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Abstract

In this thesis, we make use of numerical schemes in order to solve Fisher’s and FitzHugh-Nagumo

equations with specified initial conditions. The thesis is made up of six chapters.

Chapter 1 gives some literatures on partial differential equations and chapter 2 provides some

concepts on finite difference methods, nonstandard finite difference methods and their proper-

ties, reaction-diffusion equations and singularly perturbed equations.

In chapter 3, we obtain the numerical solution of Fisher’s equation when the coefficient of diffu-

sion term is much smaller than the coefficient of reaction (Li et al., 1998). Li et al. (1998) used

the Moving Mesh Partial Differential Equation (MMPDE) method to solve a scaled Fisher’s

equation with coefficient of reaction being 104 and coefficient of diffusion equal to one and the

initial condition consisted of an exponential function. The problem considered is quite challeng-

ing and the results obtained by Li et al. (1998) are not accurate due to the fact that MMPDE is

based on familiar arc-length or curvature monitor function. Qiu and Sloan (1998) constructed

a suitable monitor function called modified monitor function and used it with the Moving Mesh

Differential Algebraic Equation (MMDAE) method in order to solve the same problem as Li

et al. (1998) and better result were obtained. However, each problem has its own choice of

monitor function which makes the choice of the monitor function an open question. We use the

Forward in Time Central Space (FTCS) scheme and the Nonstandard Finite Difference (NSFD)

to solve the scaled Fisher’s equation and we find that the temporal step size must be very small

in order to obtain accurate results and comparable to Qiu and Sloan (1998). This causes the

computational time to be long if the domain is large. We use two techniques to modify these two
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schemes either by introducing artificial viscosity or using the approach of Ruxun et al. (1999).

These techniques are efficient and give accurate results with a larger temporal step size. We

prove that these four methods are consistent with the partial differential equation and we also

obtain the region of stability.

Chapter 4 is an improvement and extension of the work from Namjoo and Zibaei (2018) whereby

the standard FitzHugh-Nagumo equation with specified initial and boundary conditions is

solved. Namjoo and Zibaei (2018) constructed two versions of nonstandard finite difference

(NSFD1, NSFD2) and also derived two schemes (one explicit and the other implicit) constructed

from the exact solution. However, they presented results using the nonstandard finite difference

schemes only. We showed that one of the nonstandard finite difference schemes (NSFD1) has

convergence issues and we obtain an improvement for NSFD1 which we call NSFD3. We per-

form a stability analysis of the schemes constructed from the exact solution and found that the

explicit scheme is not stable for this problem. We study some properties of the five methods

(NSFD1, NSFD2, NSFD3, two schemes obtained using the exact solution) such as stability,

positivity and boundedness. The performance of the five methods is compared by computing

L1, L∞ errors and the rate of convergence for two values of the threshold of Affect effect, γ

namely; 0.001 and 0.5 for small and large spatial domains at time, T = 1.0. Tests on rate of

convergence are important here as we are dealing with nonlinear partial differential equations

and therefore the Lax-Equivalence theorem cannot be used.

In chapter 5, we consider FitzHugh-Nagumo equation with the parameter β referred to as in-

trinsic growth rate. We chose a numerical experiment which is quite challenging for simulation

due to shock-like profiles. We construct four versions of nonstandard finite difference schemes

and compared the performance by computing L1, L∞ errors, rate of convergence with respect

to time and CPU time at given time, T = 0.5 using three values of the intrinsic growth rate, β

namely; β = 0.5, 1.0, 2.0.

Chapter 6 highlights the salient features of this work.
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Chapter 1

Introduction

The study of nonlinear partial differential equations of phenomena (dispersion, dissipation, dif-

fusion, convection) arising in inhomogeneous system is of huge concern from mathematical,

physical and biological points of view. The theoretical design based on nonlinear partial dif-

ferential equations with varying or non-varying coefficients can precisely portray, for instance,

the wave dynamics of pulses circulating in inhomogeneous systems (Triki and Wazwaz, 2013).

Remarkably, nonlinear partial differential equations with variable coefficients describe well in

diverse physical or material circumstances than their constant coefficients counterparts. The

importance is to find closed form solutions for nonlinear partial differential equations of physi-

cal or practical suitability. This could be a difficult task and sometimes impossible due to the

fact that in many practical problems, the resulting nonlinear partial differential equations of

interest are non-integrable. The integrability part of nonlinear partial differential equations is

an important concept due to its link with the understanding of the physical and dynamical phe-

nomena in nonlinear systems (Ma, 2005). For instance, the Kuramoto-Sivashinsky equation,

the Ginzburg–Landau equation, the Korteweg-de Vries-Burgers equation, the Fisher’s equa-

tion, the Burgers-Huxley equation and the FitzHugh-Nagumo equation, just to mention few,

are practically well-known equations of this sort (Öziş and Köroğlu, 2009). An exception takes

place when a non-integrable nonlinear partial differential equations becomes integrable for some

given values of the parameters involved into the equation. In this instance, the exact solutions

can be written explicitly. There are various results on local and global solutions of nonlinear

partial differential equations that present existence, uniqueness, smoothness and stability of

solutions. However none of these results give the standard formulae that solve these nonlin-

ear partial differential equations. Therefore, looking for some exact meaningful solutions is a

hot topic because of the wide applications of nonlinear partial differential equations in physics,
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chemistry, fluid dynamics, plasma, optical fibers, flame propagation, logistic growth, neuro-

physiology, browning motion process, autocatalytic, nuclear reactor theory and biology as well

as other areas of engineering (Johnson et al., 2012, Wang et al., 2014). That is why it is nec-

essary to consider the numerical approximation. Meanwhile, many numerical techniques have

been developed for solving PDEs. For instance, we can mention the finite difference methods

(Strikwerda, 2004), finite element methods (Zienkiewicz et al., 1977), finite volume methods

(LeVeque et al., 2002). We can further mention, spectral methods (Chatelin, 1983), meshfree

methods (Liu and Gu, 2005). We can also include domain decomposition methods (Toselli and

Widlund, 2006), multigrid methods (Rüde, 1993) and many more which are commonly used.

Throughout this thesis, some standard finite difference and nonstandard finite difference meth-

ods are used to discretize some reaction diffusion equations especially Fisher’s equations and

FitzHugh-Nagumo equations.

1.1 Why study of Fisher’s and FitzHugh-Nagumo equations?

As stated above, the Fisher’s equation is one example of partial differential equation model

and used to describe a lot of phenomena. The equation incorporates diffusion term and logistic

nonlinearity. It was first used by Fisher’s to describe the propagation of a mutant gene. The

propagation is in form of wave. The wave appears as a result of a balance between weak

nonlinearity and dispersion. This wave is characterized by two properties (Hariharan et al.,

2009)

(1) A localized wave propagates without change of its properties like shape, velocity, etc.

(2) Localized wave are stable against mutual collisions and retain their identities.

It is worthy to notice that the interaction between nonlinear convection with genuine nonlinear

dispersion generates waves with compact support called ’campactons’ with width independent

of the amplitude (contrary to wave that narrows as the amplitude increases). However, when

diffusion takes part instead of dispersion, energy release by nonlinearity balances energy con-

sumption by diffusion (Hariharan et al., 2009). More details on the background and how it was

solved will be our study in chapter 3.

The pioneering work of Hodgkin and Huxley (1952) in the early 1950’s have given the base

of good mathematical models for the conduction of nerve impulses along an axon (Keener and

Sneyd, 1998). These models take the form of a system of ordinary differential equations, coupled
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to a diffusion equation and are hard to analyse. A decade later, FitzHugh (1961) and Nagumo

et al. (1962) tackle the same problem (propagation of the nerve impulses along an axon) and

their model was simpler and describe the qualitative behaviour. There are two basic problems

in the modelling of propagation of the nerve impulses, namely; the threshold problem and the

travelling wave problem. The first problem is to prove that small solutions decay to zero as

time goes to infinity. This agrees with the biological fact that a minimum stimulus is needed

to ’trigger’ a nerve; smaller stimuli lead to no signal transmitted down the axion. The second

problem falls into two parts. The signals transported by the axon have a characteristic shape

and speed. This leads one to investigate whether there are solutions (Rauch and Smoller, 1978).

More investigation is done in chapters 4 and 5.

These two equations are encountered in chemical kinetics and population dynamics, which em-

body problems such as nonlinear evolution of a population, neutron population in a nuclear

reaction, in logistic population growth models, flame propagation, neurophysiology, autocat-

alytic chemical reactions, and branching Brownian motion processes (Hariharan et al., 2009).

Reasons being, this drew attention to many researchers.

1.2 Contributions of the thesis to the scientific literature

As we stated earlier, our study is based on two major equations, namely; Fisher’s equation and

FitzHugh-Nagumo equation.

In chapter 3 of our study, we obtain the numerical solution of Fisher’s equation when the

coefficient of diffusion term is much smaller than the coefficient of reaction (Li et al., 1998). This

problem was solved by Li et al. (1998) based on a method called Moving Mesh Partial Differential

Equation (MMPDE) with coefficient of reaction being 104 and coefficient of diffusion equal to one

and the initial condition consisted of an exponential function. The results obtained by Li et al.

(1998) are not efficient because MMPDE is based on familiar arc-length or curvature monitor

function. Further investigation was done by Qiu and Sloan (1998) where they constructed a

suitable monitor function called modified monitor function. They utilised it with the Moving

Mesh Differential Algebraic Equation (MMDAE) method in order to solve the same problem

as Li et al. (1998). They obtained better results. However, each problem has its own choice of

monitor function. Reason being, the choice of the monitor function is an open question. In our

study, we constructed four new numerical methods based on Forward in Time Central Space

(FTCS) and the Nonstandard Finite Difference (NSFD) in order to solve the scaled Fisher’s
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equation. We also use two techniques namely; by introducing artificial viscosity or using the

approach of Ruxun et al. (1999). We find that the temporal step size must be very small

in order to obtain accurate results and comparable to Qiu and Sloan (1998). This causes the

computational time to be long if the domain is large. Our four proposed techniques give efficient

and accurate results with a larger temporal step size. We prove that these four methods are

consistent with the original partial differential equation.

In chapter 4 of our study, we give an improvement and extension of the work from Namjoo

and Zibaei (2018) whereby the standard FitzHugh-Nagumo equation with specified initial and

boundary conditions is solved. In their study, Namjoo and Zibaei (2018) constructed two

versions of nonstandard finite difference namely; NSFD1, NSFD2. They also constructed two

schemes (one explicit and the other implicit) from the exact solution. However, they gave results

using the nonstandard finite difference schemes only. In our study, we show that NSFD1 has

convergence issues and we give an improvement for NSFD1 called NSFD3. We carry out a

stability analysis of the schemes constructed from the exact solution and found that the explicit

scheme has stability issue. We investigate the stability, positivity and boundedness the fives

methods namely; NSFD1, NSFD2, NSFD3, two schemes obtained using the exact solution. We

further study the performance of the five methods by computing L1, L∞ errors and the rate of

convergence for two values of the threshold of Affect effect, γ namely; 0.001 and 0.5 for small

and large spatial domains at time, T = 1.0. The study of rate of convergence is justificatory

due to the fact that we are dealing with nonlinear partial differential equations and therefore

the Lax-Equivalence theorem cannot be used.

In chapter 5, we consider more general consideration of FitzHugh-Nagumo equation with the

parameter β referred to as intrinsic growth rate. We chose a numerical experiment which is

quite challenging for simulation due to shock-like profiles. In this part of our study, we construct

four versions of nonstandard finite difference schemes. We investigate the performance of the

four constructed method by computing L1, L∞ errors, rate of convergence with respect to time

and CPU time at given time, T = 0.5. We use three different values of intrinsic growth rate, β

namely; β = 0.5, 1.0, 2.0.

Chapter 6 is a conclusion of the thesis with future research directions.
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Chapter 2

Mathematical preliminaries

In this chapter, we give some concepts on standard finite difference, nonstandard finite differ-

ence, reaction diffusion equation and singularly perturbed equations.

2.1 Finite difference methods

Some of the main references used for this chapter are from Strikwerda (2004), Ames (2014) and

Frey (2019). Finite Difference Method (FDM) is one of the methods used to solve differential

equations that are difficult or impossible to solve analytically. The concept of FDM is focused

on approximating differentials. The most commonly used are central finite difference schemes,

forward finite difference schemes, backward finite difference schemes.

2.1.1 General formulation

The formulation of finite difference methods is almost the same as the numerical schemes used

to solve ordinary differential equations. It entails approximating the differential operator by

substituting the derivatives in the differential equation using finite difference quotients. The

domain is divided in space and in time and approximations are evaluated in space or in time.

The error between the numerical solution and the exact solution is defined by the error that is

introduced by going from a differential operator to a difference operator. This type of error is

called discretization error or truncation error. For instance for 1D partial differential equation

on the interval (α, β), α < β, the points, xm = α + mh, tn = nk, m = 0, 1, ...N, n = 0, 1, ...,

are called grid points where h = β−α
N and k is time step size. The finite difference solution,

denoted by unm, is the approximation of the solution at the grid point (xm, tn) as shown in

Figure 2.1. For the sake of clarity and simplicity, we shall treat the one-dimensional case only.

5
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For any finite difference scheme, the major insight behind is in regard of the definition of a

smooth function u, at a point x ∈ R :

u′(x) = lim
h→0

u(x+ h)− u(x)

h
, (2.1)

and to the fact that h tends to 0 without vanishing and also h should be sufficiently small to

get a good approximation (the error computed in this approximation goes to zero when h tends

towards zero). For the adequately smooth function u in the neighbourhood of x, this error is

quantified by using a Taylor expansion.

xm−1 xm xm+1

tn

tn+1

k

h

unm

Figure 2.1: One dimensional finite difference discretization

Taylor series

Definition 2.1. A continuous function u is of class Cn if the first up to nth derivative of the

function u exist and are continuous.

Consider a continuous function u of class C2 in the neighbourhood of x. For any h > 0 and

sufficiently small, we have∣∣∣∣u(x+ h)− u(h)

h
− u′(x)

∣∣∣∣ ≤ C h, C = sup
y∈[x,x+h0]

|u′′(y)|
2

, (2.2)
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for h ≤ h0 (h0 > 0 given). This approximation is called forward difference. We can also define

the backward difference in the same way by taking the point x− h . More generally, we define

an approximation of order p of the derivative.

Definition 2.2 (Frey (2019)). The approximation of the derivative u′ at point x is of order

p (p > 0) if there exists a constant C > 0, independent of h, such that the error between the

derivative and its approximation is bounded by C hp which is O(hp).

Evidently, other approximations can be taken into consideration. In order to boost the accuracy

of the approximation, we make clear an approximation, called the central difference approxi-

mation, by taking the points x− h and x+ h into account.

For ∀ h ∈ (0, h0), we have∣∣∣∣u(x+ h)− u(x− h)

2h
− u′(x)

∣∣∣∣ ≤ C h2, C = sup
y∈[x−h0,x+h0]

|u(3)(y)|
6

, (2.3)

which defines the second order approximation of u′.

Lemma 2.1 (Frey (2019)). Suppose u is continuous function of class C4 on an interval [x −

h0, x+ h0], h0 > 0. Then, there exists a constant C > 0 such that for every ∀ h ∈ (0, h0) we

have ∣∣∣∣u(x+ h)− 2u(x) + u(x− h)

h2
− u′′(x)

∣∣∣∣ ≤ C h2, C = sup
y∈[x−h0,x+h0]

|u(4)(y)|
12

. (2.4)

The differential quotient u(x+h)−2u(x)+u(x−h)
h2

is a consistent second-order approximation of the

second derivative u′′ of u at point x.

Remark 2.1. The order estimate depends on the regularity of the function u. For instance if

a continuous u is of class C2 or C3, then the error is respectively of order one or h only.

Finite difference formulation for a one-dimensional problem

We consider a bounded domain Ω = (0, 1) ⊂ R and u : Ω → R solving the non-homogeneous

Dirichlet problem: 
−u′′(x) + c(x)u(x) = f(x), x ∈ (0, 1),

u(0) = α, u(1) = β,

(2.5)

where c and f are two given functions, defined on Ω, c ≥ 0.

7
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Variational theory and approximation

We know that if c ∈ L∞(Ω) and f ∈ L2(Ω), then the solution u of the problem (2.5) exists.

Moreover, if c = 0, the explicit formularization of u is

u(x) =

∫
Ω
K(x, y)f(y)dy + α+ x(β − α), K(x, y) =


x(1− y) if y ≥ x,

y(1− x) if y < x.

(2.6)

Still, when c 6= 0, then there is no explicit expression for the solution u. Hence the necessity

for numerical approximation of the solution u. The equidistributed grid points are introduced

(xm)0≤m≤N+1 and are determined by xm = mh, where N is an integer and the spacing h, is

h = 1
N+1 . The points x0 and xN+1, are such that x0 = 0 and xN+1 = 1 at the boundary of Ω.

Furthermore, at each point, the numerical value of the solution, um = u(xm) is the principal

objective to find. In that way, u(x0) and u(xN+1) are set to be u(x0) = α and u(xN+1) = β.

Remark 2.2. The fundamental idea of the finite difference estimation is the numerical solution

is not specified on the full domain Ω but at a finite number of points in Ω only.

Finite difference scheme

Assuming the function c and f are at least such that c, f ∈ C0(Ω) and the vector uh ∈ RN

(components um, m ∈ {1, 2, ....N}), where u is the solution of problem (2.5).
−um+1−2um+um−1

h2
+ c(xm)um = f(xm), m ∈ {1, ..., N},

u0 = α, uN+1 = β,

(2.7)

which can be rewritten

Ahuh = bh, (2.8)

where Ah is the tridiagonal matrix defined as

Ah = A
(0)
h +


c(x1) 0 · · · 0

0 c(x2) · · ·
...

...
... c(xN−1)

...

0 0 · · · c(xN )

 (2.9)

8
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with

A
(0)
h =

1

h2



2 −1 0 · · · 0

−1 2 −1
. . .

...
...

. . .
. . .

. . .
...

...
. . . −1 2 −1

0 · · · 0 −1 2


and bh =



f(x1) + α
h2

f(x2)
...

f(xN−1)

f(xN ) + β
h2


. (2.10)

The issue raised by the consideration of Eq. (2.8) is associated to the existence of a solution.

In other words, we have to find if the matrix Ah is invertible or not. The following proposition

is the answer to the issue.

Proposition 2.1 (Frey (2019)). Suppose c ≥ 0. Then, the matrix Ah is symmetric positive

definite.

Proof. By observation, Ah is symmetric. Consider a vector v = (v)1≤m≤N ∈ RN . Since c ≥ 0,

we have

vtAh v = vtA0
h v +

N∑
m=1

c(xm)v2
m ≥ vtA0

h v.

We just need to show that A0
h is positive definite. It follows that

h2 vtAh v = x2
1 + (x2 − x1)2 + · · ·(xN − xN−1)2 + x2

N .

Hence vtAh v ≥ 0.

Furthermore, if vtAh v = 0 then all term, x2
1 + (x2 − x1)2xm−1 − xm = x1 = xN = 0. We

conclude that all xm = 0. Hence the result.

Remark 2.3. We note u(x) is the exact solution of the problem (2.5). um = u(xm), is the

numerical solution at xm of (2.5). At x = xm, u(xm) is the exact solution. We note, Um =

U(xm) the numerical solution that approximates um = u(xm) at x = xm.

Remark 2.4. Summary for the notation of finite differences for the problem (2.5):

Theory (continuous) Finite differences (discrete)

domain Ω = [0, 1] IN = {0, 1
N+1 , ...., 1}

Unknown u : [0, 1]→ R, u ∈ C2(Ω) Uh = (U1, .....UN ) ∈ RN

Conditions u(0) = α, u(1) = β U0 = α, UN+1 = β

equation −u′′ + c u = f −Um+1−2Um+Um−1

h2 + c(xm)Um =

f(xm)

9
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Consistent scheme

The concept of consistency and accuracy enables to understand how well a numerical scheme

approximates an equation. A formal definition of the consistency is introduced and can be

utilized for any partial differential equation defined on a domain Ω such that

(Lu)(x) = f(x), ∀x ∈ Ω,

where L is assumed to be differential operator and Lu states that the equation relies on u and

on its derivatives at any point x. For every index m, a numerical approximation can be recorded

as

(Lhu)(xm) = f(xm), ∀m ∈ {1, ...., N}.

Lh is the differential operator. For instance the problem (2.5) can be written in the form

(Lu)(x) = −u′′(x) + c(x)u(x) and

(Lhu)(xm) = −u(xm+1)− 2u(xm) + u(xm−1)

h2
+ c(xm)u(xm), ∀m ∈ {1, ...., N}. (2.11)

Definition 2.3. A finite difference scheme is said to be consistent with the partial differential

equation it represents, if for any sufficiently smooth solution u of this equation, the truncation

error of the scheme, corresponding to the vector εh ∈ RN whose components are defined as:

(εh)m = (Lhu)(xm)− f(xm), ∀m ∈ {1, ...., N}, (2.12)

goes uniformly towards zero with respect to x, when h tends to zero, i.e. if

lim
h→0
||εh|| = 0.

Furthermore, if there exists a constant C > 0, independent of u and its derivatives, such that,

for all h ∈ (0, h0) (h0 > 0 given) we have:

||εh|| ≤ Chp,

with p > 0, then the scheme is said to be accurate of order p for the norm || · ||.

For example, the numerical scheme (2.7) is consistent and second order accurate in space for

the norm || · ||∞. Indeed assume u ∈ C4(Ω) and −u′′ + cu = f. It follows

(εh)(xm) =− u(xm+1)− 2u(xm) + u(xm−1)

h2
+ c(xm)u(xm)− f(xm)

=− u′′(xm) +
h2

12
u(4)(ζm) + c(xm)u(xm)− f(xm)

=
h2

12
u(4)(ζm) (2.13)

10
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where ζm ∈ (xm−1, xm+1). Thus

||εh||∞ ≤
h2

12
sup
y∈Ω
|u(4)(y)|. (2.14)

Finite difference scheme for time-dependent problems

We start defining the grid points in the (t, x) plane in the analysis of finite difference schemes.

Let h and k be positive numbers; thus the grid will be the points (tn, xm) = (nk,mh) for integers

n and m arbitrarily chosen. For any function v such that on the grid (nk,mh), we write vnm

to denote v at the grid point (tn, xm). The notation unm for u(tn, xm) is also used when u is

defined for continuously varying (t, x). The interest is in grids with small values of h and k. In

many cases, the quantities that called h and k, are denoted by ∆x and ∆t respectively. The

fundamental idea of finite difference schemes is to substitute derivatives by finite differences.

Here are two examples of approximations:

∂u

∂t
'u(tn + k, xm)− u(tn, xm)

k
or

'u(tn + k, xm)− u(tn − k, xm)

2 k
, (2.15)

∂u

∂t
'u(t+ k, x)− u(t, x)

k
or

'u(t+ k, x)− u(t− k, x)

2 k
. (2.16)

Example 2.1. We give some useful schemes for the approximation of the advection equation

ut + a ux = 0, (2.17)

where a stands for the wave speed, t represents time, and x represents the spatial variable:

Numerical scheme Name of the scheme

un+1
m −unm

k + a
unm+1−unm

h = 0 Forward-time forward-space scheme

un+1
m −unm

k + a
unm−unm−1

h = 0 Forward-time backward-space scheme

un+1
m −unm

k + a
unm+1−unm−1

2h = 0 Forward-time central-space scheme

un+1
m −un−1

m
2k + a

unm+1−unm−1

2h = 0 Leapfrog scheme
un+1
m −(unm+1−unm−1)

k + a
unm+1−unm−1

2h = 0 Lax-Friedrichs scheme

11
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Example 2.2 (Recktenwald (2004)). We consider one dimensional transient heat conduction

equation in slap of material with thickness L. defined by

ut = αuxx, 0 ≤ x ≤ L, t ≥ 0,

where u = u(t, x) is an unknown variable, and α is a constant coefficient. The domain of the

solution is a semi-infinite strip of width L that continues indefinitely in time. The material

property α is the thermal diffusivity. In practice, the solution is obtained only for a finite time.

The solution to the heat equation demands specification of boundary conditions at x = 0 and

x = L, and initial conditions at t = 0. Simple boundary and initial conditions are u(t, 0) = u0,

u(t, L) = uL, u(0, x) = f0(x) (Neumann or mixed boundary conditions can be specified).

Numerical scheme Name of the scheme

un+1
m −unm

k + α
unm+1−2unm+unm−1

h2
= 0 Forward-time, Centered Space approximation

unm−unm−1

k + α
unm−1−2unm+unm+1

h2
= 0 Backward-time, Centered Space approximation

− α

2h2
unm−1+

(
1

k
+
α

h2

)
unm−

α

2h2
unm+1

=

α

2h2
un−1
m−1+

(
1

k
− α

h2

)
unm−1+

α

2h2
un−1
m+1

Crank-Nicolson approximation

Convergence and Consistency

The most fundamental property that a scheme must have so as to be convergent is that its

solutions approximate the solution of the given partial differential equation and that the ap-

proximation enhances as the grid spacings, h and k, go towards zero. Before any discussion, we

consider linear partial differential equations of the form

P (∂t, ∂x) = f(t, x). (2.18)

Definition 2.4 (Strikwerda (2004)). A one-step finite difference scheme approximating a partial

differential equation is a convergent scheme if for any solution to the partial differential equation,

u(t, x), and solutions to the finite difference scheme, vnm, such that v0
m converges to u0(x) as

mh converges to x, then vnm converges to u(t, x) as (nk,mh) converges to (t, x) as h, k converge

to 0.

12
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Showing that any given scheme is convergent is not straightforward in general. Nevertheless,

there are two concepts which are easy to check: consistency and stability. First, we define

consistency.

Definition 2.5. Assume Pw = f, is a partial differential equation and Pk,h, a finite difference

scheme. We say that the finite difference scheme is consistent with the partial differential

equation if for any smooth function w at (t, x),

Pw − Pk,hw → 0, as k, h→ 0.

Example 2.3 (Forward-time forward-space scheme).

Pw = wt + wx, where the operator P, is P = ∂t + ∂x.

We also have

Pk,hw =
wn+1
m − wnm

k
+ a

wnm+1 − wnm
h

, where wnm, is wnm = w(nk,mh).

Taylor series of the function φ in t and x about (tn, xm) gives

wn+1
m = wnm + k wt +

1

2
k2wtt +O(k3),

wnm+1 = wnm + hwx +
1

2
h2wxx +O(h3), (2.19)

and it follows that

Pk,hw = wt + awx +
1

2
k wtt +

1

2
ahwxx +O(k2) +O(h2).

Thus

Pw − Pk,hw → 0 as k → 0 and h→ 0.

Hence, the consistency.

Remark 2.5 (Strikwerda (2004)). Consistency signifies that the smooth solution of the par-

tial differential equation is an approximate solution of the finite difference scheme. Likewise,

convergence implies that a solution of the finite difference scheme is an approximate solution

of the partial differential equation. Consistency is not sufficient condition for a scheme to be

convergent but it is certainly necessary.

13

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Stability

A scheme must verify other conditions apart from consistency for it to be convergent. The

definition which follows for stability is for the homogeneous initial value problem.

Definition 2.6 (Strikwerda (2004)). A finite difference scheme Pk,hv
n
m = 0 for a first-order

equation is stable in a stability region Λ if there is an integer J such that for any positive time

T , there is a constant CT such that

h
+∞∑

m=−∞
|vnm|2 ≤ CTh

J∑
j=0

+∞∑
m=−∞

|vjm|2, 0 ≤ nT ≤ T, with (k, h) ∈ Λ, (2.20)

which is equivalent to

||vn||h ≤

CT J∑
j=0

||vj ||2h

 1
2

, ||w||h =

(
h

+∞∑
m=−∞

|wm|2
) 1

2

, for any grid function w. (2.21)

Example 2.4 (Sufficient condition for stability for forward-time forward-space scheme). Con-

sider the scheme of the form

wn+1
m = αwnm + β wnm+1.

The scheme is stable under the condition |α| + |β| ≤ 1. Indeed, using the Definition 2.6, we

have
+∞∑

m=−∞
|wn+1
m |2 =

+∞∑
m=−∞

|αwnm + β wnm+1|2

≤
+∞∑

m=−∞

(
|α|2 |wnm|2 + |α||β|(|wnm|2 + |wnm+1|2) + |β|2 |wnm+1|2

)
, (2.22)

where 2|wnm| |wnm+1| ≤ |wnm|2 + |wnm+1|2. The sum can be divided over the terms with indices m

and m+ 1 and the index can be displaced so that all terms have the index m:

+∞∑
m=−∞

(
|α|2 |wnm|2 + |α||β|(|wnm|2 + |wnm+1|2) + |β|2 |wnm+1|2

)
=

+∞∑
m=−∞

(
|α|2 |wnm|2 + |α||β||wnm|2

)
+

+∞∑
m=−∞

(
|α||β| |wnm+1|2) + |β|2 |wnm+1|2

)
,

=

+∞∑
m=−∞

(
|α|2 + 2|α||β|+ |β|2

)
|wnm|2,

=
+∞∑

m=−∞
(|α|+ |β|)2 |wnm|2.

(2.23)
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Hence
+∞∑

m=−∞
|wn+1
m |2 ≤ (|α|+ |β|)2n

+∞∑
m=−∞

|wnm|2, ∀ n. (2.24)

It follows

+∞∑
m=−∞

|wnm|2 ≤ (|α|+ |β|)2n
+∞∑

m=−∞
|w0
m|2, (2.25)

The quantity |α|+ |β| is at most 1 in magnitude. Thus scheme is stable.

Remark 2.6 (Strikwerda (2004)). The notion of stability for finite difference schemes is thor-

oughly on familiar terms to the notion of well-posedness for initial value problems for partial

differential equations (Pu = f).

Definition 2.7 (Strikwerda (2004)). The initial value problem for the first-order partial differ-

ential equation Pu = 0 is well-posed if for any time T > 0, there is a constant CT such that

any solution u(t, x) satisfies∫ +∞

−∞
|u(t, x)|2 dx ≤ CT

∫ +∞

−∞
|u(0, x)|2 dx, 0 ≤ t ≤ T. (2.26)

Theorem 2.1 (The Lax equivalence theorem, Strikwerda (2004)). A consistent finite difference

scheme for a linear partial differential equation for which the initial value problem is well-posed

is convergent if and only if it is stable.

Remark 2.7 (Strikwerda (2004)). The Lax equivalence theorem is an example of the top-dog

kind of mathematical theorem. It brings back a substantial notion that is arduous to define

straightforward with other notions that are comparatively simple to check. The utility of the Lax

theorem emerges both from the fluency of checking consistency and stability and the relationship

between these notions and the notion of convergence.

Theorem 2.2 (The Courant-Friedrichs-Lewy Condition, Strikwerda (2004)). For an explicit

scheme for an hyperbolic equation (2.17) of the form wn+1
m = αwnm−1 + β wnm + γ wnm+1 with

k
h = λ held constant, a necessary condition for stability is the Courant-Friedrichs-Lewy (CFL)

condition

|a λ| ≤ 1.

For systems of equations for which p is a vector and α, β and γ are matrices, we must have

|ai λ| ≤ 1 for all eigenvalues ai of the matrix A.

Theorem 2.3. There are no explicit, unconditionally stable, consistent finite difference schemes

for hyperbolic systems of partial differential equations.
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Fourier Analysis

In this section, we introduce and bring to knowledge the fundamental properties of Fourier

analysis, which is a substantial tool for studying finite difference schemes and their solutions.

The Fourier transform, û(x) for a function, u(x) defined on the real line R, is

û(y) =
1√
2π

∫ +∞

−∞
e−i y xu(x) dx, (2.27)

and the Fourier inversion formula, is stated by

u(x) =
1√
2π

∫ +∞

−∞
ei w xû(y) dy. (2.28)

Example 2.5 (Example of the Fourier transform). Consider the function

u(x) =


e−x if x ≥ 0,

0 if x < 0.

(2.29)

We have

û(y) =
1√
2π

∫ +∞

0
e−i y xe−x dx =

1√
2π

1

1 + i y
. (2.30)

We define the grid of integers, hZ by hZ = {hm : m ∈ Z}. If the spacing between the grid

points is h, a change on variables can be made and the Fourier transform is

û(x) =
1√
2π

+∞∑
m=−∞

e−imhwhum, w ∈ [−π/h, π/h], (2.31)

and the inversion formula is

um =
1√
2π

∫ π/h

−π/h
eimh ξ û(w)dw, w ∈ [−π/h, π/h]. (2.32)

Remark 2.8 (Strikwerda (2004)). Fourier transform is unique.

Remark 2.9 (Strikwerda (2004)). A substantial end result of the preceding definitions is that

the L2 norm of u which is

||u||2 =

(∫ +∞

−∞
|u(x)|2 dx

)1/2

(2.33)

is the same L2 norm of û ie

||û||2h =

∫ π/h

−π/h
|u(w)|2 dw = ||u||2h.
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Indeed using the Parseval’s relation for functions in L2(hZ), we have

||û||2h =

∫ π/h

−π/h
|û(w)|2 dw =

∫ π/h

−π/h
û(w)

1√
2π

+∞∑
m=−∞

e−imhw dw um h

=
1√
2π

+∞∑
m=−∞

∫ π/h

−π/h
e−imhwû(w) dw um h

=
+∞∑

m=−∞

1√
2π

∫ π/h

−π/h
e−imhwû(w) dw um h =

+∞∑
m=−∞

um um h

= ||u||2h. (2.34)

Von Neumann Analysis

A substantial application of Fourier analysis is the Von Neumann analysis of stability of finite

difference schemes. With the usage of Fourier analysis, the necessary and sufficient conditions

can be given for the stability of finite difference schemes.

Remark 2.10 (Strikwerda (2004)). The Von Neumann method is simpler to use and is more

popular than other methods used for stability. By means of the Fourier transform, the determi-

nation of the stability of a scheme is shortened to comparatively easy algebraic considerations.

Before further discussion, we consider forward-time backward-space scheme

un+1
m = (1− a λ)unm + a λunm−1, λ =

k

h
, (2.35)

From inversion formula of Fourier transform (2.32), we have used uj = 1√
2π

∫ π/h
−π/h e

i j hw û(w)dw,

with j = m− 1, m and substituting in (2.36)

un+1
m =

1√
2π

∫ π/h

−π/h
eimhw[1− a λ+ a λ e−i hw] ûn(w)dw, (2.36)

and comparing it to inversion formula

un+1
m =

1√
2π

∫ π/h

−π/h
eimhw ûn+1(w)dw. (2.37)

Since from (5.9), the Fourier transform is unique, we deduce

ûn+1
m (w) = [1− a λ+ a λ e−i hw] ûn(w)

= ξ(hw)ûn(w), with g(hw) = 1− a λ+ a λ e−i hw. (2.38)

Since the statement (2.38) is true for all n, we have

ûnm(w) = [ξ(hw)]n û0(w). (2.39)
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Remark 2.11 (Strikwerda (2004)). The function w is called amplification factor due to the fact

that its magnitude is the measure that the amplitude of each rate or frequency in the solution,

given by ûn(w), is intensified in advancing the solution one time step. Furthermore, for the

wide variety of schemes the information about them are contained in their amplification factor

in particular the stability and accuracy.

For studying the well-posedness of the equation (2.39), we use the definition 2.20 and Parseval’s

relation,

h
+∞∑

m=−∞
|unm|2 =

∫ π/h

−π/h
|ûn(w)|2 dw

=

∫ π/h

−π/h
|ξ(hw)|2n |û0(w)|2 dw. (2.40)

Therefore we notice that the stability inequality (2.20) will satisfy, with J = 0, if |ξ(hw)|2n is

suitably bounded. We just need to evaluate |ξ(θ)| = |ξ(hw)| = |1− a λ+ a λ e−i θ| with θ = hw

and e−i θ = cos(θ)− i sin(θ).

|ξ(θ)|2 = (1− a λ+ a λ cos(θ))2 + a2 λ2 sin2(θ (2.41)

= 1− 4 a λ (1− a λ) sin2

(
θ

2

)
(2.42)

We have the boundedness of |ξ(θ)| if only 0 ≤ a λ ≤ 1. Therefore

h
+∞∑

m=−∞
|unm|2 ≤

∫ π/h

−π/h
|û0(w)|2 dw (2.43)

= h
+∞∑

m=−∞
|u0
m|2. (2.44)

Hence the definition 2.6.

Remark 2.12 (Strikwerda (2004)). If a λ does not belong to the interval [0, 1] and λ is fixed as

h and k goes toward zero, then |ξ(θ)| is greater than one for some values of θ, and the scheme

is unstable.

The Stability Condition

The following theorem gives the exact condition for stability of constant coefficient one-step

schemes. Despite the fact that in the example we evaluated, the amplification factor ξ was a

function only of θ = hw, mostly ξ will also depend on h and k. Generally, to permit for more
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equations to satisfy inequality (2.20) in the Definition 2.6, we have to permit the magnitude of

the amplification factor to exceed one by a small amount.

Theorem 2.4 (Strikwerda (2004)). A one-step finite difference scheme (with constant coeffi-

cients) is stable in a stability region Λ if and only if there is a constant K (independent of θ,

k, and h) such that

|ξ(θ, k, h)| ≤ 1 +K k, (2.45)

with (k, h) ∈ Λ. If ξ(θ, k, h) is independent of h and k, the stability condition (2.45) can be

replaced with the restricted stability condition

|ξ(θ)| ≤ 1. (2.46)

Corollary 2.1 (Strikwerda (2004)). If a scheme as in Theorem 2.4 is modified so that the

modifications result only in the addition to the amplification factor of terms that are O(k)

uniformly in w, then the modified scheme is stable if and only if the original scheme is stable.

Proof of Theorem 2.4. Let |ξ(θ, k, h)| ≤ 1 +K k with (k, h) ∈ Λ. By Parseval’s relation and the

definition of ξ, we have that

||un||2h =

∫ π/h

−π/h
|ξ(hw, k, h)|2n |û0(w)|2 dw,

and it follows that

||un||2h ≤
∫ π/h

−π/h
(1 +K k)2n |û0(w)|2 dw = (1 +K k)2n ||u0||2h.

For n ≤ T/k in the inequality (2.20) of the Definition 2.6, we have

(1 +K k)n ≤ (1 +K k)T/k ≤ eK k.

Hence ||un||h ≤ eK k||u0||h and the Definition 2.20 is satisfied. Thus the scheme is stable.

Assume there is a positive constant C such that |ξ(θ, k, h)| > 1 + C k with (k, h) ∈ Λ. There is

an interval of θ such that θ ∈ [θ1, θ2] and then we construct a function u0
m, as

û0(w) =


0 if hw /∈ [θ1, θ2],√
h (θ2 − θ1)−1 if hw ∈ [θ1, θ2].

||un||2h =

∫ π/h

−π/h
|ξ(hw, k, h)|2n |û0(w)|2 dw =

∫ θ2/h

−θ1/h
|ξ(hw, k, h)|2n h

θ2 − θ1
dw

≥ (1 + C k)2n ≥ 1

2
e2C T ||u0||2h, for n near T/k.
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Which proves that the scheme is unstable if C can be arbitrarily large. Hence the scheme is

unstable if there is no domain in which ξ(θ, k, h) can be bounded.

For the inequality (2.46), we use the Taylor series of ξ(θ, k, h) in k and h, we have

ξ(θ, k, h) = ξ(θ, 0, 0) +O(h) +O(k).

If h = λ−1 k, then the term that O(h) are also O(k). Moreover, since θ is restricted to the

compact set [−π, π], the O(k) terms are uniformly bounded. Therefore by the Corollary 2.4 the

stability condition is

|ξ(θ, 0, 0)| ≤ 1 +K k,

But the left-hand side of the above relation is independent of k, and the inequality must fulfil

for all small positive values of k. We have, thus, that the preceding valuation holds if and only

if

|ξ(θ, 0, 0)| ≤ 1.

Hence the stability condition (2.46) in the Theorem 2.4.

Remark 2.13 (Strikwerda (2004)). We remark:

1. This theorem shows that to find the stability of a finite difference scheme we need to

consider only the amplification factor ξ(w h).

2. If we consider the forward-time forward-space scheme for which the amplification factor

is ξ(hw) = 1 + a λ + a λ ei θ, θ = hw and |ξ(θ)|2 = 1 + 4 a λ (1 + a λ) sin2
(
θ
2

)
where a is

positive and λ is constant. Since λ is constant, we use the restricted stability condition

(2.46), and we see that |ξ| is greater than 1 for θ not equal to 0, and therefore this scheme

is unstable. If a is negative, then the forward-time forward-space scheme is stable for

−1 ≤ a λ ≤ 0.

Remark 2.14 (Stability Conditions for Variable Coefficients). The stability analysis as studied

in the previous section does not apply straightforward to problems with variable coefficients.

Nevertheless, the stability conditions obtained for constant coefficient schemes can be applied to

present stability conditions for the same scheme applied to equations with variable coefficients.

For instance, the Lax-Friedrichs scheme applied to ut + a(t, x)ux = 0 is

un+1
m =

1

2

(
unm+1 − unm−1

)
− 1

2
a(tn, xm)λ

(
unm+1 − unm−1

)
.
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The condition for stability for this scheme shows that |a(tn, xm)λ| ≤ 1 be satisfied for all values

of (tn, xm) in the domain of computation. The general methodology is that one takes into

consideration each of the frozen coefficient problems emerging from the scheme. The frozen

coefficient problems are the constant coefficient problems obtained by applying the coefficients

at their values affected at each point in the domain of the computation. The variable coefficient

problem is likewise stable as long as each frozen coefficient problem is stable (The proof of

this result can be found in (Kreiss, 1962, Lax and Nirenberg, 1966)). If the stability condition

as found from the frozen coefficient problems is contravened in a small region, the instability

phenomena that emerge will generate in that area and will not improve outside that area.

Remark 2.15 (Numerical Stability and Dynamic Stability, Strikwerda (2004)). The term sta-

bility is used in a number of situations in applied mathematics and engineering, and it is im-

portant to make the nuance of the applications of this term. The stability in the Definition 2.6

can be named the numerical stability of finite difference schemes. In applied mathematics, it is

frequent to consider dynamic stability, which assigns to the property of a system in which small

variations from a reference state will disintegrate, or at least not increase, with time. Dynamic

stability assigns to the behavior of solutions as time progresses, while the numerical stability of

a scheme always gives reference to the behavior of solutions over a finite interval of time as the

grid is refined.

Order of Accuracy for time-dependent problems

In this section we present the order of accuracy of a scheme for time-dependent problems, which

can be seen as an expansion of the definition of consistency. In previous sections, we categorized

schemes as acceptable or not acceptable only based if or not they are convergent by means of the

Lax equivalence theorem (stability and consistency). Nonetheless, various convergent schemes

may differ significantly in how well their solutions give approximation to the solution of the

differential equation.

Definition 2.8 (Strikwerda (2004)). A scheme Pk,hu = Rk,hf that is consistent with the dif-

ferential equation

Pu = f is accurate of order p in time and order q in space if for any smooth function w(t, x)

Pk,hw −Rk,hP w = O(kp) +O(hq). (2.47)

We say a scheme is accurate of order (p, q).

21

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Remark 2.16 (Strikwerda (2004)). The quantity Pk,hw − Rk,hP w is called truncation error

of the scheme. We see that the consistency demands only Pk,hw−Rk,hP w to be O(1) while the

accuracy takes into account the more precise information on the convergence.

Example 2.6 (Strikwerda (2004)). Lax-Wendroff scheme for the one-way wave equation

ut + a ux = f is

un+1
m =unm −

aλ

2

(
unm+1 − unm−1

)
+
a2λ2

2

(
unm+1 − 2unm + unm−1

)
+
k

2

(
fn+1
m + fnm

)
− a k λ

2

(
fnm+1 − fnm−1

)
. (2.48)

Taylor series evaluated on (2.48) at (tn, xm) gives

Pk,hw = wt +
k

2
wtt + awx −

a2 k

2
wxx +O(k2) +O(h2)

Rk,hf = Rk,hP w = wt + awx +
k

2
wtt −

a2 k

2
wxx +O(k2) +O(h2) with f = wt + awx = P w.

(2.49)

Hence the Lax-Wendroff scheme is accurate of order (2, 2). With Rk,hf
n
m = fnm, Lax-Wendroff

scheme is accurate with order (1, 2).

Remark 2.17 (Strikwerda (2004)). The above Definition 2.8 is not completely in order. For

instance, it cannot be used to the Lax-Friedrichs scheme, which contains the term k−1 h2wxx in

the Taylor series expansion of Pk,hw. We hence give the following definition, which is mostly

applicable. We suppose that the time step is chosen as a function of the space step, k = Λ(h),

where Λ is a smooth function of h and Λ(0) = 0.

Definition 2.9 (Strikwerda (2004)). A scheme Pk,hu = Rk,hf with k = Λ(h) that is consistent

with the differential equation Pu = f is accurate of order p in time and order q in space if for

any smooth function w(t, x)

Pk,hw −Rk,hP w = O(hr). (2.50)

Remark 2.18. If Λ(h) = λh, then the Lax-Friedrichs scheme is consistent with the one-way

wave equation.

Rate of convergence for time-dependent problems

In this section, we study the rate of convergence for time-dependent problems. It measures how

fast a sequence converges. We consider the ordinary differential equation

ut = f(u, t), u(0) = u0, 0 ≤ t ≤ T.
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The rate of convergence is known as the global order of accuracy and describes the decrease in

error max
n∈{0,1,...,Tk }

|vn− un| one can expect for a given decrease in time step k in the limit k → 0.

Definition 2.10. Assume that the forcing function f(u, t) is sufficiently smooth (In particular,

we need f(u, t) to have p continuous derivatives). A numerical method has a global order of

accuracy p if

max
n∈{0,1,...,Tk }

|vn − un| ≤ c kp, k → 0.

For practical suitability, we consider the following definitions

Definition 2.11 (Miyata and Sakai (2012)). For a vector x ∈ RN , L1 and L∞ norms are

defined by ‖ x ‖1=
∑N

i=1 |xi| and ‖ x ‖∞= max{|xi|, i = 1, · · ·N}.

Definition 2.12 (Sutton (2018)). Suppose {tn}N0 forms a partition of [0, T ], with tn = nk for

n = 0, · · ·N, where k = T/N. Suppose a vector x ∈ RN , defined by

‖ x ‖LP (0,tn)=


(
‖ x ‖LP (0,tn−1) +τ(xn)p

) 1
p

for p ∈ [0,∞),

max{‖ x ‖LP (0,tn−1), x
n} for p =∞.

(2.51)

The rate of convergence with respect to time is defined by

ratei(t) =
log(xi(t))− log(xi−1(t))

log(ki)− log(ki−1)
.

2.1.2 Nonstandard-finite difference scheme

The finite difference methods have been broadly utilized for the numerical solution of ordinary

and partial differential equations (Forsythe and Wasow, 1960, Strikwerda, 2004). They are

based often on two conditions which are the consistency of the discrete scheme with the original

differential equation and the stability (zero-stability in the jargon of Lambert (1991)) of the

discrete method. These conditions are substantial and are indubitable, due to the fact that

they give an assurance of convergence with, in several cases, optimal rates of convergence (rate

in term of accuracy and efficiency) of the discrete solution to the exact one (Anguelov and

Lubuma, 2001). One weakness of these traditional conditions is that key qualitative properties

of the exact solution are not conveyed to the numerical solution. In application, the limit 0

of the step size h, with which zero-stability is affected, is not attained. Therefore, the agreed

disadvantage might be disastrous. One way of eluding this is to consider further notions of

stability, which are based on what Lambert (1991) names syntax of a stability definition with

the following definition (Stuart and Humphries (1998) also show the conditions for numerical
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methods for differential equations to produce dynamical systems, which are almost identical to

those generated by the differential equations):

Definition 2.13. We impose certain conditions Cp on the differential equation, which force the

solution to display a stability property. We apply a discrete method to the differential equation.

We ask what conditions Cm must be imposed on the discrete scheme in order that the numerical

solution displays a stability property analogous to that displayed by the exact solution.

Nonstandard finite difference methods were established empirically by pioneer Mickens in (Mick-

ens, 1994, 2000) for solving practical problems in applied sciences and engineering. The deriva-

tions are generally based on the notion of dynamical consistency (Mickens, 2005). The concept

of dynamical consistency performs an important role in the construction of discrete models

which provide a significant difficulty in the computation of numerical solutions. This difficulty

is numerical instabilities. Indeed numerical instabilities are solutions to discrete equations that

do not link to any solutions of the original differential equations (Mickens, 1994). The dynam-

ical consistency is defined with respect to peculiar properties of a physical system which vary

mostly from one system to another. These properties must preserve positivity, boundedness,

monotonicity of the solutions, correct number and stability of fixed-points and other special

solutions. Furthermore, the dynamical consistency is a general standard property to limit the

possible construction of NSFD scheme (Mickens, 2005). The utility and strength of NSFD

procedures are that they don’t need any a priori knowledge of the exact solutions to the differ-

ential equation (Mickens, 2005). They come from the enforcement of certain physical system

necessities on the discrete model equations as found by dynamical consistency. In conclusion,

the lack of dynamical consistency leads to numerical instability. This practically appears for

some values of the parameters or step-sizes (Mickens, 2005). Despite the fact that nonstandard

methods give satisfactory results to their users, these methods have not been controlled to strict

mathematical analysis. We recall some of following theory formulated by Anguelov and Lubuma

(2001).

Remark 2.19. The idea behind saying that ”The utility and strength of NSFD procedures are

that they don’t need any a priori knowledge of the exact solutions to the differential equation” is

justified by Mickens (2005) by stating that ”the power and usefulness of NSFD derive from the

imposition of certain physical system requirements on the discrete model equations as determined

by the principle of dynamical consistency.
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General overview

We consider the initial-value problem for an autonomous first-order system of ordinary differ-

ential equations

Dw :=
dw

dt
= g(w); w(t0) = w0, w ∈ Rn, (2.52)

where w is the vector of unknown functions, w0 and g ∈ Rn are given. The time, t ∈ [t0, T ],

t0 ≥ 0 is finite and the limit time T might be ∞ as for dynamical systems. We assume that the

function g verifies the Lipschitz condition (Gear, 1971) which guarantees the uniqueness of the

solution. We discretize the time by {tn := t0 +nh}n≥0, n an integer (tn time at n) and h > 0 is

the step-size. We signify by wn an approximate solution of w(tn) at the point tn. The solution

to the discrete finite difference equation

Dhwn = Gh(wn), (2.53)

is, wn and defined by

wn ≈ w(tn). (2.54)

We also define

p∑
j=0

αj wn+j = h

p∑
j=0

βj gn+j , gn+j = g(wn+j), αp = 1, |α0|+ |β0| > 0. (2.55)

Definition 2.14. The scheme (2.53) is (zero-) stable, if there exist constants K > 0 and h0

such that, there holds, ∀h ∈ (0, h0], the relation ||zn − z̃n|| ≤ K ε whenever ||δn − δ̃n||ε for a

given accuracy ε > 0 and for any two perturbations δn and δ̃n of the data in Eq. (2.53) with

corresponding perturbed solutions zn and z̃n.

Definition 2.15. Assume that the solution of problem (2.52) satisfies some property P . The

difference Eq. (2.53) or (2.55) is called (qualitatively) stable with respect to property P (or

P -stable) if, for every h > 0, the set of discrete solutions satisfies property P.

Definition 2.16. The method Eq. (2.53) or (2.55) is called an exact difference scheme of

(2.52), if the relation Eq. (2.54) between the discrete solution wn and the exact solution w(tn)

holds for any h > 0 with, however, the equality symbol ” = ” in lieu of ” ≈ ”.

Theorem 2.5 (Mickens (1994)). Let t→ H.(t, t0; ·) be the solution operator that associates the

data (w0, g) with the unique solution w(t) of the system (2.52) at the time t:

w(t) = Hg(t, t0;w0). (2.56)
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Then Eq. (2.52) has the exact difference scheme

wn+1 = Hg(tn+1, tn;wn). (2.57)

Remark 2.20. We notice that there is no sufficient information from the Theorem 2.5 to how

an exact difference scheme could genuinely be constructed. At least, important positive efforts

have been made for several class of problems (Mickens, 1994).

Example 2.7. Application of Theorem 2.5 (Anguelov and Lubuma, 2001). We consider one

dimension differential equation (2.52) with g(w) = λwm, where m ∈ N, and λ 6= 0 is a constant.

The solution operator in Eq. (2.56) is

Hg(t, t0;w0) =


w0 e

λ (t−t0) if m = 1,

w0

[
1 + (1−m)λ (t− t0)wm−1

0

]−(m−1)
if m ≥ 2.

(2.58)

and Eq. (2.57) may be rewritten as
wn+1−wn
(eλh−1)/λ

= λwn if m = 1,

wn+1−wn
h = λ

(m−1)[wmn+1 w
m−1
n −wm−1

n+1 wmn ]

wm−1
n+1 −w

m−1
n

if m ≥ 2.

(2.59)

Remark 2.21. The selection of the denominator functions of the discrete derivative for time

derivatives has no general rule. Nevertheless particular forms for precise equation can be easily

found. The common functions usually used in Mickens (1994) are

φ(k) =
1− e−λk

λ
, (2.60)

where λ is some parameter emerging in the differential equation.

From the example above we can formulate the following of Nonstandard finite difference scheme

Definition 2.17 (Mickens (1994)). The method (2.53) is called a nonstandard finite difference

method, if at least one of the following conditions is met:

1. In the first-order discrete derivative Dhwn, the traditional denominator h is replaced by

a nonnegative function φ(h) such that

φ(h) = h+O(h2) as h→ 0; (2.61)

2. Nonlinear terms in g(w) are approximated in a nonlocal way, i.e by a suitable func-

tion of several points of the mesh (In example 2.58, w2(t∗) ≈ wn+1wn and w3(t∗) ≈

2w2
n+1w

2
n/ (wn+1 + wn), where t∗ is fixed point such that tn = t∗ with n→∞, h→ 0).
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Remark 2.22. Definition 2.17 is effectual for derivatives of higher-order m on condition that

the right hand-side of E. (2.17) is replaced by hm +O(hm+1).

Theorem 2.6 (Anguelov and Lubuma (2001)). If Eq. (2.53) represents a standard finite dif-

ference scheme that is consistent and zero-stable, then any corresponding nonstandard finite

difference scheme in Definition 2.17 is necessarily consistent. Furthermore, if the nonstandard

scheme is constructed according to the first bullet in Definition 2.17 , then this scheme is zero-

stable provided that the operator Gh satisfies, for some M > 0 independent of h and for any

bounded sequences (wn) and (w̃n) in R, the Lipschitz condition

sup
n
||Gh(wn)−Gh(w̃n)|| ≤M sup

n
||wn − w̃n||.

Proof. Consider the standard and nonstandard finite difference scheme respectively

N wn
h

= Gh(wn) and
N wn
φ(h)

= G̃h(wn) (2.62)

with N is relevant difference operator and Gh(w̃n) is an approximate of g(w(t∗)). We have,

taking w as an exact solution of Eq. (2.52)

N w(t∗)

φ(h)
− G̃h(w(t∗)) =

h

φ(h)

[
N w(t∗)

h
−Gh(w(t∗))

]
+

h

φ(h)
Gh(w(t∗))− G̃h(w(t∗))→ 0(2.63)

as h→ 0 and due to the fact that lim
h→0

h
φ(h) = 1. Hence the consistency of (2.63).

Consider two perturbations δn and δ̃n such that ||δn− δ̃n|| ≤ ε and with its disturbed solutions

zn and z̃n. Also consider the following perturbations

γn =

[
φ(h)

h
− 1

]
Gh(zn) +

φ(h)

h
δn, and γ̃n =

[
φ(h)

h
− 1

]
Gh(z̃n) +

φ(h)

h
δ̃n

for the standard scheme (2.62) with the same disturbed solutions zn and z̃n. Since Gh is Lipschitz

and lim
h→0

h
φ(h) = 1 we have, for h� 0 (relatively small) which does not depend on ε

||γn − γ̃n|| ≤ 2 ε+M

∣∣∣∣φ(h)

h
− 1

∣∣∣∣ sup
j
||zj − z̃j || ≤ 2 ε+

1

2K
sup
j
||zj − z̃j ||,

where K which is constant comes from the zero stable Definition (2.14) of the standard. It

follows from the Definition (2.14) that

||zn − z̃n|| ≤ 2K ε+ (1/2) sup
j
||zj − z̃j || ≤ 4K ε.

We are going to show the importance of renormalizing the denominator function φ in the discrete

derivative in nonstandard finite difference schemes. We start with the following definition
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Definition 2.18 (Fixed-point definition). A constant solution vector w̃ is called fixed-point or

critical point of the differential equation (2.52) if it verifies

g(w̃) = 0. (2.64)

Assume w̃ is given fixed point of the differential equation with disturbed (perturbed) trajectory

and equation

w(t) = w̃ + ε(t) and
dε

dt
= J ε+ ||ε||α(ε), (2.65)

with J Jacobian, J ≡ Jf(w̃) =
(
∂ig(w̃)/∂jw)

)
1≤i,j≤n and all its eigenvalues (λi) with nonzero

real parts

∀ i, i ∈ [1, n], Re λi 6= 0 (2.66)

and α(ε)→ 0 as ||ε|| → 0. For simplicity, the interest will be on small values of ||ε|| and hence

dε

dt
= J ε. (2.67)

Definition 2.19. Suppose that A is a square matrix of size n, x 6= 0 is a vector in Cn and λ

is a scalar in C. Then we say that x is an eigenvector of A associated with an eigenvalue λ if

Ax = λx.

Definition 2.20. Suppose that A is a square matrix of size n, and λ an eigenvalue of A. Then

the eigenspace of A for λ denoted by εA(λ), is the set of all the eigenvectors of A for λ together

with the inclusion of the zero vector.

Definition 2.21. A fixed-point w̃ of the differential equation (2.52) is called linearly stable

provided that the solution ε of Eq. (2.67) corresponding to a small enough initial data ε(0) ≡ ε0,

||ε0|| � 1 say, satisfies limt→∞ ||ε(t)|| = 0. Otherwise, the fixed-point is called linearly unstable.

Remark 2.23. A fixed-point w̃ of Eq. (2.52) is linearly stable if only if Reλj < 0 for all j, and

unstable if only if Reλj > 0 for at least one j.

We consider the following discrete case of Eq. (2.65) perturbed solution which states

wn = w̃ + εn and Dh εk = Jh εn. (2.68)
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Definition 2.22. Assume that a fixed-point w̃ of (2.52) that satisfies (2.66) is a solution of

the discrete method (2.53). We say that the constant solution w̃ is linearly stable or unstable

depending on whether ||εn|| tends to 0 or not, for n→∞, where εn is a solution of Eq. (2.68)

for a given ||ε0|| � 1.

Definition 2.23. The finite difference method (2.53) is called elementary stable if for any value

of the step size h, its only fixed-points w̃ are those of the differential system (2.52), the linear

stability properties of each Eq. (2.52) being the same for both the differential system and the

discrete method.

Theorem 2.7 (Lambert (1991)). Assume that the linear multi-step method (2.55) is consistent

and zero-stable. If fixed-points of the equation (2.52) are all linearly unstable and are the only

fixed-points of Eq. (2.55), then the method (2.55) is elementary stable. If, however, Eq. (2.52)

has at least one linearly stable fixed-point and if the order or step p of the method (2.55) is

greater than 1, then this scheme is elementary unstable when the method (2.68) has a bounded

region of absolute stability.

Remark 2.24. Theorem 2.7 gives a justification of the rules formulated by Mickens (1994)

regarding the to order of the difference equation. Its full proof can be seen in Anguelov and

Lubuma (2001).

The focus of the following part is on the importance of nonlocal approximation of nonlinear

terms. We start by studying the general conservative oscillator differential equation

d2w

dt2
+ a2w g(w2) = 0, (2.69)

where for an initial t0, w : (t0, T ) 7−→ R and a is a given real constant, and the function g is

such that its indefinite integral K

K(z) =

∫ z

0
g(s) ds <∞, g : R 7−→ R. (2.70)

The equation (2.69) can be rewritten in terms of first integral which is the conservation law of

energy V (w; t) along the trajectory w as follows

V (w; t) :=
1

2

[(
dw

dt

)2

+ a2K(w2)

]
= Constant. (2.71)

Our goal is to derive a discrete scheme that is stable in regard to the conservation of energy.

With g(w2) ≡ 1, the nonstandard finite difference method is:

wn+1 − 2wn + wn+1(
4
a2

)
sin2

(
h a
2

) + a2wn = 0, (2.72)
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which is exact finite difference scheme of Eq. (2.69) (Mickens, 1994). We introduce the discrete

energy along the trajectory {ws} at the time tn such that

Vh(wn) :=
1

2

[(
wn+1 − wn

φ(h)

)2

+ a2 Lh(wn)

]
. (2.73)

with Lh(wn) is an approximate of the potential energy K(w2). With discrete conservation law

of energy,

Vh(wn) = Vh(wn−1), ∀ n ≥ 1. (2.74)

It follows

wn+1 − 2wn + wn+1

φ2(h)
+ a2wn

Lh(wn)− Lh(wn−1)

wnwn+1 − wn−1wn
= 0. (2.75)

The discrete scheme obtained in Eq. (2.75) is consistent with original equation (2.69) due to

the fact that

lim
h→0

w(tn+1)− 2w(tn) + w(tn+1)

φ2(h)
=
d2w

dt2
(t∗).

and w being a solution of Eq. (2.69). Let chose Lh such that

lim
h→0

Lh(w(tn))− Lh(w(tn−1))

w(tn)w(tn+1)− w(tn−1)w(tn)
= g(w2(t∗)) (2.76)

It follows that with mean theorem and using Eq. (2.70) we have,

Lh(wn)− Lh(wn−1)

wnwn+1 − wn−1wn
=
K(wnwn+1)−K(wn−1wn)

wnwn+1 − wn−1wn
⇐⇒ Lh(wn−1) = K(wn−1wn), n ≥ 1.(2.77)

We end with the following theorem:

Theorem 2.8. (Anguelov and Lubuma, 2001) With any function, φ satisfying φ(h) = h+O(h2)

with h → 0 and keeping (2.70) in mind, the nonstandard finite difference scheme

wn+1 − 2wn + wn+1

φ2(h)
+ a2wn

K(wnwn+1)−K(wn−1wn)

wnwn+1 − wn−1wn
= 0. (2.78)

for approximating Eq. (2.69) is stable with respect to the property of conservation of energy

(2.74). In the particular case when g(w2) ≡ 1 and φ2(h) coincide with the denominator of the

fraction in Eq. (2.72), the method (2.78) reduces to the exact scheme of the harmonic oscillator.

If we set

γ(wn−1, wn, wn+1) =
K(wnwn+1)−K(wn−1wn)

wnwn+1 − wn−1wn

Then this satisfies the symmetry property

γ(wn−1, wn, wn+1) = γ(wn+1, wn, wn−1).
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2.1.3 Reaction diffusion equation

Reaction-diffusion partial differential equations give useful mathematical models for a wide range

of phenomena in the life and engineering sciences (Edelstein-Keshet, 1988, Smoller, 2012). For

various such systems, the dependent variables show physical variables that can not be negative

(population or concentration densities). Mathematically, reaction–diffusion systems have the

form of semi-linear parabolic partial differential equations. They are in the general form

∂u

∂t
= D

∂2u

∂x2
+R(u), (2.79)

where u(x, t) accounts the unknown vector function, D is a diagonal matrix of diffusion coef-

ficients, and R represents for all local reactions. The solutions of reaction-diffusion equations

show a broad range of behaviours, incorporating the formation of travelling waves and wave-

like phenomena as well as other self-organized patterns like stripes, hexagons or more intricate

structure like dissipative solitons (Camassa et al., 1998, Yıldırım, 2009).

Example 2.8 (One-component reaction-diffusion equations). The simplest reaction-diffusion

equation is in one spatial dimension in plane geometry (Kolmogorov–Petrovsky–Piskunov equa-

tion) and when
∂u

∂t
= D

∂2u

∂x2
+R(u),

we have

R(u) Name of the equation

u(1− u) Fisher’s equation

u(1− u2) Rayleigh–Bénard convection equation

u(1−u)(u−α), 0 < α < 1 FitzHugh-Nagumo equation

u2 − u3 Zeldovich equation

Example 2.9. Consider the following reaction-diffusion equation

∂ui
∂t

= Di
∂2ui
∂x2

+ fi(u1, u2, ...., un)ui, i = 1, 2, 3..., N, (2.80)

where Di are nonnegative diffusion coefficients and the fi are polynomial functions of (u1, u2, ...., uN ).

We restrain the argument to systems modeled by Eq. (2.80) for which the ui(x, t) exhibit density

variables; as a result

ui(x, 0) ≥ 0 =⇒ ui(x, t) ≥ 0,
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which is a ”positivity condition” on the dependent variables. A nonstandard discretisation of

Eq. (2.80) from Mickens (1999) is

[ui]
n+1
m − [ui]

n
m

k
= Di

[ui]
n
m+1 − 2 [ui]

n
m + [ui]

n
m−1

h2
+ gi(u)[ui]

n
m − hi(u)[ui]

n+1
m , (2.81)

where gi(u) = gi([u1]nm, [u2]nm, ....., [un]nm) and hi(u) = hi([u1]nm, [u2]nm, ....., [un]nm) (we also have

the important property gi(u) ≥ 0, hi(u) ≥ 0, if [uj ]
n
m ≥ 0, j = 1, 2, .....N) are respectively the

collection of functions obtained from the positive and negative coefficient terms in fi(u) such

that

fi(u1, u2, ...., uN )ui =



∑
p β

i
p

∏N
l=1 ([ul]

n
m)p

i
l [ui]

n
m if βip ≥ 0,

∑
p−|βip|

∏N
l=1 ([ul]

n
m)p

i
l [ui]

n+1
m if βip ≤ 0.

(2.82)

where pil are nonnegative integers, P ≡ (pi1, p
i
2, ...., p

i
N ) is a vector quantity, βip are constants.

Also the first-order time derivative and second-order space derivative are replaced respectively

by usual forward Euler and Central difference representation (Strikwerda, 2004)

∂ui
∂t
→ [ui]

n+1
m − [ui]

n
m

k
,

∂2ui
∂x2

→
[ui]

n
m+1 − 2 [ui]

n
m + [ui]

n
m−1

h2
. (2.83)

2.1.4 Singularly perturbed reaction diffusion equation problems

Singularly perturbed problems concern a disturbance parameter which multiplies the highest

derivative term in the model-equation of the problem. The solution to this kind of problems is

typified by layer regions which are small parts of the domain beyond which the solution incurs

stiff changes. It is widely known that classical methods (for instance the classical backward Euler

or Crank–Nicolson scheme) are not suitable when the perturbation parameter becomes narrow

unless very fine meshes are utilized for spatial discretization. That is to say, this approach

has two side effects: it increases the round-off error and the computational cost. Singularly

perturbed problems can be represented as

ut + Lx,εu = f(x, t), (−∞,∞), t > 0, (2.84)

where, Lx,εu is spatial differential operator and defined as follows

Lx,εu ≡ −ε uxx + b(x, t)u, ε > 0, b ≥ 0. (2.85)

Eq. (2.85) into Eq. (2.84) give

ut = ε uxx + F (u(x, t)), where, F (u(x, t)) = b(x, t)u+ f(x, t), (−∞,∞), t > 0. (2.86)
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For specific initial condition and boundary condition, Eq. (2.86) can be regarded as Fisher’s

equation, which is one example of singularly perturbed problems.

Several authors have treated stationary singularly perturbed and time-dependent singularly

perturbed problems. For mentioning few, Lubuma and Patidar (2006), Patidar (2005, 2007)

used the class of fitted mesh methods and the class of fitted operator methods (based on

finite difference) to solve stationary singularly perturbed problems and Clavero et al. (2003),

Munyakazi and Patidar (2013) utilized respectively fitted operator finite methods and uniformly

convergent scheme to solve time-dependent singularly perturbed problems. For Eq. (2.84)

defined such that

∀ (x, t) ∈ Q = Ω× (0, T ] ≡ (0, 1)× (0, T ), (2.87)

subject to boundary conditions

u(x, 0) = 0, x ∈ Ω, u(0, t) = u(0, 1) = 0, t ∈ (0, T ]. (2.88)

We have the time semidiscretization on wK , as in Munyakazi and Patidar (2013) by backward

Euler method such that

wK = {tn = n τ, 0 ≤ n ≤ K, τ = T/K} (2.89)

and

z(x, tn)− z(x, tn−1)

τ
+ Lx,ε(z(x, tn)) = f(x, tn), 1 ≤ n ≤ K,

z(x, 0) = 0, ∀ x ∈ (0, 1), z(0, tn) = z(1, tn) = 0. (2.90)

When we consider the following partition of the interval [0, 1]

x0 = 0, xm = x0 +mh, m = 1, ....N, h = xm − xm−1, xN = 1, N ≥ 0,

then the fully discrete method for Eq. (2.84) as in Munyakazi and Patidar (2013) using prop-

erties of Mickens (1994) is

LN,Kε Unm ≡
Unm − Un−1

m

τ
+ LNx,ε U

n
m = fnm, L

N
x,ε U

n
m ≡ −ε

[
Unm+1 − 2Unn + Unm−1

φ2
m

]
+ bnm U

n
m,

(2.91)

where the discrete initial and boundary conditions

U0
m = 0, m = 0, ....., N, Un0 = UnN = 0, 1 ≤ n ≤ K,

φm =
2

ρm
sinh

(
ρm h

2

)
, ρm =

√(
1

τ
+ bnm

)
ε−1. (2.92)
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Chapter 3

On the Numerical Solution of

Fisher’s equation with coefficient of

diffusion term much smaller than

coefficient of reaction term

A version of this chapter has been published in Advances in Difference Equations as Agbavon

et al. (2019a).

3.1 Introduction

Real life problems are mainly modelled by partial differential equations (PDEs) and the appli-

cations can be in engineering, physics, chemistry, ecology, biology and other related fields of

science. PDEs are in different forms and can be linear or nonlinear, homogeneous or nonhomo-

geneous, elliptic, hyperbolic, parabolic.

PDEs have some specifications which give the information how smooth the solution is, how

rapid information propagates and the impact of initial and boundary conditions (which help to

find if a particular approach is suitable to the problem being portrayed by the PDEs).

For some example of modelling of real life, we can mention for instance, the wave propagation

in compressible two-phase flow (Zeidan et al., 2007), the pattern-forming dynamical systems

(Müller and Timmer, 2004), the stochastic failures and repairs of the components, changes in

the interconnections of subsystems, sudden environment changes (Sakthivel and Luo, 2009), the
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two-phase gas-magma mixture problem (Zeidan, 2016), the inverse problems (oil reservoir sim-

ulations, the conductivity differences between bone and muscle tissue) in Colton et al. (1990),

the unsteady cavitation in liquid hydrogen flows (Da Silva and Zeidan, 2017), the interaction

of shocks for isentropic drift-flux Zeidan et al. (2018).

Our study will be based on reaction diffusion equations which is one form of PDEs and are

mostly used in modelling of transport of air, adsorption of pollutants in soil, diffusion of neu-

trons, food processing, modelling of biological and ecological systems, modelling of semiconduc-

tors, oil reservoir flow transport among others (Chen and Kojouharov, 1999). Some tangible

applications are modelling of amazing patterns and phenomena such as tree-grass interactions

in fire-prone savannas (Yatat et al., 2018), pulse splitting and shedding (Gray-Scott equa-

tion)(Doelman et al., 1997). Gray-Scott equation has some applications namely: reaction and

competition in excitable systems, autocatalysis, reaction between two chemical species which

have different diffusivities (Houdek et al., 1999), modelling of Labyrinthine patterns (Hagberg

and Meron, 1994) which are formed in models of catalytic reactions. There are only few cases for

which the analytical solution to such reaction-diffusion equations exists, therefore the necessity

of constructing numerical methods which are accurate and efficient.

In this work, our interest is on Fisher’s equation (Fisher, 1937) which describes spontaneous

growth and spread of a dominant gene. Fisher considers a population which is distributed lin-

early in a habitat (shore line) with uniform density. If the mutation happens at any point of the

habitat, the mutant gene is expected to increase at the risk of the allelomorphs previously occu-

pying the same position. This occurrence will be first terminated in the neighbourhood of the

mutation and later in the adjacent portion of its range. Assuming the range to be long enough

likened with the distance separating the locations of offspring from those of their parents, there

will be, from the origin a wave of increase in the gene frequency.

3.1.1 Background of Fisher’s equation

We consider Fisher (1937)’s equation which is given by

ut = uxx + u(1− u), (3.1)

where x ∈ (−∞,+∞) , t > 0 and the boundary and initial conditions are

lim
x→−∞

u(x, t) = 1, lim
x→+∞

u(x, t) = 0, (3.2)

u(x, 0) = u0(x). (3.3)
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The above problem (Fisher, 1937) was solved by Kolmogorov (1937) by introducing the concepts

of travelling waves and the existence of wave speed c. Moreover they showed that the speed of

propagation c of the waves is greater than two (c ≥ 2) if the initial condition u0(x) is in the

interval [0, 1] and the type of solution is u(x, t) = v(ξ) where ξ = x− ct satisfying u ∈ [0, 1] for

all ξ. They also proved that such solutions do not exist for c ∈ [0, 1). The studies in Hagstrom

and Keller (1986) showed that if for a positive function as initial condition which verifies the

boundary conditions given by (3.2) on R and if

u0(x) ∼ e−β as x→∞, (3.4)

then the solution, u contains a travelling wave speed which is a function of β, where

c(β) =


β + 1

β , β ≤ 1,

2, β ≥ 1.

(3.5)

Furthermore, they proved that if the initial amplitude drops sufficiently quickly as x goes to

infinity, then the propagation speed of the wave (which determines the behaviour of initial con-

dition) has the minimum value, c = 2.

The numerical implementation of Eq. (3.1) with boundary and initial conditions given re-

spectively by (3.2) and (3.3) involving the travelling wave solution is challenging due to the

dependence of sensitive solution of the initial data behaviour at infinity. For instance, the

problem (3.1) with initial condition (3.3) (called Cauchy problem) is replaced by an initial and

boundary value problem on the finite spatial domain [xl, xr]. Moreover, Gazdag and Canosa

(1974) resolved this issue by imposing an asymptotic representation of the boundary condition

(3.2) at x = xl, x = xr. They found that the solution moves close to a travelling wave of the

minimum speed, c = 2. They concluded that the demanding time to change to the minimum

wave speed profile is linked to the right-hand cut off point x = xr. The same approach was

adopted by Hagstrom and Keller (1986) with the wave speed greater than the minimum wave

speed c = 2. They showed that the travelling wave solutions can be interpreted in finite domain

by constructing accurately the asymptotic boundary conditions at x = xl and x = xr. They

obtained good results with u(xl, t) = 1 and u(xr, t) = 0 for t ≥ 0.

Many authors like Canosa (1973) and Hagstrom and Keller (1986) have worked on the issue of

stability and sensitivity of the solution to the boundary of travelling wave. For instance the

equilibrium solutions u = 0 and u = 1 of Eq. (3.1) are respectively unstable and stable to

small perturbations. Moreover they demonstrated that all travelling waves are stable to small
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perturbations of compact support but unstable of infinite support.

Anguelov et al. (2005) solved the same problem (3.1) by using a periodic initial condition with

θ-non standard method. They concluded that their method is elementary stable in limit case

of space independent variable, stable with respect to the boundedness and positivity property

and finally stable with respect to the conservation of energy in the stationary case.

3.2 Organisation of chapter

The chapter is organised as follows. In section 3.3, we describe in details how the moving

mesh method with monitor function is implemented. In section 3.4, we describe numerical

experiments considered as in Li et al. (1998), Qiu and Sloan (1998). In sections 3.5 and 3.6,

the Forward in Time Central in Space (FTCS) and FTCS-ε difference scheme are studied and

numerical results are displayed. Sections 3.7 and 3.8 are devoted to derivation and properties of

NSFD and NSFD-ε scheme and results are presented. In section 3.9, we add artificial viscosity

to both FTCS and NSFD and study properties of new schemes and present some results. The

stability of computed solution and the sensitivity of the solution to the boundary condition

ahead of the wave in term of local pertubation are done in section 3.10. In section 3.11, we

highlight the salient features of this chapter. All simulations are performed using matlab R2014a

software on an intel core2 as CPU.

3.3 Moving Mesh method

Li et al. (1998) have considered a scaled Fisher’s equation in the form

ut = uxx + ρu(1− u), (3.6)

where x ∈ (−∞,+∞) , t > 0 and ρ is a positive large constant. The boundary and initial

conditions are given by Eqs. (3.2) and (3.3) respectively. The exact solution to this problem is

u(x, t) =

[
1 + exp

(√
ρ

6
x− 5ρ

6
t

)]−2

, (3.7)

with wave speed, c = 5
√
ρ/6 and the minimum wave speed, c = 2

√
ρ. Li et al. (1998) used the

method called Moving Mesh Partial Differential Equation (MMPDE). They got poor results

when ρ is chosen 104. They concluded that the Moving Mesh Partial Differential Equation

(MMPDE) is not suitable for reaction-diffusion equation (Fisher’s equation in particular) when

the reaction term is much greater than the diffusion term with initial condition consisting of
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an exponential function. This is due to the fact that MMPDE is based on familiar arc-length

or curvature monitor function and does not produce accurate results (Mulholland et al., 1997).

Qiu and Sloan (1998) improved the results of Li et al. (1998) by constructing a specific monitor

function and used the method of Moving Mesh Differential Algebraic Equation (MMDAE).

The technique of Moving Mesh method (MMPDE) has been utilized broadly over the last few

years to find a solution to time-dependent partial differential equations (PDEs). The method

consists of moving the mesh points as time change with motion designed to minimise some

measurement in computational error (Qiu and Sloan, 1998).

We consider the variables ζ and t with ζ defined by one-to-one coordinate transformation of the

form

x = x(ζ, t), ζm = −1 +
2m

N
, m = 0, ...., N, (3.8)

where ζm are spaced nodes in the interval [−1, 1] to the nodes {xm}Nm=0 in the interval [xl, xr],

with

xl = x0(t) < x1(t) < · · ·· < xN (t) = xr, ∀ t ≥ 0.

Remark 3.1. The set of {ζm}Nm=0 forms a partition ({0, 1}N, where N, set of natural number)

of [−1, 1]. There is bijection between the set {0, 1}N and the set of real number R = (−∞, ∞).

Remark 3.2. xm(t) is time dependent due of the definition of moving mesh (moving the mesh

points as time change) method.

We can rewrite (3.6) in semi-discrete form such that

u̇m − ẋm
um+1 − um−1

xm+1 − xm−1
=

2

xm+1 − xm−1

(
um+1 − um
xm+1 − xm

− um − um−1

xm − xm−1

)
+ ρum(1− um), (3.9)

for m = 1, 2, ...., N − 1 by using the Lagrangian form (Mulholland et al., 1997)

u̇− ẋ∂ux = ∂uxx + ρu(1− u). (3.10)

Moreover u̇, ẋ are the derivatives with respect to t, independent of ζ and {xm}Nm=0 and {um}Nm=0

are the time-dependent vectors for approximations. In order to adjust the mesh to the solution

as presented in Huang et al. (1994), they introduced the equidistribution principle which is∫ x(ζ,t)

xl

M(s, t) ds = ζ

∫ x(xr)

xl

M(s, t) ds, (3.11)

where M > 0 indicates the monitor function that has to be equally distributed between the

nodes xl, xr. Differentiation of Eq. (3.11) with respect to ζ gives

∂ζ [M(x(ζ, t))∂ζx(ζ, t)] = 0. (3.12)
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Furthermore, the equation (3.12) has been used in Huang et al. (1994) to derive a collection of

moving mesh and the most accurate of this collection is

∂ζζ ẋ = −1

τ
∂ζ(M∂ζx), (3.13)

denoted by MMPDE6 with τ , small positive parameter (τ � 1). Under the condition that the

discretization has been done on the grid ζi and using the second order central differences leads

to semi-discrete form of moving mesh equation

ẋm−1 − 2ẋm + ẋm+1 = −1

τ

[
M
′

m+1/2(xm+1 − xm)−M ′

m+1/2(xm − xm−1)
]
, (3.14)

for m = 1, 2, .... N − 1 with M
′

m+ 1
2

being smoothed monitor function as established in Mulhol-

land et al. (1997) and Huang et al. (1994) by

M
′

m+ 1
2

=

∑m+p
k=m−pM

2
k+1/2

(
q
q+1

)|k−m|
∑m+p

k=m−p

(
q
q+1

)|k−m| , (3.15)

where q is positive real number and p is non-negative integer. Furthermore, setting

M
′

m+1/2(xm+1 − xm)−M ′

m+1/2(xm − xm−1) = 0, (3.16)

in Eq. (3.14) leads to Moving Mesh Differential-Algebraic Equation (MMDAE) developed by

Mulholland et al. (1997). This method combines the systems (3.9) and (3.16). The difference

between MMPDE6 and MMDAE is that MMPDE6 accommodates a parameter τ that shows

the time used to attain equidistribution from some initial state while MMDAE enforces the

approximate equidistribution condition (3.16) at each moment of time in the time discretisation.

Each problem has its own choice of monitor function. This makes the choice of monitor function

an open question. Following Qiu and Sloan (1998), Mulholland et al. (1997) and Huang et al.

(1994), the monitor function (arc-length) is defined by

M(x, t) =
√

1 + α2(∂xu)2, (3.17)

with its discrete approximation Mm+ 1
2

being

Mm+ 1
2

=

√
1 + α2

(
um+1 − um
xm+1 − xm

)2

, (3.18)

where the parameter α measures the amplitude to which the solution slope has control over the

mesh location.

It has been shown in Qiu and Sloan (1998) that moving mesh based on the arc-length and
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curvature monitor function are not convenient for the computational solution of Eq. (3.6).

Indeed, firstly the computed solution at t = 2.5 × 10−3 is susceptible to the choice of τ (at

values 10−3, 10−5, 10−7 with α fixed at 2 and xl = −0.2, xr = 0.8) in Eq. (3.13) in the moving

mesh using the arc-length monitor function. Secondly, the common monitor function utilized is

one in which the first derivative in (3.17) is substituted by the second derivative and we have

M(x, t) =
(
1 + α2(∂xxu)2

)1/4
, (3.19)

with its discrete approximation being

M4
m+ 1

2

= 1 + α2

[
1

xm+1 − xm

(
um+2 − um
xm+2 − xm

− um+1 − um−1

xm+1 − xm−1

)]2

. (3.20)

The results show the same sensitivity as in the case of arc-length monitor function. There is

oscillation of the solution at the front of wave. In the quest for obtaining the accurate result,

Qiu and Sloan (1998) introduced the Modified Monitor function.

3.3.1 Modified Monitor Function

The modified monitor function is one constructed to give a great nodal density and hence a

better accuracy at the wave front. It has been shown by Hagstrom and Keller (1986) and

by Gazdag and Canosa (1974) that the difficulties which occur in simulating numerically the

travelling waves for Fisher’s equation come from the front of the wave. This is why significant

care should be taken in formulation of boundary conditions at x = xr. Furthermore the results in

Gazdag and Canosa (1974) showed that the numerical solution of all travelling wave are stable

to small disturbances with compact support and unstable with infinite extent especially to

truncation errors inserted at the wave front. It is, consequently, what is an origin of inaccuracy

of truncations errors than similar truncations errors introduced at the back of the wave. In this

regard, the modified monitor function is

M(x, t) =
[
1 + α2(1− u)2 + β2(a− u)2(uxx)2

]1/2
, (3.21)

where α, β and a are real specific parameters carefully chosen. The expressions (1−u)2, (a−u)2

are designed to give more influence of the curvature region at the front of the wave than the

corresponding curvature region at the back of the wave.

Remark 3.3. α, β and a are real specific parameters and carefully chosen due to the fact finding

the accurate monitor function is an open problem. The monitor function is based on an accurate

choice α, β and a so that one can expect accurate and efficient results. Each problem has its
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choice of monitor function. That is why a care should be taken regarding to these parameters

so that the monitor function can suit well to the problem.

With α = 1.5, β = 0.1, a = 1.015, t = 2.5 × 10−3 in the computations of MMDAE and the

modified monitor function given by Eq. (3.21), the maximum pointwise error, 9.25 × 10−3 is

much smaller than the corresponding error O(1) using the arc-length monitor function. With

the method of MMPDE6, the situation is less improved than the method of MMDAE which

is also far better than the method of arc-length monitor function. Indeed with the parameter

τ = 10−7 and time, t = 2.5×10−3, L∞ error is 4.29×10−2. For the values greater than N = 50

with τ = 10−7 and time, t = 2.5 × 10−3, the error is not diminished. Whenever the reduction

is applied in the value of τ , we have the reduction in the value of L∞ error.

Methods L1 error L∞ error CPU

MMPDE 4.29×10−2 O(1) ext

MMDAE 9.25×10−3 k×10−2 0.86ext

Table 3.1: Computation of L1 and L∞ errors using MMPDE and MMDAE methods with

ρ = 104, α = 1.5, β = 0.1, a = 1.015, τ = 10−7, N = 50, at time, t = 2.5× 10−3.

Remark 3.4. ”ext” in Table 3.1 is a value of computational time of MMPDE compares to

computational time value ”0.86ext” of MMDAE as it is in Qiu and Sloan (1998).

Remark 3.5. L1 and L∞ errors are chosen as like in (Li et al., 1998) and (Qiu and Sloan,

1998). Moreover, L1 and L∞ errors are computed to see how far the numerical solution is from

the exact solution for a given problem in term of L1 and L∞ norms (please to the Definition

2.11 of L1 and L∞ norms).

3.4 Numerical experiments

We consider two problems. Firstly, we consider the same problem as in Qiu and Sloan (1998)

which involves solving:

Problem 1

ut = uxx + 104u(1− u),

for x ∈ [−0.2, 0.8], with boundary conditions limx→−∞ u(x, t) = 1 and limx→+∞ u(x, t) = 0

and time is 2.5× 10−3.
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The initial condition is

u(x, 0) =

[
1 + exp

(√
ρ

6
x

)]−2

. (3.22)

Secondly, we consider a slight modification of Problem 1. We use a larger domain with the same

boundary and initial conditions and the same propagation time.

Problem 2

ut = uxx + 104u(1− u),

for x ∈ [−10, 90], with boundary conditions limx→−∞ u(x, t) = 1 and limx→+∞ u(x, t) = 0

and time is 2.5× 10−3.

The initial condition is

u(x, 0) =

[
1 + exp

(√
ρ

6
x

)]−2

. (3.23)

In next sections, we present the numerical methods used and study the properties.

Remark 3.6. As we stated in the introduction, Hagstrom and Keller (1986) have proved that

travelling wave solutions with speeds greater than c ≥ 2 can be accurately represented on a finite

domain. Their success is based on the choice of boundary conditions at the isolated points. They

imposed on these isolated points an asymptotic representation of the boundary condition which

take into account of the initial data in the discarded region. They presented, nonetheless, that

the solution is accurate using

lim
x→−∞

u(x, t) = 1, and lim
x→+∞

u(x, t) = 0, for t ≥ 0.

For the numerical experiment, we use x ∈ [−0.2, 0.8] and the boundary condition is

u(−0.2, t) =

[
1 + exp

(
−0.2

√
ρ

6
− 5ρ

6
t

)]−2

, u(0.8, t) =

[
1 + exp

(
0.8

√
ρ

6
− 5ρ

6
t

)]−2

.

Also we use x ∈ [−10, 90], the boundary condition is

u(−10, t) =

[
1 + exp

(
10

√
ρ

6
− 5ρ

6
t

)]−2

, u(90, t) =

[
1 + exp

(
90

√
ρ

6
− 5ρ

6
t

)]−2

.

3.5 Forward in Time Central Space (FTCS)

The Forward in Time Central Space (FTCS) scheme when used to discretise Eq. (3.6) gives

(Chen-Charpentier and Kojouharov, 2013)

un+1
m − unm

k
=
unm+1 − 2unm + unm−1

h2
+ ρunm(1− unm). (3.24)
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A single expression for the FTCS scheme is

un+1
m = (1− 2R)unm + kρunm(1− unm) +R(unm+1 + unm−1), (3.25)

where R = k
h2
. The time-step size and spatial mesh are denoted by k and h respectively.

3.5.1 Stability

Eq. (3.6) is nonlinear and hence Fourier series stability analysis cannot be applied directly.

We need to freeze the coefficients before applying Von Neumann Stability Analysis (Durran,

2010). Taha and Ablowitz (1984) obtained the stability of a method proposed by Zabusky and

Kruskal (1965) for Korteweg de Vries (KdV) equation using the method of freezing coefficients

and Von Neumann Stability Analysis. The scheme derived by Zabusky and Kuskal for the KdV

equation, ut + 6uux + uxxx = 0 is

un+1
m − un−1

m

2k
+ 6

(
unm+1 + unm + unm−1

3

)(
unm+1 − unm−1

2h

)
+

1

2h3

(
unm+2 − 2unm+1 + 2unm−1 − unm−2

)
= 0.

(3.26)

To obtain stability, Taha and Ablowitz (1984) expressed uux as umaxux and used the ansatz

unm = ξneImw where w is the phase angle. They obtained the following equation

ξ − ξ−1

2k
+

6|umax|
h

I sin(w) +
1

2h3
(e2Iw − 2eIw + 2e−Iw − e−2Iw) = 0,

which can be written as

ξ = ξ−1 − 12k|umax|
h

I sin(w)− k

h3
(e2Iw − 2eIw + 2e−Iw − e−2Iw).

The linear stability requirement is

k

h

∣∣∣∣ 1

h2
− 2|umax|

∣∣∣∣ ≤ 2

3
√

3
. (3.27)

Appadu et al. (2017) used the method of freezing coefficient and Von Neumann stability analysis

to obtain region of stability of some schemes for Eq. (3.6). We use the same idea in order to

obtain stability region of FTCS scheme. We rewrite Eq. (3.25) as

un+1
m =

(
1− 2k

h2

)
unm +

k

h2
(unm+1 + unm−1) + kρunm − (kρunm)|umax|, (3.28)

where umax is the frozen coefficient. It follows by using Fourier series analysis on Eq. (3.28)

that the amplification factor is given by

ξ = 1 +
2k

h2
(cos(w)− 1) + kρ(1− |umax|). (3.29)
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In our numerical experiment, umax = 1 and ρ = 104. Hence we obtain

ξ = 1− 4k

h2
sin2

(w
2

)
. (3.30)

For stability, we must have |ξ| ≤ 1 for w ∈ [−π, π] and therefore

− 1 ≤ 1− 4k

h2
sin2

(w
2

)
≤ 1, (3.31)

and this leads to

k ≤ h2

2
. (3.32)

For h = 0.01, we obtain k ≤ 5× 10−5. The time of the experiment is Tmax = 2.5× 10−3 and for

the stability, the temporal step size is less than or equal to 5 × 10−5 or Tmax/50. For order of

accuracy of FTCS, we use Taylor series expansion about point (n,m) of (3.25) and it gives

u+ kut +
k2

2
utt +

k3

6
uttt +O(k4) =

(
1− 2k

h2
+ kρ

)
u− kρu2

+
k

h2

(
u+ hux +

h2

2
uxx +

h3

6
uxxx +

h4

24
uxxxx +O(h5)

)
+

k

h2

(
u− hux +

h2

2
uxx −

h3

6
uxxx +

h4

24
uxxxx +O(h5)

)
,

(3.33)

which to gives

ut − uxx − ρu(1− u) = −k
2
utt −

k2

6
uttt +

h2

12
uxxxx +O(k4) +O(h5). (3.34)

FTCS scheme is first order accurate in time and second order accurate in space.

3.5.2 Numerical results using FTCS

We tabulate some errors namely L1 and L∞ errors and display CPU times when Problem 1

and 2 are solved using FTCS at some different values of time-step size with spatial step size

h = 0.01. The errors are displayed in Tables (3.2) and (3.4).
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Time step (k) L1 error L∞ error CPU (s)

Tmax/52 2.8968×10−1 1.5200 0.648

Tmax/100 6.5144×10−2 6.9877×10−1 0.719

Tmax/200 3.2980×10−2 3.9927×10−1 0.672

Tmax/300 2.0727×10−2 2.5613×10−1 0.693

Tmax/400 1.4262×10−2 1.7830×10−1 0.708

Tmax/500 1.0268×10−2 1.2943×10−1 0.730

Tmax/600 7.5557×10−3 9.5605×10−2 0.770

Tmax/700 5.5929×10−3 7.1038×10−2 0.791

Tmax/800 4.1068×10−3 5.2473×10−2 0.816

Tmax/900 2.9425×10−3 3.7988×10−2 0.866

Tmax/1000 2.0059×10−3 2.6389×10−2 0.904

Tmax/1100 1.2404×10−3 1.6901×10−2 0.932

Tmax/1200 6.2983×10−4 9.0013×10−3 1.233

Tmax/1300 1.9347×10−4 2.3240×10−3 1.055

Tmax/1400 4.2509×10−4 4.3458×10−3 1.141

Tmax/1500 8.3336×10−4 8.7691×10−3 1.245

Tmax/1600 1.1913×10−3 1.3138×10−2 1.366

Table 3.2: L1 and L∞ errors and CPU time at some different values of time-step size, k for

Problem 1 with ρ = 104 at time 2.5×10−3 with spatial mesh size, h = 0.01 using FTCS scheme,

where Tmax = 2.5× 10−3.

Time step (k) L1 error Rate of convergence

Tmax/100 6.5144×10−2

Tmax/200 3.2980×10−2 0.982

Tmax/400 1.4262×10−2 1.209

Table 3.3: Rate of convergence with k and spatial mesh size, h = 0.01, ε = 0.01, of Problem 1

using FTCS.
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Remark 3.7. We recall that FTCS scheme is first order accurate in time and second order

accurate in space. The computed rate of convergence is with respect to time.

Time step (k) L1 error L∞ error CPU (s)

Tmax/52 2.8667×10−1 1.5040 1.368

Tmax/100 6.5144×10−2 6.9877×10−1 2.183

Tmax/200 3.2980×10−2 3.9927×10−1 4.532

Tmax/300 2.0727×10−2 2.5613×10−1 7.689

Tmax/400 1.4262×10−2 1.7830×10−1 11.509

Tmax/500 1.0268×10−2 1.2943×10−1 16.099

Tmax/600 7.5557×10−3 9.5605×10−2 22.270

Tmax/700 5.5929×10−3 7.1038×10−2 28.343

Tmax/800 4.1068×10−3 5.2473×10−2 35.383

Tmax/900 2.9425×10−3 3.7988×10−2 43.181

Tmax/1000 2.0059×10−3 2.6389×10−2 51.644

Tmax/1100 1.2404×10−3 1.6901×10−2 61.532

Tmax/1200 6.2983×10−4 9.0013×10−3 71.195

Tmax/1300 1.9347×10−4 2.3240×10−3 82.456

Tmax/1400 4.2509×10−4 4.3458×10−3 94.146

Tmax/1500 8.3336×10−4 8.7691×10−3 107.725

Tmax/1600 1.1913×10−3 1.3138×10−2 118.352

Table 3.4: L1 and L∞ errors and CPU time at some different values of time-step size, k for

Problem 2 with ρ = 104 at time 2.5×10−3 with spatial mesh size, h=0.01 using FTCS scheme,

where Tmax = 2.5× 10−3.

We observe from Tables (3.2) and (3.4) that L1 and L∞ errors are almost the same with

different computational times which to be expected due to the fact as we increase the length of

the domain, the computational time increases. As we decrease the time-step size, L1 and L∞

errors initially decrease and reach minimum when k w Tmax/1300 and then the errors increase

again. For k close to Tmax/50, the dispersion error is quite large. Comparing Tables (3.2) and

(3.4) to Table (3.1), we notice that L1 and L∞ errors from FTCS method at an optimal temporal

step size are quite smaller than L1 and L∞ errors from MMPDE and MMDAE methods. Some

plots of u against x are depicted in Fig. (3.1) using h = 0.01 and some different values of k.
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Remark 3.8. In the Table 3.2, the CPU time is not monotonically increasing with the decreas-

ing time step size it mighty be due to the fact that the partial differential equation considered

is very stiff (problem Eq. 3.6 the boundary and initial conditions given by Eqs. (3.2) and (3.3)

respectively) with ρ = 104. Initially, we have considerable phase lag at k = Tmax
52 . As we decrease

the time step size, there is less phase lag. At time k = Tmax
1300 , we have optimal results. If we

decrease k further, then we start to have phase lead.
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(f) k = Tmax/1400

Figure 3.1: Plot of u against x for Problem 1 using FTCS scheme at time 2.5 × 10−3 at some

different values of k and h = 0.01, Tmax = 2.5× 10−3.
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3.6 FTCS-ε scheme

In this section, we modify the FTCS scheme in order to obtain FTCS-ε. Ruxun et al. (1999)

have designed a new scheme by modifying Lax-Wendroff (LW) scheme when used to discretise

the linear advection equation given by

ut + c ux = 0, c > 0. (3.35)

We describe briefly their approach. To solve Eq. (3.35), a simple explicit consistent scheme can

be constructed and the scheme is of the form

un+1
m = a1 u

n
m+1 + a0 u

n
m + a−1 u

n
m−1. (3.36)

Taylor series expansion of (3.36) gives

(1 + kDt +
k2

2!
D2
t + · · ·)unm =

[
(a1 + a0 + a−1) + h (a1 − a−1)Dx +

h2

2!
(a1 + a−1)D2

x

+
h3

3!
(a1 − a−1)D3

x + · · ·

]
unm,

(3.37)

where Dt = ∂
∂t
, Dx = ∂

∂x
. Ruxun et al. (1999) arrive at the following theorem:

Theorem 3.1. Assume that the solution u(x, t) of Eq. (3.35) be smooth enough and the scheme

given by (3.36) be consistent with the original partial differential Eq. (3.35) and the spatial mesh

size, h small enough then

a1 + a0 + a−1 = 1,

a1 − a−1 = c
k

h
. (3.38)

Proof. Rewriting the equation (3.37)[
1− (a1 + a0 + a−1) + kDt − h (a1 − a−1)Dx +

k2

2!
D2
t −

h2

2!
(a1 + a−1)D2

x

− h3

3!
(a1 − a−1)D3

x + · · ·

]
unm = 0.

(3.39)

It follows that a1 + a0 + a−1 = 1 and a1 − a−1 = c kh .

The Lax-Wendroff (LW) scheme discretising Eq. (3.35) is given by

un+1
m =

1

2
(r2 − r)unm+1 + (1− r2)unm +

1

2
(r2 + r)unm−1, (3.40)

49

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



where r = c kh . From the CFL condition, the scheme is stable if 0 < r ≤ 1.

Clearly, LW is not a monotone and positive scheme. A simple approach to construct a monotonic

scheme is to reform the LW scheme. Ruxun et al. (1999) constructed the LW-ε scheme which

is given by

un+1
m =

(
r2 − r

2
+ ε1

)
unm+1 + (1− r + ε2)unm +

(
r2 + r

2
+ ε3

)
unm−1. (3.41)

For consistency, we set ε1 + ε2 + ε3 = 0 and ε1− ε3 = 0. Hence ε2 = −2ε1. We let ε2 = −ε. LW-ε

scheme is therefore

un+1
m =

(
r2 − r

2
+
ε

2

)
unm+1 + (1− r − ε)unm +

(
r2 + r

2
+
ε

2

)
unm−1, (3.42)

with 0 6 ε� 1. By working with dissipation and dispersion remainders, they found that ε = 1/4

gives rise to a positive, monotonic scheme which is still second-order accurate.

We attempt to derive FTCS-ε scheme by adding numerical dissipation to the scheme to reduce

numerical dispersion in the profile. We propose the following scheme

un+1
m =

(
1− 2k

h2
+ kρ

)
unm +

k

h2
unm+1 +

k

h2
unm−1 − kρ(unm)2 + ε1 u

n
m−1 + ε2 u

n
m + ε3 u

n
m+1. (3.43)

Theorem 3.2. FTCS-ε scheme (3.43) is consistent with the original scaled equation (3.6) and is first

order accurate both in time and in space if and only if ε1 + ε2 + ε3 = 0 and ε3 − ε1 = 0.

Proof. 1) Taylor series expansion about point (n,m) gives

u+ kut +
k2

2
utt +

k3

6
uttt +O(k4) =

(
1− 2k

h2
+ kρ

)
u− kρu2

+
k

h2

(
u+ hux +

h2

2
uxx +

h3

6
uxxx +O(h4)

)
+

k

h2

(
u− hux +

h2

2
uxx −

h3

6
uxxx +O(h4)

)
+ ε1

(
u− hux +

h2

2
uxx −

h3

6
uxxx +O(h4)

)
+ ε3

(
u+ hux +

h2

2
uxx +

h3

6
uxxx +O(h4)

)
+ ε2 u, (3.44)

which simplifies as

u+ kut +
k2

2
utt +

k3

6
uttt +O(k4) = (1 + kρ+ ε1 + ε2 + ε3)u+ (−ε1 + ε3)hux − kρu2 +(

k +
ε1
2
h2 +

ε3
2
h2
)
uxx +

(
−ε1

6
+
ε3
6

)
h3uxxx +O(h4). (3.45)

On rearranging, we get

u− (1 + ε1 + ε2 + ε3)u+ kut − h(ε3 − ε1)ux − kuxx − kρu+ kρu2

= −k
2

2
utt −

k3

6
uttt +

h3

6
(ε3 − ε1)uxxx +

h2

2
(ε1 + ε3)uxx +O(h4) +O(k4). (3.46)
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We recall that we are solving Eq. (3.6). Therefore for consistency, we must have ε1 + ε2 + ε3 = 0

and ε3 − ε1 = 0. We thus have ε3 = ε1 = ε and ε2 = −2ε1 = −2ε. Hence the FTCS-ε scheme is

given by

un+1
m = unm +

k

h2

(
unm+1 − 2unm + unm−1

)
+ kρunm − kρ(unm)2 + ε(unm+1 − 2unm + unm−1), (3.47)

and the scheme is consistent.

2) For order of accuracy, we consider Eq. (3.46) and we replace ε3 = ε1 = ε and ε2 = −2ε1 = −2ε

and we have

kut − kuxx − kρu+ kρu2 = −k
2

2
utt −

k3

6
uttt + h2εuxx +O(h4) +O(k4). (3.48)

Dividing by k, gives

ut − uxx − ρu+ ρu2 = −k
2
utt −

k2

6
uttt +

h2

k
εuxx +

h2

12
uxxx +O

(
h4

k

)
+O(k3). (3.49)

FTCS-ε scheme is first order accurate both in time and in space.

Theorem 3.3. FTCS-ε scheme (3.43) is stable under the condition

k

h2
≤ 1

2
− ε

for the time step, k and the spatial size, h.

Proof. For stability analysis, we apply Fourier series analysis and we obtain the amplification factor ξ,

as

ξ = 1− 2k

h2
+

2k

h2
cos(w) + kρ− kρumax + ε(2 cos(w)− 2), (3.50)

We choose umax = 1, ρ = 104 and therefore,

ξ = 1− 4 sin2
(w

2

)(
ε+

k

h2

)
. (3.51)

For stability, |ξ| ≤ 1 and this gives

2

(
ε+

k

h2

)
sin2

(w
2

)
≤ 1, (3.52)

which finally yields
k

h2
≤ 1

2
− ε. (3.53)

For h = 0.01, ε = 0.01, we have the stability region given by k ≤ 4.90× 10−5.

We tabulate some errors namely L1 and L∞ errors and display CPU times for Problem 1 and 2 us-

ing FTCS-ε at some different values of time-step size with spatial step size, h = 0.01, and ε = 0.01. The
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errors are displayed in Tables (3.5) and (3.7). The time is Tmax = 2.5 × 10−3 and the timestep size is

less than or equal 4.90× 10−5.

We observe from Tables (3.5) and (3.7) that the L1 and L∞ errors are the same and the CPU time is

different. As we increase the length of the domain, it is obvious that CPU time must increase. As we

decrease the time-step size, L1 and L∞ errors initially decrease and reach minimum when k ≈ Tmax/315

and then the errors increase again. For k close to Tmax/100, the dispersion error is quite large.

Comparing Tables (3.2) and (3.4) to Table (3.1), we notice that L1 and L∞ errors from FTCS-ε method

at an optimal step size are quite smaller than those obtained using MMPDE and MMDAE methods.
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(f) k = Tmax/400

Figure 3.2: Plot of u against x for Problem1 using FTCS-ε scheme at time 2.5× 10−3 and some

different values of k and h = 0.01, ε = 0.01, Tmax = 2.5× 10−3.
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Time step (k) L1 error L∞ error CPU(s)

Tmax/53 2.8025×10−1 1.5265 0.764

Tmax/100 5.9959×10−2 6.6244×10−1 0.783

Tmax/200 2.1273×10−2 2.6296×10−1 0.796

Tmax/300 2.4401×10−3 3.1737×10−2 0.928

Tmax/310 9.7448×10−4 1.3521×10−2 0.850

Tmax/315 3.2771×10−4 4.7040×10−3 0.799

Tmax/320 4.6757×10−4 4.6218 ×10−3 0.814

Tmax/325 1.1657×10−3 1.2769×10−2 0.902

Tmax/350 4.5061×10−3 5.3608×10−2 0.821

Tmax/375 7.6305×10−3 9.1590×10−2 0.927

Tmax/400 1.0576×10−2 1.2682×10−1 0.927

Tmax/500 2.1076×10−2 2.4515×10−1 0.925

Tmax/600 3.0241×10−2 3.4502×10−1 0.868

Table 3.5: L1 and L∞ errors and CPU time at some different values of time-step size, k for

Problem 1 and spatial mesh size, h = 0.01, ε = 0.01 using FTCS-ε, where Tmax = 2.5× 10−3.

Time step (k) L1 error Rate of convergence

Tmax/100 5.9959×10−2

Tmax/200 2.1273×10−2 1.495

Table 3.6: Rate of convergence with k and spatial mesh size, h = 0.01, ε = 0.01, of Problem 1

using FTCS-ε.

Remark 3.9. The optimal k is approximately Tmax
315 . That why we use Tmax

100 and Tmax
200 . Reason being, we

don’t need adding further rows to compute the convergence rate.
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Time step (k) L1 error L∞ error CPU(s)

Tmax/53 2.8025×10−1 1.5265 1.488

Tmax/100 5.9959×10−2 6.6244×10−1 2.265

Tmax/200 2.1273×10−2 2.6296×10−1 4.704

Tmax/300 2.4401×10−3 3.1737×10−2 7.819

Tmax/310 9.7448×10−4 1.3521×10−2 8.154

Tmax/315 3.2771×10−4 4.7040×10−3 8.429

Tmax/320 4.6757×10−4 4.6218 ×10−3 8.537

Tmax/325 1.1657×10−3 1.2769×10−2 8.732

Tmax/350 4.5061×10−3 5.3608×10−2 9.779

Tmax/375 7.6305×10−3 9.1590×10−2 10.678

Tmax/400 1.0576×10−2 1.2682×10−1 11.692

Tmax/500 2.1076×10−2 2.4515×10−1 16.319

Tmax/600 3.0241×10−2 3.4502×10−1 21.644

Table 3.7: L1 and L∞ errors and CPU time at some different values of time-step size, k and

spatial mesh size, h = 0.01, ε = 0.01, of Problem 2 using FTCS-ε, where Tmax = 2.5× 10−3.

3.7 Nonstandard Finite Difference Schemes (NSFD)

Diverse explicit NSFD schemes have been suggested for Fisher’s equation with respect to their perfor-

mances (Anguelov et al., 2005, Mickens, 1994, 1997). These performances are stability of fixed points,

positivity, boundedness of solutions etc. More notions on NSFD with definition and properties is in

chapter 2, section 2.1.2.

Following Mickens (2002), a non-standard finite difference scheme for Eq. (3.6) is

un+1
m − unm
φ(k)

−
unm+1 − 2unm + unm−1

[ψ(h)]2
= ρunm − ρ

(
unm+1 + unm + unm−1

3

)
un+1
m , (3.54)

where the simple choice was made for the two denominator functions

φ(k) = k; ψ(h) = h2, (3.55)

and where non-local representation was used for the u2 terms;

u2 →
(
unm+1 + unm + unm−1

3

)
un+1
m . (3.56)

A single expression of the scheme is

un+1
m =

(
1 + kρ− 2k

h2

)
unm + k

h2

(
unm+1 + unm−1

)
1 + kρ

(
unm+1+unm+unm−1

3

) . (3.57)
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3.7.1 Positivity and Boundedness: Relation between time and space step-

sizes

In this subsection, we study the positivity and boundedness properties of NSFD.

From the initial data, if u(x, 0) = f(x), such that 0 ≤ f(x) ≤ 1, we have 0 ≤ u(x, t) ≤ 1 (Mickens, 1997).

Theorem 3.4. The scheme (3.57) is positive and definite if there is a constant Γ, 0 ≤ Γ < 1 such that

the inequality

k ≤ h2

2

[
1− Γ

1− ρh2

2

]
holds for the time step, k and spatial size, h.

Proof. If the quantity un+1
m from Eq. (3.57) is required to satisfy positivity condition (un+1

m ≥ 0) if

unm ≥ 0, then we must have

Γ = 1 + kρ− 2R ≥ 0, R =
k

h2
. (3.58)

It follows that

1− Γ = 2R− kρ. (3.59)

We have

0 ≤ 2R− kρ ≤ 1, (3.60)

which gives

0 ≤ k
[

2

h2
− ρ
]
≤ 1. (3.61)

It follows that

k ≤ h2

2

[
1− Γ

1− ρh2

2

]
and 0 ≤ Γ < 1, (3.62)

which is the condition required for positivity (Mickens, 1997).

Remark 3.10. The same result can be obtained by using the Von Neumann stability analysis.

Indeed, for stability, the amplification factor, ξ is given by

ξ =
1 + kρ− 2k

h2 (1− cos(w))

1 + kρumax
=

1 + kρ− 4k
h2 sin2(w2 )

1 + kρumax
. (3.63)

We requires |ξ| ≤ 1. Since umax = 1, we have

2k

h2
sin2

(w
2

)
≤ 1 + kρ. (3.64)

For w ∈ [−π, π], we have

2k

h2
≤ 1 + kρ⇒ k ≤ h2

2

[
2R− kρ
1− ρh2

2

]
, (3.65)

which yield using Eq. (3.59)

k ≤ h2

2

[
1− Γ

1− ρh2

2

]
and 0 ≤ Γ < 1. (3.66)
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We note that we get the same inequality between k and h for stability and positive definiteness to be

satisfied. For h = 0.01, ρ = 104, we have k ≤ 10−4 or k ≤ Tmax
25 .

Theorem 3.5. If 0 ≤ unm ≤ 1 and the condition

k =
h2

3

[
1

1− ρh2

3

]
holds for the time step, k and space step, h then the scheme (3.57) is bounded.

Proof. We assume that 0 ≤ unm ≤ 1. We rewrite Eq. (3.57) as

un+1
m =

Γunm +R
(
unm+1 + unm−1

)
1 +

(
ρk
3

)
(unm+1 + unm + unm−1)

. (3.67)

From (Mickens, 1997), Eq. (3.67) takes the symmetric form if Γ = R. It follows that

k =
h2

3

[
1

1− ρh2

3

]
. (3.68)

Hence

R =
k

h2
=

(
1

3

)[
1

1− ρh2

3

]
. (3.69)

Taking into account the symmetric condition (3.69), Eq. (3.67) can be rewritten as

un+1
m =

R(unm + unm+1 + unm−1)

1 +
(
kρ
3

)
(unm+1 + unm + unm−1)

. (3.70)

We know that 0 ≤ unm ≤ 1. It follows that

0 ≤
unm + unm+1 + unm−1

3
≤ 1. (3.71)

By multiplying Eq. (3.71) by 1− ρh2

3 and dividing by 1− ρh2

3 , we have[
1− ρh2

3

]
unm + unm+1 + unm−1

3
[
1− ρh2

3

] ≤ 1, (3.72)

which can be rewritten

unm + unm+1 + unm−1

3
[
1− ρh2

3

] −
[
ρh2

3

]
unm + unm+1 + unm−1

3
[
1− ρh2

3

] ≤ 1. (3.73)

It follows that

unm + unm+1 + unm−1

3
[
1− ρh2

3

] ≤ 1 +
h2

3

[
1

1− ρh2

3

](ρ
3

)
(unm + unm+1 + unm−1). (3.74)

Using Eqs. (3.69) and (3.68), we have

R(unm + unm+1 + unm−1) ≤ 1 +
kρ

3
(unm + unm+1 + unm−1), (3.75)

which gives

0 ≤ un+1
m =

R(unm + unm+1 + unm−1)

1 +
(
kρ
3

)
(unm+1 + unm + unm−1)

≤ 1. (3.76)

Hence the boundedness of un+1
m .
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We tabulate L1 and L∞ errors and CPU time when Problem 1 and 2 are solved using NSFD scheme

at some different values of time-step size k, with spatial step size, h = 0.01. The errors are displayed in

Tables (3.9) and (3.10). As the time-step size is reduced, the errors initially decrease and optimal k is

approximately equal to Tmax/1500. On further decreasing k, the errors start to increase.

Time step (k) L1 error Rate of convergence

Tmax/50 1.2304×10−1

Tmax/100 7.0554×10−2 0.8023

Tmax/200 3.6165×10−2 0.9641

Tmax/400 1.6095×10−2 1.1680

Table 3.8: Rate of convergence with k and spatial mesh size, h = 0.01, ε = 0.01, of Problem 1

using NSFD.
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Time step (k) L1 error L∞ error CPU

Tmax/25 1.9125×10−1 9.8876×10−1 0.683

Tmax/50 1.2304×10−1 9.2384×10−1 0.743

Tmax/100 7.0554×10−2 7.0761×10−1 0.689

Tmax/200 3.6165×10−2 4.1770×10−1 0.724

Tmax/300 2.3031×10−2 2.7850×10−1 0.738

Tmax/400 1.6095×10−2 1.9599×10−1 0.758

Tmax/500 1.1808×10−2 1.4689×10−1 0.831

Tmax/600 8.8945×10−3 1.1268×10−1 0.814

Tmax/700 6.7864×10−3 8.7538×10−2 0.854

Tmax/800 5.1909×10−3 6.8368×10−2 0.900

Tmax/900 3.9428×10−3 5.3310×10−2 0.960

Tmax/1000 2.9430×10−3 4.1187×10−2 0.972

Tmax/1100 2.1324×10−3 3.1229×10−2 0.939

Tmax/1200 1.4815×10−3 2.2908×10−2 0.995

Tmax/1300 9.7728×10−4 1.5854×10−2 1.034

Tmax/1400 6.3200×10−4 9.8018×10−3 1.077

Tmax/1500 4.5216×10−4 4.5522×10−3 1.175

Tmax/1600 5.0673×10−4 5.3751×10−3 1.210

Tmax/1700 8.4460×10−4 7.6933×10−3 1.263

Tmax/1800 1.1475×10−3 1.0160×10−2 1.298

Table 3.9: L1 and L∞ errors and CPU time at some different values of time-step size, k for

Problem 1 at time 2.5×10−3 with spatial mesh size, h = 0.01 using NSFD scheme, where

Tmax = 2.5× 10−3.
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Time step (k) L1 error L∞ error CPU(s)

Tmax/25 1.9125×10−1 9.8876×10−1 1.130

Tmax/50 1.2304×10−1 9.2384×10−1 1.470

Tmax/100 7.0554×10−2 7.0761×10−1 2.280

Tmax/200 3.6165×10−2 4.1770×10−1 4.844

Tmax/300 2.3031×10−2 2.7850×10−1 7.950

Tmax/400 1.6095×10−2 1.9599×10−1 12.219

Tmax/500 1.1808×10−2 1.4689×10−1 17.052

Tmax/600 8.8945×10−3 1.1268×10−1 22.408

Tmax/700 6.7864×10−3 8.7538×10−2 28.688

Tmax/800 5.1909×10−3 6.8368×10−2 35.804

Tmax/900 3.9428×10−3 5.3310×10−2 44.176

Tmax/1000 2.9430×10−3 4.1187×10−2 52.029

Tmax/1100 2.1324×10−3 3.1229×10−2 61.695

Tmax/1200 1.4815×10−3 2.2908×10−2 77.506

Tmax/1300 9.7728×10−4 1.5854×10−2 97.953

Tmax/1400 6.3200×10−4 9.8018×10−3 98.065

Tmax/1500 4.5216×10−4 4.5522×10−3 110.000

Tmax/1600 5.0673×10−4 5.3751×10−3 110.565

Tmax/1700 8.4460×10−4 7.6933×10−3 115.565

Tmax/1800 1.1475×10−3 1.0160×10−2 118.565

Table 3.10: L1 and L∞ errors and CPU time at some different values of time-step size, k

for Problem 2 at time 2.5×10−3 with spatial mesh size, h = 0.01 using NSFD scheme, where

Tmax = 2.5× 10−3.
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(b) k = Tmax/400
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(c) k = Tmax/800
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(e) k = Tmax/1500
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(f) k = Tmax/1600

Figure 3.3: Plot of u against x for Problem 1 using NSFD scheme at time 2.5×10−3 at some

different values of k and h = 0.01.
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3.8 NSFD-ε schemes

We construct the NSFD-ε by adding the expression ε1 u
n
m+1 + ε2 u

n
m + ε3 u

n
m−1 to un+1

m to Eq. (3.57).

We thus have

un+1
m =

(
1 + kρ− 2k

h2

)
unm + k

h2

(
unm+1 + unm−1

)
1 + kρ

(
unm+1+unm+unm−1

3

) + ε1 u
n
m+1 + ε2 u

n
m + ε3 u

n
m−1. (3.77)

Theorem 3.6. The NSFD-ε scheme (3.77) is consistent with the original scaled equation (3.6) and is

first order accurate in time and first order accurate in space if only ε1 + ε2 + ε3 = 0 and ε3 − ε1 = 0.

Proof. 1) Using Taylor series expansion about (n,m), we have

u+ kut +
k2

2
utt +

k3

6
uttt +O(k4) =

kuxx + (1 + kρ)u

1 + kρu+ kρh2

3 uxx
+ (ε1 + ε2 + ε3)u

+ h(ε3 − ε1)ux +
h2

2
(ε1 + ε2)uxx +

h3

6
(ε3 − ε1)uxxx +O(h4), (3.78)

which can be written as(
1 + kρu+

kρh2

3
uxx

)
ut +

(
k

2
+
k

2
ρu+

k2

6
ρh2uxx

)
utt +

(
k2

6
+
k3

6
ρu+

k3

18
ρh2uxx

)
uttt

+ ρu2 +
ρh2

3
uuxx = uxx + ρu+ (ε1 + ε2 + ε3)u

(
1

k
+
ρh2

3
uxx

)
+ (ε3 − ε1)ux

(
h

k
+ hρu

ρh3

3
uxx

)
+ (ε1 + ε2)uxx

(
h2

k
+ h2ρu+

ρh4

3
uxx

)
+ (ε3 − ε1)uxxx

(
h3

k
+ h3ρu

ρh5

3
uxx

)
+O(k4) +O(h4). (3.79)

When k, h→ 0, we recover

ut = uxx + ρu(1− u), (3.80)

if ε1 + ε2 + ε3 = 0 and ε1 − ε3 = 0. It thus follows that ε1 = ε3 = ε and ε2 = −2ε.

2) For accuracy, we next consider Eq. (3.79) with ε1 = ε3 = ε and ε2 = −2ε. It follows that(
1 + kρu+

kρh2

3
uxx

)
ut +

(
k

2
+
k

2
ρu+

k2

6
ρh2uxx

)
utt +

(
k2

6
+
k3

6
ρu+

k3

18
ρh2uxx

)
uttt

+ ρu2 +
ρh2

3
uuxx = uxx + ρu− εuxx

(
h2

k
+ h2ρu+

ρh4

3
uxx

)
+O(k4) +O(h4). (3.81)

We rewrite Eq. (3.81) in the form

ut − uxx − ρu+ ρu2 = −
(
kρu+

kρh2

3
uxx

)
ut −

(
k

2
+
k

2
ρu+

k2

6
ρh2uxx

)
utt

− ε
(
ρh2

3
u+

h2

k
+ h2ρu+

ρh4

3
uxx

)
uxx −

(
k2

6
+
k3

6
ρu+

k3

18
ρh2uxx

)
uttt

+O(k4) +O(h4). (3.82)

We conclude that NSFD-ε is first order accurate in time and first order accurate in space.
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Positivity and Boundedness

Here we study the dynamical consistency of the NSFD-ε scheme

Theorem 3.7. The scheme NSFD-ε (3.77) is positive definite if there is Γ such that 0 ≤ Γ < 1 − 2 ε,

and the condition

k ≤ h2

2

[
1− 2ε− Γ

1− ρh2

2 (1− 2ε)

]
holds. Furthermore if 0 ≤ unm ≤ 1, ∀ m and the condition

k =
h2

3

[
1− 3ε

1− ρh2

3 (1− 3ε)

]

holds for the time step, k and the space step, h then the scheme NSFD-ε (3.77) is bounded.

Proof. 1) We study the positivity of the method. We rewrite Eq. (3.77) as

un+1
m =

Γunm +R
(
unm+1 + unm−1

)
1 + kρ

(
unm+1+unm+unm−1

3

) . (3.83)

where

Γ = 1 + kρ− 2k

h2
− 2ε

[
1 + kρ

(
unm+1 + unm + unm−1

3

)]
and

R =
k

h2
+ ε

[
1 + kρ

(
unm+1 + unm + unm−1

3

)]
. (3.84)

We assume that 0 ≤ unm ≤ 1. Then un+1
m is positive if

Γ = 1 + kρ− 2k

h2
− 2ε

[
1 + kρ

(
unm+1 + unm + unm−1

3

)]
≥ 0. (3.85)

By taking the maximum of unj , j = m− 1, m, m+ 1, we have

Γ = 1 + kρ− 2k

h2
− 2ε

(
1 + kρ

3|umax|
3

)
≥ 0, (3.86)

which gives

Γ = 1 + kρ− 2k

h2
− 2ε(1 + kρ) ≥ 0, (3.87)

since umax = 1. It follows from Eq. (3.87) that

1− 2ε− Γ = k

[
2

h2
− ρ(1− 2ε)

]
≤ 1− 2ε. (3.88)

Hence un+1
m is positive if

k ≤ h2

2

[
1− 2ε− Γ

1− ρh2

2 (1− 2ε)

]
and 0 ≤ Γ < 1− 2ε. (3.89)

Remark 3.11. We can obtain the same result of positivity condition by using the amplification

factor
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Indeed, for stability analysis we apply Fourier series analysis to Eq. (3.83) to obtain the amplifi-

cation factor ξ. Thus

ξ =
1 + kρ− 2k

h2

1 + kρ|umax|
− 2ε+ 2

[
k
h2

1 + kρ|umax|
+ ε

]
cos(w). (3.90)

For the stability, we have |ξ| ≤ 1. Since umax = 1, we solve

− 2 ≤ −2

[
2ε+

2k
h2

1 + kρ

]
sin2

(w
2

)
≤ 0, (3.91)

and obtain, for w ∈ [−π, π]

k ≤ h2

2

[
1− 2ε

1− ρh2

2 (1− 2ε)

]
. (3.92)

Hence

k ≤ h2

2

[
1− 2ε− Γ

1− ρh2

2 (1− 2ε)

]
. (3.93)

2) For the boundedness of NSFD-ε, we use the symmetric condition by taking R = Γ from Eq. (3.83).

It follows that

1 + kρ− 2k

h2
− k

h2
= 3ε

(
1 + kρ

3|umax|
3

)
. (3.94)

With umax = 1, we have

k =
h2

3

[
1− 3ε

1− ρh2

3 (1− 3ε)

]
(3.95)

and
k

(1− 3ε)h2
=

1

3

[
1

1− ρh2

3 (1− 3ε)

]
, (3.96)

which is the symmetric condition. Using Eq. (3.96), Eq. (3.83) becomes

un+1
m =

Γ
(
unm+1 + unm + unm−1

)
1 + kρ

(
unm+1+unm+unm−1

3

) . (3.97)

We know that 0 ≤ unj ≤ 1, j = m− 1, m, m+ 1. It follows that

unm+1 + unm + unm−1

3
≤ 1. (3.98)

By multiplying and dividing Eq. (3.98) by
(

1− ρh2

3 (1− 3ε)
)

, we have[
1− ρh2

3
(1− 3ε)

]
unm+1 + unm + unm−1

3
[
1− ρh2

3 (1− 3ε)
] ≤ 1. (3.99)

It follows that

unm+1 + unm + unm−1

3
[
1− ρh2

3 (1− 3ε)
] ≤ 1 +

ρ

3

(
h2

3

)[
1− 3ε

1− ρh2

3 (1− 3ε)

]
(unm+1 + unm + unm−1). (3.100)

From Eq. (3.95) and the symmetric condition (3.96), we have

Γ(unm+1 + unm + unm−1) ≤ 1 +
kρ

3
(unm+1 + unm + unm−1). (3.101)
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It follows that

0 ≤ un+1
m =

Γ(unm+1 + unm + unm−1)

1 + kρ
3 (unm+1 + unm + unm−1)

≤ 1. (3.102)

Hence the boundedness of NSFD-ε method.

Remark 3.12. We can obtain different result without symmetric condition (3.96).

Indeed, generally without symmetric condition (3.96), we consider the boundedness of un+1
m in

case of NSFD and we find the boundedness of NSFD-ε by stating from Eq. (3.77) that

0 ≤ un+1
m ≤ 1 + ε (unm−1 − 2unm + unm+1). (3.103)

We rewrite ε
(
unm+1 − 2unm + unm−1

)
as

ε (unm−1 − 2unm + unm+1) = ε (unm−1 + unm+1)− 2ε unm. (3.104)

Since unj , j = m− 1, m, m+ 1, are bounded (0 ≤ unj ≤ 1), hence from Eq. (3.104), we have

ε (unm−1 + unm+1)− 2ε unm ≤ 2ε− 2ε unm, (3.105)

due to the fact ε (unm−1 + unm+1) ≤ 2ε. It follows that

ε (unm−1 + unm+1)− 2ε unm ≤ 2ε− 2ε unm = 2ε (1− unm). (3.106)

The quantity 1− unm in Eq. (3.106) is bounded by

0 ≤ (1− unm) ≤ 1. (3.107)

It follows from Eqs. (3.106) and Eq(3.107) that

ε (unm−1 − 2unm + unm+1) = ε (unm−1 + unm+1)− 2ε unm ≤ 2ε. (3.108)

Hence the boundedness of un+1
m for NSFD-ε method from Eq. (3.103) is such that

0 ≤ un+1
m ≤ 1 + 2ε. (3.109)

Since ε = 0.01, h = 0.01, we have from (3.89), k ≤ 9.6078 × 10−5 or k ≤ Tmax/26 for positivity or

stability. We tabulate L1 and L∞ errors and CPU time when Problem 1 and 2 are solved using NSFD-ε

scheme at some different values of time-step size, k with spatial step size, h = 0.01. The errors are

displayed in Tables (3.11) and (3.13).
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Time step (k) L1 error L∞ error CPU (s)

Tmax/26 1.8636×10−1 9.8705×10−1 0.653

Tmax/50 1.2102 ×10−1 9.1868×10−1 0.662

Tmax/100 6.5470×10−2 6.7456×10−1 0.670

Tmax/200 2.4582×10−2 2.9094×10−1 0.682

Tmax/300 4.8806×10−3 5.9139×10−2 0.699

Tmax/333 1.0091×10−3 9.5627×10−3 0.715

Tmax/334 9.9448×10−4 1.0714×10−2 0.707

Tmax/335 1.0119×10−3 1.1866×10−2 0.787

Tmax/400 8.5987×10−3 1.0311×10−1 0.722

Tmax/500 1.9385×10−2 2.2445×10−1 0.780

Table 3.11: L1 and L∞ errors and CPU time at some different values of time-step size, k for

Problem 1 at time 2.5×10−3 with spatial mesh size, h = 0.01, ε = 0.01 using NSFD-ε scheme,

Tmax = 2.5× 10−3.

Time step (k) L1 error Rate of convergence

Tmax/50 1.2102×10−1

Tmax/100 6.5470×10−2 0.886

Tmax/200 2.4582×10−2 1.413

Table 3.12: Rate of convergence with k and spatial mesh size, h = 0.01, ε = 0.01, of Problem 1

using NSFD-ε, Optimal k u 2.5× 10−3/334.

Remark 3.13. The optimal k is approximately Tmax
334 . That why we use Tmax

50 , Tmax100 , Tmax200 . Reason being,

we don’t need adding further rows to compute the convergence rate.
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Time step (k) L1 error L∞ error CPU (s)

Tmax/26 1.8636×10−1 9.8705×10−1 1.137

Tmax/50 1.2102×10−1 9.1868×10−1 1.485

Tmax/100 6.5470×10−2 6.7456×10−1 2.391

Tmax/200 2.4582×10−2 2.9094×10−1 4.880

Tmax/300 4.8806×10−3 5.9139×10−2 8.207

Tmax/333 1.0091×10−3 9.5627×10−3 9.437

Tmax/334 9.9448×10−4 1.0714×10−2 9.534

Tmax/335 1.0119×10−3 1.1866×10−2 9.540

Tmax/400 8.5987×10−3 1.0311×10−1 12.181

Tmax/500 1.9385×10−2 2.2445×10−1 17.074

Table 3.13: L1 and L∞ errors and CPU time at some different values of time-step size, k for

Problem 2 at time 2.5×10−3 with spatial mesh size, h = 0.01, ε = 0.01 using NSFD-ε scheme,

Tmax = 2.5× 10−3.
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(b) k = Tmax/200
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(c) k = Tmax/300
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(f) k = Tmax/500

Figure 3.4: Plot of u against x for Problem 1 using NSFD-ε scheme at time 2.5×10−3 at some

different values of k and h = 0.01, ε = 0.01.

68

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



3.9 Artificial viscosity

We observe from the numerical results of FTCS and NSFD that the schemes are plagued by dispersion

at time step size quite close to the stability limit of the temporal step size at h = 0.01. We propose

to make use of artificial viscosity approach. The method of artificial viscosity was first introduced by

VonNeumann and Richtmyer (1950), who explicitly added a viscosity term to the inviscid gas dynamics

equations in order to permit the computation of shock waves. Their approach was to change the mo-

mentum and energy equations by adding dissipation in form of viscosity term to the pressure that would

give shock waves thickness and also to space out the computational mesh. The artificial viscosity was

purposely made proportional to the second derivative (uxx which is positive in compression and nega-

tive in expansion) to ensure the mathematical consistency. It should satisfy some constraints like the

modified equation must possess solutions without any discontinuities, the Rankine-Hugoniot conditions

must hold (for conservations equations) and the dissipative term be negligible outside of the shock waves

(Campbell and Shashkov, 2001).

It is also known that artificial viscosity can be expressed implicitly following the work of Noh and Protter

(1963) who first presented an analysis of the implicit artificial viscosity of the upwind method applied to

linear advection equation. It has been proved that for a given unstable numerical method, in general for

first order linear equations it can be stabilized by adding a sufficient large viscosity term. Other forms of

artificial viscosity can be found in Landshoff (1955) and Wilkins (1980) who attribute it to Kurapatenko

(1967).

Finally, it was specified by Caramana et al. (1998) that an artificial viscosity should have the following

properties:

1. Dissipativity: The artificial viscosity must only act to decrease kinetic energy.

2. Galilean invariance: The viscosity should vanish smoothly as the velocity field becomes constant.

3. Self-similar motion invariance: The viscosity should vanish for uniform contraction and rigid ro-

tation.

4. Wave-front invariance: The viscosity should have no effect along a wave front of constant phase,

on a grid aligned with shocks.

5. Viscous force continuity: The viscous force should go to zero continuously as compression vanishes

and remain zero for expansion.

We start with a simple linear advection equation, ut + ux = 0 (Eq. (3.35) with c = 1). We add the

artificial viscosity σhuxx to obtain

ut + ux = σ huxx. (3.110)

When h→ 0, we recover the initial linear advection equation ut+ux = 0 and σ is a real parameter. The

numerical discretisation for Eq. (3.110) is

un+1
m − unm

k
+D0u

n
m = σ hD+D−u

n
m, (3.111)
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where D+u
n
m =

unm+1−u
n
m

h , D−u
n
m =

unm−u
n
m−1

h , D0u
n
m =

unm+1−u
n
m−1

2h are respectively forward, backward

and centred differencing operators. By rewriting Eq. (3.111), we have

un+1
m = unm − kD0u

n
m + σ k hD+D−u

n
m. (3.112)

As h→ 0, the scheme given by Eq. (3.112) is a consistent approximation of Eq. (3.35) with c = 1.

3.9.1 FTCS with artificial viscosity

We need to solve

ut = uxx + ρ u(1− u). (3.113)

We add σhuxx and obtain a new equation,

ut = uxx + ρ u(1− u) + σ huxx, h→ 0. (3.114)

The numerical scheme used to discretise Eq. (3.114) is

un+1
m − unm

k
=
unm+1 − 2unm + unm−1

h2
+ ρ unm(1− unm) + σ h

(
unm+1 − 2unm + unm−1

h2

)
(3.115)

which can be rewritten as

un+1
m =

[
1− 2k

h2
(1 + σ h)

]
unm + kρunm(1− unm) +

k

h2
(1 + σ h)(unm+1 + unm−1). (3.116)

Theorem 3.8. The FTCS with artificial viscosity (3.116) is first order accurate in time and space.

Proof. For the order of accuracy, Taylor series expansion about the point (n,m) of (3.116) gives

u+ kut +
k2

2
utt +

k3

6
uttt =

(
1− 2k

h2
(1 + σ h)

)
u+ kρu(1− u)

+
k

h2
(1 + σ h)(2u+ h2uxx) +O(k4) +O(h4), (3.117)

which gives

ut − uxx − ρu(1− u) = −k
2
utt −

k2

6
uttt + σ h uxx +O(k3) +O

(
h4

k

)
. (3.118)

We conclude that FTCS with artificial viscosity is first order accurate in time and first order accurate

in space.

If σ = 0, we recover the FTCS scheme.

Theorem 3.9. The FTCS with artificial viscosity given by Eq. (3.116) is stable under the condition

k ≤ h2

2

[
1

1 + σ h

]
,

for the time step k, and the spatial size, h.

70

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Proof. The amplification factor, ξ of FTCS scheme with artificial viscosity is

ξ = 1 +
2k

h2
(1 + σ h)(cos(w)− 1) + kρ(1− |umax|). (3.119)

We chose umax = 1 based on numerical experiment chosen and have

ξ = 1− 4k

h2
(1 + σ h) sin2

(w
2

)
. (3.120)

The stability region is

k <
h2

2

[
1

1 + σ h

]
. (3.121)

We choose σ = 2.0, h = 0.01 and obtain k < 4.9020× 10−5 or Tmax/51.

We tabulate L1 and L∞ errors and CPU time when Problem 1 is solved using FTCS with artificial

viscosity at some different values of time-step size, k with spatial step size, h = 0.01, σ = 2.0. The errors

are displayed in Table 3.15.

Time step (k) L1 error Rate of convergence

Tmax/100 6.2546×10−2

Tmax/200 3.0034×10−2 1.058

Tmax/400 1.1108×10−2 1.435

Table 3.14: Rate of convergence with k and spatial mesh size, h = 0.01, ε = 0.01, of Problem 1

using FTCS with artificial viscosity, optimal k = 2.5× 10−3/880.
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Time step (k) L1 error L∞ error CPU(s)

Tmax/53 2.6947×10−1 1.5155 0.737

Tmax/100 6.2546×10−2 6.8175×10−1 0.737

Tmax/200 3.0034×10−2 3.6771×10−1 0.742

Tmax/300 1.7645×10−2 2.1809×10−1 0.758

Tmax/400 1.1108×10−2 1.3983×10−1 0.782

Tmax/500 7.0695×10−3 8.9529×10−2 0.800

Tmax/600 4.3263×10−3 5.5222×10−2 0.847

Tmax/700 2.3414×10−3 3.0552×10−2 0.856

Tmax/800 8.5592×10−4 1.2040×10−2 0.907

Tmax/850 3.1048×10−4 4.4291×10−3 0.913

Tmax/860 2.2700×10−4 3.0141×10−3 0.918

Tmax/870 1.6308×10−4 1.8608×10−3 0.923

Tmax/880 1.3833×10−4 2.3032×10−3 0.926

Tmax/890 2.3267×10−4 2.9465×10−3 0.930

Tmax/900 3.3881×10−4 3.6042×10−3 0.951

Tmax/1000 1.2861×10−3 1.4273×10−2 0.967

Tmax/1100 2.0648×10−3 2.3789×10−2 1.001

Tmax/1200 2.7162×10−3 3.1756×10−2 1.042

Tmax/1300 3.2692×10−3 3.8522×10−2 1.071

Tmax/1400 3.7445×10−3 4.4336×10−2 1.124

Tmax/1500 4.1573×10−3 4.9385×10−3 1.142

Table 3.15: L1 and L∞ errors CPU time at some different values of time-step size, k for Problem

1 with ρ = 104 at time 2.5×10−3 with spatial mesh size, σ = 2.0, h=0.01 using FTCS with

artificial viscosity.

From the Table 3.15 we deduce that FTCS with artificial viscosity can give accurate results at a smaller

CPU as compared to FTCS provided σ is correctly chosen.
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(f) k = Tmax/1500

Figure 3.5: Plot of u against x for Problem 1 using FTCS with artificial viscosity at time

2.5×10−3 at some different values of k and h = 0.01, σ = 2.0, Tmax = 2.5× 10−3.
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3.9.2 Nonstandard Finite Difference method with artificial viscosity

Nonstandard Finite Difference (Mickens, 2002) scheme with artificial viscosity to discretise Eq. (3.114)

is

un+1
m − unm

k
=
unm+1 − 2unm + unm−1

h2
+ ρunm − ρ

(
unm+1 + unm + unm−1

3

)
un+1
m

+ σh

(
unm+1 − 2unm + unm−1

h2

)
. (3.122)

A single expression for the scheme is

un+1
m =

(1 + kρ− 2β)unm + β(unm+1 + unm−1)

1 + kρ
(
unm+1+unm+unm−1

3

) where β =
k

h2
(1 + σh). (3.123)

Theorem 3.10. NSFD with artificial viscosity (3.123) is first order accurate in time and space.

Proof. Taylor series expansion of the above scheme about (m,n) gives(
u+ kut +

k2

2
utt +

k3

6
uttt

)(
1 + kρu+ kρ

h2

3
uxx

)
= (1 + kρ)u+ kuxx +O(k4) +O(h4), (3.124)

which can be written as

ut − uxx − ρu+ ρu2 − σ h uxx =−
(
ρu
h2

3
− σ h

)
uxx − k

(
ρu

3
+
ρh2

3
uxx

)
ut

−
(
k

3
+
k2

2

(
ρu

3
+
ρh2

3
uxx

))
utt

−
(
k2

6
+
k3

6

(
ρu

3
+
ρh2

3
uxx

))
uttt

+O(k4) +O(h4). (3.125)

We conclude that NSFD with artificial viscosity is first order accurate in time and first order accurate

in space.

Positivity and Boundedness

Theorem 3.11. The NSFD with artificial viscosity (3.123) is positive definite if and only if the condition

k ≤ h2

2

[
1− Γ

1 + σh− ρh2

2

]
and 0 ≤ Γ < 1, (3.126)

holds for the time step, k and space step, h.

Proof. The scheme given by Eq. (3.123) is positive if Γ = 1 + kρ− 2k
h2 (1 + σh) ≥ 0. Hence the positive

definite condition.

For h = 0.01, σ = 2.0, we have from Eq. (3.126) k ≤ 9.6154× 10−5.
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Theorem 3.12. The NSFD with artificial viscosity (3.123) is bounded if the condition

k

h2
=

(
1

3

)[
1

1 + ρσ
3 −

ρh2

3

]

holds for the time step, k and space step, h and 0 ≤ unm ≤ 1, for all m.

Proof. For boundedness, we start by assuming that 0 ≤ unm ≤ 1. We apply the same steps as in case of

NSFD without artificial viscosity by letting

Γ = 1 + kρ− 2R, R = β =
k

h2
(1 + σh). (3.127)

and we use the symmetric condition

R =
k

h2
=

(
1

3

)[
1

1 + ρσ
3 −

ρh2

3

]
. (3.128)

Thus gives

0 ≤ un+1
m ≤ 1. (3.129)

Hence the boundedness of un+1
m .

We tabulate L1 and L∞ errors, CPU time when Problem 1 are solved using NSFD with artificial viscosity

scheme at some different values of time-step size, k with spatial step size, h = 0.01, σ = 2.0. The errors

are displayed respectively in Table 3.17.

Time step (k) L1 error Rate of convergence

Tmax/50 1.2102×10−1

Tmax/100 6.8010×10−2 0.8314

Tmax/200 3.3252×10−2 1.0320

Tmax/400 1.2961×10−2 1.3590

Table 3.16: Rate of convergence with k and spatial mesh size, h = 0.01, ε = 0.01, of Problem 1

using NSFD with artificial viscosity Optimal k = 2.5× 10−3/1000.
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(d) k = Tmax/800
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(e) k = Tmax/1000
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(f) k = Tmax/1500

Figure 3.6: Plot of u against x for Problem 1 using NSFD with artificial viscosity at time

2.5× 10−3, at some different values of k and h = 0.01, σ = 2.0, Tmax = 2.5× 10−3.
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Time step (k) L1 error L∞ error CPU(s)

Tmax/25 1.8982×10−1 9.8811×10−1 0.891

Tmax/50 1.2102×10−1 9.1869×10−1 0.893

Tmax/100 6.8010×10−2 6.9128×10−1 0.897

Tmax/200 3.3252×10−2 3.8653×10−1 0.928

Tmax/300 1.9973×10−2 2.4143×10−1 0.998

Tmax/400 1.2961×10−2 1.5892×10−1 0.999

Tmax/500 8.6255×10−3 1.0838×10−1 1.019

Tmax/600 5.6799×10−3 7.3290×10−2 1.041

Tmax/700 3.5494×10−3 4.7746×10−2 1.089

Tmax/800 1.9544×10−3 2.8406×10−2 1.355

Tmax/900 8.4110×10−4 1.3294×10−2 1.355

Tmax/950 5.2648×10−4 7.1035×10−3 1.564

Tmax/1000 4.4308×10−4 5.5908×10−3 1.664

Tmax/1050 7.8758×10−4 8.5810×10−3 1.683

Tmax/1100 1.1865×10−3 1.1836×10−2 1.684

Tmax/1200 1.8866×10−3 1.9106×10−2 1.687

Tmax/1300 2.4809×10−3 2.5706×10−2 1.688

Tmax/1400 2.9918×10−3 3.1732×10−2 1.690

Tmax/1500 3.4356×10−3 3.6977×10−2 1.745

Table 3.17: L1 and L∞ errors and CPU time at some different values of time step size, k for

Problem 1 at time 2.5×10−3 with spatial mesh size, h = 0.01, σ = 2.0 using NSFD with artificial

viscosity method.

3.10 The stability of computed solution and the sensitivity of

the solution to the boundary condition ahead of the wave

in term of local pertubation

In this section, we recall some of results of Qiu and Sloan (1998). Consider, c the speed of travelling

waves solution. It can be written in the form u(x, t) = v(x−c t), for some function v of the scalar variable
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ξ = x− c t. v is solution of the boundary value problem by considering Eq. (3.6)

d2 v

d ξ2
+ c

d v

d ξ
+ ρ v(1− v) = 0,

lim
ξ→−∞

v(ξ) = 1, lim
ξ→+∞

v(ξ) = 0. (3.130)

Let u(x, t) = z(ξ, t). It follows that z, verifies the following boundary value problem

∂ z

∂ t
=
∂2 z

∂ ξ2
+ c

∂ z

∂ ξ
+ ρ z(1− z) = 0,

lim
ξ→−∞

z(ξ) = 1, lim
ξ→+∞

z(ξ) = 0. (3.131)

Comparing the two equations Eq. (3.130) and Eq. (3.131), we deduce that the travelling wave is a

steady-state solution of Eq. (3.131).

To carry out a linear stability analysis we denote

z(ξ, t) = v(ξ) + θ(ξ, t) (3.132)

where squares of θ are adequately small to be neglected. The linearisation about v shows that θ verifies

∂ θ

∂ t
=
∂2 θ

∂ ξ2
+ c

∂ θ

∂ ξ
+ ρ (1− 2 v) θ. (3.133)

Our interest is on local perturbations. We impose therefore the boundary condition

θ(±L, t) = 0 (3.134)

where L is such that L = xr = −xl and [xl, xr] ⊂ (−∞, +∞) for convenience. By the use of self-adjoint

form and by means of the transformation θ(ξ, t) =
[
e−c ξ/2

]
× g from Canosa (1973), Eq. (3.133) g is

solution of

∂ g

∂ t
=
∂2 g

∂ ξ2
+

(
−c

2

4
+ ρ− 2 v

)
g (3.135)

verifying the boundary conditions Eq. (3.134). We note that as ξ → ∞, θ must decay to zero at least

as O(e−c ξ) so g =
[
ec ξ/2

]
θ(ξ, t) will decay exponentially |ξ| → ∞. Hagan (1982) showed that (3.130)

there is a unique travelling wave solution for each value c such that c ≥ 2
√
ρ. Furthermore, the wave

profile is given by the solution on the trajectory that connects the fixed points at v ∈ {0, 1}. Under the

condition c ≥ 2
√
ρ, we rewrite Eq. (3.135) as

∂ g

∂ t
=
∂2 g

∂ ξ2
+ ρ

(
1− r2 − 2 v

)
g, (3.136)

where r = c2

4 ρ ≥ 1. To perform stability analysis of the computed solution, we consider an even grid

points {ξm}N+1
m=0 with ξ = −L+mh and h = 2L/(N + 1).

For the simplicity of the analysis, we use FTCS-ε scheme in term of semi-discretisation. The analysis for

other methods (NSFD-ε, FTCS with artificial viscosity, NSFD with artificial viscosity) are almost the

same.
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We denote gm = gm(t) the approximation at the point (ξ, t), the set of semi-discrete equations of Eq.

(3.136) is

ġm =

(
ε+

1

h2

)
gm−1 −

[
2

(
ε+

1

h2

)
− ρ h2

(
1− r2 − 2 vm

)]
gm +

(
ε+

1

h2

)
gm+1, m = 1, 2 ....N,

g0 = gN+1 = 0. (3.137)

For the simplicity of the analysis, vm is given by the exact solution

vm =
[
1 + e(

√
ρ
6 ξm)

]−2

, (3.138)

The system Eq. (3.137) can be rewritten in matrix form as

Ġ = MG (3.139)

where G = [g1, g2 ... gN ]
t

and

M =
1

h2
tridiag

{
ε+

1

h2
, −
(

2

(
ε+

1

h2

)
+ am

)
, ε+

1

h2

}
(3.140)

with

am = ρ h2(r2 + 2 vm − 1). (3.141)

Theorem 3.13 (Bell (1965)). Let A = [aij ] be an n × n complex matrix, and let Ri be the sum of the

moduli the off-diagonal elements in the i-th row. Then each eigenvalue of A lies in the union of circles

|z − aii| ≤ Ri, i = 1, 2 · ··, n.

The analogue result holds if the columns of A are considered.

Since v ∈ {0, 1} and r ≥ 1, it follows from Gerschgorin’s Theorem 3.13 that the eigenvalues of the

symmetric matrix M are all real and negative. Hence ||G|| decays exponentially with time and the

system is linearly stable to local disturbances. Hence the rate of decay of a perturbation on nodal values

at the back of the wave is greater than that for a perturbation on nodal values at the front of the wave

(Qiu and Sloan, 1998).

It is worthy to notify how the stability on the finite domain differs from that on the infinite domain. We

note, initially, d v
d ξ = vξ is a solution of L vξ = 0 where L denotes the linear differential operator given by

L =
∂2

∂ ξ2
+ c

∂

∂ ξ
+ ρ (1− 2 v) . (3.142)

Furthermore, vξ decays exponentially to zero a |ξ| → ∞ and it follows that L has a zero eigenvalue.

A perturbation, µ vξ that is a multiple of vξ will hence remain to exist with no decay or growth, and

since

v(ξ + µ) = v(ξ) + µ vξ(ξ) +O(µ2). (3.143)
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It results that small perturbations of this type may only ensue in a phase shift of the original travelling

wave. The finite domain problem does not show this property since vξ 6= 0 at ξ = ±L , but numerical

approximations over a large finite domain may be expected to have a tendency to suffer phase errors

that arise from perturbations.

To prop up this conjecture, one should note that if Lh denotes the second-order central difference

approximation to L and if (vξ)h denotes the vector {dv/dξ(ξm)}N+1
m=0, then the residual Lh (vξ)h is O(h2)

as h → 0 for a fixed value of L. For adequately small h, and adequately large L, (vξ)h is a close

approximation to an eigenvector of Lh corresponding to the nearly zero eigenvalue. The tendency of

Lh (vξ)h to zero as h → 0 is easily verified numerically.

3.11 Conclusion

In this chapter, we have initially used FTCS and NSFD scheme to solve Fisher’s equation when the

coefficient of diffusion is much less than coefficient of reaction term and the initial condition consists of

an exponential function. The time-step size must be relatively small in order to obtain accurate results

and the CPU time becomes large if the domain is large.

We propose four schemes namely FTCS-ε, NSFD-ε, FTCS with Artificial Viscosity, NSFD with artificial

viscosity and they give quite accurate results at larger time-step size and consequently smaller CPU time

as compared to FTCS and NSFD methods. Also the L1 and L∞ errors at optimal time step size and

h = 0.01 are smaller than when using MMPDE and MMDAE methods.
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Chapter 4

Comparative study of some

Numerical methods for the standard

FitzHugh-Nagumo equation

A version of this chapter was accepted as Agbavon et al. (2019b) in the book entitled: Communications

in Mathematical Computations, Springer.

4.1 Introduction

Partial differential equations are widely used to describe or model the complex phenomena in real life

and applications are in fluid mechanics, solid-state physics, plasma wave and chemical physics (Johnson

et al., 2012, Wang et al., 2014). The standard FitzHugh-Nagumo equation is an important application of

nonlinear partial differential equation and used to model the transmission of nerve impulses (FitzHugh,

1961, Nagumo et al., 1962). It is also used in circuit theory, biology and population genetics (Aronson

and Weinberger, 1978) as mathematical models. It is given by

ut − uxx = u(1− u)(u− γ), (4.1)

where γ controls the global dynamics of the equation and is in the interval (0, 1) (Xu et al., 2014) and

u(x, t) is the unknown function which depends on the temporal variable, t and the spatial variable, x.

Background

The first fruitful mathematical representation of electrophysiology was the main model established by

Hodgkin and Huxley in the early 1950’s. Hodgkin and Huxley carried out voltage clamp experiments on

a squid giant axon and changed their studies of transmembrane potential, currents, and conductance,

into a circuit-like model. The result was a system of four ordinary differential equations (ODEs) that
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precisely portrayed noticeable propagation alongside an axon. Although the complex Hodgkin-Huxley

equations showed to be a good model to describe a signal propagation along a nerve, they are hard to

be analysed. FitzHugh (1961) and Nagumo et al. (1962) tackled this problem a decade later when they

restrained the original system of four variables down to a simpler model of only two variables. Their

simple model is much easier to be analysed and it still describes the main phenomena of the dynamics:

(1) a sufficiently large stimulus will start off a significant response, and (2) after such a stimulus and

response, the medium needs a period of recuperation time before it can be impulsed again. These two

properties are characterised as excitable (γ < 0 : the nerve is in excitable mode) and refractory (γ > 0 :

the nerve is in refractory mode and does not respond to external stimulation). Excitation happens fast

while recovery occurs slowly.

A medium that displays excitability and refractoriness is categorized as an excitable medium. Though

the standard Fitzhugh-Nagumo equation is one of the simplest models, it shows complex dynamics that

have not been fully investigated. For example, it endorses a stable travelling and pulse solution. How-

ever, the pulse can be destabilized by large perturbations. This, therefore drew attention from many

researchers. Moreover, the study showed that when γ ∈ (0, 1) (Kawahara and Tanaka, 1983), the result

would be heterozygote inferiority. When γ = −1, Eq. (4.1) is known as Newell-Whitehead equation

and it describes dynamical behaviour near the birfucation point for the Rayleigh-Benard convection of

binary fluid mixtures. It has also been proved that the exact solution of Eq. (4.1) describes the fusion

of two travelling fronts of the same sense and converts into a front which connects two stable constant

states. Jackson (1992) used Galerkin’s approximations to solve Eq. (4.1). Bell and Deng (2002) studied

the singular perturbation of N-front travelling waves while Gao and Wang (2004) studied the existence

of wavefronts and impulses. Su (1994) investigated the delayed oscillations in nonspatially uniform of

Eq. (4.1) while Krupa et al. (1997) studied fast and slow waves of Eq. (4.1). Furthermore, Schonbek

(1981) investigated the higher-order derivatives of solutions of Eq. (4.1) whereas, Chou and Lin (1996)

studied exotic dynamic behaviour of Eq. (4.1).

Eq. (4.1) has been solved numerically by many methods namely; Adomian Decomposition Method

(ADM), Homotopy Pertubation Method (HPM), Variational Iteration Method (VIM), Homotopy Anal-

ysis Method (HAM), Differential Transform Method (DTM) and Nonstandard Finite Difference method

(NSFD).

We will briefly describe the work performed using these methods in the following paragraph:

ADM has been introduced by Adomian (1988) in early 1980’s to show a new way to solve nonlinear

functional equations. The method consists of separating the equation under study into linear and non-

linear portions which produce a solution in the form of a sequences. HPM is used to study the accurate

asymptotic solutions of nonlinear problems (Dehghan and Manafian, 2009, Dehghan and Shakeri, 2007,

2008c,d). VIM is used to identify the unknown function in parabolic equation (Dehghan and Shakeri,

2008a,b, Dehghan and Tatari, 2008). DTM is a semi-analytical numerical method that makes use of

Taylor series to obtain solutions of differential equations (Biazar and Mohammadi, 2010).
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Our methodology approach is on scheme derived from Namjoo and Zibaei (2018) and nonstandard finite

difference scheme (Mickens, 1989, 2005).

4.2 Organisation of the chapter

The chapter is organised as follows. In section 4.3, we describe the numerical experiment chosen. In

section 4.4, we present the construction of numerical scheme from exact solution. We give derivation of

the two exact schemes constructed by Namjoo and Zibaei (2018) in section 4.5 and obtain some properties

of the scheme. We present some numerical results and tabulate some errors and this is a novelty in our

work. In sections 4.6, we describe two nonstandard finite difference methods (NSFD1 and NSFD2) and

obtain an improvement for NSFD1 which we call NSFD3 (second novelty in this work) and study some

of the properties of the methods. We then present L1, L∞ errors and results on rate of convergence

which is third highlight of this work. Section 4.7 highlights the salient features of the chapter.

4.3 Numerical experiment

We solve Eq. (4.1), where γ ∈ (0, 1) and u(x, t) is the unknown function which depends on spatial

variable, x ∈ [0, b] and temporal variable, t. The initial condition is

u(x, 0) =
γ

1 + e−2A1x
, (4.2)

and the boundary conditions are given by

u(0, t) =
γ

1 + e2A1A2t
,

u(b, t) =
γ

1 + e−2A1(b−A2t)
, (4.3)

where A1 =
√

2
4 γ, A2 = 4−2γ

γ A1 and t ∈ [0, 1]. The exact solution is given by Wazwaz (2009)

u(x, t) =
γ

1 + e−2A1(x−A2t)
. (4.4)

In Namjoo and Zibaei (2018), they used γ = 0.001, b = 1.0. In this work, we test the performance of the

schemes over different values of γ and also over short and long domains at time, T = 1.0. We considered

short and long domain as some methods might work for short domains and produce less efficient results

for longer domains. We also consider a very small value of γ as well as γ = 0.5. We consider 4 cases:

Case 1 : γ = 0.001, b = 1.0.

Case 2 : γ = 0.001, b = 10.0.

Case 3 : γ = 0.5, b = 1.0.

Case 4 : γ = 0.5, b = 10.0.
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4.4 Construction of numerical scheme from exact solution

The equation ut + ux = 0 and ux = b uxx have known exact finite difference methods which are

un+1
m − unm

k
+
unm − unm−1

h
= 0, with k = h (4.5)

and
um − um−1

h
= b

um+1 − um + um−1

b
(
eh/b − 1

)
h

, (4.6)

respectively, where h and k represent spatial mesh size and temporal step size respectively. However,

there no exact finite difference schemes for most ordinary or partial differential equations including

the standard FitzHugh-Nagumo equation and Fisher’s equations. Appadu et al. (2016), they solve the

equation ut + ux = αuxx for 0 < x < 1, t > 0 with boundary condition u(0, t) = u(1, t) = 0 and initial

condition u(x, 0) = 3 sin(4π x). The numerical experiment is from Chawla et al. (2000) and the exact

solution is

u(x, t) = e[
1

2α (x− t2 )]
∞∑
j=1

ξj e
−(α2

j π
2 t) sin(j π x), (4.7)

where

ξj =
3

2α

[
1 + (−1)j+1e−( 1

2α )
] [ 1(

1
2α

)2
+ (j − 4)2π2

− 1(
1

2α

)2
+ (j + 4)2π2

]
.

Three numerical methods were used in Appadu et al. (2016) namely; fourth order upwind, NSFD and

third order upwind. They considered three different values of α namely; 0.01, 0.1 and 1.0 using h = 0.1

at some values of k. Dispersive oscillations were observed with all the three methods when α = 0.01.

Quite good results were obtained when α = 0.1 and α = 1.0.

This suggests that one cannot use a given numerical method to solve a certain partial differential equation

for any value of the parameters controlling advection and diffusion in this case. It is for this reason that

the authors believe that the approach used by Namjoo and Zibaei (2018) to construct schemes from the

exact solution should be explored. This approach is fairly new. Zhang et al. (2014) constructed finite

difference schemes for Burgers and Burgers-Fisher equations using the exact solution.

4.5 Scheme of Namjoo and Zibaei

We describe how in Namjoo and Zibaei (2018) constructed an explicit and implicit scheme. The analytical

solution is

u(x, t) =
γ

2
{1 + tanh[A1(x−A2t)]} =

γ

1 + e−2A1(x−A2t)
. (4.8)
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and boundary and initial conditions can be obtained from (4.8). We use the exact solution from (4.8) in

order to obtain approximations for ux, ut and uxx. The following approximations are used:

∂xu =
u(x+ h, t)− u(x, t)

h
,

∂tu =
u(x, t+ k)− u(x, t)

k
,

∂̄xu =
u(x, t)− u(x− h, t)

h
,

∂̄tu =
u(x, t)− u(x, t− k)

k
. (4.9)

Using (4.8), we have

u(x+ h, t) =
γ

1 + e−2A1(x+h−A2t)
, u(x, t− k) =

γ

1 + e−2A1(x−A2t+A2k)
. (4.10)

If we choose h = A2k, we have u(x + h, t) = u(x, t − k) and u(x − h, t) = u(x, t + k). This gives the

following

1

u(x, t)
− 1

u(x+ h, t)
=

(
1

u(x, t)
− 1

γ

)
(1− e−2A1h), (4.11)

1

u(x, t)
− 1

u(x− h, t)
=

(
1

u(x, t)
− 1

γ

)
(1− e2A1h), (4.12)

1

u(x, t)
− 1

u(x, t+ k)
=

(
1

u(x, t)
− 1

γ

)
(1− e2A1A2k), (4.13)

1

u(x, t)
− 1

u(x, t− k)
=

(
1

u(x, t)
− 1

γ

)
(1− e−2A1A2k). (4.14)

We define

ψ1 =
1− e−2A1h

2A1
≈ h, ψ2 =

e2A1h − 1

2A1
≈ h

φ1 =
1− e−2A1A2k

2A1A2
≈ k, φ2 =

e2A1A2k − 1

2A1A2
≈ k. (4.15)

The forward difference approximation for ux is

∂xu =
u(x+ h, t)− u(x, t)

ψ1
=

1

ψ1
[u(x+ h, t)− u(x, t)] , (4.16)

and using (4.11), we have

u(x+ h, t)− u(x, t) =

(
1

u(x, t)
− 1

γ

)
(1− e−2A1h)u(x, t)u(x+ h, t), (4.17)

or

u(x+ h, t)− u(x, t) =

(
γ − u(x, t)

γu(x, t)

)
(1− e−2A1h)u(x, t)u(x+ h, t). (4.18)

which can be further simplified as

u(x+ h, t)− u(x, t) =

(
γ − u(x, t)

γ

)
(1− e−2A1h)u(x+ h, t). (4.19)

It follows from (4.16) that

∂xu =
u(x+ h, t)− u(x, t)

ψ1
= 2A1 u(x+ h, t)

(
1− u(x, t)

γ

)
. (4.20)
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We proceed in the same manner to obtain ūx, ut, ūt where ūx and ūt are backward difference approxi-

mations and we have

∂̄xu =
u(x, t)− u(x− h, t)

ψ2
= 2A1 u(x− h, t)

(
1− u(x, t)

γ

)
, (4.21)

∂tu =
u(x, t+ k)− u(x, t)

φ2
= 2A1A2 u(x, t+ k)

(
u(x, t)

γ
− 1

)
, (4.22)

∂̄tu =
u(x, t)− u(x, t− k)

φ1
= 2A1A2 u(x, t− k)

(
u(x, t)

γ
− 1

)
. (4.23)

We need to obtain an approximation for uxx. We choose uxx = ∂̄x∂xu and this combination generates

an explicit scheme. We have

uxx = ∂̄x∂xu = ∂̄x

(
u(x+ h, t)− u(x, t)

ψ1

)
=
∂̄xu(x+ h, t)− ∂̄xu(x, t)

ψ1
. (4.24)

From Eq. (4.20) and Eq. (4.21), we can easily deduce that

uxx =
2A1

ψ1
u(x, t)

(
1− u(x+ h, t)

γ

)
− 2A1

ψ1
u(x− h, t)

(
1− u(x, t)

γ

)
(4.25)

and it follows that

uxx =
2A1

ψ1
(u(x, t)− u(x− h, t)) +

2A1

γ ψ1
u(x, t) (u(x− h, t)− u(x+ h, t)) . (4.26)

We introduce A2 into Eq. (4.26) by adding and subtracting the expression

A2

ψ1
(u(x, t)− u(x− h, t))

so that uxx can be expressed in terms of a time derivative with other expressions. We then have

uxx =
2A1 +A2

ψ1
(u(x, t)− u(x− h, t)) +

2A1

γ ψ1
u(x, t) (u(x− h, t)− u(x+ h, t))

−A2

ψ1
(u(x, t)− u(x− h, t)) . (4.27)

Since h = A2k, we deduce that A2

ψ1
= 1

φ1
. Also u(x, t+ k) = u(x− h, t), therefore,

A2

ψ1
(u(x, t)− u(x− h, t)) =

u(x, t)− u(x, t+ k)

φ1
. (4.28)

This gives

uxx =
u(x, t+ k)− u(x, t)

φ1
+

2A1 +A2

ψ1
(u(x, t)− u(x− h, t))

+
2A1

γ ψ1
u(x, t) (u(x− h, t)− u(x+ h, t)) , (4.29)

which can be rewritten as

uxx =
u(x, t+ k)− u(x, t)

φ1
+ (2A1 +A2)

(
u(x, t)− u(x− h, t)

ψ1

)
+

2A1

γ
u(x, t)

(
u(x− h, t)− u(x, t)

ψ1
+
u(x, t)− u(x+ h, t)

ψ1

)
. (4.30)
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From Eq. (4.20) and (4.21) we have

uxx =
u(x, t+ k)− u(x, t)

φ1
+ 2A1 (2A1 +A2)u(x, t)

(
1− u(x− h, t)

γ

)
+

2A1

γ
u(x, t)

[
−2A1 u(x, t)

(
1− u(x− h, t)

γ

)
− 2A1 u(x+ h, t)

(
1− u(x, t)

γ

)]
. (4.31)

We remark that since A1 =
√

2
4 γ and A2 =

(
4−2γ
γ

)
A1, we have

2A1

(
2A1

γ

)
=

4

γ

(
2

16
γ2

)
=
γ

2
, 2A1 (2A1 +A2) =

γ2

2
+

1

4
γ (4− 2γ) = γ. (4.32)

Therefore, by using (4.32), (4.31) becomes

uxx =
u(x, t+ k)− u(x, t)

φ1
+
u2(x, t)

2
(u(x+ h, t) + u(x− h, t))

− γ

2
u(x, t) (u(x, t) + u(x+ h, t)) + γ u(x, t)− u(x, t)u(x− h, t). (4.33)

4.5.1 Explicit scheme

We can approximate uxx by a second order central difference approximation using a non-traditional

denominator and thus obtain an explicit scheme which discretises Eq. (4.1). Using Eq. (4.33), we have

unm+1 − 2unm + unm−1

ψ1 ψ2
=
un+1
m − unm
φ1

+ (unm)2

(
unm+1 + unm−1

2

)
− (γ unm)

(
unm + unm+1

2

)
− unmunm−1 + γ unm, (4.34)

Theorem 4.1. The explicit scheme (4.34) is consistent with the original equation (4.1).

Proof. By Taylor series expansion we have,

uxx =
u(x, t+ k)− u(x, t)

φ1
+
u2(x, t)

2
(u(x+ h, t) + u(x− h, t))

− γ

2
u(x, t) (u(x, t) + u(x+ h, t)) + γ u(x, t)− u(x, t)u(x− h, t)

=
(u+ kut + k2

2 utt + ··)− u
φ1 ≈ k

+
u2

2

(
u+ hux +

h2

2
uxx + u− hux +

h2

2
uxx + ··

)
− γ

2
u(u+ u+ hux +

h2

2
uxx + ··) + γu− u(u− hux +

h2

2
uxx + ··). (4.35)

It follows that

uxx = ut −
k2

2
utt + · ·+u2

2

(
2u+ h2uxx + ··

)
− γ

2
u (2u+ hux +

h2

2
uxx + ··) + γu− u2 + huux +

uh2

2
uxx + ·· (4.36)

Finally we have

uxx = ut + γu− u2 + u3 − γu2 − k2

2
utt +

h2u2

2
uxx + huux +

h2u

2
uxx

− hγu

2
ux −

h2γu

4
uxx · · (4.37)
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When k, h→ 0, we recover the equation

uxx = ut + γu− u2 + u3 − γu2 = ut + u(1− u)(γ − u). (4.38)

Numerical experiment of explicit scheme

We solve the numerical experiment using γ = 0.001, h = 0.1 for 0 ≤ x ≤ 1, and 0 ≤ x ≤ 10, for time,

T = 1.0. Using the functional relationship, h = A2k with γ = 0.001, h = 0.1 we obtain k = 1/14. We

tabulate L1 and L∞ errors at some values of k in Tables 4.1 to 4.2 and observe that the method appears

to be unstable at k = 1/14 ≈ 0.071. We next use γ = 0.5, h = 0.1 for 0 ≤ x ≤ 1 and 0 ≤ x ≤ 10. If

we use the functional relationship, h = A2k with γ = 0.5, h = 0.1 the value of k must be 0.09428, we

use k = 1/11 ≈ 0.0909. The errors are displayed in Tables 4.3 to 4.4. ′−′ in Tables 4.1 to 4.4 indicate

unbounded values.

Time step (k) L1 error L∞ error CPU (s)

0.0005 7.2345×10−13 1.0961×10−12 1.122

0.001 7.1830×10−13 1.0883×10−12 0.811

0.002 7.0800×10−13 1.0727×10−12 0.700

0.004 6.8741×10−13 1.0259 ×10−12 0.624

0.005 6.7711×10−13 1.0259×10−12 0.662

0.008 − − −

0.016 − − −

0.032 − − −

1/14≈ 0.071 1.2060×102 2.1499×102 0.585

0.1 1.3581 1.9441 0.550

Table 4.1: Computation of L1 and L∞ errors and CPU time using explicit scheme described by

Eq. (4.34) from Namjoo and Zibaei (2018) with γ = 0.001, h = 0.1, 0 ≤ x ≤ 1 at time, T = 1.0.

First, we fix h = 0.1 and γ = 0.001, γ = 0.5, and compute k as h/A2. A plot of |ξ| against w ∈ [−π, π]

is then obtained as depicted in Figure 4.1a. We also consider h = 0.1 and γ = 0.5, and obtain plot of

|ξ| against w ∈ [−π, π] in Figure 4.1b. We observe that explicit scheme is not stable for all values of

w ∈ [−π, π]. Hence the explicit scheme constructed by Namjoo and Zibaei (2018) using the exact solution

is not useful scheme due to stability issues.
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(a) h = 0.1, γ = 0.001, k = h/A2. (b) h = 0.1, γ = 0.5, k = h/A2.

Figure 4.1: Plot of |ξ| against w using explicit scheme described by Eq. (4.34) from Namjoo

and Zibaei (2018).

Time step (k) L1 error L∞ error CPU (s)

0.0005 7.4612×10−11 8.7850×10−12 3.180

0.001 7.4084×10−11 8.7225 ×10−12 1.802

0.002 7.3026×10−11 8.5975×10−12 1.273

0.004 7.0911×10−11 8.3474 ×10−12 0.971

0.005 6.9855×10−11 8.2223 ×10−12 0.846

0.008 − − −

0.016 − − −

0.032 − − −

1/14≈ 0.071 1.5906×102 1.6740×102 0.686

0.1 1.3609 1.9447 0.644

Table 4.2: Computation of L1 and L∞ errors and CPU time using explicit scheme described

by Eq. (4.34) from Namjoo and Zibaei (2018) with γ = 0.001, h = 0.1, 0 ≤ x ≤ 10 at time,

T = 1.0.
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Time step (k) L1 error L∞ error CPU (s)

0.0005 6.2098×10−5 9.4197×10−5 1.176

0.001 6.1767×10−5 9.3694 ×10−5 1.019

0.002 6.1104 ×10−5 9.2689×10−5 0.925

0.004 5.9779 ×10−5 9.0680×10−5 0.908

0.005 5.9117×10−5 8.9675 ×10−5 0.800

0.008 − − −

0.016 − − −

0.032 − − −

1/11≈0.0909 1.5602×10131 1.1393×10133 0.572

0.1 1.8374×1049 1.0756×1050 0.546

Table 4.3: Computation of L1 and L∞ errors and CPU time using explicit scheme described by

Eq. (4.34) from Namjoo and Zibaei (2018) with γ = 0.5, h = 0.1, 0 ≤ x ≤ 1 at time, T = 1.0.

Time step (k) L1 error L∞ error CPU (s)

0.0005 6.5901×10−3 1.0134×10−3 3.723

0.001 6.5544×10−3 1.0080×10−3 2.176

0.002 6.4830×10−3 9.9703 ×10−4 1.661

0.004 6.3403×10−3 9.7515×10−4 1.025

0.005 6.2689×10−3 9.6422×10−4 0.854

0.008 − − −

0.016 − − −

0.032 − − −

1/11≈0.0909 1.0623×10127 9.4631×10127 0.564

0.1 1.4743×1049 8.3040×1049 0.552

Table 4.4: Computation of L1 and L∞ errors and CPU time using explicit scheme described by

Eq. (4.34) from Namjoo and Zibaei (2018) with γ = 0.5, h = 0.1, 0 ≤ x ≤ 10 at time, T = 1.0.

From Tables 4.1 to 4.4, we deduce that functional relationship does not guarantee stability of the scheme.

We study the stability analysis of the scheme using Von Neumann stability analysis and method of

freezing coefficient (Durran, 2010). Using the ansatz, unm = ξneI mw, we obtain the amplification factor
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of Eq. (4.34) as

ξ =
φ1

ψ1ψ2
(2 cos(w)− 2) − φ1u

2
max cos(w) + φ1

γ

2
umax(1 + cos(w))

+ φ1umax cos(w) + 1− γφ1 − Iφ1umax

(
1− γ

2

)
sin(w). (4.39)

where ψ1 = 1−e−2A1h

2A1
, ψ2 = e2A1h−1

2A1
, A1 =

√
2

4 γ. We note that umax ≤ γ (from some numerical ex-

periments which were carried out). An alternative way to understand why the explicit scheme is un-

stable for this numerical experiment is explained in the following lines: We consider h = A2k. Since

A2 =
(

4−2γ
γ

)
A1 and A1 =

√
2

4 γ, this gives A2 = 2−
√

2γ
2 . Hence k

h = 1
A2

= 2
2−
√

2γ
where γ ∈ (0, 1). This

gives 1 < k
h <

2
2−
√

2
and this can explain the instability of the explicit scheme. It can be shown that the

condition for instability for a classical explicit scheme discretising Eq. (4.1) to be k
h2 < 1

2 . We obtain

plots of u against x using explicit scheme in Fig.(4.2) using h = 0.1, γ = 0.001, and h = 0.1, γ = 0.5

with k = 0.005 (in both cases)
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(d) h = 0.1, γ = 0.5, k = 0.0005.

Figure 4.2: Plot of u against x using explicit scheme described by Eq. (4.34) from Namjoo and

Zibaei (2018) at Time, T = 1.0 where x ∈ [0, 1] for 4.2a, 4.2c and x ∈ [0, 10] for 4.2b and 4.2d.

4.5.2 Implicit scheme

If we choose uxx = ∂x∂̄xu, this combination generates an implicit scheme. We have

∂x∂̄xu =∂x

(
u(x, t)− u(x− h, t)

ψ2

)
=
∂xu(x, t)− ∂xu(x− h, t)

ψ2
,

=
2A1

ψ2
u(x+ h, t)

(
1− u(x, t)

γ

)
− 2A1

ψ2
u(x, t)

(
1− u(x− h, t)

γ

)
. (4.40)

It follows

∂x∂̄xu =
2A1

ψ2
u(x+ h, t)− 2A1

ψ2

u(x+ h, t)u(x, t)

γ
− 2A1

ψ2
u(x, t) +

2A1

ψ2

u(x− h, t)u(x, t)

γ
, (4.41)

which gives

∂x∂̄xu =
2A1

ψ2
(u(x+ h, t)− u(x, t)) +

2A1

γψ2
u(x, t) (u(x− h, t)− u(x+ h, t)) . (4.42)
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We introduce A2 by adding and subtracting the expression A2

ψ2
(u(x+ h, t)− u(x, t)) into (4.42) and we

have

∂x∂̄xu =
2A1 +A2

ψ2
(u(x+ h, t)− u(x, t)) +

2A1

γψ2
u(x, t) (u(x− h, t)− u(x+ h, t))

−A2

ψ2
(u(x+ h, t)− u(x, t)) . (4.43)

Since h = A2k, it follows that A2

ψ2
= 1

φ2
. Also u(x+ h, t) = u(x, t− k). Therefore

A2

ψ2
(u(x+ h, t)− u(x, t)) =

u(x, t− k)− u(x, t)

φ2
. (4.44)

We thus have

uxx =
u(x, t)− u(x, t− k)

φ2
+

2A1 +A2

ψ2
(u(x+ h, t)− u(x, t))

+
2A1

γ
u(x, t)

(
u(x, t)− u(x+ h, t)

ψ2
+
u(x− h, t)− u(x, t)

ψ2

)
, (4.45)

which can be expressed as

uxx =
u(x, t)− u(x, t− k)

φ2
+ 2A1(2A1 +A2)u(x, t)

(
1− u(x+ h, t)

γ

)
+

2A1

γ
u(x, t)

[
−2A1u(x− h, t)

(
1− u(x, t)

γ

)
− 2A1u(x, t)

(
1− u(x+ h, t)

γ

)]
. (4.46)

Further simplication gives

uxx =
u(x, t)− u(x, t− k)

φ2
+ γu(x, t)

(
1− u(x+ h, t)

γ

)
− γ

2
u2(x, t)

(
1− u(x+ h, t)

γ

)
− γ

2
u(x, t)

(
1− u(x, t)

γ

)
u(x− h, t), (4.47)

and

uxx =
u(x, t)− u(x, t− k)

φ2
+ γu(x, t)− u(x, t)u(x+ h, t)

− γ

2
u2(x, t) +

u2(x, t)

2
u(x+ h, t)− γ

2
u(x, t)u(x− h, t) +

u2(x, t)u(x− h, t)
2

. (4.48)

It follows

uxx =
u(x, t)− u(x, t− k)

φ2
+
u2(x, t)

2
(u(x+ h, t) + u(x− h, t))

− γ

2
u(x, t) (u(x, t) + u(x− h, t))− u(x, t)u(x+ h, t) + γu(x, t). (4.49)

The implicit scheme is therefore

unm+1 − 2unm + unm−1

ψ1ψ2
=
unm − un−1

m

φ2
+ (unm)2

(
unm+1 + unm−1

2

)
− (γunm)

(
unm + unm−1

2

)
− unmunm+1 + γunm (4.50)

which can be rewritten as

un−1
m = unm −

φ2

ψ1 ψ2

(
unm+1 − 2unm + unm−1

)
+
φ2 (unm)2

2

(
unm+1 + unm−1

)
− φ2 γ

unm
2

(
unm + unm−1

)
− φ2 u

n
m u

n
m+1 + φ2 γ u

n
m. (4.51)
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Theorem 4.2. The implicit scheme (4.51) is consistent with the original equation (4.1).

Proof. The proof is similar as in the case of explicit scheme by using Taylor expansions.

Numerical experiment of implicit scheme

The implicit scheme is given by (4.51) ie

un−1
m = unm −

φ2

ψ1 ψ2

(
unm+1 − 2unm + unm−1

)
+
φ2 (unm)2

2

(
unm+1 + unm−1

)
− φ2 γ

unm
2

(
unm + unm−1

)
− φ2 u

n
m u

n
m+1 + φ2 γ u

n
m.

The amplification factor of Eq. (4.51) can be obtained from the following

ξ−1 = 1− φ2

ψ1ψ2
(2 cos(w)− 2) + φ2u

2
max cos(w) + Iφ2umax

(γ
2
− 1
)

sin(w)

− φ2umax

(γ
2

+ 1
)

cos(w)− φ2umax
γ

2
+ φ2γ. (4.52)

Plots of ξ against w ∈ [−π, π] for the two cases: h = 0.1, γ = 0.001 and h = 0.1, γ = 0.5 are shown in

Figures 4.3a and 4.3b and we can deduce the scheme is unconditionally stable in both cases.

(a) h = 0.1, γ = 0.001, k = h/A2. (b) h = 0.1, γ = 0.5, k = h/A2.

Figure 4.3: Plot of |ξ| against w using implicit scheme described by Eq. (4.51) from Namjoo

and Zibaei (2018).
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Time step (k) L1 error L∞ error

0.0005 7.2041×10−11 8.7556×10−12

0.001 6.2247×10−11 7.5695×10−12

0.002 7.0493×10−11 8.5683×10−12

0.004 6.8431×10−10 8.3186×10−12

0.005 6.7399×10−10 8.1937×10−12

0.008 6.4308×10−10 7.8192×10−12

1/14≈ 0.071 4.8835×10−12 2.2035×10−12

0.1 2.9959×10−11 3.6599×10−12

Table 4.5: Computation of L1 and L∞ errors using implicit scheme described Eq. (4.51) from

Namjoo and Zibaei (2018) with γ = 0.001, h = 0.1, 0 ≤ x ≤ 1 at time, T = 1.0.

Time step (k) L1 error L∞ error

0.0005 8.1354×10−10 9.1804×10−12

0.001 7.6458×10−10 7.9903×10−12

0.002 8.6291×10−10 8.9924×10−12

0.004 8.3833×10−10 8.7419×10−12

0.005 8.2604×10−10 8.6166×10−11

0.008 7.8916×10−10 8.2408×10−12

1/14≈ 0.071 1.2821×10−11 2.9990×10−13

0.1 3.4110×10−10 3.6628×10−12

Table 4.6: Computation of L1 and L∞ errors using implicit scheme described Eq. (4.51) from

Namjoo and Zibaei (2018) with γ = 0.001, h = 0.1, 0 ≤ x ≤ 10 at time, T = 1.0.
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Time step (k) L1 error L∞ error

0.0005 6.6849×10−3 1.3886×10−3

0.001 8.2833×10−3 1.3837×10−3

0.002 6.6065×10−3 1.3739×10−3

0.004 6.5018×10−3 1.3545×10−3

0.005 6.4495×10−3 1.3447×10−3

0.008 6.2923×10−3 1.3154×10−3

1/14≈ 0.071 4.4010×10−3 7.5572×10−4

1/11≈0.0909 4.4861×10−4 9.1301×10−4

0.1 4.5716×10−3 9.9875×10−4

Table 4.7: Computation of L1 and L∞ errors using implicit scheme described Eq. (4.51) from

Namjoo and Zibaei (2018) with γ = 0.5, h = 0.1, 0 ≤ x ≤ 1 at time, T = 1.0.

Time step (k) L1 error L∞ error

0.0005 4.8991×10−1 7.5539×10−3

0.001 4.8961×10−1 7.5500×10−3

0.002 4.8901×10−1 7.5423×10−3

0.004 4.8780×10−1 7.5266×10−3

0.005 4.8719×10−1 7.5188×10−3

0.008 4.8537×10−1 7.4953×10−3

1/14≈0.071 4.4764×10−1 6.9953×10−3

1/11≈0.0909 4.3641×10−1 6.8410×10−3

0.1 4.3118×10−1 6.7691×10−3

Table 4.8: Computation of L1 and L∞ errors using implicit scheme from Namjoo and Zibaei

(2018) with γ = 0.5, h = 0.1, 0 ≤ x ≤ 10 at time, T = 1.0.

Here since we don’t have any stability issues with implicit scheme, we choose k, such that h = A2k.
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(c) h = 0.1, γ = 0.5, k = 1/11.
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(d) h = 0.1, γ = 0.5, k = 1/11.

Figure 4.4: Plot of u against x using implicit scheme described by (4.51) from Namjoo and

Zibaei (2018) at time, T = 1.0 where x ∈ [0, 1] for 4.4a, 4.4c and x ∈ [0, 10] for 4.4b and 4.4d.

4.6 Nonstandard Finite Difference Scheme (NSFD)

We present derivation of two versions of Nonstandard Finite Difference Schemes which can be named

as NSFD1 and NSFD2 in (Namjoo and Zibaei, 2018). NSFD1 is improved to generate NSFD3 scheme.

Please see chapter 2, section 2.1.2 for definitions and properties on NSFD.

4.6.1 NSFD1 scheme

We note that the right hand side of Eq. (4.1) is

−u3 + (1 + γ)u2 − γu.

We use the following discrete approximations for the right hand of Eq. (4.1):

− γu(xm, tn) ≈ −γun+1
m , − (u(xm, tn))

3 ≈ −3

2

(
unm−1

)2
un+1
m +

1

2

(
unm−1

)3
. (4.53)
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This gives the following scheme

un+1
m − unm
φ1

−
unm+1 − 2unm + unm−1

ψ1ψ2
= − 3

2

(
unm−1

)2
un+1
m +

1

2

(
unm−1

)3
+ (1 + γ)

(
unm−1

)2 − γun+1
m , (4.54)

where ψ1 = 1−e−2A1h

2A1
, ψ2 = e2A1h−1

2A1
and φ1 = 1−e−2A1A2k

2A1A2
. A single expression for the scheme is

un+1
m =

(1− 2R)unm +R(unm+1 + unm−1) + φ1

(
(1 + γ)

(
unm−1

)2
+ 1

2

(
unm−1

)3)
1 + φ1γ + 3

2φ1

(
unm−1

)2 , (4.55)

where R = φ1

ψ1ψ2
.

Theorem 4.3. If 1− 2R ≥ 0, the numerical solution of Eq. (4.1) satisfies

0 ≤ unm ≤ 1 =⇒ 0 ≤ un+1
m ≤ 1,

and the dynamical consistency holds for all relevant values of n and m.

Remark 4.1. As stated in the introduction, the concept of nonstandard finite difference required dy-

namical consistency (positivity, boundedness, preservation of fixed points) which helps to avoid numerical

instabilities.

The fixed points of Eq. (4.1) are u∗1 = 0, u∗2 = 1 (which are stable) and u∗3 = γ which is unstable.

Furthermore, Roeger and Mickens (2007) showed preservation of local stabilities of all fixed points.

Proof. For positivity of the scheme given by Eq. (4.55), we have un+1
m ≥ 0 if only 1 − 2R ≥ 0, since

unm ≥ 0 by assumption and 1 + φ1γ + 3
2φ1

(
unm−1

)2
> 0.

To obtain the condition for positivity of NSFD1, we solve R = φ1

ψ1ψ2
≤ 1

2 which implies that, by replacing

φ1, ψ1, ψ2, by their respective expressions, we obtain(
1− e−2A1A2k

2A1A2

)(
2A1

1− e−2A1h

)(
2A1

e2A1h − 1

)
≤ 1

2
, (4.56)

which gives

k ≤ − 1

2A1A2
ln

[
1− A2

4A1

(e2A1h − 1)2

e2A1h

]
, (4.57)

and finally

k ≤ − 2

γ(2− γ)
ln

1−
(

2− γ
2γ

) (e√2
2 γh − 1

)2

e
√

2
2 γh

 . (4.58)

We assume that 0 ≤ unm ≤ γ. If the scheme is bounded, we need to prove that 0 ≤ un+1
m ≤ γ or

un+1
m − γ ≤ 0. Consider

(un+1
m − γ)

(
1 + φ1γ +

3

2
φ1

(
unm−1

)2)
= (1− 2R)unm +R(unm+1 + unm−1)

+ φ1

(
(1 + γ)

(
unm−1

)2
+

1

2

(
unm−1

)3)
− γ − φ1γ

2 − 3

2
φ1

(
unm−1

)2
. (4.59)
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It follows
(
unm−1

)3
= unm−1

(
unm−1

)2 ≤ γ (unm−1

)2
since 0 ≤ unm ≤ γ for all values for n and m. Therefore,

(un+1
m − γ)

(
1 + φ1γ +

3

2
φ1

(
unm−1

)2) ≤ (1− 2R)γ + 2γR

+ φ1γ
2 + φ1

(
γ
(
unm−1

)2
+
γ

2

(
unm−1

)2)
− γ − φ1γ

2 − 3

2
φ1

(
unm−1

)2
= 0. (4.60)

We therefore obtain un+1
m − γ ≤ 0. Hence NSFD1 satisfies boundedness properties.

For γ = 0.001 and h = 0.1, (4.58) gives k ≤ 5.0000 × 10−3 while for γ = 0.5 and h = 0.1, we get

k ≤ 5.0052× 10−3.

We tabulate L1 L∞ errors as well as CPU time and rate of convergence with respect to time (using L1

error) for the four cases in Tables 4.9 to 4.12. We also obtain plot of u against x at time, T = 1.0 in Fig.

4.5.

Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 1.3053×10−12 1.9777×10−12 - 0.561

0.004 1.3362×10−12 2.0246×10−12 -0.1049 0.588

0.002 1.3981×10−12 2.1183×10−12 -0.0653 0.588

0.001 1.4290×10−12 2.1651×10−12 -0.0315 0.688

0.0005 1.4444 ×10−12 2.1885×10−12 -0.0154 0.745

Table 4.9: Computation of L1 and L∞ errors, CPU time and rate of convergence in time using

NSFD1 with γ = 0.001, h = 0.1, 0 ≤ x ≤ 1 at time, T = 1.0.

Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 1.3468×10−10 1.5853×10−11 - 0.772

0.004 1.3786×10−10 1.6228×10−11 -0.1046 0.828

0.002 1.4421×10−10 1.6978×10−11 -0.0649 1.118

0.001 1.4739×10−10 1.7353×10−11 -0.0315 1.561

0.0005 1.4897×10−10 1.7540×10−11 -0.0154 2.991

Table 4.10: Computation of L1 and L∞ errors, CPU time and rate of convergence in time using

NSFD1 with γ = 0.001, h = 0.1, 0 ≤ x ≤ 10 at time, T = 1.0.
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Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 2.6024×10−4 3.9470×10−4 - 0.565

0.004 2.6311×10−4 3.9905×10−4 -0.0491 0.569

0.002 2.6886 ×10−4 4.0776×10−4 -0.0312 0.645

0.001 2.7173×10−4 4.1212×10−4 -0.0153 0.685

0.0005 2.7317×10−4 4.1429×10−4 -7.6250×10−3 0.829

Table 4.11: Computation of L1 and L∞ errors CPU time and rate of convergence in time using

NSFD1 with γ = 0.5, h = 0.1, 0 ≤ x ≤ 1 at time, T = 1.0.

Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 2.9989×10−2 4.5242×10−3 - 0.743

0.004 3.0267×10−2 4.5665×10−3 -0.0413 0.749

0.002 3.0825×10−2 4.6515×10−3 -0.0264 1.057

0.001 3.1104×10−2 4.6941×10−3 -0.0129 1.610

0.0005 3.1244×10−2 4.7154×10−3 -6.4790×10−3 2.775

Table 4.12: Computation of L1 and L∞ errors, CPU time and rate of convergence using NSFD1

with γ = 0.5, h = 0.1, 0 ≤ x ≤ 10 at time, T = 1.0.

From Tables 4.9 to 4.12, we deduce that though the L1, L∞ are of the order 10−12, 10−10 for cases 1, 2

and of order 10−4, 10−2 for cases 3, 4. The rate of convergence with respect to time is negative and this

indicates that NSFD1 has convergence issues. This could be due to approximations of −γu(xm, tn) by

−γun+1
m and approximation of − (u(xm, tn))

3
by − 3

2

(
unm−1

)2
un+1
m + 1

2

(
unm−1

)3
where unm−1 and un+1

m are

both non-local approximations. (1 + γ)u2 can be approximated by (1 + γ)unm+1u
n
m−1 or (1 + γ) (unm)

2
.

− (u(xm, tn))
3

can be approximated by − 3
2 (unm)

2
un+1
m + 1

2 (unm)
3
.

The plot Plot of u against x using NSFD1 is shown in Figure 4.5.
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Figure 4.5: Plot of u against x using NSFD1 scheme at time T = 1.0, where x ∈ [0, 1], for 4.5a,

4.5c and x ∈ [0, 10] for 4.5b and 4.5d.

4.6.2 NSFD2 scheme

Here we use the following approximations for the right hand of Eq. (4.1):

u(xm, tn) ≈ un+1
m , (u(xm, tn))

2 ≈ un+1
m unm, (4.61)

(u(xm, tn))
3 ≈ un+1

m (unm)
2
. (4.62)

The NSFD2 scheme when used to discretise Eq. (4.1) is given by

un+1
m − unm
φ1

−
unm+1 − 2unm + unm−1

ψ1ψ2
= −un+1

m (unm)
2

+ (1 + γ)un+1
m unm − γun+1

m . (4.63)

or

un+1
m =

(1− 2R)unm +R(unm+1 + unm−1)

1 + φ1γ − (1 + γ)φ1unm + φ1 (unm)
2 , where R =

φ1

ψ1ψ2
. (4.64)
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Theorem 4.4. If 1− 2R ≥ 0 and 1− φ1γ
2 ≥ 0, the numerical solution of Eq. (4.1) satisfies

0 ≤ unm ≤ 1 =⇒ 0 ≤ un+1
m ≤ 1,

and the dynamical consistency holds for all relevant values of n and m.

Proof. For positivity of NSFD2, we have un+1
m ≥ 0 if only 1− 2R ≥ 0 and 1− φ1γ

2 ≥ 0. The coefficient

of unm must be non-negative. We also need to have

1 + φ1γ − (1 + γ)φ1u
n
m + φ1 (unm)

2
> 0.

We note that 0 ≤ unm ≤ γ. Hence,

1− [(1 + γ)φ1u
n
m − φ1γ] + φ1 (unm)

2 ≥ 1 + γφ1 − γφ1 − γ2φ1 + φ1 (unm)
2

≥ 1− φ1γ
2 + φ1 (unm)

2

≥ 1− φ1γ
2. (4.65)

To obtain the condition for positivity of NSFD2, we solve R = φ1

ψ1ψ2
≤ 1

2 and 1 − φ1γ
2 > 0. Solving

R ≤ 1
2 gives

k ≤ − 2

γ(2− γ)
ln

1−
(

2− γ
2γ

) (e√2
2 γh − 1

)2

e
√

2
2 γh

 . (4.66)

We also need to solve

1−
(

1− e−2A1A2k

A1A2

)
γ2 > 0, (4.67)

and this gives

k ≤ − 2

γ(2− γ)
ln
[
1− γ

4
(2− γ)

]
. (4.68)

and finally, we obtain

k ≤


− 2
γ(2−γ) ln

[
1− γ

4 (2− γ)
]
,

− 2
γ(2−γ) ln

1−
(

2−γ
2γ

) (
e

√
2

2
γh−1

)2

e

√
2

2
γh

 . (4.69)

For boundedness of NSFD2, we assume that 0 ≤ unj ≤ γ. Consider

(un+1
m − γ)

(
1 + φ1γ − (1 + γ)φ1u

n
m + φ1 (unm)

2
)

= (1− 2R)unm +R(unm+1 + unm−1)

− γ − γ2φ1 + γ(1 + γ)φ1u
n
m

− γφ1 (unm)
2
. (4.70)

It follows, since 0 ≤ unm ≤ γ for all values for n and m,

(un+1
m − γ)

(
1 + φ1γ − (1 + γ)φ1u

n
m + φ1 (unm)

2
)
≤ (1− 2R)γ + 2γR

− γ − γ2φ1 + γ(1 + γ)φ1 u
n
m

− γφ1 (unm)
2
. (4.71)
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Finally, we have

(un+1
m − γ)

(
1 + φ1γ − (1 + γ)φ1u

n
m + φ1 (unm)

2
)
≤ − φ1γ

[
(unm)

2 − γunm − unm + γ
]

= −φ1γ(unm − 1)(unm − γ). (4.72)

Since 0 ≤ unm ≤ γ and γ ∈ (0, 1), we have (unm − 1)(unm − γ) ≥ 0 and

(un+1
m − γ)

(
1 + φ1γ − (1 + γ)φ1u

n
m + φ1 (unm)

2
)
≤ 0. (4.73)

Therefore we have 0 ≤ un+1
m ≤ γ. Hence the boundedness of NSFD2.

Solving (4.69) for γ = 0.001, h = 0.1, gives k ≤ 5.0000× 10−3 and k ≤ 5.0012× 10−1 When we solve for

γ = 0.5, h = 0.1, we obtain k ≤ 5.0052× 10−3, and k ≤ 5.5370× 10−1.

Hence is NSFD2 scheme is positive definite if

(i) k ≤ 5.0000× 10−3 when γ = 0.001,

(ii) k ≤ 5.0052× 10−3 when γ = 0.5.

We tabulate L1, L∞ errors, CPU time and rate of convergence in time in Tables 4.13 to 4.16 and obtain

plots of u against x in Figure 4.6.

Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 1.0302 ×10−13 1.5608 ×10−13 - 0.498

0.004 8.2413×10−14 1.2487 ×10−13 1.000 0.514

0.002 4.1207 ×10−14 6.2435 ×10−14 1.000 0.562

0.001 2.0598 ×10−14 3.1209×10−14 1.000 0.590

0.0005 1.0303 ×10−14 1.5611×10−14 0.999 0.685

Table 4.13: Computation of L1 and L∞ errors, CPU time and rate of convergence using NSFD2

with γ = 0.001, h = 0.1, 0 ≤ x ≤ 1, T = 1.0.
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Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 1.0609 ×10−11 1.2486×10−12 - 0.682

0.004 8.4863×10−12 9.9890×10−13 1.000 0.746

0.002 4.2427×10−12 4.9945×10−13 1.000 1.014

0.001 2.1206 ×10−12 2.4966×10−13 1.000 1.485

0.0005 1.0607×10−12 1.2488×10−13 0.999 2.531

Table 4.14: Computation of L1 and L∞ errors, CPU time and rate of convergence using NSFD2

with γ = 0.001, h = 0.1, 0 ≤ x ≤ 10, T = 1.0.

Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 7.2879×10−6 1.1046×10−5 - 0.611

0.004 5.8241×10−6 8.8276×10−6 1.005 0.668

0.002 2.8964×10−6 4.3902×10−6 1.008 0.678

0.001 1.4325×10−6 2.1715 ×10−6 1.016 0.724

0.0005 7.0051 ×10−7 1.0620×10−6 1.032 0.764

Table 4.15: Computation of L1 and L∞ errors, CPU time and rate of convergence using NSFD2

with γ = 0.5, h = 0.1, 0 ≤ x ≤ 1, T = 1.0.

Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 4.6563 ×10−4 7.9312×10−5 - 0.696

0.004 3.7403×10−4 6.3679×10−5 0.9817 0.751

0.002 1.9066×10−4 3.2398×10−5 0.9722 1.070

0.001 9.8889×10−5 1.6760×10−5 0.9471 1.372

0.0005 5.2984×10−5 8.9589×10−6 0.9003 2.515

Table 4.16: Computation of L1 and L∞ errors, CPU time and rate of convergence using NSFD2

with γ = 0.5, h = 0.1, 0 ≤ x ≤ 10, T = 1.0.
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Figure 4.6: Plot of u against x using NSFD2 scheme at time T = 1.0, where x ∈ [0, 1] for 4.6a,

4.6c and x ∈ [0, 10] for 4.6b, 4.6d.
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4.6.3 NSFD3 scheme

The NSFD1 scheme has convergence issues. We present a slight modification of NSFD1 and we baptise

the new scheme as NSFD3. We propose the following

un+1
m − unm
φ1

−
unm+1 − 2unm + unm−1

ψ1ψ2
= − 3

2
(unm)

2
un+1
m +

1

2
(unm)

3

+ (1 + γ) (unm)
2 − γun+1

m , (4.74)

where ψ1 = 1−e−2A1h

2A1
, ψ2 = e2A1h−1

2A1
and φ1 = 1−e−2A1A2k

2A1A2
. A single expression for the scheme is

un+1
m =

(1− 2R)unm +R(unm+1 + unm−1) + φ1

(
(1 + γ) (unm)

2
+ 1

2 (unm)
3
)

1 + φ1γ + 3
2φ1 (unm)

2 , (4.75)

where R = φ1

ψ1ψ2
.

Theorem 4.5. If 1− 2R ≥ 0, the numerical solution of Eq. (4.1) satisfies

0 ≤ unm ≤ 1 =⇒ 0 ≤ un+1
m ≤ 1,

and the dynamical consistency holds for all relevant values of n and m.

Proof. For positivity, we should have 1− 2R ≥ 0 and 1 + φ1γ + 3
2φ1 (unm)

2
> 0, since unm ≥ 0.

To obtain the condition for positivity of NSFD3, we solve R = φ1

ψ1ψ2
≤ 1

2 which is similar condition for

positivity of NSFD1. Therefore the condition is

k ≤ − 2

γ(2− γ)
ln

1−
(

2− γ
2γ

) (e√2
2 γh − 1

)2

e
√

2
2 γh

 . (4.76)

We assume that 0 ≤ unm ≤ γ. For the boundedness, we need to prove that 0 ≤ un+1
m ≤ γ. We consider

(un+1
m − γ)

(
1 + φ1γ +

3

2
φ1 (unm)

2

)
= (1− 2R)unm +R(unm+1 + unm−1)

+ φ1

(
(1 + γ) (unm)

2
+

1

2
(unm)

3

)
− γ − φ1γ

2 − 3

2
φ1 (unm)

2
. (4.77)

Since 0 ≤ unm ≤ γ for all values for n and m, we have

(un+1
m − γ)

(
1 + φ1γ +

3

2
φ1 (unm)

2

)
≤ (1− 2R)γ + 2γR

+ φ1γ
2 + φ1

(
γ (unm)

2
+
γ

2
(unm)

2
)

− γ − φ1γ
2 − 3

2
φ1 (unm)

2
= 0. (4.78)

Hence un+1
m ≤ γ. It follows that NSFD3 satisfies boundedness properties.

For γ = 0.001 and h = 0.1, (4.76) gives k ≤ 5.0000 × 10−3 while for γ = 0.5 and h = 0.1, we get

k ≤ 5.0052× 10−3.
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We tabulate L1, L∞ errors as well as CPU time and rate of convergence with respect to time (using L1

error) for the four cases in Tables 4.17 to 4.20. We also obtain plot of u against x at T = 1.0 in Figure

4.7.

Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 1.5460×10−13 2.3424×10−13 - 0.770

0.004 1.2368×10−13 1.8739×10−13 1.000 0.920

0.002 6.1841×10−14 9.3698×10−14 0.999 0.928

0.001 3.0915×10−14 4.6841×10−14 1.000 1.092

0.0005 1.5462×10−14 2.3426×10−14 0.999 1.215

Table 4.17: Computation of L1 and L∞ errors, CPU time and rate of convergence in time using

NSFD3 with γ = 0.001, h = 0.1, 0 ≤ x ≤ 1, T = 1.0.

Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 1.5930×10−11 1.8750×10−12 - 0.947

0.004 1.2743×10−11 1.4910×10−12 1.000 1.100

0.002 6.3709×10−12 7.500×10−13 1.000 1.296

0.001 3.1847×10−12 3.7494×10−13 1.000 1.983

0.0005 1.5927×10−12 1.8752×10−13 0.999 2.922

Table 4.18: Computation of L1 and L∞ errors, CPU time and rate of convergence in time using

NSFD3 with γ = 0.001, h = 0.1, 0 ≤ x ≤ 10, T = 1.0.
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Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 1.4440×10−5 2.1896×10−5 - 0.707

0.004 1.1546×10−5 1.7508×10−5 1.002 0.892

0.002 5.7572×10−6 8.7301×10−6 1.004 0.934

0.001 2.8628×10−6 4.3413×10−6 1.007 1.043

0.0005 1.4157×10−6 2.1469×10−6 1.016 1.093

Table 4.19: Computation of L1 and L∞ errors, CPU time and rate of convergence in time using

NSFD3 with γ = 0.5, h = 0.1, 0 ≤ x ≤ 1, T = 1.0.

Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 1.2452×10−3 1.9632×10−4 - 0.890

0.004 9.9846×10−4 1.5743×10−4 0.989 0.749

0.002 5.0366×10−4 7.9464×10−5 0.987 1.335

0.001 2.5559×10−4 4.0389×10−5 0.978 1.933

0.0005 1.3138×10−4 2.0838×10−5 0.960 2.775

Table 4.20: Computation of L1 and L∞ errors, CPU time and rate of convergence using NSFD3

with γ = 0.5, h = 0.1, 0 ≤ x ≤ 10, T = 1.0.

The scheme proposed is quite effective for all the four cases.
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(b) h = 0.1, γ = 0.001, k = 0.0005.
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(c) h = 0.1, γ = 0.5, k = 0.0005.
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(d) h = 0.1, γ = 0.5, k = 0.0005.

Figure 4.7: Plot of u against x using NSFD3 scheme at time T = 1.0, where x ∈ [0, 1] for 4.7a,

4.7c and x ∈ [0, 10] for 4.7b and 4.7d.

4.7 Conclusion

In this chapter, we use five numerical methods namely; two scheme (explicit and implicit) constructed

by Namjoo and Zibaei (2018), NSFD1, NSFD2, NSFD3 (which is a modification of NSFD1) in order to

solve the FitzHugh-Nagumo equation with specified initial and boundary conditions. Some highlights of

this work as compared to the work in Namjoo and Zibaei (2018) are described below.

Firstly we consider another value of γ besides the value 0.001 and we also work with short and long

domains. We observe that the results are much better when γ = 0.001 as compared to γ = 0.5.

Secondly, we test the two schemes constructed by Namjoo and Zibaei from the exact solution and demon-

strate that the explicit scheme has stability issues using numerical experiments and through analysis of

the stability. The implicit scheme is quite effective and works when h = A2k.

Thirdly, NSFD1 has convergence issues due to its rate of convergence result. A modification of NSFD1

is performed to generate NSFD3. NSFD2 and NSFD3 schemes are quite effective methods to solve the

FitzHugh-Nagumo equation with reasonable L1, L∞ errors and the rate of convergence in time from
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numerical experiment is in agreement with theoretical rate of convergence in time.

The next chapter is to construct numerical methods for a FitzHugh-Nagumo equation of the form

ut − uxx = βu(1− u)(u− γ)

and use a more challenging initial condition such as u(x, 0) = 1
2 −

1
2 tanh

( √
β

2
√

2
x
)
. The exact solution is

u(x, t) = 1
2 −

1
2 tanh

[ √
β

2
√

2
(x− ct)

]
, where β > 0, γ ∈ R and c = −

√
β
2 (2γ − 1).
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Chapter 5

Construction and analysis of some

nonstandard finite difference

methods for the FitzHugh-Nagumo

equation

A short version of this work has been published as Appadu and Agbavon (2019) and presented at ICNAAM

2018. A full version of this work is under review as Agbavon and Appadu (2019).

5.1 Introduction

In this chapter, we consider FitzHugh-Nagumo equation given by

ut − uxx = βu(1− u)(u− γ), (5.1)

where γ monitors the overall dynamics of the equation and belongs to the interval (0, 1) (Xu et al., 2014)

and is regarded as threshold of Allee effect (Wang et al., 2011). u(x, t) is the unknown function depending

on the temporal variable, t and the spatial variable, x ∈ Ω (bounded domain). β is a parameter called

intrinsic growth rate Preston and Wang (2007). It is worth to recall that the case where β = 1 is called

classical or standard FitzHugh-Nagumo equation which was our study in previous chapter 4.

Recently, for β depending on time, many authors like Triki and Wazwaz (2013) considered a generalized

Fitzhugh-Nagumo equation given by

ut + α(t)ux − Γ(t)uxx + β(t)u(1− u)(γ − u) = 0 (5.2)

where α(t), Γ(t), β(t) are arbitrary functions of t, exhibits time-changing coefficients and linear dispersion

term. They showed the existence and uniqueness of solitons solutions and used ansatz and tanh method
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with specific solitary wave. Jacobi-Gauss-Lobatto collocation method was used by Bhrawy (2013) to

solve the generalized Fitzhugh-Nagumo equation. Polynomial differential quadrature method (PDQM)

for numerical solutions of the generalized Fitzhugh-Nagumo equation with time-dependent coefficients

was also utilized by Jiwari et al. (2014).

5.1.1 Biological description of the parameter γ and β

Allee effect was first introduced by the pioneer W.C. Allee (1931) by demonstrating that goldfish grew

faster in water which had previously contained other goldfish than in water which had not. It was

named γ, the threshold of Allee effect. Moreover, he carried out an experiment with range of species and

concluded that larger groups may spur reproduction, extend survival in adverse conditions and improve

a protection (Allee, 1931, 1938). Despite the fact that the Allee effect is well known, the notion has a

range of significations not all of which are allowed by contemporary use. Furthermore, Allee did not give

a definition but he plainly considered ”certain aspects of survival (Allee et al., 1949)” rather than total

fitness and the following definitions follow

(1) Allee effect is a positive relationship between any component of individual fitness and either num-

bers or density of conspecifics (Stephens et al., 1999).

(2) The Allee effect induces minimum viable population sizes or a threshold value in the critical spatial

lengths of the initial distributions below which the populations dies out . It is also the critical

value of the spatial length of an initial nucleus (problem of critical aggregation as in Petrovskii

and Shigesada (2001)).

Overall, the Allee effect induces a rich variety of spatio-temporal dynamics in the considered epidemolog-

ical model. The remark made from the original idea of Allee and its observations is the above definition

demands that some measurable component of the fitness of an organism for instance probability of dy-

ing or reproducing is significant in a wide population (components of mean fitness meant to provide

an overall increase or decrease with increasing abundance will rely on the relative strength of negative

density dependence). Moreover, it is worthy to differentiate between component Allee effects which is

manifested by a component of fitness and demographic Allee effects which manifest at the level of total

fitness (Stephens et al., 1999). It is shown in Boukal et al. (2007), Shi and Shivaji (2006) that a strong

Allee effect assigns to the population that has a negative growth when the size of the population is below

certain threshold value while a weak Allee effect means that growth is positive and increasing.

Furthermore, some researchers used logistic growth (in the form of travelling infection waves) and growth

with a strong Allee in the modelling of biological or ecological phenomena. Those waves, are waves of ex-

tinction, which occur when the disease is introduced in the wake of the invading host population (Hilker

et al., 2007). Moreover, the Allee effect leads to bistability in the local transmission dynamics (Hilker

et al., 2007). In combination with the minimum viable population size, this has serious implications
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for eventual control methods, since they do not necessarily depend on reducing the basic reproductive

ratio anymore. If the infectiousness of the disease is considerable in comparison with the demographic

reproductiveness, the Allee effect becomes less important due to the fact that the population dynamic

is dominantly driven by the disease to extinction. Recent results show that the Allee effect produce

possible limit cycle oscillations with mass action transmission (Hilker et al., 2007) in the vital dynamics

of the model. Furthermore, this vital dynamics are generally governed by a strong Allee effect. This can

be caused by difficulties in finding mating partners at small densities, genetic inbreeding, demographic

stochasticity or a reduction in cooperative interactions (Courchamp et al., 1999, Dennis, 1989, Stephens

et al., 1999). It should be noted, moreover, that the study of Allee dynamics is justified in its own rights,

because this is largely lacking in the epidemiological literature (Hilker et al., 2007).

The intrinsic growth rate denoted by β, in the presence of migration, is an accurate measure of how

quickly a population would ultimately grow if for instance current age-specific rates of fertility, mortal-

ity, and migration were sustained indefinitely in contrast to the actual growth rate of a population, which

present equal weight to all migrants despite everything for instance, of their age. For example, migrants

are level-headed in by their expected future number of births at the age when they come or go (will not

be feigned by migration that happens beyond the end of childbearing (Preston and Wang, 2007)).

Our focus will be on the case α = 0, Γ(t) = 1, β independent of t. Our methodology used on nonstandard

finite difference scheme (Mickens, 1989, 2005).

5.2 Organisation of the chapter

The remainder of this chapter is as follows. In section 5.3, we describe the numerical experiment chosen.

In section 5.4, we give some information on basic dynamical behaviour of FitzHugh-Nagumo equation.

In sections 5.5 to 5.9 we present four versions of nonstandard finite difference schemes and study some

of their properties and present some numericals results. In section 5.10 we present error estimate for

NSFD3. The study of the relationship between physical behaviour and numerical solution and discussion

over the obtained numerical results are done in section 5.11. In section 5.12, some general view over an

implicit nonstandard finite difference is given. Section 5.13 highlights the salient features of the paper.

5.3 Numerical experiment

We solve Eq. (5.1) where u(x, t) is the unknown function which depends on the spatial variable, x ∈

(−10, 10) and temporal variable, t.

The initial condition is u(x, 0) = 1
2−

1
2 tanh

( √
β

2
√

2
x
)

(Kyrychko et al., 2005) and the boundary conditions

are

u(−10, t) =
1

2
− 1

2
tanh

[ √
β

2
√

2
(−10− ct)

]
, u(10, t) =

1

2
− 1

2
tanh

[ √
β

2
√

2
(10− ct)

]
.
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We note that the initial condition is positive i.e u(x, 0) ≥ 0.

The exact solution is u(x, t) = 1
2 −

1
2 tanh

[ √
β

2
√

2
(x− ct)

]
, where β > 0, γ ∈ (0, 1) and

c = −
√

β
2 (2γ − 1). In this work, we consider three cases:

Case 1 : β = 1, γ = 0.2.

Case 2 : 0 < β < 1 (β = 0.5), γ = 0.2.

Case 3 : β > 1 (β = 2), γ = 0.2.

We test the performance of the schemes over different values of β over the domain, x ∈ [−10, 10] at time,

T = 0.5. The spatial step size h is chosen as 0.1. We use some different values for the temporal step size

k which must satisfy the condition for positivity.

5.4 Basic dynamical behaviour and a priori bound of Eq. (5.1)

In this section, we present a theorem on the existence and uniqueness of the solution to the dynami-

cal behaviour Eq. (5.1) and a priori bound of the solution. We recall some results from Wang et al. (2011).

Theorem 5.1 (Wang et al. (2011)). Suppose that 0 < γ < 1 and Ω ⊂ Rn is bounded domain with

smooth boundary:

(a) If the initial condition u0(x) = u(x, 0) is positive (u0(x) ≥ 0) then Eq. (5.1) has unique solution

u(x, t) such that u(x, t) positive (u(x, t) ≥ 0) for t ∈ (0,∞) and Ω;

(b) For any solution u(x, t) of Eq. (5.1), lim
t→∞

supu(x, t) ≤ 1.

The full proof is in Wang et al. (2011).

5.5 Nonstandard Finite Difference Scheme (NSFD)

We present derivation of five versions of NSFD schemes to discretise

ut − uxx = βu(1− u)(u− γ).

In all four methods, we use the same discretisation for ut and uxx. We approximate ut by
un+1
m −unm
φ2(∆t)

where φ2(∆t) = φ2(k) = eβk−1
β and uxx by

unm+1−2unm+unm−1

ψ1(∆x)ψ2(∆x) where ψ1(∆x) = ψ1(h) = 1−e−βh
β and

ψ2(∆x) = ψ2(h) = eβh−1
β . We expect the theoretical rate of convergence in time to be equal to one.
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5.6 NSFD1 Scheme

We note that the right hand side of Eq. (5.1) is β (−u3 + (1 + γ)u2 − γu). We use the following discrete

approximations of the right hand side for (5.1) as used by Namjoo and Zibaei (2018):

− β γu(xm, tn) ≈ −β γun+1
m , −β (u(xm, tn))

3 ≈ β
(
−3

2

(
unm−1

)2
un+1
m +

1

2

(
unm−1

)3)
, (5.3)

β (1 + γ) (u(xm, tn))
2 ≈ β (1 + γ)

(
unm−1

)2
. (5.4)

The following scheme is proposed:

un+1
m − unm
φ2(k)

−
unm+1 − 2unm + unm−1

ψ1(h)ψ2(h)
= β

(
−3

2

(
unm−1

)2
un+1
m +

1

2

(
unm−1

)3)
+ β (1 + γ)

(
unm−1

)2 − β γ un+1
m . (5.5)

A single expression for the scheme is

un+1
m =

(1− 2R)unm +R(unm+1 + unm−1) + βφ2(k)
(

(1 + γ)
(
unm−1

)2
+ 1

2

(
unm−1

)3)
1 + β γ φ2(k) + 3

2β φ2(k)
(
unm−1

)2 , (5.6)

where R = φ2(k)
ψ1(h)ψ2(h) . As discussed in the introduction, the theory of nonstandard finite difference re-

quired dynamical consistency (positivity, boundedness, preservation of fixed points) which help to avoid

numerical instabilities.

The fixed points of Eq. (5.1) are u∗1 = 0, u∗2 = 1 (which are stable) and u∗3 = γ which is unstable.

Furthermore, Roeger and Mickens (2007) showed preservation of local stabilities of all fixed points.

Theorem 5.2 (Dynamical consistency). If 1− 2R ≥ 0, the numerical solution of Eq. (5.6) satisfies

0 ≤ unm ≤ 1 =⇒ 0 ≤ un+1
m ≤ 1,

and the dynamical consistency (positivity and boundedness) holds for all relevant values of n and m.

Proof. (1) If 1− 2R ≥ 0, then

R =

(
eβk − 1

β

)(
β

1− e−βh

)(
β

eβh − 1

)
≤ 1

2
, (5.7)

by replacing φ2(h), ψ1(h), ψ2(h) by their respective expressions. We have therefore, since unm ≥ 0

and 1 + β γ φ2(k) + 3
2β φ2(k)

(
unm−1

)2
> 0, NSFD1 is positive definite under the condition

k ≤ 1

β
ln

[
1 +

1

2β

(
eβh − 1

)2
eβh

]
. (5.8)

(2) We assume that 0 ≤ unm ≤ 1. If the scheme is bounded, we need to prove that 0 ≤ un+1
m ≤ 1.

Consider

(un+1
m − 1)

(
1 + βγφ2(k) +

3

2
βφ2(k)

(
unm−1

)2)
= (1− 2R)unm +R(unm+1 + unm−1)

+ βφ2(k)

(
(1 + γ)

(
unm−1

)2
+

1

2

(
unm−1

)3)
− 1− βφ2(k)γ − 3

2
βφ2(k)

(
unm−1

)2
. (5.9)
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It follows
(
unm−1

)3
= unm−1

(
unm−1

)2 ≤ (unm−1

)2
since 0 ≤ unm ≤ 1 for all values of n and m.

Therefore,

(un+1
m − 1)

(
1 + βγφ2(k) +

3

2
βφ2(k)

(
unm−1

)2) ≤ 1− 2R+ 2R+ βγφ2(k)
(
unm−1

)2
+ βφ2(k)

((
unm−1

)2
+

1

2

(
unm−1

)2)
− 1− β γ φ2(k)− 3

2
βφ2(k)

(
unm−1

)2
= 0. (5.10)

Hence un+1
m − 1 ≤ 0. Thus, we conclude that NSFD1 scheme is bounded.

For positivity and using h = 0.1 in (5.8), we obtain

(a) k ≤ 4.9948× 10−3 for β = 0.5.

(b) k ≤ 4.9917× 10−3 for β = 1.0.

(c) k ≤ 4.9917× 10−3 for β = 2.0.

We tabulate L1, L∞, rate of convergence and CPU time at some different values of k using γ = 0.2,

h = 0.1 at time, T = 0.5 for three cases namely; β = 0.5, 1.0, 2, 0 using NSFD1 scheme in Tables 5.1,

5.2, 5.3.

Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 1.7339 ×10−2 2.6693 ×10−3 - 1.007

0.0025 1.7383 ×10−2 2.6742 ×10−3 -3.656 ×10−3 1.229

0.00125 1.7405 ×10−2 2.6767 ×10−3 -1.824 ×10−3 1.752

Table 5.1: Computation of L1, L∞ errors, rate of convergence and CPU time using NSFD1 for

−10 ≤ x ≤ 10, γ = 0.2, h = 0.1, β = 0.5, T = 0.5.
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Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 3.4919 ×10−2 7.4411 ×10−3 - 1.032

0.0025 3.5051 ×10−2 7.4613 ×10−3 -5.443 ×10−3 1.280

0.00125 3.5117 ×10−2 7.4715 ×10−3 -2.713 ×10−3 1.815

Table 5.2: Computation of L1, L∞ errors, rate of convergence and CPU time using NSFD1 for

−10 ≤ x ≤ 10, γ = 0.2, h = 0.1, β = 1, T = 0.5.

Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 6.9598 ×10−2 2.0534 ×10−2 - 0.608

0.0025 6.9987 ×10−2 2.0625 ×10−2 -8.041 ×10−3 0.804

0.00125 7.0182 ×10−2 2.0671 ×10−2 -1.205 ×10−2 1.277

Table 5.3: Computation of L1, L∞ errors, rate of convergence and CPU time using NSFD1 for

−10 ≤ x ≤ 10, γ = 0.2, h = 0.1, β = 2, T = 0.5.

The scheme does not give satisfactory results especially in regards to the rate of convergence. The the-

oretical rate of convergence with respect time is one.

Plots of u against x for the three cases using NSFD1 scheme are shown in Fig 5.1. Corresponding

plot of errors against x are shown in Fig 5.2.

We observe that as we increase the values of β, the profile becomes more stiff and the problem becomes

more challenging for the numerical schemes.
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(a) h = 0.1, β = 0.5, k = 0.005.
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(b) h = 0.1, β = 1, k = 0.005.
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(c) h = 0.1, β = 2, k = 0.005.

Figure 5.1: Plot of u vs x using NSFD1 scheme at time T = 0.5, where x ∈ [−10, 10] for different

values of β namely; 0.5 , 1.0 , 2.0.
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(a) h = 0.1, β = 0.5, k = 0.005.
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(b) h = 0.1, β = 1, k = 0.005.
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(c) h = 0.1, β = 2, k = 0.005.

Figure 5.2: Plot of error vs x using NSFD1 scheme at time T = 0.5, where x ∈ [−10, 10] for

different values of β respectively 0.5 , 1.0 , 2.0.
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We observe that as we increase the values of β, the profile becomes more stiff and the problem becomes

more challenging problem for the numerical schemes.

5.7 NSFD2 scheme

In this section we make use of the following approximations from Namjoo and Zibaei (2018) for the right

hand of Eq. (5.1):

− β γ u(xm, tn) ≈ −β γ un+1
m , β (1 + γ) (u(xm, tn))

2 ≈ β(1 + γ)un+1
m unm, (5.11)

− β (u(xm, tn))
3 ≈ −β un+1

m (unm)
2
. (5.12)

This gives the following scheme:

un+1
m − unm
φ2(k)

−
unm+1 − 2unm + unm−1

ψ1(h)ψ2(h)
= β

(
−un+1

m (unm)
2

+ (1 + γ)un+1
m unm − γ un+1

m

)
, (5.13)

which can be rewritten as

un+1
m =

(1− 2R)unm +R(unm+1 + unm−1)

1 + β φ2(k) γ − β (1 + γ)φ2(k)unm + β φ2(k) (unm)
2 , where R =

φ2(k)

ψ1(h)ψ2(h)
. (5.14)

Theorem 5.3 (Dynamical consistency). If 1 − 2R ≥ 0 and 1 − βφ2(k) ≥ 0, the numerical solution of

Eq. (5.14) satisfies

0 ≤ unm ≤ 1 =⇒ 0 ≤ un+1
m ≤ 1,

and the dynamical consistency (positivity and boundedness) holds for all relevant values of n and m.

Proof. (1) If 1 − 2R ≥ 0 and 1 − βφ2(k) ≥ 0 then NSFD2 is positive definite. Indeed we require

1 + β φ2(k) γ − β (1 + γ)φ2(k)unm + β φ2(k) (unm)
2
> 0. and since 0 ≤ unm ≤ 1,

1− [β(1 + γ)φ2(k)unm − βφ2(k)γ] + βφ2(k) (unm)
2 ≥ 1− βφ2(k) + βφ2(k) (unm)

2

≥ 1− βφ2(k). (5.15)

NSFD2 is positive definite under the conditions

k ≤


1
β ln (2) ,

1
β ln

(
1 + 1

2β

(eβh−1)
2

eβh

)
.

(5.16)

(2) We note that 0 ≤ unm ≤ 1. We need to check if NSFD2 is bounded. Consider

(un+1
m − 1)

(
1 + βφ2(k)γ − β(1 + γ)φ2(k)unm + βφ2(k) (unm)

2
)

= (1− 2R)unm

+R(unm+1 + unm−1)− 1− βγφ2(k) + β(1 + γ)φ2(k)unm − βφ2(k) (unm)
2
. (5.17)

Since 0 ≤ unm ≤ 1 for all values for n and m,

(un+1
m − 1)

(
1 + βφ2(k)γ − β(1 + γ)φ2(k)unm + βφ2(k) (unm)

2
)
≤ 1− 2R+ 2R

− 1− βγφ2(k) + β(1 + γ)φ2(k)unm − βφ2(k) (unm)
2

=

− βφ2(k)
[
(unm)

2 − γunm − unm + γ
]

= −βφ2(k)(unm − 1)(unm − γ) ≤ 0. (5.18)
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Hence 0 ≤ un+1
m ≤ 1 and therefore NSFD2 satisfies the boundedness properties.

For positivity and using h = 0.1, we have from Eq. (5.16)

(a) k ≤ 1.3863 and k ≤ 4.9948× 10−3 for β = 0.5.

(b) k ≤ 6.9315× 10−1 and k ≤ 4.9917× 10−3 for β = 1.0.

(c) k ≤ 3.4657× 10−1 and k ≤ 4.9917× 10−3 for β = 2.0.

We tabulate L1, L∞ errors, rate of convergence in time and CPU time at some different values of k using

γ = 0.2, h = 0.1 at time, T = 0.5 for three cases namely; β = 0.5, 1.0, 2.0, using NSFD2 scheme in

Tables 5.4, 5.5 and 5.6.

Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 2.0909 ×10−4 3.3657 ×10−5 - 0.502

0.0025 1.0409 ×10−4 1.8821 ×10−5 1.006 0.750

0.00125 5.8981 ×10−5 1.1664 ×10−5 8.195 ×10−1 1.107

Table 5.4: Computation of L1, L∞ errors, rate of convergence and CPU time using NSFD2 for

−10 ≤ x ≤ 10, γ = 0.2, h = 0.1, β = 0.5, T = 0.5.

Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 5.9109 ×10−4 1.3556 ×10−4 - 0.939

0.0025 3.1703 ×10−4 7.8179 ×10−5 8.987 ×10−1 1.119

0.00125 2.1886 ×10−4 5.0919 ×10−5 5.346 ×10−1 1.535

Table 5.5: Computation of L1, L∞ errors, rate of convergence and CPU time using NSFD2 for

−10 ≤ x ≤ 10, γ = 0.2, h = 0.1, β = 1, T = 0.5.

Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 1.7319 ×10−3 5.4629 ×10−4 - 0.607

0.0025 1.1015 ×10−3 3.3108 ×10−4 6.528 ×10−1 1.293

0.00125 8.8733 ×10−4 2.3146 ×10−4 3.119 ×10−1 1.245

Table 5.6: Computation of L1, L∞ errors, rate of convergence and CPU time using NSFD2 for

−10 ≤ x ≤ 10, γ = 0.2, h = 0.1, β = 2.0, T = 0.5.
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Figure 5.3: Plot of u against x using NSFD2 scheme at time T = 0.5, where x ∈ [−10, 10] for

different values of β namely; 0.5 , 1.0 , 2.0.

The scheme is quite effective especially when β = 0.5, 1.0. We observe that L1 error, L∞ errors are

quite small and rate of convergence with respect to time is approximatively 1 for the cases β = 0.5,

1.0 and therefore we deduce that NSFD2 is quite effective for β = 0.5, and 1.0 with some time steps, k

(0.005, 0.0025).

Plots of u against x for the three cases using NSFD2 scheme are shown in Fig 5.3 and 5.4.
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(c) h = 0.1, β = 2, k = 0.005.

Figure 5.4: Plot of error against x using NSFD2 scheme at time T = 0.5, where x ∈ [−10, 10]

for different values of β respectively 0.5 , 1.0 , 2.0.
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5.8 NSFD3 scheme

We consider the ordinary differential equation

ε
du

dt
= f(u), (5.19)

where f(u) = u(1 − u)(u − γ), and ε > 0 is a real parameter, γ ∈ (0, 1). Roeger and Mickens (2007)

showed that the following NSFD scheme

ε
un+1 − un

φ2(∆t)
= −(2un+1 − un) (un)

2
+ (1 + γ) (un)

2 − γ un+1. (5.20)

where φ2(∆t) = e
∆t
ε −1
1
ε

, preserves positivity and local stabilities of all fixed points. We construct a

Nonstandard finite difference scheme using idea from Roeger and Mickens (2007). We propose the

following scheme for Eq. (5.1):

un+1
m − unm
φ2(k)

−
unm+1 − 2unm + unm−1

ψ1(h)ψ2(h)
= β

(
−
(
2un+1

m − unm
)

(unm)
2

+ (1 + γ) (unm)
2 − γun+1

m

)
. (5.21)

A single expression for NSFD3 scheme is

un+1
m =

(1− 2R)unm +R(unm+1 + unm−1) + β φ2(k)
(

(unm)
3

+ (1 + γ) (unm)
2
)

1 + β φ2(k) γ + 2β φ2(k) (unm)
2 . (5.22)

Theorem 5.4 (Dynamical consistency). If 1− 2R ≥ 0, the numerical solution of Eq. (5.22) satisfies

0 ≤ unm ≤ 1 =⇒ 0 ≤ un+1
m ≤ 1,

and the dynamical consistency (positivity and boundedness) holds for all relevant values of n and m.

Proof. (1) NSFD3 is positive definite if 1− 2R ≥ 0. The following condition must be satisfied namely,

k ≤ 1

β
ln

(
1 +

1

2β

(
eβh − 1

)2
eβh

)
. (5.23)

(2) We next check if the NSFD3 is bounded:

(un+1
m − 1)

(
1 + β φ2(k)γ + 2βφ2(k) (unm)

2
)

= (1− 2R)unm

+R(unm+1 + unm−1) + βφ2(k)
(

(unm)
3

+ (1 + γ) (unm)
2
)

− 1− β γφ2(k)− 2β φ2(k) (unm)
2
. (5.24)

We note that 0 ≤ unm ≤ 1 for all values of n and m. Therefore

(un+1
m − 1)

(
1 + βγφ2(k) + 2βφ2(k)

(
unm−1

)2) ≤ 1− 2R+ 2R+ βφ2(k)
(
γ (unm)

2
+ (unm)

2
)

+ βφ2(k)− 1− β γφ2(k)− 2βφ2(k) (unm)
2

= 0.

(5.25)

Hence 0 ≤ un+1
m ≤ 1 and therefore NSFD3 satisfies the boundedness properties.

We tabulate L1 and L∞ errors, rate of convergence in time and CPU time at some different values of k

using γ = 0.2, h = 0.1 at time, T = 0.5 for three cases namely; β = 0.5, 1.0, 2.0 using NSFD3 scheme in

Tables 5.7, 5.8 and 5.9.
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Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 1.3466 ×10−4 2.0390 ×10−5 - 0.532

0.0025 6.5704 ×10−5 8.1762 ×10−6 1.035 0.862

0.00125 3.2908 ×10−5 4.6063 ×10−6 9.975 ×10−1 1.231

Table 5.7: Computation of L1 and L∞ errors, rate of convergence and CPU time using NSFD3

for −10 ≤ x ≤ 10, γ = 0.2, h = 0.1, β = 0.5, T = 0.5.

Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 3.6478 ×10−4 6.7996 ×10−5 - 1.063

0.0025 1.8672 ×10−4 2.4832 ×10−5 9.661 ×10−1 1.207

0.00125 1.0268 ×10−4 2.5881 ×10−5 8.627 ×10−1 1.709

Table 5.8: Computation of L1 and L∞ errors, rate of convergence and CPU time using NSFD3

for −10 ≤ x ≤ 10, γ = 0.2, h = 0.1, β = 1, T = 0.5.

Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 1.0211 ×10−3 1.8991 ×10−4 - 1.013

0.0025 5.5377 ×10−4 1.5864 ×10−4 8.827 ×10−1 1.443

0.00125 5.4617 ×10−4 1.6408 ×10−4 1.993 ×10−2 2.673

Table 5.9: Computation of L1 and L∞ errors, rate of convergence and CPU time using NSFD3

for −10 ≤ x ≤ 10, γ = 0.2, h = 0.1, β = 2, T = 0.5.

The scheme is very effective for all the values β = 0.5 , 1.0 (β ∈ (0, 1]). The L1 and L∞ errors are

quite small and the rate of convergence in time is approximatively one. But when β = 2, though the L1

and L∞ errors are small, the rate of convergence is close to one with some time steps carefully chosen

(0.005, 0.0025).

Plots of u against x for the three cases using NSFD3 scheme are shown in Fig 5.5 and correspond-

ing plots of errors against x are displayed in Fig 5.6.
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Figure 5.5: Plot of u against x using NSFD3 scheme at time T = 0.5, where x ∈ [−10, 10] for

different values of β namely; 0.5 , 1.0 , 2.0.
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Figure 5.6: Plot of error against x using NSFD3 scheme at time T = 0.5, where x ∈ [−10, 10]

for different values of β respectively 0.5 , 1.0 , 2.0.
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5.9 NSFD4 Scheme

NSFD4 scheme is a modification of NSFD1 scheme. We notice that −β (u(xm, tn))
3

is approximated

by β
(
− 3

2 (unm)
2
un+1
m + 1

2 (unm)
3
)

instead of β
(
− 3

2

(
unm−1

)2
un+1
m + 1

2

(
unm−1

)3)
. We use the following

approximations:

− β γu(xm, tn) ≈ −β γun+1
m , −β (u(xm, tn))

3 ≈ β
(
−3

2
(unm)

2
un+1
m +

1

2
(unm)

3

)
, (5.26)

− β (1 + γ) (u(xm, tn))
2 ≈ −β (1 + γ) (unm)

2
. (5.27)

Therefore we have,

un+1
m − unm
φ2(k)

−
unm+1 − 2unm + unm−1

ψ1(h)ψ2(h)
= β

(
−3

2
(unm)

2
un+1
m +

1

2
(unm)

3

)
+ β (1 + γ) (unm)

2 − β γ un+1
m . (5.28)

Single expression for the scheme is

un+1
m =

(1− 2R)unm +R(unm+1 + unm−1) + βφ2(k)
(

(1 + γ) (unm)
2

+ 1
2 (unm)

3
)

1 + β γ φ2(k) + 3
2β φ2(k) (unm)

2 , (5.29)

where R = φ2(k)
ψ1(h)ψ2(h) .

Theorem 5.5 (Dynamical consistency). If 1− 2R ≥ 0, the numerical solution of Eq. (5.29) satisfies

0 ≤ unm ≤ 1 =⇒ 0 ≤ un+1
m ≤ 1,

and the dynamical consistency (positivity and boundedness) holds for all relevant values of n and m.

Proof. (1) NSFD4 is positive definite if 1− 2R ≥ 0. We have 1 +β γ φ2(k) + 3
2β φ2(k) (unm)

2
> 0 since

unm ≥ 0. It follows

k ≤ 1

β
ln

[
1 +

1

2β

(
eβh − 1

)2
eβh

]
. (5.30)

(2) By assumption, 0 ≤ unm ≤ 1. We have

(un+1
m − 1)

(
1 + β γ φ2(k) +

3

2
β φ2(k) (unm)

2

)
= (1− 2R)unm +R(unm+1 + unm−1)

+ β φ2(k)

(
(1 + γ) (unm)

2
+

1

2
(unm)

3

)
− 1− β φ2(k)γ − 3

2
β φ2(k) (unm)

2
. (5.31)

It follows that (unm)
3

= unm (unm)
2 ≤ (unm)

2
since 0 ≤ unm ≤ 1 for all values of n and m. Therefore,

(un+1
m − 1)

(
1 + βγφ2(k) +

3

2
βφ2(k) (unm)

2

)
≤ 1− 2R+ 2R+ βγφ2(k) (unm)

2

+ βφ2(k)

(
(unm)

2
+

1

2
(unm)

2

)
− 1− β γ φ2(k)− 3

2
βφ2(k) (unm)

2

= β γ φ2(k)
(

(unm)
2 − 1

)
≤ 0. (5.32)
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Hence un+1
m − 1 ≤ 0 and the therefore NSFD4 is bounded.

For positivity h = 0.1 using , we have from Eq. (5.30),

(a) k ≤ 4.9948× 10−3 for β = 0.5.

(b) k ≤ 4.9917× 10−3 for β = 1.0.

(c) k ≤ 4.9917× 10−3 for β = 2.0.

We tabulate L1, L∞ errors, rate of convergence and CPU time at some different values of k using γ = 0.2,

h = 0.1 at time, T = 0.5 for three cases namely; β = 0.5, 1.0, 2.0, using NSFD4 scheme in Tables 5.10,

5.11 and 5.12.

Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 7.5948 ×10−5 1.1653 ×10−5 - 0.987

0.0025 3.5996 ×10−5 4.2640 ×10−6 1.077 1.274

0.00125 2.2770 ×10−5 4.1322 ×10−6 6.607 ×10−1 1.659

Table 5.10: Computation of L1, L∞ errors, rate of convergence and CPU time using NSFD4

for −10 ≤ x ≤ 10, γ = 0.2, h = 0.1, β = 0.5, T = 0.5.

Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 1.9783 ×10−4 3.4931 ×10−5 - 0.479

0.0025 1.0298 ×10−4 2.0513 ×10−5 9.418 ×10−1 1.190

0.00125 1.0260 ×10−4 2.4227 ×10−5 5.333 ×10−2 1.652

Table 5.11: Computation of L1, L∞ errors, rate of convergence and CPU time using NSFD4

for −10 ≤ x ≤ 10, γ = 0.2, h = 0.1, β = 1, T = 0.5.

Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 5.7010 ×10−4 1.1881 ×10−4 - 0.551

0.0025 4.4661 ×10−4 1.4439 ×10−4 3.521×10−1 0.798

0.00125 6.0359 ×10−4 1.5759 ×10−4 -4.345×10−1 1.237

Table 5.12: Computation of L1, L∞ errors, rate convergence and CPU time using NSFD4 for

−10 ≤ x ≤ 10, γ = 0.2, h = 0.1, β = 2, T = 0.5.
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Figure 5.7: Plot of u against x using NSFD4 scheme at time T = 0.5, where x ∈ [−10, 10] for

different values of β namely; 0.5 , 1.0 , 2.0.

The scheme gives good results for β = 0.5, 1.0 and is an improvement over NSFD1. The scheme is

effective for β = 0.5, 1, provided k is carefully chosen (k=0.005, 0,0025). The scheme has convergence

rate issue as β = 2.0.

Plots of u against x for the three cases using NSFD4 scheme are shown in Fig 5.7 and plot of errors

against x are displayed in Fig 5.8.
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Figure 5.8: Plot of error against x using NSFD4 scheme at time T = 0.5, where x ∈ [−10, 10]

for different values of β respectively 0.5 , 1.0 , 2.0.
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5.10 Errors estimate for NSFD3

In this section, we study the errors estimate for NSFD3. Before any further discussion, we recall some of

results from Hoff (1978) and Sanz-Serna and Stuart (1992): We consider the systems of partial differential

equations

Vt = D(x, t, V )∆V +
n∑
j=1

Mj(x, t, V )
∂V

xj
+ F (x, t, V ), (x, t) ∈ Ω× (0,∞), (5.33)

V (x, 0) = V0(x) x ∈ Ω, (5.34)

P (x)[V (x, t)−W (x)] +Q(x)
∂V

∂n
= 0 (x, t) ∈ ∂Ω× (0,∞) (5.35)

Here Ω ⊂ Rµ is a connected, bounded open set with piecewise smooth boundary and V (x, t) ∈ Rν . Let

S be the parallelepiped S =
∏µ
i=1[ai, bi] in V−space. We make the following assumptions:

(a) D, Mj , and P and Q are diagonal matrices.

(b) There is a constant K1 > 0 such that

di(x, t, V )− K1

2
|mji(x, t, V )| ≥ 0, (x, t, V ) ∈ Ω× [0,∞)× S, ∀i, j.

di and mji are bounded and smooth. Furthermore they are ith diagonal entries of D and M

respectively.

(c) F is smooth function and verifies F (x, t, V ) ·Ns(V ) ≤ 0), ∀ (x, t, V ) ∈ Ω× [0,∞)×∂S. N is outer

normal on S. Also We assume there is constant K2 such that∣∣∣ ∂F i∂V i (x, t, V )
∣∣∣ ≤ K2, ∀ (x, t, V ) ∈ Ω× [0,∞)× S and for all i.

(d) V0(x) and W (x) are in S for relevant x.

(e) supi, x,α |Dα
xV

i(x, t)| <∞ for 1 ≤ i ≤ µ, x ∈ Ω and |α| =
∑ν
j=1 |αj | ≤ 4.

‖V ‖p = supx,α |Dα
xV

i(x, t)|∞. p nonnegative integer.

We define the finite difference equation

V n+1
m − V nm

k
=

µ∑
m=1

{[
D

∆2
m

(hm)2
+Mm

∆m

(2hm)

]
(z1 V

n+1 + z2 V
n)

}
m

+ F, (5.36)

where D, Mm and F are evaluated at (xm, tn, V
n
m). Here z1 and z2 are nonnegative such that z1 +z2 = 1.

We also define the error in the numerical method

enm = vnm − V nm (5.37)

where v is the exact solution of (5.33)- (5.35) and V is the finite-difference approximation. We state the

following theorem from Hoff (1978) and simple case is treated in Sanz-Serna and Stuart (1992) using

Dirichlet boundary condition.
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Theorem 5.6 (Hoff (1978)). Assume that the solution v of (5.33)- (5.35) is smooth in the sense of

assumption (e) and assume that the difference scheme (5.36) is consistent and stable. Then

‖en‖∞ ≤
e−σ tn

l + e−(σ+p) tn
[‖e0‖∞ + p l] +

l

l + e−(σ+p) tn
diamS, (5.38)

where p = p(tn) is a positive function of tn which depends upon the parameters appearing in (5.33)-

(5.35) and upon max0≤t≤tn ‖V (·, t)‖4; l = k +
∑µ
m=1(hm)2; and σ ≥ 0 is arbitrary.

Remark 5.1. Note that the Theorem 5.6 is a general case of the following theorem in which Dirichlet

boundary condition is used:

Theorem 5.7 (Sanz-Serna and Stuart (1992)). Under the above assumptions (a) − (e) and under the

following condition:

(1) v approaches an equilibrium and asymptotically stable t→∞,

(2) the grids are refined in such a way that k
h2 ≤ ε ≤ 1

2 then there exist constants l0 and C depending

upon only f, v and ε, such that for h < l0, the numerical solution V n exists for all positive integers

n and satisfies the error bound.

Then

‖en‖2 ≤ C l, l = k + h2. (5.39)

We apply the above theorems to our problem. We take S = [0, 1]; diamS = 1; F = f(u) = β u(1 −

u)(u − γ). D = 1; M = 0; P (x) = 0; Q(x) = 1. ν = 1; µ = 1. The fixed points of Eq. (5.1) are

u∗1 = 0, u∗2 = 1 and they are asymptotically stable. Also u∗3 = γ is fixed point and it is unstable (Roeger

and Mickens, 2007). Theorem 5.1 showed that u0(x) ∈ [0, 1], ∀x and u(x, t) ∈ [0, 1], ∀x, t. f(u) =

β u(1−u)(u−γ), is smooth in u. ∂s = {0, 1, γ}. Hence 0 = f(x, t, 0) ·Ns(u) = 0; 0 = f(x, t, 1) ·Ns(u) = 0;

0 = f(x, t, γ) ·Ns(u) = 0. fu = β{(1− u)(u− γ)− u(uγ) + u(1− u)}. |fu|∞ = max |fu| ≤ 2 γ + 1 = K2.

ux = −
√
β

4
√

2
+
√
β

4
√

2
tanh(

√
β

2
√

2
(x− ct)). |ux| <∞ since tanh is bounded on [−10, 10].

We can conclude since our scheme NSFD3 is dynamical consistent and stable under the condition

k ≤ 1
β ln

(
1 + 1

2β

(eβh−1)
2

eβh

)
and l = φ2(k) + ψ1(h)ψ2(h) and the error bound (error estimate) is

‖en‖∞ ≤
e−σ tn

l + e−(σ+p) tn
[‖e0‖∞ + p l] +

l

l + e−(σ+p) tn
,

which follows when tn →∞,

‖en‖∞ ≤ 1.
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5.11 Relationship between physical behaviour and numerical

solution and discussion over the obtained results from NSFD1,

NSFD2, NSFD3, NSFD4

The solution u(x, t) is non-negative, bounded and unique

According to Theorem 5.1, the solution u(x, t) is non-negative, bounded and unique for t ∈ (0, ∞) and

lim supt→∞ u(x, t) ≤ 1. To illustrate Theorem 5.1, we plot the numerical solution against t ∈ [0, 20]

and against x ∈ [−10, 10] using NSFD3 scheme for instance and the plot is shown in Figure 5.9.

Intrinsic growth rate

We recall as it is in the introduction, the intrinsic growth rate denoted by β in the presence of migration

is an accurate measure of how quickly a population would ultimately grow if for instance current age-

specific rates of fertility, mortality and migration were sustained indefinitely in contrast to the actual

growth rate of the population (Preston and Wang, 2007). In this work, we used three values of β, namely;

0.5, 1.0, 2.0. As we increase β, the profile of the numerical solution at a given time against x becomes

stiff as seen from Figures 5.1, 5.3, 5.5 and 5.7.

Remark 5.2. If β is chosen much larger than the coefficient of diffusion (say β = 104), the profile

becomes very stiff and the problem could be classified as singularly perturbed problem. In Agbavon et al.

(2019a) (refer to chapter 3), the numerical solution of Fisher’s equation with coefficient of diffusion term

much smaller than reaction was obtained for the initial condition consisting of an exponential function.

NSFD methods were used and range of values of k was quite restricted. To obtain accurate results, very

small values of k had to be used. Some modification was made to the NSFD methods.

Threshold of Allee effect

The threshold of Allee effect is denoted by γ. In this work we use γ = 0.2 and used four numerical meth-

ods. To investigate how γ affects the results, we obtain plots of numerical solution against for different

values of γ namely; 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. at time, T = 0.5, using NSFD3. The plot is

shown in Figure 5.10.

We observe that the numerical solution remains positive and bounded for different values for γ ∈ (0, 1).

Effect of time-step.

For NSFD1, we realise that when the time step becomes smaller, the L1 and L∞ errors increase. The

rate of convergence becomes so poor and the Computational time (CPU) increases. Normally, when the

time step becomes smaller the L1 and L∞ errors should decrease if NSFD1 were accurate. That is not
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the case. That might be due to the wrong approximation like in Namjoo and Zibaei (2018)

− β γu(xm, tn) ≈ −β γun+1
m , −β (u(xm, tn))

3 ≈ β
(
−3

2

(
unm−1

)2
un+1
m +

1

2

(
unm−1

)3)
, (5.40)

β (1 + γ) (u(xm, tn))
2 ≈ β (1 + γ)

(
unm−1

)2
. (5.41)

and also the limit 0 of the step size ψ1(h), ψ2(h), with which zero-stability is affected and not reached.

Another reason might be the inclusion of intrinsic growth rate parameter, β in the problem (5.1). This

can cause the instabilities (oscillations, etc). Furthermore, these instabilities might come from the initial

condition which is not suitable with the approximation due to the dependence on the initial condition

behaviour at infinity and also due to the speed of the wave (the solution of the problem (5.1) is in the

form of travelling wave. Hence the need of wave speed). It is known that the initial data in the right

queue that defines the wave speed, and it is the right-hand boundary condition that is significant (Qiu

and Sloan, 1998). Furthermore, the speed might not be known in a more difficult problem, and solution

in a fixed hint frame with the adequate asymptotic condition at the right queue.

For NSFD2, when the time step becomes smaller, the L1 and L∞ errors decrease with reasonable com-

putational time (CPU). This is expected. The rate of convergence are good for small values of β (0.5,

1) with time step not too much smaller (k = (0.005, 0.0025)). When the time step becomes smaller, say

0.00125, the rate of convergence becomes not too good (the value of the rate of convergence is far way

from the value one). And when β becomes large, this case is solved in Agbavon et al. (2019a) and the

profile becomes very stiff (please refer to the remark 5.2).

For NSFD3, when the time step becomes smaller, the L1 and L∞ errors decrease with reasonable com-

putational time (CPU) as well. The NSFD3 scheme is effective for all the values β = 0.5 , 1.0 (β ∈ (0, 1]).

The L1 and L∞ errors are good and small. The rate of convergence in time is approximatively one which

is expected. But with β = 2, whereas the L1 and L∞ errors are small, the rate of convergence is close

to one with some time steps reasonably chosen (0.005, 0.0025).

For NSFD4, when the time step becomes smaller, the L1 and L∞ errors decrease with reasonable com-

putational time (CPU) as it is in the case NSFD2, NSFD3. The NSFD4 scheme gives good results

for β = 0.5, 1.0 and is an improvement over NSFD1 like we notice that −β (u(xm, tn))
3

is approxi-

mated by β
(
− 3

2 (unm)
2
un+1
m + 1

2 (unm)
3
)

instead of β
(
− 3

2

(
unm−1

)2
un+1
m + 1

2

(
unm−1

)3)
. The following

approximations are used:

− β γu(xm, tn) ≈ −β γun+1
m , −β (u(xm, tn))

3 ≈ β
(
−3

2
(unm)

2
un+1
m +

1

2
(unm)

3

)
,

− β (1 + γ) (u(xm, tn))
2 ≈ −β (1 + γ) (unm)

2
.

The scheme is accurate for β = 0.5, 1, provided that a great care is made in the choice of k (k =

0.005, 0, 0025). The scheme has convergence rate issue for β = 2.0.
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Figure 5.9: Plot of numerical solution, u vs x ∈ [−10, 10] and vs t ∈ [0, 20] using NSFD3.
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Figure 5.10: Plot of numerical solution, u vs x ∈ [−10, 10] vs γ using NSFD3 for different values

of γ namely; 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9.
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5.12 Implicit nonstandard finite difference for Fitzhugh-Nagumo

equation

All the methods constructed in the previous sections are mostly explicit nonstandard finite difference. In

this part of the chapter, we give some general view how the implicit nonstandard finite difference looks

like. We propose the following scheme for Eq. (5.1) following Chen et al. (2003):

un+1
m − unm
φ2(k)

−
un+1
m+1 − 2un+1

m + un+1
m−1

ψ1(h)ψ2(h)
= β

(
− (unm)

2
un+1
m + (1 + γ) (unm)

2 − γ un+1
m

)
(5.42)

where ut is approximated by
un+1
m −unm
φ2(k) where φ2(k) = eβk−1

β and uxx is approximated by
un+1
m+1−2un+1

m +un+1
m−1

ψ1(h)ψ2(h)

instead of
unm+1−2unm+unm−1

ψ1(h)ψ2(h) like in the case of explicit nonstandard finite difference (NSFD1, NSFD2,

NSFD3, NSFD4); where ψ1(h) = 1−e−βh
β and ψ2(h) = eβh−1

β . The right hand of Eq. (5.1) is

− β γu(xm, tn) ≈ −β γ
(
un+1
m

)
, −β (u(xm, tn))

3 ≈ −β (unm)
2
un+1
m ,

β (1 + γ) (u(xm, tn))
2 ≈ β (1 + γ) (unm)

2
.

It is know from Chen et al. (2003), that for a given an initial value problem

ut = Duxx + α1 u− α2 u
3, x ∈ [0, L], t > 0. (5.43)

with an initial and boundary conditions respectively

u(x, 0) =

1, x ∈ [0, 1],

0, x ∈ [1, 2],

, u(0, t) =

1, x = 0,

0, x = 2,

and α1 α2 D stand for nonnegative real parameters, the implicit nonstandard finite difference which

derived from Eq. (5.43) is given by

un+1
m − unm

k
−
un+1
m+1 − 2un+1

m + un+1
m−1

h2
=
(
−α2 (unm)

2
un+1
m + α1 (2unm − un+1

m )
)
. (5.44)

It is proved numerically in Chen et al. (2003) under the conditions h = 0.05, k = 0.001 and k = 1 with

α1 = α2 = D = 1 and t = 1 that implicit nonstandard finite difference is more accurate and robust

over the explicit nonstandard finite difference schemes for solving nonlinear initial and boundary value

problems under the same conditions.

5.13 Conclusion

In this chapter, we construct four nonstandard finite difference schemes namely; NSFD1, NSFD2, NSFD3,

NSFD4 to solve FitzHugh-Nagumo equation under three different regimes. The first order time deriva-

tive and the second order spatial derivative are approximated in the same manner for all of the methods

and it is only the nonlinear polynomial in the partial differential equation which is discretised differently.

We derive conditions under which the scheme are positive definite and bounded.
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NSFD1 is not effective and gives issues in regard to its rate of convergence. NSFD4 is a major improve-

ment over NSFD1 in terms of L1, L∞ errors and rate of convergence in time. NSFD3 seems the best

scheme followed by NSFD4 when we check performance of the methods based on L1, L∞ errors and rate

of convergence in time (with respect to L1 error). We studied error estimate for NSFD3 and found that

the estimation cannot go beyond one as we progress in time.
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Chapter 6

Conclusion and future work

6.1 Conclusion

In this thesis, finite difference and nonstandard finite difference methods have been used to solve Fisher’s

and Fitzhugh-Nagumo equations. Some properties and applications of these methods are discussed in

chapter 1 and 2.

In chapter 3, we studied the numerical solution of Fisher’s equation with coefficient of diffusion term

much smaller than coefficient of reaction term. This problem was solved by moving mesh method.

We constructed four new schemes based on finite differences and nonstandard finite differences. The

four schemes namely; FTCS-ε, NSFD-ε, FTCS with artificial viscosity, NSFD with artificial viscosity

give quite accurate results at larger time-step size and consequently at smaller CPU time compared

to moving mesh partial differential equation (MMPDE) and moving mesh differential algebra equation

(MMDAE) methods (Qiu and Sloan, 1998). Indeed we have found that L1 and L∞ errors computed

at optimal time step size and h = 0.01 with the four constructed schemes are of order 10−4 and 10−3

respectively which are better than L1 and L∞ errors of the MMPDE and MMDAE methods of order

10−3 and 10−2 respectively with reasonable computational time. Moreover we obtained a quite good

results at larger time-step size. The poor results was obtained in Li et al. (1998) in the case ρ = 104

when using moving mesh even with small time step size. That let Li et al. (1998) to conclude that

moving mesh methods were not recommendable or suitable for computing the travelling wave solution

of Fisher’s equation over a reasonably large time interval. It is known in Qiu and Sloan (1998) that

moving mesh methods give much better results if only the monitor function is carefully chosen to agree

the properties of the differential equation and also of the computed solution (even with great care of

the monitor function constructed, the computed solution might not be effective if the selected moving

mesh method is unsuitable). This is still an open problem. The experiments done in Qiu and Sloan

(1998) showed that more investigation on the formulation and analysis of moving mesh methods for

reaction diffusion equations is needed (mixture of moving mesh methods and the boundary conditions

as in Hagstrom and Keller (1986)). The case we dealt by proposing the four schemes FTCS-ε, NSFD-ε,
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FTCS with artificial Viscosity, NSFD with artificial viscosity is one way to avoid constructing monitor

function. Moreover, the convergence tests of the four proposed methods have been investigated and they

are in perfect matching with the analysis.

In chapter 4, we reconsidered the work of Namjoo and Zibaei (2018) and studied the stability analysis

since the full investigation about the stability has not been studied (on implicit and explicit methods).

The stability analysis is so important in this context (zero-stability in the jargon of Lambert (1991)). We

found that the schemes (implicit and explicit) which derived from exact scheme by Namjoo and Zibaei

(2018) has stability issue especially, the explicit scheme. We use the amplification factor to study the

stability. We found that |ξ| > 1 for w ∈ [−π, π] while using k = h/A2 and γ = 0.001, 0.5 (please refer to

Figure 4.1). Von Neumann stability analysis is not satisfied (Please refer to Theorem 2.4). The reason

of non-stability of explicit might comes from the consideration k = h/A2 made by Namjoo and Zibaei

(2018) to construct exact scheme. More investigations need to be done while considering the condition

for instance k > h/A2 or k < h/A2 to construct the exact scheme. That might lead to better results.

Implicit scheme from Namjoo and Zibaei (2018) has no stability issues (please refer to Figure 4.3). Von

Neumann stability analysis is verified.

Furthermore, apart from the stability, we performed also consistency of the discrete scheme with the

original differential equation of the discrete method (this one novelty). We described two nonstandard

finite difference methods (NSFD1 and NSFD2) from Namjoo and Zibaei (2018). We also obtained

an improvement for NSFD1 called NSFD3 (this is the second novelty). We have shown that NSFD1,

NSFD2, NSFD3 are dynamical consistency with the original problem 4.1. Although NSFD1 is dynamical

consistency, it still has convergence issues. That might be caused by many reasons. One reason is wrong

approximation like

− γu(xm, tn) ≈ −γun+1
m , − (u(xm, tn))

3 ≈ −3

2

(
unm−1

)2
un+1
m +

1

2

(
unm−1

)3
,

where unm−1 and un+1
m are both non-local approximations. Another reason, might also be the limit 0 of

the step size ψ1(h), ψ2(h), with which zero-stability is affected and is not attained. That is why NSFD3

scheme is proposed in this work. We realised that the proposed scheme NSFD3 performs better than

implicit and explicit methods emerging from the scheme baptised ”exact scheme” in term of L1 and L∞

errors and rate of convergence with reasonable computational time (CPU).

In chapter 5, we considered more challenging initial and boundary conditions of FitzHugh-Nagumo

equations, with some parameter called intrinsic growth rate. We constructed four schemes nonstandard

finite difference methods namely; NSFD1, NSFD2, NSFD3, NSFD4. More explanations are done in

section 5.11 about why and how NSFD1 is not effective scheme and why and how NSFD3 is better than

NSFD1, NSFD2, NSFD4. The latter scheme, NSFD4 is an improvement over NSFD1. The convergence

rate and estimate error have been studied. We found that the estimate error of NSFD3 is such that

‖en‖∞ ≤
e−σ tn

l + e−(σ+p) tn
[‖e0‖∞ + p l] +

l

l + e−(σ+p) tn
,
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which follows when tn →∞,

‖en‖∞ ≤ 1.

It is notable that using standard numerical techniques for instance (moving mesh partial differential

methods, explicit Euler, Runge-Kutta methods, etc.), to solve initial-value problems often brings nu-

merical instabilities for certain selections of model and discretization parameters (Mickens, 1999, Twizell

et al., 1999). Whereas such instabilities (oscillations, chaos, etc.) are generally taken out by using

small time steps, the extra computing cost appended with investigating the long-term behaviour of a

dynamical system can be considerable. In our chapter 3, 4 and 5, we constructed robust numerical meth-

ods ( FTCS-ε, NSFD-ε, FTCS with artificial Viscosity, NSFD with artificial viscosity, NSFD1, NSFD2,

NSFD3, NSFD4) that not only apart of small time steps, the extra computing cost, allow large time-steps,

but are also pointless of scheme-dependent instabilities for attainable values of the model parameters

(apart from NSFD1 in 4 and 5). As a result, we have found that our schemes are more reliable than the

standard ones in term of L1 and L∞ errors and rate of convergence with sensible computational time

(CPU).

6.2 Some limitations of nonstandard finite difference

The results found using NSFD methods to solve Fisher’s and Fitzhugh-Nagumo equations showed that

the principle of dynamical consistency can be utilised with great effectiveness to place restrictions on

NSFD schemes. This signifies that dynamical consistency can be seen as a third fundamental princi-

ple, in inclusion to the two stated in the Definition 2.17, for the conceptualisation of a general NSFD

methodology for constructing discrete models of partial differential equations. Furthermore another im-

portant characteristic which can be incorporated into dynamical consistency for NSFD methods is the

transient behaviour of the continuous models NSFD methods approximate. Despite that NSFD schemes

are either first or second-order in accuracy, such methods mostly give schemes having the correct tran-

sient behaviour (Mickens, 2005). It is worthy to suggested that NSFD schemes can be erected to attain

higher-order accuracy (Mickens, 2005). The methodology for doing this is shown in Chen et al. (2003)

and in Twizell et al. (1999).

There are two censorious problems that till now have not been acceptably solved using the framework

of the NSFD method. These are

1) The common difficulty of constructing NSFD schemes for ordinary differential equation that have

oscillatory solutions for which the suitable fixed-point is a center. In general, no problems exist

for fixed-points that tie in to stable or unstable spirals or nodes (Mickens, 2005).

2) The second happens in the discrete modelling of coupled systems of nonlinear reaction-diffusion-

advection partial differential equations which involves cross-diffusion terms (Murray, 1989). For

instance for these cross-diffusion terms and for two dependent variables u and v, they have the
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forms [f1(u)vx]x or [f2(v)ux]x where f1 and f2 are positive functions of their respective variables

(Mickens, 2005).

Most of numerical methods constructed in this thesis are mostly nonstandard explicit schemes. Theses

methods for nonlinear evolution partial differential equations need functional limitations to hold between

the various step-sizes (Hildebrand, 1968). These relations which are more complex for nonlinear evolution

partial differential equations usually are found from the study of dynamical consistency (imposing the

satisfaction of some physical requirements). This consideration of dynamical consistency helps us to

find that the problems we solved in 3, 4, 5 preserve the physical properties (positivity, boundedness,

preservation of fixed points). More investigations need to be done while considering implicit nonstandard

schemes. Comprehensibly, implicit nonstandard schemes demands the use of a tridiagonal solver at every

time step (the matrix associated of nonstandard implicit schemes is in diagonally dominant form). The

stability of the constructed implicit schemes needs to be investigated using the matrix method (this

involves finding the appropriate spectral norms of the associated coefficient matrices at every time step

as in Lambert (1991)).

6.3 Future work

Our aim in the future is to extend this work in the following directions:

1) to construct nonstandard finite difference methods for 2D and 3D Fisher’s and Fitzhugh-Nagumo

equations, respectively.

2) to construct nonstandard finite difference methods for a general initial and boundary conditions

with unknown exact solutions for Fitzhugh-Nagumo equation.

3) to study error estimate for the following Fitzhugh-Nagumo parameter-dependent reaction-diffusion

systems (Chrysafinos et al., 2013)
ut −∆u+ u3 − u = −v + f1 in (0, T )× Ω

u = 0 on (0, T )× Γ

u(0, x) = u0 in Ω

(6.1)


vt − δ∆v = ε (u− α1 v) + f2 in (0, T )× Ω

v = 0 on (0, T )× Γ

v(0, x) = v0 in Ω

(6.2)

where Ω stands for a bounded domain in R2, with Lipschitz boundary Γ, u0, v0 and f1, f2 are

initial data and forcing terms respectively. The parameters ε, δ, α1 which appear in the problem

denote different scales of the physical variables u, v engaged in the model.
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3. to investigate some singularly perturbed convective Cahn-Hilliard equations and construct some

nonstandard finite difference methods for them.
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