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Summary

The aim of the dissertation was to conduct a literature study on mathematical
modelling, numerical computation and mathematical analysis of a linear and
nonlinear Timoshenko model for the vibration of a rod. In this dissertation
the word “rod” is used as a collective name for beams, cables and columns.

The general linear existence theory was stated and applied to a linear rod
model with axial force (the adapted Timoshenko rod model). In order to
do this, the model considered was written in weak variational form and the
required properties shown to hold. It was discovered that, assuming the axial
force S is constant, a critical value for S exists such that if S is less than its
critical value, then the required properties of the theory do not hold.

The spectral theory for a linear rod model was extended to include an axial
force for any combination of three boundary conditions, where S is greater
than its critical value. This was done while improving on the rigour of the
exposition in Van Rensburg and Van der Merwe (2006). The eigenfunctions
for a pinned-pinned rod were then calculated and used to generate a series
solution. In the case where S was not greater than this critical value, a
formal series solution was investigated.

The finite element method (FEM) was then applied to the adapted Timo-
shenko rod model with pinned-pinned boundary conditions and the conver-
gence investigated. The first five eigenvalues in the increasing sequence were
calculated using the spectral theory and a critical value for S was approxi-
mated. For illustrative purposes, the approximations found using FEM were
then compared to the results of the series solution.

The semi-linear Timoshenko rod model of Sapir and Reiss (1979) with pinned-
pinned boundary conditions was then studied. The problem was written in
variational form to apply FEM to the semi-linear model and an original al-
gorithm was derived. The results were compared to those of the linear model
for small initial displacement where the axial force neared its critical value.
Approximations where the axial force surpassed the critical value of the linear
model were also investigated. An interval for a critical value of the nonlin-
ear model (less than that of the linear model) was found. This discovery is
contrary to the popular belief that the critical values for linear and nonlinear
models are equal.

Peradze and Kalichava (2020) also constructed an algorithm for the semi-
linear problem. Three separate estimates were found for the algorithm and
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then added to form a “total error estimate”. The structure and readability
of the article was improved upon and inconsistencies identified.

The existence theory for the Sapir-Reiss semi-linear Timoshenko rod model
presented by Ammari (2002) was shown to be incomplete and contain crucial
errors. Some of the identified errors and exclusions were rectified.

In the articles studied, improvements were made regarding the presentation
of the work, connections established, and the integrated result written up.
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Chapter 1

Introduction

1.1 Mathematical models for the motion of a

rod

Beams, cables, columns and rods are mentioned in the title of the disserta-
tion. The terminology is well understood in the engineering literature and
Applied Mathematics where the focus is on real world applications and indi-
cates that application is important. The expression “analysis of” is to make
it clear that the approach is mathematical.

In this dissertation, “rod” is used to refer to a one-dimensional continuum
following, for example, [Ant96] and [LA12]. This implies that “rod” is a
collective name for beams, cables, columns etc. In [LA12], Lang and Arnold
highlight the importance of rod models in industrial and engineering appli-
cations.

The Cosserat model is the most general geometrically exact rod model. An
important special case is the local linear Timoshenko model in [VDL21]. In
this dissertation our attention is restricted to linear and semi-linear Timo-
shenko models for small oscillations. Simplified theories such as the Euler-
Bernoulli theory are possible, but are not considered. An important objective
of the study is the comparison of different models for the same application
by theoretical analysis as well as simulation using the finite element method.

To model the motion of a rod, one must first describe the rod in mathematical
terms. Consider, for example, a cylinder with length ℓ and radius a. Using

1
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coordinates, it is possible to identify each point in the beam and its axis is
well defined. Cross-sections may also be rectangular or any other shape as
long as the axis passes through the centroids. Such a rod is called prismatic.
When the diameter of the cross-sections are small compared to its length,
the rod is modelled as a one-dimensional continuum.

The interval [0, ℓ] is the reference configuration for the motion of a rod in
space. The current configuration (real position at any time) is then deter-
mined by six scalar functions or two vector functions: r̄(x, t) is the position
of x ∈ [0, ℓ] at time t and n̄(x, t) is the orientation of a cross-section at time t.

So called equations of motion can be derived from conservation laws of mo-
mentum and angular momentum, but this is beyond the scope of this study.
These equations of motion can be found in [Ant96], [LA12] and [VDL21], for
example.

This work is restricted to small planar oscillations of a rod. Let {ē1, ē2, ē3}
denote an orthonormal set “fixed in space” forming a right-handed triad. To
describe the motion, a reference position is also needed. For this the line
segment joining the zero vector and ℓē1 is used. The position of x in the
reference configuration at time t is given by

r̄(x, t) = u(x, t)ē1 + w(x, t)ē2.

The rotation of a cross section is described by ϕ(x, t).

In Sections 1.2 and 1.3, the mathematical models are introduced.

1.2 The Timoshenko theory

1.2.1 The original Timoshenko model

Consider the original Timoshenko model for a beam. Details on the deriva-
tion of the model can be found in [Tim37, pp.337-338], [Fun65, pp.323-324]
and [Inm94, pp.337-338].

In the equation below, w(x, t) denotes the transverse displacement or de-
flection of the rod’s axis and ϕ(x, t) the angle of rotation of a cross-section
(assuming plane cross-sections remain plane). In textbooks, sketches are
used to define w(x, t) and ϕ(x, t).



1.2. THE TIMOSHENKO THEORY 3

Equations of motion

ρA∂2
tw = ∂xV + P, (1.2.1)

ρI∂2
t ϕ = V + ∂xM. (1.2.2)

In these equations ρ denotes the density, A the area of a cross section, I
the area moment of inertia, M the moment, V the shear force and P the
transverse load.

Constitutive equations

M = EI∂xϕ, (1.2.3)

V = AGκ2(∂xw − ϕ), (1.2.4)

where E and G are elastic constants and κ2 the shear correction factor.

Dimensionless form

The length of the beam is denoted by ℓ. Set

τ =
t

T
, ξ =

x

ℓ
, w∗(ξ, τ) =

w(x, t)

ℓ
and ϕ∗(ξ, τ) = ϕ(x, t),

where T is to be specified. Following [VV06], the forces, force densities and
moments are then scaled by AGκ2, AGκ2ℓ−1 and AGκ2ℓ respectively. That
is,

P ∗(ξ, τ) =
ℓP (x, t)

AGκ2
, V ∗(ξ, τ) =

V (x, t)

AGκ2
and M∗(ξ, τ) =

M(x, t)

AGκ2ℓ
.

The following dimensionless constants are introduced:

α =
Aℓ2

I
and β =

AGκ2ℓ2

EI
.

Lastly, choose (as in [VV06])

T = ℓ

√
ρ

Gκ2
.

From this point onward, the notation V , M , P , w and ϕ is used instead of V ∗,
M∗, P ∗, w∗ and ϕ∗ respectively. The equations of motion and constitutive
equations then form the Timoshenko model. This is referred to as Model T,
which can be applied to “beams”, “cables” and even “wires”.
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Model T Find w(x, t) and ϕ(x, t) such that

∂2
tw = ∂xV + P, (1.2.5)

1

α
∂2
t ϕ = V + ∂xM, (1.2.6)

M =
1

β
∂xϕ, (1.2.7)

V = ∂xw − ϕ. (1.2.8)

Three sets of boundary conditions are considered for the model.
Pinned-pinned rod:

w(0, t) = ∂xϕ(0, t) = w(1, t) = ∂xϕ(1, t) = 0, (1.2.9)

Cantilever rod:

w(0, t) = ϕ(0, t) = ∂xϕ(1, t) = ∂xw(1, t)− ϕ(1, t) = 0, (1.2.10)

Clamped-clamped rod:

w(0, t) = ϕ(0, t) = ϕ(1, t) = w(1, t) = 0. (1.2.11)

If the load P = 0, then w = ϕ = 0 is an equilibrium solution for the model.

It should be noted that β
α
= Gκ2

E
. Also, κ2 ∈ [1

2
, 1] and therefore γ = β

α
∈

[1
6
, 1
2
] (see for example [LVV09] where references are provided). Significant

variation is possible for the constant α and thus also for β.

For theoretical purposes it is necessary to assume that α > β > 1 (see
Section 2.3). This also happens to be realistic from a physical perspective.
Elementary calculations show that, even for β = 2, no one will consider
the relevant object to be a beam (or cable). On the other hand, it will be
shown that β cannot be too large since a beam is supposed to resist bending
effectively. For a cable, β (and therefore α) can be large and the simpler
Euler-Bernoulli model may be used.

1.2.2 Axial force

The equation of motion for longitudinal vibration is given by

ρA∂2
t u = ∂xS +Q, (1.2.12)
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where u is the displacement, S is the axial force and Q the axial load (see
for example [Inm94]).

Using Hooke’s Law in its simplest form yields the constitutive equation

S = AE∂xu. (1.2.13)

For the dimensionless form, the force S is scaled in exactly the same way as
the force V in the previous section. Hooke’s Law then becomes

S =
1

γ
∂xu. (1.2.14)

The other constitutive equations are the same as for the standard Timo-
shenko model.

In Equation (1.2.1) for the standard Timoshenko model, it is tacitly assumed
that the shear force V is equal to the transverse force. However, due to
the bending of the rod, the axis becomes curved (and is referred to as the
deflection curve). It is hence more realistic to assume that the transverse
force F is given by

F = S sin θ + V cos θ,

where θ is the rotation of the tangent vector. For a linear model and some
nonlinear models, it is assumed that θ is sufficiently small to justify the
assumption sin θ = ∂xw and cos θ = 1. (See, for example, [SR79] and [LL91].)
Consequently,

F = S∂xw + V.

The dimensionless equations of motion for a Timoshenko rod with axial force
are given below.

Model T-AF

∂2
t u = ∂xS +Q, (1.2.15)

∂2
tw = ∂x (S∂xw) + ∂xV + P, (1.2.16)

1

α
∂2
t ϕ = V + ∂xM. (1.2.17)

The constitutive equations are (1.2.7), (1.2.8) and (1.2.14).

The boundary conditions for the standard Timoshenko rod (1.2.9), (1.2.10)
and (1.2.11) remain. Boundary conditions for the displacement u are re-
quired. For the pinned-pinned rod as well as the clamped-clamped rod they
are

u(0, t) = 0, u(1, t) = D, (1.2.18)
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with D given. For the cantilever rod the boundary conditions are

u(0, t) = ∂xu(1, t) = 0. (1.2.19)

1.2.3 Adapted Timoshenko model

Equation (1.2.15) decouples from the rest of the system since it is the one-
dimensional wave equation and together with the standard boundary condi-
tions the system is “well formulated”. Once this problem is solved, S and u
are known. Consequently, the transverse vibration may be considered, but
note that S is now a “time dependent” parameter. This variant is not con-
sidered in the present study. However, in some realistic applications, ∂tQ = 0
and then ∂tS = 0 if there is no dynamic boundary forcing. Equation (1.2.15)
then reduces to

0 =
dS

dx
+Q.

This equation, together with the boundary conditions above, determine S
and u uniquely. The model is referred to as the adapted Timoshenko theory.

If Q = 0 for a rod with boundary conditions (1.2.18), then S =
D

γ
, a con-

stant. This constant is denoted by S0 and can be positive or negative. (This
case is often referred to as a pre-stressed rod.) In [CVV18], the case where
S0 is positive and “large” is studied.

Model AT

Equations of motion

∂2
tw = ∂x (S∂xw) + ∂xV + P, (1.2.20)

1

α
∂2
t ϕ = V + ∂xM. (1.2.21)

with constitutive equations

M =
1

β
∂xϕ, (1.2.22)

V = ∂xw − ϕ. (1.2.23)

The three sets of boundary conditions are the same as for the Timoshenko
model.
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Pinned-pinned rod:

w(0, t) = ∂xϕ(0, t) = w(1, t) = ∂xϕ(1, t) = 0, (1.2.24)

Cantilever rod:

w(0, t) = ϕ(0, t) = V (1, t) = M(1, t) = 0, (1.2.25)

Clamped-clamped rod:

w(0, t) = ϕ(0, t) = w(1, t) = ϕ(1, t) = 0. (1.2.26)

It is important to note the fact that Model T is a special case of Model AT,
where the force S = 0.

1.2.4 Damping

Although damping terms are included in some of the relevant publications,
damping is not the main concern in this study. Different constitutive equa-
tions to model damping are found in the literature, where [Inm94] is a useful
reference. Viscous damping is a possibility: The “load” P in (1.2.20) is then
due to damping and is replaced by −µ1∂tw for some µ1 > 0. Another possi-
bility is strain rate damping, where (1.2.22) changes to M = 1

β
∂xϕ+µ2∂t∂xϕ

with µ2 > 0. Strain rate damping will not be considered in this dissertation.

In [Amm02] a damping term of the form −µ3∂tϕ is introduced in (1.2.21). No
explanation is given, which makes one sceptical. However, in the mathemat-
ical analysis the type of damping does not matter provided that it dissipates
energy (see Section 2.5). For the sake of comparison, the same damping
terms as [Amm02] are included. It is assumed that µ1 and µ3 may be zero.

1.3 Nonlinear Timoshenko rod models

1.3.1 Semi-linear Timoshenko rod model

Recall the Timoshenko model for a rod with an axial force (Model T-AF).
For the nonlinear theory, the axial force S is given by

S = EA (∂xs− 1) , (1.3.1)
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where s is the arc length function. In dimensionless form, S is rewritten as

S =
1

γ
(∂xs− 1) . (1.3.2)

The constitutive equation for S is then found by approximating s. The
approximation

∂xs− 1 ≈ ∂xu+
1

2
(∂xw)

2

is often used (see for example [SR79], [LL91] or [VDL21]).

Model SLT

Equations of motion

∂2
t u = ∂xS +Q, (1.3.3)

∂2
tw = ∂x(S∂xw) + ∂xV + P2, (1.3.4)

1

α
∂2
t ϕ = V + ∂xM, (1.3.5)

with constitutive equations

M =
1

β
∂xϕ, (1.3.6)

V = ∂xw − ϕ, (1.3.7)

S =
1

γ
∂xu+

1

2γ
(∂xw)

2. (1.3.8)

The three sets of boundary conditions considered are the same as for Model T-
AF. It is important to note that in [SR79] only pinned-pinned boundary
conditions are considered.

1.3.2 Semi-linear Timoshenko beam of Sapir and Reiss

In [SR79] the authors consider the case where the axial load density Q is
zero. Two additional assumptions are made:

∂2
t u = 0 and ∂xS = 0. (1.3.9)

It follows that
∫ 1

0
S(t) = S(t), and hence

S(t) =
1

γ
u(1, t) +

1

2γ

∫ 1

0

(∂xw(·, t))2. (1.3.10)
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The boundary conditions (1.2.18) for u are now redundant, but D = u(1)
now becomes a parameter in the constitutive Equation (1.3.10). That is,

S(t) =
D

γ
+

1

2γ

∫ 1

0

(∂xw(·, t))2. (1.3.11)

Alternatively, one may use the axial force S0 = D/γ as a given parameter.
Model SLT is thereby simplified.

Model SLT-SR Equations of motion

∂2
tw = S∂2

xw + ∂xV, (1.3.12)
1

α
∂2
t ϕ = V + ∂xM, (1.3.13)

with constitutive equations

M =
1

β
∂xϕ, (1.3.14)

V = ∂xw − ϕ, (1.3.15)

S = S0 +
1

2γ

∫ 1

0

(∂xw(·, t))2. (1.3.16)

The boundary conditions for the rod are

w(0, t) = ∂xϕ(0, t) = w(1, t) = ∂xϕ(1, t) = 0 (pinned-pinned), (1.3.17)

w(0, t) = ϕ(0, t) = w(1, t) = ϕ(1, t) = 0 (clamped-clamped). (1.3.18)

The model was first derived from two-dimensional elasticity in [SR79], but
in this dissertation it is considered as one of the special cases in [VDL21]. In
[SR79] only pinned-pinned boundary conditions are considered and only the
case where S0 < 0. In the article, the motion of a buckled rod is analysed.

Remark. The report [VDB16] was consulted to write Sections 1.2 and 1.3.
An improved version of this report is the article [VDL21], which appeared
recently.

1.4 Mathematical analysis and computation

The aim of this research is to study a number of model problems for par-
tial differential equations with the same real world application. The study
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includes existence theory, spectral theory, finite element (FEM) analysis and
implementation.

The articles [VV06], [CST16], [CVV18], [PK20] and [Amm02] were initially
chosen to be the main sources for the study. As expected, other sources were
needed as the research progressed.

The existence of solutions for the linear models T and AT was to be proved
using the general theory in [VV02]. The proofs in the article itself were not
to be studied in depth, but rather the applicability of the theory.

Modal analysis for linear problems was considered next. In the paper [CVV18]
a rigorous basis for modal analysis is provided using results from functional
analysis. It was thought that this should be applied to Models T and AT. In
the articles [VV06] and [CST16], natural frequencies and modes of vibration
for the standard Timoshenko rod (Model T) were derived.The purpose of this
study was to compare the articles, evaluate the level of rigour and investigate
the extension of the results to Model AT.

Application of FEM to the linear models was planned and hence it was
natural to investigate convergence. For this purpose the paper [BV13] was
identified.

The model presented in [SR79] was of great importance for the study be-
cause although it is not linear, the application is the same as for Model AT.
It is significant that the semi-linear model SLT-SR differs “slightly” from
Model AT. The main difference is the term containing the integral of (∂xw)

2,
which should be negligible for small vibrations. The authors of [SR79] were
interested in properties of solutions, especially buckling and post-buckling
behaviour. For this research the main concern was existence, FEM analysis
and application as well as comparison to the linear model, Model AT.

I order to carry out FEM analysis of the nonlinear model, the article [PK20]
was chosen. In it the authors present an algorithm to simulate the oscillation
of solutions of Model SLT-SR. They prove that the FEM approximation
converges to the exact solution and derive error estimates.

The biggest challenge was to study the existence theory for Model SLT-SR
in [Amm02]. In the nonlinear theory one is confronted by mathematical
methods not encountered in the linear theory.



Chapter 2

Analysis of linear vibration
models

In this chapter a general second order hyperbolic problem in variational form
is considered (linear vibration models are special cases). General existence
results from the literature ([VV02] and [VS19]) are discussed as well as the
theoretical foundation for modal analysis in [CVV18]. The standard Timo-
shenko theory is used as an example.

2.1 Variational approach to the Timoshenko

model

Much has been written in books and articles on the Timoshenko rod model.
However, the variational approach to the theory attracted less attention de-
spite certain advantages. The first being that the variational form is effec-
tively the same for all possible homogeneous boundary conditions. Secondly,
there is a single point of departure for the existence theory, FEM theory
and FEM application. Consequently, a detailed treatment of the variational
approach is desirable.

The variational form and weak variational form for Model T in this section
and Section 2.3 can easily be adapted for the Adapted Timoshenko model
and the semi-linear Timoshenko model of Sapir and Reiss ([SR79]) in later
chapters. The weak variational form also serves as a non-trivial motivation

11
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for the general theory in Sections 2.4 to 2.7.

Properties of function spaces are investigated in Sections 2.2 and 2.3 to pre-
pare for the general case in the rest of this chapter as well as other models
in Chapters 3 and 5 to 7.

2.1.1 Timoshenko model problem

The boundary conditions considered in Models T, AT and SLT-SR are

w(0, t) = ∂xϕ(0, t) = w(1, t) = ∂xϕ(1, t) = 0 for t > 0, (2.1.1)

w(0, t) = ϕ(0, t) = ∂xϕ(1, t) = ∂xw(1, t)− ϕ(1, t) = 0 for t > 0, (2.1.2)

w(0, t) = ϕ(0, t) = w(1, t) = ϕ(1, t) = 0 for t > 0. (2.1.3)

Equations (2.1.1), (2.1.2) and (2.1.3) are the boundary conditions for a
pinned-pinned rod, cantilever rod and clamped-clamped rod respectively.

Problem T Given α and β, find w and ϕ such that

∂2
tw = ∂xV + P − µ1∂tw in (0, 1) for t > 0, (2.1.4)

1

α
∂2
t ϕ = V + ∂xM − µ3∂tϕ in (0, 1) for t > 0, (2.1.5)

with boundary conditions (2.1.1), (2.1.2) or (2.1.3). The accompanying con-
stitutive equations are

M =
1

β
∂xϕ in (0, 1) for t > 0, (2.1.6)

V = ∂xw − ϕ in (0, 1), for t > 0 (2.1.7)

and the initial conditions considered are

w(x, 0) = w0(x) for x ∈ (0, 1), (2.1.8)

ϕ(x, 0) = ϕ0(x) for x ∈ (0, 1), (2.1.9)

∂tw(x, 0) = wd(x) for x ∈ (0, 1), (2.1.10)

∂tϕ(x, 0) = ϕd(x) for x ∈ (0, 1). (2.1.11)

For the classical Timoshenko theory, µ1 = µ3 = 0. In the rest of the section
this will be assumed. Damping will only be mentioned where relevant.

Remark. The parameters α and β are bounded, with a positive infimum and
do not to vary greatly. In order to simplify the theory in this dissertation, α
and β are assumed to be constant. The theory still holds if this assumption
is not made.
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2.1.2 Variational form

In order to carry out analysis and generate an approximation for a solution
of the model problem, it is necessary to derive the variational form. To
do this, (2.1.4) and (2.1.5) are multiplied by arbitrary functions v1 and v2
respectively, where v1 and v2 are in C1[0, 1]. The two equations are then
integrated over [0, 1]. This results in∫ 1

0

∂2
twv1 =

∫ 1

0

∂xV v1 +

∫ 1

0

Pv1 in (0, 1) for t > 0, (2.1.12)∫ 1

0

1

α
v2∂

2
t ϕ =

∫ 1

0

V v2 +

∫ 1

0

∂xMv2 in (0, 1) for t > 0. (2.1.13)

The following notation is convenient to define the test functions.

T1[0, 1] = {v ∈ C1[0, 1] | v(0) = v(1) = 0}, (2.1.14)

T2[0, 1] = {v ∈ C1[0, 1] | v(0) = 0}. (2.1.15)

Also, the set of infinitely differentiable functions with support contained in
(0, 1) is notated C∞

0 (0, 1). More detail and the definition of “support” can
be found in Appendix A.

Recall that for f and g in L2(0, 1),
∫ 1

0
fg is an inner product on L2(0, 1).

Definition. The notation (·, ·) is used for the inner product on L2(0, 1),
where

(f, g) =

∫ 1

0

fg.

The norm for L2(0, 1) is induced by (·, ·) and notated

∥f∥2 = (f, f).

Note that if w1 and w2 are in L2(0, 1), then the notation w1 = w2 implies
equality almost everywhere. A crucial result is that C∞

0 (0, 1) is dense in
L2(0, 1) [OR76, Theorem 2.7].

The generic notation TP is used throughout the dissertation to denote the
set of test functions which is specific to given boundary conditions. This
allows for the variational form of different problems to be defined using one
notation. For the boundary conditions mentioned in (2.1.1)-(2.1.3), there are
three variations for TP :
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Case 1(Pinned-pinned rod) TP = T1[0, 1]× C1[0, 1];

Case 2(Cantilever rod) TP = T2[0, 1]× T2[0, 1];

Case 3(Clamped-clamped rod) TP = T1[0, 1]× T1[0, 1].

In each case, the variational form only differs in the definition of the set
of test functions TP . Using integration by parts in (2.1.12) and (2.1.13), it
follows that for every ⟨v1, v2⟩ ∈ TP ,∫ 1

0

∂2
tw(·, t)v1 = −

∫ 1

0

V (·, t)v′1 +
∫ 1

0

P (·, t)v1, (2.1.16)∫ 1

0

1

α
∂2
t ϕ(·, t)v2 =

∫ 1

0

V (·, t)v2 −
∫ 1

0

M(·, t)v′2. (2.1.17)

The variational form of Problem T may now be presented.

Problem TV Given the load P , find ⟨w, ϕ⟩ such that for each t > 0,
⟨w(·, t), ϕ(·, t)⟩ ∈ TP and for every ⟨v1, v2⟩ ∈ TP ,∫ 1

0

∂2
tw(·, t)v1 = −

∫ 1

0

V (·, t)v′1 +
∫ 1

0

P (·, t)v1, (2.1.18)∫ 1

0

1

α
∂2
t ϕ(·, t)v2 =

∫ 1

0

V (·, t)v2 −
∫ 1

0

M(·, t)v′2. (2.1.19)

The accompanying constitutive equations are

M =
1

β
∂xϕ,

V = ∂xw − ϕ.

Clearly a solution of Problem T is a solution of Problem TV. It is shown
below that if a solution ⟨w, ϕ⟩ of Problem TV satisfies certain conditions
then it is a solution of Problem T.

Proposition 2.1.1. If ⟨w, ϕ⟩ is a solution of Problem TV and ⟨w(·, t), ϕ(·, t)⟩
is in C2[0, 1]× C2[0, 1] for t > 0, then ⟨w, ϕ⟩ is a solution of Problem T.

Proof. Suppose that, for each t > 0, ⟨w(·, t), ϕ(·, t)⟩ ∈ TP and∫ 1

0

∂2
tw(·, t)v1 = −

∫ 1

0

V (·, t)v′1 +
∫ 1

0

P (·, t)v1, (2.1.20)∫ 1

0

1

α
∂2
t ϕ(·, t)v2 =

∫ 1

0

V (·, t)v2 −
∫ 1

0

M(·, t)v′2 (2.1.21)
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for every ⟨v1, v2⟩ ∈ TP .

Since C∞
0 (0, 1) is contained in T1[0, 1], T2[0, 1] and C1[0, 1], Equations (2.1.20)

and (2.1.21) hold for every v ∈ C∞
0 (0, 1)× C∞

0 (0, 1).

After performing integration by parts on (2.1.20) it follows that∫ 1

0

(
∂2
tw(·, t)− ∂xV (·, t)− P (·, t)

)
v1 = 0.

Since C∞
0 (0, 1) is dense in L2(0, 1), for each v1 ∈ L2(0, 1),∫ 1

0

(
∂2
tw(·, t)− ∂xV (·, t)− P (·, t)

)
v1 = 0.

That is,
∂2
tw(·, t)− ∂xV (·, t)− P (·, t) = 0. (2.1.22)

Also, after performing integration by parts on (2.1.21) it follows that∫ 1

0

(
1

α
∂2
t ϕ(·, t)− V (·, t)− ∂xM(·, t)

)
v2 = 0.

Again by the density of C∞
0 (0, 1) in L2(0, 1), for each v2 ∈ L2(0, 1),∫ 1

0

(
1

α
∂2
t ϕ(·, t)− V (·, t)− ∂xM(·, t)

)
v2 = 0

This implies that

1

α
∂2
t ϕ(·, t)− V (·, t)− ∂xM(·, t) = 0. (2.1.23)

To show that a solution of the system (2.1.22), (2.1.23) satisfies the boundary
conditions, consider Case 2. Note that w(·, t) and ϕ(·, t) are in T2[0, 1]. That
is

w(0, t) = ϕ(0, t) = 0. (2.1.24)

It remains to show that ∂xϕ(1, t) = ∂xw(1, t)− ϕ(1, t) = 0.

If (2.1.22) is multiplied by v1 ∈ T2[0, 1] and integrated over [0, 1], then, using
integration by parts,∫ 1

0

(
∂2
tw(·, t)v1 + V (·, t)v′1 − P (·, t)v1

)
− V (1, t)v1(1) = 0.
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But w(·, t) satisfies (2.1.20) for t > 0. Therefore, for each v1 ∈ T2[0, 1],

V (1, t)v1(1) = 0.

From the constitutive equations, V = ∂xw − ϕ. Also, for v1 ∈ T2[0, 1], v1(1)
is arbitrary. Therefore

∂xw(1, t)− ϕ(1, t) = 0. (2.1.25)

Similarly, if (2.1.23) is multiplied by v2 ∈ T2[0, 1] and integrated over [0, 1],
then, using integration by parts,∫ 1

0

(
1

α
∂2
t ϕ(·, t)v2 − V (·, t)v2 +M(·, t)v′2

)
−M(1, t)v2(1) = 0.

But ϕ(·, t) satisfies (2.1.21) for t > 0. Therefore, for each v2 ∈ T2[0, 1],

M(1, t)v2(1) = 0.

From the constitutive equations, M = 1
β
∂xϕ. Also, for v2 ∈ T2[0, 1], v2(1) is

arbitrary. Therefore
∂xϕ(1, t) = 0. (2.1.26)

That is, by (2.1.24), (2.1.25) and (2.1.26), the boundary conditions in Case 2
are satisfied.

The proof that the boundary conditions are satisfied for Case 1 or Case 3 is
similar.

It can therefore be concluded that ⟨w, ϕ⟩ is a solution of Problem T.

For theoretical purposes, the sum of Equations (2.1.16) and (2.1.17) is used.
(To implement the finite element method this is not done.) Define the fol-
lowing notation.

Bilinear forms For f and g in L2(0, 1)×L2(0, 1) and u and v in TP , define
the following symmetric bilinear forms:

cT (f, g) = (f1, g1) +
1

α
(f2, g2) , (2.1.27)

a(f, g) = µ1 (f1, g1) + µ3 (f2, g2) , (2.1.28)

bT (u, v) =
1

β
(u′

2, v
′
2) + (u′

1 − u2, v
′
1 − v2) , (2.1.29)

(f, g)(2) = (f1, g1) + (f2, g2) . (2.1.30)
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Let f(·, t) = ⟨P (·, t), 0⟩. Then Problem TV may be written as follows:

Find y = ⟨w, ϕ⟩ such that for each t > 0, y(·, t) ∈ TP and

cT
(
∂2
t y(·, t), v

)
+ a (∂ty(·, t), v) + bT (y(·, t), v) = (f(·, t), v)(2) (2.1.31)

for each v ∈ TP , where

⟨w(x, 0), ϕ(x, 0)⟩ = ⟨w0(x), ϕ0(x)⟩ , ⟨∂tw(x, 0), ∂tϕ(x, 0)⟩ = ⟨wd(x), ϕd(x)⟩ .

The product space L2(0, 1)2 = L2(0, 1)×L2(0, 1) features prominently in the
theory.

Proposition 2.1.2. The bilinear form (·, ·)(2) is an inner product for the
space L2(0, 1)2, which is complete.

Proof. To prove the symmetry, linearity and non-negativity of the bilinear
form is trivial. Suppose f ∈ L2(0, 1)2 is such that

(f, f)(2) = 0.

Since ∥f1∥2 + ∥f2∥2 = 0, it follows that f1 = f2 = 0 a.e. and hence f = 0
a.e.. Therefore the bilinear form satisfies the conditions in the definition of
an inner product. Finally, the cartesian product of two Hilbert spaces is a
Hilbert space.

The variational problem (Problem TV) is suitable for FEM calculations, but
not for any of the theory. The spaces of test functions are not complete.
In Section 2.3, after discussing Sobolev’s embedding theorem in one dimen-
sion in Section 2.2, further properties of the relevant function spaces will be
derived.

2.2 Sobolev’s embedding theorem

Sobolev space theory is required for the theory in this dissertation (existence
theory, modal analysis and convergence for the finite element method). In
the literature consulted ([OR76], [Sho77] and [Eva98]), weak derivatives and
other properties of functions are presented for functions defined on a subset
of Rn. It is usually assumed that functions defined on an interval of the real
line can be treated as a special case. In Appendix A, results of Sobolev space
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theory are given for functions defined on a subset of Rn, where those defined
on one-dimensional intervals are special cases.

In this section, Sobolev’s embedding theorem is stated and proved because
the one-dimensional case differs from the multi-dimensional case and is im-
portant for the theory in this dissertation. It is shown that for the one-
dimensional case, if a function has weak derivatives up to order m, then it
may be considered to have continuous derivatives up to order m − 1. That
is, if u ∈ H1(0, 1), then there exists a unique continuous function v such that
u = v a.e. and u may be considered to be continuous.

Some preliminary results, used in the proofs, are presented first.

Proposition 2.2.1. If f ∈ C1[0, 1], then

∥f∥sup ≤
√
2∥f∥1. (2.2.1)

Proof. Let f be an arbitrary function in C1[0, 1]. If f has a zero, then using
the Fundamental Theorem of Calculus and the Cauchy-Schwartz inequality,

|f(x)| ≤
∫ 1

0

|f ′| ≤ ∥f ′∥.

Therefore the Poincaré type inequality follows:

∥f∥sup ≤ ∥f ′∥. (2.2.2)

If f is positive, then it has a minimum m > 0. Let g = f − m. Then the
function g has a zero in [0, 1] and hence ∥g∥sup ≤ ∥g′∥ = ∥f ′∥. Therefore

∥f∥sup ≤ m+ ∥f ′∥ ≤ ∥f∥+ ∥f ′∥.

Therefore, using the inequality 2|ab| ≤ a2 + b2 for real numbers a and b,

(∥f∥sup)2 ≤ 2∥f∥2 + 2∥f ′∥2 = 2∥f∥21,

If f is negative, −f may be substituted into (2.2.1). Consequently, (2.2.1)
holds for any f ∈ C1[0, 1].

Proposition 2.2.2. If u ∈ H1(0, 1) then there exists a unique u∗ ∈ C[0, 1]∩
H1(0, 1) such that u = u∗ a.e. and ∥u∗∥sup ≤

√
2∥u∥1.
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Proof. Let u ∈ H1(0, 1). Since H1(0, 1) is the closure of C1[0, 1] using the
norm ∥ · ∥1 (see Appendix A), there exists a sequence (gn) ⊂ C1[0, 1] such
that

∥gn − u∥1 → 0.

This sequence is Cauchy in H1(0, 1) and hence Cauchy in (C[0, 1], ∥ · ∥sup)
from Proposition 2.2.1. But (C[0, 1], ∥ · ∥sup) is complete. Denote the unique
limit of (gn) in C[0, 1] by u∗. Then, since ∥gn−u∗∥ ≤ ∥gn−u∗∥sup, it follows
that

∥gn − u∗∥ → 0.

Finally, ∥gn − u∥ → 0 since ∥gn − u∥ ≤ ∥gn − u∥1 and hence u = u∗ a.e. by
the uniqueness of limits. Since ∥gn∥sup ≤

√
2∥gn∥1, it follows that

∥u∗∥sup ≤
√
2∥u∥1.

Since any two continuous functions equal almost everywhere are identical,
it follows that u∗ is unique in C[0, 1] ∩ H1(0, 1) such that u = u∗ a.e. and
∥u∗∥sup ≤

√
2∥u∥1.

Definition. For u ∈ Cm[0, 1], let

∥u∥msup =
m∑
k=0

∥u(k)∥sup.

It is now possible to present the proof of Sobolev’s Lemma and Embedding
Theorem.

Theorem 2.2.1 (Sobolev’s Lemma in one dimension).
If u ∈ Cm[0, 1] then

∥u∥m−1
sup ≤ 2

√
m∥u∥m. (2.2.3)

Proof. By Proposition 2.2.1, the estimate(
∥u(j)∥sup

)2 ≤ 2∥u(j)∥2 + 2∥u(j+1)∥2 (2.2.4)

holds for the jth derivative of u, where j < m. Summing over j yields

m−1∑
j=0

(
∥u(j)∥sup

)2 ≤ 4∥u∥2m. (2.2.5)

The inequality

(
m−1∑
j=0

∥u(j)∥sup

)2

≤ m
m−1∑
j=0

(
∥u(j)∥sup

)2
yields (2.2.3).
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Theorem 2.2.2 (Sobolev’s Embedding Theorem in one dimension).
If u ∈ Hm(0, 1) then there exists a unique u∗ ∈ Cm−1[0, 1] such that u = u∗

a.e. and ∥u∗∥m−1
sup ≤ m

√
2∥u∥m.

Proof. Suppose u ∈ H2(0, 1).

SinceH2(0, 1) is the closure of C2[0, 1] using the norm ∥·∥2 (see Appendix A),
there exists a sequence (un) ⊂ C2[0, 1] such that

lim
n→∞

∥un − u∥2 = 0. (2.2.6)

This implies that

lim
n→∞

∥un − u∥ = 0, (2.2.7)

lim
n→∞

∥u′
n −Du∥ = 0, (2.2.8)

lim
n→∞

∥u′′
n −D2u∥ = 0. (2.2.9)

By Proposition 2.2.2 there exists a unique u∗ ∈ C[0, 1] such that u = u∗ a.e.
and a unique û ∈ C[0, 1] such that Du = û a.e..

Since (un) and (u′
n) are contained in C1[0, 1], it follows by Proposition 2.2.1

that they are Cauchy sequences in (C[0, 1], ∥ · ∥sup). Thus,

lim
n→∞

∥un − v∥sup = 0, , (2.2.10)

lim
n→∞

∥u′
n − w∥sup = 0. (2.2.11)

Hence, by the uniqueness of a limit, v = u∗ and, by the implied uniform
convergence, w = (u∗)′. Also, Equation (2.2.11) implies that

lim
n→∞

∥u′
n − w∥ = 0. (2.2.12)

Equations (2.2.8) and (2.2.12) imply that Du = û = (u∗)′ a.e. and hence
u∗ ∈ C1[0, 1]. Also, from Proposition 2.2.1, ∥un∥1sup ≤ 2

√
2∥un∥2. Hence

∥u∥1sup ≤ 2
√
2∥u∥2. This proves that the theorem holds for the case m = 2.

Assume that, for m = 1, 2, . . . , n, if u ∈ Hm(0, 1) then there exists a unique
u∗ ∈ Cm−1[0, 1] such that u = u∗ a.e. and ∥u∗∥m−1

sup ≤ m
√
2∥u∥m.

Suppose u ∈ Hn+1(0, 1). Then u ∈ Hn(0, 1) and there exists a unique
u∗ ∈ Cn−1[0, 1] such that u∗ = u a.e. But Du ∈ Hn(0, 1) as well. Therefore



2.3. WEAK FORMULATION OF THE STANDARDTIMOSHENKO PROBLEM21

there exists a unique û ∈ Cn−1[0, 1] such that û = Du a.e.. That is, û = u∗′

(as shown in the case m = 2). It follows that u∗ ∈ Cn[0, 1].

Also,
∥u∥nsup = ∥u∥n−1

sup + ∥u(n)∥sup ≤ (n+ 1)
√
2∥u∥n+1.

This proves the theorem for m = n + 1. Therefore, by mathematical induc-
tion, the theorem holds for any m ∈ N.

For u ∈ H1(0, 1), let u(x) be the value v(x) of the unique continuous function
v which is equal to u almost everywhere. Then x0 is a zero of u if v(x0) = 0.

For f and g in H1(0, 1)×H1(0, 1) = H1(0, 1)2, let

(f, g)(2)1 = (f1, g1) + (Df1, Dg1) + (f2, g2) + (Df2, Dg2) , (2.2.13)

where D denotes the weak derivative.

Proposition 2.2.3. The bilinear form (·, ·)(2)1 is an inner product for the
Sobolev space H1(0, 1)2, which is complete.

Proof. By the definition of (·, ·)m , which is an inner product for Hm(0, 1)

(See Appendix A), it follows that (·, ·)(2)1 is an inner product for H1(0, 1)2.
Also, the cartesian product of two Hilbert spaces is a Hilbert space.

Definition (Value of a function at the boundary). For u ∈ Hk(0, 1)2,

u(0) = u∗(0) and u(1) = u∗(1),

where u∗ is the unique function in Ck−1(0, 1)2 such that u = u∗ a.e.

2.3 Weak formulation of the standard

Timoshenko problem

The weak variational form is formulated at the end of this section. Recall
that for a realistic model, α > β > 1. This fact is discussed in Chapter 1
in the context of rod mechanics. In this chapter it is an assumption for the
theory, where it is included in the estimates.

In Section 2.2 it is shown that for the one-dimensional case, if a function has
weak derivatives up to order m, then it may be considered to have continuous



22 CHAPTER 2. ANALYSIS OF LINEAR VIBRATION MODELS

derivatives up to order m − 1. That is, if u ∈ H1(0, 1), then there exists a
unique continuous function v such that u = v a.e. and u may be considered
to be continuous.

In this section, the weak variational form of Problem T is considered. At the
end of Section 2.1, the space L2(0, 1)2 is shown to be a Hilbert space with

inner product (·, ·)(2). Let ∥ · ∥L2 denote the norm induced by (·, ·)(2) and

∥ · ∥H1 the norm induced by (·, ·)(2)1 .

Definition (Energy Space). The closure of TP in H1(0, 1)2 with respect to
the norm ∥ · ∥H1 is referred to as the energy space V .

The energy space for each of the three cases of boundary conditions is now
characterised. To do this, the notation A is used to denote the closure of the
set A. Also note that for two sets A and B, A×B = A × B. For Case 1,
V = T1[0, 1] × H1(0, 1), for Case 2, V = T2[0, 1] × T2[0, 1] and for Case 3,
V = T1[0, 1]× T1[0, 1].

The bilinear form bT is extended to V : for u and v in V ,

bT (u, v) =
1

β
(Du2, Dv2) + (Du1 − u2, Dv1 − v2) . (2.3.1)

Proposition 2.3.1. The bilinear form cT is an inner product for the space
L2(0, 1)2 and the norm induced by cT is equivalent to ∥ · ∥L2.

Proof. The fact that cT is an inner product for L2(0, 1)2 follows easily from
the fact that α > 0 and cT is composed of inner products on L2(0, 1). Let
u ∈ L2(0, 1)2. Then

min

{
1,

1

α

}
∥u∥2L2 ≤ cT (u, u) ≤ max

{
1,

1

α

}
∥u∥2L2 . (2.3.2)

The inner product cT for L2(0, 1)2 will prove to be useful.

Definition (Inertia Space). The space L2(0, 1)2 with norm induced by cT ,
denoted ∥ · ∥W , is referred to as the inertia space W .

Proposition 2.3.2. For any u ∈ V,

∥u1∥2 ≤ ∥Du1∥2 ≤ 2β

(
∥Du1 − u2∥2 +

1

β
∥u2∥2

)
. (2.3.3)
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Proof. Since u1(0) = 0, ∥u1∥ ≤ ∥Du1∥ (See Appendix A). Using the triangle
inequality and the fact that for a and b in R, 2|ab| ≤ a2 + b2, it follows that

∥Du1∥2 ≤ 2∥Du1 − u2∥2 + 2∥u2∥2

≤ 2β

(
∥Du1 − u2∥2 +

1

β
∥u2∥2

)
.

Proposition 2.3.3. For Cases 2 and 3, if u ∈ V, then

∥u1∥2 ≤ ∥Du1∥2 ≤ 2βbT (u, u). (2.3.4)

Proof. Let u ∈ V . Then, since u2(0) = 0, (see Appendix A)

∥u2∥ ≤ ∥Du2∥.

The result therefore follows from Proposition 2.3.2.

The result above does not hold for Case 1.

Theorem 2.3.1. For any u ∈ V, there exists a non-zero real number c2 such
that

c2∥u∥2L2 ≤ bT (u, u). (2.3.5)

Proof. In Cases 2 and 3, if u = ⟨u1, u2⟩ ∈ V , then Propositions 2.3.2 and
2.3.3 hold. It follows that for u ∈ V ,

∥u∥2L2 = ∥u1∥2 + ∥u2∥2

≤ 2βbT (u, u) + ∥Du2∥2

≤ 3βbT (u, u). (2.3.6)

That is, for c2 = 1
3β
, (2.3.5) holds.

In Case 1, if u ∈ V , a direct proof appears to be impossible. For this reason
a proof is given by contradiction. The proof is based on the idea given in the
appendix of [VZV09]. Note that for any nonzero u ∈ V and w = ∥u∥−1

L2u,

bT (u, u)

(u, u)(2)
= bT (w,w). (2.3.7)
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Let S denote the unit sphere with centre 0 in L2(0, 1)2. In order to prove
(2.3.5), it is required to prove that for u ∈ V ∩ S, there exists a real number
c2 such that

bT (u, u) ≥ c2. (2.3.8)

Suppose not. Then there exists a sequence (un) contained in TP ∩ S such
that b(un, un) → 0 as n → ∞. This implies that for a given c2 ∈ R, there
exists n0 ∈ N such that for n > n0,

bT (u
n, un) < c2. (2.3.9)

By the contrapositive of the result shown for Cases 2 and 3, it follows that
un
2 does not have a zero in [0, 1]. Without loss of generality, assume un

2 > 0.

For any ε > 0, there exists n1 > n0 such that for n > n1,

bT (u
n, un) < ε2. (2.3.10)

For convenience, the notation wn = un
1 and ϕn = un

2 is used. From the fact
that un ∈ S for each n ∈ N, it follows that for each n ∈ N,

∥ϕn∥2 + ∥wn∥2 = 1 (2.3.11)

and hence
∥ϕn∥2 ≤ 1. (2.3.12)

For each n ∈ N, wn and ϕn are in C1[0, 1] since (un) is contained in TP ∩ S.
Then, by (2.3.10), for n > n1

∥w′
n − ϕn∥ < ε.

Since wn has a zero in [0, 1], it follows from a poincaré type inequality (see
Appendix A) and the triangle inequality that for n > n1,

∥wn∥ ≤ ∥w′
n∥ ≤ ∥w′

n − ϕn∥+ ∥ϕn∥ < ε+ ∥ϕn∥.

That is,
∥wn∥2 < 2ε2 + 2∥ϕn∥2. (2.3.13)

By (2.3.11) and (2.3.13),

1 < ∥ϕn∥2 + 2ε2 + 2∥ϕn∥2. (2.3.14)
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Choose ε = 1
10
. Then (2.3.12) and (2.3.14) imply that for n > n1

49

150
< ∥ϕn∥2 ≤ 1. (2.3.15)

For each n ∈ N, the maximum and minimum of ϕn (denoted ϕn(max) and
ϕn(min) respectively) are reached since ϕn may be considered to be an ele-
ment of C[0, 1]. Therefore, for some a, b ∈ [0, 1], using the Cauchy-Schwartz
inequality and the fact that ϕn > 0, it follows that,

ϕ2
n(max) − ϕ2

n(min) =

∫ b

a

(ϕ2
n)

′ =

∫ b

a

2ϕnϕ
′
n ≤ 2∥ϕn∥∥ϕ′

n∥. (2.3.16)

Thus, (2.3.15) and (2.3.16) imply that

ϕ2
n(min) =

∫ 1

0

ϕ2
n(min) =

∫ 1

0

ϕ2
n −

∫ 1

0

(
ϕ2
n − ϕ2

n(min)

)
≥

∫ 1

0

ϕ2
n −

∫ 1

0

(
ϕ2
n(max) − ϕ2

n(min)

)
>

49

150
− 2∥ϕ′

n∥ (2.3.17)

That is,

ϕ2
n(min) >

49

150
− 2ε =

19

150
(2.3.18)

Again, using the Cauchy-Schwartz inequality,∣∣∣∣∫ 1

0

w′
n −

∫ 1

0

ϕn

∣∣∣∣ ≤ ∫ 1

0

|w′
n − ϕn| ≤ ∥w′

n − ϕn∥ <
1

10
(2.3.19)

Hence,

√
114− 3

30
< ϕn(min) −

1

10
≤
∫ 1

0

ϕn −
1

10
<

∫ 1

0

w′
n. (2.3.20)

But this implies that wn(1) > wn(0), which contradicts the fact that un ∈ TP .
Therefore, for u ∈ V ∩ S, there exists c2 > 0 such that

bT (u, u) ≥ c2. (2.3.21)

That is, for u ∈ V , there exists c2 > 0 such that (2.3.5) holds.

Corollary. The bilinear form bT is an inner product for the space V.
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Proof. By Theorem 2.3.1, bT is a positive definite symmetric bilinear form.

Let ∥ · ∥V denote the norm induced by the inner product bT . The space V
equipped with the norm ∥ · ∥V is referred to as the energy space.

Proposition 2.3.4. For any u ∈ V,

∥Du1∥2 ≤ 2K∗∥u∥2V . (2.3.22)

with K∗ = max {β, c−2}.

Proof. From Proposition 2.3.2, for any u ∈ V ,

∥Du1∥2 ≤ 2β

(
∥Du1 − u2∥2 +

1

β
∥u2∥2

)
≤ 2β

(
∥Du1 − u2∥2 +

1

β
∥u∥2L2

)
. (2.3.23)

That is, by Theorem 2.3.1,

∥Du1∥2 ≤ 2β∥u∥2V +
2

c2
∥u∥2V

≤ 2K∗∥u∥2V . (2.3.24)

Proposition 2.3.5. The norms ∥ · ∥H1 and ∥ · ∥V are equivalent on V.

Proof. Let u ∈ V . Then, for K1 = max{β−1, 2},

∥u∥2V ≤ K1

(∫ 1

0

(Du2)
2 +

∫ 1

0

(Du1)
2 +

∫ 1

0

u2
2

)
≤ K1∥u∥2H1 . (2.3.25)

Also, using the inequality (2.3.5) and Proposition 2.3.4, it follows that

∥u∥2H1 = ∥u∥2L2 + ∥Du1∥2 + ∥Du2∥2

≤ 2

c2
∥u∥2V + 2K∗∥u∥2V + β∥u∥2V

≤ 5K∗∥u∥2V . (2.3.26)
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Remark. From Proposition 2.3.5 it follows that the energy space V is com-
plete.

Let J denote the interval [−τ, τ ] or [0, τ ]. As a first step to proceed in for-
mulating the weak variational form, the partial time derivatives of Equation
(2.1.31) are replaced by partial weak derivatives. This suggests that a solu-
tion y = ⟨w, ϕ⟩ should be sought for in H2([0, 1]× J)2. That is, y should be
found such that for each t > 0, y(·, t) ∈ V and, for each v ∈ V ,

cT
(
D2

t y(·, t), v
)
+ a (Dty(·, t), v) + bT (y(·, t), v) = (f(·, t), v)(2) .

In order to use the abstract existence theory in Section 2.4, an even weaker
form of the problem is considered. It is shown that Problem TV can be
written in the form

cT (u
′′, v) + a(u′v) + bT (u, v) = (f, v).

For any function g ∈ L2([0, 1]× J), let

ĝ(t) = g(·, t) ∈ L2[0, 1].

Then the ordinary derivative of ĝ is the partial time derivative of g. Let
u1(t) = w(·, t) and u2(t) = ϕ(·, t).

Definition (Derivative). Suppose f is a function defined on some interval
(a, b) with values in a Banach space (B, ∥ · ∥B). Let t be any point in (a, b).
If lim

h→0
h−1(f(t+h)−f(t)) exists, then it is called the derivative of f at t and

is denoted by f ′(t). That is, if it exists, the derivative f ′ at t is such that

lim
h→0

∥h−1(f(t+ h)− f(t))− f ′(t)∥B = 0 and f ′(t) ∈ B.

Remark. In this dissertation the Banach spaces considered are the Hilbert
spaces (L2(0, 1)2, ∥ · ∥L2), (W , ∥ · ∥W) and (V , ∥ · ∥V).

The weak variational form of Problem T follows.

Problem TW
Given u0 ∈ V , ud ∈ W and f ∈ C([0, τ);L2(0, 1)2), find u ∈ C2((0, τ); W)
such that for each t > 0, u(t) ∈ V , u′(t) ∈ V and

cT (u′′(t), v) + a(u′(t), v) + bT (u(t), v) = (f(t), v)(2) for each v ∈ V ,
lim
t→0+

∥u(t)− u0∥V = 0,

lim
t→0+

∥u′(t)− ud∥L2 = 0.
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Remark. In the weak variational form of a problem, the information re-
garding the system of partial differential equations and boundary conditions
is contained in the bilinear forms and function spaces.

2.4 Existence and uniqueness of solutions

The results of the general theory in [VV02] and [VS19] are presented in this
section. This theory deals with existence and uniqueness of solutions of linear
vibration models. The problem formulation in this section is a generalisation
of the formulation given in Section 2.3.

The following assumptions are made about the spaces being considered.

S1 The spaces V , W and X are real Hilbert spaces, where V ⊂ W ⊂ X .

S2 The notation for the inner products and induced norms are as follows
(following [VS19]).

Table 2.1: Notation for spaces with inner products and induced norms.
Space Inner product Norm

Global space X (·, ·)X ∥ · ∥X
Inertia space W (·, ·)W ∥ · ∥W
Energy space V (·, ·)V ∥ · ∥V

The spaces V and W are to be constructed for every application. This was
done for Problem TW in Section 2.3.

Three bilinear forms, a, b and c are considered, where a and b are defined
on V and c is defined on W . It is assumed that b = b1 + b2, where b1 is
symmetric and b2 not. It is possible that b2 is zero.

The following assumptions are made in [VS19] for the existence results.

A1 V is dense in W and W is dense in X .

A2 There exists a positive constant CW such that ∥w∥X ≤ CW∥w∥W for
each w ∈ W and c(·, ·) = (·, ·)W .
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A3 There exists a positive constant CV such that ∥v∥W ≤ CV∥v∥V for each
v ∈ V and b1(·, ·) = (·, ·)V .

A4 The bilinear form a is non-negative, symmetric and bounded on V ,
i.e. there exists a positive constant Ka such that for u and v in V ,
|a(u, v)| ≤ Ka∥u∥V∥v∥V .

A4W (Weak damping) The bilinear form a is non-negative, symmetric and
bounded on W , i.e. there exists a positive constant Ca such that for v
and w in W , |a(u, v)| ≤ Ca∥u∥W∥v∥W .

A5 The bilinear form b2 is bounded in the following sense: there exists a
positive constant K1 < C−1

V such that for u and v in V ,

|b2(u, v)| ≤ K1∥u∥V∥v∥W .

The following general problem in weak variational form is from [VS19].

Problem GVar
Given a function f : J → X , find a function u ∈ C(J,V) such that u′ is
continuous at 0 with respect to ∥ ·∥W and for each t ∈ J , u(t) ∈ V , u′(t) ∈ V ,
u′′(t) ∈ W and

c (u′′(t), v) + a (u′(t), v) + b (u(t), v) = (f(t), v)X for each v ∈ V , (2.4.1)

while u(0) = u0 , u′(0) = ud .

Semigroup theory is used in [VV02] and [VS19] to obtain the following results.

The theorems listed below are the main results of [VS19].

Theorem 2.4.1. Suppose Assumptions A1, A2, A3, A4 and A5 hold. If,
for u0 ∈ V and ud ∈ V, there exists some y ∈ W such that

b (u0, v) + a (ud, v) = c (y, v) for each v ∈ V , (2.4.2)

then for each f ∈ C1 ([0, T ),X ) there exists a unique solution

u ∈ C ([0, T ),V) ∩ C1 ([0, T ),W) ∩ C1 ((0, T ),V) ∩ C2 ((0, T ),W)

for Problem GVar. If f = 0 then u ∈ C1 ([0,∞),V) ∩ C2 ([0,∞),W).

Definition (The space Eb).

Eb = {x ∈ V
∣∣ there exists a y ∈ W such that c(y, v) = b(x, v) for all v ∈ V}.
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Theorem 2.4.2 (Weak damping).
Suppose Assumptions A1, A2, A3, A4W and A5 hold. Let J be an interval
containing zero, then there exists a unique solution

u ∈ C1 (J,V) ∩ C2 (J,W)

of Problem GVar for each u0 ∈ Eb, ud ∈ V and each f ∈ C1 (J,X ). If f = 0
then u ∈ C1 ((−∞,∞),V) ∩ C2 ((−∞,∞),W).

The symmetric case

If the bilinear form b is symmetric, it is important to note that Theorems 2.4.1
and 2.4.2 reduce to the existence theorems in [VV02] (copied here for conve-
nience).

Theorem 2.4.3. Suppose Assumptions A1, A2, A3 and A4 hold. If, for
u0 ∈ V and ud ∈ V, there exists some y ∈ W such that

b (u0, v) + a (u1, v) = c (y, v) for each v ∈ V , (2.4.3)

then for each f ∈ C1 ([0,∞),X ), there exists a unique solution

u ∈ C1 ([0,∞),V) ∩ C2 ([0,∞),W)

for Problem GVar.

Theorem 2.4.4 (Weak damping).
Suppose Assumptions A1, A2, A3 and A4W hold. Then there exists a
unique solution

u ∈ C1 ((−∞,∞),V) ∩ C2 ((−∞,∞),W)

of Problem GVar for each u0 ∈ Eb, each ud ∈ V and each f ∈ C1 ((−∞,∞),X ).

Remark. The theory in [VV02] is sufficient for Models T and AT.

In Section 2.7, this theory is applied to the standard Timoshenko problem.

To interpret the existence theory, the proofs of the theorems in [VV02] and
[VS19] were investigated. In both articles, Problem GVar is written as an
initial value problem for a first-order differential equation using a linear op-
erator A determined by a, b and c. Semigroup theory is then used to obtain
existence results. A necessary condition for the solvability of Problem GVar
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is that A is the infinitesimal generator of a semigroup and that the initial
conditions are contained in the domain of A.

Of special interest is the case of weak damping or no damping. For this case
the domain of A is Eb × V . Therefore, in the case of weak or no damping,
by Theorem 2.4.4, if Assumptions A1, A2, A3 and A4W are met, Then
the unique solution u for Problem GVar is an element of C1 ((−∞,∞),V)∩
C2 ((−∞,∞),W) for each ⟨u0, u1⟩ ∈ Eb×V , and each f ∈ C1 ((−∞,∞),X ).
Theorem 2.4.4 also implies that since the initial condition is contained in
Eb × V , the solution remains in Eb × V for each t > 0. The regularity of a
solution of Problem T is discussed in more detail in Section 2.7.

2.5 Modal analysis

Consider Problem GVar with f ≡ 0, the bilinear form a ≡ 0, and a possible
solution u(t) = T (t)ũ, where T is a real-valued function. That is, for each
t ∈ J , it follows that u(t) ∈ V , u′′(t) ∈ W and

T ′′(t)c (ũ, v) + T (t)b (ũ, v) = 0 for each v ∈ V . (2.5.1)

This results in the following eigenvalue problem and differential equation.

b (ũ, v) = λc (ũ, v) for each v ∈ V , (2.5.2)

T ′′(t) + λT (t) = 0. (2.5.3)

If eigenvalues and eigenvectors exist, then for some real numbers B1 and B2,
the general solution of Equation (2.5.3) is

T (t) = B1 cos(
√
λ t) +B2 sin(

√
λ t). (2.5.4)

In Section 2.6 it is shown that there exists a complete sequence of eigenvectors
(ũm) for the eigenvalue problem (2.5.2) with a corresponding sequence (λm)
of eigenvalues.

In this section the application is discussed. Note that if um(t) = Tm(t)ũm,
where ũm and λm are a solution of (2.5.2) and Tm is given by (2.5.4), then
um(t) is a solution of Problem GVar (with f ≡ 0 and a ≡ 0), known as a
modal solution. The formal series solution then follows.

u(t) =
∞∑

m=1

Tm(t)ũm. (2.5.5)
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Energy

It is now shown, using the same method as [CVV18], that the series rep-
resentation (2.5.5) is valid. That is, the partial sums of the formal series
solution can be used to approximate the exact solution and the error of this
approximation can be made arbitrarily small in energy. The definition of
energy associated with a function is given here for reference.

Definition. The energy E associated with a function u is given by

E(t) =
1

2
b(u(t), u(t)) +

1

2
c(u′(t), u′(t)).

Note that for any solution u of Problem GVar (with f ≡ 0),

E ′(t) = b(u(t), u′(t)) + c(u′′(t), u′(t)) = −a(u′(t), u′(t)) ≤ 0. (2.5.6)

That is,
E(t) ≤ E(0) for all t > 0. (2.5.7)

The following partial sum is considered

uM(t) =
M∑

m=1

Tm(t)ũm. (2.5.8)

The notation below is used for convenience. Let

uM
0 =

M∑
m=1

Bmũm and uM
d =

M∑
m=1

Cmũm, (2.5.9)

where Bm = Tm(0) and Cm = T ′
m(0). The partial sum (2.5.8) satisfies the

differential equation (2.4.1), with f ≡ 0 and a ≡ 0, with the initial conditions
uM(0) = uM

0 and (uM)′(0) = uM
d . Therefore Equation (2.4.1) – where f ≡ 0

and a ≡ 0 – is also satisfied by the error function uEM = u − uM , where
uEM (0) = u0 − uM

0 and (uEM )′(0) = ud − uM
d . Let the energy associated with

uEM be denoted by EM(t). It follows from the inequality (2.5.7) that for all
t > 0,

EM(t) ≤ EM(0). (2.5.10)

It can be concluded that if both the partial sum approximation of the ini-
tial displacement and the partial sum approximation of the initial velocity
converge to the initial displacement and initial velocity respectively in the
energy norm (∥ · ∥V) and the inertia norm (∥ · ∥W) respectively, then both



2.6. COMPLETE SEQUENCE OF EIGENVECTORS 33

the partial sum (2.5.8) converges to the solution in the energy norm and the
derivative of the partial sum converges to the derivative of the solution in
the inertia norm.

As a result of a theorem in [CVV18], if Cm = c(u1, ũm), then ∥ud−uM
d ∥W → 0

as M → ∞. Also, by another theorem in [CVV18], if Bm = ∥ũm∥−2
V b(u0, ũm),

then ∥u0 − uM
0 ∥V → 0 as M → ∞. That is, there exist coefficients Bm and

Cm such that EM(0) → 0 as M → ∞ and hence EM(t) → 0 as M → ∞.

Therefore, for all t > 0, the partial sum (2.5.8) converges to the solution
in the energy norm and the derivative of the partial sum converges to the
derivative of the solution in the inertia norm. Also, the accuracy of the
approximations – in terms of partial sums – depends only on the accuracy
of the partial sum approximations of u0 and ud at time t = 0. The accuracy
can therefore be guaranteed.

Hence, the limit of the partial sums – the formal solution – satisfies Problem
GVar, provided the assumptions A1, A2, A3, A4W, A5 are met and u0 ∈ Eb,
ud ∈ V and f ∈ C1 (J,X ).

2.6 Existence of a complete sequence of

eigenvectors

In [CVV18] it is assumed that the bilinear form b is symmetric. In order
to prove the existence of a complete sequence of eigenvectors, the follow-
ing assumptions are made. The first four assumptions (B1-B4) are a more
concise version of Assumptions S1-S3 and A1-A3 in Section 2.4 and the last
assumption (B5) is additional.

B1 W is a Hilbert space with inner product c and induced norm ∥ · ∥W .

B2 V is a Hilbert space with inner product b and induced norm ∥ · ∥V .

B3 There exists a positive constant Cb such that ∥v∥W ≤ Cb∥v∥V for each
v ∈ V .

B4 V is a dense subset of W .

B5 The embedding of V into W is compact.
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Alternative of B5: Every bounded set in V contains a sequence that converges
in W (is pre-compact in W).

The following theorem from [CVV18] is as a result of the Riesz Representa-
tion Theorem.

Theorem 2.6.1. For each x ∈ W there exists a unique element w ∈ V such
that

b(w, u) = c(x, u) for each u ∈ V and ∥w∥V ≤ Cb∥x∥W .

Definition. For each x ∈ W define the operator T as Tx = w, where w is
the unique element described in Theorem 2.6.1.

The operator T is a bounded linear operator from W to V , i.e.

∥Tx∥V ≤ Cb∥x∥W for each x ∈ W .

In addition, by assumption B5, T is compact. Also, since b and c are sym-
metric, it can be shown that T is symmetric.

Theorem 2.6.2. The null space N (T ) of the operator T is trivial.

Proof. If x ∈ N (T ), then Tx = 0. Therefore,

c(x, u) = b(Tx, u) = 0 for each u ∈ V .

That is, c(x, u) = 0 for each u ∈ V . Since V is dense in W , it is simple to
show that x = 0.

A consequence of Theorem 2.6.2 is that the operator T is invertible.

Proposition 2.6.1. For each x ∈ W, if x ̸= 0 then c(Tx, x) > 0.

Proof. For each x ∈ W where x ̸= 0, by Theorem 2.6.2 it follows that

0 < b(Tx, Tx) = c(Tx, x).

Theorem 2.6.3.

b(x, u) = λc(x, u) for each u ∈ V

if and only if

Tx =
1

λ
x.
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Proof. The result follows easily from the fact that b(Tx, u) = c(x, u) for each
u ∈ V .

For µ = 1
λ
, the eigenvalue problem (2.5.2) can thus be rewritten as

T ũ = µũ. (2.6.1)

Definition (Completeness). If (σk) is an orthonormal sequence in a Banach
space B and v =

∑∞
k=1 ⟨v, σk⟩σk for each v ∈ B, then (σk) is said to be

complete in B.

By the theory of symmetric linear compact operators (see [Zei95]) the fol-
lowing properties are true for eigenvalues and eigenvectors of T .

(a) T has an orthonormal sequence of eigenvectors (ũn) with corresponding
positive eigenvalues (µn);

(b) The orthonormal sequence of eigenvectors (ũn) is complete in W ;

(c) Each eigenspace is finite dimensional;

(d) The sequence of eigenvalues (µn) is decreasing and µn → 0 as n → ∞.

Therefore, the theorem below follows.

Theorem 2.6.4. The following statements are true.

(a) The eigenvalue problem (2.5.2) has an orthonormal sequence of eigen-
vectors (ũn) with corresponding positive eigenvalues (λn);

(b) The orthonormal sequence of eigenvectors (ũn) is complete in W;

(c) Each eigenspace is finite dimensional;

(d) The sequence of eigenvalues (λn) is increasing and λn → ∞ as n → ∞.

The authors in [CVV18] then proceed to find the following result.

Theorem 2.6.5. The sequence of eigenvectors (ũn), which is complete in
W, is also complete in V.

The well known definition of the Rayleigh quotient follows for reference.
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Definition. The Rayleigh quotient R is defined as

R(v) =
b(v, v)

c(v, v)
for each v ∈ V .

It follows from the fact that b and c are inner products that the Rayleigh
quotient is positive for all elements of V .

2.7 Application of existence theory to a

Timoshenko rod

The existence theory of Section 2.4 is now applied to Problem TW from
Section 2.1 for completeness.

Theorem 2.7.1. For u0 ∈ V and ud ∈ V, Problem TW has a unique solution

u ∈ C1 ([0,∞),V) ∩ C2 ([0,∞),W) .

Proof. The assumptions A1-A4 are verified in order to use Theorem 2.4.3.

A1 Since C∞
0 (0, 1) is dense in L2(0, 1) and by the equivalence of the norms

∥ · ∥L2 and ∥ · ∥W (Proposition 2.3.1), it follows that C∞
0 (0, 1)2 is dense

in W and W is dense in L2(0, 1)2. That is, by the fact that C∞
0 (0, 1)2 ⊂

V ⊂ W , V is dense in W and W is dense in L2(0, 1)2.

A2 By the equivalence of the norms ∥ · ∥L2 and ∥ · ∥W (Proposition 2.3.1),
there exists a positive constant CW such that ∥w∥L2 ≤ CW∥w∥W for
each w ∈ W .

A3 By the inequality (2.3.5) and the equivalence of the norms ∥ · ∥L2 and
∥·∥W (Proposition 2.3.1), it follows that there exists a positive constant
CV such that ∥v∥W ≤ CV∥v∥V for each v ∈ V .

A4 In this case, a ≡ 0. Therefore the bilinear form a is non-negative,
symmetric and bounded on V .

Therefore, by Theorem 2.4.3, there exists a unique solution u for Prob-
lem TW, where

u ∈ C1 ([0,∞),V) ∩ C2 ([0,∞),W) .
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The existence of a complete sequence of eigenfunctions of the associated
eigenvalue problem is not discussed here since Problem T is a special case of
Problem AT presented in Chapter 3.

Regularity

Recall from Section 2.4 that

Eb = {x ∈ V
∣∣ there exists a y ∈ W such that c(y, v) = b(x, v) for all v ∈ V}.

Note that, by definition, Eb is a subset of V . From Section 2.2 this implies
that Eb is contained in H1(0, 1)2. It is, however, possible for elements of Eb to
have higher order derivatives than just one. The following result characterizes
Eb.

Proposition 2.7.1. Consider the different cases for boundary conditions. In
each case, Eb ⊂ H2(0, 1)2.

Proof. Recall that V ⊂ H1(0, 1)2. Let u ∈ Eb. That is, u ∈ V is such that
for each v ∈ V , there exists a y ∈ W such that

bT (u, v) = cT (y, v). (2.7.1)

Let x = ⟨x1, 0⟩ and z = ⟨0, z2⟩, where x1, z2 ∈ C∞
0 (0, 1). Then, x and z are

in V and, by the definitions of bT and cT ,

(Du1 − u2, x
′
1) = (y1, x1) and (2.7.2)

1

β
(Du2, z

′
2)− (Du1 − u2, z2) =

1

α
(y2, z2) . (2.7.3)

That is, for any x and z in C∞
0 (0, 1),

(Du1, x
′) = − (Du2 − y1, x) and (2.7.4)

1

β
(Du2, z

′) = −
(
u2 −Du1 −

1

α
y2, z

)
. (2.7.5)

Hence (Du2 − y1) is the weak derivative of Du1 and
(
u2 −Du1 − 1

α
y2
)
is the

weak derivative of 1
β
Du2. Therefore ū ∈ H2(0, 1)2.

Proposition 2.7.1 and Theorem 2.2.2 imply that for u0 in Eb, u0 is considered
an element of C1[0, 1]. That is, if u0 is in Eb, then u is in C1[0, 1] for all
t > 0.
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Chapter 3

Adapted Timoshenko rod

In this chapter the adapted Timoshenko model is investigated. The condi-
tions for existence of a weak solution and the completeness of a sequence of
eigenfunctions are established. The treatment is similar to that of the Tim-
oshenko theory. As a consequence, the results from Chapter 2 could often
be used again with or without some modification. In this chapter the theory
will be applied to the adapted Timoshenko model with constant parameters.

3.1 Model: Adapted Timoshenko rod

Considered here is the Adapted Timoshenko rod model where the term rep-
resenting the axial load, S, is such that ∂tS = 0. The model is the same as
Problem T except for one extra term:

∂2
tw = ∂x (S∂xw) + ∂xV + P. (3.1.1)

In the case where S = 0, (3.1.1) becomes (2.1.4). A constitutive equation for
S is also included:

S =
1

γ
∂xu. (3.1.2)

The boundary conditions considered are the same as in Chapter 1, except
for Case 2 (cantilever rod), where an extra term is included:

w(0, t) = ϕ(0, t) = S∂xw(1, t) + V (1, t) = M(1, t) = 0. (3.1.3)

39
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The additional term in the boundary conditions, however, does not influence
the test functions. Recall that

T1[0, 1] = {v ∈ C1[0, 1] | v(0) = v(1) = 0}, (3.1.4)

T2[0, 1] = {v ∈ C1[0, 1] | v(0) = 0}, (3.1.5)

so that the sets of test functions TP are defined as follows:

Case 1 (Pinned-pinned rod)

TP = T1[0, 1]× C1[0, 1], (3.1.6)

Case 2 (Cantilever rod)

TP = T2[0, 1]× T2[0, 1], (3.1.7)

Case 3 (Clamped-clamped rod)

TP = T1[0, 1]× T1[0, 1]. (3.1.8)

As before, the inner product notation (u, v) will be used, where

(u, v) =

∫ 1

0

uv.

The variational form of the adapted Timoshenko rod model is given below.

Problem ATV Given positive constants α and β and load P , find ⟨w, ϕ⟩
such that for each t > 0, ⟨w(·, t), ϕ(·, t)⟩ ∈ TP and for each ⟨v1, v2⟩ ∈ TP ,(

∂2
tw(·, t), v1

)
= − (S∂xw(·, t), v′1)− (V (·, t), v′1) + (P (·, t), v1) , (3.1.9)(
1

α
∂2
t ϕ(·, t), v2

)
= − (M(·, t), v′2) + (V (·, t), v2) . (3.1.10)

The accompanying constitutive equations are

M =
1

β
∂xϕ, (3.1.11)

V = ∂xw − ϕ, (3.1.12)

S =
1

γ
∂xu. (3.1.13)

Remark. As with Problem TV in Chapter 2, if alternative boundary con-
ditions are used, the variational form will remain the same except for the
definition of the test functions TP .
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3.2 Existence

In order to show the existence of a solution, the weak variational form of the
problem is considered and the theory of Chapter 2 is applied. To find the
weak variational form, Equations (3.1.9) and (3.1.10) are added and bilinear
forms are used. This was done in detail in Chapter 2. The variational form
of the problem differs from Problem TV only in the definition of the bilinear
form b.

Define the symmetric bilinear form bAT for vectors u and v as

bAT (u, v) =
1

β
(Du2, Dv2) + (Du1 − u2, Dv1 − v2) + (SDu1, Dv1)

= bT (u, v) + (SDu1, Dv1). (3.2.1)

Assumption The axial force S is in C[0, 1] and is differentiable.

An important special case of the model is where S is a constant. Additionally,
the case where S changes sign is not considered because that is unrealistic
in the model under consideration here.

After careful consideration it is found that the proofs of the propositions in
Sections 2.1 and 2.3 – up to Proposition 2.3.3 – still hold with the necessary
minor adaptations. It is only the properties of the bilinear form bAT which
are to be investigated in order to ensure the validity of the adaptation of
Theorem 2.3.1 and hence Proposition 2.3.5.

The formulation of the weak variational form is the same as in Section 2.3.
Recall the Hilbert space L2(0, 1)2 with the norm ∥ · ∥L2 (induced by (·, ·)(2)).
In addition, the space V denotes the closure of the test functions TP in
H1(0, 1)2 with respect to the norm ∥ · ∥H1 (induced by (·, ·)(2)1 ). Also, the
space W denotes the space L2(0, 1)2 with norm ∥ · ∥W (induced by cT ).

The energy space V for each of the three cases of boundary conditions is
characterised as before. For Case 1, V = T1[0, 1] × H1(0, 1), for Case 2,
V = T2[0, 1]× T2[0, 1] and for Case 3, V = T1[0, 1]× T1[0, 1].

By Theorem 2.3.1, for any u ∈ V there exists a non-zero real number c2 such
that

c2∥u∥2L2 ≤ bT (u, u).

The number K∗ = max{β, c−2} is used in the proposition below, which is an
adaptation of the corollary to Theorem 2.3.1.
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Proposition 3.2.1.
If

(a) S ≥ 0, or

(b) S < 0 and

sup |S| ≤ 1

2K∗ + 1
, (3.2.2)

then bAT is an inner product for V.

Proof. (a) If S ≥ 0, then using the fact that for u ∈ V , bT (u, u) ≤ bAT (u, u),
Theorem 2.3.1 implies the desired result.

(b) Suppose S < 0 and (3.2.2) holds. The symmetry and linearity of
bAT is trivial. Let u ∈ V such that bAT (u, u) = 0. By (3.2.2) and
Proposition 2.3.4,

|(SDu1, Du1)| ≤ sup |S|∥Du1∥2 <
2K∗

2K∗ + 1
bT (u, u). (3.2.3)

Now

bAT (u, u) = bT (u, u) + (SDu1, Du1) ≥ bT (u, u)−
2K∗

2K∗ + 1
bT (u, u).

(3.2.4)
Therefore

bAT (u, u) ≥
1

2K∗ + 1
bT (u, u). (3.2.5)

That is, bT (u, u) = 0 and hence u = 0.

Assumption In the remainder of Chapter 3, it is assumed that (3.2.2) holds
when S < 0.

Let ∥ · ∥VA
denote the norm induced by the inner product bAT .

Proposition 3.2.2 (Adaptation of Proposition 2.3.5).
The norms ∥ · ∥H1 and ∥ · ∥VA

are equivalent.

Proof. The proof is the same as that of Proposition 2.3.5, where (3.2.5) is
used instead of the inequality (2.3.5).
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As in Chapter 2, let
f(·, t) = ⟨P (·, t), 0⟩ .

The weak form of Problem ATV follows.

Problem ATW

Given u0 ∈ V , ud ∈ W , and f ∈ C([0, τ);L2(0, 1)2), find u ∈ C2((0, τ);W)
such that for each t > 0, u(t) ∈ V , u′(t) ∈ V and

cT (u′′(t), v) + bAT (u(t), v) = (f(t), v)(2) for each v ∈ V ,
lim
t→0+

∥u(t)− u0∥VA = 0,

lim
t→0+

∥u′(t)− ud∥L2 = 0.

Note that if u(t) is continuous with respect to the norm ∥ · ∥VA and u′(t)
is continuous with respect to the norm ∥ · ∥L2 , then the initial conditions
become

u(0) = u0 and u′(0) = ud.

Problem ATW, with u(0) = u0 and u′(0) = ud resembles Problem GVar
defined in Chapter 2.

By the equivalence of the norms ∥·∥VA and ∥·∥H1 (Proposition 3.2.2) and the
norms ∥ · ∥L2 and ∥ · ∥W (Proposition 2.3.1), it follows that (V , ∥ · ∥VA) and
(W , ∥ · ∥W) are Hilbert spaces. That is, the assumptions S1-S3 are satisfied.
Thus, in order to show existence of a unique solution, only the assumptions
A1-A4 are required to hold.

Theorem 3.2.1. For u0 ∈ Eb and ud ∈ V, Problem ATW has a unique
solution

u ∈ C1 ([0,∞),V) ∩ C2 ([0,∞),W) .

Proof. The assumptions A1-A4 are verified in order to use Theorem 2.4.3
from Chapter 2.

A1 Since C∞
0 (0, 1) is dense in L2(0, 1) and by the equivalence of the norms

∥ · ∥L2 and ∥ · ∥W , it follows that C∞
0 (0, 1)2 is dense in W and W is

dense in L2(0, 1)2. That is, by the fact that C∞
0 (0, 1)2 ⊂ V ⊂ W , V is

dense in W and W is dense in L2(0, 1)2.

A2 By the equivalence of the norms ∥·∥L2 and ∥·∥W , there exists a positive
constant CW such that ∥w∥L2 ≤ CW∥w∥W for each w ∈ W .
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A3 By the inequality (3.2.5) and the equivalence of the norms ∥ · ∥L2 and
∥ · ∥W , it follows that there exists a positive constant CV such that
∥v∥W ≤ CV∥v∥VA for each v ∈ V .

A4 In this case, a ≡ 0. Therefore the bilinear form a is non-negative,
symmetric and bounded on V .

Therefore, by Theorem 2.4.3, there exists a unique solution u for Problem
ATW, where

u ∈ C1 ([0,∞),V) ∩ C2 ([0,∞),W) .

Theorem 3.2.1 implies that Problem ATW may be written with initial con-
ditions

u(0) = u0, u′(0) = ud. (3.2.6)

3.3 Eigenvalues and eigenfunctions

To apply the results in Section 2.6, consider Problem AT Eig below.

−((1 + S)u′
1)

′ + u′
2 − λu1 = 0, (3.3.1)

− 1

β
u′′
2 + u2 − u′

1 −
λ

α
u2 = 0. (3.3.2)

The boundary conditions are

Case 1 (Pinned-pinned rod): u1(0) = u′
2(0) = u1(1) = u′

2(1) = 0;

Case 2 (Cantilever rod): u1(0) = u2(0) = u′
1(1)− u2(1) = u′

2(1) = 0;

Case 3 (Clamped-clamped rod): u1(0) = u2(0) = u1(1) = u2(1) = 0.

To prove the existence of a complete sequence of eigenfunctions, the weak
variational form of the eigenvalue problem is needed. This is presented using
the notation of bilinear forms given in Sections 2.1 and 3.2.

Problem AT EigW Find z ∈ V such that z ̸= 0 and, for each v ∈ V ,

bAT (z, v) = λcT (z, v). (3.3.3)
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The existence of eigenvalues and eigenfunctions is not assumed, but if any
do exist, some properties are simple to prove.

Suppose zm and zn are solutions of Problem AT EigW. It follows by the
symmetry of bAT and cT that

bAT (zm, zn) = bAT (zn, zm)

and hence
(λm − λn)cT (zm, zn) = 0.

That is, any eigenfunctions of Problem AT EigW are orthogonal with respect
to the inner product cT . Also, for a solution z of Problem AT EigW,

bAT (z, z) = λcT (z, z). (3.3.4)

By Propositions 2.3.1 and 3.2.1 , since cT and bAT are inner products and z is
a solution of Problem AT EigW (i.e. z ̸= 0), it follows that cT (z, z) > 0 and
bAT (z, z) > 0. That is, all eigenvalues λ of Problem AT EigW are positive.
Above, inequality (3.2.2) was used but it is also necessary to investigate the
existence of zero and negative eigenvalues and the implication for applica-
tions.

Existence of a complete sequence of eigenfunctions

In order to use the theory of Section 2.6, it is only required to prove the
assumption B5 since B1-B4 have been proved already in Section 3.2. Proofs
of compact embedding in the literature require a smooth boundary for the
relevant domain (see, for example [Eva98]). This does not make sense for the
one-dimensional case. It is therefore proved in this subsection.

The following results are used in the proof of the existence of a complete
sequence of eigenfunctions.

Proposition 3.3.1. If u ∈ C[0, 1] ∩H1(0, 1), then for any ξ and x in [0, 1],

|u(ξ)− u(x)| ≤
√

|ξ − x| ∥u∥1.

Proof. For any ξ and x in [0, 1], using the Cauchy-Schwartz inequality, the
fact that for u =∈ C[0, 1] ∩H1(0, 1) and ∥Du∥2 ≤ ∥u∥21, it follows that

|u(ξ)− u(x)| =
∣∣∣∣∫ ξ

x

Du

∣∣∣∣ ≤√|x− ξ|∥Du∥ ≤
√

|x− ξ|∥u∥1.
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Proposition 3.3.2. If a sequence (un) ⊂ C[0, 1] ∩H1(0, 1) is bounded with
respect to ∥ · ∥1, then the sequence is equicontinuous.

Proof. Any function in C[0, 1] is uniformly continuous [Rud64, Theorem 4.19].
Equicontinuity follows from Proposition 3.3.1.

It is now possible to prove that Problem AT EigW has a complete sequence
of eigenfunctions by showing that assumption B5 holds.

Theorem 3.3.1. A bounded sequence in H1(0, 1) has a uniformly convergent
subsequence in C[0, 1].

Proof. Let (un) be a bounded sequence in H1(0, 1). Proposition 2.2.2 ensures
that there exists a sequence (u∗

n) ⊂ C[0, 1]∩H1(0, 1) such that for each n ∈ N,
un = u∗

n a.e. and ∥u∗
n∥sup ≤

√
2∥un∥1. Hence (u∗

n) is uniformly bounded and,
by Proposition 3.3.2, equicontinuous. That is, (u∗

n) is pointwise bounded
and equicontinuous on [0, 1]. Therefore (u∗

n) contains a uniformly convergent
subsequence (see [Rud64, Theorem 7.23]).

Corollary. Any bounded sequence in H1(0, 1) has a uniformly convergent
subsequence in L2(0, 1).

Remark. Proposition 3.3.1 also holds for vector valued functions, using a
norm on Rn instead of an absolute value.

Theorem 3.3.2. A bounded sequence in V has a convergent subsequence
in W.

Proof. The proof follows from Theorem 3.3.1, the equivalence of the norms
∥ · ∥H1 and ∥ · ∥VA (Proposition 3.2.2) and the fact that for each v ∈ V ,
∥v∥W ≤ CV∥v∥VA (Assumption B3).

By Theorem 2.6.4, since Assumption B5 holds, Problem AT EigW has an
orthonormal sequence of eigenvectors (ũn) – which is complete in V – with
corresponding positive eigenvalues (λn) forming an increasing sequence where
λn → ∞ as n → ∞.
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Regularity

Proposition 3.3.3.
C1[0, 1]2 ∩ V = TP .

Proof. Since TP ⊂ C1[0, 1]2 and TP ⊂ V , it follows that TP ⊂ C1[0, 1]2 ∩ V .

Let v ∈ C1[0, 1]2 ∩ V . By the definition of V , there exists a sequence (vn)
contained in TP such that ∥vn − v∥H1 → 0. That is,

∥v(n)1 − v1∥1 → 0 and ∥v(n)2 − v2∥1 → 0.

The fact that C1[0, 1]2∩V ⊂ TP follows from Proposition 2.2.1 and that (vn)
is contained in TP .

Remark. It is possible to prove that a solution of Problem AT EigW is
actually a classical solution of Problem AT Eig in all three cases of boundary
conditions. This is done by showing regularity using induction.

Proposition 3.3.4. If the pair {u, λ} is a solution of Problem AT EigW,
then, for all three cases of boundary conditions, u ∈ H2(0, 1)2 and {u, λ}
satisfies the eigenvalue problem

−D((1 + S)u′
1) + u′

2 − λu1 = 0, (3.3.5)

− 1

β
D2u2 + u2 − u′

1 −
λ

α
u2 = 0. (3.3.6)

Proof. Let {u, λ} be a solution of Problem AT EigW. That is, u ∈ V is such
that u ̸= 0 and, for each v ∈ V ,

bAT (u, v) = λcT (u, v) (3.3.7)

Let x = ⟨x1, 0⟩ and z = ⟨0, z2⟩, where x1 and z2 are in C∞
0 (0, 1). Then, x

and z are in V and by the definitions of bAT and cT ,

(Du1 − u2, x
′
1) + (SDu1, x

′
1) = λ (u1, x1) and (3.3.8)(

1

β
Du2, z

′
2

)
− (Du1 − u2, z2) = λ

(
1

α
u2, z2

)
. (3.3.9)

That is, for any x and z in C∞
0 (0, 1),

((1 + S)Du1, x
′) = − (Du2 − λu1, x) and (3.3.10)(

1

β
Du2, z

′
)

= −
(
u2 −Du1 −

λ

α
u2, z

)
. (3.3.11)
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Hence (Du2 − λu1) is the weak derivative of (1+S)Du1 and
(
u2 −Du1 − λ

α
u2

)
is the weak derivative of 1

β
Du2. Therefore u ∈ H2(0, 1)2. Also, by Theo-

rem 2.2.2 (Sobolev’s embedding theorem), u can be considered an element of
C1(0, 1)2 ∩ V . Hence

−D ((1 + S)u′
1) + u′

2 − λu1 = 0 (3.3.12)

− 1

β
D2u2 + u2 − u′

1 −
λ

α
u2 = 0. (3.3.13)

By (3.3.12) and (3.3.13), it follows that for any v = ⟨v1, v2⟩ ∈ C1[0, 1]2,(
−(1 + S)D2u1 − ∂xSu

′
1 + u′

2 − λu1, v1
)

= −
(
− 1

β
D2u2 + u2 − u′

1 −
λ

α
u2, v2

)
. (3.3.14)

The fact that u ∈ C1(0, 1)2 ∩ V implies that u ∈ TP (Proposition 3.3.3) and

−(1 + S)u′
1v1]

1
0 −

1

β
u′
2v2]

1
0 + u2v1]

1
0 + bAT (u, v)− λcT (u, v) = 0.

Since u is a solution of Problem AT EigW, it follows that for any v ∈ C1[0, 1]2,

−(1 + S)u′
1v1]

1
0 −

1

β
u′
2v2]

1
0 + u2v1]

1
0 = 0. (3.3.15)

Case 1: For any v = ⟨v1, v2⟩ ∈ TP , Equation (3.3.15) implies that

− 1

β
u′
2(1)v2(1) +

1

β
u′
2(0)v2(0) = 0. (3.3.16)

For x ∈ [0, 1], let w(x) = x and z(x) = 1−x. Then, for arbitrary v1 ∈ T [0, 1],
⟨v1, w⟩ and ⟨v1, z⟩ are in TP . Therefore, by Equation (3.3.16) it follows that

u′
2(1) = 0 and u′

2(0) = 0.

Case 2: Since S(1) = 0, (3.3.15) implies that for any v = ⟨v1, v2⟩ ∈ TP ,

− (u′
1(1)− u2(1)) v1(1)−

1

β
u′
2(1)v2(1) = 0. (3.3.17)

For x ∈ [0, 1], let w(x) = x(1 − x). Then, for v1 and v2 in T [0, 1] such that
v1(1) ̸= 0 and v2(1) ̸= 0, ⟨v1, w⟩ and ⟨w, v2⟩ are in TP . Therefore, by (3.3.17),

u′
1(1)− u2(1) = 0 and u′

2(1) = 0.

Case 3: No further calculations are necessary.

Thus, u ∈ H2(0, 1)2 and {u, λ} satisfies the given eigenvalue problem for all
three cases of boundary conditions.
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Proposition 3.3.5. If the pair {u, λ} is a solution of Problem AT EigW and
S ∈ C2[0, 1], where S > −1, then u ∈ Hm(0, 1)2, where m ≥ 3.

Proof. Note that u1, u
′
1, u2 and u′

2 are in H1(0, 1). Therefore D(D2u1) and
D(D2u2) exist and hence u ∈ H3(0, 1)2 with

D3u1 = D

(
1

1 + S
(u′

2 − λu1 − ∂xSu
′
1)

)
, (3.3.18)

D3u2 = D (βu2 − βu′
1 − λγu2) . (3.3.19)

Similarly, it follows that u ∈ Hm(0, 1)2 for m ≥ 3.

By Sobolev’s Embedding Theorem in one dimension (Theorem 2.2.2), u1 and
u2 can be considered to be in C2[0, 1]. That is, u ∈ C2[0, 1]2 ∩ V . There-
fore the orthonormal sequence of eigenvectors (ũn) of Problem AT EigW
– which is complete in V – is an orthonormal sequence of eigenvectors for
Problem AT Eig.

Improved regularity

The following result is used to show the regularity of an eigenfunction of
Problem AT EigW.

Theorem 3.3.3. Problem AT Eig has a classical solution.

Proof. From Section 3.3, Problem AT Eig has an orthonormal sequence of
twice differentiable eigenvectors (ũn) – which is complete in V – with cor-
responding positive eigenvalues (λn) forming an increasing sequence where
λn → ∞ as n → ∞. It remains to show that the boundary conditions of the
eigenvalue problem are satisfied.

By Equations (3.3.12) and (3.3.13) in the proof of Proposition 3.3.4 and
by Theorem 2.2.2, it follows that for any solution u to Problem AT EigW,
u ∈ C2[0, 1]2 ∩ V and

−((1 + S)u′
1)

′ + u′
2 − λu1 = 0, (3.3.20)

− 1

β
u′′
2 + u2 − u′

1 −
λ

α
u2 = 0. (3.3.21)

It follows from Proposition 3.3.3 that since u ∈ (C2[0, 1]2 ∩ V), u ∈ TP . Thus,
for both the pinned-pinned and the cantilever case, since ū ∈ TP , ū satisfies
the boundary conditions of Problem AT Eig.
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If inequality (3.2.2) does not hold, then the results obtained thus far may
not be true. However, when the parameters in Problem AT Eig are constant,
results can be achieved using the theory of ordinary differential equations, as
is shown in the next section.

3.4 Properties of eigenfunctions

For the results in Section 3.3 it is not necessary that the axial force S be
constant. However, by assuming that S is constant, more can be achieved.
Assume S is a constant, say S0, where S0 > −1. The approach in [VV06]
for the classical Timoshenko theory (i.e. S0 = 0) is taken in this section.
The results presented are more comprehensive than those in either [VV06]
or [CST16].

Suppose the function emxw̄ is a solution of Problem AT Eig. This is possible
if and only if[

−(S0 + 1)m2 − λ m
−αm − 1

γ
m2 + (α− λ)

] [
w1

w2

]
=

[
0
0

]
. (3.4.1)

In order to find a nontrivial solution, it is necessary that the determinant

(S0 + 1)m4 + (−S0β + λ(1 + (S0 + 1)γ))m2 + γλ(λ− α) = 0. (3.4.2)

The roots m2 of Equation (3.4.2) are

m2 = − 1

2(S0 + 1)
(−S0β + λ(1 + (1 + S0)γ)) (1±∆

1
2 ), (3.4.3)

where

∆ = 1− 4(S0 + 1)(γλ(λ− α))

(−S0β + λ(1 + (1 + S0)γ))2

=
4βλ+ (S0β + λ(1− (S0 + 1)γ))2

(S0β + λ(−1− (S0 + 1)γ))2
. (3.4.4)

Note that ∆ is a continuous function of λ. Therefore, since ∆ > 0 for λ > 0
and ∆ = 1 if λ = 0, there exists a real number C∗ ∈ (−1, 0) such that if
λ ∈ (C∗, 0), then ∆ > 0. Therefore, considering λ > C∗, the roots m2 of
Equation (3.4.2) are real numbers and are not equal.
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If S0 ≥ 0, then λ > 0 (see Section 3.3). Therefore if λ ≤ 0, then −1 < S0 < 0.

Special cases

If λ = 0 or λ = α, then one of the roots m2 of Equation (3.4.2) is zero and
the other root is negative. That is, the four roots m of Equation (3.4.2) are
0 (with multiplicity 2) and two others denoted by ±ωi.

In the case where m2 = 0 (which only occurs if λ = α or λ = 0), two linearly
independent solutions of Problem AT Eig can be found by inspection of
Equations (3.3.1) and (3.3.2):

λ = α :

[
w(x)
ϕ(x)

]
=

[
0
1

]
or

[
1
αx

]
, λ = 0 :

[
w(x)
ϕ(x)

]
=

[
1
0

]
or

[
x
1

]
.

Other cases

If C∗ < λ < 0 or λ > α, then both roots m2 of Equation (3.4.2) are negative.
That is, the four roots m of Equation (3.4.2) can be denoted as ±θi and ±ωi.

If 0 < λ < α, then one of the roots m2 of Equation (3.4.2) is negative and
the other root is positive. That is, the four roots m of Equation (3.4.2) can
be denoted as ±µ and ±ωi.

If m2 ̸= 0, then the solutions are of the form emx ⟨w1, w2⟩ , where w1 = m
and w2 = (S0 + 1)m2 + λ.

The general solutions of each of the five cases (C∗ < λ < 0, λ = 0, 0 < λ < α,
λ = α and λ > α) are now considered. The forms of the general solution of
the system in Problem AT Eig are given below. For the three cases where
λ > 0, the results are very similar to [VV06].

General solution for the cases C∗ < λ < 0 and λ > α[
w(x)
ϕ(x)

]
= A

[
sin θx

−λ−(S0+1)θ2

θ
cos θx

]
+B

[
cos θx

λ−(S0+1)θ2

θ
sin θx

]
+ C

[
sinωx

−λ−(S0+1)ω2

ω
cosωx

]
+D

[
cosωx

λ−(S0+1)ω2

ω
sinωx

]
(3.4.5)

General solution for the case λ = 0[
w(x)
ϕ(x)

]
= A

[
x
1

]
+B

[
1
0

]
+ C

[
sinωx

−λ−(S0+1)ω2

ω
cosωx

]
+D

[
cosωx

λ−(S0+1)ω2

ω
sinωx

]
(3.4.6)
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General solution for the case 0 < λ < α[
w(x)
ϕ(x)

]
= A

[
sinhµx

λ+(S0+1)µ2

µ
coshµx

]
+B

[
coshµx

λ+(S0+1)µ2

µ
sinhµx

]

+ C

[
sinωx

−λ−(S0+1)ω2

ω
cosωx

]
+D

[
cosωx

λ−(S0+1)ω2

ω
sinωx

]
(3.4.7)

General solution for the case λ = α[
w(x)
ϕ(x)

]
= A

[
0
1

]
+B

[
1
αx

]
+ C

[
sinωx

−λ−(S0+1)ω2

ω
cosωx

]
+D

[
cosωx

λ−(S0+1)ω2

ω
sinωx

]
(3.4.8)

In [CST16], the value α is referred to as the “transition frequency”. This is
because, for the case where all eigenvalues are positive, there is a shift in the
“nature” of the vibration modes when λ = α is crossed. This also appears
true for the case λ > C∗, with an additional transition frequency at 0.

As in [VV06], it should be noted that ω, µ and θ are uniquely determined
by λ:

ω2 =
1

2(S0 + 1)
|λ(1 + (1 + S0)γ)− S0β|

(
∆

1
2 + 1

)
for λ > 0, (3.4.9)

µ2 =
1

2(S0 + 1)
|λ(1 + (1 + S0)γ)− S0β|

(
∆

1
2 − 1

)
for λ < α, (3.4.10)

θ2 =
1

2(S0 + 1)
|λ(1 + (1 + S0)γ)− S0β|

(
1−∆

1
2

)
for λ > α. (3.4.11)

Five possibilities of the value of λ have been considered. In each case four
linearly independent solutions have been found. The solution space of Prob-
lem AT Eig, however, is four-dimensional since it can be written as a system
of four linear first-order equations. The following theorem therefore follows.

Theorem 3.4.1. In each of the five cases C∗ < λ < 0, λ = 0, λ < α, λ =
α and λ > α respectively, a general solution for the system of differential
equations in Problem AT exists and has the forms given by (3.4.5), (3.4.6),
(3.4.7),(3.4.8) and (3.4.5) respectively.

In order to determine the eigenvalues of Problem AT Eig, the following strat-
egy is used. Applying the boundary conditions at zero causes the dimension
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of the solution space of the system of differential equations to reduce to
two. Any eigenspace, therefore, can have a dimension of at most two. Three
cases of boundary conditions at zero are considered. These include clamped,
free and pinned. The reduction of the solution space will be demonstrated
for the first two zero boundary conditions in this subsection and the third
zero boundary condition in the next subsection. The boundary conditions
considered are

Clamped at x = 0: w(0) = ϕ(0) = 0,

Free at x = 0: w′(0)− ϕ(0) = ϕ′(0) = 0,

Pinned at x = 0: w(0) = ϕ′(0) = 0.

Substitution of these zero boundary conditions yields solutions where two of
the four coefficients can be written in terms of the other two. Then, any of
the three boundary conditions can be applied at x = 1 in order to solve for
the remaining coefficients. These boundary conditions are

Clamped at x = 1: w(1) = ϕ(1) = 0,

Free at x = 1: w′(1)− ϕ(1) = ϕ′(1) = 0,

Pinned at x = 1: w(1) = ϕ′(1) = 0.

Clamped at x = 0

The cases C∗ < λ < 0 and λ > α[
w(x)
ϕ(x)

]
= A

[
sin θx

−λ−(S0+1)θ2

θ
cos θx

]
+B

[
cos θx

λ−(S0+1)θ2

θ
sin θx

]
−A

ω(λ− (S0 + 1)θ2)

θ(λ− (S0 + 1)ω2)

[
sinωx

−λ−(S0+1)ω2

ω
cosωx

]
−B

[
cosωx

λ−(S0+1)ω2

ω
sinωx

]

The case λ = 0[
w(x)
ϕ(x)

]
= A

[
x
1

]
+B

[
1
0

]
+

ωA

λ− (S0 + 1)ω2

[
sinωx

−λ−(S0+1)ω2

ω
cosωx

]
−B

[
cosωx

λ−(S0+1)ω2

ω
sinωx

]
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The case 0 < λ < α[
w(x)
ϕ(x)

]
= A

[
sinhµx

λ+(S0+1)µ2

µ
coshµx

]
+B

[
coshµx

λ+(S0+1)µ2

µ
sinhµx

]

+ A
ω(λ+ (S0 + 1)µ2)

µ(λ− (S0 + 1)ω2)

[
sinωx

−λ−(S0+1)ω2

ω
cosωx

]
−B

[
cosωx

λ−(S0+1)ω2

ω
sinωx

]
The case λ = α[

w(x)
ϕ(x)

]
= A

[
0
1

]
+B

[
1
αx

]
+

ωA

λ− (S0 + 1)ω2

[
sinωx

−λ−(S0+1)ω2

ω
cosωx

]
−B

[
cosωx

λ−(S0+1)ω2

ω
sinωx

]
If the boundary conditions at x = 1 are applied, the following system is
obtained and the other two coefficients can be solved for:[

d1(µ(λ), ω(λ), θ(λ)) d2(µ(λ), ω(λ), θ(λ))
d3(µ(λ), ω(λ), θ(λ)) d4(µ(λ), ω(λ), θ(λ))

] [
A
B

]
=

[
0
0

]
. (3.4.12)

More detail of the cantilever (clamped-free) and clamped-clamped rods is
given in Subsection 3.5.2. In general, for all cases of boundary conditions at
x = 1 and all possibilities of λ, the coefficient matrix is non-zero.

Free at x = 0

The cases C∗ < λ < 0 and λ > α[
w(x)
ϕ(x)

]
= A

[
sin θx

−λ−(S0+1)θ2

θ
cos θx

]
+B

[
cos θx

λ−(S0+1)θ2

θ
sin θx

]
− A

ω (λ− S0θ
2)

θ (λ− S0ω2)

[
sinωx

−λ−(S0+1)ω2

ω
cosωx

]
−B

λ− (S0 + 1)θ2

λ− (S0 + 1)ω2

[
cosωx

λ−(S0+1)ω2

ω
sinωx

]
The case λ = 0 [

w(x)
ϕ(x)

]
= A

[
x
1

]
+B

[
1
0

]
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The case 0 < λ < α

[
w(x)
ϕ(x)

]
= A

[
sinhµx

λ+(S0+1)µ2

µ
coshµx

]
+B

[
coshµx

λ+(S0+1)µ2

µ
sinhµx

]

+ A
ω (λ+ S0µ

2)

µ (λ− S0ω2)

[
sinωx

−λ−(S0+1)ω2

ω
cosωx

]
−B

λ+ (S0 + 1)µ2

λ− (S0 + 1)ω2

[
cosωx

λ−(S0+1)ω2

ω
sinωx

]

The case λ = α

[
w(x)
ϕ(x)

]
= A

[
0
1

]
+B

[
1
αx

]
− A

ω

λ− S0ω2

[
sinωx

−λ−(S0+1)ω2

ω
cosωx

]
−B

α

λ− (S0 + 1)ω2

[
cosωx

λ−(S0+1)ω2

ω
sinωx

]

Again, if the boundary conditions at x = 1 are applied, the following system
is obtained and the other two coefficients can be solved for:

[
d1(µ(λ), ω(λ), θ(λ)) d2(µ(λ), ω(λ), θ(λ))
d3(µ(λ), ω(λ), θ(λ)) d4(µ(λ), ω(λ), θ(λ))

] [
A
B

]
=

[
0
0

]
. (3.4.13)

For all cases of boundary conditions at x = 1 and all possibilities of λ, the
coefficient matrix is non-zero.

Note that the solution space, and therefore the eigenspace, of each case will
have dimension two only if the coefficient matrix of (3.4.12) and (3.4.13)
respectively is a zero matrix. If this occurs, λ is referred to as a double
eigenvalue. If the coefficient matrix of (3.4.12) and (3.4.13) respectively is
nonzero, then λ is an eigenvalue if and only if the determinant

d1d4 − d2d3 = 0.

For both the clamped and the free case and all of the boundary conditions at
x = 1, there is at least one nonzero entry in the coefficient matrix of (3.4.12)
and (3.4.13) respectively. Therefore all eigenvalues in these cases are simple.
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3.5 Computation of eigenvalues and

eigenfunctions

3.5.1 Rod with pinned-pinned boundary conditions

The same approach as in the previous subsection is now taken with a rod that
has pinned boundary conditions at x = 0. Detail is given for a rod that is
pinned on both ends since the pinned-clamped and pinned-free rods could be
viewed as the clamped-pinned and free-pinned rods, which have already been
considered. If the zero boundary values of the pinned-pinned problem are
substituted into the general equations, since ω, µ and θ are distinct, nonzero
values, it results in the following.

The cases C∗ < λ < 0 and λ > α[
w(x)
ϕ(x)

]
= A

[
sin θx

−λ−(S0+1)θ2

θ
cos θx

]
+ C

[
sinωx

−λ−(S0+1)ω2

ω
cosωx

]
(3.5.1)

Applying the two boundary conditions of the pinned-pinned problem at
x = 1, the following equation is found[

sin θ sinω
(λ− (S0 + 1)θ2) sin θ (λ− (S0 + 1)ω2) sinω

] [
A
C

]
=

[
0
0

]
. (3.5.2)

The case λ = 0 [
w(x)
ϕ(x)

]
= A

[
x
1

]
+ C

[
sinωx

−λ−(S0+1)ω2

ω
cosωx

]
(3.5.3)

Applying the two boundary conditions of the pinned-pinned problem at
x = 1, the following equation is found[

1 sinω
0 (λ− (S0 + 1)ω2) sinω

] [
A
C

]
=

[
0
0

]
(3.5.4)

The case 0 < λ < α[
w(x)
ϕ(x)

]
= A

[
sinhµx

λ+(S0+1)µ2

µ
coshµx

]
+ C

[
sinωx

−λ−(S0+1)ω2

ω
cosωx

]
. (3.5.5)

Applying the two boundary conditions of the pinned-pinned problem at
x = 1, the following equation is found[

sinhµ sinω
(λ+ (S0 + 1)µ2) sinhµ (λ− (S0 + 1)ω2) sinω

] [
A
C

]
=

[
0
0

]
. (3.5.6)
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The case λ = α[
w(x)
ϕ(x)

]
= A

[
0
1

]
+ C

[
sinωx

−λ−(S0+1)ω2

ω
cosωx

]
(3.5.7)

Applying the two boundary conditions of the pinned-pinned problem at
x = 1, the following equation is found[

0 sinω
0 (λ− (S0 + 1)ω2) sinω

] [
A
C

]
=

[
0
0

]
(3.5.8)

Using the results above, the following theorem follows.

Theorem 3.5.1. The following statements are true for a rod with pinned-
pinned boundary conditions:

(a) The value α is an eigenvalue of the pinned-pinned problem with the
corresponding eigenfunction [0 1]T .

(b) If [w ϕ]T is a non-constant eigenfunction of the pinned-pinned problem,
then given S0 > −1, it follows that the sequence of eigenfunctions is
given by [

wk(x)
ϕk(x)

]
=

[
sin(kπx)

Ak cos(kπx)

]
, (3.5.9)

with k an integer and Ak a constant depending on k and λk.

(c) All eigenvalues λ, where 0 ≤< λ < α, are simple.

Proof. (a) Simple substitution shows that for λ = α, [0 1]T is a solution of
the pinned-pinned problem.

(b) When Equation (3.5.2) is solved, it follows that C sinω = A sin θ = 0.
Therefore three options arise that result in a non-trivial solution. Either
A = 0 and ω is a multiple of π; C = 0 and θ is a multiple of π; or A
and C are real numbers and both ω and θ are multiples of π, but are
not equal. In all three cases, it still follows that for C∗ < λ < 0 and
λ > α, the sequence of eigenfunctions has the given form.

When Equations (3.5.4) and (3.5.6) are solved, it follows that A = 0
and therefore, for a non-trivial solution it is required that ω is a multiple
of π. That is, for 0 ≤ λ < α, the sequence of eigenfunctions has the
given form.
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When Equation (3.5.8) is solved, it follows that A ∈ R and C sinω = 0.
Therefore, for a non-constant solution it is required that ω is a multiple
of π. That is, for λ = α, the sequence of eigenfunctions has the given
form.

(c) From the proof of (b) it can easily be seen that the solution space is
one-dimensional when 0 ≤ λ < α.

Suppose [wk ϕk]
T is a non-constant eigenfunction of the pinned-pinned prob-

lem.

Substituting (3.5.9) into Problem AT Eig, it follows that [wk ϕk]
T is a solution

of the system if and only if the pair (λk, Ak) is a solution of

(S0 + 1)k2π2 − Akkπ = λk, (3.5.10)

k2π2Ak

γ
− αkπ + αAk = λkAk. (3.5.11)

From Equation (3.5.11) it is clear that Ak ̸= 0.

If λk = α then it follows from Equations (3.5.10) and (3.5.11) that a necessary
condition for α to be a double eigenvalue is

α =
k2π2(S0 + 1)

(1 + γ)
or β = (S0 + 1)k2π2 − α. (3.5.12)

If there exists an integer k such that (3.5.12) holds, then the eigenvalue
λk = α depends on the elastic constants and the dimensions of the rod.

A necessary condition for 0 to be an eigenvalue is

k2π2(S0 + 1)

−S0

= β. (3.5.13)

To determine the distribution of eigenvalues, a different approach is taken
compared to [VV06]. Substituting (3.5.10) into (3.5.11), it follows that

A2
k +

(
kπ

(
1

γ
− S0 − 1

)
+

α

kπ

)
Ak − α = 0 (3.5.14)

(S0 + 1)k2π2 − Akkπ = λk (3.5.15)
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That is, two different real values for Ak are obtained, resulting in two different
values for λk.

Ak

=
k2π2 (S0 + 1− γ−1)− α

2kπ

(
1±

√
1 +

4α(
kπ (γ−1 − S0 − 1) + α

kπ

)2
)
(3.5.16)

λk = (S0 + 1)k2π2 − Akkπ. (3.5.17)

It is therefore clear that the system has two solutions (λk, Ak) and (λ∗
k, A

∗
k).

Let λ∗
k denote the larger value. The authors in [VV06] refer to the value λk

as an eigenvalue of Type 1 and to λ∗
k as one of Type 2.

For some value of S0 in the interval (−1, 0), it is found that λ1 = 0 and it is
clear that, for smaller values of S0, one or more of the eigenvalues may even
be negative.

From (3.5.10) and (3.5.11) it can be seen that there exists a value for S0 such
that λ1 = 0. Denoting this value by Scrit, it follows that

(Scrit + 1)π − A1 = 0,

π2A1 − βπ + βA1 = 0.

That is,

(Scrit + 1) =
β

π2 + β
.

Note that Scrit =
−π2

π2+β
and hence −1 < Scrit < 0.

Proposition 3.5.1. λ1 < 0 if and only if S0 ∈ (−1, Scrit).

Proof. Suppose λ1 < 0. By Equation (3.5.10), this is true if and only if

A1 > (S0 + 1)π. (3.5.18)

Also, by Equation (3.5.11), λ1 < 0 if and only if

π2 − βπ

A1

+ β < 0. (3.5.19)

That is, λ1 < 0 if and only if

π2 + β <
β

(S0 + 1)
. (3.5.20)

It therefore follows that λ1 < 0 if and only if S0 < Scrit. That is, if and only
if S0 ∈ (−1, Scrit).
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3.5.2 Rod with clamped boundary conditions

The rod with cantilever (clamped-free) or clamped-clamped boundary con-
ditions from Section 3.4 is now considered in more detail. Recall that when
the boundary values at x = 1 are applied, an equation of the following form
is found (note that µ, ω and θ are distinct and nonzero):[

d1(µ(λ), ω(λ), θ(λ)) d2(µ(λ), ω(λ), θ(λ))
d3(µ(λ), ω(λ), θ(λ)) d4(µ(λ), ω(λ), θ(λ))

] [
A
B

]
=

[
0
0

]
. (3.5.21)

Eigenvalues of the cantilever or clamped-clamped problem are double if and
only if the coefficient matrix is a zero matrix.

Cantilever rod

For the cases where C∗ < λ < 0 and λ > α,

d2 =
−λ+ S0θ

2

θ
sin θ +

λ− S0ω
2

ω
sinω

and
d4 =

(
λ− (S0 + 1)θ2

)
cos θ −

(
λ− (S0 + 1)ω2

)
cosω.

It is not possible for d2 and d4 to be zero simultaneously since ω ̸= θ. Hence
the coefficient matrix is nonzero.

When λ = 0 and λ = α,

d3 = ω sinω and d4 = (S0 + 1)ω2 cosω.

Since it is not possible for both sinω and cosω to be zero at the same time,
it follows that the coefficient matrix is nonzero.

For the case where 0 < λ < α,

d2 = −λ+ S0µ
2

µ
sinhµ− λ− (S0 + 2)ω2

ω
sinω ̸= 0.

That is, the coefficient matrix is nonzero.

In all five cases, there are no double eigenvalues.

Clamped-clamped rod

It can be shown that in each case (C∗ < λ < 0, λ = 0, 0 < λ < α, λ = α and
λ > α) there is at least one nonzero entry in the coefficient matrix. That is,
there are no double eigenvalues.
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To find frequency equations as has been done in [VV06] is quite a long and
tedious process. However, eigenvalues λ can be searched for using the bisec-
tion method, where λ is such that the determinant of the coefficient matrix
is zero.

The authors of [CST16] state that the entire spectrum, “regardless of the
boundary conditions, must be constructed by taking into account that it
consists of... portions, neither of which can be disregarded.” They also claim
to have completed the theory. However, although the “complete” (or whole)
spectrum is considered, they do not mention the completeness of the sequence
of eigenvectors, which is an important part of the theory. The authors of
[VV06] reference [Zei95] with regards to the completeness of the sequence of
eigenfunctions.

3.6 Modal analysis

Due to the nature of the eigenfunction expressions, it is convenient to conduct
an analysis for the pinned-pinned rod. The analysis done can also be applied
to the other cases, where the process is similar.

As a result of Proposition 3.5.1, it is necessary to distinguish between the
cases S0 > Scrit and S0 ≤ Scrit. The case where S0 > Scrit is discussed in
Subsection 3.6.1, while the case where S0 ≤ Scrit is investigated in Subsec-
tion 3.6.2.

3.6.1 Approximation of solutions by partial sums

In this subsection, modal analysis is performed on the Adapted Timoshenko
rod model with pinned-pinned boundary conditions and a constant axial force
S0. To be specific, in each case the formal series solution is calculated knowing
from Section 2.5 that this can be justified whenever the weak solution actually
exists. It is assumed that S0 > Scrit, which results in positive eigenvalues
(see Proposition 3.5.1).

The form of the formal series solution is given in Section 2.5, which was
shown to be valid using convergence in energy as in [CVV18]. The sequence
of eigenfunctions with corresponding eigenvalues for the pinned-pinned rod
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is calculated in Section 3.5.1. The formal series solution obtained is[
w(x, t)
ϕ(x, t)

]
=

∞∑
k=1

(
ck cos(

√
λk t) + dk sin(

√
λk t)

)[wk(x)
ϕk(x)

]
, (3.6.1)

where ck is such that[
w(x, 0)
ϕ(x, 0)

]
=

[
w0(x)
ϕ0(x)

]
=

∞∑
k=1

ck

[
wk(x)
ϕk(x)

]
(3.6.2)

and dk is such that[
∂tw(x, 0)
∂tϕ(x, 0)

]
=

[
wd(x)
ϕd(x)

]
=

∞∑
k=1

√
λk dk

[
wk(x)
ϕk(x)

]
. (3.6.3)

That is,

cT

([
w0

ϕ0

]
,

[
wn

ϕn

])
= cT

(
∞∑
k=1

ck

[
wk

ϕk

]
,

[
wn

ϕn

])
(3.6.4)

and

cT

([
wd

ϕd

]
,

[
wn

ϕn

])
= cT

(
∞∑
k=1

√
λkdk

[
wk

ϕk

]
,

[
wn

ϕn

])
. (3.6.5)

Using partial sums it follows by the orthogonality of eigenfunctions (Theo-
rem 2.6.4) that for each natural number n,

cn

(
∥wn∥2 +

1

α
∥ϕn∥2

)
= (w0, wn) +

1

α
(ϕ0, ϕn) (3.6.6)

and √
λndn

(
∥wn∥2 +

1

α
∥ϕn∥2

)
= (wd, wn) +

1

α
(ϕd, ϕn) . (3.6.7)

Remark. If α is an eigenvalue (that is, if there exists an integer m such that
(3.5.12) holds), then the term

(
c0 cos(

√
α t) + d0 sin(

√
α t)

) [0
1

]
is added to the series in (3.6.1), where c0 = (ϕ0, 1) and d0 = α− 1

2 (ϕd, 1).
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3.6.2 Degenerate cases

If S0 ≤ Scrit, it is easy to see that a formal series solution for the vibration
problem can be calculated, but it is unclear if the procedure can be justi-
fied. A formal series solution for Problem AT with pinned-pinned boundary
conditions and S0 ∈ (−1, Scrit] is now calculated.

Example 1 Formal series solution for the case λ1 = 0

If λ1 = 0, then T1(t) = at + b by (2.5.4). Consequently, the formal series
solution is[

w(x, t)
ϕ(x, t)

]
= (at+ b)

[
w1(x)
ϕ1(x)

]
+

∞∑
k=2

(
ck cos(

√
λk t) + dk sin(

√
λk t)

)[wk(x)
ϕk(x)

]
.

If the initial velocity is zero, it follows that a = 0. Therefore[
w(x, t)
ϕ(x, t)

]
= b

[
w1(x)
ϕ1(x)

]
+

∞∑
k=2

(
ck cos(

√
λkt) + dk sin(

√
λkt)

)[wk(x)
ϕk(x)

]
.

Example 2 Formal series solution for the case λ1 < 0

If λ1 < 0 and λk > 0 for k > 1, then T1(t) = a1e
√
−λ1t + a2e

−
√
−λ1t by (2.5.4).

Hence, the formal series solution is[
w(x, t)
ϕ(x, t)

]
=

(
a1e

√
−λ1t + a2e

−
√
−λ1t

)[w1(x)
ϕ1(x)

]
+

∞∑
k=2

(
ck cos(

√
λkt) + dk sin(

√
λkt)

)[wk(x)
ϕk(x)

]
.

If the initial velocity is zero, it follows that a1 = a2. Therefore[
w(x, t)
ϕ(x, t)

]
= a1

(
e
√
−λ1t + e−

√
−λ1t

)[w1(x)
ϕ1(x)

]
+

∞∑
k=2

(
ck cos(

√
λkt) + dk sin(

√
λkt)

)[wk(x)
ϕk(x)

]
.

Furthermore, the energy becomes unbounded which does not describe oscil-
lations and the physical application is therefore questionable.

The examples above do not exhaust all the possibilities of degenerate cases.
For example, more than one negative eigenvalue may exist.
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Chapter 4

Application of the finite
element method to the linear
models

Solutions of the linear problems may be calculated using partial sums if a
rod is prismatic. Otherwise, the eigenvalues and eigenfunctions must be
calculated numerically. This can be done using the finite element method.
Only the case of pinned-pinned boundary conditions is considered here, since
the cases of other boundary conditions differ mainly in the definitions of the
space V .

The main source for the convergence theory of FEM applied to the dynamic
problem is [BV13]. The idea in this chapter is to show the application of the
theory of [BV13] to Problem AT. A detailed study of the proofs in the article
is beyond the scope of this dissertation.

4.1 Variational forms

Recall the weak variational form of Model AT, Problem ATW, from Chap-
ter 3.

Problem ATW

Given u0 ∈ V , ud ∈ W , and f ∈ C([0, τ);L2(0, 1)2) find u ∈ C2((0, τ);W)

65
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such that for each t > 0, u(t) ∈ V , u′(t) ∈ V and, for each v ∈ V ,

cT (u′′(t), v) + bAT (u(t), v) = (f(t), v)(2),

u(0) = u0, Du(0) = ud.

The derivation of the mixed variational form is done in the same way as the
standard variational form (Problem ATV). The only difference is that the
constitutive equation for V is not substituted in.

Mixed Variational Form Given the load P , find ⟨w, ϕ⟩ and V such
that for each t > 0, ⟨w(·, t), ϕ(·, t)⟩ ∈ TP , V (·, t) ∈ C[0, 1] and for each
⟨v1, v2⟩ ∈ TP and each g ∈ C[0, 1],(

∂2
tw(·, t), v1

)
= − (S∂xw(·, t), v′1)− (V (·, t), v′1) + (P (·, t), v1) ,(

∂2
t ϕ(·, t), v2

)
= α (V (·, t), v2)−

1

γ
(∂xϕ(·, t), v′2) ,

(V (·, t), g) = (∂xw(·, t)− ϕ(·, t), g) ,

while

⟨w(·, 0), ϕ(·, 0)⟩ = ⟨w0, ϕ0⟩ and ⟨∂tw(·, 0), ∂tϕ(·, 0)⟩ = ⟨wd, ϕd⟩.

In order to apply the convergence theory to the mixed finite element method,
the weak mixed variational form is considered.

Weak Mixed Variational Form Given the load P as well as u0 ∈ V
and ud ∈ W , find u = ⟨u1, u2⟩ ∈ C2((0, τ);W) and V ∈ C([0, τ);L2(0, 1))
such that for each t > 0, u(t) ∈ V , u′(t) ∈ V and, for each ⟨v1, v2⟩ ∈ V and
g ∈ L2(0, 1),

(u′′
1(t), v1) = − (SDu1(t), Dv1)− (V (t), Dv1) + (P (t), v1) ,

1

α
(u′′

2(t), v2) = (V (t), v2)−
1

β
(Du2(t), Dv2) ,

(V (t), g) = (Du1(t)− u2(t), g) ,

while
u(0) = u0, Du(0) = ud.

If S is not constant, numerical integration is required. For the remainder
of this chapter, S is assumed to be constant (S = S0), which is true for a
pre-stressed rod.

Proposition 4.1.1. The functions u and V are a solution of the weak mixed
variational form if and only if u is a solution of Problem ATW.
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Proof. Let ⟨u1, u2⟩ and V be a solution of the weak mixed variational form.
Then for each t > 0, u(t) ∈ V , u′(t) ∈ V and, for each ⟨v1, v2⟩ ∈ V and each
g ∈ L2(0, 1),

(u′′
1(t), v1) = −S0 (Du1(t), Dv1)− (V (t), Dv1) + (P (t), v1) ,

1

α
(u′′

2(t), v2) = (V (t), v2)−
1

β
(Du2(t), Dv2) ,

(V (t), g) = (Du1(t)− u2(t), g) .

Since Dv1 ∈ L2(0, 1) and v2 ∈ L2(0, 1), it follows that for each ⟨v1, v2⟩ ∈ V ,

(u′′
1(t), v1) = −(1 + S0) (Du1(t), Dv1) + (u2(t), Dv1) + (P (t), v1) ,

1

α
(u′′

2(t), v2) = (Du1(t)− u2(t), v2)−
1

β
(Du2(t), Dv2) .

This is true if, for f(t) = ⟨P (t), 0⟩ and, for each pair ⟨v1, v2⟩ ∈ V ,

cT (u′′(t), v) + bAT (u(t), v) = (f(t), v)(2).

That is, u is a solution of Problem ATW.

Now suppose u is a solution of Problem ATW. Then for each t ≥ 0, u(t) ∈ V ,
u′(t) ∈ V and, for each v ∈ V ,

cT (u′′(t), v) + bAT (u(t), v) = (f(t), v)(2). (4.1.1)

This is true if f(t) = ⟨P (t), 0⟩ and, for each ⟨v1, v2⟩ ∈ V ,

(u′′
1(t), v1) = −(1 + S0) (Du1(t), Dv1) + (u2(t), Dv1) + (P (t), v1) ,

1

α
(u′′

2(t), v2) = (Du1(t)− u2(t), v2)−
1

β
(Du2(t), Dv2) .

That is, for each ⟨v1, v2⟩ ∈ V and g ∈ H1(0, 1),

(u′′
1(t), v1) = −S0 (Du1(t), Dv1)− (V (t), Dv1) + (P (t), v1) ,

1

α
(u′′

2(t), v2) = (V (t), v2)−
1

β
(Du2(t), Dv2) ,

(V (t), g) = (Du1(t)− u2(t), g) .

Fix an arbitrary g ∈ L2(0, 1). Then, since H1(0, 1) is dense in L2(0, 1), it
follows that there exists a sequence {gn} contained in H1(0, 1) such that
gn → g as n → ∞. Therefore, since for any n ∈ N,

(V (t), gn) = (Du1(t)− u2(t), gn) , (4.1.2)
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by the uniqueness of a limit

(V (t), g) = (Du1(t)− u2(t), g) . (4.1.3)

Since g ∈ L2(0, 1) was arbitrary, it follows that for each ⟨v1, v2⟩ ∈ V and
g ∈ L2(0, 1),

(u′′
1(t), v1) = −S0 (Du1(t), Dv1)− (V (t), Dv1) + (P (t), v1) ,

1

α
(u′′

2(t), v2) = (V (t), v2)−
1

β
(Du2(t), Dv2) ,

(V (t), g) = (Du1(t)− u2(t), g) .

Therefore ⟨u1, u2⟩ and V are a solution of the weak mixed variational form.

Since the initial conditions are the same, they are also satisfied.

4.2 Dynamic problem

Suppose V h
S and V h

M are finite dimensional subspaces of TP and Y h is a finite
dimensional subspace of C[0, 1].

Standard Galerkin Approximation

Find
〈
wh, ϕh

〉
such that, for each t > 0,

〈
wh(·, t), ϕh(·, t)

〉
∈ V h

S , and(
∂2
tw

h(·, t), v1
)

= −(1 + S0)
(
∂xw

h(·, t), v′1
)
+
(
ϕh(·, t), v′1

)
+ (P (·, t), v1) ,(

∂2
t ϕ

h(·, t), v2
)

= α
(
∂xw

h(·, t)− ϕh(·, t), v2
)
− 1

γ

(
∂xϕ

h(·, t), v′2
)

hold for each ⟨v1, v2⟩ ∈ V h
S , while

⟨wh(·, 0), ϕh(·, 0)⟩ = ⟨wh
0 , ϕ

h
0⟩ and ⟨∂twh(·, 0), ∂tϕh(·, 0)⟩ = ⟨wh

d , ϕ
h
d⟩.

The choice of the finite dimensional subspace V h
S must now be made. If piece-

wise linear basis functions are chosen, then although the standard Galerkin
approximation above converges in theory, in practice locking occurs. (The
term “locking” is used to describe a situation where the discretisation error
fails to decrease at the theoretically predicted rate.) One possibility to avoid
this, if it is known that the exact solution is sufficiently regular, is to use
Hermite piecewise cubic basis functions.



4.2. DYNAMIC PROBLEM 69

Another alternative is to use piecewise linear basis functions and apply the
mixed finite element method.

In order to obtain the mixed Galerkin approximation, some notation is re-
quired. Divide the interval [0, 1] into n elements of equal length. Contin-
uous piecewise linear basis functions are used (also known as C0 piecewise
linear basis functions), notated as δ0, δ1, . . . , δn. Let Sh be the span of the
set {δ0, . . . , δn} and Sh

0 be the span of the set {δ1, . . . , δn−1}. The choices
V h
M = Sh

0 × Sh and Y h = Sh are made.

Define the following matrices

Kij = (δ′j, δ
′
i),

Mij = (δj, δi),

Lij = (δj, δ
′
i).

More detail on the definition of the basis functions and matrices can be found
in Appendix B. The following sub-matrices are also defined. If X is a square
matrix, then

– X{a,b} is matrix X with rows a and b and columns a and b deleted;

– XR{a,b} is matrix X with rows a and b deleted.

Definition. Let xj denote the value of x at node j. Then

wh
0 (x) =

n−1∑
j=1

w0(xj)δj(x), ϕh
0(x) =

n∑
j=0

ϕ0(xj)δj(x),

wh
d(x) =

n−1∑
j=1

wd(xj)δj(x), ϕh
d(x) =

n∑
j=0

ϕd(xj)δj(x).

The mixed Galerkin approximation is therefore given below.

Mixed Galerkin approximation

Find
〈
wh, ϕh

〉
and V h such that, for each t > 0,

〈
wh(·, t), ϕh(·, t)

〉
∈ Sh

0 ,×Sh,
V h(·, t) ∈ Sh and(

∂2
tw

h(·, t), v1
)

= −S0

(
∂xw

h(·, t), v′1
)
−
(
V h(·, t), v′1

)
+ (P (·, t), v1) ,(

∂2
t ϕ

h(·, t), v2
)

= α
(
V h(·, t), v2

)
− 1

γ

(
∂xϕ

h(·, t), v′2
)
,(

V h(·, t), g
)

=
(
∂xw

h(·, t)− ϕh(·, t), g
)
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hold for each ⟨v1, v2⟩ ∈ Sh
0 × Sh and g ∈ Sh, while

⟨wh(·, 0), ϕh(·, 0)⟩ = ⟨wh
0 , ϕ

h
0⟩ and ⟨∂twh(·, 0), ∂tϕh(·, 0)⟩ = ⟨wh

d , ϕ
h
d⟩.

Since wh(·, t) ∈ Sh
0 , ϕ

h(·, t) ∈ Sh and V h(·, t) ∈ Sh for each t > 0, it follows
that

wh(x, t) =
n−1∑
j=1

wj(t)δj(x), (4.2.1)

ϕh(x, t) =
n∑

j=0

ϕj(t)δj(x), (4.2.2)

dh(x, t) =
n∑

j=0

dj(t)δj(x), (4.2.3)

V h(x, t) =
n∑

j=0

(dj(t)− ϕj(t)) δj(x), (4.2.4)

where (dh, g) = (∂xw
h, g) for g ∈ C[0, 1]. Note that there exists a one-to-one

correspondence between Sh and Rn+1. Similarly, there exists a one-to-one
correspondence between Sh

0 and Rn−1.

Definition. For u ∈ Sh, v ∈ Sh
0 , let π̄u = ū if u =

∑n
i=0 uiδi and π̄v = v̄ if

v =
∑n−1

i=1 viδi.

Note that π̄ is clearly one-to-one. Take V h(·, t) as an example. Then, since
V h(·, t) ∈ Sh,

π̄V h(·, t) = V h(t).

These one-to-one correspondences may also be applied to pairs [w, ϕ]T .

Using Equations (4.2.1) - (4.2.4), the Galerkin approximation can be rewrit-
ten: Find w̄, ϕ̄ and d̄ such that, for i = 1, . . . , n − 1; k = 0, . . . , n and
m = 0, . . . , n,

n−1∑
j=1

w′′
j (δj, δi) = −S0

n−1∑
j=1

wj(δ
′
j, δ

′
i)−

n∑
j=0

Vj (δj, δ
′
i) (4.2.5)

n∑
j=0

ϕ′′
j (δj, δk) = α

n∑
j=0

Vj (δj, δk)−
1

γ

n∑
j=0

ϕj

(
δ′j, δ

′
k

)
, (4.2.6)

n∑
j=0

dj(δj, δm) =
n−1∑
j=1

wj(δ
′
j, δm), (4.2.7)

V̄ (t) = d̄(t)− ϕ̄(t), (4.2.8)
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with

w̄(0) = π̄wh
0 , ϕ̄(0) = π̄ϕh

0 , w̄′(0) = π̄wh
d , ϕ̄′(0) = π̄ϕh

d .

That is, find

[
w̄
ϕ̄

]
and d̄ such that

[
M{0,n} [0]
[0] M

] [
w̄
ϕ̄

]′′
=

[
−LR{0,n}

αM

]
V̄ +

[
−S0K{0,n} [0]

[0] − 1
γ
K

] [
w̄
ϕ̄

]
,

Md̄ =
[(
LR{0,n}

)T
[0]
] [w̄

ϕ̄

]
and V̄ = d̄− ϕ̄

with [
w̄(0)
ϕ̄(0)

]
=

[
π̄wh

0

π̄ϕh
0

]
,

[
w̄′(0)
ϕ̄′(0)

]
=

[
π̄wh

d

π̄ϕh
d

]
.

Remark. For rods with cantilever or clamped-clamped boundary conditions,
the Galerkin approximation is the same except for the obvious modifications
to the matrices M,K and L.

Using central differences, the following algorithm is obtained to find approx-

imations for

[
w̄
ϕ̄

]
and d̄.

Algorithm
For each time step k,[

M{0,n} [0]
[0] M

] [
w̄k+1

ϕ̄k+1

]
= (δt)2

([
−LR{0,n}

αM

]
(d̄k − ϕ̄k)

+

[
−S0K{0,n} [0]

[0] − 1
γ
K

] [
w̄k

ϕ̄k

])
+

[
M{0,n} [0]
[0] M

](
2

[
w̄k

ϕ̄k

]
−
[
w̄k−1

ϕ̄k−1

])
,

where

Md̄k =
[(
LR{0,n}

)T
0̄
] [w̄k

ϕ̄k

]
.

To prepare for the initial time step,[
w̄0

ϕ̄0

]
=

[
π̄wh

0

π̄ϕh
0

]
and

1

2δt

([
w̄1

ϕ̄1

]
−
[
w̄−1

ϕ̄−1

])
=

[
π̄wh

d

π̄ϕh
d

]
.
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The algorithm for the standard Galerkin approximation can be found by sub-
stituting (4.2.8) into (4.2.5) and (4.2.6). It is not discussed in this dissertation
as it can be found in many textbooks.

Provided that the initial condition u0 is in Eb, the standard finite element
method can be used effectively with Hermite cubic basis functions and yields
extremely accurate numerical results.

4.3 Convergence

Convergence for the dynamic problem is studied in this section. The theory
presented in [BV13] is applied to the standard finite element method and
other sources are quoted for the mixed finite element method.

4.3.1 General results

Recall the general spaces V ,W and X and Problem GVar defined in Chap-
ter 2. The standard FEM results in [BV13] are written for a general problem
such as Problem GVar. Let V h be a finite dimensional subspace of V . Note
that h is a parameter related to the dimensionm of V h and h → 0 asm → ∞.
Let tn = n(δt) and denote the approximation of uh(tn) by uh

n.

Assumption C1 The solution u ∈ C(J,V) of Problem GVar is such that
(Pu) ∈ C2(J), where P is the projection operator defined by

b(u− Pu, v) = 0 for each v ∈ V h.

Assumption C2 There exists a subspace G of V and a positive integer η
such that if u ∈ G, then for some positive real number G

inf
v∈V h

∥u− v∥V ≤ Ghη∥u∥G,

where ∥ · ∥G is a norm or semi-norm for G.

Definition. Let Π denote the interpolation operator for the relevant space.
Define Π(2) as follows. For f ∈ X ,

Π(2)f = ⟨Πf1,Πf2⟩ .
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Theorem 4.3.1. Suppose Assumption C2 holds, uh
0 = Π(2)u0 and uh

1 =
Π(2)u1. If the solution u of Problem GVar satisfies Assumption C1, u(t) ∈ G
and u′(t) ∈ G, then

∥u(t)− uh(t)∥W ≤ CVGhη∥u(t)∥G +
√
2CVGhη(3T max ∥u′(t)∥G

+3CaT max ∥u(t)∥G + (2 + 3CaT )∥u0∥G
+3T∥u1∥G) (4.3.1)

for each t ∈ [0, T ], where CV and Ca are from assumptions A3 and A4W
respectively.

Proof. See [BV13] Theorem 5.2.

Theorem 4.3.2. If f ∈ C2([0, T ],X ) then

∥uh(tn)− uh
n∥W ≤ 7T 2δt2max ∥(uh)(4)∥W + 7Tδtmax ∥(uh)′′′∥W

+
√

2Caδt
4max ∥(uh)′′′∥W (4.3.2)

for each t ∈ (0, T ), where Ca is from assumption A4W.

Proof. See [BV13] Theorem 6.1.

The following theorem follows from Theorems 4.3.1 and 4.3.2 above.

Theorem 4.3.3 (Error estimate).
Suppose the solution u of Problem GVar satisfies Assumption C1 and As-
sumption C2 holds. Also, suppose uh

0 = Π(2)u0, u
h
d = Π(2)ud, u(t) ∈ G and

u′(t) ∈ G. If f ∈ C2([0, T ],X 2) then

∥u(tn)− uh
n∥W ≤ ∥u(tn)− uh(tn)∥W + ∥uh(tn)− uh

n∥W
≤ CVGhη∥u(tn)∥G +

√
2CVGhη(3T max ∥u′(tn)∥G

+3CaT max ∥u(tn)∥G + (2 + 3CaT )∥u0∥G + 3T∥u1∥G)
+7T 2δt2max ∥(uh)(4)∥W + 7Tδtmax ∥(uh)′′′∥W
+
√

2Caδt
4max ∥(uh)′′′∥W (4.3.3)

for each t ∈ (0, T ).
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4.3.2 Application to Problem AT

In order to apply the general theory, the space V h and operator P must be
identified and Assumptions C1 and C2 shown to hold.

Using piecewise linear basis functions (as in Section 4.2), let V h = Sh
0 × Sh

and P be such that

bAT (u− Pu, v) = 0 for each v ∈ Sh
0 × Sh.

Then the assumptions become

C1 The solution u ∈ C(J,V) of Problem ATW is such that (Pu) ∈ C2(J).
C2 There exists a subspace G of V and a positive integer η such that if
u ∈ G, then for some positive real number G

inf
v∈Sh

0×Sh
∥u− v∥VA ≤ Ghη∥u∥G,

where ∥ · ∥G is a norm or semi-norm for G.

Theorem 4.3.4. Using piecewise linear basis functions, the standard FEM
converges for Problem ATW if f ∈ C2([0, T ],L2(0, 1)2).

Proof. By Theorem 3.2.1 Problem ATW has a unique solution

u ∈ C1 ([0,∞),V) ∩ C2 ([0,∞),W) . (4.3.4)

Therefore u ∈ C2([0,∞),V) since V ⊂ W . Hence, as in the remark in
Section 3 of [BV13], it can be proved that P (u(·, t)) ∈ C2([0,∞)) for each
t > 0. That is, Assumption C1 holds.

Let G = H2(0, 1)2 ∩ V and ∥ · ∥H2 denote the natural norm for H2(0, 1)2.
Since u ∈ C2([0,∞),V), it follows that, for i = 1, 2, (see [SF73])

∥ui − Πui∥ ≤ h2∥∂2
xui∥ and ∥∂xui − ∂x(Πui)∥ ≤ h2∥∂2

xui∥.

Therefore, by the equivalence of the norms ∥ · ∥VA and ∥ · ∥H1 (Proposi-
tion 3.2.2),

∥u− Πu∥2VA
≤ K2

(
∥u1 − Πu1∥2 + ∥∂xu1 − ∂x(Πu1)∥2

+∥u2 − Πu2∥2 + ∥∂xu2 − ∂x(Πu2)∥2
)

≤ 2K2h2
(
∥∂2

xu1∥2 + ∥∂2
xu2∥2

)
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That is

∥u− Πu∥2VA
≤ K

√
2h∥u∥H2 . (4.3.5)

Therefore, for G = K
√
2,

inf
v∈V h

∥u− v∥2VA
≤ Gh∥u∥H2 . (4.3.6)

Hence Assumption C2 holds and Theorem 4.3.3 may be used to find the
error estimate for the problem. Since m → ∞ implies that h → 0, the FEM
solution converges for Problem ATW.

Now consider using piecewise Hermite cubic basis functions. The spaces V h

and P are defined in a similar fashion and assumptions C1 and C2 are the
same as in the case where piecewise linear basis functions are used.

Theorem 4.3.5. Using piecewise Hermite cubic basis functions, the standard
FEM converges for Problem ATW if f ∈ C2([0, T ],L2(0, 1)2).

Proof. The proofs that u ∈ C2([0,∞),V) and Assumption C1 holds are sim-
ilar to those for piecewise linear basis functions.

Since u ∈ C2([0,∞),V), there exists a constant C such that for i = 1, 2, (see
[SF73])

∥|∂m
x ui − ∂m

x (Πui)∥ ≤ Ch2−m∥∂2
xui∥ for m = 0, 1, 2. (4.3.7)

Therefore, following similar arguments to the proof of Theorem 4.3.4, there
exists a positive real number G such that

inf
v∈V h

∥u− v∥2VA
≤ Gh∥u∥H2 . (4.3.8)

That is, Assumption C2 holds and hence Theorem 4.3.3 may be used to find
the error estimate for the problem. Since m → ∞ implies that h → 0, the
FEM solution converges for Problem ATW.

Convergence of the mixed finite element method

The convergence of the mixed finite element method will not be discussed
here as it is beyond the scope of this dissertation. The interested reader may
consult [Sem94] and [LMR16] for more information.
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4.4 Numerical experiments

If a rod is not prismatic, then the eigenvalues and eigenfunctions must be cal-
culated numerically. A comparison of numerical and exact results is therefore
done to determine the accuracy of the numerical algorithm. In this section

the values γ =
β

α
= 0.25 and α = 1200 were used throughout.

Eigenvalues and eigenfunctions

Using the system of Equations (3.5.16)-(3.5.17) in Chapter 3, the first five
terms of the sequence of eigenvalues are given in Table 4.1, where the influ-
ence of the value of S0 near 0 is investigated. These values are accurate as
they are calculated directly. Note that S0 can be positive or negative. The
eigenvalues where S0 = −10−5 and S0 = 10−5 do not differ significantly from
those where S0 = 0. They are therefore not included in the table below.

Table 4.1: The first five eigenvalues corresponding to values of S0 near 0.
E.value S0 = −10−1 S0 = −3.185× 10−2 S0 = −10−2 S0 = −10−3

λ1 -0.6675 8.14× 10−6 0.2140 0.3022
λ2 0.6270 3.250 4.091 4.437
λ3 10.92 16.72 18.58 19.34
λ4 36.56 46.72 49.98 51.32
λ5 81.44 97.20 102.2 104.3

E.value S0 = −10−4 S0 = 0 S0 = 10−4 S0 = 10−3 S0 = 10−2

λ1 0.3110 0.3119 0.3129 0.3217 0.4099
λ2 4.472 4.476 4.480 4.514 4.861
λ3 19.42 19.43 19.43 19.51 20.28
λ4 51.45 51.47 51.48 51.62 52.96
λ5 104.5 104.6 104.6 104.8 106.9

For the case where S0 = −10−2, the eigenvalues differ significantly from the
case where S0 = −10−3. This can be interpreted as the case where the rod
may buckle if the compressive force S is increased further. For the case
where S0 = 10−2, the eigenvalues also differ significantly from the case where
S0 = 10−3. This can be interpreted as the case where the rod stiffens signif-
icantly as a result of the tensile force stretching it.
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Dynamic problem

In this section the numerical results of Model AT, with S = S0, are calcu-
lated after half of a period of the solution and compared to the exact results.
As this comparison is for illustrative purposes, for simplicity the initial con-
ditions used are chosen to be the first mode. That is,

w0(x) = sin(πx), ϕ0(x) = π cos(πx), and wd(x) = ϕd(x) = 0. (4.4.1)

The formal series solution of the model (see Section 3.5.1) is given by[
w(x, t)
ϕ(x, t)

]
= cos(

√
λ1 t)

[
sin(πx)

A1 cos(πx)

]
. (4.4.2)

Also, substituting in the initial conditions, the algorithm to find the numer-
ical approximation of the solution becomes

Algorithm
For each time step k,[

M{0,n} [0]
[0] M

] [
w̄k+1

ϕ̄k+1

]
= (δt)2

[
−LR{0,n}

αM

]
(d̄k − ϕ̄k)

+(δt)2
[
−S0K{0,n} [0]

[0] − 1
γ
K

] [
w̄k

ϕ̄k

]
+

[
M{0,n} [0]
[0] M

](
2

[
w̄k

ϕ̄k

]
−
[
w̄k−1

ϕ̄k−1

])
,

where

Md̄k =
[(
LR{0,n}

)T
0̄
] [w̄k

ϕ̄k

]
.

To prepare for the initial step,

[
w̄0

ϕ̄0

]
=

[
π̄wh

0

π̄ϕh
0

]
and

[
w̄−1

ϕ̄−1

]
=

[
w̄1

ϕ̄1

]
.

The following tables show, using the given initial conditions (4.4.1) and dif-
ferent values for the force S0, the numerical (mixed finite element method)
and exact (Equation (4.4.2)) results obtained for the deflection and angle of
rotation after half of a period of the solution. The first table also includes, for
reference, the values of the eigenvalue λ1 and the value of the dimensionless
time t. Since the greatest deflection occurs at the centre of the rod for this
set of initial conditions, results for the deflection at x = 1

2
will be compared
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and because the greatest deviation occurs at the two endpoints (x = 0 and
x = 1) for this set of initial conditions, results for the deviation at x = 1 will
be compared.

It should be noted that S0 = −10−1 results in a negative eigenvalue λ1 and
was therefore not considered.

Table 4.2: Deflection at x = 0.5 after Half a Period
S0 λ1 t Numer. Result Exact Result Relative Error

−10−2 0.2140 6.7910 -1.0004 -1 4.0× 10−4

−10−3 0.3022 5.7152 -1.0004 -1 4.0× 10−4

−10−4 0.3110 5.6337 -1.0002 -1 2.0× 10−4

0 0.3119 5.6248 -1.0001 -1 1.0× 10−4

10−4 0.3129 5.6160 -1.0000 -1 0.0× 10−4

10−3 0.3217 5.5385 -1.0004 -1 4.0× 10−4

10−2 0.4099 4.9070 -1.0001 -1 1.0× 10−4

Table 4.3: Angle of rotation at x = 1 after Half a Period
S0 Numerical Result Exact result Relative Error

−10−2 3.0174 3.0421 8.119× 10−3

−10−3 2.9868 3.0423 1.824× 10−2

−10−4 3.0766 3.0423 1.127× 10−2

0 3.1077 3.0423 2.012× 10−2

10−4 3.1035 3.0423 2.702× 10−2

10−3 2.9897 3.0423 1.729× 10−2

10−2 3.1208 3.0425 2.574× 10−2

From Tables 4.2 and 4.3 it is clear that the numerical approximation of the
deflection in the linear model is accurate to at least three significant digits,
while the approximation of the angle of rotation is accurate to one significant
digit. In the approximations, 28 elements and 3000 time steps were used. A
better result is expected if more elements or time steps are used.



Chapter 5

The Sapir-Reiss semi-linear
model

The focus of this chapter is on the SLT-SR model described in Section 1.3.
Recall that in [SR79] only pinned-pinned boundary conditions are used. For
this reason the same is done in this chapter. As mentioned, the model was of
great importance for the study since it is not linear but the application is the
same as for Model AT (which is linear). It is significant that the semi-linear
model SLT-SR differs “slightly” from Model AT as explained below.

More recently, in [ADMPS12] a study similar to [SR79] is done, but shear
is not considered in the model. Due to the shear, the model in [SR79] has
greater complexity and is, in our view, more interesting.

5.1 Model problem and scope of numerical

experiments

Model SLT-SR is almost the same as the pre-stressed Model AT introduced in
Chapter 1. It is convenient to refer to the pre-stressed model as Model ATC
since S = S0 =

D
γ
(a constant). Recall that for Model SLT-SR,

S(t) = S0 +
1

2γ

∫ 1

0

(∂xw(·, t))2. (5.1.1)

The only difference between the models is the term containing the integral
of (∂xw)

2.

79
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Originally, the main concern regarding [SR79] was existence, FEM analysis
and application as well as comparison to the linear model. However, to
do a comparison it was necessary to consider buckling. Of importance in
this chapter is the discussion in Sections 3.5 and 3.6 regarding the critical
load. It was proved that the existence of a zero eigenvalue implies that
S0 = −π2

π2+β
. (This critical value of S0 is denoted by Scrit.) By Proposition

3.5.1, negative eigenvalues exist if and only if S0 ∈ (−1, Scrit). It follows
that Scrit is important for comparison of the models and that one should
distinguish between the cases S0 < Scrit and S0 > Scrit.

An investigation into what sense one should consider Model ATC as a linear
approximation of Model SLT-SR is conducted. To guide this investigation,
the situation is compared to a mechanical system modelled by a system of
ordinary differential equations. The nonlinear system u′′ + f(u) = 0, with
f(0) = 0 has a well defined linear approximation w′′ = −Aw, where A is the
Jacobian matrix of f at 0.

Suppose −A has a positive eigenvalue λ with corresponding eigenvector wλ.
Then

w(t) =
(
c1 cosh

√
λt+ c2 sinh

√
λt
)
wλ

is a solution of the linear approximation for which |w(t)|Rn → ∞ as t → ∞.

The nonlinear system can be written as u′′+Au = g(u), where |u|−1
Rn |g(u)|Rn →

0 as |u|−1
Rn → 0. Consider the corresponding first order system for the pair

⟨u, u′⟩, that is u′ = v with v′ = −Au + g(u). In matrix form, this is written
as [

u
v

]′
=

[
0 I

−A 0

] [
u
v

]
+

[
0

g(u)

]
.

It is well known that the equilibrium 0 is stable if all the eigenvalues of[
0 I

−A 0

]
have negative real parts and is unstable if one (or more) eigenvalues

are positive or have positive real parts.

By assumption, −Awλ = λwλ and hence[
0 I

−A 0

] [
wλ√
λwλ

]
=

√
λ

[
wλ√
λwλ

]
.

It follows that the equilibrium 0 of the nonlinear system is unstable and there
exists a ball with centre 0 where solutions close to the line determined by〈
wλ,

√
λwλ

〉
will leave the ball.
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Note that w = ϕ = 0 is an equilibrium for Model ATC as well as Model
SLT-SR. If S0 > Scrit, the solution of Problem AT is periodic and the rod
oscillates around the zero equilibrium. Sapir and Reiss [SR79] studied post-
buckling oscillations of an axially loaded rod. The authors first considered
the system where the nonlinear term is omitted. They claim that the system
was “linearised” to obtain the eigenvalue problem, but no reference is given.
Using the critical load for the linear system, they calculated approximate
solutions for the nonlinear system when S0 < Scrit.

Analysis of nonlinear stability for partial differential equations is beyond the
scope of this dissertation. It was decided to explore the properties of solu-
tions using numerical methods. The model, with pinned-pinned boundary
conditions, is solved numerically and compared to a solution of Model ATC.
The case where S0 > Scrit is discussed in Section 5.4 and the case where
S0 ≤ Scrit in Section 5.5.

5.2 Variational forms

Recall the variational form of Model ATC found in Chapter 3. It is natural
to use the mixed form for this model as well. The variational form for the
semi-linear case is identical except for the definition of S.

Problem SLT-SRV Given the load P , find ⟨w, ϕ⟩ and V such that for
each t > 0, ⟨w(·, t), ϕ(·, t)⟩ ∈ TP , V (·, t) ∈ C(0, 1), the equations(

∂2
tw(·, t), v1

)
= − (S(t)∂xw(·, t), v′1)− (V (·, t), v′1) + (P (·, t), v1),(

1

α
∂2
t ϕ(·, t), v2

)
= (V (·, t), v2)−

(
1

β
∂xϕ(·, t), v′2

)
hold for each ⟨v1, v2⟩ ∈ TP with constitutive equations

V (·, t) = ∂xw(·, t)− ϕ(·, t),

S(t) = S0 +
1

2γ

∫ 1

0

(∂xw(·, t))2.

Also, for t = 0,

w(x, 0) = w0(x), ∂tw(x, 0) = wd(x), (5.2.1)

ϕ(x, 0) = ϕ0(x), ∂tϕ(x, 0) = ϕd(x). (5.2.2)

As in [PK20], damping is not considered in this chapter. (That is, a = 0).
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Problem SLT-SRV is considered for FEM implementation. The minimum
requirement for the initial states are ⟨w0, ϕ0⟩ ∈ Eb and ⟨wd, ϕd⟩ ∈ V (see the
remark below).

For completeness, the weak variational form is considered below. In order to
find the weak variational form, the bilinear form bAT from Chapter 3 must
be rewritten. For u and v in V , let

b0(u, v) = bT (u, v) + (S0Du1, Dv1) (5.2.3)

and

σ(u, v) = b0(u, v) +
1

2γ
((Du1, Du1)Du1, Dv1) . (5.2.4)

Note that b0 = bAT when S = S0. Interestingly, σ is a semi-linear form. Using
the notation f(t) = ⟨P (·, t), 0⟩, the weak variational form of the problem
follows.

Problem SLT-SRW

Given u0 ∈ V , ud ∈ L2(0, 1)2, and f ∈ C([0, τ);L2(0, 1)2) find u ∈ C2((0, τ);W)
such that for each t > 0, u(t) ∈ V , u′(t) ∈ V and

cT (u′′(t), v) + a(u′(t), v) + σ(u(t), v) = (f(t), v) for each v ∈ V ,
lim
t→0+

∥u(t)− u0∥V = 0,

lim
t→0+

∥u′(t)− ud∥L2 = 0.

Another weak variational form (based on [PK20]) is considered in Chapter 6.
The existence of a solution of the problem above is considered in Chapter 7.
The theory is based on [Amm02] and a ̸= 0.

Remark. In the linear theory, the initial conditions must be such that u0 ∈
Eb and ud ∈ V in order for existence of a solution to be considered. It is
therefore safe to assume that at least the same must be true for the nonlinear
problem above.

5.3 Development of an algorithm

To simulate oscillation of a rod, an algorithm is developed for Problem SLT-
SR using a variation of the mixed finite element method.
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The notation defined in Chapter 4 is used to find the Galerkin approximation
of the model and algorithm to compute the approximation.

Galerkin approximation
Find wh, ϕh and dh such that, for each t > 0, wh(·, t) ∈ Sh

1 , ϕ
h(·, t) ∈ Sh,

dh(·, t) ∈ Sh and the equations

(
∂2
tw

h(·, t), v1
)

= −
(
S0 +

1

2γ
(dh(·, t), dh(·, t))

)(
∂xw

h(·, t), v′1
)

−
(
V h(·, t), v′1

)
,(

∂2
t ϕ

h(·, t), v2
)

= α
(
V h(·, t), v2

)
− 1

γ

(
∂xϕ

h(·, t), v′2
)
,(

dh(·, t), g
)

=
(
∂xw

h(·, t), g
)
,

V h(·, t) = dh(·, t)− ϕh(·, t)

hold for each v1 ∈ Sh
1 , v2 ∈ Sh and g ∈ Sh, while

⟨wh(·, 0), ϕh(·, 0)⟩ = ⟨wh
0 , ϕ

h
0⟩ and ⟨∂twh(·, 0), ∂tϕh(·, 0)⟩ = ⟨wh

d , ϕ
h
d⟩.

Since wh(·, t) ∈ Sh
1 , ϕ

h(·, t) ∈ Sh and dh(·, t) ∈ Sh for each t > 0, it follows
that

wh(x, t) =
n−1∑
j=1

wj(t)δj(x),

ϕh(x, t) =
n∑

j=0

ϕj(t)δj(x),

dh(x, t) =
n∑

j=0

dj(t)δj(x)

V h(x, t) =
n∑

j=0

(dj(t)− ϕj(t)) δj(x).

Also,
∫ 1

0
(dh(·, t))2 can be approximated, using the trapezoidal rule, by

∫ 1

0

(dh(·, t))2 ≈ 1

n

(
1

2
(d0(t))

2 +
n−1∑
j=1

(dj(t))
2 +

1

2
(dn(t))

2

)
. (5.3.1)

Therefore the Galerkin approximation can be rewritten: Find w̄, ϕ̄ and d̄
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such that

S = S0 +
1

2γn

(
1

2
(d0(t))

2 +
n−1∑
j=1

(dj(t))
2 +

1

2
(dn(t))

2

)
,

n−1∑
j=1

w′′
j (δj, δi) = −S

n−1∑
j=1

wj(δ
′
j, δ

′
i)−

n∑
j=0

Vj (δj, δ
′
i) for i = 1, . . . , n− 1,

n∑
j=0

ϕ′′
j (δj, δk) = α

n∑
j=0

Vj (δj, δk)−
1

γ

n∑
j=0

ϕj

(
δ′j, δ

′
k

)
for k = 0, . . . , n,

n∑
j=0

dj(δj, δm) =
n−1∑
j=1

wj(δ
′
j, δm) for m = 0, . . . , n,

V̄ (t) = d̄(t)− ϕ̄(t)

with

w̄(0) = π̄wh
0 , ϕ̄(0) = π̄ϕh

0 , w̄′(0) = π̄wh
d , ϕ̄′(0) = π̄ϕh

d .

This may be constructed as a system of ordinary differential equations.

That is, find

[
w̄
ϕ̄

]
and d̄ such that

Md̄ =
[(
LR{0,n}

)T
0̄
] [w̄

ϕ̄

]
,

S(t) = S0 +
1

2γn

(
1

2
(d0(t))

2 +
n−1∑
j=1

(dj(t))
2 +

1

2
(dn(t))

2

)
,

V̄ = d̄− ϕ̄

and [
M{0,n} [0]
[0] M

] [
w̄
ϕ̄

]′′
=

[
−LR{0,n}

αM

]
V̄ +

[
−SK{0,n} [0]

[0] − 1
γ
K

] [
w̄
ϕ̄

]
,

with [
w̄(0)
ϕ̄(0)

]
=

[
π̄wh

0

π̄ϕh
0

]
,

[
w̄′(0)
ϕ̄′(0)

]
=

[
π̄wh

d

π̄ϕh
d

]
.

Using central differences, the following algorithm is obtained to find approx-

imations for

[
w̄
ϕ̄

]
and d̄.
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Algorithm For each time step k,[
M{0,n} [0]
[0] M

] [
w̄k+1

ϕ̄k+1

]
= (δt)2

[
−LR{0,n}

αM

]
(d̄k − ϕ̄k)

+ (δt)2
[
−SkK{0,n} [0]

[0] − 1
γ
K

] [
w̄k

ϕ̄k

]
+

[
M{0,n} [0]
[0] M

](
2

[
w̄k

ϕ̄k

]
−
[
w̄k−1

ϕ̄k−1

])
,

where

Md̄k =
[(
LR{0,n}

)T
0̄
] [w̄k

ϕ̄k

]
,

Sk = S0 +
1

2γn

(
1

2
(d

(k)
0 )2 +

n−1∑
j=1

(d
(k)
j )2 +

1

2
(d(k)n )2

)
.

To prepare for the initial step,[
w̄0

ϕ̄0

]
=

[
π̄wh

0

π̄ϕh
0

]
and

1

2δt

([
w̄1

ϕ̄1

]
−
[
w̄−1

ϕ̄−1

])
=

[
π̄wh

d

π̄ϕh
d

]
.

Remark. To the best of our knowledge, this algorithm is new.

5.4 Implementation of FEM

In this section, simulation of the motion for a subcritical load (S0 < Scrit)
is carried out. This is done to compare the results of linear and semi-linear
models and investigate the outcome. The values γ = β

α
= 0.25, α = 1200

and β = 300 are used. For β = 300, the critical value Scrit = −0.03185
(approximately).

The numerical results of Model SLT-SR with a small initial displacement were
calculated and compared to the results of Model ATC after half a period of
the linear case. For a small initial displacement, the linear and nonlinear
models should behave similarly. Thus, the comparison of the deflection and
angle of rotation for the two models is justified.

For the initial condition, a multiple of the first mode of the linear model is
used. That is, for a = 10−3,

w0(x) = a sin(πx), ϕ0(x) = aπ cos(πx), wd(x) = ϕd(x) = 0. (5.4.1)
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The exact solution for the linear model is given by[
w(x, t)
ϕ(x, t)

]
= a cos(

√
λ1 t)

[
sin(πx)

A1 cos(πx)

]
. (5.4.2)

Substituting in the initial conditions, the algorithm to find the numerical
approximation of the solution in Section 5.3 becomes

Algorithm

Md̄k =
[(
LR{0,n}

)T
0̄
] [w̄k

ϕ̄k

]
,

Sk = S0 +
1

2γn

(
1

2
(d

(k)
0 )2 +

n−1∑
j=1

(d
(k)
j )2 +

1

2
(d(k)n )2

)

and[
M{0,n} [0]
[0] M

] [
w̄k+1

ϕ̄k+1

]
= (δt)2

[
−LR{0,n}

αM

]
(d̄k − ϕ̄k)

+ (δt)2
[
−SkK{0,n} [0]

[0] − 1
γ
K

] [
w̄k

ϕ̄k

]
+

[
M{0,n} [0]
[0] M

](
2

[
w̄k

ϕ̄k

]
−
[
w̄k−1

ϕ̄k−1

])

with

[
w̄0

ϕ̄0

]
=

[
π̄wh

0

π̄ϕh
0

]
and

[
w̄−1

ϕ̄−1

]
=

[
w̄1

ϕ̄1

]
.

Experiment 1
In this experiment, various values of S0, with S0 ≥ −0.01 > Scrit were chosen
to compare the solutions of Models ATC and SLT-SR.

The following tables show, for the given initial conditions (5.4.1) and different
values for the force S0, the exact results obtained for Model ATC (Equation
(5.4.2)) and the numerical results obtained for Model SLT-SR where the
deflection and angle of rotation are calculated after 2 dimensionless units of
time. This is done because t = 2 is small compared to the period of all linear
solutions considered.

For this set of initial conditions, the greatest deflection occurs at the centre
of the rod. Results for the deflection at x = 0.5 are therefore compared.
Also, the greatest deviation occurs at the two endpoints (x = 0 and x = 1)
for this set of initial conditions and hence results for the deviation at x = 1
are compared.
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Table 5.1: Deflection at x = 0.5 and t = 2, where a = 10−3

Value of S0 Model ATC Model SLT-SR Relative Difference
−10−2 6.017× 10−4 6.015× 10−4 2.327× 10−4

−10−3 4.542× 10−4 4.539× 10−4 5.725× 10−4

0 4.383× 10−4 4.381× 10−4 6.160× 10−4

10−3 4.226× 10−4 4.226× 10−4 1.420× 10−4

10−2 2.863× 10−4 2.862× 10−4 3.144× 10−4

1 9.972× 10−4 9.974× 10−4 1.705× 10−4

1.5 1.073× 10−4 1.071× 10−4 2.330× 10−3

2 −8.759× 10−4 −8.762× 10−4 3.425× 10−4

Table 5.2: Angle of rotation at x = 1 and t = 2, where a = 10−3

Value of S0 Model ATC Model SLT-SR Relative Difference
−10−2 −1.830× 10−3 −1.830× 10−3 4.371× 10−4

−10−3 −1.382× 10−3 −1.381× 10−3 7.237× 10−4

0 −1.334× 10−3 −1.333× 10−3 7.499× 10−4

10−3 −1.286× 10−3 −1.285× 10−3 3.111× 10−4

10−2 −8.710× 10−4 −8.706× 10−4 4.822× 10−4

1 −3.058× 10−3 −3.058× 10−3 6.540× 10−5

1.5 −3.306× 10−4 −3.293× 10−4 3.872× 10−3

2 2.708× 10−3 2.709× 10−3 4.432× 10−4

It was found that the approximate solution of the semi-linear model sug-
gests that the solutions are “period-like”. (The term almost periodic is well
defined.)

The Tables 5.1 and 5.2 show that for S0 > Scrit, the approximations of
Model ATC are equal to the approximations of Model SLT-SR to at least 3
significant digits.

Solutions of linear and semi-linear models for S0 close to the critical value
Scrit ≈ −0.03185 are investigated in the experiments that follow.

Experiment 2
In this experiment, the case where S0 > Scrit, but with |S0 − Scrit| small is
examined. To be specific, the value S0 = −3.1 × 10−2 is used. In this case,
λ1 = 8.33× 10−3.

Only the deflections are given, since they represent the shape of the rod. As
in Experiment 1, the greatest deflection occurs at the centre of the rod and
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hence the results for the deflection at x = 0.5 are compared.

Table 5.3: Deflection at x = 0.5, where a = 10−2

Value of t Model SLT-SR Model ATC Relative Difference
0 1.00× 10−2 1.00× 10−2 0.00
1 9.91× 10−3 9.96× 10−3 4.42× 10−3

2 9.65× 10−3 9.84× 10−3 1.91× 10−2

3 9.21× 10−3 9.63× 10−3 4.32× 10−2

4 8.63× 10−3 9.34× 10−3 7.61× 10−2

5 7.91× 10−3 8.98× 10−3 1.19× 10−1

6 7.06× 10−3 8.54× 10−3 1.74× 10−1

7 6.15× 10−3 8.03× 10−3 2.34× 10−1

8 5.15× 10−3 7.45× 10−3 3.09× 10−1

9 4.09× 10−3 6.81× 10−3 3.99× 10−1

10 3.00× 10−3 6.12× 10−3 5.10× 10−1

11 1.87× 10−3 5.37× 10−3 6.52× 10−1

12 7.29× 10−4 4.58× 10−3 8.41× 10−1

13 −4.20× 10−4 3.75× 10−3 1.11

Figure 5.1: Comparison of the results from Table 5.3, S0 > Scrit, a = 10−2.

It is clear from Table 5.3 that the solutions differ significantly. The solution
of Model ATC is periodic and the solution of Model SLT-SR appears to
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be “period-like”. As the graphs in Figure 5.1 indicate, the “period” of the
nonlinear model is less than the period of the linear model.

5.5 Buckling

Recall that Scrit is the critical load that corresponds to λ1 being zero. In
Model ATC, the solution where S0 ≤ Scrit yields unrealistic results (see
Subsection 3.6.2) which are interpreted as an indication that the rod could
be buckling. However, the results of Experiment 2 lead to the belief that
Scrit is not “critical” for Model SLT-SR.

Experiment 3

In this experiment, the case S0 = Scrit is examined. Assuming λ1 = 0, the
value of S0 was calculated and approximated by S0 = −3.185× 10−2. In this
case, the solution of Model ATC is a non-zero constant.

Table 5.4: Deflection at x = 0.5, where a = 10−2

Value of t Model SLT-SR Relative Difference
0 1.00× 10−2 0.00
1 9.956× 10−3 4.37× 10−3

2 9.811× 10−3 1.89× 10−2

3 9.575× 10−3 4.25× 10−2

4 9.260× 10−3 7.40× 10−2

5 8.857× 10−3 1.14× 10−1

6 8.399× 10−3 1.60× 10−1

7 7.881× 10−3 2.12× 10−1

8 7.310× 10−3 2.69× 10−1

9 6.708× 10−3 3.29× 10−1

10 6.075× 10−3 3.93× 10−1

11 5.416× 10−3 4.58× 10−1

12 4.749× 10−3 5.25× 10−1

13 4.067× 10−3 5.93× 10−1

As the graph in Figure 5.2 indicates, the solution of Model SLT-SR decreases,
while the solution of Model ATC stays constant, which is not physically re-
alistic. The graph for the nonlinear case can be interpreted that the solution
may reach zero and oscillate around it. This was confirmed in a later exper-
iment (see Figure 5.3).
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Figure 5.2: Comparison of the linear and nonlinear results from Table 5.4,
S0 = Scrit, a = 10−2.

The following experiment is similar to Experiment 3, but with λ1 < 0.

Experiment 4
In this set of results, the case where S0 < Scrit, but with |S0 − Scrit| small,
is examined. The value S0 = −3.2 × 10−2 is used and in this case, λ1 =
−1.4610× 10−3.

It is clear from Table 5.5 that the linear solution in this example makes no
physical sense since there is no additional force and yet the deflection of
the centre of the rod increases. It is possible, however, that the nonlinear
approximation reflects the actual deflection. Although the solution of Model
SLT-SR decreases, it is slower than for the case where λ1 = 0. This can be
seen by comparing the values of the deflection at the centre of the rod in
each case at t = 13. It may be interpreted from the graph for the nonlinear
case that it is possible for the solution to reach zero and oscillate around it.

In search of a nonlinear critical value for S0, Experiment 5 is conducted.

Experiment 5
Choose S0 = −3.25 × 10−2. The graph below compares the results of
Model SLT-SR found in Experiments 2, 3 and 4, as well as for the addi-
tional case, where t ∈ [0, 30].
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Table 5.5: Deflection at x = 0.5, where a = 10−2

Value of t Model SLT-SR Model ATC Relative Difference
0 1.00× 10−2 1.00× 10−2 0.00
1 9.96× 10−3 1.00× 10−2 4.36× 10−3

2 9.84× 10−3 1.00× 10−2 1.88× 10−2

3 9.64× 10−3 1.01× 10−2 4.24× 10−2

4 9.37× 10−3 1.01× 10−2 7.36× 10−2

5 9.03× 10−3 1.02× 10−2 1.13× 10−1

6 8.64× 10−3 1.03× 10−2 1.58× 10−1

7 8.20× 10−3 1.04× 10−2 2.09× 10−1

8 7.71× 10−3 1.05× 10−2 2.64× 10−1

9 7.19× 10−3 1.06× 10−2 3.21× 10−1

10 6.65× 10−3 1.07× 10−2 3.81× 10−1

11 6.09× 10−3 1.09× 10−2 4.42× 10−1

12 5.52× 10−3 1.11× 10−2 5.02× 10−1

13 4.93× 10−3 1.13× 10−2 5.62× 10−1

Figure 5.3: Comparison of the deflection of the rod centre for the cases S0 =
−3.1× 10−2, S0 = −3.185× 10−2, S0 = −3.2× 10−2 and S0 = −3.25× 10−2,
where a = 10−2.

For S0 = −3.2 × 10−2, the solution still oscillates around zero even though
λ1 is negative. However, for S0 = −3.25 × 10−2, the solution no longer
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oscillates around zero, but possibly some other positive value. This leads
to the conjecture that the critical value for S0 in Model SLT-SR is between
S0 = −3.2× 10−2 and S0 = −3.25× 10−2.

Conclusion

The results in Chapter 5 almost confirm the findings in [SR79]. One difference
is that they claim the critical value is the same for the linear and nonlinear
models. In this chapter, calculations show that the critical values differ but
are close. It is important to note that neither Sapir and Reiss nor we proved
any of the conclusions. However, completely different computational methods
were used, which render the findings significant. Clearly, more reading and
investigations should be done in future research.



Chapter 6

Convergence for the
Sapir-Reiss semi-linear model

In Chapter 5 the same approach was taken in solving the nonlinear model
as with the linear model. A different approach is considered in this chapter.
The system is reduced to one of first-order equations before the finite element
method is applied to it. This approach has the advantage that error estimates
are calculated using weak derivatives in terms of space and time. That is,
convergence for the shear strain and bending strain can also be found. The
methods used in this chapter follow closely to those used in [PK20].

Instead of deriving the error estimates using the solution itself, error esti-
mates using a vector valued image of the solution are calculated. This vector
valued image, however, does not include the deflection and neither do the
actual iterations. The use of the deflection is avoided by using the equality
of mixed derivatives. The approach taken in [PK20] is similar to approaches
used in Finite Differences. Estimates are first calculated on matrices, vectors
and the so-called truncation error before the approximation error is found.
This is done using a norm that depends on the element length h.

93
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6.1 Comparison of models

The system considered by the authors of [PK20] is

∂2
tw =

(
cd− a+ b

∫ 1

0

(∂xw)
2dx

)
∂2
xw − cd∂xϕ, (6.1.1)

∂2
t ϕ = c∂2

xϕ− c2d (ϕ− ∂xw) , (6.1.2)

where 0 ≤ x ≤ 1, 0 ≤ t ≤ T and with boundary and initial conditions

∂tw(0, t) = ∂tw(1, t) = 0, ∂tϕ(0, t) = ∂tϕ(1, t) = 0, (6.1.3)

∂tw(x, 0) = wd(x), w(x, 0) = w0(x),

∂tϕ(x, 0) = ϕd(x), ϕ(x, 0) = ϕ0(x). (6.1.4)

As part of the justification for this model, the articles [SR79] and [Amm02]
(amongst others) are quoted, which consider boundary conditions for a pinned-
pinned rod. The authors of [PK20] give no explanation as to why they
consider clamped-clamped boundary conditions and no other boundary con-
ditions are mentioned. Also, there is no mention that w(0, t) = ϕ(0, t) = 0.
Fortunately, by choosing the test functions in the variational form according
to the boundary conditions (as has been done throughout this dissertation),
this does not influence the theory.

The system considered in Chapter 5 is

∂2
tw =

(
1 + S0 +

1

2γ

∫ 1

0

(∂xw(·, t))2
)
∂2
xw − ∂xϕ, (6.1.5)

∂2
t ϕ =

1

γ
∂2
xϕ− α (ϕ− ∂xw) , (6.1.6)

where 0 ≤ x ≤ 1, 0 ≤ t ≤ T and with initial conditions

∂tw(x, 0) = wd(x), w(x, 0) = w0(x),

∂tϕ(x, 0) = ϕd(x), ϕ(x, 0) = ϕ0(x). (6.1.7)

Comparing the two models, it was found that no scaling was done for the
model in [PK20].

In [PK20], the authors use the notation I1 to denote the area moment of
inertia where I was used in Chapter 1. In addition, I2 denotes the polar
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moment of the cross-section. The authors of [SR79] use I2, the polar moment
of a cross-section, instead of I, which is clearly an error. In other articles,
including [PK20], this error has been carried over. Fortunately, it is not
relevant to the theory. The value I2 is irrelevant for the model but is of the
same order as I1. The authors of [PK20] also use ∆ in their model to denote
the “end shortening” of the rod. This value is not dimensionless, whereas all
other parameters in their model are.

Rewriting the system (6.1.1) - (6.1.2) using the dimensionless constants de-
fined in Chapter 1, it is found that

cd =
Aℓ2G

EI
=

β

κ2
(6.1.8)

a =
Aℓ∆

I
=

Aℓ2∆

Iℓ
= αD (6.1.9)

b =
Aℓ2

2I
=

α

2
(6.1.10)

c =
Aℓ2

I2
= χα, where

1

2
≤ χ ≤ 1. (6.1.11)

That is, (noting that β = γα)

∂2
tw =

(
α
( γ

κ2
−D

)
+

α

2

∫ 1

0

(∂xw)
2dx

)
∂2
xw − γα

κ2
∂xϕ, (6.1.12)

∂2
t ϕ = χα∂2

xϕ− χα2γ

κ2
(ϕ− ∂xw) , (6.1.13)

where 0 ≤ x ≤ 1, 0 ≤ t ≤ T .

The form of the problem considered in [PK20] is therefore similar to Problem
SLT-SR.

The requirement in [PK20] that cd − a > 0 is equivalent to the condition
D < γ

κ2 . Typically, γ ∈ [1
6
, 1
2
] and κ2 ∈ [1

2
, 1] (see Chapter 1) and hence the

requirement is that D < 1. Alternatively, for S0 = D
γ
(see Chapter 1), the

requirement is equivalent to S0 < 2.

As mentioned in Chapter 5, the initial conditions must satisfy the forced
boundary conditions in order for existence of a solution to be considered. It
is assumed that

w0, ϕ0 ∈ H3(0, 1) and wd, ϕd ∈ H2(0, 1).

Although not explicitly stated, the authors of [PK20] consider weak solutions
on (0, 1)× (0, T ). That is, w and ϕ are assumed to be in H2 ((0, 1)× (0, T )).
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For ease of reference, most of the notation used in the remainder of this
chapter is the same as that used in [PK20].

6.2 Variational forms and existence theorems

Following the sequence used in the rest of this dissertation, the weak vari-
ational form is found before the Galerkin approximation is given. This is
omitted in [PK20], although weak derivatives seem to be implied. Once
the finite element method has been applied, the authors of [PK20] apply a
Crank–Nicolson type of symmetric difference scheme and use a Picard type
iteration process to find the algorithm.

Instead of solving the problem as it is, the problem is first reduced to a
system of first-order differential equations. Let

wt = ∂tw, wx = ∂xw, ϕt = ∂tϕ, ϕx = ∂xϕ. (6.2.1)

Then (6.1.1), (6.1.2), (6.1.3) and (6.1.4) become

∂twt =

(
cd− a+ b

∫ 1

0

w2
x(·, t)

)
∂xwx − cdϕx, (6.2.2)

∂twx = ∂xwt, (6.2.3)

∂tϕt = c∂xϕx − c2d (ϕ− wx) , (6.2.4)

∂tϕx = ∂xϕt, (6.2.5)

∂tϕ = ϕt, (6.2.6)

where 0 < x < 1, 0 < t ≤ T and

wt(0, t) = wt(1, t) = 0, ϕt(0, t) = ϕt(1, t) = 0, (6.2.7)

with initial conditions

wt(x, 0) = wd(x), wx(x, 0) = ∂xw0(x),

ϕt(x, 0) = ϕd(x), ϕx(x, 0) = ∂xϕ0(x), ϕ(x, 0) = ϕ0(x). (6.2.8)

Note that the solution for w will still need to be found since the solution
of this set of equations will give approximations for ∂tw, ∂xw, ∂tϕ, ∂xϕ and
ϕ. This could be done by integration or, as the authors of [PK20] suggest,
Taylor expansions.
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Although it seems to be implied throughout [PK20] that weak derivatives of
both time and space exist, only the initial conditions are assumed to have
weak derivatives. For this nonlinear problem it is not necessarily true that
the solution will have the required regularity.

In order to find the variational form of this problem, Equations (6.2.2) -
(6.2.6) are multiplied by functions vi ∈ C[0, 1], i = 1, 2, ..., 5. and each
equation is integrated over the length. Let

TP =
{
g = (g1, g2, g3, g4, g5) ∈ (C[0, 1])5 : g1(0) = g1(1) = 0,

g3(0) = g3(1) = 0} . (6.2.9)

The variational form therefore follows.

Variational Form
Given positive constants a, b, c, d, find ⟨wt, wx, ϕt, ϕx, ϕ⟩ such that for each
t > 0, ⟨wt(·, t),wx(·, t),ϕt(·, t),ϕx(·, t), ϕ(·, t)⟩ ∈ TP and for each v ∈ TP ,

(∂twt, v1) =

((
cd− a+ b

∫ 1

0

(wx(·, t))2
)
∂xwx − cdϕx, v1

)
, (6.2.10)

(∂twx, v2) = − (wt, v
′
2) , (6.2.11)

(∂tϕt, v3) =
(
c∂xϕx − c2d (ϕ− wx) , v3

)
, (6.2.12)

(∂tϕx, v4) = − (ϕt, v
′
4) , (6.2.13)

(∂tϕ, v5) = (ϕt, v5) , (6.2.14)

with initial conditions

wt(x, 0) = wd(x), wx(x, 0) = ∂xw0(x),

ϕt(x, 0) = ϕd(x), ϕx(x, 0) = ∂xϕ0(x), ϕ(x, 0) = ϕ0(x). (6.2.15)

In order to find the weak variational form, the closure of the test functions
TP (that is, TP ) must be defined. This is not the space V as in previous
chapters. Now

TP = H1
0 (0, 1)×H1(0, 1)×H1

0 (0, 1)×H1(0, 1)2, (6.2.16)

where
H1

0 (0, 1) = {w ∈ H1(0, 1) : lim
x→0

w(x) = lim
x→1

w(x) = 0}.

In this chapter the weak partial derivatives with respect to time and space are
denoted Dt and Dx respectively, whereas the weak derivative with respect to
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space is denoted D as before. The fact that mixed weak partial derivatives
are interchangeable comes from the definition of a weak derivative, since
mixed partial derivatives of C∞ functions are equal.

Weak Variational Form
Given positive constants a, b, c, d, find y = ⟨wt, wx, ϕt, ϕx, ϕ⟩ such that for
each t > 0, y(·, t) = ⟨wt(·, t),wx(·, t),ϕt(·, t),ϕx(·, t), ϕ(·, t)⟩ ∈ TP and for each
v ∈ TP ,

(Dtwt, v1) =

((
cd− a+ b

∫ 1

0

(wx(·, t))2
)
Dxwx − cdϕx, v1

)
, (6.2.17)

(Dtwx, v2) = − (wt, Dv2) , (6.2.18)

(Dtϕt, v3) =
(
cDxϕx − c2d (ϕ− wx) , v3

)
, (6.2.19)

(Dtϕx, v4) = − (ϕt, Dv4) , (6.2.20)

(Dtϕ, v5) = (ϕt, v5) , (6.2.21)

with initial conditions

wt(x, 0) = wd(x), wx(x, 0) = Dxw0(x),

ϕt(x, 0) = ϕd(x), ϕx(x, 0) = Dxϕ0(x), ϕ(x, 0) = ϕ0(x). (6.2.22)

Recall the notation π̄f = f̄ used in Chapter 4: for u ∈ Sh and v ∈ Sh
0 ,

π̄u = ū if u =
∑n

i=0 uiδi and π̄v = v̄ if v =
∑n−1

i=1 viδi. Since piecewise linear
basis functions are being used, the ith entry of π̄f is the function f at node i.
The definition of π̄ is therefore extended to H1(0, 1): for u ∈ H1(0, 1), let
π̄u = ū, where ū denotes the nodal values of the unique continuous function
that is equal to u almost everywhere (see Theorem 2.2.2).

Define the following vector valued function:

ȳ(t) =
(
wt(·, t), wx(·, t), ϕt(·, t), ϕx(·, t), ϕ(·, t)

)
. (6.2.23)

Existence theory for the nonlinear problem is discussed in Chapter 7. The
fact that the model used there is similar to the one in this chapter suggests
that the existence results will hold for both models.

6.3 Algorithm in [PK20]

The first-order system is written as a Galerkin approximation. Each equation
of the Galerkin approximation is then written in matrix form. The entire
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system is written in one matrix differential equation depending only on time,
which is discretised twice further to form an algorithm used to approximate
the solution.

Application of the finite element method

As in Chapter 4, let the interval [0, 1] be divided into n subintervals and δj
denote the j′th C0 piecewise linear basis function on [0, 1]. (More information
is given in Appendix B.) Then the approximate solution of the system (6.2.2)-
(6.2.6) is found in the form

wt
h(x, t) =

n−1∑
j=1

wtj(t)δj(x), wx
h(x, t) =

n∑
k=0

wxk
(t)δk(x),

ϕt
h(x, t) =

n−1∑
j=1

ϕtj(t)δj(x), ϕx
h(x, t) =

n∑
k=0

ϕxk
(t)δk(x),

ϕh(x, t) =
n∑

k=0

ϕ
k
(t)δk(x). (6.3.1)

The functions wtj(t), wxk
(t), ϕtj(t), ϕxk

(t) and ϕ
k
(t) above are defined using

the system of ordinary differential equations below:(
Dtwt

h, δj
)
=

((
cd− a+ b

∫ 1

0

(
wx

h(·, t)
)2)

Dxwx
h − cdϕx

h, δj

)
, (6.3.2)(

Dtwx
h, δk

)
= −

(
wt

h, δk
′) , (6.3.3)(

Dtϕt
h, δj

)
=
(
cDxϕx

h − c2d
(
ϕh − wx

h
)
, δj
)
, (6.3.4)(

Dtϕx
h, δk

)
= −

(
ϕt

h, δk
′) , (6.3.5)(

Dtϕ
h, δk

)
=
(
ϕt

h, δk
)
, (6.3.6)

where 0 < t ≤ T , with the initial conditions

wtj(0) = wd(xj), wxk
(0) = ∂xw0(xk), (6.3.7)

ϕtj(0) = ϕd(xj), ϕxk
(0) = ∂xϕ0(xk), ϕ

k
(0) = ϕ0(xk), (6.3.8)

where j = 1, ..., n− 1 and k = 0, 1, ..., n.

As mentioned above,

π̄wt
h(·, t) = ⟨wt1(t), . . . wtn−1(t)⟩ and π̄wx

h(·, t) = ⟨wx0(t), . . . wxn(t)⟩.

The notation π̄u = ū could become confusing at this point. To avoid this,
the notation, for example

wh
x(t) = π̄wx

h(·, t),
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is used. Define the vector function yh as follows:

yh(t) =
(
wh

t (t), w
h
x(t), ϕ

h
t (t), ϕ

h
x(t), ϕ

h(t)
)
. (6.3.9)

Matrices Recall the matrices M and L defined in Chapter 4. The matrices
are also written out in more detail in Appendix B. For a square matrix X,
the following notation is used.

– X{0,n} is matrix X with rows 0 and n and columns 0 and n deleted;

– XR is matrix X with rows 0 and n deleted.

The system in Equations (6.3.2)-(6.3.8) can therefore be rewritten as

M{0,n}Dt(w
h
t (t)) =

(
cd− a+ bwh

x(t)
TMwh

x(t)
)
LRw

h
x(t)

−cdMRϕ
h
x(t), (6.3.10)

MDt(w
h
x(t)) = − (LR)

T wh
t (t), (6.3.11)

M{0,n}Dt(ϕ
h
t (t)) = cLRϕ

h
x(t)− c2dMRϕ

h(t) + c2dMRw
h
x(t),(6.3.12)

MDt(ϕ
h
x(t)) = − (LR)

T ϕh
t (t), (6.3.13)

MDt(ϕ
h(t)) = (MR)

T ϕh
t (t), (6.3.14)

where 0 < t ≤ T and with initial conditions

wh
t (0) = πwd, wh

x(0) = π∂xw0, (6.3.15)

ϕh
t (0) = πϕd, ϕh

x(0) = π∂xϕ0, ϕh(0) = πϕ0. (6.3.16)

For theoretical purposes, Equations (6.3.10)-(6.3.16) are represented as

MDt(y
h(t)) =

(
L+N(wh

x(t))
)
yh(t), (6.3.17)

with 0 < t ≤ T and initial condition

yh(0) = (πwd, π∂xw0, πϕd, π∂xϕ0, πϕ0) , (6.3.18)

where (following the notation of [PK20])
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M =


1
h
M{0,n}

2
h
M 0

1
h
M{0,n}

0 2
h
M

2
h
M

 , (6.3.19)

L =


0 (cd−a)

h
LR 0 −cd

h
MR 0

−2
h
(LR)

T 0 0 0 0

0 c2d
h
MR 0 c

h
LR

−c2d
h

MR

0 0 −2
h
(LR)

T 0 0
0 0 2

h
(MR)

T 0 0

 , (6.3.20)

N(v(t)) = bv(t)TMv(t)


0 1

h
LR 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , v(t) ∈ Rn+1. (6.3.21)

If alternative boundary conditions are used, (6.3.17) remains the same except
for the definitions of M, L and N.

Algorithm

Before the algorithm from [PK20] is given, more notation is required.

Let τ denote the grid step on the time interval [0, T ], where 0 < τ < 1,
τ = T

R
and tm = mτ , m = 0, 1, ..., R. Denote the values of vectors of the

form vh(tm) by vhm, m = 0, 1, ..., R. Using this notation, let

yhm =
(
wt

h
m, wx

h
m, ϕt

h
m, ϕx

h
m, ϕ

h
m

)
. (6.3.22)

Using a Crank-Nicholson type of symmetric difference scheme (see [PK20]),
it follows that

M
yhm−yhm−1

τ
= 1

2

(
L+ 1

2

(
N(wx

h
m) +N(wx

h
m−1)

)) (
yhm + yhm−1

)
,

with yh0 = yh(0). (6.3.23)

The authors of [PK20] further discretise the system to perform an iteration
process. Let

yhm,p =
(
wt

h
m,p, wx

h
m,p, ϕt

h
m,p, ϕx

h
m,p, ϕ

h
m,p

)
, (6.3.24)

where, for chosen τ and h, yhm,p is the pth iteration of yhm. It is assumed that
yhm−1 is known and has a negligible corresponding error. Let

yhm,0 = yhm−1. (6.3.25)
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Using a Picard type iteration process (see [PK20]), the following algorithm
for yhm,p is found:

Myhm,p = Myhm−1 +
τ

2

(
L+

1

2

(
N(wx

h
m,p−1) +N(wx

h
m−1)

)) (
yhm,p−1 + yhm−1

)
.

(6.3.26)

6.4 Truncation error

Once the error estimate for the system has been found, the error of the
iteration process (which was assumed to be negligible) is estimated.

The vector ȳ defined in (6.2.23) does not necessarily satisfy (6.3.17). That
is, there is an error term when it is substituted in. To be precise,

MDt(ȳ(t)) = (L+N(wx(·, t))) ȳ(t) + θh. (6.4.1)

The term θh is referred to as the truncation error. For zh(t) = ȳ(t)− yh(t),

MDt(z
h(t)) = Lzh(t) +N(wx(·, t))ȳ(t)−N(wh

x(t))y
h(t) + θh(t), (6.4.2)

where

θh(t) = MDt(ȳ(t))− (L+N(wx(·, t))) ȳ(t), θh(0) = 0̄. (6.4.3)

Equation (6.4.2) resembles a linear differential equation, where the second,
third, and fourth terms act as forcing functions. The strategy followed in
this chapter is to find bounds for these “forcing functions”, then Gronwall’s
inequality may be used to find the error estimate for the algorithm.

Proposition 6.4.1 (Gronwall’s inequality).
Let f(·) be a non-negative, absolutely continuous function on [0, T ] and g(t)
and h(t) be non-negative, summable functions on [0, T ]. Suppose

f ′(t) ≤ g(t)f(t) + h(t) a.e. for t ∈ [0, T ]. (6.4.4)

Then, for each t ∈ [0, T ],

f(t) ≤ e
∫ t
0 g(s)ds

(
f(0) +

∫ t

0

h(s)ds

)
. (6.4.5)

Proof. See [Eva98, Appendix B]
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Vector and matrix norms

Some norms are defined in order to find bounds on the “forcing functions”
in Equation (6.4.2). Recall that h = 1

n
. The h-scalar product for two vectors

u and v with the same dimension k is defined as

(u, v)h = h
k∑

i=1

uivi,

with associated norm
∥u∥h = (u, u)

1
2
h .

Let
Sh = span{δ0, ..., δn} and Sh

0 = span{δ1, ..., δn−1}. (6.4.6)

The relation between the ∥ · ∥h norm and the L2(0, 1) norm is shown below.

Proposition 6.4.2. The norm ∥ · ∥h on Sh and the norm ∥ · ∥h on Sh
0 both

converge to the norm in L2(0, 1).

Proof. For u ∈ Sh and v ∈ Sh
0 , by the definition of the Riemann integral,

lim
h→0

∥u∥2h = lim
n→∞

1

n

n∑
i=0

(ui)
2 =

∫ 1

0

(u)2 = ∥u∥2, (6.4.7)

lim
h→0

∥v∥2h = lim
n→∞

1

n

n−1∑
i=1

(vi)
2 =

∫ 1

0

(v)2 = ∥v∥2. (6.4.8)

The proposition above implies that any bounds found in terms of the ∥ · ∥h
norm also hold in L2(0, 1).

Other related norms are now defined. For a symmetric positive definite
matrix V and vector u with dimension equal to the order of V , define the
norm

∥u∥V,h =

(
1

h
V u, u

) 1
2

h

. (6.4.9)

The norm ∥ · ∥h on a matrix V is represented by

∥V ∥h = max
u̸=0

∥V u∥h
∥u∥h

. (6.4.10)

The following estimates are useful.
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Proposition 6.4.3. For a vector v ∈ Rn+1 and v0 ∈ Rn−1,

1√
6
∥v∥h ≤ ∥v∥M,h ≤ ∥v∥h, (6.4.11)

1√
3
∥v0∥h ≤ ∥v0∥M{0,n},h ≤ ∥v0∥h. (6.4.12)

Also,
∥LR∥h ≤ 1. (6.4.13)

Proof. Let v ∈ Rn+1 and v0 ∈ Rn−1. Then (see Appendix B for the definition
of M)

∥v∥2M,h =
n∑

i=0

(Mv)ivi =
1

6
h

N−1∑
i=0

(
2v2i + 2vivi+1 + 2v2i+1

)
.

Therefore, using the property |2ab| ≤ a2 + b2 for any real numbers a and b,
it follows that

1

6
∥v∥2h ≤ ∥v∥2M,h ≤ ∥v∥2h.

The proof that
1√
3
∥v0∥h ≤ ∥v0∥M{0,n},h ≤ ∥v0∥h is similar.

For the proof of (6.4.13), recall that

∥LR∥h = max
v ̸=0

∥LRv∥h
∥v∥h

.

Now, for any v ∈ Rn+1, using the property −2ab ≤ a2 + b2 for any real
numbers a and b, (see Appendix B for the definition of L)

∥LRv∥2h =
h

4

n−1∑
i=1

(vi−1 − vi+1)
2 ≤ h

n∑
i=0

(vi)
2 = ∥v∥2h.

Therefore
∥LR∥h ≤ 1.

Bounds for the growth of the function ȳ

The notation defined above is now used to find bounds in order to estimate
the “forcing” terms in (6.4.2).
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Due to the fact that some expressions are used frequently, shortened notation
is defined for convenience. This notation is similar to that used in [PK20].
Recall that the notation Ci,j([0, 1]× [0, T ]) is used for the space of functions,
defined on [0, 1] × [0, T ], which have i continuous partial space derivatives
and j continuous partial time derivatives. Let

ω0 =
a

b
+

√
2

b
e1(0), (6.4.14)

where

e1(t) =

(
∥∂tw(x, t)∥2 + cd∥∂xw(x, t)− ϕ(x, t)∥2 + 1

2b
(a

−b∥∂xw(x, t)∥2
)2

+
1

c
∥∂tϕ(x, t)∥2 + ∥∂xϕ(x, t)∥2

) 1
2

. (6.4.15)

In addition, if wx(x, t) ∈ Cρ,0([0, 1]× [0, T ]), where ρ = 1 or ρ = 2, let

ωρ =

{
5
6
m0m1 for ρ = 1,

1
3

(
m0(m1 +m2) +

1
2
m2

1

)
for ρ = 2,

(6.4.16)

where mi = max
0≤x≤1

max
0≤t≤T

∥∥∥∥∂iwx(x, t)

∂xi

∥∥∥∥
h

, i = 0, 1, 2.

Let

e2(ȳ) =
1√
3cd

(
∥wt∥2M{0,n},h

+ cd∥wx − ϕ∥2M,h

+
1

2b

(
a− b∥wx∥2M,h

)2
+

1

c
∥ϕt∥2M{0,n},h

+ ∥ϕx∥2M,h

) 1
2

. (6.4.17)

The values s0, s1 and s2 are given by

s0 = ω0 + hρωρ, (6.4.18)

s1 =
a

b
+

√
6

b
cd

(
e2(y

h(0)) +
T

h

∥∥MRϕ
2
x − LRϕ

2
∥∥
h

)
, (6.4.19)

s2 = 3b

(
s1 +

(
s1 −

a

b

)2)
max

{
1,

8

b
,
c

2
,
2

cd

}
(6.4.20)
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and the values α1, α2 and α3 are given by

α1 = 3

(
η +

(
s0 +

√
6 (

√
s0 +

√
s1)

2
+ s1

) b

2h

)
, (6.4.21)

α2 =
3

2

(
η + s1

(
1 + 2

√
6
) b

h

)
, (6.4.22)

α3 =
3

2

(
η + s1

b

h

)
, (6.4.23)

where, for p and q positive real numbers depending on a, c and d,

η2 =
1

h2
p+ q. (6.4.24)

The propositions below are lemmas which are proved in [PK20]. References
are given for convenience.

Proposition 6.4.4 (Lemma 1).
The following inequalities hold:

∥M∥h ≤ 2, (6.4.25)

∥M−1∥h ≤ 3, (6.4.26)

∥L∥h ≤ η. (6.4.27)

Proof. See [PK20, Section 3.1.2].

Proposition 6.4.5 (Lemma 2).
For ū, v̄, ū∗ and v̄∗ in Sh

0 × Sh × Sh
0 × (Sh)2,

∥N(u2)v̄
∗ −N(v2)ū

∗∥h ≤ b

2h

((
∥u2∥2M,h + ∥v2∥2M,h

)
∥v̄∗ − ū∗∥h + (∥u2∥M,h

+∥v2∥M,h) (∥v∗2∥h + ∥u∗
2∥h) ∥ū− v̄∥h) .

Proof. See [PK20, Section 3.1.2].

Proposition 6.4.6 (Lemmas 3 and 4).
There exists a solution of the problem given by Equations (6.3.10)-(6.3.16),
and the following inequalities are valid for 0 ≤ t ≤ T :

∥wx(·, t)∥2M,h ≤ s0, (6.4.28)

∥wh
x(t)∥2M,h ≤ s1. (6.4.29)

Proof. See [PK20, Section 3.2.2].
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Proposition 6.4.7 (Lemma 5).
There exists a solution of the problem in (6.3.23) and the following estimate
holds:

∥wx
h
m∥2M,h ≤ s1, (6.4.30)

where m = 1, 2, ..., R.

Proof. See [PK20, Section 3.3.2].

Proposition 6.4.8 (Lemma 6).
If the grid step τ satisfies the condition

0 < τ ≤ 1− ϵ2
α3

, (6.4.31)

where ϵ2 is an arbitrary number from the interval (0, 1), then

∥yhm∥h ≤ s2, (6.4.32)

where m = 1, 2, ..., R.

Proof. See [PK20, Section 3.4.2].

If a function has a continuous partial time derivative of order ℓ, then the
partial derivative is bounded.

Definition. For y(x, t) ∈
(
C0,ℓ([0, 1]× [0, T ])

)5
, ℓ = 0, 1, 2, let

mȳ,ℓ = mwt,ℓ +mwx,ℓ +mϕt,ℓ
+mϕx,ℓ

+mϕ,ℓ, (6.4.33)

mv0,ℓ = max
0≤t≤T

1≤j≤n−1

∥∥∥∥dℓv0(xj, t)

dtℓ

∥∥∥∥
h

, v0 = wt, ϕt, (6.4.34)

mv,ℓ = max
0≤t≤T
0≤k≤n

∥∥∥∥dℓv(xk, t)

dtℓ

∥∥∥∥
h

, v = wx, ϕx, ϕ. (6.4.35)

Also, for yh(t) ∈ (C2[0, T ])
5
, ℓ = 0, 1, 2, let

myh,ℓ = mwh
t ,ℓ

+mwh
x ,ℓ

+mϕh
t ,ℓ

+mϕh
x,ℓ

+mϕh,ℓ, (6.4.36)

mv0,ℓ = max
0≤t≤T

1≤j≤n−1

∥∥∥∥dℓv0j(t)dtℓ

∥∥∥∥
h

, v0 = wh
t , ϕ

h
t , (6.4.37)

mv,ℓ = max
0≤t≤T
0≤k≤n

∥∥∥∥dℓvk(t)dtℓ

∥∥∥∥
h

, v = wh
x, ϕ

h
x, ϕ

h. (6.4.38)
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The authors of [PK20] do not explicitly mention an estimate for N(wh
x(t)),

however it is similar to Proposition 6.4.5. It is given below for convenient
reference.

Proposition 6.4.9. For t ∈ [0, T ] and v̄(t) ∈ Rn−1×Rn+1×Rn−1× (Rn+1)
2
,

∥N(v2(t))v̄(t)∥h ≤ b

h
∥v2(t)∥2M,h∥v̄∥h. (6.4.39)

Proof. Let t ∈ [0, T ]. Then, for v̄(t) ∈ Rn−1 × Rn+1 × Rn−1 × (Rn+1)
2
, using

the estimate given in (6.4.13) ,

∥N(v2(t))v̄(t)∥h =

∥∥∥∥bv2(t)TMv2(t)
1

h
LRv2(t)

∥∥∥∥
h

=
b

h
∥v2(t)∥2M,h ∥LRv2(t)∥h

≤ b

h
∥v2(t)∥2M,h ∥LR∥h ∥v2(t)∥h

≤ b

h
∥v2(t)∥2M,h ∥v̄(t)∥h. (6.4.40)

Using the theory above, an estimate may be found for the truncation error
defined in (6.4.3).

Proposition 6.4.10. The following inequality holds for the truncation error
in (6.4.3): if wx(x, t) ∈ Cρ,1([0, 1] × [0, T ]), where ρ = 1 or ρ = 2, and
wt(x, t), ϕt(x, t), ϕx(x, t), ϕ(x, t) ∈ C0,1([0, 1]× [0, T ]), then

∥θh(t)∥h ≤ 2mȳ,1 + ηmȳ,0 +
b

h
s0mȳ,0.

Proof. For any t ∈ [0, T ], using propositions 6.4.4, 6.4.6 and 6.4.9 and the
fact that wx(x, t) ∈ Cρ,1([0, 1] × [0, T ]), where ρ = 1 or ρ = 2, and wt(x, t),
ϕt(x, t), ϕx(x, t), ϕ(x, t) ∈ C0,1([0, 1]× [0, T ]),

∥θh(t)∥h =

∥∥∥∥Mdȳ(t)

dt
− (L+N(wx(·, t))) ȳ(t)

∥∥∥∥
h

≤
∥∥∥∥Mdȳ(t)

dt

∥∥∥∥
h

+ ∥Lȳ(t)∥h + ∥N(wx(·, t))ȳ(t)∥h

≤ ∥M∥h mȳ,1 + ∥L∥hmȳ,0 +
b

h
∥wx(·, t)∥2M,hmȳ,0

≤ 2mȳ,1 + ηmȳ,0 +
b

h
s0mȳ,0. (6.4.41)



6.5. ERROR ESTIMATES 109

6.5 Error estimates

Using bounds found for the so-called truncation errors, Gronwall’s inequality
is used to find error estimates for the algorithm given in Section 6.3. This
is done using the triangle inequality to add three different error estimates in
order to find the total estimate.

Semi-discrete error estimate

The first of the error estimates calculated is the semi-discrete error estimate.
That is, the error of the finite element method.

Theorem 6.5.1. The error of the finite element method is estimated by the
inequality below, using the notation of (6.2.23), (6.3.9) and (6.4.3):

∥ȳ(t)− yh(t)∥h ≤
(
3α1e

tα1t2 + 3t
)
max
0≤t≤T

∥θh(t)∥h. (6.5.1)

Proof. Let zh(t) = ȳ(t)− yh(t). By (6.4.2), since zh(0) = 0, it follows that

Mzh(t) =

∫ t

0

(
Lzh(u) +N(wx(·, u))ȳ(u)−N(wh

x(u))y
h(u) + θh(u)

)
du.

(6.5.2)
Also, by Proposition 6.4.5, (6.4.28) and (6.4.29),

∥N(wx(·, t))ȳ(t)−N(wh
x(t))y

h(t)∥h

≤ b

2h

(
∥wx(·, t)∥2M,h + ∥wh

x(t)∥2M,h + (∥wx(·, t)∥M,h

+∥wh
x(t)∥M,h

) (
∥wx(·, t)∥h + ∥wh

x(t)∥h
))

∥zh(t)∥h

≤ b

2h

(
s0 +

√
6 (

√
s0 +

√
s1)

2
+ s1

)
∥zh(t)∥h. (6.5.3)

Therefore, from (6.5.2), (6.4.26) and (6.4.27), it follows that

∥zh(t)∥h ≤ α1

∫ t

0

∥zh(u)∥hdu+ 3

∫ t

0

∥θh(u)∥hdu

≤ α1

∫ t

0

∥zh(u)∥hdu+ 3t max
0≤t≤T

∥θh(t)∥h. (6.5.4)
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Using Gronwall’s inequality (Proposition 6.4.1), with f(t) =
∫ t

0
∥zh(u)∥hdu,

it follows that ∫ t

0

∥zh(u)∥hdu ≤ 3etα1t2 max
0≤t≤T

∥θh(t)∥h. (6.5.5)

Therefore (6.5.4) becomes

∥zh(t)∥h ≤ 3α1e
tα1t2 max

0≤t≤T
∥θh(t)∥h + 3t max

0≤t≤T
∥θh(t)∥h

=
(
3α1e

tα1t2 + 3t
)
max
0≤t≤T

∥θh(t)∥h.

Corollary. If

wx(x, t) ∈ Cρ,1([0, 1]× [0, T ]), where ρ = 1 or ρ = 2, (6.5.6)

wt(x, t), ϕt(x, t), ϕx(x, t), ϕ(x, t) ∈ C0,1([0, 1]× [0, T ]), (6.5.7)

then the error of the finite element method is estimated by the following in-
equality.

∥ȳ(t)− yh(t)∥h ≤
(
3α1e

tα1t2 + 3t
)(

2mȳ,1 + ηmȳ,0 +
b

h
s0mȳ,0

)
, (6.5.8)

Fully discrete error estimate

Recall that τ denotes the grid step on the time interval [0, T ], where 0 <

τ < 1, τ =
T

R
and tm = mτ , m = 0, 1, ..., R. Also, the approximate values of

vectors of the form vh(tm) are denoted by vhm, m = 0, 1, ..., R. Let

yhm =
(
wt

h
m, wx

h
m, ϕt

h
m, ϕx

h
m, ϕ

h
m

)
. (6.5.9)

Recall from (6.3.23) that along with yh0 = yh(0),

M
yhm − yhm−1

τ
=

1

2

(
L+

1

2

(
N(wx

h
m) +N(wx

h
m−1)

)) (
yhm + yhm−1

)
.

Let
zhm = yh(tm)− yhm.

Note that by letting yhm = yh(tm)− zhm, it follows that for m = 0, 1, ...R

M
zhm − zhm−1

τ
=

1

2
L
(
zhm + zhm−1

)
− 1

4

(
N(wx

h
m)

+N(wx
h
m−1)

) (
yhm + yhm−1

)
+

1

4

(
N(wh

x(tm))

+N(wh
x(tm−1))

) (
yh(tm) + yh(tm−1)

)
+ θhm, (6.5.10)
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where zh0 = 0 and

θhm = M
yh(tm)− yh(tm−1)

τ
− 1

2
L
(
yh(tm) + yh(tm−1)

)
−1

4

(
N(wx

h(tm)) +N(wx
h(tm−1))

) (
yh(tm) + yh(tm−1)

)
. (6.5.11)

The following proposition is a part of the proof of Theorem 2 in [PK20], but
is not explicitly stated.

Proposition 6.5.1. If, for the functions in (6.3.1),

wtj(t), wxk
(t), ϕtj(t), ϕxk

(t), ϕk(t) ∈ C2[0, T ],

where j = 1, ..., n − 1 and k = 0, ..., n, then the truncation error in (6.5.11)
is estimated by

max
0≤ℓ≤m

∥θhℓ ∥h ≤ τ

(
myh,2 +

1

2
ηmyh,1 + s1

b

h

(
1

2
+
√
6

)
mwh

x ,1

)
. (6.5.12)

The error estimate of yhm is found below.

Theorem 6.5.2. Suppose that for the grid step τ , the inequality below holds:

0 < τ ≤ 1− ϵ1
α2

, (6.5.13)

where ϵ1 is an arbitrary number from the interval (0, 1). Then the following
inequality estimates the error of the difference scheme in (6.3.23):

∥yh(tm)− yhm∥h ≤ 3

2α2

e2tm(α2/ϵ1) max
0≤ℓ≤m

∥θhℓ ∥h. (6.5.14)

Proof. It follows from (6.5.10) that

zhm = zhm−1 +
τM−1

2

(
L(zhm + zhm−1) +

1

2

1∑
i,j=0

(
N(wh

x(tm−i))y
h(tm−j)

−N(wx
h
m−i)y

h
m−j

))
+ τM−1θhm. (6.5.15)

Also, by Propositions 6.4.3, 6.4.5 and 6.4.6, for i, j ∈ {0, 1}∥∥N(wh
x(tm−i))y

h(tm−j)−N(wx
h
m−i)y

h
m−j

∥∥
h

≤ b

2h

[(
∥wh

x(tm−i)∥2M,h + ∥wx
h
m−i∥2M,h

)
∥zhm−j∥h

+
(
∥wh

x(tm−i)∥M,h + ∥wx
h
m−i∥M,h

) (
∥wh

x(tm−j)∥h + ∥wx
h
m−j∥h

)
∥zhm−i∥h

]
≤ s1

b

h

(
∥zhm−j∥h + 2

√
6∥zhm−i∥h

)
. (6.5.16)
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Therefore, by Proposition 6.4.4 and the definition of α2,

∥zhm∥h ≤ ∥zhm−1∥h + τα2

(
∥zhm∥h + ∥zhm−1∥h

)
+ 3τ∥θhm∥h. (6.5.17)

That is,

∥zhm∥h ≤ 1 + τα2

1− τα2

∥zhm−1∥h +
3τ

1− τα2

∥θhm∥h

≤
(
1 + τα2

1− τα2

)m

∥zh0∥h + τ
3

1− τα2

m−1∑
ℓ=0

(
1 + τα2

1− τα2

)ℓ

∥θhm−ℓ∥h

=

(
1− τα2 + 2τα2

1− τα2

)m

∥zh0∥h

+τ
3

1− τα2

m−1∑
ℓ=0

(
1− τα2 + 2τα2

1− τα2

)ℓ

∥θhm−ℓ∥h. (6.5.18)

Therefore, since zh0 = 0 and by (6.5.13), it follows from the limit of a geo-
metric series that

∥zhm∥h ≤ τ
3

ϵ1

m−1∑
ℓ=0

(
1 + 2τ

α2

ϵ1

)ℓ

∥θhm−ℓ∥h

≤ τ
3

ϵ1
max
0≤ℓ≤m

∥θhℓ ∥h
m−1∑
ℓ=0

(
1 + 2τ

α2

ϵ1

)ℓ

= τ
3

ϵ1

((
1 + 2τ

α2

ϵ1

)m

− 1

)
ϵ1

2τα2

max
0≤ℓ≤m

∥θhℓ ∥h

≤ 3

2α2

(
1 + 2tm

α2

mϵ1

)m

max
0≤ℓ≤m

∥θhℓ ∥h

≤ 3

2α2

e2tm(α2/ϵ1) max
0≤ℓ≤m

∥θhℓ ∥h. (6.5.19)

Corollary. If, for the functions in (6.3.1),

wtj(t), wxk
(t), ϕtj(t), ϕxk

(t), ϕk(t) ∈ C2[0, T ], (6.5.20)

j = 1, ..., n− 1, k = 0, ..., n, then

∥yh(tm)− yhm∥h ≤ 3τe2tm(α2/ϵ1)

2α2

(
myh,2 +

1

2
ηmyh,1

+s1
b

h

(
1

2
+
√
6

)
mwh

x ,1

)
. (6.5.21)
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There is now enough information to calculate the error estimate on the differ-
ence scheme, which is not mentioned in [PK20]. Instead, an error estimate
for the iteration process is also given and then the total error estimate is
found.

Error estimate for the iteration process

Recall that it is assumed that yhm−1 is known and has a negligible corre-
sponding error. Also, the algorithm for yhm,p is given by (6.3.26) and (6.3.25),
repeated here for convenience.

Myhm,p = Myhm−1 +
τ
2

(
L+ 1

2

(
N(wx

h
m,p−1) +N(wx

h
m−1)

)) (
yhm,p−1 + yhm−1

)
,

yhm,0 = yhm−1.

Theorem 6.5.3. Suppose the grid step τ satisfies the inequalities below.

0 < τ ≤ 1−ϵ2
α3

, (6.5.22)

0 < τ

(
η + 3b

h

(
1 + 8

3
τ α3

1−q
+ 2

(
τ α3

1−q

)2)
s22

)
≤ 2

3
q, (6.5.23)

where ϵ2 and q are arbitrary numbers from the interval (0, 1). Then

∥yhm − yhm,p∥h ≤ τs2α3
2

1− q
qp, p = 1, 2, . . . . (6.5.24)

Proof. It follows from (6.3.26) that for ∆yhm,p = yhm,p − yhm,p−1,

∆yhm,p+1 =
τ

2
M−1

(
L+

1

2
N(wx

h
m−1)

)
∆yhm,p

+
τ

4
M−1

1∑
ℓ=0

(−1)ℓN(wx
h
m,p−ℓ)

(
yhm,p−ℓ + yhn−1

)
. (6.5.25)

Therefore, by Proposition 6.4.5 and the definition of N,∥∥N(wx
h
m−1)∆yhm,p

∥∥
h

≤ b

h
∥wx

h
m−1∥2M,h∥∆yhm,p∥h, (6.5.26)

∥∥N(wx
h
m,p)y

h
m,p −N(wx

h
m,p−1)y

h
m,p−1

∥∥
h

≤ b

2h
∥∆yhm,p∥h

(
1∑

i=0

∥wx
h
m,p−i∥2M,h

+
1∑

i=0

∥wx
h
m,p−i∥M,h

(
∥wx

h
m,p∥h + ∥wx

h
m,p−1∥h

))
, (6.5.27)
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h
m,p)−N(wx

h
m,p−1)

)
yhm−1

∥∥
h

≤ b

h

1∑
ℓ=0

∥wx
h
m,p−ℓ∥M,h∥wx

h
m−1∥h∥∆yhm,p∥h. (6.5.28)

Also, by Proposition 6.4.3, it follows that

∥wx
h
m−1∥M,h ≤ ∥wx

h
m−1∥h ≤ ∥yhm−1∥h, (6.5.29)

∥wx
h
m,p−ℓ∥M,h ≤ ∥wx

h
m,p−ℓ∥h ≤ ∥yhm,p−ℓ∥h, (6.5.30)

∥wx
h
m,p∥M,h ≤ ∥wx

h
m,p∥h ≤ ∥yhm,p∥h. (6.5.31)

Therefore

∥∆yhm,p+1∥h ≤ 3τ

2

(
η +

b

2h

(
∥yhm−1∥2h + ∥yhm,p∥2h + ∥yhm,p−1∥2h

))
∥∆yhm,p∥h

+
3τ

2
∥yhm−1∥h

(
∥yhm,p∥h + ∥yhm,p−1∥h

)
∥∆yhm,p∥h.

+
3τ

2
∥yhm−1∥h∥yhm,p∥h∥yhm,p−1∥h∥∆yhm,p∥h. (6.5.32)

From (6.3.26) and (6.3.25) it follows that

Myhm,1 = Myhm−1 + τ
(
L+N(wx

h
m−1)

)
yhm−1. (6.5.33)

Therefore, by Propositions 6.4.7, 6.4.8 and the definition of α3,

∥∆yhm,1∥h ≤ 2τs2α3 and ∥yhm,1∥h ≤ s2 + 2τs2α3. (6.5.34)

Let
k = 2τs2α3. (6.5.35)

Then (6.5.23) can be rewritten as

0 <
3τ

2

(
η +

b

2h

2∑
ℓ=0

(ℓ+ 1)s2−ℓ
2

(
s2 +

k

1− q

)ℓ
)

≤ q. (6.5.36)

Thus, (6.5.32), (6.5.34) and (6.5.36) together with the fact that 1
1−q

> 1
imply that

∥∆yhm,2∥h ≤ q∥∆yhm,1∥h ≤ kq. (6.5.37)

Therefore, using the triangle inequality, it follows from (6.5.34) and (6.5.37)
that

∥yhm,2∥h ≤ ∥yhm,1∥h + ∥∆yhm,2∥h ≤ s2 + k(1 + q). (6.5.38)
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Using mathematical induction (see [PK20]), (6.5.39) follows for p ≥ 1:

∥∆yhm,p∥h ≤ kqp−1. (6.5.39)

This implies that

∥yhm,p+ℓ − yhm,p∥h ≤
ℓ∑

i=1

∥∆yhm,p+i∥h ≤ k
ℓ∑

i=1

qp+i−1 ≤ k
qp

1− q
. (6.5.40)

Therefore, for p = 0, 1, ..., ℓ = 1, 2, ...,

∥∆yhm,p+ℓ∥h ≤ 2k
qp−1

1− q
. (6.5.41)

Note that the right hand side of (6.5.41) tends to zero as p → ∞. Hence the
sequence (yhm,p), p = 0, 1, ..., is convergent. Thus, letting p → ∞ in Equation
(6.3.26) and using Proposition 6.4.5 and the continuity of the matrices M
and L, it follows that

lim
p→∞

yhm,p = yhm.

Therefore, by (6.5.40), it follows that for p = 1, 2, ...,

∥yhm − yhm,p∥h = lim
ℓ→∞

∥yhm,p+ℓ − yhm,p∥h ≤ k
qp

1− q
= 2τs2α3

qp

1− q
. (6.5.42)

Total error estimate

The error estimates of the previous sections are now used together with the
triangle inequality in order to find the total error estimate of the approxima-
tion.

In [Amm02] it is mentioned, but not proved, that the regularity of the solu-
tion of the linear problem may be increased to H3(0, 1). This is not necessar-
ily true for the nonlinear case. Due to this remark in [Amm02], the authors
of [PK20] assume that w0(x) and ϕ0(x) are in H3(0, 1) and wd(x) and ϕd(x)
are in H2(0, 1).

Theorem 6.5.4. Suppose that y is a solution of the weak variational form
of the problem given in Section 6.2. In addition, suppose

w0(x), ϕ0(x) ∈ H3(0, 1), wd(x), ϕd(x) ∈ H2(0, 1) (6.5.43)
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and that for the grid step τ the following inequalities hold:

0 < τ ≤ 1−ϵ1
α2

, (6.5.44)

0 < τ ≤ 1−ϵ2
α3

, (6.5.45)

0 < τ

(
η + 3b

h

(
1 + 8

3
τ α3

1−q
+ 2

(
τ α3

1−q

)2)
s22

)
≤ 2

3
q, (6.5.46)

where ϵ1, ϵ2 and q are arbitrary numbers from the interval (0, 1).

If

wx(x, t) ∈ Cρ,1([0, 1]× [0, T ]), where ρ = 1 or ρ = 2, (6.5.47)

wt(x, t), ϕt(x, t), ϕx(x, t), ϕ(x, t) ∈ C0,1([0, 1]× [0, T ]), (6.5.48)

wtj(t), wxk
(t), ϕtj(t), ϕxk

(t), ϕk(t) ∈ C2[0, T ], (6.5.49)

for j = 1, ..., n− 1 and k = 0, ..., n. Then, for chosen τ and h at t = tm, the
estimate for the total error at the pth iteration step is

∥ȳ(tm)− yhm,p∥h ≤
(
3α1e

tmα1t2m + 3tm
)(

2my,1 + ηmy,0 +
b

h
s0my,0

)
+
τ3e2tm(α2/ϵ1)

2α2

(
myh,2 +

1

2
ηmyh,1

+ s1
b

2h

(
1 + 2

√
6
)
mwh

x ,1

)
+ τs2α3

2

1− q
qp. (6.5.50)

If the right hand side of (6.5.50) vanishes as h → 0, then by Proposition 6.4.2
it follows that the approximation converges in the L2(0, 1) norm.

In [PK20], the result (6.5.50) is given in the form

∥ȳ(tm)− yhm,p∥h ≤ c1 + c2τ + c3q
p. (6.5.51)

This is very misleading as the coefficients c1, c2 and c3 all depend on h and
do not all vanish as h → 0. In fact, some increase to infinity.

After examining the theorems several times, it was concluded that the error
bound calculated in [PK20] is not of any use since it is itself unbounded. To
remedy this by finding a bounded error estimate is beyond the scope of this
dissertation.



Chapter 7

Existence of a solution for the
Sapir-Reiss problem

The article [Amm02] is studied in this chapter. The author investigated the
existence of solutions of the nonlinear Timoshenko model of Sapir and Reiss
([SR79]). There is, however, only brief mention of the article [SR79]. Instead,
Ammari refers to a few 1991 publications. A standard Timoshenko rod is
considered with small vibrations, where it is implicitly assumed that S0 = 0
(that is, the rod is not pre-stressed as in [SR79]). This diminishes the value
of the article significantly. A difficult, but exciting undertaking to study this
article was anticipated, but instead we were disappointed.

The fact that the definition of the angle ϕ is incorrect in [Amm02] brings into
question the author’s understanding of the application. Added to this is the
absence of explanation as to why natural boundary conditions are treated
as forced. Also, the author seems unaware that for a standard as well as an
adapted Timoshenko rod, there is a result on the existence of a complete,
orthonormal sequence of eigenvectors. This omitted fact is relevant to one of
the existence proofs.

The system of partial differential equations and boundary conditions for the
Sapir-Reiss model are discussed in Chapter 5 of the dissertation, where an
algorithm to implement FEM is derived. Although the weak variational
form of the problem is found, no existence theory is discussed. Existence is
assumed and the proof postponed to this chapter.

117
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7.1 Local existence result and associated

linear problems

Existence results for Problem SLT-SRW (formulated in Section 5.2) are de-
rived in this chapter. The approach is based on the article [Amm02], where
the problem is somewhat simplified. It is assumed that S0 = 0 and f = 0.
Instead of (5.2.3) and (5.2.4), it is assumed in [Amm02] that

σ(u, v) = bT (u, v) +
1

2γ
∥Du1∥2(Du1, Dv1).

Problem SLT-SRW Given u0 ∈ V and ud ∈ W , find u ∈ C2((0, τ);W)
such that for t > 0, u(t) ∈ V , u′(t) ∈ V and

cT (u
′′(t), v) + a(u′(t), v) + σ(u(t), v) = 0 for each v ∈ V , (7.1.1)

lim ∥(u(t)− u0)∥V → 0,

lim ∥(u′(t)− ud)∥W → 0.

The strategy in [Amm02] is to prove a local existence result. That is, there
exists some τ > 0 and a function u such that Equation (7.1.1) is satisfied.
Then it must be proved that the solution can be extended. However, to prove
the local result, an associated linear problem is solved first.

For greater clarity, two linear problems are considered, Problems 7.1 and 7.2.
The local nonlinear problem is then Problem 7.3. It is clearly not necessary
to duplicate the complete formulation of the different problems.

Notation J2: C
1([0, t];V) → C1([0, t];R)

J2(t, g(t)) =

∫ 1

0

[Dxg(t)]
2.

Instead of Equation (7.1.1), consider

cT (u
′′(t), v) + a(u′(t), v) + bT (u(t), v) + J2(t, u1(t))(Du1(t), Dv1) = 0 (7.1.2)

for each v ∈ V .

Problem 7.1 For any τ > 0 and any given f ∈ C1[0, τ ], consider, for each
t ∈ [0, τ),

c(u′′(t), v) + a(u′(t), v) + bT (u(t), v) + f(t)(Du1(t), Dv1) = 0 (7.1.3)
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for each v ∈ V .

Problem 7.2 For any τ > 0 and any g ∈ C1([0, τ ]; T1(0, 1)), consider, for
each t ∈ [0, τ),

c(u′′(t), v) + a(u′(t), v) + bT (u(t), v) + J2(t, g(t))(Du1(t), Dv1) = 0 (7.1.4)

for each v ∈ V .

Problem 7.3 There exists some τ > 0 and a function u that solves Equation
(7.1.2) on [0, τ) and satisfies the initial conditions.

To obtain the local existence result the following strategy is followed. First
it is proved that Problem 7.1 has a solution. Then, the function f(t) =
J2(t, g(t)) is used to prove that Problem 7.2 has a unique solution. This
result is then used to prove existence of a solution for Problem 7.3 using
fixed point iteration.

Assume the following result for the time being.

Proposition 7.1.1 (Theorem 2.1).
If u0 ∈ Eb and ud ∈ V, then there exists a unique solution

u ∈ C([0, τ);V) ∩ C1((0, τ);V) ∩ C2((0, τ);W)

for Problem 7.1 with u(0) = u0 and u′(0) = ud.

Corollary. If u0 ∈ Eb and ud ∈ V, then there exists a unique solution

u ∈ C([0, τ);V) ∩ C1((0, τ);V ) ∩ C2((0, τ);W )

for Problem 7.2 with u(0) = u0 and u′(0) = ud.

Define the mapping A: u1 = Ag where u is the solution in Proposition 7.1.1.

Suppose that B is a subset of C1
(
[0, τ ]; T1(0, 1)

)
such that A(B) ⊂ B and

A is a contraction on B. This would imply that a fixed point exists and
hence a solution of Problem 7.3.

7.2 The associated linear problems

In this section, the proof of Proposition 7.1.1 (from the previous section) is
considered.
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In [Amm02], a classical boundary initial value problem is formulated in Sec-
tion 2, and in Theorem 2.1 it is claimed that a solution exists. The only
way to interpret this is that the partial derivatives in the formulation of the
problem are weak partial derivatives. Alternatively the author should have
stated that “a weak derivative exists”.

The author of [Amm02] writes the problem in variational form and proves
the existence of a weak solution. The approach is standard and can be
interpreted as a special case of a more general result in [Eva98, Section 7.2].
The steps in the proofs are as follows.

1. The existence of a basis (ek) for V is assumed and functions ξk consid-
ered such that un =

∑n
k=1 ξkek is a classical solution of the variational

problem.

2. It is proved that the sequences (u′
n) and (u′′

n) are bounded in C([0, τ ];V)
and C([0, τ ];W). Hence, they converge weak* respectively and satisfy
the weak variational form in the sense of distributions.

3. The existence part of Proposition 7.1.1 is proved.

4. Gronwall’s inequality is used to prove uniqueness.

The “proof” outlined above leaves much to be desired. In Step 2 it should be
made clear that the weak* limits are not even functions in L2([0, τ ];L2(0, 1)2)
and in what sense the limit of the sequence (un) “satisfies the problem”. In
Step 3, Ammari claims without any reason that lim

n→∞
un ∈ C([0, τ ];H2(0, 1))

and “... following [Str66] ...”, claim to complete the proof in one line. This
part of the proof cannot be completed in one sentence as explained below.

To present a proper proof and appreciate the shortcomings in [Amm02], one
may consider [Eva98, Section 7.2]. Evans proves existence for the multi-
dimensional wave equation with time-dependent coefficients. First the ex-
istence of a weak solution is proved and this part is what is relevant here.
Evans defines a bilinear form B[u, v, t] and then the weak problem (without
calling it a “weak problem”) in the definition of the weak solution of the
original problem. Problem 7.1 is similar to the problem in [Eva98] and is
in some sense a special case. The proof in the book may be used with the
relevant minor changes. It is presented on eleven pages and consists of five
theorems and their proofs.
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7.3 Local existence

The local existence result, Theorem 2.2 in [Amm02, Section 2], is under
consideration. In short, the solvability of Problem 7.3 is established.

Theorem 7.3.1 (Theorem 2.2 Part 1).
If u0 ∈ Eb and ud ∈ V, then there exists some τ > 0 and a unique function

u ∈ C([0, τ);V) ∩ C1((0, τ);V) ∩ C2((0, τ);W)

that solves Equation (7.1.2)

cT (u
′′(t), v) + a(u′(t), v) + bT (u(t), v) + J2(t, u1(t))(Du1(t), Dv1) = 0

on [0, τ) with u(0) = u0 and u′(0) = ud.

The proof in [Amm02] is not complete. First, it is necessary to consider
two ways to construct a contraction mapping. The viability of both depend
on the corollary in the previous section. One possibility is the mapping A
defined after the corollary. In [Amm02], three mappings α1, α2 and S are
defined as follows. For any functions f and g, let α2f be the pair ⟨f, f⟩ and
α2 ⟨g, g⟩ = g. The mapping S is defined by letting S(⟨g, g⟩) be the solution of

Problem 7.2. Finally, S̃ = α1 ◦S ◦α2. According to [Amm02], α1 and α2 are
contractions and “It is easy to see for τ small enough that S is a contraction
... (see for instance [1]).” The problem here is that not only is the existence of
a solution of Problem 7.2 required, but also an estimate relating the solution
to g.

Ammari ([Amm02]) concludes that S̃ is a contraction which has a unique
fixed point and thus the problem has a unique solution. There is a second
part to Theorem 2.2.

Theorem 7.3.2 (Theorem 2.2 Part 2).
Furthermore, at least one of these two affirmations is true:

(a) τ = +∞,

(b) lim
t→τ−

(∥u(t)∥H2 + ∥u′(t)∥V) = +∞.

This statement is not proved at all. The proof of Theorem 7.3.1 is followed
by “The proof of the local existence result is now complete.”
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If Theorem 7.3.2 is true, then since τ is assumed to be “small enough that S
is a contraction,” it follows that the only possibility is for part (b) to hold.
This must be a serious error, as [Amm02] uses the fact that these norms
are uniformly bounded on a maximal interval of existence in the proof of
the global existence theorem (Theorem 3.1). The proof described above is
clearly not complete.

7.4 Global existence

In Theorem 3.1 of [Amm02, Section 3] it is established that the local so-
lution can be extended to [0,∞). This is subject to u0 and ud satisfying
“Condition (3.1)” (see the remark).

Theorem 7.4.1. If u0 ∈ Eb, ud ∈ V and u0 and ud satisfy “Condition (3.1)”,
then there exists a unique function

u ∈ C([0,∞);V) ∩ C1((0,∞);V) ∩ C2((0,∞);W)

that solves Equation (7.1.2)

cT (u
′′(t), v) + a(u′(t), v) + bT (u(t), v) + J2(t, u1(t))(Du1(t), Dv1) = 0

on [0,∞) with u(0) = u0 and u′(0) = ud.

Remark. In essence, “Condition (3.1)” is a bound involving u0 and ud and
their derivatives.

Recall from Section 7.3 that [Amm02, Theorem 2] cannot be used to prove
[Amm02, Theorem 3.1]. This, however, is not the only shortcoming. It ap-
pears that the following result is true:
Suppose [0, tm) is the maximal interval of existence of the solution and
tm < ∞. If ∥u(t)∥2H+∥u(t)∥V is bounded on [0, tm), then it is a contradiction
and the solution can be extended.

This result is used but not stated and, of course, not cited. As in Section 5.1,
the theory of ordinary differential equations is considered to motivate why
such a general result is probably not true.

LetH be an arbitrary Hilbert space, b a bilinear form onH and f an arbitrary
function on H. Consider for each t > 0, u(t) ∈ H and

(u′′(t), v) + b(u(t), v) + (f(u(t)), v) = 0 for each v ∈ H. (7.4.1)
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Rewritten in a familiar form,

u′′ + Au+ f(u) = 0, (7.4.2)

where the linear operator A is defined in such a way that the two problems
are equivalent. Suppose a solution is defined on a bounded interval [0, T ) and
the possibility of an extension is considered. If H is finite dimensional and
the range of the pair ⟨u, u′⟩ is contained in a bounded subset D of H × H,
then limt→T− u(t) and limt→T− u′(t) exist and belong to the compact set D.
(The proof is not trivial.) The initial value problem (7.4.2) with

u(T ) = lim
t→T−

u(t), u′(T ) = lim
t→T−

u′(t)

can be solved locally to extend the solution.

Model SLT-SR is of the form (7.4.1) or (7.4.2), but the spaces V and W
are not finite dimensional and hence a closed and bounded set need not be
compact. It is concluded that A and f must possess special properties for an
extension of a solution to exist. The multi-dimensional wave equation with
a nonlinearity is also of the form 7.4.2 (see for example [Eva98]). However,
the function f for the examples in the textbook are of a different type to the
function in this chapter.
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Chapter 8

Conclusion

8.1 Overview

Chapter 1 is an introductory chapter in which the models used through-
out the dissertation are introduced and discussed. The original Timoshenko
model for a beam is given and written in dimensionless form, forming the
linear Model T. Three sets of boundary conditions used throughout the dis-
sertation – pinned-pinned, cantilever and clamped-clamped – are given and
the parameters of the model are discussed. The use of the term “rod” as
a collective name for beams, cables, wires, etc. is then stated. Next, the
possibility of an axial force is considered in the Timoshenko model and the
dimensionless equations of motion are given as Model T-AF. Boundary con-
ditions for the additional displacement variable are then stated. In the case
of the pinned-pinned or clamped-clamped rod, the rod could be pre-stressed.
This is considered in the adapted Timoshenko model, Model AT. Damping
is discussed for completion, but is not the main concern in the dissertation.
An alternative formulation of the Timoshenko model with axial force is con-
sidered using nonlinear theory. This results in the semi-linear Model SLT.
The authors of [SR79] make additional assumptions to form the semi-linear
Model SLT-SR. In this dissertation Model SLT-SR is considered as one of
the special cases in [VDL21].

In Chapter 2, general existence and uniqueness of a solution for a linear model
are presented. The standard Timoshenko model problem (Problem T) is used
to illustrate the use of the theory. This is done by finding the variational form
of the problem, which is shown to be equivalent to the original problem under
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certain conditions. Sobolev’s embedding theorem for a function defined on
an interval is also discussed. The theorem is required for application of the
theory and is not a special case of the theory for a function defined on Rn.
The weak variational form of Problem T (Problem TW) is then found in
order for the function spaces in consideration to be complete – a requirement
of the theory. The existence and uniqueness theory from [VV02] and [VS19]
is then presented for a general Problem GVar. Modal analysis of Problem
GVar is also presented and a formal series solution found, which is justified
using the energy method given in [CVV18]. The theory of existence of a
complete sequence of eigenvectors presented by [CVV18], is also discussed.
The general theory is then applied to Problem TW, which has the same form
as Problem GVar. Finally, the regularity of the solution guaranteed by the
theory is investigated.

The general existence theory and modal analysis discussed in Chapter 2 is
applied to the adapted Timoshenko problem (Problem AT) in Chapter 3. In
order for this to be done, the weak variational form of Problem AT (Prob-
lem ATW) is found. The application of the general theory to Problem ATW
is very similar to that of Problem AW. The necessary adaptations are made
and it is found that if the axial force S satisfies certain conditions, the general
existence theory holds. The existence of a complete sequence of eigenfunc-
tions for the weak variational form of the eigenvalue problem associated with
Problem AT (Problem AT EigW) is then shown. This sequence of eigen-
functions has corresponding positive eigenvalues which form an unbounded
increasing sequence. Using Sobolev’s embedding theorem it is found that
the complete sequence of eigenfunctions for Problem AT EigW also satisfies
the eigenvalue problem associated with Problem AT. Assuming that the ax-
ial force S is constant, it is found that a critical value for S exists which
results in the first eigenvalue in the increasing sequence of eigenvalues to be
zero. Following [VV06], properties of the sequence of eigenfunctions are then
investigated for any combination of pinned, clamped and free boundary con-
ditions, where S is greater than the critical value. The eigenfunctions for a
pinned-pinned rod are then calculated and used to generate a series solution.
In the case where S is less than or equal to the critical value, a formal series
solution can be found, but the procedure cannot necessarily be justified.

In Chapter 4, the solution of Model AT with pinned-pinned boundary con-
ditions is approximated using the finite element method (FEM) and central
differences. The approximation is then compared to the series solution found
in Chapter 3. In order to implement FEM, the Galerkin approximation is
defined using piecewise linear basis functions. However, although the stan-
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dard Galerkin approximation converges in theory, in practice locking occurs.
To avoid this, the mixed finite element method is used in the calculations.
The Galerkin approximation is written in matrix notation as a system of or-
dinary differential equations after which central differences are used to derive
an algorithm to approximate the solution. Convergence of the standard FEM
for the dynamic problem is studied using [BV13] and [SF73]. References are
given for the convergence of the mixed FEM. The first five eigenvalues in the
sequence of eigenvalues are found using the theory of Chapter 3 and used
to approximate the critical value for S. This is done in order to investigate
the behaviour of the model when S nears its critical value. The mixed FEM
approximation for the dynamic problem is also found and compared to the
series solution to illustrate accuracy.

The semi-linear model from [SR79] (Problem SLT-SR) with pinned-pinned
boundary conditions is investigated in Chapter 5. The variational and weak
variational forms are derived, but existence of a solution is not discussed as
it is dealt with in Chapter 7. Once the Galerkin approximation is found in
matrix form, central differences are used to derive an algorithm to approx-
imate the resulting system of ordinary differential equations. These results
are compared to the series solution of the linear Model AT with constant
axial load (that is, Model ATC) found in Chapter 4. The results where S
approaches the critical value such that the first eigenvalue is zero are in-
vestigated. This is where possible buckling occurs. It is confirmed that
Model ATC does not describe the physical situation in this case, but that
Model SLT-SR may be accurate. It is also found that the critical value for
Model ATC is not the critical value for Model SLT-SR. An interval where
the critical value of Model SLT-SR lies is found, but further investigation is
left for future research.

In Chapter 6 the convergence of FEM applied to a model similar to Prob-
lem SLT-SR is investigated using [PK20] as a guide. The system is reduced
to one of first-order equations before FEM is applied to it. It is found that
convergence for FEM applied to this model implies convergence for FEM
applied to Problem SLT-SR. An algorithm is derived using piecewise linear
basis functions, a Crank-Nicholson type of symmetric difference scheme and
a Picard type iteration process. The so-called truncation error is then found
and used to calculate error estimates which are added to find a total error
estimate. The error estimate found, however, does not imply convergence as
[PK20] claims.

In Chapter 7, the existence of a solution for Problem SLT-SR is discussed.
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It is presented by [Amm02], but the presentation is shown to be incomplete
and contain crucial errors. One of these errors involves the use of the local
existence theorem to prove the global existence theorem. The proof in the
article follows a pattern used by other researchers. The errors and exclusions
are identified and some are rectified.

8.2 Achievements

The aim of the dissertation was to conduct a literature study on modelling,
numerical computation and mathematical analysis of a linear and nonlinear
Timoshenko model for the vibration of a rod with axial force. This included
existence theory and spectral theory.

After introducing and discussing the models used throughout the disserta-
tion, the general linear existence theory was stated and applied to a linear
rod model with axial force (the adapted Timoshenko rod model). In order
for this to be done, the model considered was written in weak variational
form and the required properties shown to hold. Sobolev’s embedding theo-
rem – which was also used to apply the theory – was proved for a function
defined on an interval. It was discovered that, assuming the axial force S is
constant, a critical value for S exists such that if S is less than its critical
value, then the required properties of the theory do not hold. The spectral
theory for a linear rod model was extended to include an axial force for any
combination of pinned, clamped and free boundary conditions, where S is
greater than its critical value. This was done while improving on the rigour
of the exposition in Van Rensburg and Van der Merwe (2006). The eigen-
functions for a pinned-pinned rod were then calculated and used to generate
a series solution. In the case where S was less than or equal to this critical
value, a formal series solution could be found, but the procedure could not
necessarily be justified.

The finite element method was then applied to the adapted Timoshenko rod
model with pinned-pinned boundary conditions and the convergence investi-
gated. The first five eigenvalues in the increasing sequence of eigenvalues were
calculated using the spectral theory and a critical value for S was approx-
imated. For illustrative purposes, the series solution was found using the
first mode as the initial condition. The approximations found using FEM
were then compared to the results of the series solution. An investigation of
the solution when S neared its critical value led to the study of a nonlinear
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model.

The nonlinear model studied was the semi-linear Timoshenko rod model of
Sapir and Reiss (1979) with pinned-pinned boundary conditions. The prob-
lem was written in weak variational form, but existence of a solution post-
poned. FEM was applied to the semi-linear model and an original algorithm
derived. The results were compared to those of the linear model for small
initial displacement where the axial force neared its critical value. Approxi-
mations where the axial force surpassed the critical value of the linear model
were also investigated and an interval for a critical value of the nonlinear
model (less than the critical value of the linear model) was found. This dis-
covery is contrary to the popular belief that the critical values for linear and
nonlinear models are the same.

The convergence of the FEM algorithm derived for the semi-linear problem
was not studied. An alternative algorithm of Peradze and Kalichava (2020)
was considered for convergence instead. This algorithm was more involved
than the one derived in the dissertation as it approximated five functions
instead of two. Three separate estimates were found for the algorithm and
then added to form a “total error estimate”. The structure and readability
of the article was improved upon and inconsistencies identified.

The existence theory for the Sapir-Reiss semi-linear Timoshenko rod model
presented by Ammari (2002) was shown to be incomplete and contain crucial
errors. The proof in the article was shown to follow a pattern used by other
researchers. The errors and exclusions were identified and some were rectified.

In the articles studied, improvements were made regarding the presentation
of the work, connections established and the integrated result written up. In
some cases it was necessary to correct and complete work.

8.3 Future research

The investigations for the Sapir-Reiss semi-linear rod show that the criti-
cal values for the linear and nonlinear models differ, but are close. This is
contrary to the popular belief that they are equal. More reading and inves-
tigations are required in this regard.

The convergence of the finite element method for the Sapir-Reiss semi-linear
rod investigated by Peradze and Kalichava (2020) considers a rather involved
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algorithm. Convergence for the algorithm derived in this dissertation, which
is simpler, should be investigated.

The existence theory for the semi-linear Timoshenko model of Sapir and Reiss
presented in this dissertation is incomplete. Much more research is required.

Finally, the spectral theory of the adapted Timoshenko rod is to be consoli-
dated and written up as a journal article.



Appendix A

Sobolev Space Theory

Unless otherwise stated, the proofs of the results given in this Appendix may
be found either in [Eva98] or [OR76]. Both textbooks prove these results for
a multi-dimensional space, where the proof for a one-dimensional space is a
special case. The exceptional case is where a better result can be obtained
in a one-dimensional space than a multi-dimensional space.

Definition (Support of a function).
The closure of the set {x ∈ (0, 1) | g(x) ̸= 0} is referred to as the support of
the function g on (0, 1).

Let C0(0, 1) denote the functions in C(0, 1) with support contained in (0, 1).
That is, the functions with compact support. Then

C∞
0 (0, 1) = C∞(0, 1) ∩ C0(0, 1).

Definition (Weak derivatives).
Let m be any positive integer. If u ∈ L2(0, 1) and there exists a v ∈ L2(0, 1)
such that

(u, ϕ(m)) = (−1)m(v, ϕ) for each ϕ ∈ C∞
0 (0, 1)

then v is called the m-th order weak derivative of u, denoted Dmu.

Note that the m-th order weak derivative Dmu is uniquely determined.

Definition. The set of functions with weak derivatives in L2(0, 1) up to
order m is denoted by Hm(0, 1).
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Proposition A.0.1. Cm[0, 1] ⊂ Hm(0, 1) and if u ∈ Cm[0, 1], then

Dmu = u(m).

Proposition A.0.2. Hm(0, 1) is a vector space.

Proposition A.0.3. The following statements are true.

(a) If u ∈ Hm(0, 1) and i and j are positive integers such that i+ j ≤ m ,
then Di(Dju) = Di+ju.

(b) If Dku ∈ Hm(0, 1), then u ∈ Hk+m(0, 1).

Definition. The bilinear form (·, ·)m is defined by

(u, v)m = (u, v) + (Du,Dv) + · · ·+ (Dmu,Dmv).

Proposition A.0.4. The bilinear form (·, ·)m is an inner product for Hm(0, 1).

Definition. Denote the norm for the vector space Hm(0, 1) by

∥u∥m =
√

(u, u)m.

Definition. The Sobolev space Hm(0, 1) is the vector space Hm(0, 1) with
inner product (·, ·)m.

Proposition A.0.5. The space Hm(0, 1) is complete.

Proposition A.0.6. If u ∈ Hm(0, 1), then there exists a sequence (un) con-
tained in Cm[0, 1] such that

∥u− un∥m → 0 as n → ∞.

Proposition A.0.7. Hm(0, 1) is equal to the closure of Cm[0, 1] with respect
to the ∥ · ∥m norm.

Proof. See [OR76, Theorem 4.1]

The following results are also useful.

Proposition A.0.8 (Poincaré type inequalities). If u ∈ C1[a, b] and u has
a zero in [0, 1], then

(a) ∥u∥sup ≤
√
b− a∥u′∥,
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(b) ∥u∥ ≤ (b− a)∥u′∥.

Proof. By the Fundamental Theorem of Calculus and the Cauchy-Schwartz
inequality,

|u(x)| ≤
∫ b

a

|u′| ≤
√
b− a∥u′∥.

Therefore the Poincaré type inequality (a) follows. The inequality in (b)
follows from (a) and the fact that ∥u∥ ≤ ∥u∥sup.

Proposition A.0.9. Suppose w ∈ H1(0, 1) has a zero in [0, 1]. Then

∥w∥ ≤ ∥Dw∥.

Proof. By Proposition A.0.7, there exists a sequence (wn) contained in C1[0, 1]
such that lim

n→∞
∥wn∥1 = ∥w∥1. That is, such that

lim
n→∞

∥wn∥ = ∥w∥ and lim
n→∞

∥w′
n∥ = ∥Dw∥.

If Dw = 0, then w = 0 since it is constant and has a zero in [0, 1] and the
result holds. Suppose Dw ̸= 0. Then, by Proposition A.0.8,

∥w∥
∥Dw∥

= lim
n→∞

∥wn∥
∥w′

n∥
≤ 1.
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Appendix B

Finite Element Method

Suppose the interval [a, b] is divided intoN elements with length h = b−a
N

. For
each node xi = a + ih, i = 0, . . . , N , the C0 piecewise linear basis functions
are defined as

δ0(x) =

{
x1−x
h

if x ∈ (x0, x1)

0 if x /∈ (x0, x1)
; (B.0.1)

δi(x) =


x−xi−1

h
if x ∈ (xi−1, xi)

xi+1−x
h

if x ∈ (xi, xi+1)

0 if x /∈ (xi−1, xi+1)

, i = 1, 2, . . . N − 1; (B.0.2)

δN(x) =

{
x−xN−1

h
if x ∈ (xN−1, xN)

0 if x /∈ (xN−1, xN)
. (B.0.3)

The following matrices are defined.

M = (δj, δi)0≤i,j≤N =
h

6



2 1
1 4 1

· 0
·

0 ·
1 4 1

1 2


, (B.0.4)
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K = (δ′j, δ
′
i)0≤i,j≤N =

1

h



1 −1
−1 2 −1

· 0
·

0 ·
−1 2 −1

−1 1


(B.0.5)

and

L = (δj, δ
′
i)0≤i,j≤N =

1

2



−1 −1
1 0 −1

· 0
·

0 ·
1 0 −1

1 1


. (B.0.6)

Depending on the admissible basis functions, corresponding rows and/or
columns are deleted.
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