribution of households adopting SLM practices: 2016 - 
2020 
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4.3.2 What factors affect the adoption of SLM –related Practices? 
 

Several factors affect the adoption of SLM –related practices. Households 
adopted various SLM related practices, namely, minimum tillage, crop residues, cover 
cropping, organic manure application, timely planting, agroforestry, and SWC 
measures (see Table 4.2). Columns (1), (2), and (3) present regression results from a 
ESR model, based on a maximum likelihood estimation (MLE), two staged ESR model, 
and the Wooldridge control function, respectively. Column (4) shows results from the 
full information maximum likelihood estimation based on Lokshin and Sajaia (2004). 
Column (5) and (6) presents results for the multinomial ESR (MESR) and the panel 
based ESR (PESR) models, respectively. Interpretation of the results is based on Column 
(6) of Table 4.2. 

Based on the PESR model, the estimates reveal that TCRFs induce SLM adoption 
by 27 percent, ceteris paribus (Column 6). Besides, improved crop varieties enhance 
the probability of adopting SLM –related practices by 2 percent, holding all other 
factors constant. Similarly, marginal change in farm size by one acre increases the 
chances of adopting SLM –related practices by 8 percent, ceteris paribus. However, the 
study finds chemical fertilizer reducing the adoption of SLM practices by 4 percent. 
This suggests limited complementarity between NPK fertilizer and SLM –related 
practices. These results are in line with Timothy et al. (2017) findings.  

In terms of farm-level characteristics, loamy (37%) and sandy (32%) soils 
enhance the probability of adopting SLM -related practices by slightly over one-third, 
ceteris paribus (Column 6). These results are the same across all models (see Column 
1-5). Quality soils play an important role in influencing household decision to practise 
SLM –related practices. The study observes that household with poor soil quality are 
33 percent more likely to adopt SLM –related practices than households with good soil 
quality, while holding all other factors constant. Similarly, households with fair soil 
quality are 22 percent significantly more likely to undertake any of the SLM -related 
practices than household farms with good soil quality. The study results show that 
poor soils require investment in SLM –related practices, which likely improve soil 
organic matter and texture. Furthermore, gentle and steep slopes are 51 and 60 
percent more probable to have SLM –related practices in the study area, respectively. 
Qualitative data shows that SLM control surface run off, thereby limiting soil erosion 
and leaching of soil nutrients. These results are consistent across all the models and in 
line with Thierfelder et al. (2016) and McCarthy et al. (2021). 

Socioeconomic characteristics also influence household decision in adopting 
the SLM -related practices (Column 5). In this study, the adoption decision of the SLM 
practices improves with the age of the household head by 3 percent, implying the role 
of long-term experience of TCRFs in changing farming behaviours, ceteris paribus. SLM 
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practices are labour intensive (McCarthy et al., 2021) hence the study find household 
size to have a positive effect on the adoption rate of SLM –related practices. 
Information plays a very critical role in influencing household decision to adopt various 
practices. Accordingly, households with mobile phones are 6 percent more likely to 
adopt any of the SLM –related practices than their counterparts, while holding all other 
factors constant. Mobile phones help households have access to climate and weather 
-related information, especially, on the merits and demerits of various SLM -related 
practices from fellow farmers, lead farmers, relatives, and extension workers (NSO, 
2020). These study results conforms to findings by Chinseu et al. (2018) and Fisher et 
al. (2018). 
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Table 4. 2 :  Results of the ESR models: Factors influencing the SLM adoption in Malawi 
 (1) (2) (3) (4) (5) (6) 
 ESR-MLE ESR-2SLS ESR-CONTROL ESR-FMLE MESR PESR 
LN(FARM SIZE) 0.0812** 0.0468 0.0468  0.0342 0.0896 
 (2.63) (1.50) (1.49)  (1.52) (0.41) 
LN(LABORDAYS) 0.231*** 0.249*** 0.249***   0.0822*** 0.260*** 
 (6.71) (7.17) (7.38)  (-3.38) (21.60) 
LN(FERTILIZER) -0.115*** -0.113*** -0.113***  -0.0891*** -0.0351*** 
 (-14.83) (-14.47) (-14.85)  (15.05) (3.81) 
LN(SEED) 0.0359 0.0295 0.0295  0.0471 0.241*** 
 (0.92) (0.75) (0.73)  (1.67) (15.52) 
LOAMY SOIL 0.556*** 0.586*** 0.586*** 0.706*** 0.557*** 0.371*** 
 (14.81) (15.50) (15.61) (19.62) (19.67) (8.30) 
SANDY SOIL 0.523*** 0.554*** 0.554*** 0.643*** 0.470*** 0.320*** 
 (12.06) (12.65) (12.26) (14.58) (15.07) (6.23) 
FAIR SOIL 0.208*** 0.222*** 0.222*** 0.274*** 0.223*** 0.223*** 
 (5.82) (6.15) (6.07) (7.61) (8.55) (5.35) 
POOR SOIL 0.342*** 0.363*** 0.363*** 0.396*** 0.298*** 0.327*** 
 (6.47) (6.79) (6.52) (7.17) (8.19) (5.39) 
GENTLE SLOPE 0.551*** 0.542*** 0.542*** 0.594*** 0.296*** 0.515*** 
 (14.88) (14.48) (14.15) (15.88) (11.21) (12.01) 
STEEP SLOPE 0.585*** 0.579*** 0.579*** 0.612*** 0.404*** 0.597*** 
 (9.03) (8.80) (8.33) (8.90) (9.65) (7.96) 
MALE -0.0160 -0.0203 -0.0203 -0.0309 -0.121***  
 (-0.44) (-0.51) (-0.51) (-0.79) (-4.22)  
AGE 0.0254** 0.0371*** 0.0371*** 0.0369*** 0.0330***  
 (2.65) (3.58) (3.55) (3.64) (4.31)  
AGE_SQUARE -0.0080** -0.0153*** -0.0153*** -0.0337   
 (-2.56) (-3.49) (-3.41) (-1.07)   
EDUCATION 0.0736 0.0647 0.0647 0.0292  0.0126***  
 (1.85) (1.50) (1.51) (0.71) (4.00)  
OWN MOBILE-PHONE 0.0998*** 0.0738*** 0.0738*** 0.0630*** 0.0821***  
 (6.14) (4.24) (4.47) (3.74) (6.21)  
CREDIT ACCESS     0.0993**  
     (2.95)  
HH SIZE 0.0533 0.0472 0.0472 0.0671 0.0532  
 (0.74) (0.06) (0.06) (0.89) (0.92)  
TCRFs 0.395*** 0.426*** 0.426*** 0.349*** 0.483*** 0.266*** 
 (9.07) (9.49) (9.85) (8.20) (15.56) (6.18) 

LR(c2) 5655.26*** 3299.76*** 16.90*** 1408.67*** *** *** 

N 3090 3090 3090 3090 3090 3090 

Note: t statistics in parentheses; * p < 0.10, ** p < 0.05, and *** p < 0.01 
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4.3.3 What are the effect of the TCs –related floods and SLM 
adoption on the farm productivity? 

 
Table 4.3 highlights the effect of TCRFs and adoption of SLM –related practices 

on farm productivity using various ESR model. Columns (1), (2), and (3) report the 
regression estimates of the ESR model, based on maximum likelihood estimator, a two-
step, and control function, respectively. Column (4) and (5) presents the results based 
on the ESR command in Stata for SLM non-adopters (4) and adopters (5), following 
Lokshin and Sajaia (2004).  Lastly, Column (6) and (7) reports outputs from the 
multinomial ESR (MERS) model and panel-based ESR (PESR) model, correspondingly. 
Columns (8), (9), and (11) presents results from panel-based fixed, random, and CD 
production function, respectively. All variables across all models show similar expected 
signs with slight difference in magnitude of marginal effect and the study interprets 
the empirical results based on Column 7 of Table 4.3.  

From Column (7), the study finds that TCRFs reduce farm productivity by 31 
percent in the study area, 10 percent among SLM adopters and 7 percent among non-
adopters, ceteris paribus. TCRFs wash away and submerge already matured crops, 
especially in areas occupied by SLM –related adopters (DoDMA, 2018). Accordingly, 
this implies that any crop that is submerged by water may not yield maximum results. 
The World Bank (2018, 2020) reports that TCRFs of 2018 reduced maize production by 
30 percent in Southern Malawi, which resulted into over a million households reporting 
food insecure and destitute for food assistance.   

Nonetheless, the study notes that households, which have adopted SLM 
practices, are 27 percent more likely to improve farm productivity than the non-
adopters (column 7), while holding all other factors constant.  Results from the MESR 
model reveal that the improvements in farm productivity increase with the number of 
the adopted SLM –related practices, ceteris paribus. Households which undertake at 
least one SLM practice significantly enhance farm productivity by almost 126 percent, 
holding all other factors constant. In other words, households which have adopted at 
least one SLM –related practices substantially derive higher returns than households 
adopting only one practice. After interacting SLM with TCRFs, the study finds a positive 
effect of SLM adoption on farm production by 24 percent, ceteris paribus (see Column 
7). This implies that SLM –related practices cushion households from the adverse effect 
of TCRFs on farm productivity and these results are consistent with Amadu et al. (2020), 
Midingoyi et al. (2019), and Khonje et al. (2018).  

Physical farm input like farm holding size, labour, seed, and fertilizer, also have 
positive and noticeable influence on farm productivity (Column 7). Marginal increase 
in farm holding size by one acres increases farm productivity by 40 percent in the study 
area, 20 percent for adopters, and 23 percent for non-adopters, ceteris paribus. 
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Similarly, marginal increase in labour by one personal day insignificantly improves farm 
productivity by 10 percent for SLM adopters and 19 percent for the non-adopters, 
holding all other factors constant. Equally, marginal increase in inorganic fertilizer by 
one percent enhances farm productivity by 16 in study area, where it augments farm 
productivity for SLM adopters and non-adopters by 10 and 4 percent, ceteris paribus, 
respectively. Furthermore, marginal increase in improved crop varieties seeds 
considerably enhance farm productivity 18 percent in the study area, 3 percent for 
adopters, and 7 percent for non-adopters. These results are also consistent with 
estimates from the PESR model, Kansanga et al. (2020), and Kassie et al. (2015).  

Farm-level characteristics, namely, soil quality, type, and slope, enhance farm 
productivity but differently (Column 7). On the one hand, farms with loamy soils are 
11 percent more likely to improve farm productivity than farms with clay soils. Though 
sandy soils are 8 percent more likely to augment farm productivity, their contribution 
was not substantive. Similarly, farms with gentle slope are noticeably 13 percent more 
probably to increase farm productivity. A similar trend is observed among SLM 
adopters (13%) and non-adopters (10%). On the other hand, households with fair and 
poor soil qualities are less likely to have improved farm productivity than good soil 
quality. In other words, the study results agree to FAO (2021) and Kassie et al. (2015), 
where it is suggested that farm with poor soils should adopt the SLM practices to 
enhance soil fertility.  
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Table 4. 3 :  Results of the ESR models: The impact of the TCRFs and SLM adoption on farm productivity  
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
 ESR 

MLE 
ESR 
2SLS 

ESR 
CONTROL 

ESR 
NAD 

ESR 
AD 

MESR PESR FE RE CD 

LNFARM SIZE 0.248*** 0.252*** 0.252*** 0.198*** 0.230*** 0.232*** 0.397*** 0.0760 0.110** 0.480*** 
 (16.44) (14.76) (14.39) (7.26) (13.07) (16.16) (18.87) (1.49) (2.90) (20.07) 
LNLABORDAYS 0.098*** 0.0597** 0.0597** 0.193*** 0.0963*** 0.138*** 0.0991 0.163 0.165* 0.100* 
 (5.89) (2.86) (2.90) (4.45) (5.36) (8.90) (0.84) (1.88) (2.48) (2.21) 
LNFERTILIZER 0.094*** 0.111*** 0.111*** 0.0429*** 0.0925*** 0.0849*** 0.155*** 0.278*** 0.292*** 0.189*** 
 (21.55) (17.35) (16.19) (5.44) (18.74) (18.94) (18.47) (13.14) (18.14) (17.97) 
LNSEED 0.0392* 0.0361 0.0361 0.0708 0.0321 0.0362* 0.181*** 0.833*** 0.882*** 0.175*** 
 (2.02) (1.65) (1.47) (1.62) (1.35) (1.96) (9.85) (27.89) (38.26) (13.49) 
LOAMY SOIL 0.089*** 0.181*** 0.181*** 0.0121 0.121*** 0.0764** 0.114** 0.984*** 0.886*** 0.479*** 
 (4.17) (5.58) (5.50) (-0.33) (4.39) (2.93) (2.81) (9.50) (11.35) (8.97) 
SANDY SOIL 0.101*** 0.186*** 0.186*** 0.00199 0.127*** 0.0815** 0.0774 0.792*** 0.683*** 0.490*** 
 (4.40) (5.67) (5.53) (0.04) (4.47) (3.15) (1.80) (6.79) (7.91) (8.09) 
FAIR SOIL -0.053** -0.0170 -0.0170 -0.153*** -0.0209 -0.0549** -0.0817* 0.548*** 0.488*** 0.0936 
 (-2.89) (-0.76) (-0.74) (-4.13) (-0.98) (-2.93) (-2.30) (5.79) (6.80) (1.93) 
POOR SOIL -0.078** -0.0254 -0.0254 -0.234*** -0.0439 -0.0855** -0.0832 0.670*** 0.573*** 0.0422 
 (-3.05) (-0.81) (-0.78) (-4.19) (-1.51) (-3.27) (-1.74) (4.97) (5.72) (0.62) 
GENTLE SLOPE 0.131*** 0.211*** 0.211*** 0.101 0.126*** 0.0846*** 0.133*** 0.271** 0.201** 0.0794 
 (6.50) (7.14) (7.09) (0.24) (5.26) (4.15) (3.55) (2.80) (2.71) (1.61) 
STEEP SLOPE -0.116*** -0.191*** -0.191*** -0.0521 -0.106** 0.0992** 0.0499 -0.112 -0.0483 -0.145 
 (-3.87) (-4.99) (-4.93) (-0.68) (-3.09) (3.16) (0.93) (-0.73) (-0.42) (-1.91) 
TCRFS -0.0382 -0.0180 -0.0180 -0.070* -0.109*** -0.260* -0.312*** -0.572*** -0.912*** -0.566*** 
 (-1.76) (-1.64) (-1.68) (-2.22) (-4.39) (-2.10) (-7.51) (-4.40) (-10.04) (-8.72) 
SLM*TCRFS 0.093** 0.101** 0.101**  0.116* 0.728*** 0.238*** 0.037 0.484* 0.484* 
 (2.91) (3.01) (2.84)  (2.64) (4.78) (4.45) (0.911) (2.26) (2.45) 
SLM            
ONE PRACTICE 0.693***(12.97) 1.184***(9.09) 1.184***(9.28)   0.288***(6.83) 0.271***(4.35) 0.055 (0.54) 0.016(0.20) 0.022(0.44) 
2 PRACTICES      0.369***(6.24)     
3 PRACTICES      0.471***(5.85)     
4 PRACTICES      0.609***(5.81)     
5 PRACTICES      0.767***(5.82)     
6 PRACTICES      1.073***(6.39)     
7 PRACTICES      1.259***(3.97)     

LR(c2) 5655.26*** 3299.76*** 16.90*** 1408.67*** 1408.67*** *** *** 133.56*** 2851.94*** 2653.50*** 

N 3865 3865 3865 3865 3865 3865 3865 3865 3865 3865 

Note: t statistics in parentheses; * p < 0.10, ** p < 0.05, and *** p < 0.01 
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Table 4.4 shows the effect of various individual SLM –related practices on farm 
productivity using the linear regression with endogenous household adoption 
decision. The study finds varying effect of SLM –related practices on farm productivity. 
For instance, the study notes that SWC, herbicides application, fallow cultivation, timely 
planting, agroforestry, improved varieties, intercropping, and multiple adoption of 
SLM –related practices positively influence farm productivity, on the one hand. 
Interestingly, the study observes that the application of herbicides significantly 
enhances farm productivity under different TCRFs due to minimum soil disturbances 
(Chinseu et al., 2018). On the other hand, the study results reveal that cultivation along 
marginal land, cover cropping, and incorporation of crop residues with ploughing 
reducing farm productivity.   
  

Table 4. 4 :  What are the effects of various SLM -related practices on 
farm productivity? 

 
Unit of 

measurem
ent 

NON-
ADOPTERS 

ADOPTE
RS 

DIFFEREN
CE 

%TAGE 
CHANGE 

HERBICIDES Yes=1 11.2 15.5 4.3 38.3% 
SWC Yes=1 10.3 11.6 1.3 12.8% 
MULTIPLE ADAPTATION Counts 10.4 11.5 1.2 11.1% 
INTERCROPPING Yes=1 10.9 12.1 1.2 10.2% 
IMPROVED VARIETIES Yes=1 10.9 11.9 1.0 9.3% 
TIMELY PLANTING Yes=1 10.9 11.8 1.0 9.0% 
FALLOWING Yes=1 11.2 11.9 0.7 6.0% 
AGROFORESTRY Yes=1 11.2 11.7 0.5 4.6% 
MARGINAL LAND Yes=1 11.6 10.3 -1.2 -10.7% 
COVER CROPPING WITH 
PLOUGHING 

Yes=1 
11.7 10.2 -1.5 -13.2% 

PLOUGHING Yes=1 12.0 08.2 -3.8 -31.3% 
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4.4 Conclusion and Key Policy Recommendations 
 

This study examines the effect of TCs –related floods (TCRFs) on farm 
productivity. The study further investigates factors affecting household adoption of 
SLM -related practices, namely, minimum tillage, crop residual, cover crop, organic 
manure application, soil and water conservation measures, terracing, and agroforestry. 
The study uses household data, collected by the NSO and the World Bank Living 
Standard Measurement Study team between 2010 and 2020. The study accounts for 
the selection bias and unobserved heterogeneity through employing the panel –based 
ESR model. The study results reveal that a number of factors influence the adoption of 
the SLM –related practices. Particularly, the TCRFs enhance the adoption of SLM 
practices by 27 percent, ceteris paribus. Households with access to credit markets are 
also 10 percent more likely to undertake the SLM practices than their counterparts, 
holding other factors constant. Furthermore, socioeconomic factors such as age, 
education and mobile phone positively influenced the adoption rate of the SLM –
related practices.  

However, the study finds TCRFs substantially reducing farm productivity by 31 
percent, ceteris paribus, justifying the adoption of the SLM –related practices to 
cushion farm productivity. Based on a panel ESR model, the SLM practices enhance 
farm productivity by 27 percent, holding other factors constant. Similarly, households 
that interacted SLM –related practices with TCRFs augment farm productivity by 24 
percent, ceteris paribus. Accordingly, multiple adoption of the SLM –related practices 
substantially improve farm productivity by 126 percent. In other words, households 
adopting more than one SLM –related practices obtain higher returns than 
households, adopting only one SML practice. This implies that multiple adoption of 
SLM –related practices has higher likelihood of cushioning farm productivity from 
adverse effect of TCRFs. Generally, farms with poor soil quality and steep slope are less 
likely to have improved farm productivity, suggesting the need to invest in SLM 
practices. Moreover, female farmers less likely to adopt SLM practices in this study 
because they do not have access to productive resources. Hence, the study findings 
propose the need of gender targeted extension services, accompanied by some 
affordable SLM package. Besides, the study results reveal a competing relationship 
between chemical fertilizer and the SLM practices, suggesting the need to sensitize 
farmers on the inorganic fertilizer and SLM practices complementarities.  
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CHAPTER FIVE 
 

Understanding the impact of climate-induced rural – urban migration on the 
technical efficiency of maize production in Malawi 

 
Innocent PANGAPANGA1,2 & Eric MUNGATANA1 

 
Abstract 

 
This study estimates the effect of the climate induced rural-urban migrants 

(RUM) on the maize productivity. It uses panel data, gathered by the National Statistics 
Office and the World Bank to understand the effect of RUM on farm productivity in 
rural Malawi. The study runs the two-stage Tobit regression to isolate the real effect of 
rural-urban migration on the farm productivity. The results show that RUM significantly 
reduce the technical efficiency of maize production. However, the interaction of RUM 
and climate-smart agriculture have a positive and significant influence on the technical 
efficiency of maize production, suggesting the need of re-investing 
migrants’remittances in agricultural activities.  

 
Key Words: Climate Smart Agriculture, Farm Productivity, Rural-urban migration, 
Panel Stochastic Frontier Models.  
 
  

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 - 113 - 

5. Introduction 
 

In this Chapter five, the study lays-out the context, regarding the impact of 
rural-urban migration (RUM) on maize farm productivity as adaptive strategy towards 
different extreme weather events. It also presents the chapter research motivation; the 
objectives, and questions guiding the chapter. The chapter further discusses the 
specific theoretical and empirical framework, viz., the two-stage panel based Tobit 
regression. Lastly, this chapter highlights the results and discussion, the conclusion and 
the key policy recommendations of the study.  
 

5.1 Study Context 
 

Agricultural production is globally increasing with maize almost tripling from 
476.8 million tonnes in 1989 to over 1100.8 million tonnes in 2016 (Food and 
Agricultural Organization [FAO], 2018). Similarly, in Africa, maize production has 
doubled from 41.6 million tonnes in 1989 to over 84.2 million tonnes in 2016 
(Binswanger and Townsend 2000, FAO, 2014). Binswanger and Deininger (2005) and 
FAO (2018) attribute the increase in agricultural production to augment the use of 
inorganic fertilizers and improved crop varieties. In Africa, agriculture accounts for at 
least 20 percent of the GDP, contributes about 60 percent of employment, and forms 
half of the total export earnings (World Bank 2018). However, in Sub-Sahara Africa 
(SSA), literature shows declining agricultural production from 12.8 million tonnes in 
1989 to 8.0 million tonnes in 2016 (Benin et al., 2016). This is partly because of low use 
of inorganic fertilizer, traditional crop varieties, rain-fed agriculture, fragmented farm 
sizes and extreme weather events (Chauvin et al., 2012). Accordingly, SSA has aligned 
its agricultural agendas with continent agricultural programme to boost agricultural 
production and productivity, where countries appropriate 10 percent of the total 
national budget to agricultural programmes.  

Like other developing countries in SSA, Malawi economy is predominantly 
agriculture, contributing 30 percent of the GDP, 80 percent of the total export earnings, 
and 85 percent of the livelihood to the rural population (MoAIWD, 2018), employing 
64 percent of total workforce, where women form over 70 percent of its labour-force 
(NSO, 2020). Furthermore, the agricultural sector is dualistically categorized into 
smallholder (78%) and estate (22%) sub-sectors (NSO, 2020), where smallholders farm 
on 3.3 million communal hectarage and mostly rural. The smallholder agriculture 
highly relies on rain-fed agriculture and over 90 percent of them cultivate maize 
(MoAIWD, 2018). Land user rights are disproportionally distributed, along the lines of 
gender, with women cultivating on less than 0.45 hectares (NSO, 2018), where the 
majority of households cultivate local maize varieties, have increasing land 
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fragmentation and only 4 percent is under irrigation (NSO, 2018). Amare et al. (2015), 
Ravallion and Datt (1999), and NPC (2020) argue that improving agricultural 
productivity is thus the main pathway out of poverty for developing countries like 
Malawi and achieving SGD target on poverty reduction and zero hunger. 

Despite the role maize play in poverty reduction in Malawi, over the past 
decades, the country has experienced erratic maize production and productivity 
because of declining soil fertility, land fragmentation, communal land tenure system, 
unsustainable agricultural practices, and underdeveloped infrastructure (McCarthy et 
al., 2021; Katengeza et al., 2019; Kilic et al., 2015; MoAIWD, 2018; FAO, 2018). Lately, 
extreme weather events, namely, droughts, floods, and pest outbreak, such as fall 
armyworms, have amassed discussions around agricultural productivity (McCarthy et 
al., 2018; Asfaw et al., 2016; Mwase et al., 2013), where it is highly correlated with 
volatility in agricultural productivity. Mwase et al. (2013) report increased maize 
production during the years of 2010/2011 and 2013/2014, and reduction in 2004/2005 
and 2015/2016, where extremes weather events were absent and present, respectively.  

Adverse effects of extreme weather events have disrupted rural livelihoods 
forcing households indigenously adopt rural-urban migration, as an extreme weather 
event adaptive strategy (RUM) (DoDMA, 2018; World Bank, 2018).  NSO (2020) 
reported that over 40 percent of the population in rural areas migrated to urban areas 
to generate remittances for investing in climate resilient agricultural activities for 
household members left behind. Undoubtedly, RUM presents an important 
opportunity as an adaptive strategy to increasing weather events in Malawi (Zhang et 
al., 2020; NSO, 2020; MoAIWD, 2018; FAO & IOM, 2017). Through remittances, the 
climate induced RUM can help households invests in climate induced –related 
adaptation practices, thereby building household resilience to varying extreme 
weather events. RUM has increased the frequency and the amount of remittances 
trickling down to rural households from US$0.84 million in 2002 to about US$ 40.0 
million in 2016 (Dinkelman and Marriott, 2016; Truen et al., 2016). Generally, remittance 
receipts have increased from under one percent in early 2000s to over 23 percent in 
2020, with Covid-19 increasing the number of household receiving remittance to 
approximately two-third of the rural households (World Bank, 2020). Households have 
invested migrants’ remittances in climate-smart agricultural (CSA) –related practices, 
viz., soil and water conservation (SWC) practices, drought tolerant varieties, fallow 
cultivation, agroforestry practices, and conservation agriculture to boost agricultural 
productivity (NSO, 2020; FAO, 2018; McCarthy et al., 2016).  

Unfortunately, existing literature offers mixed results on the role of RUM and 
remittances on agricultural productivity (Anglewicz et al., 2017; Asfaw et al., 2016; 
McCarthy et al., 2016; Adams and Cuecuecha, 2013; Anderson, 2011), thereby failing 
to inform agricultural policies. Elsewhere, scholars have demonstrated negative and 
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positive effects of urban migration (de la Fuente, 2010; World Bank, 2018). For example, 
in Ghana, urban migration has reduced family labour, land tenure security and changes 
headships (Tshikala et al., 2014; Massey et al., 2012), resulting in reduced agricultural 
production. Also, in Mexico, households have invested migrants’ remittance in non-
productive activities, namely, food consumption (Adams and Cuecuecha, 2012; de la 
Fuente, 2010). However, migrants’ remittances sometimes are used to cushion 
households from credit and risk constraints (Stark and Davie, 1985). Furthermore, 
migrants’ remittances have also enhanced the adoption of CSA practices, where 
migrants have shared innovative ways of farming through existing media platforms 
(Stark and Davie, 1985). Yet, literature on the effect of RUM on farm productivity, as an 
adaptive strategy to extreme weather events, is still scanty (Katengeza et al., 2018; 
Khataza et al., 2018), failing to present the real effect of RUM on the farm productivity, 
which has been annually fluctuating between 2.37 and 3.98 million (MoAIWD, 2018; 
FAO, 2018). 

This study contributes to policy making process on farm productivity by 
assessing the effect of RUM on the technical efficiency of maize production. Usually, 
households use RUM as an adaptive strategy to extreme weather events. Eventually, 
the study results are relevant to the debate on SDGs and Malawi Vision 2063 on 
agricultural productivity under different weather extremes. The study adopts the maize 
crop because it is cultivated by over 90 percent of the households (NSO, 2020, 2018). 
The study further applies a two-stage panel based Tobit regression to isolate the effect 
of RUM on the technical efficiency of maize production in the study area. Data from 
the three-wave IHPS, conducted by the NSO and the World Bank between 2010 and 
2016/2017 is used in this study.  
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5.2 Research Methodology 
 

5.2.1 Study Area, Sampling Strategy and Data Acquisition 
 

This study is implemented in Malawi, which is a landlocked country, located in 
Sub-Sahara Africa (SSA) bordering Tanzania to the North, Mozambique to the East, 
South and West, and Zambia to the North West (see Figure 1.5). The country is divided 
into three regions, which are further divided into districts. There are 28 districts in total, 
with four urban centres. The country has one rainy season, which runs from October 
to April. Variations in altitude, ranging between under 500 to over 1500 m above sea-
level, have led to the wide differences in the country’s mean temperature and 
precipitation during the agricultural cropping season (World Bank, 2020). The mean 
temperature ranges from 23 to 25 degree Celsius, while precipitation has averaged 
between 85.90 and 238.40 mm annually.  

The study data is based on the Integrated Household Panel Survey (IHPS), 
collected by the NSO and the World Bank between 2010 and 2017 (NSO, 2020). Using 
the IHPS, about 3865 households are randomly selected using the multi-stage 
sampling procedure (Kilic, 2014; Kilic et al., 2021). First, the country is divided into 
district, then sub-divided into traditional areas, and lastly into enumeration areas, 
where households are systematically and randomly picked for the survey (NSO, 2012, 
2013, 2017; 2020). There are 1300 households, which are matched across 2010/2011, 
2013 (n=1272), and 2016/2017 (n=1289) sample to form a balanced panel. The survey 
captures data on household characteristics, including education, labour and time use, 
food security, income, credit accessibility, expenditure, consumable and durable 
goods, migration, and household enterprises. Additionally, the survey collects data on 
institutional factors, such as credit, input and output markets, land acquisition, and 
extension services. Furthermore, the survey gathers data on farm-level characteristics, 
inputs, production, storage and sales. Households also receive a questionnaire on 
whether they have someone who migrated to other areas, including urban centres. In 
this study, any households, which respond to have had a migrant, does or does not 
receive any form of remittance, is labelled household with migrant (HWM), and 
otherwise, a household without migrant (HNM). The NSO and the World Bank have 
followed these households in 2010/2011, 2013, and 2016/2017. Table 1.1 highlights 
definitions, measurements, and expected signs of variables used in this study (NSO, 
2020; Katengeza et al., 2018; Khataza et al., 2018). 
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5.2.2 Theoretical and Empirical Framework 
 

Discourses on rural-urban migration (RUM) have existed in the literature since 
1900s, where households have used RUM as one of the sources of income (Lee, 1966; 
De Haas, 2014; Bakewell, 2010). However, literature has partially discussed the effect 
of climate–induced RUM on the technical efficiency of maize production (Vermeulen 
et al., 2012; McKinley et al., 2015; van Dijik et al., 2015; FAO and IOM, 2017; Tshikala et 
al., 2014; World Bank, 2018; Lipper et al., 2014; Asfaw et al., 2016). Figure 5.1 illustrates 
the relationship for extreme weather events, climate induced RUM, CSA, and related 
effect on the technical efficiency of maize productivity. Figure 5.1 also displays that 
household and farm level characteristics have an effect on the climate-induced RUM, 
the adoption of CSA, and the technical efficiency of maize production. 

The study uses the panel-based Cobb-Douglass Stochastic Frontier and two-
stage Tobit regression model (Kumbhakar et al., 2015; Pangapanga and Mungatana, 
2021). The study casts the research objective into the household decision making 
model, where it assumes a household is driven by expected random utilities. In other 
words, a household member migrants to urban areas only when the resultant presents 
higher returns than staying in rural areas. The study further postulates rural areas 
experience frequent and varying extreme weather events, which have an effect on rain-
fed maize production. Following RUM, households receive remittances which is 
invested in CSA –related practices (see Pangapanga and Mungatana, 2021 for CSA 
definition and examples).  

 

 

Figure 5. 1 : Conceptual framework of the relationship for Extreme Weather Events, Climate-induced Rural 
Urban Migration, and Adoption of Climate Smart Agriculture 
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Determinants of farm production can be analysed using either non-parametric 
or parametric frontiers (Kumbhakar et al., 2015). In simplicity terms, non- parametric 
frontiers do not specify any functional form on the error term (Chirwa, 2007) and the 
Data Envelopment Analysis is the most prominent non-parameter techniques. While, 
the parametric frontiers impose a functional form and distribution assumptions on the 
error term (Woodridge, 2016; Kumbhakar et al., 2015). Most common forms of 
production functions include the Cobb-Douglas (CD), Generalised, Transcendental and 
Translog Production Function.  

Production functions represent maximum output, generated given some inputs 
combination and available technology. The study builds our theoretical framework and 
discussion following Kumbhakar et al. (2015), Chirwa (2007), Battese and Coelli (1995), 
and Battese (1992). We assume all production processes are input-output 
transformative. We call the maximum output as “frontier of production”. It is aware 
that a production function is in itself devoid of any economic intuition (Kumbhakar et 
al., 2015). However, the study uses the production function to model optimization 
problems because it demonstrates some forms of weak monotonicity, quasi-concavity, 
non-negativity, and essentiality properties.  Optimization model in our case is a latent 
utility function, which is maximised given the maize-based Translog production 
technology subject to various inputs’ constraints in space and over time, such as 
capital and labour.  

Farrell (1957) first motivates the econometric modelling of production functions 
to estimates the technical efficiency (Batiese, 1992). Later, Aigner et al (1977) and 
Meeusen and van den Broeck (1977) independently extend and propose the SFA use, 
which can be specified as in equation 1.  

 

!"#$ = & '"#($, *, + ≡ -.!"#$ = *# '"#$ + *$+ ,														(1) 

where !"#($ denote non-negativity farm productivity (4) of household (5)	 and 
at time (+), '"#$ ∶ (5 = 1,2… . , :) represents a vector of inputs (;) used by household (5)  
in farm 4 	and at time (+), including rural-urban migration, and * is a vector unknown 

parameters to be estimated by the model. We derive margins, namely, 
<!"#$

<'#$
≥ 0 

and 
<?!"#$

<'#$
? < 0, of one input while fixing the other inputs (Fuss et al., 1978). We 

observe that technical inefficiency results into household failing to derive the 
maximum output along the production frontier, which is therefore the difference 
between potential and actual productivity (Kumbhakar et al., 2015; Mango et al., 2015). 
Customarily, a household is technically inefficient if a higher level of output (!) bundle 
is technically attainable given the inputs (') combination or the observed farm 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 - 119 - 

productivity (!) can be achieved, using a lower set of (') input bundle (Kumbhakar et 
al., 2015).  

The study derives the economic effects from the production technology (Varian, 
2016 and Fuss et al., 1978). First, we examine the homogeneity and return to scales of 
output over increasing level of inputs. It further assumes that a production function is 
homogeneous if it satisfies the monotonicity assumption, which is a mathematical 
construct of a product of a scalar factor A  and the farm productivity !  as presented 
in equation 2: 

AB!"#($ = & A'C"($, … , A'D"($ ,																																(2) 

If all inputs are increased by a factor of A  and the farm productivity augmented 
by a factor of AB , then the production function is called a homogenous of degree E 
in ' (Kumbhakar et al, 2015; Aneani, 2011). If E = 1, then households operate at 
constant returns to scale, E > 1 denotes increasing returns to scale, while E < 1 
represents decreasing returns to scale.   Returns to scale (RTS) only depends on ' if 
the production function is not homogenous. We can also the Marginal Rate of 
Technical Substitution (MRTS), G"# , as specified in equation 3: 

G"# = G#" =
HIJKLMII

HNIKLHOIKL
∗
QJI

Q
,																					(3)   

In general, the value of G"# lies between zero and infinity for convex isoquants. 
Perfect substitution between inputs is observed when G"# is infinity, complementary 
substitution is depicted when G"#	is negative, and always positive when inputs are just 
substitutes. Besides having a separable property, production functions exhibit 
technical change. In our study, this may be highly observed following rural-urban 
migration having some intertemporal characteristics, where farm managers learn and 
apply different management styles over time. However, technical change [ST . ] 
adopts a Hicks Neutral-where the shift does not depend on any input and otherwise 
(Simwaka et al., 2011, Tchale, 2009) and can be written as in equation 4. 

 

 ST ', + =
VWDM H.XYZ	([\ ,$)

V$
≡

] ^_`

]$
= *$																							(4)  

where the bxp	(−f) can be treated as either a neutral or non-neutral 
multiplicative or augmented agent factored to the panel-based stochastic production 
function. We factor time and derive output with respect to time to capture technical 
change. Following Kumbhakar et al. (2015), the study generates the elasticity of output 
with respect to input '# as in equation 5. 

g# =
h-.!"#($
h-.'"#($

= *#,																																																																										(5) 
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On the one hand, the study can apply a cross sectional SFA procedure to 
estimate the effect of RUM on the technical efficiency of maize production. However, 
it suffers from the endogeneity issues and may not capture the intertemporal technical 
change (Kumbhakar and Lovell, 2002). Unless the study adopts the corrected ordinary 
least square (COLS), the cross-sectional models require distribution assumption and 
assumes non-existence of the white noise (Simwaka et al., 2011). On the other hand, 
the panel data models account for the true state dependence, the endogeneity and 
the unobserved heterogeneity (Kumbhakar et al., 2015), by controlling for the 
unobservable individual and times effects.  

The Cobb-Douglass production function forms the empirical strategy of the 
study because it is flexible, interpretable, and executable (Kumbhakar et al., 2015; 
Pangapanga et al., 2012; Tchale, 2009). In its linearized forms, the function isolates the 
effect of RUM on the technical efficiency of maize production among households with 
(HWM) and without migrants (HNM). The panel-based SFA function is specified as in 
equation 6. 

-.!"$( = *j + *#-.'"$(

k

"lC

+ ∅S − n"$( − o"$										(6)	 

where !"$( denotes maize productivity by individual HWM and HNM, 5, in time 
period, +, in farm, 4; '"$ represents a vector of physical factors of production such as 
labour, quantity of seeds, total available farm size, amount of fertilizer, slope, soil type, 
and soil quality. The	β, ∅	and	� denotes unknown parameters to be estimated by the 
model. Vector S captures the time trend for technical change, indicating retrogressive 
or progressive production. While o"$ represents the white noise, having zero mean and 
constant variance and n"$ is the technical inefficiency of maize production. The study 
adopts a half normal distribution to run the model (see detail in Ng’ombe, 2017; 
Chirwa, 2003). Let u"$( be the household characteristics affecting the technical 
inefficiency of maize production as demonstrated in equation 7 

n"$( = *j + *#-.v"$(

k

"lC

+ *#-.u"$(

k

"lC

+ wxyz"$ + ΩCSA ∗ xyz"$ + b"$								(7)		 

where n"$( and u"$( are as prior defined. The Ω	and w are the unknown 
parameters to be estimated by the model. The v"$( is a vector of physical factors of 
production like labour in personal days, quantity of seeds in kg, total available farm 
size in ha, and amount of fertilizer in kg. The CSA ∗ xyz is the interaction between 
RUM and CSA adoption. While, the b"$ is the error terms, with zero mean and constant 
variance. The study examines the effect of RUM on the technical efficiency of maize 
production through adoption of the two-stage Tobit regression (see Pangapanga and 
Mungatana, 2021). In the first stage, technical efficiency scores are predicted through 
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the CD-SFA of the Battese and Coelli (1995). While in the second stage, the Tobit 
regression is applied to assess the effect of RUM on the technical efficiency of maize 
production in the study area.   

5.3 Results and Discussions 
 

5.3.1 Descriptive statistics of household characteristics 
 

Table 5.1 presents summary descriptive statistics of household and farm-level 
characteristics between the households with migrant (HWM) and households without 
migrant (HNM) for the period 2010 – 2016/2017. Approximately, 40 percent of the 
households have at least one person migrating to urban areas for various economic 
reasons. Male heads about 75 percent of households, which has further dropped from 
almost 78 percent in 2010 to about 72 percent in 2016/2017, implying the effect of 
RUM at household level. The heads of the households are aged 46 years, with HWM 
and HNM headed by members aged 57 and 38 years, respectively. HWM are headed 
by elder people, indicating that most productive members of the household may likely 
migrate to urban areas for potential green areas. There is also an increasing trend of 
RUM from 35 percent in 2010 to slightly above 40 percent in 2016/2017. Above two-
third of the households have attended some formal education, with the highest 
education grade being five. Almost, 70 percent of households have a mobile phone 
for communication, where households owning mobile phones has increased from 58 
percent in 2010 to 88 percent in 2016/2017. In terms of remittances, the study observes 
that 33 percent of HWM received remittance from household members who have 
migrated to urban areas, representing 13 percent of the total sampled households. 
These results are in line with the NSO (2020) and Chilimapunga (2006).  
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Table 5. 1 : Summary statistics of the household characteristics between HNW and HWM in Malawi 

 HNM HWM POOLED HNM vs HWM 
VARIABLES Obs Mean Obs Mean Mean Std. Dev. P-value 
SEED IN KG 2533 9.588 1332 10.56 9.974 9.519 *** 
YIELD IN/HA 2533 1463 1332 1538 1,493.251 1,144.091 ** 
PERSONAL LABOUR DAYS 2533 27.01 1332 30.58 28.438 20.358 *** 
FERTILIZER IN KG 2533 46.43 1332 47.52 46.864 59.554  
FARM SIZE IN HA 2533 0.478 1332 0.550 0.507 0.473 *** 
AGE OF HH HEAD IN YEARS 2533 37.93 1332 57.17 45.614 15.369 *** 
CREDIT ACCESS 2533 0.127 1332 0.116 0.123 0.329  
DISTANCE TO THE ADMARK IN KM 2533 7.497 1332 7.500 7.498 5.163  
DISTANCE TO THE MAIN ROAD IN KM 2533 9.369 1332 9.676 9.492 9.867  
ATTENDED EDUCATION  2533 0.876 1332 0.751 0.826 0.379 *** 
HIGHEST EDUCATION CLASS 2533 6.001 1332 4.368 5.349 4.262 *** 
EXTENSION ACCESS 2533 0.628 1332 0.674 0.646 0.478 *** 
GENDER OF THE HH HEAD 2533 0.804 1332 0.674 0.752 0.432 *** 
HH SIZE 2533 5.459 1332 5.156 5.338 2.301 *** 
ORGANIC FERTILIZER IN KG 2533 110.6 1332 147.9 125.5 2.513 *** 
MOBILE PHONE 2533 0.722 1332 0.678 0.705 1.022  
REMITTANCE RECEIPT 2533 0.00 1332 0.334 0.133 0.340 *** 
FLAT SLOPE 2533 0.673 1332 0.650 0.664 0.472  
GENTLE SLOPE 2533 0.264 1332 0.275 0.269 0.443  
STEEP SLOPE 2533 0.0460 1332 0.0590 0.051 0.221 * 
VERY STEEP SLOPE 2533 0.0160 1332 0.0160 0.016 0.126  
GOOD SOIL QUALITY 2533 0.493 1332 0.499 0.495 0.500  
FAIR SOIL QUALITY 2533 0.377 1332 0.389 0.382 0.486  
POOR SOIL QUALITY 2533 0.130 1332 0.112 0.123 0.328  
CLAY SOIL TYPE 2533 0.211 1332 0.210 0.210 0.408  
LOAMY SOIL TYPE 2533 0.545 1332 0.519 0.535 0.499  
SANDY SOIL TYPE 2533 0.218 1332 0.243 0.228 0.420 * 
LOAMY SANDY SOIL TYPE 2533 0.0250 1332 0.0280 0.026 0.160  

Note: t statistics in parentheses; * p < 0.10, ** p < 0.05, and *** p < 0.01 
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The study also interrogates the amount of physical productive resources 
allocated to agricultural activities. HWM and HNM cultivate maize on 0.55 and 0.48 of 
a hectare, respectively. Data shows that households produce a minimum of 1493 kg 
per hectare, where HWM and HNM have 1556 kg and 1463 kg per hectare, 
respectively. HWM produce 83kg per acre more maize grain than HNM. HWM and 
HNM allocate about 30 and 27 personal-days on the farm, respectively. Households 
apply, on average, one 50kg bag of inorganic fertilizer and there is no noticeable 
difference in the amount of NPK fertilizer applied between HWM (48 kg) and HNM (46 
kg). In terms of organic fertilizer, households apply about 125 kg of organic fertilizer 
in the farms, where HWM and HNM use approximately 148 kg and 110 kg, respectively. 
Besides, the study finds that 65 percent of households accessed extension services.  

Figure 5.2 shows summary of household and farm level characteristics between 
2010 and 2016. Accordingly, study notes a positive trend in terms of households 
accessing extension services between 2010 and 2016/2017, where 41 percent of 
households have accessed extension services in 2010, 70 percent in 2013 and 90 
percent in 2016. In terms of farm characteristics, about 66 percent of households have 
flat slopped farms, while only 27 percent have gentle slopped farms. Almost 50 percent 
of the visited households report having farms with good soil quality, followed by 38 
percent of households with fair soil quality. However, the study notes that soil quality 
improved over the years. This can be explained by investments in sustainable land 
management practices which enhance soil fertility of the farm. Fifty-four (54) percent 
of households reported having farms with loamy soil type, while 23 percent have farms 
with sandy soil type.  
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Figure 5. 2 : Proportion distribution of household and farm-level characteristics between 2010 and 2016. 
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5.3.2 Robustness of Stochastic Frontier Analytical (SFA) Models 
 

Prior to estimating the empirical models, the study checks for the robustness of 
the data and models. It uses the Schmid and Lin (1984) proposed residual test to check 
for the validity of the stochastic frontier analytical (SFA) specification. For correct 
specification, the residual of the OLS has to be skewed to the left, i.e., negative 
skewness (Kumbhakar et al., 2015). In this study, Table 5. 2 shows skewness, kurtosis, 
and the log-likelihood ratio tests results. The study finds a negative sign of the 
skewness for the panel-based fixed and random effect models, implying that the data 
is fit for the SFA specifications. Accordingly, the study have enough evidence to 
support the rejection of the null hypothesis of no skewness, indicating the existence 
of the one-sided. Additionally, the study observes a positive kurtosis, indicating heavily 
tailed distributions of the technical inefficiency.  

 
Table 5. 2 : Skewness, kurtosis and log-likelihood ratio tests 

  HWM HNM POOLED 
FIXED EFFECT MODEL    

SKEWNESS -0.23. -0.33 -0.84 
KURTOSIS 6.41 4.83 6.44 

RANDOM EFFECT MODEL    
SKEWNESS -0.74 -0.59 -0.41 
KURTOSIS 7.47 5.03 6.12 

LIKELIHOOD RATIO TEST (LRT)    
BATTESE AND COELLI (BC) 43.89 65.73 430.94 

 
Furthermore, the study checked for the specification of the SFA model via the 

log-Likelihood Ratio (LR) test, which assesses the presence of the inefficiency in the 
model by checking the null hypothesis of no-one sided error. The LR was only 
conducted after the Maximum Likelihood (ML) estimation of the model. At one percent 
level of significance level, the study finds log-LR tests, having larger values than the 
critical values (5.412) for both HWM and HNM. Similarly, the log-LRs out-rightly 
support the rejection of the null hypothesis of no technical inefficiency. Additionally, 
the study checks for the presence of panel-data unit roots using Harris-Tzavalis (1990) 
and Breitung and Das (2005) tests (see detail in Baltagi, 2005). Both tests do not find 
any unit root in the data at one percent level of significance.  
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5.3.3 What is the effect of rural-urban migration on maize 
productivity during varying extreme weather events?  

 
The study presents in Table 5.3 the two-stage Tobit regression model to 

estimate the effect of RUM on the technical efficiency of maize production under 
extreme weather events. In the first step, the study runs the BC-1995 CD Stochastic 
Frontier Approaches (SFA) between households with (HWM) and without migrants 
(HNM) to analyse the effect of various physical production inputs on maize 
productivity. Thereafter, the study predicts the technical efficiency scores, which are 
used in the second step. In the second step, the study employs the panel based Tobit 
regression to assess the effect of RUM on the technical efficiency of maize production. 
According to qualitative data, households have used RUM to cushion maize 
productivity from the adverse effects of different extreme weather events, through 
reinvesting the remittances from RUM in CSA -related practices, which enhance maize 
productivity.  

Columns (1 – 4) highlight results from the SFA estimations. Whereas, Columns 
(5 – 8) presents the results from the second step of the two-stage regression results, 
which are based on the Battese and Collie (BC-1995) specification. The study finds that 
the log-likelihood ratio test for the model highly significant at one percent. This implies 
that the model is substantively appropriate to evaluate maize productivity at 
household level for HWM and HNM. The study provides interpretation of the results, 
which are based on Column (1 - 3).  
 The study results reveal that farm holding size has an expected positive sign to 
maize productivity and significantly increases farm productivity at one percent, ceteris 
paribus. An increase in farm size by one acre enhances maize productivity by 12 
percent, holding all other factors constant. Farm size has higher returns for HWM (45%) 
than for HNM (8%). Additionally, the study finds seeds having positive effect on maize 
productivity, where an increase in seed amount by 100 kg increases maize productivity 
by 8 percent in the study area, ceteris paribus. Also, inorganic fertilizer has an expected 
positive sign and significantly increases maize productivity by 36 percent, while 
holding all other factors constant. Personal-days further significantly augment maize 
productivity for HWM and HNM.  However, HWM (3%) derive less gains from any 
invested personal-days than HNM (22%), ceteris paribus. This perhaps explains the 
effect of productive family labour for HWM (Tshikala et al., 2014). These results are 
consistent with previous findings by Asfaw et al. (2016) in Malawi and Mango et al. 
(2015) in Zimbabwe. 
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RUM may not directly affect influencing maize productivity, instead it may 
directly influence the technical efficiency of maize production. Table 5.3, from Columns 
(5 – 8) shows Tobit regression results, which highlight the effect of RUM on the 
technical efficiency of maize production. The study notes the Tobit regression output 
is substantial at one percent level of significance, implying that the model is fit enough 
to detect the minimum effect of RUM on the technical efficiency of maize production.  

The study results reveal that RUM has a significant and negative influence on 
the technical efficiency of maize production. This could be explained through the 
reduced supply of productive family labour at household level, for labour intensive 
activities, namely, timely weeding, fertilizer application, organic manure, and others, 
which are critical for cushioning households from the negative effects of weather 
variability on maize productivity. Statistically, holding other factors constant, RUM 
influence the technical efficiency of maize production by nine (9) percent. Furthermore, 
RUM reduces the technical efficiency of maize production by 18 percent in 2010 - 2013 
and seven (7) percent in 2016, ceteris paribus. This is in line with past findings by Stark 
(1999), Wouterse (2010), Fakhruddin (2018) and Tshikala et al. (2014). 

However, the study finds a positive effect of RUM when interacted with CSA –
related practices. For instance, RUM-CSA improves the technical efficiency of maize 
production by two (2) percent in study area, ceteris pluribus. The interaction enhances 
the technical efficiency by five (5) percent in 2010, four (4) percent in 2013, and one 
(1) percent in 2016. This implies that households re-allocate some of the remittance 
from migrants in CSA –related practices which fundamentally reduce the negative 
effect of weather events on maize productivity (de la Fuente, 2010). Unless remittances 
are invested in CSA –related practices (Shi, 2018; Huy and Nonneman, 2016), it can be 
speculated that most CSA-related practices demand family personal days, which are in 
low supply for HWM, whose members have migrated to urban areas. However, Singh 
et al. (2012) argue that lack of input markets in rural areas undermined the role of 
remittances. These results are in consistent with the findings by FAO (2018), Adams 
and Cuecuecha (2013), Zahonogo (2011), Jokisch and Pribilsky (2002) and Brauw (2010) 
and Singh et al. (2012) and Chilimapunga (2006). 
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Table 5. 3 : Results of the two-Stage regression: Impact of rural-urban migration on the technical efficiency of maize farm 
production in Malawi 

	  SFA	(Farm	productivity)	 Tobit(Technical Efficiency) 
	  1	 2	 3	 4	 5 6 7 8 
		   HNM	 HWM	 POOLED		 POOLED	 POOLED 2010 2013 2016 
LOG(FARM SIZE) Ha 0.447***	 0.078***	 0.116**	 0.136***	 0.019*** 0.003 0.024*** 0.057*** 
		   (16.39)	 (13.20)	 (3.29)	 (3.70)	 (5.18) (0.46) (3.65) (9.38) 
LOG(SEED) Kg 0.178***	 0.890***	 0.083***	 0.072***	 0.032*** 0.014*** 0.019*** 0.101*** 
		   (12.19)	 (25.08)	 (38.96)	 (19.99)	 (15.02) (4.83) (4.12) (17.65) 
LOG(LABOR) Personal days 0.310***	 0.216*	 0.183**	 0.186**		 0.015* 0.011 0.013 -0.018 
		   (5.70)	 (2.37)	 (2.95)	 (3.10)				 (-2.14) -0.84 (-1.05) (-1.63) 
LOG(FERTILIZER) Kg  0.208***	 0.360***	 0.361***	 0.286***	 0.006*** 0.001 0.008** 0.006* 
		   (18.17)	 (15.36)	 (25.37)	 (19.93)	 (4.43) (0.21) (3.02) (2.52) 
GENDER Male=1       0.029*** 0.040* 0.025 0.017 
		   	 	 		 		 (3.75) (2.57) (1.77) (1.46) 
AGE Years       0.001 0.002 0.005* 0.002 
		   	 	 		 		 (0.66) (0.94) (2.25) (1.83) 
AGE SQUARE Years       -0.000 -0.000 -0.000 -0.000* 
		   	 	 		 		 (-0.77) (-0.89) (-1.79) (-2.21) 
LITERACY  Yes = 1       0.01 0.024 0.019 0.042*** 
		   	 	 		 		 (1.39) (1.78) (1.43) (3.57) 
EXTENSION Access =1       0.012 0.01 0.058*** 0.038*** 
		   	 	 		 		 (1.90) (0.80) (4.77) (3.29) 
RUM Yes=1       -0.085*** -0.178*** -0.183*** -0.068** 
		   	 	 		 		 (-5.89) (-4.96) (-6.43) (-2.97) 
RUM*CSA Interaction        0.017*** 0.047*** 0.038*** 0.009* 
		   	 	 		 		 (6.84) (6.14) (7.53) (2.36) 
YEAR	 Number	 -0.001***	 -0.001***	 -0.001***	 -0.001***	 	    
  (18.61)	 (19.47)	 (-33.33)	 (-34.75)				 	    
GENTLE	SLOPE	 Yes=1	 	 	 	 0.227***	 	    
     (-3.45)	 	    
STEEP	SLOPE	 Yes=1	 	 	 	 -0.016	 	    
     (-0.15)				 	    
LOAMY	SOIL	 Yes=1	 	 	 	 0.090***	 	    
     (14.32)	 	    
SANDY	SOIL	 Yes=1	 	 	 	 -0.721***	 	    
     (9.12)	 	    
FAIR	SOIL	TYPE	 Yes=1	 	 	 	 -0.451***	 	    
     (-6.99)	 	    
POOR	SOIL	TYPE	 Yes=1	 	 	 	 -0.487***	 	    
     (-5.41)	 	    
c2   1057.74*** 471.61*** 1922.12*** 2672.14*** 282.66*** 30.02*** 90.93*** 622.70*** 
N   2533 1332 3865 3865 3827 1288 1266 1273 

Note: t statistics in parentheses;* p < 0.10, ** p < 0.05, *** p < 0.01 
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5.4 Conclusion and Key Policy Recommendations 
 

Households adopt rural-urban migration (RUM) as a climate and weather -
related adaptation strategy. Through RUM, households receive remittance and 
innovative ideas from their migrant members, which in turn are invested in modern 
agriculture, including climate-induced agricultural practices. The study uses data from 
the IHPS (2010 – 2016/2017), compiled by the NSO and the World Bank. The Battese 
and Collie (1995) is used to unravel the effect of RUM on the technical efficiency of 
maize farm production. For robustness of the results, the study checked for the correct 
specifications using residual tests, skewness, kurtosis, and the likelihood tests. Unless, 
RUM is interacted with CSA adoption, the study finds that RUM has a significant and 
negative effect on the technical efficiency of maize production because of low supply 
of family labour. Statistically, RUM reduces the technical efficiency of maize production 
by nine (9) percent in the study area, 18 percent in 2010 and 2013, and seven (7) 
percent in 2016, ceteris paribus. Nonetheless, the interaction between RUM and CSA 
practices enhances the technical efficiency of maize production by two (2) percent in 
the study area, five (5) percent in 2010, four (4) percent in 2013, and one (1) percent in 
2016, while holding all other factors constant.  The study primarily recommends 
Government and other stakeholders to develop rural agricultural markets, which can 
allow the exchange of family labour within the rural set-up, and thereby containing 
RUM of agricultural labour.  
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CHAPTER SIX 
 

Summary, Conclusion and Policy Recommendations 
 
6. Introduction 

 
6.1 Study Context 

 
Agricultural production and productivity in Malawi continues to deteriorate, 

and frustrate the food security agenda despite massive investments in the agricultural 
sector, including affordable input subsidy programmes, climate-smart agriculture 
(CSA), integrated pest (IPM) and sustainable landscape management (SLM) –related 
practices, agroforestry, improved crop varieties, and organic manure application. 
Furthermore, households have engaged in rural urban migration (RUM) to cushion 
maize productivity from the negative effects of extreme weather effects. High poverty 
levels, poor agricultural practices; fragmenting landholding sizes, and largely declining 
soil fertility are some of the fundamental constraints, limiting household agricultural 
productivity. Additionally, extreme weather conditions, viz., drought, fall armyworms 
(FAW), and tropical cyclones related floods (TCRFs), have recently exasperated the 
falling agricultural productivity, pushing people into being food insecure and trapping 
the majority into the poverty cycle.  

The main objective of the study is to examine the effect of the adoption of CSA, 
IPM, and SLM –related practices on the farm productivity under different extreme 
weather events in Malawi. Specific objectives of this study are, thus, in four-folds: (i) 
evaluating the effect of varying extreme weather events on farm productivity; (ii) 
determining factors influencing adoption of CSA, IPM, and SLM –related practices in 
the study area; (iii) examining the influence of various CSA, IPM, and SLM -related 
practices on the farm productivity; and lastly (iv) unravelling the impact of RUM on the 
technical efficiency of maize productivity. The study uses the nationally represented 
data from the Integrated Household Panel Survey 2010 - 2020, compiled by the NSO 
and World Bank in Malawi. 
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6.2 Summary and Conclusions 
 

This study poses four (4) major questions to thoroughly address the four 
researchable questions: (i) Do extreme weather events, viz., drought, TC –related 
floods, and fall armyworms substantially affect farm productivity and the adoption of 
CSA, IPM, and SLM -related practices?  (ii) Do household (e.g. gender, education, 
mobile ownership, and credit accessibility) and farm-level (i.e. soil quality, type, and 
slope), drive the adoption of CSA-related practices? (iii) Do CSA, IPM and SLM-related 
practices (i.e. organic farming, intercropping, agroforestry, soil and water conservation, 
pesticides, and improved crop varieties) have any significant influence on the farm 
productivity? Finally, (iv) does RUM improve the technical efficiency of maize 
production under extreme weather events? The study groups these researchable 
questions into five (5) different chapters, where chapter one highlighted the study’s 
motivation, objectives, research questions, and general methodology.  

In Chapter two (2), the study examines the drivers of CSA –related practices’ 
adoption and their influence on the technical efficiency of maize production under 
different drought episodes. The conditional fixed effect logit regression is undertaken 
to determine factors driving the adoption of the CSA –related practices. The study 
further runs the panel-based Cobb-Douglas stochastic frontier analysis (SFA) to 
estimate the technical efficiency of maize production. Chapter two (2), lastly, applies 
the triple-hurdle panel-panel-based Tobit regression to evaluate the effect of drought 
and CSA –related practices on the technical efficiency of maize production. Based on 
the panel-based Conditional logit, the study finds that drought episodes significantly 
influence household decision to adopt CSA-related practices, particularly, organic 
manure application (76%) and soil and water conservation measures (29%), ceteris 
paribus. The study results reveal that households can increase the current level of farm 
productivity by 37 percent. Besides, the triple hurdle Tobit regression demonstrates 
that organic and inorganic fertilizer simultaneously enhance the technical efficiency of 
maize production, while holding all other factors constant.  

In Chapter three (3), the thesis unravels the effect of FAW and IPM –related 
practices on the farm productivity and food security.  The Chapter adopts the 
maximum likelihood estimated ESR model to isolate the impact of FAW and IPM –
related practices on farm productivity, while controlling for potential endogeneity. 
Furthermore, the Chapter employs the panel-based ESR model to unpack the average 
treatment effect on the treated (ATET) of the IPM –related practices on the household 
food security. For robustness of the results, the study applies the multinomial ESR 
model to ascertain the effect of FAW and IPM –related practices on farm productivity. 
Accordingly, this study finds FAW reducing farm productivity by 12 percent, ceteris 
paribus. Interestingly, this study further depicts that the experience of FAW improved 
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the adoption of the IPM -related practices by 6 percent, holding all other factors 
constant. Furthermore, the study results indicate a positive effect of IPM-related 
practices on farm productivity and food security. For instance, households, which 
adopt IPM-related practices, are 21 percent more likely to augment farm productivity 
than non-adopters, ceteris paribus. Moreover, this study observes that IPM practices 
have ten-fold returns on improving household food security.  

In Chapter four (4), the study interrogates the effect of TCRFs and SLM –related 
practices on farm productivity. Similarly, this chapter uses the panel-based ESR models 
to control for the potential observable and unobservable heterogeneity, and further 
ascertain the effect of TCRFs and SLM –related practices on farm productivity. For 
checking the robustness of the model, the study fits the ESR using (i) the maximum 
likelihood, (ii) the two-step, (iii) the control function, and (iv) multinomial ordered 
probit procedures. The study results reveal that TCRFs have noticeably reduced farm 
productivity by 31 percent, ceteris paribus. Similarly, households, experiencing TCRFs, 
are 27 percent more likely to adopt various SLM –related practices, holding all other 
factors constant. After interacting SLM and TCRFs, the study finds SLM practices 
enhancing farm productivity by 24 percent, ceteris paribus.  

In Chapter five (5), the study investigates the role of RUM on influencing the 
technical efficiency of maize production in the study area. Households adopt the RUM 
to cushion maize production activities from the negative effects of extreme weather 
events. Accordingly, the study adopts the panel-based SFA and the two stage Tobit 
regression model to estimate the influence of RUM on the technical efficiency of maize 
production. Unless households invested the remittance in CSA-related practices, the 
study finds RUM insignificantly reducing the technical efficiency of maize production. 
Statistically, RUM reduces the technical efficiency of maize production by nine (9) 
percent in the study area, 18 percent in 2010 and 2013, and seven (7) percent in 2016, 
ceteris paribus. Nonetheless, the interaction between RUM and CSA practices 
enhances the technical efficiency of maize production by two (2) percent in the study 
area, five (5) percent in 2010, four (4) percent in 2013, and one (1) percent in 2016, 
while holding all other factors constant.  

In brief, this thesis concludes that droughts, FAW, TCRF, and RUM have 
significant and negative effects on the farm productivity. However, households, which 
are affected by any of the extreme weather events are markedly more likely to adopt 
any of the CSA, IPM, and SLM-related practices and RUM, which positively enhance 
farm productivity.  Relevantly, these study results inform the existing policy making 
processes in Malawi in four broad ways. First, it presents drivers and the effects of CSA, 
IPM, and SLM -related practices on farm productivity in Malawi. Second, it minimises 
the dis-adoption of CSA, IPM and SLM –related practices through isolating efficient 
practices at household level. Third, it enhances the adoption of practices, which are 
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climate resilient and have substantial effects on augmenting farm productivity under 
different extreme weather events. Ultimately, the study findings mainstream the 
indigenous knowledge and workable feedback in climate adaptation to ensure the 
CSA, IPM, and SLM-related practices’ and RUM’s suitability, flexibility, and 
sustainability for rural households. Overall, the study results are further relevant to the 
existing debate on achieving the SDGs and the Malawi Vision 2063 on enhancing 
agricultural production and productivity under different extreme weather events. 
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6.3 Key Policy Recommendations 
 

Despite using the secondary data, the study combines several methodologies 
to understand the drivers of CSA, IPM, and SLM-related practices’ adoption and allied 
influence on the farm productivity, under different extreme weather events. Thus, the 
study partially contributes to the policy making process debate on the attainment of 
SDGs and Malawi Vision targets on agricultural productivity, and ultimately, ending 
hunger in the country. However, the study hardly tests some hypothesis, for example: 
what is the optimal amount of organic and inorganic fertilizer combination, which 
farmers should adopt to maximize the farm productivity.  

Additionally, the study does not isolate the heterogeneous, persistent, and 
transient technical efficiency of the farm, which is temporary very critical for policy 
recommendations and implementations. This study therefore recommends future 
studies to unbundle the technical efficiency of the farm into heterogeneous, persistent, 
and transient under different extreme weather events. Furthermore, investment in 
most CSA, IPM, and SLM-related practices heavily depends on land tenure security. 
Moreover, most SLM –related practices are long term investments. Hence, the study 
proposes further studies to ascertain the performance of CSA, IPM, SLM –related 
practices under different land tenure security system. Besides, due to limited 
longitudinal data on Covid-19 at household level, which is one of the recent pandemic 
exasperated by climate and weather variability, this study further suggests future 
studies investigating the long-term effect of Covid-19 on farm productivity, food 
security, and household income in Malawi.  

The IPM-related practices performed better than the chemical pesticides alone, 
in this study. Thus, this study recommends the promotion of IPM-related practices, 
which are found more affordable and profitable to resource constrained female 
farmers. The study further observes an increase in households adopting RUM, which 
eventually reduces farm productivity. This study therefore proposes to Government to 
establish appropriate institutional factors, such as rural markets to regulate RUM, rural 
labour supply, and related remittance receipts. For instance, the study suggests 
Government and other stakeholders providing input markets, which households can 
access to procure improved inputs for farm production. In addition, the study 
recommends provision of accessible credit markets, which can allow farmers procure 
farm inputs, like hired labour, inorganic fertilizer, and improved crop varieties, which 
are critical for the adoption of various CSA, or IPM, or SLM –related practices.  
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