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by Belinda Stapelberg

The vibration of elastic bodies and structures consisting of elastic bodies is an active
research field in engineering and applied mathematics. Typically, a mathematical model
is a complex system of partial differential equations. However, a model problem may not
have a solution in the classical sense and the rate of convergence of numerical approxi-
mations depends on the “smoothness” of a solution.

The aim of this research is to investigate the disparity noticed in the theory between
the existence of solutions and the regularity assumed on these solutions for convergence
of the Galerkin finite element method. In the articles considered, substantially more
differentiability properties for the solution are assumed than obtained in existence theory.
These assumptions are very restrictive; the solution is required to be smoother than even
a classical solution.

The theory of existence of a solution to a general linear vibration problem that appeared
in an article published in 2002, was considered first. To compare, alternative theories on
existence of solutions to hyperbolic partial differential equations, were also studied. The
existence results, improved regularity of solutions and compatibility conditions, which
are highly restrictive, are presented.

In 2013 an article appeared wherein convergence is proved, but with weaker assump-
tions than the other articles considered. This is achieved by splitting the error into the
semi-discreet and fully discreet errors. However, it is still necessary to assume higher
regularity of the solution. The focus in this dissertation was to compare the article to
other research results, and to highlight significant parts of the proofs in the article. Also,
minor improvements were made and it was proved that the results obtained from ex-
istence theory are sufficient for convergence, but no result on the order of convergence
could be obtained.
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A recent article (2011) on the continuous Galerkin method, where the model problem
considered includes strong damping, was also analysed. The results from this article is
proved in great detail, and possible oversights or omissions discovered are either rectified
or reported.

The discontinuous Galerkin (DG) finite element method is also included in the research,
with the aim to determine whether the assumptions made on the regularity needed
for convergence are less restrictive than those made for the continuous Galerkin method.
Disappointingly, the results offer no significant improvement. The semi-discreet and fully
discreet DG error estimates are from articles published in 2006 and 2009 respectively.
The results are proven in greater detail in this dissertation.

Interesting phenomena obtained from numerical experiments are observed and to a large
degree the theory and experiments agree. However, there are indications that the order
of convergence may in some cases be better than predicted by the theory.

The main conclusion is that there is a problem when applying theoretical results to real
world problems. Further research is required to prove results where error estimates are
derived without restrictive assumptions on boundary and initial data.
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Chapter 1

Model problems in variational form

1.1 Introduction

The vibration of elastic bodies and structures consisting of elastic bodies is an active
research field in engineering and applied mathematics. A mathematical model for such
a vibrating system is a complex system of partial differential equations. Numerical ap-
proximation of solutions to these partial differential equations is inevitable. The finite
element method proves to be ideal here, and it is used for steady-state problems, eigen-
value problems and dynamic problems.

It has become common practice to use numerical methods (often pre-programmed com-
puter software) to “solve” problems. The motion of a system can be simulated or the
natural frequencies calculated. As computers improve, people attempt to solve more
complex model problems, often leading to unexpected difficulties.

It is important to realise that a model problem may not have a solution in the clas-
sical sense and the rate of convergence of numerical approximations depends on the
“smoothness” of a solution. For this reason existence theory (although theoretical) is of
great practical importance. These remarks are especially relevant for the field of partial
differential equations of hyperbolic type, which is investigated in this dissertation.

The existence of solutions for problems involving partial differential equations can have
a number of possibilities. For a start, there is a distinction between so called weak
solutions and classical solutions. But there are different definitions of weak solutions.
For example, what is referred to as a weak solution in the book of [Eva98], is referred to
as a mild solution in the book of [Paz83] (the definitions are in Section 2.4). Either way,
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Chapter 1. Model problems in variational form 2

the existence of a weak solution or a mild solution is not sufficient for the theory of the
finite element method (see Section 6.1 for an example), as we explain below.

Convergence of the finite element approximation for the multi-dimensional wave equation
is given in [OR76, Section 9.6]. It is assumed that the solution has a fourth order
time derivative. The differentiability properties of the solution obtained from regularity
theory require that serious restrictions be imposed on the initial states (see Section 2.4
of this dissertation). One of the most recent articles that still deals with the continuous
Galerkin method is the article [Kar11a]. In a preliminary investigation of this article, it
was noted that he cites an existence result (from the book of [LM72]) for the existence
of a weak solution, but in proving convergence, assumes more differentiability properties
for the solution, without giving any reference. It is natural to investigate this problem
by consulting more articles.

Numerical experiments are carried out in [Wu03] and [GSS06] to calculate the order of
convergence. In both articles smooth solutions were considered as well as solutions that
do not satisfy the regularity requirements of the theory. The authors reported that the
theory matched the numerical experiments for the smooth solutions, but in other cases
results were found that could not be fully explained by the theory.

The aim of the research of this research is to investigate the following::

• convergence of the finite element approximation;

• error estimates;

• existence of solutions to partial differential equations of hyperbolic type;

• regularity properties of solutions.

The ultimate aim is to determine the extent of the disparity between the results obtained
from existence theory, the compatibility conditions required for higher regularity and the
regularity assumptions made for convergence of the finite element method. Details of
the assumptions made for higher regularity are provided in Section 2.4.
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1.2 The multi-dimensional wave equation with weak
damping

Consider the wave equation in an n-dimensional bounded domain (n = 2 or 3) denoted
by Ω. The boundary of Ω is denoted by ∂Ω and the unit outer normal vector to Ω at ∂Ω
by n.

Problem MW
Let Σ be part of the boundary ∂Ω. We have different boundary conditions on Σ and
∂Ω− Σ. Given functions f, u0 and u1, find w defined on Ω̄× [0, T ] such that

ρ∂2
tw = ∇ · (A∇w)− k∂tw + f in Ω× (0, T ),

w = 0 on ∂Ω− Σ,

(A ∇w) · n = 0 on Σ,

while w(·, 0) = u0 and ∂tw(·, 0) = u1.

The given parameters in the problem are the matrix of functions A = (aij) and the
functions k and ρ.

Assumptions on the parameters

1. aij ∈ C(Ω̄) ∩ C1(Ω).

2. The matrix A is uniformly positive definite, i.e. there exists a constant α > 0 such
that

n∑
i,j=1

aij(x)ξiξj ≥ α
n∑
i=1

ξ2
i ,

for all x ∈ Ω̄ and all (ξ1, ξ2, ..., ξn) ∈ Rn.

3. There exist positive constants c1, c2 and c3 such that
c1 ≤ ρ ≤ c2 and 0 ≤ k ≤ c3.

Remark The differential operator L = ∇ · (A∇) is referred to as uniformly strongly
elliptic.
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The vibration of a membrane

In the two-dimensional case the wave equation models the vibration of a membrane
[Inm94, Section 6.6]. We have the partial differential equation

ρ∂2
tw = τ ∇2w − k∂tw,

where ρ is the mass per unit area, τ the constant tension per unit length, and k a damping
constant.

The acoustic wave equation

In the three-dimensional case the wave equation models the propagation of sound waves.
The following derivation follows [PR05, Section 1.4.2] with some modification.

Consider a gas at rest, i.e. the velocity v = 0. Suppose the pressure is p0 and the density
is ρ0. A small disturbance leads to motion in the gas, and the pressure p and density ρ
are no longer constant. The linear approximation for the continuity equation is

∂t ρ
∗ + ρ0∇ · v = 0, (1.2.1)

where ρ∗ = ρ− ρ0.

The linear approximation for the equation of motion for an ideal gas is

ρ0∂t v +∇p∗ = 0, (1.2.2)

where p∗ = p− p0 and where modified pressure is considered.

Using the approximation
ρ∗ = f(p)− f(p0) + f ′(p0)p∗

in Equation (1.2.1) yields

c∂t p
∗ + ρ0∇ · v = 0,

where c = f ′(p0). It follows that

c∂2
t p
∗ + ρ0∂t∇ · v = 0. (1.2.3)
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Also, from Equation (1.2.2) we have

ρ0∂t∇ · v +∇2p∗ = 0. (1.2.4)

Subtracting Equation (1.2.4) from Equation (1.2.3) results in the acoustic wave equation

c∂2
t p
∗ −∇2p∗ = 0.

Heat conduction

The multi-dimensional wave equation also models hyperbolic heat conduction, see Sec-
tion 1.3.

1.2.1 Variational form

Theorem 1.2.1. [Apo67, p. 457] Gauss’ theorem
If Fi ∈ C1(Ω̄) for i = 1, 2, 3, then

∫∫∫
Ω
∇ · F dV =

∫∫
∂Ω
F · n dA,

where ∇ · F is the divergence of the vector F and n is the unit outward normal.

Proposition 1.2.2. Green’s formula
If u ∈ C2(Ω̄) and v ∈ C1(Ω̄) then

∫∫∫
Ω
−(∇ · (A∇u))v dV =

∫∫∫
Ω
A∇u · ∇v dV −

∫∫
∂Ω
v(A∇u) · n dA.

Proof. We have that ∇ · ((A∇u)v) = ∇ · (A∇u)v + A∇u · ∇v and therefore
∫∫∫

Ω
−(∇ · ((A∇u))v dV =

∫∫∫
Ω
A∇u · ∇v dV −

∫∫∫
Ω
∇ · ((A∇u)v) dV.

From Gauss’ theorem (Theorem 1.2.1) we have
∫∫∫

Ω
∇ · ((A∇u)v)dV =

∫∫
∂Ω
v(A∇u) · ndA

and therefore we have the result.
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Now, if w is a solution to Problem MW, then for each v ∈ C1(Ω̄), and following from
the boundary conditions on Σ

∫∫∫
Ω
ρ∂2

twv dV =
∫∫∫

Ω
∇ · (A∇w)v dV −

∫∫∫
Ω
k∂twv dV +

∫∫∫
Ω
fv dV

= −
∫∫∫

Ω
A∇w · ∇v dV +

∫∫
∂Ω
v(A∇w) · n dA

−
∫∫∫

Ω
k∂twv dV +

∫∫∫
Ω
fv dV

= −
∫∫∫

Ω
A∇w · ∇v dV +

∫∫
∂Ω−Σ

v(A∇w) · n dA

−
∫∫∫

Ω
k∂twv dV +

∫∫∫
Ω
fv dV. (1.2.5)

Test functions
T (Ω) := {v ∈ C1(Ω̄) : v = 0 on ∂Ω− Σ}.

Following now from the definition of the test functions, we have from equation (1.2.5)
that, if w is a solution to Problem MW, then for each v ∈ T (Ω)

∫∫∫
Ω
ρ∂2

twv dV = −
∫∫∫

Ω
A∇w · ∇v dV −

∫∫∫
Ω
k∂twv dV +

∫∫∫
Ω
fv dV. (1.2.6)

Bilinear forms for Problem MW

b(u, v) =
∫∫∫

Ω
A∇u · ∇v dV

c(u, v) =
∫∫∫

Ω
ρuv dV

a(u, v) =
∫∫∫

Ω
kuv dV

Notation
(f, v)Ω =

∫∫∫
Ω
fv dV

We can now write Problem MW in variational form.

Problem MWV

Find w such that for each t > 0, w(·, t) ∈ T (Ω) and

c(∂2
tw(·, t), v) + a(∂tw(·, t), v) + b(w(·, t), v) = (f(·, t), v)Ω

for each v ∈ T (Ω).
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1.3 Heat conduction

1.3.1 The classical heat equation

In this section we consider heat conduction in a solid. Definitions, units and mechanics
of energy transport can be found in Chapter 8 of [BSL60].

Notation

1. The density of the material: ρ. [kg m−3]

2. The specific heat of the material: cp. [J kg−1K−1]

3. Temperature: T . [K or ◦C]

4. Heat flux: q. [W m−2]

Mathematical model

Consider an arbitrary region D in space with boundary E . The choice of zero temperature
is arbitrary. The quantity of heat energy to raise the temperature of the material in D
from 0 to T is ∫∫∫

D
ρcpT dV.

The flux of heat energy into the region D is

−
∫∫
E

q · n dS,

where n is the outward unit normal vector to D.

Conservation of heat energy

d

dt

∫
D
ρcpT dV = −

∫
E

q · n dS.

This is the basic assumption for the theory. It is often referred to as the energy balance.
It follows from the conservation of heat energy and the divergence theorem that

ρcp∂tT = −∇ · q. (1.3.1)
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Another assumption is necessary for the mathematical model. It is referred to as Fourier’s
law of heat conduction:

q = −k∇T. (1.3.2)

The constant k is the thermal conductivity.

Combining Equations (1.3.1) and (1.3.2), we arrive at the following partial differential
equation, called the classical heat equation:

∂tT = c2∇2T, where c2 = k2

ρ2c2
p

.

1.3.2 Hyperbolic heat conduction

Cattaneo [Cat48] and Vernotte [Ver58] indepently proposed a modification to Fourier’s
law (called the Cattaneo-Vernotte model), with the constitutive equation being:

q + τ∂tq = −k∇T, (1.3.3)

where τ is the time delay. This model gives rise to a (weakly) damped wave equation
(known as the hyperbolic heat conduction equation, HHCE) when combined with the
energy conservation equation (1.3.1). Taking the divergence of (1.3.3) we get

∇ · q + τ∇ · ∂tq = −k∇ · ∇T. (1.3.4)

Differentiating (1.3.1) yields

ρcp∂
2
t T = −∂t∇ · q. (1.3.5)

Combining Equations (1.3.4) and (1.3.5) we obtain:

τρcp∂
2
t T −∇ · q = k∇2T. (1.3.6)

Substituting (1.3.1) in (1.3.6) we obtain the hyperbolic heat conduction equation:

τρcp∂
2
t T + ρcp∂tT = k∇2T. (1.3.7)

Consider a domain Ω as in Section 1.2.

 
 
 



Chapter 1. Model problems in variational form 9

Problem HHCE

Given functions f, T0 and T1, find T defined on Ω̄× [0, T ] such that

γ2∂
2
t T + γ1∂tT −∇2T = 0 in Ω× (0, T ), (1.3.8)

T = 0 on ∂Ω− Σ,

∇T · n = 0 on Σ,

where γ1 = ρcp
k

and γ2 = τρcp
k

. Initial conditions are T (·, 0) = T0 and ∂tT (·, 0) = T1.

Remark If the flux q · n is zero on Σ, then ∂tq · n is also zero on Σ. From (1.3.3) it
follows that

0 = −k∇T · n,

which gives the boundary condition on Σ.

1.3.3 Variational form

Problem HHCE is a special case of Problem MW. For convenience we give the variational
form of Problem HHCE here.

Test functions
T (Ω) := {v ∈ C1(Ω̄) : v = 0 on ∂Ω− Σ}.

We have for every v ∈ T (Ω),
∫∫∫

Ω
γ1∂

2
t Tv dV +

∫∫∫
Ω
γ1∂tTv dV +

∫∫∫
Ω
∇T · ∇v dV = 0.

Now we define our bilinear forms.

Bilinear forms for Problem HHCE

b(u, v) =
∫∫∫

Ω
∇u · ∇v dV

c(u, v) =
∫∫∫

Ω
γ1uv dV

a(u, v) = 1
τ
c(u, v)

We can now write Problem HHCE in variational form.
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Problem HHCEV

Find T such that for each t > 0, T (·, t) ∈ T (Ω) and

c(∂2
t T (·, t), v) + a(∂tT (·, t), v) + b(T (·, t), v) = 0

for each v ∈ T (Ω).

Remark Problem HHCE is a special case of Problem MW.

1.3.4 Dual-Phase-Lag model

Tzou [Tzo95] extended the hyperbolic heat conduction model to the Single-Phase-Lag
(SPL) model:

q(r̄, t+ τq) = −k∇T (r̄, t), (1.3.9)

where τq is the phase-lag in the heat flux q, and further extended it to include a phase-lag
in the temperature gradient (∇T ) as well:

q(r̄, t+ τq) = −k∇T (r̄, t+ τT ), (1.3.10)

known as the Dual-Phase-Lag (DPL) model. If a first-order Taylor expansion is per-
formed on equation (1.3.9), the result is:

q(r̄, t) + τq∂tq(r̄, t) ∼= −k∇T (r̄, t). (1.3.11)

Similarly, for Equation (1.3.10), the result is:

q(r̄, t) + τq∂tq(r̄, t) ∼= −k [∇T (r̄, t) + τT∂t (∇T (r̄, t))] (1.3.12)

Taking the divergence of Equation (1.3.12) and combing it with (1.3.1) results in

− τq∂t (∇ · q) (r̄, t) = k
[
∇2T (r̄, t) + τT∂t

(
∇2T (r̄, t)

)]
. (1.3.13)

Using equation (1.3.1) again in (1.3.13) we obtain:

τqρcp∂
2
t T − ρcp∂tT = −k∇2T − τT∇2(∂tT ) (1.3.14)
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1.3.5 Generalised Dual-Phase-Lag model

In this section we consider a general form of the DPL model. This generalised model
is the focus in [Kar11a], where it is stated without explanation (although a reference is
given).

Suppose A is a symmetric matrix that satisfies the same assumptions as for Problem MW
in Section 1.2. Consider a generalisation of (1.3.10):

q(r̄, t+ τq) = −A∇T (r̄, t+ τT ). (1.3.15)

If a first-order Taylor expansion is performed on Equation (1.3.15), then

q(r̄, t) + τq∂tq(r̄, t) ∼= −A∇T (r̄, t) + τTA∂t∇T (r̄, t). (1.3.16)

Using this together with Equation (1.3.1), we obtain

γ2∂
2
t T + γ1∂tT −∇ · (Q∇(∂tT ))−∇ · (A∇T ) = 0. (1.3.17)

where

γ2 = τqρcp, γ1 = ρcp and Q = τTA. (1.3.18)

Problem DPL

Given functions f̃ , T0 and T1, find T defined on Ω̄× [0, T ] such that

γ2∂
2
t T + γ1∂tT −∇ · (Q∇(∂tT ))−∇ · (A∇T ) = f̃ in Ω× (0, T ),

T = 0 on ∂Ω− Σ,

A∇T · n = 0 on Σ,

while T (·, 0) = T0 and ∂tT (·, 0) = T1.

The function f̃ is a source term.

Remark If the heat flux q · n is zero on Σ, then we have 0 = −A∇T · n.

We consider this model problem in Chapter 4.
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1.3.6 Variational form

The derivation of the variational form is similar to that of the multi-dimensional wave
equation, using Proposition 1.2.2.

Test functions
T (Ω) := {v ∈ C1(Ω̄) : v = 0 on ∂Ω− Σ}.

Definition 1.3.1. Bilinear forms for Problem DPL

b(u, v) =
∫∫∫

Ω
A∇u · ∇v dV

c(u, v) =
∫∫∫

Ω
γ2uv dV

a(u, v) =
∫∫∫

Ω
γ1uv +Q∇u · ∇v dV

The variational form of Problem DPL is therefore given by the following.

Problem DPLV

Find T such that for each t > 0, T (·, t) ∈ T (Ω) and

c(∂2
t T (·, t), v) + a(∂tT (·, t), v) + b(T (·, t), v) = (f̃(·, t), v)Ω

for each v ∈ T (Ω).

1.4 Vibration of a Reissner-Mindlin plate

Initially the focus of the dissertation was on the multi-dimensional wave equation. How-
ever, the investigation of the article [BV13] (see Chapter 3), which considers a general
linear vibration problem, lead to the consideration of other applications. The two appli-
cations are the vibration of a Reissner-Mindlin plate model (the focus of this section and
Section 6.2), and linear elasto-dynamics (Section 6.3).

1.4.1 Equations of motion

Consider small transverse vibrations of a thin plate with thickness h and density ρ.
The reference configuration for the plate is a domain Ω in the plane. The transverse
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displacement of x at time t is denoted by w(x, t). Also let ψ(x, t) be the angle between
a “material line” and a perpendicular to the plane, and φ(x, t) the angle between the
projection of the material line in the plane and the unit vector e1 (see [Rei88, Sec 3.2,
Sec 3.5]). The angle ψ is approximated by

ψ = [ψ1 ψ2]T = [ψ cosφ ψ sinφ]T .

The stresses result in a force density Q and a moment density M =
M11 M12

M21 M22

. The
external load on plate is denoted by q.

Before proceeding, note that

div M =
 ∂1M11 + ∂2M12

∂1M21 + ∂2M22

 .

The equations of motion of the plate (see [Min51] and [Rei88, p.152]) are given by

ρh∂2
tw = div Q + q, (1.4.1)

ρI∂2
tψ = div M −Q, (1.4.2)

where I = h3

12 is the length moment of inertia.

1.4.2 Constitutive equations

The constitutive equations for the plate model are derived from Hooke’s law (see [Rei88,
p.61] and [Min51]).

Q = κ2Gh(∇w + ψ), (1.4.3)

where G is the shear modulus and κ2 a correction factor.

M = 1
2 D

 2
(
∂1ψ1 + ν∂2ψ2

)
(1− ν)

(
∂1ψ2 + ∂2ψ1

)
(1− ν)

(
∂1ψ2 + ∂2ψ1

)
2
(
∂2ψ2 + ν∂1ψ1

)
 , (1.4.4)

where D = EI

1− ν2 is a measure of stiffness of the plate. E is Young’s modulus and ν

Poisson’s ratio.
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The equations of motion and the constitutive equations above are known as the
Reissner-Mindlin plate model. It is convenient to derive the variational form of this
plate model directly from the equations of motion and the constitutive equations. How-
ever, the constitutive equations may be substituted into the equations of motion, leading
to a system of three partial differential equations (see [Rei88, p.152] and [Min51]).

1.4.3 Dimensionless form

We derive the dimensionless form of the Reissner-Mindlin plate model in the usual way.
We introduce the dimensionless variables

τ = t

t0
, ξ1 = x1

`
and ξ2 = x2

`
,

where ` is a suitable length and t0 must still be specified.

The dimensionless variables, with x = (x1, x2) and ξ = (ξ1, ξ2), are

w∗(ξ, τ) =
(1
`

)
w(x, t), ψ∗(ξ, τ) = ψ(x, t),

Q∗(ξ, τ) =
( 1
`Gκ2

)
Q(x, t), M∗(ξ, τ) =

( 1
`2Gκ2

)
M(x, t)

and q∗(ξ, τ) =
( 1
Gκ2

)
q(x, t).

The dimensionless constants that are used are given by

h∗ = h

`
, I∗ = (h∗)3

12 and β = `3Gκ2

EI
.

Choose t0 = `
√

ρ

Gκ2 . Using the original notation for the corresponding dimensionless
quantities (for convenience), the equations of motion and constitutive equations in di-
mensionless form are presented below.

Reissner-Mindlin plate model

h∂2
tw = div Q+ q, (1.4.5)

I∂2
tψ = div M −Q, (1.4.6)

Q = h
(
∇w +ψ

)
, (1.4.7)
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M = 1
2β(1− ν2)

 2
(
∂1ψ1 + ν∂2ψ2

)
(1− ν)

(
∂1ψ2 + ∂2ψ1

)
(1− ν)

(
∂1ψ2 + ∂2ψ1

)
2
(
∂2ψ2 + ν∂1ψ1

)
 . (1.4.8)

1.4.4 Model problem

Problem RM

The reference configuration for the plate is the domain Ω. The model consists of

the equations of motion (1.4.5) and (1.4.6),

the constitutive equations (1.4.7) and (1.4.8), and

the boundary conditions w = ψ1 = ψ2 = 0.

Note that the boundary conditions on ∂Ω are conventional homogeneous boundary con-
ditions where the plate is clamped. The initial conditions are

w(·, 0) = w0, ψ(·, 0) = ψ0, ∂tw(·, 0) = w1 and ∂tψ(·, 0) = ψ1.

This model problem is considered in [Wu05] and [Wu06].

1.4.5 Variational form

The variational form is is derived directly from the equations of motion and the consti-
tutive equations.

Using Proposition 1.2.2 we have:
∫∫

Ω
(div Q)v dA = −

∫∫
Ω

Q · ∇ v dA+
∫
∂Ω

(Q · n)v ds. (1.4.9)

Also, for any vector valued function φ = [φ1 φ2]T ,
∫∫

Ω
div M · φ dA = −

∫∫
Ω

tr(MΦ) dA+
∫
∂Ω
Mn · φ ds. (1.4.10)

where Φ =
 ∂1φ1 ∂2φ1

∂1φ2 ∂2φ2

 and “tr” denotes the trace of the matrix.

 
 
 



Chapter 1. Model problems in variational form 16

Multiply equation (1.4.5) by an arbitrary scalar valued function v and integrate. Using
(1.4.9), we find that

h
∫∫

Ω
∂2
twv dA+

∫∫
Ω

Q · ∇ v dA−
∫
∂Ω

(Q · n)v ds =
∫∫

Ω
qv dA. (1.4.11)

From equation (1.4.6) we have

I∂2
tψ · φ = div M · φ−Q · φ,

where φ is an arbitrary vector valued function. Using (1.4.10) we find that

I
∫∫

Ω
∂2
tψ · φ dA+

∫∫
Ω

tr(MΦ) dA−
∫
∂Ω
Mn · φ ds

+
∫∫

Ω
Q · φ dA = 0. (1.4.12)

Test functions

Choose two spaces of test functions T1(Ω) and T2(Ω):

T1(Ω) = {v ∈ C1(Ω̄)
∣∣∣ v = 0 on ∂Ω},

T2(Ω) = {φ = [φ1 φ2]T
∣∣∣ φ1, φ2 ∈ C1(Ω̄), φ = 0 on ∂Ω}.

Remark Other boundary conditions can be accommodated using different spaces of
test functions.

From (1.4.11)
h
∫∫

Ω
∂2
twv dA+

∫∫
Ω

Q · ∇ v dA =
∫∫

Ω
qv dA, (1.4.13)

for each v ∈ T1(Ω).

From (1.4.12)

I
∫∫

Ω
∂2
tψ · φ dA+

∫∫
Ω

tr(MΦ) dA+
∫∫

Ω
Q · φ dA = 0, (1.4.14)

for each φ ∈ T2(Ω).
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We define a bilinear form bB by

bB(ψ,φ) =
∫∫

Ω
tr(MΦ) dA

= 1
β(1− ν2)

∫∫
Ω

(
(∂1ψ1 + ν∂2ψ2)∂1φ1 + (∂2ψ2 + ν∂1ψ1)∂2φ2

)
dA

+ 1
2β(1 + ν)

∫∫
Ω

(∂1ψ2 + ∂2ψ1)(∂1φ2 + ∂2φ1) dA,

for each ψ,φ in H1(Ω)2. It follows that

I
∫∫

Ω
∂2
tψ · φ dA+ bB(ψ,φ) + h

∫∫
Ω

(∇w +ψ) · φ dA = 0, (1.4.15)

for each φ ∈ T2(Ω). Equation (1.4.7) is used for the definition of Q.

Problem RMV

Find w and ψ such that, for t > 0, w(·, t) ∈ T1(Ω), ψ(·, t) ∈ T2(Ω) and Equations (1.4.13)
and (1.4.15) hold for each v ∈ T1(Ω) and each φ ∈ T2(Ω). The initial conditions are

w(·, 0) = w0, ψ(·, 0) = ψ0,

∂tw(·, 0) = w1 and ∂tψ(·, 0) = ψ1.

 
 
 



Chapter 2

Existence

2.1 Weak variational form

It is desirable to determine whether a given problem is well posed before considering a
numerical approximation for the solution. In this chapter we consider the existence of
solutions and various publications on the topic. In Section 2.3 we investigate the results
of the paper [VV02] and in Section 2.4 we consider alternative existence results.

In this section we use the simple yet nontrivial examples in [VV02] to illustrate the weak
variational form of a problem, necessary for existence theory. We consider the small one
dimensional transverse vibrations of a cantilever beam to illustrate the three different
types of damping that is considered in the general linear vibration problem defined in
Section 2.2.1. The beam has length `, cross sectional area A, density ρ, cross sectional
area moment of inertia I, and Young’s modulus E. All of these values are constants in this
case. The reference configuration for the beam is the interval [0, `] and the displacement
of x at time t is denoted by u(x, t).

2.1.1 Equations of motion and boundary conditions

The equations of motion for the deflection u of the beam is given by

ρA∂2
t u = ∂xV +Q, (2.1.1)

ρI∂2
t ∂xu = V + ∂xM. (2.1.2)

18
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In these equations M denotes the moment, V the shear force and Q a transverse force
density.

The constitutive equation is given by

M = EI∂2
xu. (2.1.3)

Combining (2.1.1), (2.1.2) and (2.1.3) yields the partial differential equation:

ρA∂2
t u = ∂x(ρI∂2

t ∂xu)− ∂2
x(EI∂2

xu) +Q.

Example 1Viscous damping

Here Q = q − k∂tu for a given k > 0 and q is the load. Equation (2.1.1) takes the form

ρA∂2
t u+ k∂tu = ∂xV + q in (0, `) for t ≥ 0.

Example 2 Kelvin-Voigt damping

The constitutive equation (2.1.3) is replaced by

M = EI∂2
xu+ µ∂t∂

2
xu.

The transverse force Q in (2.1.1) is now the load q.

For Examples 1 and 2 we consider a cantilever beam, so the boundary conditions are
given by

u(0, t) = ∂xu(0, t) = 0,

V (`, t) = M(`, t) = 0.

Example 3 Boundary damping

Suppose k1 > 0 and k0 > 0 are given. Consider the undamped problem where Q = q

and the constitutive equation is given by (2.1.3). We now have damping at the boundary
x = `:

V (`, t) = −k0∂tu(`, t),

M(`, t) = −k1∂t∂xu(`, t).

 
 
 



Chapter 2. Existence 20

2.1.2 Variational form

To obtain the variational form, multiply the equations of motion (2.1.1) and (2.1.2) by
arbitrary functions v and w and integrate. Using integration by parts we have

∫ `

0
ρA∂2

t u v =
∫ `

0
(∂xV +Q) v

= −
∫ `

0
V v′ + V (`)v(`)− V (0)v(0) +

∫ `

0
Qv (2.1.4)

and
∫ `

0
ρI∂2

t ∂xuw =
∫ `

0
(V + ∂xM)w

=
∫ `

0
V w −

∫ `

0
M w′ +M(`)w(`)−M(0)w(0). (2.1.5)

Now replace w by v′ in equation (2.1.5) and add the resulting equation to equation
(2.1.4). The result is

∫ `

0
ρA∂2

t u v +
∫ `

0
ρI∂2

t ∂xu v
′

= −
∫ `

0
M v′′ + V (`)v(`)− V (0)v(0) +M(`)v′(`)−M(0)v′(0) +

∫ `

0
Qv.

Test functions

Define the space of test functions by

T [0, `] = {v ∈ C2[0, `] : v(0) = v′(0) = 0}.

Problem EV

Using suitable notation, all three the examples may be written in a general variational
form. The bilinear forms b and c for all three examples are given by

b(u, v) = EI
∫ `

0
u′′ v′′ and c(u, v) = ρA

∫ `

0
uv + ρI

∫ `

0
u′v′ for u, v ∈ T [0, `].

The bilinear form a is different for each example.

Example 1: a(u, v) = k
∫ `

0 u v,

Example 2: a(u, v) = µ
∫ `

0 u
′′ v′′,
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Example 3: a(u, v) = k1u
′(`)v′(`) + k0u(`)v(`).

The variational equation for each case is then

c(∂2
t u(·, t), v) + a(∂tu(·, t), v) + b(u(·, t), v) = (q(·, t), v) (2.1.6)

for all v ∈ T [0, `].

2.1.3 The weak variational form

It is important to note that the bilinear form c is defined for functions in H1(0, `) and b is
defined for functions u ∈ H2(0, `) (see Appendix A). But the partial derivatives ∂tu and
∂2
t u do not make sense when a function may be changed arbitrarily on a set of measure

zero. If we define a function w by w(t) = u(·, t), then w′(t) may be defined with respect
to the norm of L2(0, `), H1(0, `) or H2(0, `).

In general, let J be a bounded or unbounded interval of real numbers containing zero. J
is either an open interval containing zero or it is of the form [0, T ) or [0,∞). Let Y be
any Banach space and consider a function u on J with values in Y .

Definition 2.1.1. Derivative
Let t be any interior point of J . Suppose there exists a v ∈ Y such that

lim
h→0

∥∥∥h−1
(
u(t+ h)− u(t)

)
− v

∥∥∥
Y

= 0,

then v is the derivative of u at t. We write u′(t) for the derivative and u′(t) ∈ Y to show
that the derivative exists with respect to the norm of Y . The derivative (function) u′ is
defined in the usual way as u′(t) for every t ∈ J , with u′′ defined by (u′)′.

Notation for Ck
(
J, Y

)
u ∈ C (J, Y ) if u is continuous on J with respect to the norm of Y .

u ∈ Ck (J, Y ) if u(k) ∈ Ck (J, Y ).

Equation (2.1.6) may now be rewritten:

c(w′′(t), v) + a(w′(t), v) + b(w(t), v) = (q(·, t), v) (2.1.7)

for each test function v.
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It is generally accepted that Equation (2.1.7) is a generalization of Equation (2.1.6) but
it is not easy to prove. Consider the following quote in [Sho77]: “... the construction of
a representative u(·, t) of w(t) is non-trivial.”

Theorem 2.1.2 ([Sho77], Theorem 7.A, p104). Let I = [a, b], a closed interval in R and
G be an open (or measurable) set in Rn.

(a) If u ∈ C(I,L2(G)), then there is a measurable function w : G× I → R such that

u(t) = w(·, t), t ∈ I. (2.1.8)

(b) If u ∈ C1(I,L2(G)), w and v are measurable real-valued functions on G × I for
which (2.1.8) holds for a.e. t ∈ I and

u′(t) = v(·, t), a.e. t ∈ I,

then v = ∂tu in D∗(G× I).

Let V (0, `) be the closure of the test functions in H2(0, `), then Equation (2.1.7) holds for
all v ∈ V (0, `). It is now possible to formulate the weak variational form of Problem EV.
Let f(t) = q(·, t) for each t.

Problem EW

Find a function w with w′(t) ∈ V (0, `) and w′′(t) ∈ H1(0, `) such that

c(w′′(t), v) + a(w′(t), v) + b(w(t), v) = (f(t), v)

for each v ∈ V (0, `), while w(0) = u0 and w′(0) = u1.

Definition 2.1.3. A solution of Problem EW is a weak solution of Problem EV.

2.2 Existence of weak solutions

2.2.1 General linear hyperbolic problem

In this section we consider the general linear hyperbolic problem, also referred to as
the general linear vibration problem. We consider the approach in [VV02], because the
theorems are given in variational form. Alternatives are considered in Section 2.4.
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For the general linear vibration problem let X, V and W be Hilbert spaces such that
V ⊂ W ⊂ X with inner products and norms in the table below.

Space Inner product Norm
X (·, ·)X ‖ · ‖X
W c(·, ·) ‖ · ‖W
V b(·, ·) ‖ · ‖V

Also, let a be a bilinear form defined on V .

Problem G

Given a function f : J → W , find a function u ∈ C(J, V ) such that u′ is continuous at 0
and for each t ∈ J , u(t) ∈ V , u′(t) ∈ V , u′′(t) ∈ W and

c (u′′(t), v) + a (u′(t), v) + b (u(t), v) = (f(t), v)X for each v ∈ V, (2.2.1)

while u(0) = u0 , u′(0) = u1 .

2.2.2 Existence

Assumptions

The following assumptions are made for the existence results.

E1 V is dense in W and W is dense in X.

E2 There exists a positive constant κ1 such that ‖v‖W ≤ κ1‖v‖V for each
v ∈ V .

E3 There exists a positive constant κ2 such that ‖w‖X ≤ κ2‖w‖W for each
w ∈ W .

E4 The bilinear form a is non-negative, symmetric and bounded on V , i.e. there exists
a positive constant Ca such that for v, w ∈ V , |a(u, v)| ≤ Ca‖u‖V ‖v‖V .

Remark Problem EW in the previous section is a special case of Problem G.

The following three theorems are from [VV02].
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Theorem 2.2.1. Suppose Assumptions E1, E2, E3 and E4 hold. If for u0 ∈ V and
u1 ∈ W , and there exists some y ∈ W such that

b (u0, v) + a (u1, v) = c (y, v) for each v ∈ V, (2.2.2)

then for each f ∈ C1 ([0, T ), X) there exists a unique solution

u ∈ C ([0, T ), V ) ∩ C1 ([0, T ),W ) ∩ C1 ((0, T ), V ) ∩ C2 ((0, T ),W )

for Problem G. If f = 0 then u ∈ C1 ([0,∞), V ) ∩ C2 ([0,∞),W ).

Proof. See Section 2.3.

Definition 2.2.2.

Eb = { x ∈ V
∣∣∣ there exists a y ∈ W such that c(y, v) = b(x, v) for all v ∈ V }.

Assumption E4W Weak damping
The bilinear form a is non-negative, symmetric and bounded on W , i.e. there exists a
positive constant CW such that for v, w ∈ W , |a(u, v)| ≤ CW‖u‖W‖v‖W .

Theorem 2.2.3. Weak damping
Suppose Assumptions E1, E2, E3 and E4W hold. Let J be an interval containing zero,
then there exists a unique solution

u ∈ C1 (J, V ) ∩ C2 (J,W )

for Problem G for each u0 ∈ Eb, u1 ∈ V and each f ∈ C1 (J,X). If f = 0 then
u ∈ C1 ((−∞,∞), V ) ∩ C2 ((−∞,∞),W ).

Proof. See Section 2.3.

Remark We can still use Theorem 2.2.3 if a = 0.

Recall that a is called positive definite on V if there exists a K > 0 such that a(u, u) ≥
K‖u‖2

V for any u ∈ V .

Definition 2.2.4. Strong damping
When a is positive definite on V the damping is referred to as strong damping.
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Assumption E5S Strong damping
Assume we have strong damping, i.e. the bilinear form a is positive definite on V .

Theorem 2.2.5. Strong damping
Suppose Assumptions E1, E2, E3, E4 and E5S hold. Let f : [0, T ] → W be locally
Lipschitz. Then there exists a unique solution

u ∈ C ([0, T ), V ) ∩ C1 ([0, T ),W ) ∩ C2 ((0, T ),W )

for Problem G, for any u0 ∈ V , u1 ∈ W . If f = 0 then

u ∈ C ([0,∞), V ) ∩ C1 ([0,∞),W ) ∩ C∞ ((0,∞), V ) .

Proof. See Section 2.3.

Examples

Consider the examples in Section 2.1. In all three examples the space X is L2(0, `),
the space W is the closure of the test functions in H1(0, `) and the space V = V (0, `).
The three types of damping are present in the examples. In Example 1 we have weak
damping and in Example 2 strong damping. The damping in Example 3 is neither weak
nor strong.

2.3 Application of semigroup theory

The theorems in the previous section are convenient to use since the assumptions are in
terms of the bilinear forms a, b and c and it is not necessary to construct linear operators
with suitable properties as in [Sho77], [Kut86] and [AKS96]. The approach in [VV02]
is relatively new and therefore we discuss in this section how it is related to semigroup
theory.

2.3.1 General damping

Problem G is equivalent to a first-order differential equation in the product space H =
V ×W with inner product

(
x, y

)
H

= b(x1, y1) + c(x2, y2)
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for all x and y ∈ H. For x ∈ H denote x and its components by x = 〈x1, x2〉, where
x1 ∈ V and x2 ∈ W . In order to write Problem G as a first-order differential equation,
a linear operator A is constructed in [VV02]. The authors define A as the inverse of
another operator, but provides a characterisation of A in the following Lemma.

Lemma 2.3.1. Operator A
The domain is

D(A) =
{
x ∈ H : x2 ∈ V and there exists a y ∈ W such that

b(x1, v) + a(x2, v) = c(y, v) for all v ∈ V
}

and, y = Ax if y1 = x2 and b(x1, v) + a(x2, v) = −c(y2, v) for each v ∈ V .

Properties of A (Proved in [VV02]):

• A is a densely defined closed linear operator on H. [VV02, Lemma 3]

• For any λ ≥ 0, R(λI −A) = H. [VV02, Corollary 1]

• A is dissipative. [VV02, Corollary 3]

Consider the following initial value problem.

Problem IVP-1

Given a function g : [0, T ) → H, find U ∈ C([0, T ), H) such that for each t ∈ (0, T ),
U(t) ∈ D(A), U ′(t) ∈ H and

U ′(t) = AU(t) + g(t) for t ∈ (0, T ) (2.3.1)

U(0) = U0. (2.3.2)

We use the same definition for a solution as Pazy [Paz83, p. 105] - see Definition 2.3.2
below.

Definition 2.3.2. A function U is said to be a solution of Problem IVP-1 above if it
satisfies (2.3.1) and (2.3.2) and for each t > 0, U(t) ∈ D(A) and

U ∈ C([0, T ), H) ∩ C1((0, T ), H).
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Proof of Theorem 2.2.1

We can now write Problem G as an initial value problem for a first order system. Let
g(t) = 〈0, f(t)〉. If

u ∈ C ([0, T ), V ) ∩ C1 ([0, T ),W )

is a solution of Problem G, then U = 〈u, u′〉 is a solution to Problem IVP with

U(0) = U0 = 〈u0, u1〉.

Also if
u ∈ C ([0, T ), V ) ∩ C1 ([0, T ),W ) ∩ C1 ((0, T ), V ) ∩ C2 ((0, T ),W )

then
U ∈ C

(
[0, τ);H

)
∩ C1

(
(0, τ);H

)
.

Conversely, if U is a solution to Problem IVP-1 with U0 = 〈u0, u1〉, then the first com-
ponent u = U1 of U is a solution of Problem G. If U ∈ C1([0, T ), H), then

u ∈ C ([0, T ), V ) ∩ C1 ([0, T ),W ) ∩ C1 ((0, T ), V ) ∩ C2 ((0, τ),W ) .

These results are the result in [VV02, Lemma 7].

From the properties of the operator A, it follows from [Paz83, Theorem 4.3, p.14] that A
is the infinitesimal generator of a C0 semigroup of contractions. Now, if g ∈ C1([0, T ], H),
then there exists a unique solution U ∈ C1([0, T ), H) for any U0 ∈ D(A) for Problem IVP-
1 [Paz83, Corrolary 2.5, p.107]. If f ∈ C1([0, T ],W ), then g ∈ C1([0, T ], H). Also, from
the definition of A, U0 ∈ D(A) if and only if u0 ∈ V and u1 ∈ W and there exists some
y ∈ W such that

b (u0, v) + a (u1, v) = c (y, v) for each v ∈ V.

It therefore follows from what has been done above that u = U1 is a solution to Problem G
with

u ∈ C ([0, T ), V ) ∩ C1 ([0, T ),W ) ∩ C1 ((0, T ), V ) ∩ C2 ((0, T ),W ) .

If g = 0, then U ∈ C1([0,∞), H) which means that

u ∈ C1 ([0,∞), V ) ∩ C2 ([0,∞),W ) .

�
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2.3.2 Weak damping

Let J be an open interval containing 0.

Problem IVP-2

Given a function g : J → H, find U ∈ C(J,H) such that for each t ∈ J , U(t) ∈ D(A),
U ′(t) ∈ H and

U ′(t) = AU(t) + g(t) for t ∈ J and U(0) = U0. (2.3.3)

Suppose g(t) = 〈0, f(t)〉 for each t ∈ J . If u ∈ C(J, V ) ∩ C1(J,W ) is a solution of
Problem G, then U = 〈u, u′〉 is a solution of Problem IVP-2 with U0 = 〈u0, u1〉.

If U is a solution of Problem IVP-2 with U0 = 〈u0, u1〉, then the first component u = U1

of U is a solution of Problem G. If U ∈ C1
(
J,H

)
then u ∈ C1

(
J, V

)
∩ C2

(
J,W

)
.

If Assumption E4W holds then the operator A is the infinitesimal generator of a C0

group in H [VV02, Theorem 4]. This follows from [Paz83, Theorem 6.3, p. 23]. Also
note that in this case we have that D(A) = Eb × V (see [VV02, Lemma 8]).

Theorem 2.3.3. Let A be the infinitesimal generator of a C0 group and g ∈ C1(J̄ , H).
Then Problem IVP-2 has a unique solution U ∈ C1(J,H) for each U0 ∈ D(A). If g = 0,
then U ∈ C1((−∞,∞), H).

Proof. Suppose that J̄ = [a, b] and define a function G on [0, b − a] by G(t) = g(t + a).
Since g ∈ C1([a, b], H), G ∈ C1([0, b − a], H). By [Paz83, Corollary 2.5, p 107 and
Theorem 1.3, p 102] there exists a function y ∈ C1((0, b− a), H) such that

y′ = Ay +G on (0, b− a).

Define a function w on J by w(t) = y(t− a), then w ∈ C1(J,H) and w′ = Aw + g.

Since U0 and w(0) are in D(A), the function T (·)(b − w(0)) is a solution of the homo-
geneous differential equation. Consequently U = T (·)(b− w(0)) + w is a solution of the
nonhomogeneous differential equation 2.3.1 and since U(0) = U0, U is the solution of
Problem IVP-2.
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Proof of Theorem 2.2.3

If u0 ∈ Eb and u1 ∈ V , D(A) = Eb × V yields that 〈u0, u1〉 ∈ D(A). For g(t) = 〈0, f(t)〉,
f ∈ C1(J,W ) implies that g ∈ C1(J,H). By setting U0 = 〈u0, u1〉, Theorem 2.3.3 implies
that Problem IVP-2 has a unique solution.

It follows that the first component u = U1 of this solution is a solution of Problem G. If
f = 0, then g = 0 and it follows from Theorem 2.3.3 that

u ∈ C1
(
(−∞,∞), V

)
∩ C2

(
(−∞,∞),W

)
.

�

2.3.3 Strong damping

Consider Problem IVP-1. If Assumptions E1, E2 and E3 hold, we know that the operator
A is the infinitesimal generator of a C0 semigroup and Problem IVP-1 has a unique
solution for U0 ∈ D(A) and g ∈ C1([0, T ),W ). In this section we show that both these
conditions may be relaxed if a is positive definite on V .

Recall Assumption E5S: The bilinear form a is positive definite on V , i.e. there exists a
constant Cs such that for every u ∈ V ,

a(u, u) ≥ Cs‖u‖V .

A real Hilbert space H may be imbedded in a complex Hilbert space

H̃ = {x+ iy
∣∣∣ x ∈ H, y ∈ H}.

Note that if α + i β is a complex number, then

(α + iβ)(x+ iy) = αx− βy + iβx+ iαy.

This construction can be made rigorous, see [Sch71, p. 153].

The inner product for H̃ is defined as

〈x+ iy, u+ iv〉
H̃

= 〈x, u〉H + 〈y, v〉H + i〈y, u〉H − i〈x, v〉H .
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The linear operator A may be extended to the space H̃:

D(Ã) = {x+ iy
∣∣∣ x ∈ D(A), y ∈ D(A)},

Ã(x+ iy) = Ax+ iAy.

Problem IVP-3

Given a function g : [0, T ) → H̃, find U ∈ C([0, T ), H̃) such that for each t ∈ (0, T ),
U(t) ∈ D(Ã), U ′(t) ∈ H̃ and

U ′(t) = ÃU(t) + g(t) for t ∈ (0, T ) (2.3.4)

U(0) = U0. (2.3.5)

The following results can be proved in [VV02].

• [VV02, Lemma 10] For any w = x+ iy ∈ D(Ã)

Re(Ãw,w)
H̃

= (Ax, x)H + (Ay, y)H ,

Im(Ãw,w)
H̃

= (Ay, x)H − (Ax, y)H .

• There exists a constant Cs such that for any w = x+ iy ∈ D(Ã) we have

Re(Ãw,w)
H̃
≤ −Cs(‖x2‖2

V + ‖y2‖2
V ).

• For any w = x+ iy ∈ D(Ã) we have

|Im(Ãw,w)|
H̃
≤ ‖x1‖2

V + ‖x2‖2
V + ‖y1‖2

V + ‖y2‖2
V .

• [VV02, Lemma 11] There exists a constant K such that

K Re((Ã − I)w,w)
H̃

+ |Im((Ã − I)w,w)|
H̃
≤ 0 for any w ∈ D(Ã).

Let v(t) = e−tU(t). Then v is a solution of


v′(t) =

(
Ã − Ĩ

)
v(t) + e−tg(t) for t > 0,

v(0) = U0,
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if and only if U is a solution of Problem IVP-3.

Now consider [VV02, Theorem 5]: A linear operator B is the infinitesimal generator of
an analytic semigroup in a complex Hilbert space X if D(B) is dense in X, 0 ∈ ρ(B)
and there exists a constant C > 0 such that

C Re(Bx, x)X + |Im(Bx, x)|X ≤ 0 for any x ∈ D(B).

It then follows from the properties above ([VV02, Lemma 11]) and [VV02, Theorem
5] that the operator Ã − Ĩ is the infinitesimal generator of an analytic semigroup, and
consequently the operator Ã is the infinitesimal generator of an analytic semigroup on
H̃.

Theorem 2.3.4. If g : [0, T )→ H is locally Lipschitz on (0, T ), then Problem IVP has
a unique solution U for each U0 ∈ H. If g = 0, then U ∈ C∞ ((0,∞), H).

Proof. The initial value problem Y ′ = ÃY + g with Y (0) = U0 has a unique solution and
Y ∈ C∞

(
(0,∞), H̃

)
if g = 0 by [Paz83, Corollary 3.3, p113]. But Y (t) = U(t) + iW (t)

with U(t) ∈ H. Since g(t) ∈ H for each t ∈ [0, T ) we have U ′ = AU + g. Finally
Y (0) = U0 ∈ H and it follows that U(0) = U0.

Remark The result in [Paz83] is more general. He only requires that g is locally
Hölder continuous (definition on page 112), with exponent α, where 0 < α < 1.

We can now complete the proof of Theorem 2.2.5.

Proof of Theorem 2.2.5

If u0 ∈ V and u1 ∈ W , then 〈u0, u1〉 ∈ H and g is locally Lipschitz with respect to the
norm ‖ · ‖H if f is locally Lipschitz with respect to ‖ · ‖W . Therefore Problem IVP has
a unique solution U . It then follows by previous arguments that the first component
u = U1 of U is a solution of Problem G, and

u ∈ C ([0, T ), V ) ∩ C1 ([0, T ),W ) ∩ C2 ((0, T ),W ) .

If f = 0, then g = 0 and so

u ∈ C ([0,∞), V ) ∩ C1 ([0,∞),W ) ∩ C∞ ((0,∞), V ) .

�
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2.4 Alternatives

2.4.1 Weak solution according to Evans

In this section we present the results in [Eva98]. The notation and formulation of results
are as far as possible exactly the same as in the book.

Let L be a strongly elliptic second order differential operator (see Section 1.2). Consider
the initial boundary-value problem

(1)


∂2
tw + Lw = f in Ω for t > 0

w = 0 on ∂Ω for t > 0

w(x, 0) = g, ∂tw(x, 0) = h in Ω.

Consider the definition of a weak solution by Evans [Eva98, Subsection 7.2.1].

Introduce the function f̃ : [0, T ] → L2(Ω) by [f̃(t)](x) := f(x, t) for x ∈ Ω, 0 ≤ t ≤ T ,
and let 〈·, ·〉 denoting the pairing between H−1(Ω) and H1

0 (Ω).

Definition 2.4.1. We say a function

u ∈ L2((0, T ), H1
0 (Ω)), u′ ∈ L2((0, T ),L2(Ω)), u′′ ∈ L2((0, T ), H−1(Ω)),

is a weak solution of the hyperbolic initial/boundary-value problem (1) provided

1. 〈u′′, v〉+ b(u, v) = (f̃ , v) for each v ∈ H1
0 (Ω) and a.e. 0 ≤ t ≤ T , and

2. u(0) = g, u′(0) = h.

Remarks

1. u′′(t) is a distribution and does not belong to a function space.

2. The author only considers homogeneous boundary conditions; u(t) ∈ H1
0 (Ω).

3. The author only considers a second order hyperbolic equation which is a generali-
sation of the multi-dimensional wave equation (without damping). The theory can
therefore not be applied to the vibration of plates (see Section 6.3).
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In Subsection 7.2.3 Evans proves the existence of a unique weak solution.

Theorem 2.4.2. [Eva98, Theorem 3, p.384]
There exists a weak solution of (1).

The method of the proof is based on the proof in [LM72].

A weak solution of the initial boundary-value problem (1) is obtained by first constructing
a finite dimensional approximation. Galerkin’s method is employed by selecting smooth
functions wk = wk(x)(k ≥ 1) such that

{wk}∞k=1 is an orthogonal basis of H1
0 (Ω)

and
{wk}∞k=1 is an orthonormal basis of L2(Ω).

For an integer m, let
ūm(t) :=

m∑
k=1

dkm(t)wk.

In [Eva98, Theorem 1, p. 380] it is proved that for each integer m ≥ 1, ūm given by
the above is unique. Estimates for ūm, ū′m and ū′′m are then derived in [Eva98, Theorem
2, p. 381] in terms of f̃ , g and h, in order to eventually let m → ∞. From this,
there exists a subsequence (see [Eva98, Theorem 3, p. 384]) {ūml}∞l=1 ⊂ {ūm}∞m=1 and
ū ∈ L2((0, T ), H1

0 (Ω)), with ū′ ∈ L2((0, T ),L2(Ω)), ū′′ ∈ L2((0, T ), H−1(Ω)) such that

ūml → ū weakly in L2((0, T ), H1
0 (Ω)).

The limit ū is a weak solution (according to [Eva98]).

Theorem 2.4.3. [Eva98, Theorem 4, p.385]
A weak solution of (1) is unique.

Other publications

Existence results may also be found in other publications e.g. [LM72], [Sho77], [Kut86]
and [AKS96]. Their definitions of a weak solution are similar to [LM72], and what will
be referred to as a mild solution in the book of [Paz83]. Either way, the existence of
a weak solution or a mild solution is not sufficient for the theory of the finite element
method as we see in the following chapters.

Remark The model problems in [LM72] does not include damping.
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2.4.2 Regularity according to Evans

In Subsection 7.2.3 Evans prove that improved regularity of the weak solution is possible
under certain conditions.

Theorem 2.4.4. [Eva98, Theorem 5, p. 389] Improved regularity

1. Assume
g ∈ H1

0 (Ω), h ∈ L2(Ω), f ∈ L2((0, T ),L2(Ω)),

and suppose also that u ∈ L2((0, T ), H1
0 (Ω)), with u′ ∈ L2((0, T ),L2(Ω)),

u′′ ∈ L2((0, T ), H−1(Ω)), is the weak solution of the of the problem (1). Then in
fact

u ∈ L∞((0, T ), H1
0 (Ω)), u′ ∈ L∞((0, T ),L2(Ω))

and we have the estimate

ess sup
0≤t≤T

(
‖u(t)‖H1

0 (Ω) + ‖u′(t)‖L2(Ω)
)

≤ C
(
‖f‖L2((0,T ),L2(Ω)) + ‖g‖H1

0 (Ω)) + ‖h‖L2(Ω)
)
.

2. If, in addition,

g ∈ H2(Ω), h ∈ H1
0 (Ω), f ′ ∈ L2((0, T ),L2(Ω)),

then

u ∈ L∞((0, T ), H2(Ω)), u′ ∈ L∞((0, T ), H1
0 (Ω))

u′′ ∈ L∞((0, T ),L2(Ω)), u′′′ ∈ L2((0, T ), H−1(Ω)),

with the estimate

ess sup
0≤t≤T

(
‖u(t)‖H2(Ω) + ‖u′(t)‖H1

0 (Ω) + ‖u′′(t)‖L2(Ω)
)

+ ‖u′′′(t)‖L2((0,T ),H−1(Ω))

≤ C
(
‖f‖H1((0,T ),L2(Ω)) + ‖g‖H2(Ω)) + ‖h‖H1(Ω)

)
.

Note that now u′′(t) ∈ L2(Ω), i.e. it is actually a function. This result is similar to the
result in Theorem 2.2.3 (from Subsection 2.2.2).
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2.4.3 Higher regularity

In Subsection 7.2.3 Evans introduce so-called compatibility conditions for the initial
values of the weak solution and its derivative which results in the existence of higher
order derivatives of the solution.

Theorem 2.4.5. [Eva98, Theorem 6, p. 391] Higher regularity
Assume

g ∈ H1+m(Ω), h ∈ Hm(Ω),
dkf

dtk
∈ L2((0, T ), Hm−k(Ω)), k = 0, . . . ,m.

Suppose also the following mth−order compatibility conditions hold:

g0 := g ∈ H1
0 (Ω), h1 := h ∈ H1

0 (Ω), . . . ,

g2` := d2`−2f

dt2`−2 (·, 0)− Lg2`−2 ∈ H1
0 (Ω) (ifm = 2`)

h2` := d2`−1f

dt2`−1 (·, 0)− Lh2`−1 ∈ H1
0 (Ω) (ifm = 2`+ 1).

Then

dku

dtk
∈ L∞((0, T ), Hm+1−k(Ω)) (k = 0, 1, . . . ,m+ 1), (2.4.1)

and we have the estimate

ess sup
0≤t≤T

m+1∑
k=0

∣∣∣∣∣
∣∣∣∣∣dkudtk

∣∣∣∣∣
∣∣∣∣∣
Hm+1−k(Ω)

≤ C

 m∑
k=0

∣∣∣∣∣
∣∣∣∣∣dkfdtk

∣∣∣∣∣
∣∣∣∣∣
L2((0,T ),Hm−k(Ω))

+ ‖g‖Hm+1(Ω)) + ‖h‖Hm(Ω)

 .

To determine whether the compatibility conditions hold in an application is problematic.

Recall that it is stated in Chapter 1 that in the article of [Kar11a] a result from the
book of [LM72] is cited for the existence of a weak solution, but in proving convergence,
assumes more differentiability properties for the solution. In particular, the existence of
a weak solution is in the sense of Theorem 2.4.2 or 2.4.4, but for the error estimates it is
assumed that

u ∈ C2(J̄ , Hp+1(Ω)), u′′′ ∈ C(J̄ ,L2(Ω)), u(4) ∈ L1(J̄ ,L2(Ω)).

 
 
 



Chapter 2. Existence 36

These are rather typical assumptions, and can be interpreted in two ways: in the way
given in Section 2.1.3 or that u′′(t) exists with respect to some other norm, e.g the L2-
norm, but that u′′(t) ∈ Hp+1(Ω). Either way, these are very serious restrictions (see for
instance Theorem 2.4.5).

For more on this topic, see Section 6.2. Wu, author of a number of articles [Wu03, Wu04,
Wu05, Wu06] in elasto-dynamics, is more careful than other authors when it comes to
existence and regularity.

2.5 The multidimensional wave equation with weak
damping

2.5.1 Weak variational form

Let V (Ω) denote the closure of T (Ω) in H1(Ω). The bilinear form b is defined as in
Subsection 1.2.1 (and for heat conduction in Section 1.3.3):

b(u, v) =
∫∫∫

Ω
(A∇u) · ∇v dV.

Since c1 ≤ ρ ≤ c2, the bilinear form c is clearly an inner product for L2(Ω) and the
corresponding norm is equivalent to the norm of L2(Ω). In this application, W is the
space L2(Ω) with inner product c (and norm ‖ · ‖W ). Also, X = L2(Ω) and V = V (Ω).

Let J be an open interval containing zero. Let f̃ : t→ f(·, t).

Problem MWW

Given f̃ ∈ C(J,L2(Ω)), find u such that for each t ∈ J , u(t) ∈ V (Ω), u′′(t) ∈ L2(Ω) and

c(u′′(t), v) + a(u′(t), v) + b(u(t), v) = (f̃(t), v)L2(Ω) for each v ∈ V (Ω),

while u(0) = u0, andu′(0) = u1.
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2.5.2 Existence

Poincaré-Friedrichs inequality

There exists a constant β such that ‖v‖2 ≤ β b(v, v) for each v ∈ V (Ω). If ∂Ω − Σ has
positive area (positive length for n = 2), then the assumption holds, see [Bra01, p.30] or
[Eva98, Theorem 2, p.300].

[Bak76] states this without proof or reference. It is not even mentioned in [Dup73].

If the Poincaré-Friedrichs inequality is true, then b is positive definite on V (Ω) with
respect to the norm of H1(Ω) and the bilinear form b is an inner product on V (Ω). (The
bilinear form b is symmetric by definition.)

Definition 2.5.1. The norm corresponding to the inner product b is

‖v‖V =
√
b(v, v) for any v ∈ V (Ω).

The bilinear form b is clearly bounded on H1(Ω), hence the norm ‖ · ‖V is equivalent to
the norm of H1(Ω) on V (Ω).

Proposition 2.5.2. V (Ω) is dense in L2(Ω).

Proof. From Appendix A we have that C∞0 (Ω) is dense in L2(Ω). Since C∞0 (Ω) ⊂ V (Ω),
V (Ω) is also dense in L2(Ω).

We have shown that Assumptions E1, E2 and E3 are satisfied. For existence we also
need Assumption E4W (weak damping).

Proposition 2.5.3. The bilinear form a is nonnegative, symmetric and bounded on W ,
i.e.

|a(u, v)| ≤ CW ‖u‖W ‖v‖W .

Proof. Since it was assumed that 0 ≤ k ≤ c3, we have that

|a(u, v)| ≤ c3

∫∫∫
Ω
|uv| ≤ c3‖u‖‖v‖,

and the L2 norm is equivalent to the norm ‖ · ‖W
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Existence of a unique solution for the weak variational problem depends on the smooth-
ness of the function f̃ .

Recall the definition of Eb in Chapter 2:

Eb = {x ∈ V
∣∣∣ there exists a y ∈ W such that c(y, v) = b(x, v) for all v ∈ V }.

Theorem 2.5.4. Suppose f̃ ∈ C1(J,L2(Ω)). Problem MWW has a unique solution

u ∈ C1 (J, V (Ω)) ∩ C2 (J,W )

if u0 ∈ Eb and u1 ∈ V (Ω).

Proof. Assumptions E1, E2, E3 and E4W in Section 2.2.2 hold. The result follows from
Theorem 2.2.3.

2.5.3 Sufficient conditions for existence

In practice useful sufficient conditions for existence are required. We show that u0 ∈ Eb
if u0 ∈ H2(Ω) ∩ V (Ω).

First suppose that u0 ∈ C2(Ω̄) ∩ T (Ω̄). From the definition of the bilinear form b and
using Green’s formula (Proposition 1.2.2) we have

b(u0, v) =
∫∫∫

Ω
(A∇u0) · ∇v dV

=
∫∫

∂Ω
v(A∇u0) · n dA−

∫∫∫
Ω

(∇ · (A∇u0))v dV

= −
∫∫∫

Ω
(∇ · (A∇u0))v dV

= c(−ρ−1∇ · (A∇u0), v).

Since u0 ∈ C2(Ω̄), it follows that −ρ−1∇ · (A∇u0) ∈ C(Ω̄).

Now suppose u0 ∈ H2(Ω)∩V (Ω). Then there exists a sequence {Un}n≥1 ⊂ C2(Ω̄)∩T (Ω̄)
such that this sequence converges to u0 with respect to ‖ · ‖2, and so also with respect
to ‖ · ‖V . But

‖Un − u0‖2
2 = ‖Un − u0‖2

0 + |Un − u0|21 + |Un − u0|22,
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and so the sequence converges to u0 with respect to the semi-norm | · |2 as well (The semi-
norm | · |j is defined in Appendix A). This means that all the second order derivatives
will also converge in the L2-norm, and so the sequence {−ρ−1∇ · (A∇Un)}n≥1 converges
to −ρ−1∇ · (A∇u0) in the L2-norm. Since the L2-norm is equivalent to ‖ · ‖W , it follows
that there exists a y ∈ W such that

b(u0, v) = c(y, v) for all v ∈ V,

where y = −ρ−1∇ · (A∇u0). Consequently u0 ∈ Eb.

2.6 The Dual-Phase-Lag model

2.6.1 Weak variational form

Let V = V (Ω) denote the closure of T (Ω) in H1(Ω). The bilinear forms a and b are
defined as in Subsection 1.3.6:

b(u, v) =
∫∫∫

Ω
A∇u · ∇v dV, and a(u, v) =

∫∫∫
Ω
γ1uv +Q∇u · ∇v dV

where ∂iu and ∂iv denote weak derivatives.

Let u(t) = T (·, t).

Problem DPLW

Find u such that for each t > 0, u′(t) ∈ V (Ω), u′′(t) ∈ L2(Ω) and

c(u′′(t), v) + a(u′(t), v) + b(u(t), v) = (f̃(·, t), v)Ω for each v ∈ V (Ω)

while u(0) = T0, andu′(0) = T1.

2.6.2 Existence of a solution

It is assumed that c1 ≤ ρ ≤ c2, and therefore C∗ = τqc1cp ≤ γ2 ≤ τqc2cp = C∗. From
this it follows that the bilinear form c is an inner product for X = L2(Ω) and the
corresponding norm is equivalent to the norm of L2(Ω). The space L2(Ω) with inner
product c is the space W (with norm ‖ · ‖W ).
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As in Section 2.5.2 we see that, assuming that the Poincaré-Friedrichs inequality is true,
b is positive definite on V (Ω) with respect to the norm of H1(Ω) and the bilinear form
b is an inner product on V (Ω). (The bilinear form b is symmetric by definition.) Recall
that the norm corresponding to the inner product b is

‖v‖V =
√
b(v, v) for any v ∈ V (Ω).

All the properties of the bilinear form b and the space V mentioned in Section 2.5.2 holds
here as well. However the bilinear form a does not satisfy Assumption E4W, but rather
Assumption E4.

Proposition 2.6.1. The bilinear form a is nonnegative, symmetric and bounded on V ,
i.e.

|a(u, v)| ≤ Ca ‖u‖V ‖v‖V for any u, v ∈ V.

Proof. From the definition of a, the fact that Q = τTA and the definition of b we have
that

|a(u, v)| ≤ c2cp‖u‖‖v‖+ τT
√
b(u, u)

√
b(v, v)

≤ c2cpκ
2
1‖u‖V ‖v‖V + τT‖u‖V ‖v‖V

= Ca ‖u‖V ‖v‖V .

Proposition 2.6.2. The bilinear form a is positive definite on V , i.e.

a(u, u) ≥ K‖u‖2
V for any u ∈ V.

Proof. From the definition of a, the fact that Q = τTA and the definition of b we have
that

a(u, u) ≥ c1cp‖u‖2 + τT b(u, u) ≥ τT‖u‖2
V for any u ∈ V.

Assumption E5S is therefore satisfied and consequently all the assumptions for Theorem
2.2.5 are now satisfied. Existence of a unique solution for the weak variational problem
depends on the smoothness of the function f : t→ f̃(·, t).
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Theorem 2.6.3. Suppose f : [0, T ]→ W is locally Lipschitz. Then there exists a unique
solution

u ∈ C ([0, T ), V ) ∩ C1 ([0, T ),W ) ∩ C2 ((0, T ),W )

for Problem DPLW, for any T0 ∈ V , T1 ∈ W . If f̃ = 0 then

u ∈ C ([0,∞), V ) ∩ C1 ([0,∞),W ) ∩ C∞ ((0,∞), V ) .

Proof. Assumptions E1, E2, E3, E4 and E5S in Chapter 2, Section 2.2.2 hold. The result
follows from Theorem 2.2.5.

 
 
 



Chapter 3

Error estimates for weak damping

In this chapter we consider the article [BV13]. The article is a generalization of the
work done in [Bak76], but also includes weak damping. The results in the article can
therefore be applied to any problem of the form given in the general linear vibration
problem, Problem G, if the bilinear form a is bounded with respect to the norm of the
space W (see Chapter 2). In Chapter 6 we apply the results from [BV13] to the relevant
model problems given in Chapter 1, namely the multidimensional wave equation, the
hyperbolic heat conduction equation and the Reissner-Mindlin plate model. We also
apply the theory to linear elasto-dynamics in Section 6.3 of Chapter 6.

The proofs of the results in the article [BV13] are given in great detail in the article itself,
however, some main ideas of the structure of the proofs are provided here for completeness
and for comparison with other publications. In particular, the improvements made in
[BV13] on [Bak76] are highlighted. We also discuss the significance of the way that the
authors split the proofs for the semi-discrete and fully discrete cases and then use both
the results to get a final error estimate, unlike other articles where the semi-discrete
estimate is not used to derive the error estimate for the fully discrete case.

3.1 Galerkin Approximation

Choose a set of basis functions {φ1, φ2, . . . , φn} in V . Denote the span of these functions
by Sh. We can now formulate the semi-discrete problem for our general linear vibration
problem, Problem G. The Galerkin finite element approximation of Problem G is referred
to as Problem Gh.

42
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Problem Gh

Given a function f : [0, T ] → X, find a function uh ∈ C2(0, T ) such that for each
t ∈ (0, T )

c (u′′h(t), v) + a (u′h(t), v) + b (uh(t), v) = (f(t), v)X for each v ∈ Sh (3.1.1)

while uh(0) = uh0 , u′h(0) = uh1 .

The initial values uh0 and uh1 are elements of Sh as close as possible to u0 and u1. We
discuss the choice of initial values in Section 3.1.2.

3.1.1 Fundamental estimate

The concern here is the difference between the solution u and the Galerkin approximation
uh, i.e. to obtain an estimate for the error ‖u(t)− uh(t)‖ for each t ∈ [0, T ]. To do this,
the projection method is used.

Definition 3.1.1. Projection operator
The projection operator Ph is defined by b(u− Phu, v) = 0 for all v ∈ Sh.

If no confusion is possible, we write P for Ph. The projection is used to split the error
eh(t) = u(t)− uh(t) as follows:

e(t) = Pu(t)− uh(t) , ep(t) = u(t)− Pu(t).

Then eh(t) = ep(t) + e(t) and ‖u(t)− uh(t)‖W ≤ ‖ep(t)‖W + ‖e(t)‖W .

Estimates for the norm of ep can be obtained from approximation theory. See Appendix
B for details on interpolation and see Subsection 3.1.2 for details on the estimate for the
norm of ep. It remains to find an estimate for e(t), the difference between the projection
of u and the Galerkin approximation uh.

The projection P defines a function Pu by (Pu)(t) = Pu(t) for all t ∈ [0, T ].

Lemma 3.1.2. [BV13, Lemma 3.1]
If u ∈ C1([0, T ], V ), then Pu ∈ C1[0, T ] and (Pu)′(t) = Pu′(t).
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The proof of this lemma can be found in detail in [BV13]. It relies on the fact that P is
a bounded linear operator with norm less than one and that u ∈ C1([0, T ], V ).

Remark It is important to note that in the article [BV13] an assumption is made that
the solution u of Problem G has the property that (Pu) ∈ C2([0, T ]). Upon investigation
of all the proofs, it was seen that this assumption is not necessary, which was an oversight
in [BV13]. It is also worth noting that [Bak76] derived error estimates for the undamped
case and did use this assumption without mentioning it.

Proposition 3.1.3. [BV13, Proposition 3.1]
If u is a solution of Problem G and uh a solution to Problem Gh, then

c (e′′h(t), v) + a (e′h(t), v) + b (e(t), v) = 0 for each v ∈ Sh. (3.1.2)

Once again the proof is given in detail in [BV13].

In the proof of the main theorem in [Bak76] (Theorem 3.1, p. 567), he obtains an
equation (3.4), which is given here in the notation of this dissertation for comparison:

[Bak76, Equation (3.4)] c(e′′(t), v) + b(e(t), v) = −c(e′′p(t), v). (3.1.3)

The proof is almost the same as for Equation (3.1.2). This equation contains the term
e′′p, and hence implicitly assumes that Pu ∈ C2[0, T ], as mentioned earlier. Note that the
term does not appear in Equation (3.1.2).

The authors in [BV13] refer to the lemma below as the fundamental estimate. For the
proof it is better to use Equation (3.1.2) than Equation (3.1.3).

Lemma 3.1.4. [BV13, Lemma 4.1]
For t ∈ [0, T ],

‖e(t)‖W ≤
√

2
‖e(0)‖W + 3T‖e′h(0)‖W + 3TCW‖eh(0)‖W

+3
∫ T

0
‖e′p‖W + 3CW

∫ T

0
‖ep‖W

. (3.1.4)

Proof. The proof of this result is done in detail in [BV13]. The first part of the proof is
provided here for completeness and to show the benefit of using Equation (3.1.2) rather
than Equation (3.1.3).
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Suppose v is an anti-derivative of e. It follows from Equation (3.1.2) that

c (e′′h(t), v(t)) + a (e′h(t), v(t)) + b (e(t), v(t)) = 0 for all t ∈ [0, T ].

Now, following from (3.1.2) and the fact that e′(t)− e′h(t) = −e′p(t) for t ∈ [0, T ],

d

dt

[1
2c (e, e)− 1

2b (v, v)− c (e′h, v)− a (eh, v)
]

= c (e′, e)− b (e, v)− c (e′′h, v)− c (e′h, e)− a (e′h, v)− a (eh, e)

= c (e′ − e′h, e)− a (eh, e)

= −c
(
e′p, e

)
− a (eh, e) . (3.1.5)

Integrate (3.1.5) over [0, τ ] for some τ ∈ (0, T ) , and choose v(τ) = 0 to obtain

1
2c (e(τ), e(τ))−

[1
2c (e(0), e(0))− 1

2b (v(0), v(0))− c (e′h(0), v(0))− a (eh(0), v(0))
]

=
∫ τ

0

d

dt

[1
2c (e, e)− 1

2b (v, v)− c (e′h, v)− a (eh, v)
]

= −
∫ τ

0

(
c
(
e′p, e

)
+ a (ep, e) + a (e, e)

)
.

But a(e, e) ≥ 0 and b (v(0), v(0)) ≥ 0, so

1
2c (e(τ), e(τ)) ≤ 1

2c (e(0), e(0))− c (e′h(0), v(0))− a (eh(0), v(0))

−
∫ τ

0
c
(
e′p, e

)
−
∫ τ

0
a (ep, e) . (3.1.6)

But v′(t) = e(t) and since v(τ) = 0 we have

− c (e′h(0), v(0)) =
∫ τ

0
c (e′h(0), e) and − a (eh(0), v(0)) =

∫ τ

0
a (eh(0), e) . (3.1.7)

Now, using (3.1.7) in (3.1.6) we have

‖e(τ)‖2
W ≤ ‖e(0)‖2

W + 2|
∫ τ

0
c (e′h(0), e) |+ 2|

∫ τ

0
a (eh(0), e) |

+2
∣∣∣∣∫ τ

0
c
(
e′p, e

)∣∣∣∣+ 2
∣∣∣∣∫ τ

0
a (ep, e)

∣∣∣∣ . (3.1.8)

An estimate for the right hand side of (3.1.8) is needed.

In the article [BV13] it is assumed that Assumptions E1, E2, E3 and E4W hold for
the convergence theory. Recall Assumption E4W: The bilinear form a is non-negative,
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symmetric and bounded on W , i.e. there exists a constant CW such that for v, w ∈ W ,
|a(u, v)| ≤ CW‖u‖W‖v‖W .

Using Assumption E4W, the Cauchy-Schwartz inequality and Young’s inequality (see
Lemma C.1), the authors obtain estimates for the terms

2
∣∣∣∣∫ τ

0
a (eh(0), e)

∣∣∣∣ and 2
∣∣∣∣∫ τ

0
a (ep, e)

∣∣∣∣ .
These bounds are substituted into (3.1.8) to obtain:

‖e(τ)‖2
W ≤ ‖e(0)‖2

W + 4
9 max
t∈[0,T ]

‖e(t)‖2
W + 9T 2‖e′h(0)‖2

W + 9T 2C2
W‖eh(0)‖2

W

+9
(∫ τ

0
‖e′p‖W

)2
+ 9C2

W

(∫ τ

0
‖ep‖W

)2
.

But this holds for all τ ∈ (0, T ), and so maxt∈[0,T ] ‖e(t)‖2
W ≤ ‖e(τ)‖2

W , and therefore

1
2 max
t∈[0,T ]

‖e(t)‖2
W ≤ ‖e(0)‖2

W + 9T 2‖e′h(0)‖2
W + 9T 2C2

W‖eh(0)‖2
W

+9
(∫ τ

0
‖e′p‖W

)2
+ 9C2

W

(∫ τ

0
‖ep‖W

)2
.

Therefore

max
t∈[0,T ]

‖e(t)‖2
W ≤ 2

‖e(0)‖2
W + 9T 2‖e′h(0)‖2

W + 9T 2C2
W‖eh(0)‖2

W

+9
∫ τ

0
‖e′p‖2

W + 9C2
W

∫ τ

0
‖ep‖2

W


≤ 2

‖e(0)‖W + 3T‖e′h(0)‖W + 3TCW‖eh(0)‖W

+3
∫ τ

0
‖e′p‖W + 3CW

∫ τ

0
‖ep‖W

2

.

Taking the square root, the estimate (3.1.4) follows.
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3.1.2 Error estimates

Recall that we have that for t ∈ [0, T ],

‖u(t)− uh(t)‖W ≤ ‖ep(t)‖W + ‖e(t)‖W .

Using Lemma 3.1.4 we therefore have the following result.

Theorem 3.1.5. [BV13, Theorem 5.1]
For t ∈ [0, T ],

‖u(t)− uh(t)‖W ≤ ‖ep(t)‖W +
√

2
‖Pu0 − u0‖W + 3T‖u1 − uh1‖W

+(1 + 3TCW )‖u0 − uh0‖W + 3
∫ T

0
‖e′p‖W + 3CW

∫ T

0
‖ep‖W

.

To compare [Bak76] and [BV13], bear in mind that the spaces V and W in [BV13]
correspond to the spaces H1

0 (Ω) and L2(Ω) in [Bak76] respectively. As mentioned in
the beginning of this section, Baker chooses the initial values uh0 and uh1 to be the L2-
projections of the initial conditions u0 and u1 respectively, but does not mention how
these projections can be obtained in practice. This is another very important difference
between [BV13] and [Bak76]. In [BV13] the initial values are not initially chosen to be
the W -projections of the initial conditions u0 and u1 respectively. In [BV13] the initial
values uh0 and uh1 are left in the result, which gives the reader the opportunity to choose
the initial values from a variety of options. One of these options is to assume that the
initial values are chosen to be the interpolants of u0 and u1 respectively, uh0 = Πu0 and
uh1 = Πu1. The interpolation operator here is general (see Assumption GI below), but in
applications a specific interpolation operator is chosen, see Chapter 6. Consider now the
general interpolation assumption as in [BV13].

Assumption GI

There exists a subspace H(V, k) of V , an interpolation operator Π and positive constants
CΠ and α (depending on V and k) such that for u ∈ H(V, k):

‖u− Πu‖V ≤ CΠh
α‖u‖H(V,k),

where ‖ · ‖H(V,k) is a norm or semi-norm associated with H(V, k).
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The projection errors in Theorem 3.1.5 can now be estimated. By choosing the initial
values to be uh0 = Πu0 and uh1 = Πu1, the following result is obtained.

Theorem 3.1.6. [BV13, Theorem 5.2]
Suppose that Assumption GI holds and that uh0 = Πu0 and uh1 = Πu1. If the solution u

satisfies u(t) ∈ H(V, k) and u′(t) ∈ H(V, k) for t ∈ [0, T ], then

‖u(t)− uh(t)‖W ≤ κ1CΠh
α‖u(t)‖H(V,k) +

√
2κ1CΠh

α

(1 + 3TCW )‖u0‖H(V,k)

+ 3T‖u1‖H(V,k) + 3T max
t∈[0,T ]

‖u′(t)‖H(V,k) + 3CWT max
t∈[0,T ]

‖u(t)‖H(V,k)

.
Proof. The result follows directly from Assumption GI and the fact that ‖v‖W ≤ κ1‖v‖V
for all v ∈ V .

3.2 The fully discrete approximation

3.2.1 A system of ordinary differential equations

The semi-discrete Problem Gh is equivalent to a system of ordinary differential equations.
This system is given in Problem ODE below. It is convenient to introduce the following
notation. For x̄ ∈ Rn let

Thx̄ =
n∑
i=1

xi φi ∈ Sh,

where Sh is the span of the set of basis functions {φ1, φ2, . . . , φn}. If a function w has
values in Sh, then we define a function w̄ by

w̄ = T−1
h w,

with values in Rn. (The existence of T−1
h is due to the fact that the basis functions are

linearly independent.)

If the matrices M , C, K and the vector F are defined by

Mij = c(φj, φi), Cij = a(φj, φi), Kij = b(φj, φi), and Fi(t) = (f(t), φi)X ,

 
 
 



Chapter 3. Error estimate for weak damping 49

and the initial conditions are defined by

d̄ = ūh0 = T−1
h uh0 and v̄ = ūh1 = T−1

h uh1 ,

then we have an initial value problem for a system of ordinary differential equations
below.

Problem ODE

Determine ū ∈ C2[0, T ] such that

Mū′′ + Cū′ +Kū = F (t) with ū(0) = d̄ and ū′(0) = v̄.

We see in [BV13] that the function uh is a solution of Problem Gh if and only if the
function ū is a solution of Problem ODE [BV13, Proposition 6.1] and also that if F ∈
C[0, T ], then Problem ODE has a unique solution for each pair of vectors d̄ and v̄ [BV13,
Proposition 6.2].

3.2.2 Time-stepping scheme

A finite difference method is used to approximate the solution of the system in Problem
Gh (or Problem ODE). In [BV13] the authors follow [Bak76] with an obvious modification
to include the damping term. Note that Baker [Bak76] applies the finite difference
scheme to the solution u of Problem G, whereas in [BV13] it is applied to the Galerkin
approximation uh of Problem Gh. To do the time discretization we suppose the interval
[0, T ] is divided into N steps of length τ = T

N
and denote the approximation of uh(tk) by

uhk.

The aim is to estimate the difference between the solution of Problem G and the fully
discrete approximation:

u(tk)− uhk = [u(tk)− uh(tk)] + [uh(tk)− uhk].

The approach of estimating this difference in [BV13] is different from the other articles
considered, where error estimates are derived for the semi discrete approximation and
then for the fully discrete approximation without using the results already obtained (see
for example [Bak76], [Dup73], [OR76], [Wu03] [Kar11a], [Kar11b], [Kar12] and [GS09]).
Note that an estimate for the error u(tk)−uh(tk) was obtained in Section 3.1.2. Following
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[BV13], we now require an estimate for the error uh(tk) − uhk, and then use both the
estimates (together with the triangle inequality) to obtain a final estimate. The approach
of [BV13] has two advantages. It is not necessary to assume the existence of a third or
fourth order derivative for the exact solution and the convergence analysis for the fully
discrete approximation is simplified.

Consider the fully discrete problem in variational form. This is also done in [Bak76] and
[OR76].

Notation

For any sequence {yk} ⊂ Rn,

δtyk = yk+1 − yk−1

τ
;

yk+ 1
2

= yk+1 + yk
2 .

Problem Gh-D

Find a sequence {uhk} ⊂ Sh such that for k = 0, 1, 2, . . . , N − 1,

δtu
h
k = vk+ 1

2
, (3.2.1)

c(δvk, ϕ) + a(vk+ 1
2
, ϕ) + b(uhk+ 1

2
, ϕ) = 1

2(f(tk) + f(tk+1), ϕ)X (3.2.2)

for each ϕ ∈ Sh, while uh0 = uh(0) = dh and uh1 = u′h(0) = vh.

In [BV13, Proposition 6.3.] we see that Problem Gh-D has a unique solution for any pair
of vectors dh and vh in Sh. In the proof of this proposition an algorithm is derived, given
below in Problem FD.

Problem FD

Find a sequence {ūk} ∈ Rn such that for each k,

ūk+1 = ūk + τ v̄k+ 1
2
,(

M + τ

2C + τ 2

4 K
)
v̄k+1 =

(
M − τ

2C −
τ 2

4 K
)
v̄k − τKūk + τ

2 (F (tk) + F (tk+1))

while ū0 = d̄ and v̄0 = v̄.
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3.2.3 Error estimates

In [BV13] an estimate for ‖uh(tk)− uhk‖W is now derived. (The direct approach relies on
the assumption that the exact solution u has derivatives u(k) ∈ L2([0, T ], V ) for k ≤ 4
or k ≤ 3, which is very restrictive.) For the proof it is required that the Galerkin
approximation uh satisfies uh ∈ C4[0, T ], and it is the case if f ∈ C2([0, T ], X).

Theorem 3.2.1. [BV13, Theorem 6.1.]
If f ∈ C2([0, T ], X), then

‖uh(tk)− uhk‖W ≤ 7T 2τ 2 max ‖u(4)
h ‖W + 7Tτ 2 max ‖u′′′h ‖W

+
√

2CW τ 4 max ‖u′′′h ‖W (3.2.3)

for each tk ∈ (0, T ).

Notation:

• vh(t) = u′h(t);

• ρk = τ−1[vh(tk+1)− vh(tk)]− 1
2 [v′h(tk+1) + v′h(tk)];

• ek = uh(tk)− uhk and qk = u′h(tk)− vhk ;

• σk = τ−1[uh(tk+1)− uh(tk)]− 1
2([vh(tk+1) + vh(tk)];

• εn = τ
2ρn + τ

∑n−1
k=0 ρk + σn for n = 1, 2, . . . N − 1.

First, the following stability result is obtained in [BV13].

Lemma 3.2.2. [BV13, Lemma 6.1.]

max ‖en‖2
W ≤ 8Tτ

N−1∑
n=0
‖εn‖2

W + 2τ 4‖ρ0‖2
W + (8τ 2 + 2τ 4CW )‖σ0‖2

W .

Next, estimates for the truncation errors are derived. If uh ∈ C(4)[0, T ] and vh = u′h,
then

‖ρk‖2
W ≤ τ 4 max ‖v′′′h ‖2

W ;

‖σk‖2
W ≤ τ 4 max ‖u′′′h ‖2

W .
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Using these estimates an estimate for ‖εn‖2
W is obtained:

‖εn‖2
W ≤ 5T 2τ 4 max ‖v′′′h ‖2

W + 4τ 4 max ‖u′′′h ‖2
W .

Using these estimates together with Lemma 3.2.2, the result in Theorem 3.2.1 is achieved.

3.3 Convergence of the fully discrete approximation

Now error estimates for the fully discrete approximation of the solution of Problem G
is obtained by combining the error estimate for the semi-discrete approximation from
Section 3.1 with the error estimate obtained in the previous section.

Recall that we assume Assumptions E1, E2, E3, E4W and GI hold for the spaces V , W
and X, and we may use the properties of a solution from Theorem 2.2.3.

From Theorem 3.1.6, if uh0 = Πu0 and uh1 = Πu1, we have that for weak damping

‖u(t)− uh(t)‖W ≤ κ1CΠh
α‖u(t)‖H(V,k) +

√
2κ1CΠh

α

(1 + 3TCW )‖u0‖H(V,k)

+ 3T‖u1‖H(V,k) + 3T max
t∈[0,T ]

‖u′(t)‖H(V,k) + 3CWT max
t∈[0,T ]

‖u(t)‖H(V,k)

.
for each t ∈ [0, T ]. From Theorem 3.2.1, if f ∈ C2([0, T ], X), then

‖uh(tk)− uhk‖W ≤ 7T 2τ 2 max ‖u(4)
h ‖W + 7Tτ 2 max ‖u′′′h ‖W

+
√

2CW τ 4 max ‖u′′′h ‖W (3.3.1)

for each tk ∈ (0, T ).

From the triangle inequality applied to

u(tk)− uhk = [u(tk)− uh(tk)] + [uh(tk)− uhk],

the following result is obtained.

Notation

u(k) ∈ L2
(
[0, T ];Y

)
if u(k)(t) ∈ Y for each t and

∫
[0,T ] ‖u(k)‖2

Y <∞.
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Theorem 3.3.1. Suppose u is the solution to Problem G with u0 ∈ Eb and u1 ∈ V and
the sequence {uhk} is a solution of Problem Gh-D. Assume

(a) Assumption GI holds for the space V ,

(b) uh0 = Πu0 and uh1 = Πu1,

(c) u′′ ∈ L2([0, T ], H(V, k)),

(d) f ∈ C2([0, T ], X).

Then,

‖u(tk)− uhk‖W ≤ ‖u(tk)− uh(tk)‖W + ‖uh(tk)− uhk‖W

≤ κ1CΠh
α‖u(t)‖H(V,k) +

√
2κ1CΠh

α

3
∫ T

0
‖u′(t)‖H(V,k)

+3CW
∫ T

0
‖u(t)‖H(V,k) + (2 + 3CWT )‖u0‖H(V,k) + 3T‖u1‖H(V,k)


+7T 2τ 2 max ‖u(4)

h ‖W + 7Tτ 2 max ‖u′′′h ‖W +
√

2CW τ 4 max ‖u′′′h ‖W ,

for each tk ∈ (0, T ).

Remarks

1. In [BV13] assumption (c) in the theorem has the following meaning:

u ∈ C1 ([0, T ], V ) , u′ ∈ C1 ([0, T ],W ) and u′′(t) ∈ H(V, k) for each t.

2. Estimates for ‖u′′′h ‖W and ‖u(4)
h ‖W in terms of the initial data and the forcing

function are available, see for instance [Eva98, Theorem 6, p.391]. In this theorem
the result is given for the exact solution, and since we are looking at the finite
element approximation, similar estimates can be obtained.

 
 
 



Chapter 4

Error estimates for general damping

In this chapter we analyse the article [Kar11a], which is a recent article on the contin-
uous Galerkin finite element method. The aim of the investigation was to study the
assumptions that are necessary for convergence and the link with existence results. The
proofs of the results are given here in great detail, however some of the proofs could not
be done for the cases stated in the article (see Section 4.5).

The proofs from [Kar11a] are short and incomplete. The proofs are therefore done in
much greater detail in this dissertation. In doing this, some inconsistencies in the article
were discovered.

4.1 Introduction

In the article [Kar11a], the Dual-Phase-Lag model introduced in Section 1.3 is considered
and is stated here again for convenience, but in the notation of [Kar11a].

Let Ω be a bounded convex polygonal domain in Rm with m = 2, 3. Let J = (0, T ) with
T > 0. Consider the multidimensional wave equation in the form

γ2∂
2
t u+ γ1∂tu−∇ · (Q∇∂tu)−∇ · (A∇u) = f̃(x, t); for x ∈ Ω and t ∈ J, (4.1.1)

with mixed boundary conditions

u(x, t) = 0 for x ∈ ∂Ω− Σ and t ∈ J

A∇u · n = 0 for x ∈ Σ and t ∈ J,

54
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and initial conditions

u(x, 0) = u0(x) for x ∈ Ω

∂tu(x, 0) = v0(x) for x ∈ Ω.

Remarks

1. We refer to the damping in the article as general since weak and strong damping
terms occur. However, it is not the most general case as boundary damping is not
included.

2. In the article [Kar11a], only homogeneous Dirichlet boundary conditions are spec-
ified. This is a significant assumption. To derive the variational form for the DPL
model (or the more general version in [Kar11a]), it is either necessary to assume
homogeneous Dirichlet boundary conditions or to assume that the matrix Q is a
scalar multiple of A.

Recall that γk = γk(x), k = 1, 2 are nonnegative coefficients given by (1.3.18), and
A = A(x) (with Q = Q(x) a scalar multiple of A) is symmetric and nonnegative: for all
x ∈ Ω and for all ξ ∈ Rm

A = AT , ξTAξ ≥ 0

In the article [Kar11a] it is not assumed that Q is a scalar multiple of A, but this leads
to difficulties explained later. The following assumption is made in the article:

γ2(x) = 1, for all x ∈ Ω.

It is unnecessary, as can be seen in Section 2.6. There the bilinear form c(u, v) =
∫

Ω γ2uv

is introduced and shown to be an inner product for the space W , which is the space
L2(Ω) with norm ‖u‖W =

√
c(u, u). Since ‖ · ‖W is equivalent to ‖ · ‖0, the results will

be the same.
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Weak variational form

Recall the definition of the bilinear forms given in Definition 1.3.1.

b(u, v) =
∫
A∇u · ∇v for u, v ∈ V (Ω)

aw(u, v) =
∫
γ1uv for u, v ∈ V (Ω)

as(u, v) =
∫
Q∇u · ∇v for u, v ∈ V (Ω)

a(u, v) = aw(u, v) + as(u, v).

Recall that the space V (Ω) is the closure of the space of test functions

T (Ω) = {v ∈ C1(Ω̄) : v = 0 on ∂Ω− Σ}

in the Sobolev space H1(Ω).

Remark In [Kar11a] the bilinear form a is given in the form a(u, v) = γ1(u, v) +
(Q∇u,∇v), but γ1 is not constant according to the article, and hence it can not be taken
out of the integral. Consequently, the bilinear form a given here differs slightly from that
of [Kar11a].

The weak variational form of the Dual-Phase-Lag model is given in Subsection 2.6.1.

Problem DPLW
Find u such that for each t ∈ J , u′(t) ∈ V (Ω), u′′(t) ∈ L2(Ω) and

(u′′(t), v) + a(u′(t), v) + b(u(t), v) = (f(t), v) for all v ∈ V (Ω), (4.1.2)

u(0) = u0,

u′(0) = v0.

Remark In the following proposition an estimate for the bilinear for a is derived. This
bound is used in the proof of the main result of this chapter (the fully discrete L2-norm
error estimate). In [Kar11a] a different bound is used, but this is discussed in the remark
on page 76 in Section 4.4.2.

Proposition 4.1.1. If u ∈ Hp+1(Ω) and v ∈ V (Ω), there exists a constant K̃ such that
the bilinear form a satisfies (for p ≥ 1)

|a(u, v)| ≤ K̃‖u‖p+1‖v‖0. (4.1.3)
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Proof. Recall that
a(u, v) = aw(u, v) + as(u, v)

and
|aw(u, v)| ≤ C‖u‖0‖v‖0

for u, v ∈ L2(Ω). Now we need to estimate as(·, ·). We use Proposition 1.2.1 in Subsec-
tion 1.2.1, with F = Q∇u. We have for v ∈ V (Ω),

|as(u, v)| =
∣∣∣∣∫∫∫

Ω
Q∇u · ∇v dV

∣∣∣∣
=

∣∣∣∣∫∫∫
Ω
v∇ · (Q∇u) dV

∣∣∣∣
≤ ‖∇ · (Q∇u) ‖0‖v‖0

≤ KA‖u‖2‖v‖0 ≤ KA‖u‖p+1‖v‖0.

The last two steps follow from the fact that aij ∈ C(Ω̄) ∩ C1(Ω). We can now combine
the results. Using the fact that ‖ · ‖0 ≤ ‖ · ‖p+1 we have

|a(u, v)| ≤ K‖u‖0‖v‖0 +KA‖u‖p+1‖v‖0 ≤ K̃‖u‖p+1‖v‖0.

Existence

Existence for the problem is proved in Subsection 2.6.2. Following from Theorem 2.2.5,
if f : [0, T ]→ L2(Ω) is locally Lipschitz, then there exists a unique solution

u ∈ C ([0, T ), V (Ω)) ∩ C1
(
[0, T ),L2(Ω)

)
∩ C2

(
(0, T ),L2(Ω)

)
for the weak variational form Problem DPLW, for any u0 ∈ V (Ω) and v0 ∈ L2(Ω). If
f = 0 then

u ∈ C ([0,∞), V (Ω)) ∩ C1
(
[0,∞),L2(Ω)

)
∩ C∞ ((0,∞), V (Ω)) .

Remarks

1. In [Kar11a], Lions and Magenes [LM72] are referenced for existence and unique-
ness of a solution to the problem. However, in [LM72] existence and uniqueness
are proved for the undamped wave equation, and since the problem considered
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here contains damping terms, the results from [LM72] are not applicable (see Sec-
tion 2.4).

2. In [Kar11a] the assumption is made that the bilinear form b is positive definite. Note
that what we call positive definite in this dissertation, is called coercive in [Kar11a].
This is in fact proved in Section 2.6, assuming the Poincaré-Friedrichs inequality
holds. The only property of A mentioned in [Kar11a] is that it is symmetric, and
it is therefore implicitly assumed in [Kar11a] that A is positive definite.

3. In the article [Kar11a] it is assumed that the bilinear form a(·, ·) is continuous and
coercive on V (Ω). These assumptions are in fact proved in Section 2.6. The fact
that a is positive definite is in any event not relevant to the convergence analysis.
What is relevant is the fact that the quadratic form of a is non-negative.

4.2 Finite Element Approximation

4.2.1 Semi-discrete Galerkin approximation

The semi-discrete form of the model problem, Problem DPL is a special case of Prob-
lem Gh. A finite dimensional subspace Sh of V (Ω) is constructed using (in two di-
mensions) piecewise linear basis functions on triangle elements or (in three dimensions)
piecewise linear basis functions on tetrahedron elements. Note that the basis functions
must satisfy the forced boundary condition: zero on ∂Ω−Σ. The semi-discrete Galerkin
approximation is then given in the problem below.

Problem DPLGh

Find a function uh ∈ C(J̄ , Sh) such that

(u′′h(t), v) + a(uh(t), v) + b(uh(t), v) = (f(t), v) for all v ∈ Sh, t ∈ J (4.2.1)

uh(0) = uh0 ,

u′h(0) = uh1 ,

Notation Let P2 denote the L2-projection onto Sh.
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Remarks

1. In [Kar11a], (as in [Bak76]) the initial conditions uh0 and uh1 are chosen as the
L2−projections of uh(0) and u′h(0) respectively, i.e. uh(0) = P2u

0 and u′h(0) = P2v
0.

However, they do not mention how these projections can be obtained in practice.
Interpolation theory (see Appendix B) is therefore useful, i.e. choosing the initial
conditions uh(0) and u′h(0) to be the interpolants of u0 and v0 respectively.

2. It is notable that the semi-discrete approximation is only stated in [Kar11a] and a
semi-discrete error estimate is not derived (as is sometimes done in articles dealing
with convergence). The semi-discrete approximation is stated in order to proceed
to the fully discrete approximation.

Projection error estimate

Recall the definition of the elliptic projection P from Chapter 3: b(u − Pu, v) = 0 for
all v ∈ Sh. An estimate for the projection error ‖u(t) − Pu(t)‖0 = ‖ep(t)‖0 is needed.
In [Kar11a] an estimate is given by using “some properties of P”. This estimate is, if
u ∈ Hp+1(Ω) (with p ≥ 1),

‖u− Pu‖0 ≤ Chp+1‖u‖p+1.

In Chapter 6 we show how an estimate of this kind can be obtained from interpolation
theory.

4.2.2 Fully discrete approximation

For the time approximation of the semi-discrete problem (4.2.1), divide the interval
[0, T ] into N time steps of length τ = T

N
. Denote the approximation by unh ≈ uh(tn).

We consider the following notation - this notation differs from [Kar11a] (see Table 4.1.
page 67).
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Notation For any sequence {yk} ⊂ Rn,

δ2
t yk = yk+1 − 2yk + yk−1

τ 2

δ+
t yk = yk+1 − yk

τ
, δ−t yk

yk − yk−1

τ

δt,γyk = 1
τ

(γyk+1 + (1− 2γ)yk + (γ − 1)yk−1)

δθ,γyk = θyk+1 +
(1

2 − 2θ + γ
)
yk +

(1
2 + θ − γ

)
yk−1

yk+ 1
2

= 1
2 (yk+1 + yk)

yk− 1
2

= 1
2 (yk + yk−1) .

Note that:

δt, 1
2
yk = δtyk = yk+1 − yk−1

2τ and δθ, 1
2
yk = δθyk = θyk+1 + (1− 2θ) yk + θyk−1.

As mentioned in the articles [Kar11a] and [Kar12], a general time discretisation method
which is well-know in engineering literature is given by the Newmark method [New59].

The Newmark method applied to (4.2.1) yields

(δ2
t u

n
h, v) + a(δt,γunh, v) + b(δθ,γunh, v) = (δθ,γf(tn), v) for all v ∈ Sh. (4.2.2)

The Newmark method is second-order accurate for all θ if γ = 1
2 , while it is first-order

accurate if γ 6= 1
2 . In [Kar11a] it is said that “by Taylor expansions, it is easy to show”

that this is true. In this article the author proves this fact for γ = 1
2 only, but not in full

generality (see Lemma 4.4.4). If γ = 1
2 , the Newmark scheme reduces to

(δ2
t u

n
h, v) + a(δtunh, v) + b(δθunh, v) = (δθf(tn), v) for all v ∈ Sh. (4.2.3)

It can be easily verified that (4.2.3) is implicit if θ 6= 0 and it reduces to the Central
difference scheme

(δ2
t u

n
h, v) + a(δtunh, v) + b(unh, v) = (f(tn), v) for all v ∈ Sh (4.2.4)

when θ = 0.

Remark [Kar11a] calls the central difference scheme the Leapfrog scheme.

 
 
 



Chapter 4. Error estimates for general damping 61

Some other interesting and notable schemes can be obtained from the General Newmark
scheme (4.2.2). For example, by choosing θ = 1

4 and γ = 1
2 we obtain the Average

Acceleration Method (see [Zie77]):

(δ2
t u

n
h, v) + a(δtunh, v) + b(δ 1

4 ,
1
2
unh, v) = (δ 1

4 ,
1
2
f(tn), v) for all v ∈ Sh, (4.2.5)

where

δ 1
4 ,

1
2
unh = 1

4
(
un+1
h + 2unh + un−1

h

)
δ 1

4 ,
1
2
f(tn) = 1

4 (f(tn+1) + 2f(tn) + f(tn−1)) .

The aim of Karaa’s article is to investigate what he calls the stability of the general
scheme (4.2.2) and derive optimal error estimates. Appropriate initial conditions are
required. Consider u0

h = P2u
0 and define u1

h ∈ Sh by requiring that

(u1
h − u0

h, v) + τ 2θb(u1
h − u0

h, v)

= τ(v0, v) + τ 2

2 (ũ0
h, v) + θτ 2(f 1 − f 0, v) for all v ∈ Sh, (4.2.6)

where ũ0
h ∈ Sh is the solution of the elliptic problem

(ũ0
h, v) = (f 0, v)− b(u0, v)− a(v0, v) for all v ∈ Sh. (4.2.7)

The choice of initial conditions follows from the derivation of the Newmark scheme. This
derivation can be seen in [Kar12].

Proposition 4.2.1. [Kar11a, Proposition 1]
For any θ, γ ≥ 0, the fully discrete approximations {unh}Nn=0 are uniquely defined in Sh

by (4.2.2) and (4.2.6).

Proof. Consider Equations (4.2.6) and (4.2.7). From Riesz’s Theorem [Kre78, Theorem
3.8-1, p. 188] it follows that ũ0

h in (4.2.7) is uniquely defined in Sh. The initial condition
u1
h is then also uniquely defined in Sh for any θ following from (4.2.6). The initial

condition u0
h is also unique.

Define Qn = δ2
t u

n
h for n ≥ 1. Karaa [Kar11a] now states that

γτQn + δ−t u
n
h = δt,γu

n
h. (4.2.8)
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To see this note that

Qn = δ2
t u

n
h = un+1

h − 2unh + un−1
h

τ 2

= 1
γτ

(
γun+1

h − 2γunh + γun−1
h

τ

)

= 1
γτ

(
γun+1

h + (1− 2γ)unh + (γ − 1)un−1
h

τ
− unh − un−1

h

τ

)
.

The next statement in the proof is

θτ 2Qn + δ0,γu
n
h = δθ,γu

n
h. (4.2.9)

To see that this is true, note that

Qn = δ2
t u

n
h = un+1

h − 2unh + un−1
h

τ 2

= 1
θτ 2

(
θun+1

h − 2θunh + θun−1
h

)
= 1

θτ 2

(
θun+1

h +
(1

2 − 2θ + γ
)
unh +

(1
2 + θ − γ

)
un−1
h

)
− 1
θτ 2

((1
2 + γ

)
unh +

(1
2 − γ

)
un−1
h

)
.

Now define a bilinear form c̃(·, ·) by

c̃(u, v) = (u, v) + γτa(u, v) + θτ 2b(u, v) for all u, v ∈ Sh

and a linear functional `n by

`n(v) = (δθ,γf(tn), v)− a(δ−t unh, v)− b(δ0,γu
n
h, v) for all v ∈ Sh.

Substituting (4.2.8) and (4.2.9) into (4.2.2) we find that for n ≥ 1, Qn satisfies

c̃(Qn, v) = `n(v) for all v ∈ Sh.

The linear functional `n is bounded on Sh (independent of the dimension n), since the
bilinear forms a and b are bounded on Sh. Since the bilinear form b is positive definite
on Sh and a is non-negative, it follows that the bilinear form c̃ is an inner product for a
space with norm equivalent to ‖ · ‖1. It therefore follows from Riesz’s Theorem [Kre78,
Theorem 3.8-1, p. 188] that Qn is uniquely defined in Sh, and this implies that un+1

h is
uniquely defined in Sh for n ≥ 1.
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4.3 Energy Analysis

In this section, the stability of the fully discrete scheme (4.2.2) (with the absence of
forcing) is investigated. It is not explicitly made clear what the definition of the stability
is here.

Theorem 4.3.1. [Kar11a, Theorem 1] The fully discrete scheme (4.2.2) is stable if

γ ≥ 1
2 and (τ)2

(
γ

2 − θ
)

sup
v∈Sh\{0}

b(v, v)
c(v, v) ≤ 1. (4.3.1)

The scheme is unconditionally stable when

2θ ≥ γ ≥ 1
2 .

Proof. First note that
δt,γu

n
h = τ

(
γ − 1

2

)
δ2
t u

n
h + δtu

n
h.

This can readily be seen from the definitions of the operators δ2
t and δt. Also note that

δγ,θu
n
h = τ 2

(
γ − 1

2

)
δ2
t u

n
h + γ

(
u
n+ 1

2
h + u

n− 1
2

h

)
+ (1− 2γ)un−

1
2

h .

This follows immediately from the definitions of δ2
t , u

n+ 1
2

h and un−
1
2

h . We can now rewrite
the variational form of the general Newmark method (4.2.2) by using the above two
equations. Note that we only investigate the case where f = 0. The result is

(δ2
t u

n
h, v) + τ

(
γ − 1

2

)
a(δ2

t u
n
h, v) + a(δtunh, v) + τ 2

(
γ − 1

2

)
b(δ2

t u
n
h, v)

+γb
(
u
n+ 1

2
h + u

n− 1
2

h , v
)

+ (1− 2γ) b
(
u
n− 1

2
h , v

)
= 0 for all v ∈ Sh.

Now choose v = δtu
n
h in the above equation. We therefore have that

(
(δ2
t u

n
h, δtu

n
h

)
+ τ

(
γ − 1

2

)
a
(
δ2
t u

n
h, δtu

n
h

)
+ a (δtunh, δtunh) + τ 2

(
γ − 1

2

)
b
(
δ2
t u

n
h, δtu

n
h

)
+γb

(
u
n+ 1

2
h + u

n− 1
2

h , δtu
n
h

)
+ (1− 2γ) b

(
u
n− 1

2
h , δtu

n
h

)
= 0. (4.3.2)
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Now we can rewrite some of these terms. The first term can be rewritten as

(
δ2
t u

n
h, δtu

n
h

)
= 1

2τ

(1
τ

((
un+1
h − unh

)
−
(
unh − un−1

h

))
,

1
τ

(
un+1
h − unh + unh − un−1

h

))
= 1

2τ
(
δ+
t u

n
h − δ−t unh, δ+

t u
n
h + δ−t u

n
h

)
= 1

2τ
((
δ+
t u

n
h, δ

+
t u

n
h

)
−
(
δ−t u

n
h, δ
−
t u

n
h

))
.

In exactly the same way we have that

a
(
δ2
t u

n
h, δtu

n
h

)
= 1

2τ
(
a
(
δ+
t u

n
h, δ

+
t u

n
h

)
− a

(
δ−t u

n
h, δ
−
t u

n
h

))
and

b
(
δ2
t u

n
h, δtu

n
h

)
= 1

2τ
(
b
(
δ+
t u

n
h, δ

+
t u

n
h

)
− b

(
δ−t u

n
h, δ
−
t u

n
h

))
.

Notice that the we can write

δtu
n
h = u

n+ 1
2

h − un−
1
2

h

τ
.

Now using this fact we can rewrite the term b
(
u
n+ 1

2
h + u

n− 1
2

h , δtu
n
h

)
as follows:

b
(
u
n+ 1

2
h + u

n− 1
2

h , δtu
n
h

)
= b

un+ 1
2

h + u
n− 1

2
h ,

u
n+ 1

2
h − un−

1
2

h

τ


= 1

τ

(
b
(
u
n+ 1

2
h , u

n+ 1
2

h

)
− b

(
u
n− 1

2
h , u

n− 1
2

h

))
.

Now consider the inequality in Lemma C.2

(x− y, y) ≤ 1
2(x, x)− 1

2(y, y),

which is a direct consequence of Young’s inequality (Lemma C.1) and the Cauchy-
Schwartz inequality. Using this we see that

b
(
u
n− 1

2
h , δtu

n
h

)
= 1

τ
b
(
u
n− 1

2
h , u

n+ 1
2

h − un−
1
2

h

)
≤ 1

2τ b
(
u
n+ 1

2
h , u

n+ 1
2

h

)
− 1

2τ b
(
u
n− 1

2
h , u

n− 1
2

h

)
.
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Now we define the discrete energy with γ ≥ 1
2 as

E
n+ 1

2
h = 1

2

c (δ+
t u

n
h, δ

+
t u

n
h

)
+ τ

(
γ − 1

2

)
a
(
δ+
t u

n
h, δ

+
t u

n
h

)

+τ 2
(
θ − γ

2

)
b
(
δ+
t u

n
h, δ

+
t u

n
h

)
+ b(un+ 1

2
h , u

n+ 1
2

h )
. (4.3.3)

We therefore see that (4.3.2) is equivalent to

1
τ

(
E
n+ 1

2
h − En− 1

2
h

)
+ a

(
δ+
t u

n
h, δ

+
t u

n
h

)
= 0. (4.3.4)

From (4.3.4) and the fact that a is positive definite on V it follows that the energy En+ 1
2

h

does not increase with n. Also, if the second condition in (4.3.1) hold, then we see that,
from the definition of En+ 1

2
h in (4.3.3), we have

E
n+ 1

2
h ≥ 1

2

c (δ+
t u

n
h, δ

+
t u

n
h

)
+ τ 2

(
θ − γ

2

) c (δ+
t u

n
h, δ

+
t u

n
h

)
τ 2
(
θ − γ

2

)


≥ c
(
δ+
t u

n
h, δ

+
t u

n
h

)
.

Therefore En+ 1
2

h is positive semi-definite.

According to [Kar11a] it now follows that the scheme (4.2.2) is stable. He does not
however give the definition of stability.

Unconditional stability

Considering again the definition of En+ 1
2

h in (4.3.3) and assuming that γ ≤ 2θ we see that
E
n+ 1

2
h is again positive semi-definite.

From the inverse property (see for instance [OR76, pages 340 - 341]), we have

b(v, v) ≤Mh−2‖v‖2
0 for all v ∈ Sh, (4.3.5)

with M a constant independent of h or v. We therefore have the CFL condition

τ 2

h2

(
γ

2 − θ
)
<

1
M
. (4.3.6)
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4.4 Convergence Analysis

In this section our attention is devoted to an error analysis of the fully discrete scheme
(4.2.2) and (4.2.6). It is assumed that γ ≥ 1/2 and that the mesh size h and the time
step τ satisfy the CFL condition (4.3.6).

Theorem 4.4.1. [Kar11a, Theorem 2] Let the solution u of the wave problem satisfy the
regularity properties

u ∈ C2(J̄ , Hp+1(Ω)), u′′′ ∈ C(J̄ ,L2(Ω)), u(4) ∈ L1(J̄ ,L2(Ω)), (4.4.1)

and let the discrete finite element approximations {unh}Nn=0 be defined by (4.2.2) and
(4.2.6). Assume that the CFL condition (4.3.6) is satisfied. Then the following a priori
error estimate holds:

max
n=0,...,N

‖u(tn)− unh‖0 ≤ C̃(hp+1 + τ q(γ)),

where q(γ) = 1 if γ 6= 1/2, q(1/2) = 2 and C̃ > 0 is a constant independent of the mesh
size and the time step.

Note that in the article [Kar11a], the proof of Theorem 4.4.1 is limited to the case where
γ = 1/2, “for the sake of conciseness” and that “the general case can be proved without
major difficulties”.

Notation

ehn = Pu(tn)− unh, ep(tn) = u(tn)− Pu(tn), en = u(tn)− unh

The error en can be split in the following manner:

en = ehn + ep(tn).

The way [Kar11a] and [GS09] prove convergence, is to first define rn ∈ Sh by

(rn, v) = (δ2
tPu(tn)− δθ,γu′′(tn), v) + a(δtPu(tn)− δθ,γu′(tn), v) (4.4.2)
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Karaa notation Our notation
a(·, ·) b(·, ·)
b(·, ·) a(·, ·)
Un unh
∂̄t δt
∂̄tt δ2

t

∆t τ
Ph P2
Πh P
ωn Pu(tn)
φn ehn
ηn ep(tn)

Table 4.1: Some differences in notation from [Kar11a]

for all v ∈ Sh, n ≥ 1, where

δθ,γu
′′(tn) = θu′′(tn+1) +

(1
2 − 2θ + γ

)
u′′(tn) +

(1
2 − θ + γ

)
u′′(tn−1)

δθ,γu
′(tn) = θu′(tn+1) +

(1
2 − 2θ + γ

)
u′(tn) +

(1
2 − θ + γ

)
u′(tn−1)

and for n = 0,

(r0, v) = τ−2(eh1 − eh0 , v) + θb(eh1 − eh0 , v) for all v ∈ Sh. (4.4.3)

Next the author defines Rn by Rn = τ
n∑

m=0
rm.

The proof of the convergence result (Theorem 4.4.1) is done by first proving three results
(Proposition 4.4.2, Lemma 4.4.3 and Lemma 4.4.4). In Proposition 4.4.2 it is shown that
the error is bounded by Rn and and the projection error ep. The truncations errors rn

are estimated in Lemma 4.4.3 and Lemma 4.4.4, in order to then obtain an estimate for
‖Rn‖0. These results are then combined to prove the main result. The proofs of these
results were found to be not detailed enough, particularly if one wanted to reproduce the
results. For this reason the proofs are given in a more detailed manner, i.e. there are at
least twice as many steps than in the articles examined in this section.

4.4.1 Stability

The first result is proved in Proposition 4.4.2 and is what we will call the stability result
(as in [BV13]), since this result limits the growth of errors. In the article [Kar11a] it is
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stated, regarding the proof of Proposition 4.4.2 that: “We omit the proof since the result
can be obtained by a slight modification of the arguments presented in [Kar11b].” Upon
consideration of the article [Kar11b], it was seen that the proof of this proposition was
only done for the case when there is no damping, i.e. a = 0. We attempted to prove
the result for the case when a 6= 0, but the “slight modification” mentioned in [Kar11a]
is still an obstacle, as the modification is far from trivial. We therefore only give the
proof for the case when a = 0 here. In Subsection 4.5.1 this problem that arises with the
damping term is discussed.

Remark The proof below is given for the general case, i.e. when γ ≥ 1
2.

Proposition 4.4.2. [Kar11a, Proposition 2]
Assume that the CFL condition (4.3.6) holds. Then we have

max
1≤n≤N

‖en‖0 ≤ C∗
(
‖e0‖0 + max

1≤n≤N
‖ep(tn)‖0 + τ

N−1∑
n=0
‖Rn‖0

)
, (4.4.4)

with a constant C∗ > 0 independent of h, τ and T .

Proof. By the definition of en,

max
0≤n≤N

‖en‖0 ≤ max
0≤n≤N

‖ehn‖0 + max
0≤n≤N

‖ep(tn)‖0 (4.4.5)

and so we need to bound max0≤n≤N ‖ehn‖0.

Consider the weak variational form (4.1.2) at tn+1, tn and tn−1 (for n = 1, 2, . . . , N − 1).
Then we have have that for every v ∈ Sh

(θu′′(tn+1), v) + b(θu(tn+1), v) = (θf(tn+1), v),((1
2 − 2θ + γ

)
u′′(tn), v

)
+ b

((1
2 − 2θ + γ

)
u(tn), v

)
=

((1
2 − 2θ + γ

)
f(tn), v

)
,((1

2 + θ − γ
)
u′′(tn−1), v

)
+ b

((1
2 + θ − γ

)
u(tn−1), v

)
=

((1
2 + θ − γ

)
f(tn−1), v

)
,

and using these three resulting equations we obtain for every v ∈ Sh

(δθ,γu′′(tn), v) + b(δθ,γu(tn), v) = (δθ,γf(tn), v). (4.4.6)

Consider (4.2.2) again

(δ2
t u

n
h, v) + b(δθ,γunh, v) = (δθ,γf(tn), v) for all v ∈ Sh
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and subtract this from (4.4.6) to obtain

(δθ,γu′′(tn)− δ2
t u

n
h, v) + b(δθ,γu(tn)− δθ,γunh, v) = (δθ,γf(tn)− δθ,γf(tn), v) (4.4.7)

for every v ∈ Sh and n = 1, 2, . . . , N − 1.

Now add and subtract the terms δ2
tPu(tn) and δθ,γ(Pu(tn)) in (4.4.7):

(δθ,γu′′(tn)− δ2
tPu(tn) + δ2

tPu(tn)− δ2
t u

n
h, v)

+b(δθ,γu(tn)− δθ,γ(Pu(tn)) + δθ,γ(Pu(tn))− δθ,γunh, v) = 0. (4.4.8)

Using the definition of the projection P and the definition of rn we have that (4.4.8)
becomes

(δ2
t e
h
n, v) + b(δθ,γehn, v) = (δ2

tPu(tn)− δθ,γu′′(tn), v)

= (rn, v) (4.4.9)

for every v ∈ Sh and n = 1, 2, . . . , N − 1, where

δθ,γe
h
n = θ(Pu(tn+1)− un+1

h ) +
(1

2 − 2θ + γ
)

(Pu(tn)− unh)

+
(1

2 − θ + γ
)

(Pu(tn−1)− un−1
h ).

We can rearrange (4.4.9) as follows:

(rn, v) = (δ2
t e
h
n, v) + τ 2

(
θ − γ

2

)
b(δ2

t e
h
n, v) + γb(ehn+ 1

2
, v) + (1− γ)b(ehn− 1

2
, v) (4.4.10)

for every v ∈ Sh and n = 1, 2, . . . , N − 1. Now multiply (4.4.10) by τ and then sum over
n = 1 to n = m. Some terms will cancel and we are left with the remainder:

τ
m∑
n=1

(rn, v) =
(1
τ

(
ehm+1 − ehm

)
, v
)
−
(1
τ

(
eh1 − eh0

)
, v
)

+τ 2
(
θ − γ

2

)
b
(1
τ

(
ehm+1 − ehm

)
, v
)
− τ 2

(
θ − γ

2

)
b
(1
τ

(
eh1 − eh0

)
, v
)

+
m∑
n=1

(
γτb

(
ehn+ 1

2
, v
)

+ (1− γ)τb
(
ehn− 1

2
, v
))
. (4.4.11)

[Kar11a] now defines a quantity Φ as

Φ0 = −γeh0 , Φm = −γeh0 +
m−1∑
n=0

ehn+ 1
2
.
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We now have to note

m∑
n=1

ehn− 1
2

=
m−1∑
n=0

ehn+ 1
2

and eh0+ 1
2

= 1
2
(
eh1 + eh0

)
.

We then have that

γΦm+1 + (1− γ)Φm = γ

(
−γeh0 +

m∑
n=0

ehn+ 1
2

)
+ (1− γ)

(
−γeh0 +

m−1∑
n=0

ehn+ 1
2

)

= −γ2 e
h
0 + γ

2
(
eh1 + eh0

)
+ γ

m∑
n=1

ehn+ 1
2
− γeh0 + γ

2 e
h
0

+ (1− γ)
m−1∑
n=0

ehn+ 1
2

= γ

2
(
eh1 − eh0

)
+

m∑
n=1

(
γehn+ 1

2
+ (1− γ)ehn− 1

2

)
(4.4.12)

Now add τ(r0, v) to both sides of (4.4.11) and use (4.4.12) in the resulting equation.
Noting that the terms

(
1
τ

(
eh1 − eh0

)
, v
)
and τθb

(
eh1 − eh0 , v

)
cancel we have:

(Rm, v) = τ
m∑
n=0

(rn, v) =
(1
τ

(
ehm+1 − ehm

)
, v
)

+ τ 2
(
θ − γ

2

)
b
(1
τ

(
ehm+1 − ehm

)
, v
)

+γτb
(
Φm+1 + Φm, v

)
+ (1− 2γ)τb (Φm, v) (4.4.13)

for m = 0, 1, 2, . . . , N − 1.

Choose v = ehm+1 + ehm = 2(Φm+1 −Φm) in the above equation (4.4.13), and multiply by
τ . Then we have:

(
ehm+1 − ehm, ehm+1 + ehm

)
= ‖ehm+1‖2

0 − ‖ehm‖2
0

b
(
ehm+1 − ehm, ehm+1 + ehm

)
= b

(
ehm+1, e

h
m+1

)
− b

(
ehm, e

h
m

)
b
(
Φm+1 + Φm,Φm+1 − Φm

)
= b

(
Φm+1,Φm+1

)
− b (Φm,Φm)

b
(
Φm,Φm+1 − Φm

)
= b

(
Φm,Φm+1

)
− b (Φm,Φm) .

Using this, together with the Cauchy-Schwartz inequality and that (1− 2γ) ≤ 0, we see
that (4.4.13) (when it is chosen that v = ehm+1 + ehm = 2(Φm+1 − Φm) and multiplied by
τ) becomes

τ
(
Rm, ehm+1 + ehm

)
≥ ‖ehm+1‖2

0 − ‖ehm‖2
0 + τ 2

(
θ − γ

2

) (
b
(
ehm+1, e

h
m+1

)
− b

(
ehm, e

h
m

))
+2γτ 2

(
b
(
Φm+1,Φm+1

)
− b (Φm,Φm)

)
+(1− 2γ)τ 2

(
b
(
Φm+1,Φm+1

)
− b (Φm,Φm)

)
(4.4.14)
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for m = 0, 1, 2, . . . , N − 1. Now sum (4.4.14) from m = 0 to m = n − 1 for n =
1, 2, 3, . . . , N . Considering that some terms will cancel, we then have

τ
n−1∑
m=0

(
Rm, ehm+1 + ehm

)
≥

n−1∑
m=0

(
‖ehm+1‖2

0 − ‖ehm‖2
0

)

+τ 2
(
θ − γ

2

) n−1∑
m=0

(
b
(
ehm+1, e

h
m+1

)
− b

(
ehm, e

h
m

))

+τ 2
(
n−1∑
m=0

b
(
Φm+1,Φm+1

)
− b (Φm,Φm)

)

≥ ‖ehn‖2
0 − ‖eh0‖2

0 + τ 2
(
θ − 1

4

)(
b
(
ehn, e

h
n

)
− b

(
eh0 , e

h
0

))
+τ 2

(
b (Φn,Φn)− b

(
Φ0,Φ0

))
(4.4.15)

for n = 1, 2, 3, . . . , N . Note that we have the following

b
(
Φ0,Φ0

)
= b

(
−γeh0 ,−γeh0

)
= γ2b

(
eh0 , e

h
0

)
; (4.4.16)

b (Φn,Φn) ≥ 0. (4.4.17)

We also have the inverse property (see (4.3.5))

b(v, v) ≤Mh−2‖v‖2
0 for all v ∈ Sh.

From the inverse property we have that

− τ 2
(
γ

2 − θ
)
b
(
ehn, e

h
n

)
≥ −τ 2

(
γ

2 − θ
)
Mh−2‖ehn‖2

0 (4.4.18)

θb
(
eh0 , e

h
0

)
≤ θMh−2‖eh0‖2

0. (4.4.19)

We can rewrite (4.4.15) as

τ
n−1∑
m=0

(
Rm, ehm+1 + ehm

)
+ ‖eh0‖2

0 + τ 2
(
θ − γ

2

)
b
(
eh0 , e

h
0

)
+ τ 2b

(
Φ0,Φ0

)
≥ ‖ehn‖2

0 + τ 2
(
θ − γ

2

)
b
(
ehn, e

h
n

)
+ τ 2b (Φn,Φn) (4.4.20)

for n = 1, 2, 3, . . . , N . Using (4.4.16), (4.4.17), (4.4.18) and (4.4.19) in (4.4.20) we have
that

τ
n−1∑
m=0

(
Rm, ehm+1 + ehm

)
+
(

1 +D∗
τ 2

h2 θM

)
‖eh0‖2

0

≥ D̃‖ehn‖2
0
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for n = 1, 2, 3, . . . , N , where
D∗ = θ + γ2 − γ

2
and

D̃ = 1− τ 2

h2

(
γ

2 − θ
)
M.

Now if the CFL condition (4.3.6) holds, we have that D̃ > 0.

Now if we use the Cauchy-Schwartz inequality, the triangle inequality and the fact that
n = 1, 2, 3, . . . , N , we obtain

n−1∑
m=0

(
Rm, ehm+1 + ehm

)

≤
N−1∑
n=0
‖Rn‖0‖ehn+1 + ehn‖0

= ‖R0‖0
(
‖eh1‖0 + ‖eh0‖0

)
+ ‖R1‖0

(
‖eh2‖0 + ‖eh1‖0

)
+‖R2‖0

(
‖eh3‖0 + ‖eh2‖0

)
+ . . .+ ‖RN−2‖0

(
‖ehN−1‖0 + ‖ehN−2‖0

)
+‖RN−1‖0

(
‖ehN‖0 + ‖ehN−1‖0

)
≤
(

max
0≤n≤N

‖ehn‖0

)(
2
N−1∑
n=0
‖Rn‖0

)
.

Following from Young’s inequality, Lemma C.1, with

a = 2τ
N−1∑
n=0
‖Rn‖0, b = max

0≤n≤N
‖ehn‖0 and ε = D̃

we have

D̃‖ehn‖2
0 ≤

(
1 +D∗

τ 2

h2 θM

)
‖eh0‖2

0 + D̃

2

(
max

0≤n≤N
‖ehn‖0

)2
+ 2
D̃

(
τ
N−1∑
n=0
‖Rn‖0

)2

=
(

1 +D∗
τ 2

h2 θM

)
‖eh0‖2

0 + D̃

2 max
0≤n≤N

‖ehn‖2
0 + 2

D̃

(
τ
N−1∑
n=0
‖Rn‖0

)2

(4.4.21)

Since the right hand side of (4.4.21) does not depend on n, we take the maximum over
n = 0 to n = N to obtain

max
0≤n≤N

‖ehn‖2
0 ≤

2 (1 +D∗τ 2h−2θM)
D̃

‖eh0‖2
0 + 4

D̃2

(
τ
N−1∑
n=0
‖Rn‖0

)2
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and therefore

max
0≤n≤N

‖ehn‖0 ≤
(

2 (1 +D∗τ 2h−2θM)
D̃

) 1
2

‖eh0‖0 + 2τ
D̃

N−1∑
n=0
‖Rn‖0. (4.4.22)

Now, using (4.4.5), together with ‖eh0‖0 ≤ ‖e0‖0 + ‖ep(t0)‖0 and (4.4.22) we obtain the
desired result

max
1≤n≤N

‖en‖0 ≤ C∗
(
‖e0‖0 + max

1≤n≤N
‖ep(tn)‖0 + τ

N−1∑
n=0
‖Rn‖0

)
, (4.4.23)

where

C∗ = max

1 +
(

2 (1 +D∗τ 2h−2θM)
D̃

) 1
2

,
2
D̃

 .

4.4.2 Convergence

Consider Inequality (4.4.4) in Proposition (4.4.2). We have shown that the error ‖en‖0

is estimated in terms of ‖Rn‖0. It is now necessary to estimate ‖Rn‖0 and so it is in the
first place necessary to obtain an estimate for ‖rn‖0. This is done in the two lemmas
below, for the cases n = 0 and n ≥ 1.

Lemma 4.4.3. [Kar11a, Lemma 1]
There holds

‖r0‖0 ≤ τC1
(
‖u′′′‖C(J̄ ,L2(Ω)) + ‖u′′‖C(J̄ ,Hp+1(Ω))

)
+ τ−1hp+1C1‖u′‖C(J̄ ,Hp+1(Ω)),

with the constant C1 > 0 independent of h, τ and T .

Proof. We can write the terms in r0 as follows: (for all v ∈ Sh)

(eh1 − eh0 , v) = (Pu(t1)− u1
h, v)− (Pu(t0)− u0

h, v)

= (Pu(t1)− u(t1), v) + (u(t1)− u1
h, v)

−(Pu(t0)− u(t0), v)− (u(t0)− u0
h, v)

= ((P − I)(u(t1)− u(t0)), v) + (u(t1)− u(t0), v)

−(u1
h − u0

h, v) (4.4.24)
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and

b(eh1 − eh0 , v) = b(Pu(t1)− u1
h, v)− b(Pu(t0)− u0

h, v)

= b(Pu(t1)− u(t1), v) + b(u(t1)− u1
h, v)

−b(Pu(t0)− u(t0), v)− b(u(t0)− u0
h, v)

= b(u(t1)− u(t0), v)− b(u1
h − u0

h, v), (4.4.25)

since b(Pu(tn)− u(tn), v) = 0 for 0 ≤ n ≤ N .

Also, from Taylor’s formula with integral remainder,

u(t1) = u(t0) + τu′(t0) + τ 2

2 u
′′(t0) + 1

2

∫ t1

t0
(τ − s)2u′′′(s)ds. (4.4.26)

Considering the weak variational form (4.1.2) at t0 and t1, and subtracting the resulting
equations we obtain (for all v ∈ Sh):

(u′′(t1)− u′′(t0), v) + a(u′(t1)− u′(t0), v)

+b(u(t1)− u(t0), v) = (f(t1)− f(t0), v) (4.4.27)

Multiply (4.4.27) by θτ 2 and use (4.4.26) in the resulting equation. Then we have

(u(t1)− u(t0), v) + θτ 2b(u(t1)− u(t0), v) = (τu′(t0), v) + τ 2

2 (u′′(t0), v)

+1
2

∫ t1

t0
(τ − s)2(u′′′(s), v)ds− θτ 2(u′′(t1)− u′′(t0), v)

−θτ 2a(u′(t1)− u′(t0), v) + θτ 2(f(t1)− f(t0), v) (4.4.28)

Now subtract (4.2.6) from (4.4.28). The left hand side will become

(u(t1)− u(t0), v) + θτ 2b(u(t1)− u(t0), v)− (u1
h − u0

h, v)− τ 2θb(u1
h − u0

h, v)

= τ 2(r0, v)− ((P − I)(u(t1)− u(t0), v) for all v ∈ Sh. (4.4.29)

The right hand side will be

τ(u′(t0), v) + τ 2

2 (u′′(t0), v) + 1
2

∫ t1

t0
(τ − s)2(u′′′(s), v)ds

−θτ 2(u′′(t1)− u′′(t0), v)− θτ 2a(u′(t1)− u′(t0), v) + θτ 2(f(t1)− f(t0), v)

−τ(u′(t0), v)− τ 2

2 (ũ0
h, v)− θτ 2(f(t1)− f(t0), v). (4.4.30)
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Taking into account the definition of ũ0
h, i.e. (4.2.7), (4.4.30) becomes

τ 2

2 (u′′(t0), v)− θτ 2(u′′(t1)− u′′(t0), v)− θτ 2a(u′(t1)− u′(t0), v)− a(u′(t0), v)

+1
2

∫ t1

t0
(τ − s)2(u′′′(s), v)ds− τ 2

2 ((f(t0), v)− b(u(t0), v)) . (4.4.31)

Considering the weak variational form (4.1.2) at t = t0, and using this in (4.4.31) (to-
gether with (4.4.29)), we obtain

(r0, v) = 1
2τ 2

∫ t1

t0
(τ − s)2(u′′′(s), v)ds− θ(u′′(t1)− u′′(t0), v)

−θa(u′(t1)− u′(t0), v) + τ−2((P − I)(u(t1)− u(t0), v)

(4.4.32)

for all v ∈ Sh. The terms on the right of (4.4.32) can be bounded as follows. The first
three results follow from the Cauchy-Schwartz inequality and the regularity properties.
For all v ∈ Sh,

|(u′′(t1)− u′′(t0), v)| =
∣∣∣∣(∫ t1

t0
u′′′(s)ds, v

)∣∣∣∣
≤

∫ t1

t0
|(u′′′(s), v)|ds

≤
∫ t1

t0
‖u′′′(s)‖0‖v‖0ds

= τ‖u′′′‖C(J̄ ,L2(Ω))‖v‖0, (4.4.33)

∣∣∣∣∫ t1

t0
(τ − s)2(u′′′(s), v)ds

∣∣∣∣ ≤ τ 2
∫ t1

t0
|(u′′′(s), v)|ds

≤ τ 3‖u′′′‖C(J̄ ,L2(Ω))‖v‖0, (4.4.34)

and

|((P − I)(u(t1)− u(t0), v)| =
∣∣∣∣∫ t1

t0
((P − I)u′(s), v)ds

∣∣∣∣
≤

∫ t1

t0
|((P − I)u′(s), v)|ds

≤
∫ t1

t0
‖((P − I)u′(s)‖0‖v‖0

≤ τChp+1‖u′‖C(J̄ ,Hp+1(Ω))‖v‖0. (4.4.35)
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The last bound follows from Proposition 4.1.3,

|a(u′(t1)− u′(t0), v)| =
∣∣∣∣a(∫ t1

t0
u′′(s)ds, v

)∣∣∣∣
≤

∫ t1

t0
|a(u′′(s), v)|ds

≤
∫ t1

t0
a(u′′(s), u′′(s)) 1

2a(v, v) 1
2ds

≤ β1τ‖u′′‖C(J̄ ,Hp+1(Ω))‖v‖0. (4.4.36)

Combining the bounds (4.4.33) to (4.4.36) with equation (4.4.32), we obtain (for all
v ∈ Sh),

|(r0, v)| ≤ 1
2τ 2

∣∣∣∣∫ t1

t0
(τ − s)2(u′′′(s), v)ds

∣∣∣∣+ θ|(u′′(t1)− u′′(t0), v)|

+θ|a(u′(t1)− u′(t0), v)|+ τ−2 |((P − I)(u(t1)− u(t0), v)|

≤ τθ‖u′′′‖C(J̄ ,L2(Ω))‖v‖0 + τθβ1‖u′′‖C(J̄ ,Hp+1(Ω))‖v‖0

+τ2‖u
′′′‖C(J̄ ,L2(Ω))‖v‖0 + Cτ−1hp+1‖u′‖C(J̄ ,Hp+1(Ω))‖v‖0.

(4.4.37)

Since r0 ∈ Sh, we have that

‖r0‖2
0 ≤ τ

(
θ + 1

2

)
‖u′′′h ‖C(J̄ ,L2(Ω))‖r0‖0 + τθβ1‖u′′h‖C(J̄ ,Hp+1(Ω))‖r0‖0

+Cτ−1hp+1‖u′‖C(J̄ ,Hp+1(Ω))‖r0‖0.

The result follows with C1 = max{C, θ + 1
2 , θβ1}.

Remark A very important remark needs to be made here with regards to the proof
of the following lemma. The proof of this lemma in the article [Kar11a] requires that we
must have for any u, v ∈ V (Ω),

|a(u, v)| ≤ β1‖u‖0‖v‖0.

This can be seen in going from Equation (4.4.38) to Equation (4.4.39) in the proof of the
lemma. If a is merely continuous on the space V (Ω), then this estimate is not valid. In
fact, a is positive definite with respect to the norm ‖ · ‖1. Since the model problems in
the other articles of Karaa, [Kar11b] and [Kar12] do not include damping, no help could
be gained from them. However, the lemma can be proved with the same results when
we are dealing with weak damping, i.e. the bilinear form a is continuous on the space
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L2(Ω). This would mean that in the model problem given in the article [Kar11a], the
term ∇ · (Q∇∂tu) should not be taken into account.

Lemma 4.4.4. [Kar11a, Lemma 2]
If as = 0, there holds for 1 ≤ n ≤ N − 1,

‖rn‖0 ≤ C2h
p+1τ−1

(∫ tn+1

tn−1
‖u′′(s)‖p+1ds+

∫ tn+1

tn−1
‖u′(s)‖p+1ds

)

+C2τ

(∫ tn+1

tn−1
‖u′′′(s)‖0ds+

∫ tn+1

tn−1
‖u(4)(s)‖0ds

)

with the constant C2 > 0 independent of h, τ and T .

Proof. Recall that

(rn, v) = (δ2
tPu(tn)− δθu′′(tn), v) + a(δtPu(tn)− δθu′(tn), v)

for all v ∈ Sh, n ≥ 1. Since rn ∈ Sh, we can choose rn = v and so

‖rn‖2
0 = (δ2

tPu(tn)− δθu′′(tn), rn) + a(δtPu(tn)− δθu′(tn), rn). (4.4.38)

Now use the Cauchy-Schwartz inequality and the continuity of the bilinear form a on the
space L2(Ω) to get

‖rn‖0 ≤ ‖δ2
tPu(tn)− δθu′′(tn)‖0 + β1‖δtPu(tn)− δθu′(tn)‖0. (4.4.39)

Now adding and subtracting the terms δ2
t u(tn) and β1δtu(tn) and using the triangle

inequality we obtain

‖rn‖0 ≤ ‖δ2
tPu(tn)− δ2

t u(tn)‖0 + ‖δ2
t u(tn)− δθu′′(tn)‖0

+β1‖δtPu(tn)− δtu(tn)‖0 + β1‖δtu(tn)− δθu′(tn)‖0

= ‖δ2
t (P − I)u(tn)‖0 + ‖δ2

t u(tn)− δθu′′(tn)‖0

+β1‖δt(P − I)u(tn)‖0 + β1‖δtu(tn)− δθu′(tn)‖0.

(4.4.40)

We now want to estimate the terms on the right of (4.4.40). First consider the general
(m ≥ 0) Taylor expansions of u(tn+1) and u(tn−1) about u(tn).
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Taylor expansion of u(tn+1) about u(tn):

u(tn+1) = u(tn) + (tn+1 − tn)u′(tn) + (tn+1 − tn)2

2! u′′(tn) + . . .

+ 1
(m− 1)!

∫ tn+1

tn
(tn+1 − s)m−1u(m)(s)ds

= u(tn) + τu′(tn) + τ 2

2! u
′′(tn) + . . .

+ 1
(m− 1)!

∫ τ

0
(τ − |s|)m−1u(m)(tn + s)ds. (4.4.41)

(The last step follows since 0 ≤ s ≤ τ .)

Taylor expansion of u(tn−1) about u(tn):

u(tn−1) = u(tn) + (tn+1 − tn)u′(tn) + (tn+1 − tn)2

2! u′′(tn) + . . .

+ 1
(m− 1)!

∫ tn−1

tn
(tn−1 − s)m−1u(m)(s)ds

= u(tn)− τu′(tn) + τ 2

2! u
′′(tn) + . . .

+ 1
(m− 1)!

∫ −τ
0

(−1)m−1(τ − |s|)m−1u(m)(tn + s)ds.

(4.4.42)

(The last step follows since −τ ≤ s ≤ 0 and so −|s| = s.)

Now consider (4.4.41) and (4.4.42) with m = 1. Then we have

δt(P − I)u(tn) = 1
2τ ((P − I)u(tn+1)− (P − I)u(tn−1))

= 1
2τ

(P − I)u(tn) +
∫ τ

0
((P − I)u)′(tn + s)ds

−

(P − I)u(tn) +
∫ −τ

0
((P − I)u)′(tn + s)ds


= 1

2τ

∫ τ

−τ
((P − I)u)′(tn + s)ds (4.4.43)

and so

‖δt(P − I)u(tn)‖0 ≤
1
2τ

∫ τ

−τ
‖(P − I)u′(tn + s)‖0ds

≤ Chp+1

2τ

∫ τ

−τ
‖u′(tn + s)‖p+1ds. (4.4.44)
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Now consider (4.4.41) and (4.4.42) with m = 2. Then we have

δ2
t (P − I)u(tn) = 1

τ 2 ((P − I)u(tn+1)− 2(P − I)u(tn) + (P − I)u(tn−1))

= 1
τ 2

(P − I)u(tn) + τ((P − I)u)′(tn)

+
∫ τ

0
(τ − |s|)((P − I)u)′′(tn + s)ds− 2(P − I)u(tn)

+(P − I)u(tn)− τ((P − I)u)′(tn)

−
∫ −τ

0
(τ − |s|)((P − I)u)′′(tn + s)ds


= 1

τ 2

∫ τ

−τ
(τ − |s|)((P − I)u)′′(tn + s)ds (4.4.45)

and so (since τ − |s| ≤ τ because s ∈ [−τ, τ ])

‖δ2
t (P − I)u(tn)‖0 ≤

1
τ 2

∫ τ

−τ
|τ − |s||‖(P − I)u′′(tn + s)‖0ds

≤ Chp+1

τ

∫ τ

−τ
‖u′′(tn + s)‖p+1ds. (4.4.46)

Consider (4.4.41) and (4.4.42) with m = 3. Then

δtu(tn) = 1
2τ (u(tn+1)− u(tn−1))

= 1
2τ

u(tn) + τu′(tn) + τ 2

2! u
′′(tn) + 1

2!

∫ τ

0
(τ − |s|)2u′′′(tn + s)ds

−
(
u(tn)− τu′(tn) + τ 2

2! u
′′(tn) + 1

2!

∫ −τ
0

(τ − |s|)2u′′′(tn + s)ds
)

= u′(tn) + 1
4τ

∫ τ

−τ
(τ − |s|)2u′′′(tn + s)ds (4.4.47)

Also apply (4.4.41) and (4.4.42) to u′ with m = 2 to get:

u′(tn+1) = u′(tn) + τu′′(tn) +
∫ −τ

0
(τ − |s|)u′′′(tn + s)ds (4.4.48)

and

u′(tn−1) = u′(tn)− τu′′(tn) +
∫ 0

−τ
(τ − |s|)u′′′(tn + s)ds. (4.4.49)
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Then from the Taylor expansions (4.4.48) and (4.4.49) we can write

δθu
′(tn) = θu′(tn+1) + (1− 2θ)u′(tn) + θu′(tn−1)

= θ
(
u′(tn) + τu′′(tn) +

∫ τ

0
(τ − |s|)u′′′(tn + s)ds

)
+ (1− 2θ)u′(tn)

+θ
(
u′(tn)− τu′′(tn) +

∫ 0

−τ
(τ − |s|)u′′′(tn + s)ds

)
= u′(tn) + θ

∫ τ

−τ
(τ − |s|)u′′′(tn + s)ds. (4.4.50)

Now subtract (4.4.50) from (4.4.47) to obtain

δtu(tn)− δθu′(tn) = 1
4τ

∫ τ

−τ
(τ − |s|)2u′′′(tn + s)ds− θ

∫ τ

−τ
(τ − |s|)u′′′(tn + s)ds,

(4.4.51)

and taking the norm on L2(Ω) and using the triangle inequality we have

‖δtu(tn)− δθu′(tn)‖0

≤
∥∥∥∥ 1

4τ

∫ τ

−τ
(τ − |s|)2u′′′(tn + s)ds

∥∥∥∥
0

+
∥∥∥∥θ ∫ τ

−τ
(τ − |s|)u′′′(tn + s)ds

∥∥∥∥
0

≤ 1
4τ

∫ τ

−τ
(τ − |s|)2‖u′′′(tn + s)‖0ds+ θ

∫ τ

−τ
(τ − |s|)‖u′′′(tn + s)‖0ds

≤
(1

4 + θ
)
τ
∫ τ

−τ
‖u′′′(tn + s)‖0ds. (4.4.52)

Lastly consider (4.4.41) and (4.4.42) with m = 4:

u(tn+1) = u(tn) + τu′(tn) + τ 2

2 u
′′(tn) + τ 3

6 u
′′′(tn)

+1
6

∫ τ

0
(τ − |s|)3u(4)(tn + s)ds, (4.4.53)

and

u(tn−1) = u(tn)− τu′(tn) + τ 2

2 u
′′(tn)− τ 3

6 u
′′′(tn)

−1
6

∫ −τ
0

(τ − |s|)3u(4)(tn + s)ds. (4.4.54)

Also apply (4.4.41) and (4.4.42) to u′′ with m = 2:

u′′(tn+1) = u′′(tn) + τu′′′(tn) +
∫ τ

0
(τ − |s|)u(4)(tn + s)ds, (4.4.55)
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u′′(tn−1) = u′′(tn)− τu′′′(tn)−
∫ −τ

0
(τ − |s|)u(4)(tn + s)ds. (4.4.56)

Now we have (following from (4.4.53) and (4.4.54)) that

δ2
t u(tn) = 1

τ 2 (u(tn+1)− 2u(tn) + u(tn−1))

= u′′(tn) + 1
6τ 2

∫ τ

−τ
(τ − |s|)3u(4)(tn + s)ds, (4.4.57)

and (following from (4.4.55) and (4.4.56))

δθu
′′(tn) = u′′(tn) + θ

∫ τ

−τ
(τ − |s|)u(4)(tn + s)ds. (4.4.58)

Similarly as before, subtract (4.4.58) from (4.4.57) to obtain

δ2
t u(tn)− δθu′′(tn) = 1

6τ 2

∫ τ

−τ
(τ − |s|)3u(4)(tn + s)ds

−θ
∫ τ

−τ
(τ − |s|)u(4)(tn + s)ds,

and taking the norm on L2(Ω) we have

‖δ2
t u(tn)− δθu′′(tn)‖0 ≤

(1
6 + θ

)
τ
∫ τ

−τ
‖u(4)(tn + s)‖0ds. (4.4.59)

Returning now to equation (4.4.40), and using the bounds (4.4.44), (4.4.46), (4.4.52) and
(4.4.59), we have

‖rn‖0 ≤ ‖δ2
t (P − I)u(tn)‖0 + ‖δ2

t u(tn)− δθu′′(tn)‖0

+β1‖δt(P − I)u(tn)− δθu′(tn)‖0 + β1‖δtu(tn)− δθu′(tn)‖0

≤ Chp+1

τ

∫ τ

−τ
‖u′′(tn + s)‖p+1ds+

(1
6 + θ

)
τ
∫ τ

−τ
‖u(4)(tn + s)‖0ds

+
(1

4 + θ
)
τ
∫ τ

−τ
‖u′′′(tn + s)‖0ds+ Chp+1

2τ

∫ τ

−τ
‖u′(tn + s)‖p+1ds

≤ C2

hp+1τ−1
∫ tn+1

tn−1
‖u′′(s)‖p+1ds+ τ

∫ tn+1

tn−1
‖u(4)(s)‖0ds

+τ
∫ tn+1

tn−1
‖u′′′(s)‖0ds+ hp+1τ−1

∫ tn+1

tn−1
‖u′(s)‖p+1ds

.
where C2 = max{C2 , C,

1
6 + θ, β1

(
1
c

+ θ
)
}.
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Estimate for ‖Rn‖0

From the definition of Rn (with 0 ≤ n ≤ N − 1) we have that

‖Rn‖0 ≤ τ‖r0‖0 + τ
n∑

m=1
‖rm‖0 ≤ τ‖r0‖0 + τ

N−1∑
m=1
‖rm‖0,

and then by the bounds derived in Lemma 4.4.3 and Lemma 4.4.4, we have that

‖Rn‖0 ≤ τ 2C1
(
‖u′′′‖C(J̄ ,L2(Ω)) + ‖u′′‖C(J̄ ,Hp+1(Ω))

)
+ hp+1C1‖u′‖C(J̄ ,Hp+1(Ω))

+C2h
p+1

N−1∑
m=1

(∫ tm+1

tm−1
‖u′′(s)‖p+1ds+

∫ tm+1

tm−1
‖u′(s)‖p+1ds

)

+τ 2C2

N−1∑
m=1

(∫ tm+1

tm−1
‖u′′′(s)‖0ds+

∫ tm+1

tm−1
‖u(4)(s)‖0ds

)
.

But

N−1∑
m=1

(∫ tm+1

tm−1
‖u′′′(s)‖0ds+

∫ tm+1

tm−1
‖u(4)(s)‖0ds

)

≤ 2
(∫ tN

t0
‖u′′′(s)‖0ds+

∫ tN

t0
‖u(4)(s)‖0ds

)
= 2

(
‖u′′′‖C(J̄ ,L2(Ω)) + ‖u(4)‖L1(J̄ ,L2(Ω))

)
and

N−1∑
m=1

(∫ tm+1

tm−1
‖u′′(s)‖p+1ds+

∫ tm+1

tm−1
‖u′(s)‖p+1ds

)

≤ 2
(∫ tN

t0
‖u′′(s)‖p+1ds+

∫ tN

t0
‖u′′(s)‖p+1ds

)
= 2

(
‖u′′‖C(J̄ ,Hp+1(Ω)) + ‖u′‖C(J̄ ,Hp+1(Ω))

)
.

Now

‖Rn‖0 ≤ τ 2C1
(
‖u′′′‖C(J̄ ,L2(Ω)) + ‖u′′‖C(J̄ ,Hp+1(Ω))

)
+ hp+1C1‖u′‖C(J̄ ,Hp+1(Ω))

+2τ 2C2
(
‖u′′′(s)‖C(J̄ ,L2(Ω)) + ‖u(4)(s)‖L1(J̄ ,L2(Ω))

)
+2hp+1C2

(
‖u′′‖C(J̄ ,Hp+1(Ω)) + ‖u′‖C(J̄ ,Hp+1(Ω))

)
≤ C3

τ 2
(
‖u′′‖C(J̄ ,Hp+1(Ω)) + ‖u′′′‖C(J̄ ,L2(Ω)) + ‖u(4)(s)‖L1(J̄ ,L2(Ω))

)

+hp+1
(
‖u′‖C(J̄ ,Hp+1(Ω)) + ‖u′′‖C(J̄ ,Hp+1(Ω))

),
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where C3 = max{C1, C1 + 2C2, 2C2}. Therefore

N−1∑
n=0
‖Rn‖0 ≤ NC3

τ 2
(
‖u′′‖C(J̄ ,Hp+1(Ω)) + ‖u′′′‖C(J̄ ,L2(Ω)) + ‖u(4)(s)‖L1(J̄ ,L2(Ω))

)

+hp+1
(
‖u′‖C(J̄ ,Hp+1(Ω)) + ‖u′′‖C(J̄ ,Hp+1(Ω))

).

It is now possible to complete the proof of Theorem 4.4.1.

Consider Inequality (4.4.4):

max
1≤n≤N

‖en‖0 ≤ C∗
(
‖e0‖0 + max

1≤n≤N
‖ep‖0 + τ

N−1∑
n=0
‖Rn‖0

)

From Subsection 4.2.1 it follows that

max
1≤n≤N

‖ep(tn)‖0 ≤ Chp+1 max
1≤n≤N

‖u(tn)‖p+1

and
‖e0‖0 = ‖u0 − P2u

0‖0 ≤ Chp+1‖u0‖p+1.

From the estimate for ∑N−1
n=0 ‖Rn‖0, the two results above and since

‖u(tn)− unh‖0 = ‖en‖0 ≤ max
1≤n≤N

‖en‖0 = max
1≤n≤N

‖u(tn)− unh‖0

we have the result. �

Remark Note that the constant C̃ depends on the length of the time interval T . This
is not mentioned in [Kar11a].

4.5 Conclusion

In this section the problems that arose in proving the results in [Kar11a] are discussed,
and a conclusion is also given.
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4.5.1 Stability with strong damping

As mentioned, for the proof of Proposition 4.4.2 [Kar11a, Proposition 2], the following is
stated: “We omit the proof since the result can be obtained by a slight modification of
the arguments presented in [Kar11b].” The proof in [Kar11b] does not make use of the
damping term in [Kar11a]. Also, the damping term provides an obstacle that is not so
trivial to overcome, as discussed below. We give the modifications that have to be made
to the proof of Proposition 4.4.2 to include a damping term.

Consider the weak variational form (4.1.2) at tn+1, tn and tn−1 (for n = 1, 2, . . . , N − 1).
By using appropriate weights, we have that for every v ∈ Sh

(δθ,γu′′(tn), v) + a(δθ,γu′(tn), v) + b(δθ,γu(tn), v) = (δθ,γf(tn), v). (4.5.1)

Consider (4.2.2) again

(δ2
t u

n
h, v) + a(δt,γunh, v) + b(δθ,γunh, v) = (δθ,γf(tn), v) for all v ∈ Sh

and subtract this from (4.5.1) to obtain

(δθ,γu′′(tn)− δ2
t u

n
h, v) + a(δθ,γu′(tn)− δt,γunh, v)

+b(δθ,γu(tn)− δθ,γunh, v) = (δθ,γf(tn)− δθ,γf(tn), v) (4.5.2)

for every v ∈ Sh and n = 1, 2, . . . , N − 1.

Now add and subtract the terms δ2
tPu(tn), δt,γPu(tn) and δθ,γ(Pu(tn)) in (4.5.2):

(δθ,γu′′(tn)− δ2
tPu(tn) + δ2

tPu(tn)− δ2
t u

n
h, v)

+a(δθ,γu′(tn)− δt,γPu(tn) + δt,γPu(tn)− δt,γunh, v)

+b(δθ,γu(tn)− δθ,γ(Pu(tn)) + δθ,γ(Pu(tn))− δθ,γunh, v) = 0.

(4.5.3)
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Using the definition of the projection P and the definition of rn we have that (4.5.3)
becomes

(δ2
t e
h
n, v) + a(δt,γehn, v) + b(δθ,γehn, v) = (δ2

tPu(tn)− δθ,γu′′(tn), v)

+a(δt,γPu(tn)− δθ,γu′(tn), v)

= (rn, v) (4.5.4)

for every v ∈ Sh and n = 1, 2, . . . , N − 1, where

δθ,γe
h
n = θ(Pu(tn+1)− un+1

h ) +
(1

2 − 2θ + γ
)

(Pu(tn)− unh)

+
(1

2 − θ + γ
)

(Pu(tn−1)− un−1
h )

and

δt,γe
h
n

= 1
τ

(
γ(Pu(tn+1)− un+1

h ) + (1− 2γ) (Pu(tn)− unh) + (γ − 1) (Pu(tn−1)− un−1
h )

)
.

We can rearrange (4.5.4) as follows:

(rn, v) = (δ2
t e
h
n, v) + τγa(δ2

t e
h
n, v) + a(δ−t ehn, v)

+τ 2
(
θ − γ

2

)
b(δ2

t e
h
n, v) + γb(ehn+ 1

2
, v) + (1− γ)b(ehn− 1

2
, v) (4.5.5)

for every v ∈ Sh and n = 1, 2, . . . , N − 1. Now multiply (4.5.5) by τ and then sum over
n = 1 to n = m. Some terms will cancel and we are left with the remainder:

τ
m∑
n=1

(rn, v) =
(1
τ

(
ehm+1 − ehm

)
, v
)
−
(1
τ

(
eh1 − eh0

)
, v
)

+τγa
(1
τ

(
ehm+1 − ehm

)
, v
)
− τγa

(1
τ

(
eh1 − eh0

)
, v
)

+ a
(
ehm − eh0 , v

)
+τ 2

(
θ − γ

2

)
b
(1
τ

(
ehm+1 − ehm

)
, v
)
− τ 2

(
θ − γ

2

)
b
(1
τ

(
eh1 − eh0

)
, v
)

+
m∑
n=1

(
γτb

(
ehn+ 1

2
, v
)

+ (1− γ)τb
(
ehn− 1

2
, v
))
.

(4.5.6)

The terms τγa
(

1
τ

(
ehm+1 − ehm

)
, v
)
− τγa

(
1
τ

(
eh1 − eh0

)
, v
)
can be bounded in the same

way as the corresponding terms for the bilinear form b, as in the proof of Proposition
4.4.2. The term a

(
ehm − eh0 , v

)
also needs to be bounded. The way that v is chosen, that
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is v = ehm+1 + ehm = 2(Φm+1 − Φm), results in

a
(
ehm − eh0 , ehm+1 + ehm

)
= a

(
ehm, e

h
m+1

)
− a

(
eh0 , e

h
m+1

)
+ a

(
ehm, e

h
m

)
− a

(
eh0 , e

h
m

)
.

For the proof to be completed, we need to find an upper bound (with respect to the L2-
norm) for a

(
ehm − eh0 , ehm+1 + ehm

)
. The damping that is present in the problem is strong

damping: the bilinear form a is positive definite on V (Ω), i.e. there exists a constant C
such that a(u, u) ≥ C‖u‖2

V (Ω). We also have that a is bounded on V (Ω), i.e. there exists
a constant Ca such that |a(u, v)| ≥ Ca‖u‖V (Ω)‖v‖V (Ω).

An upper bound for a
(
ehm − eh0 , ehm+1 + ehm

)
can therefore not be found.

4.5.2 Truncation error with general γ

As mentioned before, it is said in [Kar11a] that the proof of the main result Theorem 4.4.1
is done with γ = 1

2 “for the sake of conciseness” and that “the general case can be proved
without major difficulties”. In [Kar12] the general scheme is used to prove the main
result, but in that article no damping is present. When [Kar12] was consulted to aid in
the proofs for the general case

(
γ ≥ 1

2

)
, some irregularities were found in the proofs.

In this section we consider Lemma 4.4.4, the estimate for the terms rn. In the articles
[Kar11a] and [Kar11b], the proof is only done for the case when γ = 1

2 . The article of
[Kar12] was therefore consulted, even though no damping is present. It was found that
in the proof of Lemma 4.4.4 we need the following result: (see [Kar12, p. 697])

δθ,γu
′′(tn) = u′′(tn) + θ

∫ τ

−τ
(τ − |s|)u(4)(tn + s)ds+

(
γ − 1

2

) ∫ τ

−τ
u′′′(tn + s)ds. (4.5.7)

It is said in [Kar12] that this “ . . . can be easily obtained from Taylor expansions of
u′′(tn+1) and u′′(tn−1) about u′′(tn) . . . ”. Let’s consider this. These Taylor expansions
are given by

u′′(tn+1) = u′′(tn) + τu′′′(tn) +
∫ τ

0
(τ − |s|)u(4)(tn + s)ds,

and

u′′(tn−1) = u′′(tn)− τu′′′(tn)−
∫ −τ

0
(τ − |s|)u(4)(tn + s)ds.
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From definition we have that

δθ,γu
′′(tn) = θu′′(tn+1) +

(1
2 − 2θ + γ

)
u′′(tn) +

(1
2 + θ − γ

)
u′′(tn−1),

and combining this with the Taylor expansions above we will have (after cancellations)

δθ,γu
′′(tn) = θ

(
u′′(tn) + τu′′′(tn) +

∫ τ

0
(τ − |s|)u(4)(tn + s)ds

)
+
(1

2 − 2θ + γ
)
u′′(tn)

+
(1

2 + θ − γ
)(

u′′(tn)− τu′′′(tn)−
∫ −τ

0
(τ − |s|)u(4)(tn + s)ds

)
= u′′(tn) + θ

∫ τ

−τ
(τ − |s|)u(4)(tn + s)ds+

(
γ − 1

2

)
τu′′′(tn)

+
(1

2 − γ
) ∫ 0

−τ
(τ − |s|)u(4)(tn + s)ds. (4.5.8)

The next step will be to subtract (4.5.8) from δ2
t u(tn). This will give

δ2
t u(tn)− δθ,γu′′(tn) = 1

6τ 2

∫ τ

−τ
(τ − |s|)3u(4)(tn + s)ds− θ

∫ τ

−τ
(τ − |s|)u(4)(tn + s)ds

−
(
γ − 1

2

)
τu′′′(tn)−

(1
2 − γ

) ∫ 0

−τ
(τ − |s|)u(4)(tn + s)ds.

Taking the L2-norm we therefore have

‖δ2
t u(tn)− δθ,γu′′(tn)‖0 ≤

τ 3

6τ 2

∫ τ

−τ
‖u(4)(tn + s)‖0ds+ θτ

∫ τ

−τ
‖u(4)(tn + s)‖0ds

+
∣∣∣∣γ − 1

2

∣∣∣∣ τ‖u′′′(tn)‖0 + τ
∣∣∣∣12 − γ

∣∣∣∣ ∫ 0

−τ
‖u(4)(tn + s)‖0ds

=
(1

6 + θ
)
τ
∫ τ

−τ
‖u(4)(tn + s)‖0ds

+
∣∣∣∣γ − 1

2

∣∣∣∣ τ‖u′′′(tn)‖0 + τ

∣∣∣∣12 − γ
∣∣∣∣ ∫ 0

−τ
‖u(4)(tn + s)‖0ds.

(4.5.9)

Recall that we want estimates for the four terms on the right hand side of the inequality
below:

‖rn‖0 ≤ ‖δ2
tPu(tn)− δ2

t u(tn)‖0 + ‖δ2
t u(tn)− δθ,γu′′(tn)‖0

+β1‖δt,γPu(tn)− δt,γu(tn)‖0 + β1‖δt,γu(tn)− δθ,γu′(tn)‖0

= ‖δ2
t (P − I)u(tn)‖0 + ‖δ2

t u(tn)− δθ,γu′′(tn)‖0

+β1‖δt,γ(P − I)u(tn)‖0 + β1‖δt,γu(tn)− δθ,γu′(tn)‖0.

(4.5.10)
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The first term is estimated in Lemma 4.4.4, and the third term can be estimated in a
similar way as in Lemma 4.4.4. We have:

‖δt,γ(P − I)u(tn)‖0

≤ Chp+1

τ

(
γ
∫ τ

−τ
‖u′(tn + s)‖p+1ds+

∫ 0

−τ
‖u′(tn + s)‖p+1ds

)
. (4.5.11)

The second term was estimated above in Equation (4.5.9).

A similar result can be obtained for the fourth term on the right hand side of (4.5.10).
After applying (4.4.41) and (4.4.42) to u′ with m = 2 and cancelling terms:

δθ,γu
′(tn) = u′(tn) + θ

∫ τ

−τ
(τ − |s|)u′′′(tn + s)ds+

(
γ − 1

2

)
τu′′(tn)

+
(1

2 − γ
) ∫ 0

−τ
(τ − |s|)u′′′(tn + s)ds. (4.5.12)

Also, after applying (4.4.41) and (4.4.42) with m = 3 and cancelling terms:

δt,γu(tn) = u′(tn)− τ

2u
′′(tn) + γ

2τ

∫ τ

0
(τ − |s|)2u′′′(tn + s)ds

+(γ − 1)
2τ

∫ −τ
0

(τ − |s|)2u′′′(tn + s)ds. (4.5.13)

Subtracting (4.5.12) from (4.5.13) and taking the L2-norm we obtain:

‖δt,γu(tn)− δθ,γu′(tn)‖0

≤ τγ‖u′′(tn)‖0 + γτ

2

∫ τ

0
‖u′′′(tn + s)‖0ds+ |γ − 1| τ

2

∫ 0

−τ
‖u′′′(tn + s)‖0ds

+θτ
∫ τ

−τ
‖u′′′(tn + s)‖0ds+

∣∣∣∣12 − γ
∣∣∣∣ τ ∫ 0

−τ
‖u′′′(tn + s)‖0ds.

Although the result above is not exactly the same as the estimate in [Kar12], it is
essentially the same. It still provides a proof for Lemma 4.4.4 for the case γ > 1

2 .

4.5.3 Concluding remarks

As mentioned in the beginning of this chapter, additional work was required to supple-
ment what is provided in the article [Kar11a] specifically with regards to certain proofs
which the author claims are easy extensions. Certain errors were discovered, for instance
in [Kar11a] there is said that the proof of Proposition 4.4.2 “ ... can be obtained by a
slight modification of the arguments presented in [Kar11b].” The modification turns out
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to be a lot more comprehensive than expected. The results that could be proved and
those that could not have been summarised in Table 4.2.

Stability (Proposition 4.4.2) ‖rn‖0 (Lemma 4.4.4)

γ = 1
2 γ > 1

2 γ = 1
2 γ > 1

2

Damping

None Yes Yes No No

Weak No No Yes Yes

Strong No No No No

Table 4.2: Summary

The assumptions that are made on the regularity of the solution u of Problem DPL are
very restrictive. It is not mentioned that compatibility conditions must be imposed on
the boundary and initial data to yield these higher regularity properties (see Section 2.4).
These compatibility conditions required to obtain higher regularity place serious restric-
tions (often not realistic) on the initial and boundary data.

It is also mentioned in the conclusion in [Kar11a] that the analysis in the article extends
to discontinuous Galerkin finite element methods, and that the convergence results hold
true, as long as the corresponding discontinuous Galerkin bilinear forms are symmetric,
continuous, positive definite and consistent. In the articles [Kar11b] and [Kar12], this
convergence analysis has been extended to the interior penalty symmetric discontinuous
Galerkin finite element method in [GSS06] and [GS09]. However, this is only done for
the wave equation with no damping. Also, the results that are obtained rely on the same
higher regularity assumptions being maintained on the solution u as in [Kar11a].

 
 
 



Chapter 5

The discontinuous Galerkin Finite
Element method for the wave
equation

5.1 Introduction

In this chapter we investigate the work done in articles [GSS06] and [GS09]. In [GSS06]
semi-discrete error estimates are derived for the symmetric interior penalty discontinuous
Galerkin finite element method for the wave equation (without damping) in both the
energy norm and the L2-norm. In [GS09] the fully discrete error estimate in the L2-
norm is derived.

We read in [GSS06]: “... continuous Galerkin methods impose significant restrictions on
the underlying mesh and discretization; in particular, they do not accommodate hanging
nodes.”

“To avoid these difficulties, we consider instead discontinuous Galerkin (DG) methods.
Based on discontinuous finite element spaces, these methods easily handle elements of
various types and shapes, irregular nonmatching grids, and even locally varying poly-
nomial order; thus, they are ideally suited for hp-adaptivity. Here continuity is weakly
enforced across mesh interfaces by adding suitable bilinear forms, so-called numerical
fluxes, to standard variational formulations. These fluxes are easily included within an
existing conforming finite element code.”

90
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It is clear that the discontinuous Galerkin approximation has certain advantages. How-
ever, the aim of the investigation of DG methods in this dissertation is to examine if
the regularity assumptions needed on the solution for optimal error estimates are less
restrictive than those made to obtain optimal error estimates for the continuous Galerkin
finite element method. A glance at Theorem 4.2 in the article [GSS06] and Theorem 3.4
in [GS09] reveals that this is not the case; in [GS09, Theorem 3.4] it is assumed that
the solution has a fourth order time derivative. Nevertheless, the possibility exists that
suboptimal error estimates were obtained by [GSS06] and therefore it was decided to
study the articles in detail.

The investigation of [GSS06] was a substantial undertaking. The proofs done here are
given in greater detail making them much more accessible. In some cases additional
explanations were provided.

5.1.1 Model problem

In [GSS06], the model under consideration is a special case of the multidimensional (Rd

with d = 1, 2 or 3) wave equation (Problem MW) with k = 0, i.e. there is no damping
present. The problem is given below partly in the notation of [GSS06] for convenience.

Problem W (Special case):

Given functions f, u0 and v0, find u defined on Ω̄× J̄ such that

∂2
t u−∇ · (c∇u) = f in Ω× J,

u = 0 on ∂Ω− Σ,

(c ∇u) · n = 0 on Σ,

while u(·, 0) = u0 and ∂tu(·, 0) = v0. Note that J = (0, T ) in [GSS06].

Note that the matrix A is cI in this case. From the properties of the matrix A assumed
for Problem MW, we have that there are real numbers c∗ and c∗ such that (in the notation
of [GSS06])

0 < c∗ ≤ c(x) ≤ c∗ <∞ for x ∈ Ω̄. (5.1.1)

Remark For the problem in [GSS06], u = 0 on the entire boundary ∂Ω.
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5.1.2 Weak variational form and existence

The weak variational form of Problem W was derived in Section 2.5.1 and is given below
in Problem WW for completeness and comparison with that of the weak variational
form of Problem W given in [GSS06]. The assumptions made for existence in [GSS06] is
compared to that of [VV02].

Note that the space V (Ω) is the closure of the space of test functions

T (Ω) := {v ∈ C1(Ω̄) : v = 0 on ∂Ω− Σ}

in H1(Ω). In [GSS06], V (Ω) = H1
0 (Ω), since u = 0 on the entire boundary ∂Ω.

Weak variational form in [GSS06]:

Find u ∈ L2(J, V (Ω)), u′ ∈ L2(J,L2(Ω)) and u′′ ∈ L2(J,H−1(Ω)) such that u(0) = u0

and u′(0) = v0, and

〈u′′, v〉+ b(u, v) = (f, v) for all v ∈ V (Ω),

where 〈·, ·〉 is the duality pairing between H−1(Ω) and V (Ω).

The bilinear form b is given by

b(u, v) = (c∇u,∇v).

Remark From the formulation of Problem GSS06W we see that u′′ is assumed to
be a distribution, not a function. This assumption, although it is a weak assumption
for the existence of a solution, serves no purpose for the outcome of the article [GSS06],
i.e. to obtain convergence of the semi-discrete discontinuous Galerkin method. Higher
regularity is assumed for the convergence of the semi-discrete discontinuous Galerkin
method regardless of the assumptions made for existence. Assuming u′′ ∈ L2(J,L2(Ω))
would be more constructive.

For the existence of a solution it is assumed in [GSS06] that f ∈ L2(J,L2(Ω)), u0 ∈ V (Ω)
and v0 ∈ L2(Ω), and then [LM72] is cited; that a solution of the problem exists. As
mentioned, this serves no purpose.

As is shown in Chapter 2 (Section 2.5.1), the weak variational form of Problem W
(undamped case) is given by:
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Problem WW (Special case):

Find u such that for each t ∈ J , u(t) ∈ V (Ω), u′′(t) ∈ L2(Ω) and

(u′′(t), v) + b(u(t), v) = (f(·, t), v)Ω for each v ∈ V (Ω)

while u(0) = u0, andu′(0) = v0.

Existence of a unique solution of Problem WW is proved in Section 2.5. In particular,
sufficient conditions for this result is given and we have

u ∈ C1 (J, V (Ω)) ∩ C2
(
J,L2(Ω)

)
.

In Section 5.2 ProblemWW is discretised in space by using the symmetric interior penalty
discontinuous Galerkin finite element approximation (SIPDG) from [GSS06]. The main
results concerning the semi-discrete approximation of the article are stated in Section 5.3.
The two main results, Theorem 5.3.2 and Theorem 5.3.3 are proved in Sections 5.4 and
5.5 respectively. In Section 5.6 the fully discrete error estimates from [GS09] are given
and proved. Some numerical experiments done in [GSS06] are discussed in Section 5.7.

5.2 Discontinuous Galerkin discretisation

In this section Problem WW is discretised in space by using the SIPDG method from
[GSS06]. We first provide the definitions needed for the SIPDG method.

5.2.1 Preliminaries

Consider shape-regular meshes Mh that partition the domain Ω into disjoint elements
{E}. Let hE denote the diameter of element E, and let the mesh size h be given by
h = max

E∈Mh

hE. It is assumed that the partition is aligned with the discontinuities of
√
c.

Generally, irregular meshes with hanging nodes are allowed, however, in this article it
is assumed that the local mesh sizes are of bounded variation: there exists a constant
κ > 0 (depending only on the shape-regularity of the mesh) such that

κhE ≤ hE′ ≤ κ−1hE (5.2.1)

for all neighboring elements E and E ′.
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Note The term “shape-regular mesh” refers here to the following definition: A family
of partitions Ωh is called shape regular provided that there exists a number k > 0 such
that every E ∈ Ωh contains a circle of radius ρE with ρE ≥

hE
k
, where hE is half the

diameter of E.

Definition 5.2.1. Interior face ofMh

The nonempty interior of ∂E ∩ ∂E ′, where E and E ′ are two adjacent elements ofMh,
is called an interior face and denoted by F .

Definition 5.2.2. Boundary face ofMh

The nonempty interior of ∂E ∩ ∂Ω which consists of entire faces of ∂E, is called a
boundary face and also denoted by F .

Definition 5.2.3. The set Fh
Let FIh : The set of all interior faces ofMh;
FBh : The set of all boundary faces ofMh.
Define Fh = FIh ∪ FBh .

Remark Any element of Fh is generally referred to as a “face” in both two and three
dimensions, although in reality a “face” in two dimensions is an edge.

Definition 5.2.4. Jump and average for piecewise smooth functions
Suppose v is any piecewise smooth function. Let FI ∈ FIh be an interior face shared by
two neighboring elements E+ and E− and let x ∈ FI ; let n± denote the unit outward
normal vectors on the boundaries ∂E±. Let v± denote the trace (Section A.4) of v taken
from within E±, and then define the jump and average of v at x ∈ FI by

[[v]] := v+n+ + v−n−, {{v}} := 1
2
(
v+ + v−

)
respectively.

On every boundary face FB ∈ FBh let [[v]] := vn and {{v}} := v, with n the unit outward
normal vector on ∂Ω.

Definition 5.2.5. Average for piecewise smooth vector-valued functions
Suppose q is any piecewise smooth vector-valued function. Define the average across
interior faces and boundary faces by

{{q}} := 1
2
(
q+ + q−

)
and {{q}} := q,

respectively.
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5.2.2 Discretization in space

Define the finite element space by

V h := {v ∈ L2(Ω) : v|E ∈ Sj(E) for all E ∈Mh},

where Sj(E) is the space Pj(E) of polynomials of total degree at most j on E if E is a
triangle or a tetrahedra, or the space Qj(E) of polynomials of total degree at most j on
E if E is a parallelogram or a parallelepiped.

Definition 5.2.6. Bilinear form bh

The discrete bilinear form bh on V h × V h is given by

bh(u, v) :=
∑

E∈Mh

∫
E
c∇u · ∇vdx−

∑
F∈Fh

∫
F

[[u]] · {{c∇v}}ds

−
∑
F∈Fh

∫
F

[[v]] · {{c∇u}}ds+
∑
F∈Fh

∫
F
η [[v]] · [[u]]ds, (5.2.2)

where η|F := β c̄ h̄
−1 on each F ∈ Fh (referred to as the interior penalty stabilization

function) with

h̄|F =


min{hE, hE′}, F ∈ FIh , F = ∂E ∩ ∂E ′

hE, F ∈ FBh , F = ∂E ∩ ∂Ω

and for x ∈ F

c̄|F =


max{c|E(x), c|E′(x)}, F ∈ FIh , F = ∂E ∩ ∂E ′

c|E(x), F ∈ FBh , F = ∂E ∩ ∂Ω,

and β > 0 a parameter independent of the local mesh sizes and the coefficient c, where
E and E ′ are neighbouring elements.

Remark The last three terms in (5.2.2) correspond to jump and flux terms at element
boundaries. These terms vanish when u, v ∈ V (Ω) ∩ H1+m(Ω) for m >

1
2. The semi-

discrete DG approximation given below in Problem WDG is therefore consistent with
Problem WW (Section 2.5.1).
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Problem WDG

Given a function f : J → L2(Ω) and a partitionMh of Ω, find a function uh ∈ C(J̄ , V h)
such that

(u′′h(t), v) + bh(uh(t), v) = (f(t), v) for all v ∈ V h (5.2.3)

uh(0) = uh0 , u′h(0) = uh1 .

Notation Let P2 denote the L2-projection onto V h.

Remark It was mentioned previously (see Section 3.1 and Section 3.1.2) that most
publications choose the initial conditions uh0 and uh1 to be the L2-projections of the initial
conditions u0 and v0 respectively, that is, uh(0) = P2u

0 and u′h(0) = P2v
0. [GSS06] makes

the same choice.

Now consider the following result, referred to as the stability result for the DG form bh

in [GSS06]. (Recall that the dimension is denoted by d).

Notation To avoid confusion, note that ‖ · ‖0,F is the norm for L2(F ) and ‖ · ‖0,E is
the norm for L2(E)d

Lemma 5.2.7. [GSS06, Lemma 3.1]
There exists a threshold value βmin > 0 which depends only on the shape-regularity of the
mesh, the approximation order p , the dimension d, and the bounds in (5.1.1), such that
for β ≥ βmin and v ∈ V h

bh(v, v) ≥ Cpd

 ∑
E∈Mh

‖
√
c∇v‖2

0,E +
∑
F∈Fh

‖√η[[v]]‖2
0,F


where the constant Cpd is independent of c and h.

The proof of this lemma can be found in [ABCM02]. A slightly more general stability
result is proven in [GSS06, Lemma 4.4] (Lemma 5.3.7 in this dissertation).

5.3 Main results

Optimal error estimates are derived in [GSS06] for the symmetric interior penalty DG
finite element method. Two main results are obtained: an error estimate with respect to
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the DG energy norm and an error estimate with respect to the L2-norm. We follow the
order of [GSS06], where these two main results are stated in this section and the proofs
postponed to Section 5.4 and Section 5.5.

We now introduce what the article [GSS06] refers to as the DG energy space, together
with its norm.

Definition 5.3.1.
V (h) = V (Ω) + V h.

On V (h) define the DG energy norm

‖v‖2
V (h) :=

∑
E∈Mh

‖c
1
2∇v‖2

0,E +
∑
F∈Fh

‖η
1
2 [[v]]‖2

0,F .

Note that in the rest of this chapter, J = (0, T ).

Theorem 5.3.2. [GSS06, Theorem 4.1]
Let the solution u of Problem W satisfy

u ∈ C(J,H1+m(Ω)), u′ ∈ C(J,H1+m(Ω)), u′′ ∈ L1(J,Hm(Ω))

for m > 1
2 , and let uh be the semi-discrete DG approximation in Problem WDG, with

β ≥ βmin. Then the error eh = u− uh satisfies

‖e′h‖C(J,L2(Ω)) + ‖eh‖C(J,V (h)) ≤ C1
(
‖e′h(0)‖0 + ‖eh(0)‖V (h)

)
+C2h

min{m,j}
(
‖u‖V (h) + T‖u′‖V (h) + ‖u′′‖L1(J,Hm(Ω))

)
,

with constants C1 and C2 independent of T and h.

Remarks

1. In order to obtain an optimal error estimate with respect to the L2-norm, elliptic
regularity is assumed; i.e. there is a stability constant CS such that for any f ∈
L2(Ω) the solution u of the problem

b(u, v) = (f, v) for all v ∈ V (Ω) (5.3.1)

belongs to H2(Ω) and satisfies the bound

‖u‖2 ≤ CS‖f‖0. (5.3.2)
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2. Elliptic regularity as stated above is assumed to obtain an optimal error estimate
with respect to the L2-norm. This is relevant in the proof of Lemma 5.5.2 in
Section 5.5, where a higher order error estimate in the L2-norm is obtained. This is
where we differ from [GSS06]: we also give an error estimate that is not necessarily
optimal, but it is of practical importance.

Theorem 5.3.3. [GSS06, Theorem 4.2]
Let the solution u satisfy

u ∈ C(J,H1+m(Ω)), u′ ∈ C(J,H1+m(Ω)), u′′ ∈ L1(J,Hm(Ω))

for m > 1
2 , and let uh be the semi-discrete DG approximation in Problem WDG, with

β ≥ βmin.

1. The error eh = u− uh satisfies

‖eh‖C(J,L2(Ω)) ≤ C3h
min{m,j}

(
‖u0‖1+m + ‖u‖C(J,H1+m(Ω)) +

√
T‖u′‖C(J,H1+m(Ω))

)
+C4 (‖eh(0)‖0 + T‖e′h(0)‖0) . (5.3.3)

with a constant C that is independent of T and h.

2. If elliptic regularity as in (5.3.1) and (5.3.2) is assumed, then the error eh = u−uh
satisfies

‖eh‖C(J,L2(Ω)) ≤ C5h
min{m,j}+1

(
‖u0‖1+m + ‖u‖C(J,H1+m(Ω)) +

√
T‖u′‖C(J,H1+m(Ω))

)
+C4 (‖eh(0)‖0 + T‖e′h(0)‖0) . (5.3.4)

with constants Ci (i = 3, 4, 5) that is independent of T and h.

We have now stated the main results of the article [GSS06]. In Subsections 5.3.1 to 5.3.3
some preliminary results are obtained in order to prove these main results: Theorem 5.3.2
is proved in Section 5.4 and Theorem 5.3.3 is proved in Section 5.5.

Remark We remark here that the proof of Theorem 5.3.3 ([GSS06, Theorem 4.2]) in
the article [GSS06] follows an argument in [Bak76] for conforming finite element approx-
imations. However, the proof of this theorem in this dissertation in Section 5.5 follows
the work already done in Chapter 3 on the article [BV13].

For convenience we include Table 5.1.
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Notation Refer to
DG bilinear form bh Definition 5.2.6, page 95

Space V (h) and DG energy norm ‖ · ‖V (h) Page 97
Auxiliary DG form b̃h Equation (5.3.9), page 102
Lifted function `(v) Definition 5.3.4, page 99

The form rh Equation (5.3.13), page 107
Operator Ph Equation (5.5.1), page 116

Broken norm ‖ · ‖∗ Equation (5.6.2), page 123
Truncation: rn Equations (5.6.6) and (5.6.7), page 126

Table 5.1: Some notation in Chapter 5

5.3.1 Extension of the DG form bh

The DG form bh is defined on the space V h × V h. However, it does not extend in a
standard way to a continuous form on the larger space V (h)×V (h), since in general the
average {{c∇v}} on a face F ∈ Fh is not well defined for v ∈ H1(Ω). To get around this
difficulty, [GSS06] extends the form bh to the space V (h) × V (h) by making use of the
lifting operators defined in [ABCM02] and the approach in [PS02].

Definition 5.3.4. Lifted function
The lifted function `(v) ∈ (V h)d(d = 2, 3) is defined for v ∈ V (h) by

∫
Ω
`(v) ·wdx =

∑
F∈Fh

∫
F

[[v]] · {{cw}}dA for all w ∈ (V h)d.

Remarks

1. The notation for the lifting operator differs here from [GSS06], where it is denoted
by Lc. In [ABCM02] it is denoted by r (on Γ = ∪E∈Mh

∂E) and l (on Γ0 = Γ\∂Ω).

2. The following definition for the norm of a lifted element is not explicitly given in
[GSS06].

3. The existence of `(v) is guaranteed from Riesz’s Theorem [Kre78, Theorem 3.8-1,
p. 188].
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Definition 5.3.5. Norm of a lifted element
For v ∈ V (h) we define

‖`(v)‖0 := max
w∈(V h)d

∑
F∈Fh

∫
F [[v]] · {{cw}}dA
‖w‖0

Lemma 5.3.6. [GSS06, Lemma 4.3]
There exists a constant Cinv which depends only on the shape-regularity of the mesh, the
approximation order j, and the dimension d such that

‖`(v)‖2
0 ≤ β−1c∗C2

inv

∑
F∈Fh

‖η
1
2 [[v]]‖2

0,F

for any v ∈ V (h). Moreover, if c 1
2 is piecewise constant, with discontinuities aligned with

the finite element meshMh, then

‖c−
1
2 `(v)‖2

0 ≤ β−1C2
inv

∑
F∈Fh

‖η
1
2 [[v]]‖2

0,F .

Proof. 1. First estimate

By making use of the Cauchy-Schwartz inequality, we have

‖`(v)‖0 = max
w∈(V h)d

∑
F∈Fh

∫
F [[v]] · {{cw}}dA
‖w‖0

= max
w∈(V h)d

∑
F∈Fh

∫
F η

1
2η−

1
2 [[v]] · {{cw}}dA

‖w‖0

≤ max
w∈(V h)d

(∑
F∈Fh

∫
F η|[[v]]|2 dA

) 1
2
(∑

F∈Fh

∫
F η
−1|{{cw}}|2 dA

) 1
2

‖w‖0
.

Following from the definition of η and the bound (5.1.1) on c, we have

‖`(v)‖0 ≤ β−
1
2 max

w∈(V h)d

(∑
F∈Fh

∫
F η|[[v]]|2 dA

) 1
2
(∑

F∈Fh

∫
F h̄c̄−1|{{cw}}|2 dA

) 1
2

‖w‖0

≤ β−
1
2 (c∗) 1

2 max
w∈(V h)d

(∑
F∈Fh

∫
F η|[[v]]|2 dA

) 1
2
(∑

E∈Mh
hE

∫
∂E |w|2 dA

) 1
2

‖w‖0

(5.3.5)

The following inequality (what [GSS06] calls the inverse inequality) is stated without
proof in the article:

‖w‖2
0,∂E ≤ C2

invh
−1
E ‖w‖2

0,E for all w ∈ (Sj(E))d, (5.3.6)
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with a constant Cinv that depends only on the shape regularity of the mesh, the approxi-
mation order j and the dimension d. (We discuss this inequality at the end of Section 5.5
on page 121). This inequality implies the following:

 ∑
E∈Mh

hE

∫
∂E
|w|2 dA

 1
2

≤ Cinv‖w‖0 for all w ∈ (Sj(E))d,

Substituting this into (5.3.5) we obtain

‖`(v)‖0 ≤ β−
1
2 (c∗) 1

2 max
w∈(V h)d

(∑
F∈Fh

∫
F η|[[v]]|2 dA

) 1
2 Cinv‖w‖0

‖w‖0

= β−
1
2 (c∗) 1

2Cinv

 ∑
F∈Fh

∫
F
η|[[v]]|2 dA

 1
2

= β−
1
2 (c∗) 1

2Cinv

 ∑
F∈Fh

‖η
1
2 [[v]]‖2

0,F

 1
2

.

2. Second estimate

We have that for a piecewise constant c, for any element z ∈ (V h)d, c− 1
2 z ∈ (V h)d and so

‖c−
1
2 `(v)‖0 = max

w∈(V h)d

∑
F∈Fh

∫
F [[v]] · {{c 1

2 w}}dA
‖w‖0

.

Now we apply the same steps as we did for the first estimate to obtain

‖c−
1
2 `(v)‖0 ≤ β−

1
2 max

w∈(V h)d

(∑
F∈Fh

∫
F η|[[v]]|2 dA

) 1
2
(∑

F∈Fh

∫
F h̄c̄−1|{{cw}}|2 dA

) 1
2

‖w‖0

≤ β−
1
2 max

w∈(V h)d

(∑
F∈Fh

∫
F η|[[v]]|2 dA

) 1
2
(∑

E∈Mh
hE

∫
∂E |w|2 dA

) 1
2

‖w‖0

≤ β−
1
2 max

w∈(V h)d

(∑
F∈Fh

∫
F η|[[v]]|2 dA

) 1
2 Cinv‖w‖0

‖w‖0
(5.3.7)

= β−
1
2Cinv

 ∑
F∈Fh

∫
F
η|[[v]]|2 dA

 1
2

= β−
1
2Cinv

 ∑
F∈Fh

‖η
1
2 [[v]]‖2

0,F

 1
2

. (5.3.8)
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The auxillary bilinear form b̃h defined on V (h)× V (h) is now introduced.

b̃h(u, v) :=
∑

E∈Mh

∫
E
c∇u · ∇vdx−

∑
E∈Mh

∫
E
`(u) · ∇vdx

−
∑

E∈Mh

∫
E
`(v) · ∇udx+

∑
F∈Fh

∫
F
η [[v]] · [[u]]ds, (5.3.9)

We have that V h ⊂ V (h) and V (Ω) ⊂ V (h), and so from the definitions of b and bh it
follows that:

b̃h = bh on V h × V h, b̃h = b on H1
0 (Ω)×H1

0 (Ω). (5.3.10)

This suggests that the bilinear form b̃h can be viewed as an extension of the two bilinear
forms bh and b to the space V (h)× V (h).

In the following lemma it is proved that b̃h is continuous and positive definite on the
entire space V (h)× V (h).

Lemma 5.3.7. [GSS06, Lemma 4.4]
Set

βmin = 4c−1
∗ c
∗C2

inv

for a general piecewise smooth c, and

βmin = 4C2
inv

for a piecewise constant c, with discontinuities aligned with the finite element meshMh.
Cinv is the constant from Lemma 5.3.6. Setting Cpd = 1

2 , we have for β ≥ βmin

|b̃h(u, v)| ≤ ‖u‖V (h)‖v‖V (h), u, v ∈ V (h),

b̃h(u, u) ≥ Cpd‖u‖2
V (h), u ∈ V (h).

In particular, the positive definiteness bound implies the result in Lemma 5.2.7.
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Proof. 1. First we prove that b̃h is bounded.

From the definition of b̃h and the Cauchy-Schwartz inequality we have for every u, v ∈
V (h) that

|b̃h(u, v)| =
∣∣∣∣ ∑
E∈Mh

∫
E
c∇u · ∇vdx−

∑
E∈Mh

∫
E
`(u) · ∇vdx

−
∑

E∈Mh

∫
E
`(v) · ∇udx+

∑
F∈Fh

∫
F
η [[v]] · [[u]]ds

∣∣∣∣
≤

∑
E∈Mh

‖c
1
2∇u‖0,E‖c

1
2∇v‖0,E +

∑
E∈Mh

‖`(u)‖0,E‖∇v‖0,E

+
∑

E∈Mh

‖`(v)‖0,E‖∇u‖0,E +
∑
F∈Fh

‖η
1
2 [[v]]‖0,F‖η

1
2 [[u]]‖0,F .

Since ‖ · ‖ ≥ 0,

|b̃h(u, v)| ≤
∑

E∈Mh

‖c
1
2∇u‖0,E

∑
E∈Mh

‖c
1
2∇v‖0,E +

∑
E∈Mh

‖`(u)‖0,E
∑

E∈Mh

‖∇v‖0,E

+
∑

E∈Mh

‖`(v)‖0,E
∑

E∈Mh

‖∇u‖0,E +
∑
F∈Fh

‖η
1
2 [[v]]‖0,F

∑
F∈Fh

‖η
1
2 [[u]]‖0,F

≤
∑

E∈Mh

‖c
1
2∇u‖0,E

∑
E∈Mh

‖c
1
2∇v‖0,E + ‖`(u)‖0

∑
E∈Mh

‖∇v‖0,E

+ ‖`(v)‖0
∑

E∈Mh

‖∇u‖0,E +
∑
F∈Fh

‖η
1
2 [[v]]‖0,F

∑
F∈Fh

‖η
1
2 [[u]]‖0,F .

Since ‖∇u‖0,E ≤ c
− 1

2∗ ‖c
1
2∇u‖0,E and from the first estimate in Lemma 5.3.6 we have

|b̃h(u, v)| ≤
∑

E∈Mh

‖c
1
2∇u‖0,E

∑
E∈Mh

‖c
1
2∇v‖0,E

+ β−
1
2 (c∗) 1

2Cinvc
− 1

2∗

√ ∑
F∈Fh

‖η 1
2 [[u]]‖2

0,F
∑

E∈Mh

‖c
1
2∇v‖0,E

+ β−
1
2 (c∗) 1

2Cinvc
− 1

2∗

√ ∑
F∈Fh

‖η 1
2 [[v]]‖2

0,F
∑

E∈Mh

‖c
1
2∇u‖0,E

+
∑
F∈Fh

‖η
1
2 [[v]]‖0,F

∑
F∈Fh

‖η
1
2 [[u]]‖0,F

≤
∑

E∈Mh

‖c
1
2∇u‖0,E

∑
E∈Mh

‖c
1
2∇v‖0,E

+ β−
1
2 (c∗) 1

2Cinvc
− 1

2∗
∑
F∈Fh

‖η
1
2 [[u]]‖0,F

∑
E∈Mh

‖c
1
2∇v‖0,E

+ β−
1
2 (c∗) 1

2Cinvc
− 1

2∗
∑
F∈Fh

‖η
1
2 [[v]]‖2

0,F
∑

E∈Mh

‖c
1
2∇u‖0,E

+
∑
F∈Fh

‖η
1
2 [[v]]‖0,F

∑
F∈Fh

‖η
1
2 [[u]]‖0,F .
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It then follows that

|b̃h(u, v)| ≤ max{1, β− 1
2 (c∗) 1

2Cinvc
− 1

2∗ }

 ∑
E∈Mh

‖c
1
2∇u‖0,E

∑
E∈Mh

‖c
1
2∇v‖0,E

+
∑
F∈Fh

‖η
1
2 [[u]]‖0,F

∑
E∈Mh

‖c
1
2∇v‖0,E +

∑
F∈Fh

‖η
1
2 [[v]]‖2

0,F
∑

E∈Mh

‖c
1
2∇u‖0,E

+
∑
F∈Fh

‖η
1
2 [[v]]‖0,F

∑
F∈Fh

‖η
1
2 [[u]]‖0,F

,
and so finally (since for any real a and b, a+ b ≤

√
a2 + b2),

|b̃h(u, v)| ≤ K∗

 ∑
E∈Mh

‖c
1
2∇u‖0,E +

∑
F∈Fh

‖η
1
2 [[u]]‖0,F


×

 ∑
E∈Mh

‖c
1
2∇v‖0,E +

∑
F∈Fh

‖η
1
2 [[v]]‖0,F


≤ K∗

√ ∑
E∈Mh

‖c 1
2∇u‖2

0,E +
∑
F∈Fh

‖η 1
2 [[u]]‖2

0,F

×
√ ∑
E∈Mh

‖c 1
2∇v‖2

0,E +
∑
F∈Fh

‖η 1
2 [[v]]‖2

0,F

= K∗‖u‖V (h)‖v‖V (h).

where K∗ = max{1, β− 1
2 (c∗) 1

2Cinvc
− 1

2∗ }. Since we choose βmin = 4c−1
∗ c
∗C2

inv, we have that
K∗ = 1.

The case of piecewise constant c follows analogously, using the second estimate in Lemma
5.3.6.

2. Now we prove that b̃h is positive definite.

We have that

b̃h(u, u) =
∑

E∈Mh

∫
E
c∇u · ∇udx−

∑
E∈Mh

∫
E
`(u) · ∇udx

−
∑

E∈Mh

∫
E
`(u) · ∇udx+

∑
F∈Fh

∫
F
η [[u]] · [[u]]ds

=
∑

E∈Mh

‖c
1
2∇u‖2

0,E − 2
∑

E∈Mh

∫
E
`(u) · ∇udx+

∑
F∈Fh

‖η
1
2 [[u]]‖2

0,F .

(5.3.11)
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Now consider the second term on the right hand side of (5.3.11). Using the Cauchy-
Schwartz inequality and Young’s inequality in Lemma C.1 we obtain

2

∣∣∣∣∣∣
∑

E∈Mh

∫
E
`(u) · ∇udx

∣∣∣∣∣∣ = 2
∑

E∈Mh

∫
E
c−

1
2 `(u) · c 1

2∇udx

≤ 2
∑

E∈Mh

‖c−
1
2 `(u)‖0,E‖c

1
2∇u‖0,E

≤ ε
∑

E∈Mh

‖c
1
2∇u‖2

0,E + ε−1c∗
−1 ∑

E∈Mh

‖`(u)‖2
0,E

Now, for a general piecewise smooth c, we use the first estimate in Lemma 5.3.6.

2
∑

E∈Mh

∫
E
`(u) · ∇udx ≤ ε

∑
E∈Mh

‖c
1
2∇u‖2

0,E + ε−1c∗
−1β−1c∗C2

inv

∑
F∈Fh

‖η
1
2 [[u]]‖2

0,F .

Combining this with equation (5.3.11) we have

b̃h(u, u) ≥ (1− ε)
∑

E∈Mh

‖c
1
2∇u‖2

0,E +
(
1− ε−1c∗

−1β−1c∗C2
inv

) ∑
F∈Fh

‖η
1
2 [[u]]‖2

0,F .

Now, if we choose ε = 1
2 and βmin = 4c−1

∗ c
∗C2

inv where β ≥ βmin, we obtain the positive
definiteness bound as was desired;

b̃h(u, u) ≥ (1− 1
2)

∑
E∈Mh

‖c
1
2∇u‖2

0,E +
(
1− 2c∗−1βmin

−1c∗C2
inv

) ∑
F∈Fh

‖η
1
2 [[u]]‖2

0,F

≥ 1
2
∑

E∈Mh

‖c
1
2∇u‖2

0,E +
(
1− 2c∗−1(4c−1

∗ c
∗C2

inv)−1c∗C2
inv

) ∑
F∈Fh

‖η
1
2 [[u]]‖2

0,F

= 1
2
∑

E∈Mh

‖c
1
2∇u‖2

0,E + 1
2
∑
F∈Fh

‖η
1
2 [[u]]‖2

0,F

= 1
2‖u‖

2
V (h) = Cpd‖u‖2

V (h).

Now, for a general piecewise constant c, we use the second estimate in Lemma 5.3.6.
Similarly as above we will obtain

b̃h(u, u) ≥ (1− ε)
∑

E∈Mh

‖c
1
2∇u‖2

0,E +
(
1− ε−1β−1C2

inv

) ∑
F∈Fh

‖η
1
2 [[u]]‖2

0,F .
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Again, if we choose ε = 1
2 and βmin = 4C2

inv where β ≥ βmin, we obtain the coercivity
bound as was desired.

b̃h(u, u) ≥ (1− 1
2)

∑
E∈Mh

‖c
1
2∇u‖2

0,E +
(
1− 2βmin

−1C2
inv

) ∑
F∈Fh

‖η
1
2 [[u]]‖2

0,F

≥ 1
2
∑

E∈Mh

‖c
1
2∇u‖2

0,E +
(
1− 2(4C2

inv)−1C2
inv

) ∑
F∈Fh

‖η
1
2 [[u]]‖2

0,F

= 1
2
∑

E∈Mh

‖c
1
2∇u‖2

0,E + 1
2
∑
F∈Fh

‖η
1
2 [[u]]‖2

0,F

= 1
2‖u‖

2
V (h) = Cpd‖u‖2

V (h).

Remark The above proof looks rather messy. It has been done in great detail,
especially proving continuity of b̃h, since the proof given in [GSS06] only states the
following: “By taking into account the bounds in (2.5) and Lemma 4.3, application of
the Cauchy-Schwartz inequality readily gives in the general case ... ” From this the
estimate obtained was not obvious requiring us to fill in the details in this work. Note
that the estimates obtained here differs from those of [GSS06], but the results are the
same.

5.3.2 Error equation

In this subsection the so-called error equation is derived. This equation is used to prove
the main results (Theorem 5.3.2 and Theorem 5.3.3).

Since b̃h = bh on V h × V h (see Equation (5.3.10) on page 102), Problem WDG (see
Subsection 5.2.2) is equivalent to the following problem.

Problem W̃DG

For a given partitionMh of Ω, find a function uh ∈ C(J, V h) such that

(u′′h(t), v) + b̃h(uh(t), v) = (f(t), v) for all v ∈ V h (5.3.12)

uh(0) = uh0

u′h(0) = uh1 .
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To derive an error equation, [GSS06] defines, for u ∈ H1+m(Ω) with m > 1
2

rh(u, v) =
∑
F∈Fh

∫
F

[[v]] · {{c∇u− cP2(∇u)}} dA (5.3.13)

for all v ∈ V (h).

Remark The definition above is the reason the bilinear form b̃h is introduced.

Lemma 5.3.8. Let the solution u of Problem W satisfy

u ∈ L∞(J,H1+m(Ω)), u′′ ∈ L1(J,L2(Ω)),

with m ≥ 1
2 . Let uh be the semi-discrete DG approximation obtained by (5.3.12). Then

the error eh = u− uh satisfies

(e′′h, v) + b̃h(eh, v) = rh(u, v) for all v ∈ V h a.e. in J, (5.3.14)

with rh given as in (5.3.13).

Proof. Subtracting u in equation (5.3.12), we have that

(e′′h(t), v) + b̃h(eh(t), v) = (u′′(t), v) + b̃h(u(t), v)− (f(t), v) for all v ∈ V h and all t ∈ J.

Since we have that u′′ ∈ L1(J,L2(Ω)), we know that `(u) = 0 and also that [[u]] = 0 on
all faces. Now, using the definition of the lifted element `(v) and the properties of the
L2-projection P2 we have

∫
Ω
`(v) · ∇udx =

∑
F∈Fh

∫
F

[[v]] · {{c∇u}}dA =
∑
F∈Fh

∫
F

[[v]] · {{cP2(∇u)}}dA.

Using these facts in the definition of b̃h we have

b̃h(u, v) =
∑

E∈Mh

∫
E
c∇u · ∇v dx−

∑
F∈Fh

∫
F

[[v]] · {{cP2∇u}} dA. (5.3.15)

Now note that ∇ · (c∇u) ∈ L2(Ω) almost everywhere in J , since u′′ ∈ C(J,L2(Ω)) and
f ∈ C1(J,L2(Ω)). This therefore implies that c∇u has continuous normal components
across all interior faces. Now we integrate by parts elementwise (and taking jumps and
averages into account) to get

∑
E∈Mh

∫
E
c∇u · ∇vdx = −

∑
E∈Mh

∫
E
∇ · (c∇u)v dx+

∑
F∈Fh

∫
F

[[v]] · {{c∇u}} dA.
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Substituting this back into Equation (5.3.15), and using the definition of rh we have that
the following holds:

b̃h(u, v) = −
∑

E∈Mh

∫
E
∇ · (c∇u)vdx+ rh(u, v).

Now (u′′, v) + b̃h(u, v) = (u′′ −∇ · (c∇u), v) + rh(u, v) and from Problem WDG

(e′′h, v) + b̃h(eh, v) = (u′′ −∇ · (c∇u)− f, v) + rh(u, v).

Therefore, since (u′′−∇· (c∇u)−f, v) = 0 for all v ∈ V h, we have the desired result.

Remark It is worth noting here that this error equation (5.3.14) is similar to the
equation obtained in Lemma 3.1.3 (Chapter 3, Section 3.1.1).

5.3.3 Approximation properties

The proofs of the main results (Theorem 5.3.2 and Theorem 5.3.3) rely on similar tech-
niques as used in [Bak76] and [BV13]. A projection is added and subtracted and then
from known theory the projection error estimates can be obtained. These approximation
properties is given in this subsection. The error estimates for the initial conditions also
rely on these approximation properties.

The approximation properties in Lemma 5.3.9 below are from [Cia78]. Recall that P2

denotes the L2-projection onto V h.

Lemma 5.3.9. [GSS06, Lemma 4.6]
Let E ∈Mh. Then the following holds:

1. For v ∈ Hm(E), m ≥ 0, we have

‖v − P2v‖0,E ≤ Ch
min{m,j+1}
E ‖v‖m,E,

with a constant C > 0 that is independent of the local mesh size hE and depends
only on the shape regularity of the mesh, the approximation order j, the dimension
d, and the regularity exponent m.
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2. For v ∈ H1+m(E), m > 1
2 , we have

‖∇v −∇(P2v)‖0,E ≤ Ch
min{m,j}
E ‖v‖1+m,E,

‖v − P2v‖0,∂E ≤ Ch
min{m,j}+ 1

2
E ‖v‖1+m,E,

‖∇v − P2(∇v)‖0,∂E ≤ Ch
min{m,j+1}− 1

2
E ‖v‖1+m,E,

with a constant C > 0 that is independent of the local mesh size hE and depends
only on the shape regularity of the mesh, the approximation order j, the dimension
d, and the regularity exponent m.

Lemma 5.3.10. [GSS06, Lemma 4.7]
Let u ∈ H1+m(E), m ≥ 0. Then the following holds:

1. We have
‖u− P2u‖V (h) ≤ CAh

min{m,j}‖u‖1+m,

with a constant CA > 0 that is independent of local mesh size and depends only
on β, the constant κ in (5.2.1), the bounds in (5.1.1) and the constants in Lemma
5.3.9.

2. For v ∈ V (h), the form rh(u, v) in (5.3.13), can be bounded by

|rh(u, v)| ≤ CRh
min{m,j}

 ∑
F∈Fh

‖η
1
2 [[v]]‖2

0,F

 1
2

‖u‖1+m (5.3.16)

with a constant CR > 0 that is independent of h and depends only on β, the bounds
in (5.1.1) and the constants in Lemma 5.3.9.

Proof.

1. From the definition of the norm ‖ · ‖V (h) and Lemma 5.3.9 we have

‖u− P2u‖2
V (h) =

∑
E∈Mh

‖c
1
2∇(u− P2u)‖2

0,E +
∑
F∈Fh

‖η
1
2 [[u− P2u]]‖2

0,F

≤
∑

E∈Mh

c∗C2h
2 min{m,j}
E ‖v‖2

1+m,E +
∑
F∈Fh

‖η
1
2 [[u− P2u]]‖2

0,F .

It follows from the definition of η and Lemma 5.3.9 that

‖u− P2u‖V (h) ≤ CA
(
hmin{m,j}‖u‖1+m + hmin{m,j}+1‖u‖1+m

)
≤ CAh

min{m,j}‖u‖1+m,
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where CA depends on independent of the local mesh size hE and depends only on
the shape regularity of the mesh, the approximation order j, the dimension d, and
the regularity exponent m.

2. We have from definition and the Cauchy-Schwartz inequality that

rh(u, v) =
∑
F∈Fh

∫
F

[[v]] · {{c∇u− cP2(∇u}} dA

≤
∑
F∈Fh

(∫
F
η|[[v]]|2 ds

) 1
2
(∫

F
η−1|{{c∇u− cP2(∇u)}}|2 ds

) 1
2

≤

 ∑
F∈Fh

∫
F
η|[[v]]|2 ds

 1
2
 ∑
F∈Fh

∫
F
η−1|{{c∇u− cP2(∇u)}}|2 ds

 1
2

≤ β
1
2 c∗

1
2 c∗

 ∑
F∈Fh

‖η[[v]]‖2
0,F

 1
2
 ∑
E∈Mh

hE

∫
∂E
|∇u− P2(∇u)|2 ds

 1
2

= β
1
2 c∗

1
2 c∗

 ∑
F∈Fh

‖η[[v]]‖2
0,F

 1
2
 ∑
E∈Mh

hE‖∇u− P2(∇u)‖2
0,∂E ds

 1
2

.

Now using the result from Lemma 5.3.9 we have the result.

rh(u, v) ≤ β
1
2 c∗

1
2 c∗

 ∑
F∈Fh

‖η[[v]]‖2
0,F

 1
2
 ∑
E∈Mh

ChEh
min{m,j}− 1

2
E ‖u‖0,E

 1
2

= CRh
min{m,j}
E

 ∑
F∈Fh

‖η[[v]]‖2
0,F

 1
2

‖u‖0,E,

where CR = β
1
2 c∗

1
2 c∗.

�

Remark [GSS06] states that in Theorem 5.3.2 (the DG energy norm error estimate) “it
is implicitly assumed that u0 ∈ H1+m(Ω) and v0 ∈ Hm(Ω)”. We refer back to Chapter 2,
Subsection 2.5.3. It was found that sufficient conditions (on the initial conditions) for
existence is u0 ∈ H1+m(Ω)∩V (Ω) and v0 ∈ V (Ω). It therefore follows from Lemma 5.3.10
that

‖eh(0)‖V (h) = ‖u0 − P2u0‖V (h) ≤ Chmin{m,j}‖u0‖1+m,

‖e′h(0)‖V (h) = ‖v0 − P2v0‖V (h) ≤ Chmin{m,j+1}‖v0‖m.

We now have the building blocks to prove the main error estimates.
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5.4 Proof of the ‖ · ‖V (h)-norm error estimate

The result in the lemma below is used in the proof of Theorem 5.3.2 (the DG energy
norm error estimate).

Lemma 5.4.1. [GSS06, Lemma 4.8]
Let the analytical solution u of the wave equation satisfy

u ∈ C(J,H1+m(Ω)), u′ ∈ C(J,H1+m(Ω))

for m > 1
2 . Let v ∈ C(J, V (h)) and v′ ∈ L1(J, V (h)). Then we have
∫
J
|rh(u, v′)| dt

≤ CRh
min{m,j}‖v‖C(J,V (h))

(
2‖u‖C(J,H1+m(Ω)) + T‖u′‖C(J,H1+m(Ω))

)
,

where CR is the constant in Lemma 5.3.10.

Proof. From the definition of rh and integration by parts, we obtain
∫
J
rh(u, v′) dt =

∫
J

∑
F∈Fh

∫
F

[[v′]] · {{c∇u− cP2(∇u)}} dAdt

= −
∫
J

∑
F∈Fh

∫
F

[[v]] · {{c∇u′ − cP2(∇u′)}} dAdt

+
 ∑
F∈Fh

∫
F

[[v]] · {{c∇u− cP2(∇u)}} dA
t=T
t=0

= −
∫
J
rh(u′, v) dt+ [rh(u, v)]t=Tt=0

Now, from the estimates in Lemma 5.3.10,
∣∣∣∣∫
J
rh(u′, v) dt

∣∣∣∣ ≤ ∫
J
|rh(u′, v)| dt

≤
∫
J
|rh(u′, v)| dt

≤
∫
J
CRh

min{m,j}

 ∑
F∈Fh

‖η
1
2 [[v(t)]]‖2

0,F

 1
2

‖u′‖1+m dt

≤
∫
J
CRh

min{m,j}

 ∑
E∈Mh

‖c
1
2∇v‖2

0,E +
∑
F∈Fh

‖η
1
2 [[v]]‖2

0,F

 1
2

‖u′‖1+m dt

≤ CRh
min{m,j}T‖v‖C(J,V (h))‖u′‖C(J,H1+m(Ω)).
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We also have from Lemma 5.3.10 that

∣∣∣[rh(u, v)]t=Tt=0

∣∣∣ = |rh(u(T ), v(T ))− rh(u(0), v(0))|

≤ 2CRhmin{m,j}‖v‖C(J,H1+m(Ω))‖u‖C(J,H1+m(Ω)).

Adding, we therefore obtain the desired result:
∫
J
|rh(u, v′)| dt ≤ CRh

min{m,j}T‖v‖C(J,V (h))‖u′‖C(J,H1+m(Ω))

+2CRhmin{m,j}‖v‖C(J,H1+m(Ω))‖u‖C(J,H1+m(Ω))

≤ CRh
min{m,j}‖v‖C(J,H1+m(Ω))

(
2‖u‖C(J,H1+m(Ω)) + T‖u′‖C(J,H1+m(Ω))

)
.

The following lemma is not given in [GSS06]. It is a trivial matter to prove, but is
important nonetheless, since it is used (but not mentioned) in the proof of the DG norm
error estimate.

Lemma 5.4.2. If u ∈ Ck(J,L2(Ω)), then P2u ∈ Ck(J) and (P2u)(k)(t) = P2u
(k)(t), for

k = 1, 2.

Proof. First consider the case when k = 1. Since ‖u‖2
0 = ‖P2u‖2

0 + ‖u− P2u‖2
0, we have

that ‖P2u‖0 ≤ ‖u‖0 for all u ∈ C1(J,L2(Ω)). If u ∈ C1(J,L2(Ω)), it follows that:

‖(δt)−1
(
P2u(t+ δt)− P2u(t)

)
− P2u

′(t)‖0

= ‖(δt)−1P2 (u(t+ δt)− u(t)− u′(t)) ‖0

≤ ‖(δt)−1 (u(t+ δt)− u(t))− u′(t)‖0

But ‖(δt)−1 (u(t+ δt)− u(t))− u′(t)‖0 converges to 0 as δt→ 0, and so

P2u ∈ C1(J,L2(Ω))

and (P2u)′(t) = P2u
′(t).

Now it follows that if u′ ∈ C1(J,L2(Ω)), then P2u
′ ∈ C1(J,L2(Ω)) and so

(P2u
′)′(t) = P2u

′′(t).
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Proof of Theorem 5.3.2:

We can now prove Theorem 5.3.2. Recall that P2 denotes the L2-projection onto V h.
Since the bilinear form b̃h is symmetric, and adding and subtracting the term (P2u)′ we
have

1
2
d

dt

(
‖e′h(t)‖2

0 + b̃h(eh(t), eh(t))
)

= (e′′h(t), e′h(t)) + b̃h(eh(t), e′h(t))

= (e′′h(t), (u− P2u)′(t)) + b̃h(eh(t), (u− P2u)′(t))

+rh(u(t), (P2u− uh)′(t)) (5.4.1)

Fix s ∈ J and integrate (5.4.1) from 0 to s to obtain:

1
2‖e

′
h(s)‖2

0 + 1
2 b̃h(eh(s), eh(s))

= 1
2‖e

′
h(0)‖2

0 + 1
2 b̃h(eh(0), eh(0)) +

∫ s

0
(e′′h(t), (u− P2u)′(t)) dt

+
∫ s

0
b̃h(eh(t), (u− P2u)′(t)) dt+

∫ s

0
rh(u(t), (P2u− uh)′(t)) dt

(5.4.2)

In the next step we use Lemma 5.3.7, integration by parts on the third term on the right
hand side of (5.4.2), and the Cauchy-Schwartz inequality on the inner product of L2. We
then have that

1
2‖e

′
h(s)‖2

0 + 1
2Cpd‖eh(s)‖

2
V (h)

≤

∣∣∣∣∣∣12‖e′h(0)‖2
0 + 1

2‖eh(0)‖2
V (h) −

∫ s

0
(e′h(t), (u− P2u)′′(t)) dt

+(e′h(t), (u− P2u)′(t))
∣∣∣∣t=s
t=0

+
∫ s

0
‖eh(t)‖V (h)‖(u− P2u)′(t)‖V (h) dt

+
∫ s

0
rh(u(t), (P2u− uh)′(t)) dt

∣∣∣∣∣∣
≤ 1

2‖e
′
h(0)‖2

0 + 1
2‖eh(0)‖2

V (h) +
∫ s

0
‖e′h(t)‖0‖(u− P2u)′′(t)‖0 dt

+ |(e′h(s), (u− P2u)′(s))|+ |(e′h(0), (u− P2u)′(0))|

+
∫ s

0
‖eh(t)‖V (h)‖(u− P2u)′(t)‖V (h) dt+

∣∣∣∣∫ s

0
rh(u(t), (P2u− uh)′(t)) dt

∣∣∣∣ .
(5.4.3)
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Bounding the third term on the right hand side of (5.4.3) we obtain:
∫ s

0
‖e′h(t)‖0‖(u− P2u)′′(t)‖0 dt ≤ max

t∈(0,s)
‖e′h(t)‖0

∫ s

0
‖(u− P2u)′′(t)‖0 dt

≤ max
t∈[0,T ]

‖e′h(t)‖0

∫ T

0
‖(u− P2u)′′(t)‖0 dt.

Bounding the fourth and fifth terms on the right hand side of (5.4.3) we obtain:

|(e′h(s), (u− P2u)′(s))|+ |(e′h(0), (u− P2u)′(0))|

≤ ‖e′h(s)‖0‖(u− P2u)′(s)‖0 + ‖e′h(0)‖0‖(u− P2u)′(0)‖)0

≤ 2 max
t∈[0,T ]

‖e′h(t)‖0 max
t∈[0,T ]

‖(u− P2u)′(t)‖0.

Also, bounding the sixth term on the right hand side of (5.4.3) we obtain:
∫ s

0
‖eh(t)‖V (h)‖(u− P2u)′(t)‖V (h) dt

≤ T max
t∈[0,T ]

‖e′h(t)‖V (h) max
t∈[0,T ]

‖(u− P2u)′(t)‖V (h).

Therefore, since (5.4.3) holds for all s ∈ J , we have that

max
t∈[0,T ]

‖e′h(t)‖2
0 + Cpd max

t∈[0,T ]
‖eh(t)‖2

V (h) ≤ ‖e′h(0)‖2
0 + ‖eh(0)‖2

V (h) + T1 + T2 + T3

where

T1 = 2 max
t∈[0,T ]

‖e′h(t)‖0

(∫ s

0
‖(u− P2u)′′(t)‖0 dt+ 2 max

t∈[0,T ]
‖(u− P2u)′(t)‖0

)
T2 = 2T max

t∈[0,T ]
‖e′h(t)‖V (h) max

t∈[0,T ]
‖(u− P2u)′(t)‖V (h)

T3 = 2
∫ s

0
|rh(u(t), (P2u− uh)′(t))| dt
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To bound the terms T1 and T2 we use Lemma C.1 (Young’s inequality). For T1 we use
ε = 1.

T1 ≤
1
2 max
t∈[0,T ]

‖e′h(t)‖2
0 + 2

(∫ s

0
‖(u− P2u)′′(t)‖0 dt+ 2 max

t∈[0,T ]
‖(u− P2u)′(t)‖0

)2

≤ 1
2 max
t∈[0,T ]

‖e′h(t)‖2
0 + 2

(∫ s

0
‖(u− P2u)′′(t)‖0 dt

)2
+ 8 max

t∈[0,T ]
‖(u− P2u)′(t)‖2

0

+ 8
(∫ s

0
‖(u− P2u)′′(t)‖0 dt

)
max
t∈[0,T ]

‖(u− P2u)′(t)‖0

≤ 1
2 max
t∈[0,T ]

‖e′h(t)‖2
0 + 4

(∫ s

0
‖(u− P2u)′′(t)‖0 dt

)2
+ 16 max

t∈[0,T ]
‖(u− P2u)′(t)‖2

0

≤ 1
2 max
t∈[0,T ]

‖e′h(t)‖2
0 + 4

(∫ s

0
‖(u− P2u)′′(t)‖0 dt

)2
+ 16 max

t∈[0,T ]
‖(u− P2u)′(t)‖2

0.

From the approximation results in Lemma 5.3.9 we therefore have

T1 ≤
1
2 max
t∈[0,T ]

‖e′h(t)‖2
0 + 16Ch2 min{m,j}

((∫ s

0
‖u′′(t)‖0 dt

)2
+ h2 max

t∈[0,T ]
‖u′(t)‖2

0

)
.

And using ε = 2
Cpd

and the approximation results in Lemma 5.3.9 we have,

T2 ≤
1
4Cpd max

t∈[0,T ]
‖e′h(t)‖2

V (h) + 1
Cpd

T 2 max
t∈[0,T ]

‖(u− P2u)′(t)‖2
V (h)

≤ 1
4Cpd max

t∈[0,T ]
‖e′h(t)‖2

V (h) + 1
Cpd

T 2 max
t∈[0,T ]

‖(u− P2u)′(t)‖2
V (h)

≤ 1
4Cpd max

t∈[0,T ]
‖e′h(t)‖2

V (h) + C

Cpd
T 2 max

t∈[0,T ]
‖u′(t)‖2

1+m.

To bound T3 we use Lemma 5.4.1. Clearly P2u − uh satisfy the properties in Lemma
5.4.1 and so we have:

T3 ≤ 2
∫ s

0
|rh(u(t), (P2u− uh)′(t))| dt

≤ CRh
min{m,j} max

t∈[0,T ]
‖(P2u− uh)(t)‖V (h)

(
2 max
t∈[0,T ]

‖u(t)‖1+m + T max
t∈[0,T ]

‖u′(t)‖1+m

)
.

By using the triangle inequality, Young’s inequality (Lemma C.1) and Lemma 5.3.10 we
then have

T3 ≤ 2CRK(T )hmin{m,j}
(

max
t∈[0,T ]

‖eh(t)‖V (h) + max
t∈[0,T ]

‖(u− P2u)(t)‖V (h)

)

≤ 2CRK(T )hmin{m,j}
(

max
t∈[0,T ]

‖eh(t)‖V (h) + CAh
min{m,j} max

t∈[0,T ]
‖u(t)‖1+m

)

≤ 1
4Cpd max

t∈[0,T ]
‖eh(t)‖2

V (h) + Ch2 min{m,j}
(

max
t∈[0,T ]

‖u(t)‖2
1+m +K2(T )

)
.

 
 
 



Chapter 5. The discontinuous Galerkin Finite Element method 116

where
K(T ) = 2 max

t∈[0,T ]
‖u(t)‖1+m + T max

t∈[0,T ]
‖u′(t)‖1+m

and C = max{16C2
R, CRCA}.

From the work done above, it now follows that for every t ∈ J

‖e′h(t)‖0 + ‖eh(t)‖V (h) ≤ C1
(
‖e′h(0)‖0 + ‖eh(0)‖V (h)

)
+C2h

min{m,j}
(

max
t∈[0,T ]

‖u(t)‖1+m + T max
t∈[0,T ]

‖u′(t)‖1+m +
∫ s

0
‖u′′(t)‖0 dt

)
,

for constants C1 and C2 independent of T and h. �

The error estimate in the DG energy norm has been proved.

5.5 Proof of the L2-norm error estimate

As mentioned, the proof of Theorem 5.3.3 ([GSS06, Theorem 4.2], the L2-norm error
estimate) is based on the proof for the error estimate with respect to the L2-norm in
[Bak76] for conforming finite element approximations. [GSS06] defines a mapping that
is used in the same way as the Galerkin projection in [Bak76] and [BV13]. The mapping
is defined below.

The mapping Ph is defined for u ∈ H1+m(Ω) with m > 1
2 by

b̃h(Phu, v) = b̃h(u, v)− rh(u, v) for all v ∈ V h. (5.5.1)

This defines a function Phu by (Phu)(t) = Phu(t) for t ∈ [0, T ].

Now consider for t ∈ [0, T ],

‖eh(t)‖2
0 = ‖u(t)− uh(t)‖2

0 ≤ ‖u(t)− Phu(t)‖2
0 + ‖Phu(t)− uh(t)‖2

0. (5.5.2)

The first term on the right hand side of (5.5.2) can be estimated from the bounds in
Lemma 5.5.1 below, while an estimate for the second term on the right hand side of
(5.5.2) have to be estimated.

Remark Since [GSS06] follows the proof for the L2-norm error estimate in [Bak76],
the same steps are followed in the proof and hence the assumptions made in [GSS06]
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should be the same as in [Bak76]. As was mentioned in Chapter 3 of this dissertation,
the assumption that (Phu)′′ exists is used without mention or discussion in [Bak76], and
the same happens in [GSS06] for (Phu)′′. We therefore use the results of [BV13] in the
proof of Theorem 5.3.3, since the results in [BV13] (and Chapter 3 in this dissertation)
do not require that (Phu)′′ exist. Note that the results are trivially true for a = 0.

Recall the error equation obtained in Lemma 5.3.8,

(e′′h, v) + b̃h(eh, v) = rh(u, v) for all v ∈ V h a.e. in J,

where eh = u− uh. We then have that

(e′′h, v) + b̃h(u− Phu, v) + b̃h(Phu− uh, v) = rh(u, v) for all v ∈ V h a.e. in J,

and from the definition of Ph, we obtain

(e′′h, v) + b̃h(Phu− uh, v) = rh(u, v)− rh(u, v) = 0 for all v ∈ V h a.e. in J.

We can now use the results for the semi-discrete approximation error estimate from
[BV13], given in Chapter 3. Recall the result in Lemma 3.1.4, adapted for the case
where the bilinear form a = 0: for t ∈ [0, T ],

‖(uh − Phu)(t)‖0

≤
√

2‖(uh − Phu)(0)‖0 + 2T‖(u− uh)′(0)‖0 + 4
√
T max
t∈[0,T ]

‖(u− Ph)′(t)‖0

≤
√

2
(
‖uh0 − u0‖0 + ‖u0 − Phu0‖0

)
+ 2T‖v0 − uh1‖0

+4
√
T max
t∈[0,T ]

‖(u− Ph)′(t)‖0. (5.5.3)

The following two lemmas are from [GSS06] and gives estimates for some of the terms
on the right hand side of Equation (5.5.3).

Lemma 5.5.1. [GSS06, Lemma 4.9]
Let the mapping Ph be defined by (5.5.1). Then we have

‖u− Phu‖V (h) ≤ CEh
min{m,j}‖u‖1+m

with a constant CE that is independent of h and depends only on Cpd in Lemma 5.3.7
and CA, CR in Lemma 5.3.10.
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Moreover, if the elliptic regularity defined in (5.3.1) and (5.3.2) holds, we have

‖u− Phu‖0 ≤ CLh
min{m,j}+1‖u‖1+m

with a constant CL that is independent of h and depends only on the stability constant
CS in (5.3.2), Cpd in Lemma 5.3.7 and CA, CR in Lemma 5.3.10.

Proof.

The ‖ · ‖V (h) bound

Using the triangle inequality we have

‖u− Phu‖V (h) ≤ ‖u(t)− P2u‖V (h) + ‖P2u(t)− Phu‖V (h).

From Lemma 5.3.10 we know that ‖u − P2u‖V (h) ≤ CAh
min{m,j}‖u‖1+m. We therefore

need to bound the term
‖P2u− Phu‖V (h).

Note that from Lemma 5.3.7 (the continuity and positive definiteness of b̃h) and the
definition of Ph we have

Cpd‖P2u− Phu‖2
V (h) ≤ b̃h(P2u− Phu, P2u− Phu)

= b̃h(P2u− u, P2uPhu

+b̃h(u− Phu, P2u− Phu)

= b̃h(P2u− u, P2u− Phu)

+rh(u, P2u− Phu)

≤ ‖P2u− u‖V (h)‖P2u− Phu‖V (h)

+rh(u, P2u− Phu).

[GSS06] now uses Lemma 5.3.10 to obtain an estimate for the above result. However, to
use Lemma 5.3.10, it must hold that P2u−Phu ∈ V (h), that is, Phu ∈ V (h). This is not
obviously true, since Ph is defined to be in V h. If this is true though, then use Lemma
5.3.10 to obtain

Cpd‖P2u(t)− Phu(t)‖2
V (h) ≤ CAh

min{m,j}‖u(t)‖1+m‖P2u(t)− Phu(t)‖V (h)

+CRhmin{m,j}‖u(t)‖1+m‖P2u(t)− Phu(t)‖V (h).

 
 
 



Chapter 5. The discontinuous Galerkin Finite Element method 119

Therefore,

‖P2u− Phu‖V (h) ≤
(
CA + CR
Cpd

)
hmin{m,j}‖u‖1+m.

The L2-bound

This bound is proved in a similar way as the Aubin-Nitsche trick and relies on the
estimate ‖ · ‖V (h) obtained above.

�

It follows from Lemma 5.5.1 that the following estimates hold.

Lemma 5.5.2. [GSS06, Lemma 4.10] Let Phu be defined by (5.5.1). Under the regularity
assumptions of Theorem 5.3.3, we have

‖(u− Phu)′‖C(J,V (h)) ≤ CEh
min{m,j}‖u′‖C(J,H1+m(Ω))

‖(u− Phu)(0)‖V (h) ≤ CEh
min{m,j}‖u0‖1+m.

Moreover, if elliptic regularity as defined in (5.3.1) and (5.3.2) holds, we have the L2-
bounds

‖(u− Phu)′‖C(J,L2(Ω)) ≤ CLh
min{m,j}+1‖u′‖C(J,H1+m(Ω))

‖(u− Phu)(0)‖0 ≤ CEh
min{m,j}+1‖u0‖1+m.

Proof of Theorem 5.3.3:

Recall Equation 5.5.2:

‖eh(t)‖0 = ‖u(t)− uh(t)‖0 ≤ ‖u(t)− Phu(t)‖0 + ‖Phu(t)− uh(t)‖0.

We now have an estimate for ‖u(t)− Phu(t)‖0:

‖u(t)− Phu(t)‖0 ≤ CEh
min{m,j}‖u(t)‖1+m,

and a higher order estimate:

‖u(t)− Phu(t)‖0 ≤ CLh
min{m,j}+1‖u(t)‖1+m.

 
 
 



Chapter 5. The discontinuous Galerkin Finite Element method 120

We need estimates for the terms on the right hand side of Equation (5.5.3) (an estimate
for ‖Phu(t) − uh(t)‖0). [GSS06] proves in Lemma 5.5.2 and Lemma 5.5.2 estimates for
the projection error. Since ‖ · ‖0 ≤ ‖ · ‖V (h), we therefore have estimates for two terms
on the right hand side of Equation (5.5.3):

‖(uh − Phu)(t)‖0

≤
√

2
(
‖uh0 − u0‖0 + ‖u0 − Phu0‖0

)
+ 2T‖v0 − uh1‖0

+4
√
T max
t∈[0,T ]

‖(u− Ph)′(t)‖0

≤
√

2
(
‖uh0 − u0‖0 + CEh

min{m,j}‖u0‖1+m
)

+ 2T‖v0 − uh1‖0

+4
√
T max
t∈[0,T ]

CEh
min{m,j}‖u′(t)‖1+m.

A result similar to the Aubin-Nitsche trick to get a higher order error estimate in the
L2-norm is also proven in Lemma 5.5.2 and Lemma 5.5.2 in [GSS06]. If elliptic regularity
as defined in (5.3.1) and (5.3.2) holds, the higher order L2-bounds then give:

‖(uh − Phu)(t)‖0

≤
√

2
(
‖uh0 − u0‖0 + CLh

min{m,j}+1‖u0‖1+m
)

+ 2T‖v0 − uh1‖0

+4
√
T max
t∈[0,T ]

CLh
min{m,j}+1‖u′(t)‖1+m.

Therefore:

‖eh(t)‖0 ≤ CEh
min{m,j}‖u(t)‖1+m +

√
2
(
‖uh0 − u0‖0 + CEh

min{m,j}‖u0‖1+m
)

+2T‖v0 − uh1‖0 + 4
√
T max
t∈[0,T ]

CEh
min{m,j}‖u′(t)‖1+m,

and a higher order estimate:

‖eh(t)‖0 ≤ CLh
min{m,j}+1‖u(t)‖1+m +

√
2
(
‖uh0 − u0‖0 + CLh

min{m,j}+1‖u0‖1+m
)

+2T‖v0 − uh1‖0 + 4
√
T max
t∈[0,T ]

CLh
min{m,j}+1‖u′(t)‖1+m.

�

Final estimate

The terms ‖uh0−u0‖0 = ‖eh(0)‖0 and ‖v0−uh1‖0 = ‖e′h(0)‖0 still need to be estimated. If
we choose uh0 = P2u0 and uh1 = P2v0 as is done in [GSS06], we can use the approximation
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properties in Lemma 5.3.9. Recall the remark made on page 110. Therefore

‖eh(0)‖0 ≤ Chmin{m,j}‖u0‖1+m,

‖e′h(0)‖0 ≤ Chmin{m,j+1}‖v0‖m.

Remark The aim of the investigation in this dissertation regarding the discontinuous
Galerkin finite element method was to ascertain if it has any impact on the assumptions
made on the regularity of the solution u, in order to obtain convergence of the semi-
discrete (and fully discrete) approximations. It was found that the assumptions made on
the regularity of the solution u by making use of the discontinuous Galerkin finite element
method to obtain a semi-discrete error estimate (Theorem 5.3.2 and Theorem 5.3.3)
are only fractionally better than those for the the continuous Galerkin finite element
method. In particular, it is assumed that u′′(t) ∈ H1+m(Ω) (with m > 1

2) for the DG
approximation, while it is assumed that u′′(t) ∈ H2(Ω) for the continuous Galerkin
approximation, for t ∈ J . However, the discontinuous Galerkin finite element method
has the advantage of being able to use non-conforming finite element meshes, as stated
in [GSS06]: “Based on discontinuous finite element spaces, the proposed DG method
easily handles elements of various types and shapes, irregular nonmatching grids, and
even locally varying polynomial order.”

Proof of the so called inverse inequality

Recall the following so called inverse inequality (5.3.6):

‖w‖2
0,∂E ≤ C2

invh
−1
E ‖w‖2

0,E for all w ∈ (Sj(E))d,

with a constant Cinv that depends only on the shape regularity of the mesh, the approx-
imation order j and the dimension d.

Consider the inverse property in [OR76, p.341] (due to Babuška and Aziz): there exists
real number m > 0 such that for every real number s ≤ m,

‖u‖Hm(Ω) ≤ Ch−(m−s)‖u‖Hs(Ω), (5.5.4)

where C does not depend on u or h. Note that it is not well known that this result is
holds for real numbers and is not only true for integers.
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The so-called inverse inequality (5.3.6) therefore follows from the estimates for the trace
operator (Section A.4) and the inverse property (5.5.4) above:

‖u‖0,∂E ≤ C‖u‖
H

1
2 (E) ≤ CCh−

1
2

E ‖u‖0,E.

5.6 Fully discrete approximation

In this section the article [GS09] is investigated. In it the error analysis done in [GSS06] is
extended to the fully discrete numerical scheme. A centered second-order finite difference
approximation (called the “leap-frog” scheme in [GS09]) is used for the time discretisa-
tion. Optimal error estimates are obtained for the fully discrete approximation in the
L2-norm. This error analysis has also been done in [Kar12], but the time discretisation
scheme used in [Kar12] is the general Newmark method in Chapter 4. It is worth noting
again that the semi-discrete approximation error estimate and the fully discrete error
estimate are kept separately here.

The semi-discrete approximation is given by Problem WDG (Section 5.2.2).

For the fully discrete approximation, divide the interval [0, T ] into N time steps of length
τ = T

N
. Denote the approximation by unh ≈ uh(tn), where uh(tn) denotes the DG approx-

imation. Recall that we defined for any sequence {yk} ⊂ Rn,

δ2
t yk = yk+1 − 2yk + yk−1

τ 2 for k = 1, 2, . . . , N − 1.

Recall the definition of the discontinuous Galerkin finite element space V h in Chapter 5:

V h := {v ∈ L2(Ω) : v|E ∈ Sj(E) for all E ∈Mh}.

We now have the fully discrete numerical approximation to the wave equation.

Problem WFD

Find a sequence {unh} ⊂ V h such that for n = 1, 2, . . . , N − 1,

(
δ2
t u

n
h, v

)
+ bh(unh, v) = (fn, v) for all v ∈ V h, (5.6.1)

u0
h = P2u

0,

u1
h = u0

h + τP2v
0 + τ 2

2 ũ
0
h,
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where ũ0
h ∈ V h is defined by

(ũ0
h, v) = (f 0, v)− bh(u0, v) for all v ∈ V h.

In (5.6.1), every time step involves the inversion of the DG mass matrix M . Since it
is symmetric positive definite, the new approximations un+1

h are well-defined for n ≥ 1.
Therefore the fully discrete DG approximations {unh}n=N

n=0 are uniquely defined by (5.6.1)
and the initial conditions in Problem WFD.

The following remark is made in [GSS06] with regards to the DG mass matrixM : “It can
be inverted at very low computational cost, and the scheme is essentially fully explicit.
In fact, if the basis functions are chosen mutually orthogonal, M reduces to the identity.”

5.6.1 Properties of the bilinear form bh

In order to show the key properties of the bilinear form bh [GS09] introduces the broken
norm below, where D2u denotes the matrix of second derivatives of the solution u.

‖u‖2
∗ :=

∑
E∈Mh

‖∇u‖2
0,E +

∑
E∈Mh

h2
E‖D2u‖2

0,E +
∑
F∈Fh

h−1
F ‖[[u]]‖2

0,F . (5.6.2)

Remark Here [GS09] differs from [GSS06]. As was seen in the beginning of this
chapter, a bilinear form b̃h had to be introduced to obtain an error estimate for the
semi-discrete problem. However, here this is not necessary, but the broken norm above
is needed for the derivation of the error estimate for the fully discrete case. As stated
in [GS09, Remark 3.1], “the norm ‖ · ‖∗ is the natural one for obtaining continuity of
the bilinear form bh on H2(Ω) + V h, while the weaker DG norm ‖ · ‖V (h) is enough for
obtaining coercivity.” Also see Appendix A.5 for more detail on broken Sobolev spaces.

The following results are special cases of the results obtained in [ABCM02, Sections 4.1
and 4.2]. The results are similar to the results in Lemma 5.3.7.

Lemma 5.6.1. [GS09, Lemma 3.2]
There exists a threshold value βmin > 0, independent of the mesh size, such that for
β ≥ βmin there holds

bh(u, u) ≥ Cpd‖u‖2
∗, u ∈ V h,

|bh(u, v)| ≤ CE(c∗)2 max{1, β}‖u‖∗‖v‖∗, u, v ∈ H2(Ω) + V h,
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with a positive definiteness constant Cpd > 0 that is independent of the mesh size, and a
continuity constant CE > 0 that is independent of the mesh size, c and β.

Lemma 5.6.2. [GS09, Lemma 3.3]
For quasi-uniform meshesMh, there holds

bh(u, u) ≤ CS(c∗)2 max{1, β}h−2‖u‖2
0 for u ∈ V h,

with a stability constant CS > 0 that is independent of the mesh size, c and β.

The proof of this lemma is given in detail in [GS09]. It relies on the continuity of bh in
Lemma 5.6.1, the definition of the norm ‖ · ‖∗, and the inverse inequalities

‖∇u‖0,E ≤ Ch−1‖u‖0,E and ‖D2u‖0,E ≤ Ch−2‖u‖0,E.

Finally, suppose that the mesh size h and the time step τ satisfy the CFL condition

τ

h
<

2
c∗
√
CS max{1, β}

. (5.6.3)

5.6.2 Convergence

Following [GS09], we first state the main theorem below (the fully discrete error estimate),
and then prove it in the sections that follow. In this subsection the Galerkin projection
is defined and estimates are obtained. In Subsection 5.6.3 a stability result is obtained
(Proposition 5.6.7) and estimates for some of the terms in this stability result are given
(Lemmas 5.6.8 and 5.6.9). Theorem 5.6.3 is then proved by combining these results.

Theorem 5.6.3. [GS09, Theorem 3.4]
Let the solution u of the wave problem satisfy the regularity properties (p

u ∈ C2(J,Hp+1(Ω)), u′′′ ∈ C(J,L2(Ω)), u(4) ∈ L1(J,L2(Ω)), (5.6.4)

and let the discrete finite element approximations {unh}Nn=0 be defined by (5.6.1) together
with the initial conditions in Problem WFD. Assume that the CFL condition (5.6.3) is
satisfied. Then the following a priori error estimate holds:

max
n=0,...,N

‖u(tn)− unh‖0 ≤ C̃(hp+1 + τ 2),

where C̃ > 0 is a constant independent of the mesh size and the time step.
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Galerkin projection

The steps in the proof of Theorem 5.6.3 are the same as that of Theorem 4.4.1 in Sec-
tion 4.4. However, we are now dealing with the DG method, and therefore error estimates
for the Galerkin projection Phu ∈ V h defined below are required.

Definition 5.6.4. Let u ∈ H2(Ω) and define the Galerkin projection Phu ∈ V h of u by

bh(Phu, v) = bh(u, v) for all v ∈ V h. (5.6.5)

Lemma 5.6.5. [GS09, Lemma 4.1]
If, additionally, u ∈ Hp+1(Ω) for p ≥ 1, then

‖u− Phu‖∗ ≤ Chp‖u‖p+1,

‖u− Phu‖0 ≤ Chp+1‖u‖p+1,

with a constant C > 0 that is independent of the mesh size.

The proof of this lemma uses Lemma 5.6.1 and interpolation error estimates, not properly
cited in [GS09]. The estimate with respect to the L2-norm is a higher order estimate.

A function Phu(t) ∈ V h is defined by (Phu)(t) = Phu(t) for all t ∈ [0, T ]. Then the
following lemma holds.

Lemma 5.6.6. [GS09, Lemma 4.2]
Let u satisfy the regularity properties in Theorem 5.6.3 and let Phu be defined by Defini-
tion 5.6.4. Then

‖(u− Phu)(k)(t)‖0 ≤ Chp+1‖u(k)(t)‖p+1, for k = 0, 1, 2, and t ∈ [0, T ]

with a constant C > 0 that is independent of the mesh size.

Proof. This follows immediately from Lemma 5.6.5.

5.6.3 Proof of Theorem 5.6.3

The steps in the proof of Theorem 5.6.3 are the same as those in the proof of Theorem
4.4.1 in Section 4.4. However, in [GS09] the undamped wave equation is considered and
the central difference scheme (the Newmark method with θ = 0 and γ = 1

2) is used for
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the time discretisation. In the proofs of the different steps the similarities and differences
will become clear.

Recall the following notation from Section 4.4 (adapted for the undamped case and using
the central difference method).

Notation

ehn = Phu(tn)− unh, ep(tn) = u(tn)− Phu(tn), en = u(tn)− unh

The error en is split in the following manner:

en = ehn + ep(tn).

Define rn ∈ V h for 1 ≤ n ≤ N − 1, by

(rn, v) = (δ2
tPhu(tn)− u′′(tn), v), (5.6.6)

and for n = 0,

(r0, v) = τ−2(eh1 − eh0 , v) (5.6.7)

for all v ∈ V h.

Set

Rn = τ
n∑

m=0
rm. (5.6.8)

Proposition 5.6.7. [GS09, Proposition 3.4]
Assume that the CFL condition (4.3.6) holds. Then we have

max
1≤n≤N

‖en‖0 ≤ C∗
(
‖e0‖0 + max

1≤n≤N
‖ep(tn)‖0 + τ

N−1∑
n=0
‖Rn‖0

)
, (5.6.9)

with a constant C > 0 independent of h, τ and T .

Proof. We follow the exact same steps as in the proof of Proposition 4.4.2 in Section 4.4
with θ = 0 and γ = 1

2 , and since the bilinear form bh is symmetric we can use it in the
same way as we used the bilinear form b in Proposition 4.4.2. Note that the steps of
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the proof of [GS09, Proposition 4.3] differ slightly from the proof of Proposition 4.4.2 in
Section 4.4 ([Kar11a, Proposition 2]), but we get to the following step with either.

We have that for 1 ≤ n ≤ N ,

‖ehn‖2
0 −

τ 2

4 bh
(
ehn, e

h
n

)
≤ ‖eh0‖2

0 + τ
n−1∑
m=0

(
Rm, ehm+1 + ehm

)
. (5.6.10)

Recall the estimate from Lemma 5.6.2:

bh(ehn, ehn) ≤ CS(c∗)2 max{1, β}h−2‖ehn‖2
0.

Now, if the CFL condition (5.6.3) holds, we then have for 1 ≤ n ≤ N ,

D∗‖ehn‖2
0 ≤ ‖eh0‖2

0 + τ
n−1∑
m=0

(
Rm, ehm+1 + ehm

)
, (5.6.11)

where
D∗ = 1− τ 2

4 CS(c∗)2 max{1, β}h−2 > 0.

Recalling from the proof of Proposition 4.4.2, we know that

n−1∑
m=0

(
Rm, ehm+1 + ehm

)
≤ 2

(
max

0≤n≤N
‖ehn‖0

)(N−1∑
n=0
‖Rn‖0

)
. (5.6.12)

Following from Young’s inequality, Lemma C.1, with

a = max
0≤n≤N

‖ehn‖0, b = 2τ
N−1∑
n=0
‖Rn‖0, ε = 1

D∗
,

we have

D∗‖ehn‖2
0 ≤ ‖eh0‖2

0 + D∗
2 max

0≤n≤N
‖ehn‖2

0 + 2
D∗

(
N−1∑
n=0
‖Rn‖0

)2

. (5.6.13)

Since the right hand side of (5.6.13) does not depend on n, we take the maximum over
n = 0 to n = N to obtain

D∗
2 max

0≤n≤N
‖ehn‖2

0 ≤ ‖eh0‖2
0 + 2

D∗

(
N−1∑
n=0
‖Rn‖0

)2
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and therefore

max
0≤n≤N

‖ehn‖0 ≤
√

2
D∗
‖eh0‖0 +

√
2

D∗

(
N−1∑
n=0
‖Rn‖0

)
.

Using this together with

max
0≤n≤N

‖en‖0 ≤ max
0≤n≤N

‖ehn‖0 + max
0≤n≤N

‖ep(tn)‖0,

we have the desired result, with C∗ = min{1,
√

2
D∗
,
√

2
D∗
}.

Lemma 5.6.8. [GS09, Lemma 4.4] There holds

‖r0‖0 ≤ τC1
(
‖u′′′‖C(J,L2(Ω)) + τ−1hp+1‖u′‖C(J,Hp+1(Ω))

)
,

with the constant C1 > 0 independent of h, τ and T .

Proof. Once again, the steps in this proof follows the exact same way as the proof of
Lemma 4.4.3 in Section 4.4 with θ = 0 and γ = 1

2 . Also note that we have no damping
term a as in Lemma 4.4.3.

Note that the proof relies on Lemma 5.6.6.

Lemma 5.6.9. [GS09, Lemma 4.5] There holds for 1 ≤ n ≤ N − 1,

‖rn‖0 ≤ C2

(
hp+1τ−1

∫ tn+1

tn−1
‖u′′(s)‖p+1ds+ τ

∫ tn+1

tn−1
‖u(4)(s)‖0ds

)

with the constant C2 > 0 independent of h, τ and T .

Proof. Once again, the steps in this proof follows the format of the proof of Lemma 4.4.4
in Section 4.4 with θ = 0 and γ = 1

2 . Also note that we have no damping term a as in
Lemma 4.4.4.

Note that the proof relies on Lemma 5.6.6.

Proposition 5.6.10. [GS09, Proposition 4.6] For 0 ≤ n ≤ N − 1, there holds

‖Rn‖0 ≤ C3h
p+1

(
‖u′‖C(J,Hp+1(Ω)) + ‖u′′‖C(J,Hp+1(Ω))

)
+C3τ

2
(
‖u′′′‖C(J,L2(Ω)) + ‖u(4)‖L1(J,L2(Ω))

)
,

with the constant C3 > 0 independent of h, τ and T .
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Proof. From the definition of Rn (with 0 ≤ n ≤ N − 1) and using the triangle inequality
we have that

‖Rn‖0 = (Rn, Rn)0 = (τ
n∑

m=1
rm, τ

n∑
m=1

rm)0

≤ τ‖r0‖0 + τ
n∑

m=1
‖rm‖0

≤ τ‖r0‖0 + τ
N−1∑
m=1
‖rm‖0.

Then, by the bounds derived in Lemma 5.6.8 and Lemma 5.6.9, we have that

‖Rn‖0 ≤ C1
(
τ 2‖u′′′‖C(J,L2(Ω)) + hp+1‖u′‖C(J,Hp+1(Ω))

)
+C2

N−1∑
m=1

(
hp+1

∫ tm+1

tm−1
‖u′′(s)‖p+1ds+ τ 2

∫ tm+1

tm−1
‖u(4)(s)‖0ds

)
≤ hp+1

(
C1‖u′‖C(J,Hp+1(Ω)) + 2C2‖u′′‖C(J,Hp+1(Ω))

)
+τ 2

(
C1‖u′′′‖C(J,L2(Ω)) + 2C2‖u(4)‖L1(J,L2(Ω))

)
≤ C3h

p+1
(
‖u′‖C(J,Hp+1(Ω)) + ‖u′′‖C(J,Hp+1(Ω))

)
+C3τ

2
(
‖u′′′‖C(J,L2(Ω)) + ‖u(4)‖L1(J,L2(Ω))

)
,

where C3 = min{C1, 2C2}.

Proof of Theorem 5.6.3

Now note that
τ
N−1∑
n=0
‖Rn‖0 ≤ τN

N−1max
n=0
‖Rn‖0 = T

N−1max
n=0
‖Rn‖0,

and use this in Proposition 5.6.7 to obtain:

Nmax
n=1
‖en‖0 ≤ C∗

(
‖e0‖0 + Nmax

n=1
‖ep(tn)‖0 + T

N−1max
n=0
‖Rn‖0

)
.

Using Lemma 5.6.6 we have

Nmax
n=1
‖ep(tn)‖0 ≤ Chp+1‖u‖C(J,Hp+1(Ω)).

 
 
 



Chapter 5. The discontinuous Galerkin Finite Element method 130

Also note that since we chose that u0
h = P2u

0, we have

‖e0‖0 = ‖u0 − u0
h‖0 = ‖u0 − P2u

0‖0

≤ Chp+1‖u0‖p+1

≤ Chp+1‖u‖C(J,Hp+1(Ω)).

Now, since the right hand side of the estimate in Proposition 5.6.10 does not depend on
n we have

N−1max
n=0
‖Rn‖0 ≤ C3h

p+1
(
‖u′‖C(J,Hp+1(Ω)) + ‖u′′‖C(J,Hp+1(Ω))

)
+C3τ

2
(
‖u′′′‖C(J,L2(Ω)) + ‖u(4)‖L1(J,L2(Ω))

)
.

Finally we have

Nmax
n=1
‖en‖0 ≤ C∗

Chp+1‖u‖C(J,Hp+1(Ω)) + Chp+1‖u‖C(J,Hp+1(Ω))

+TC3h
p+1

(
‖u′‖C(J,Hp+1(Ω)) + ‖u′′‖C(J,Hp+1(Ω))

)
+TC3τ

2
(
‖u′′′‖C(J,L2(Ω)) + ‖u(4)‖L1(J,L2(Ω))

)
≤ CTh

p+1
(
‖u‖C(J,Hp+1(Ω)) + ‖u′‖C(J,Hp+1(Ω)) + ‖u′′‖C(J,Hp+1(Ω))

)
+CT τ 2

(
‖u′′′‖C(J,L2(Ω)) + ‖u(4)‖L1(J,L2(Ω))

)
,

where the constant CT depends on T , and so the constant C̃ in Theorem 5.6.3 grows
linearly with T .

Since ‖u(tn) − unh‖0 = ‖en‖0 ≤ max1≤n≤N ‖en‖0 = max1≤n≤N ‖u(tn) − unh‖0 we have the
result. �

5.7 Numerical experiments

In the article [GSS06] three numerical examples are given. In each of the first two
examples, an explicit (analytical) solution is available. The first example is to “confirm”
the theoretical estimates. In the second example the solution has a “spatial singularity”
at a boundary point and “the L2-error rates” are less than for Example 1. The authors
claim that these results establish the “sharpness” of the regularity assumptions. The last
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example is not related to rates of convergence, but serves to illustrate the flexibility of
the DG method.

Consider Example 1. It is stated that: “This solution is arbitrarily smooth so that all our
theoretical regularity assumptions are satisfied.” The authors then describe numerical
experiments and calculations. “In Figure 5.2, the relative errors for the fully discrete
approximation of (5.6) show convergence rates of order h in the energy norm and order
h2 in the L2-norm, thereby confirming the theoretical estimates of Theorems 4.1 and
4.2.”

In Example 2 the authors consider the wave equation on a two dimensional L-shaped
domain. Again an explicit solution is available. They claim that the solution is in
C∞(J,H 5

3 (Ω)) without proof. Then they state “. . . regularity assumptions of Theorem 4.1
hold with σ = 2

3. Thus, Theorem 4.1 predicts numerical convergence rates of 2
3 in the

energy norm, as confirmed by our numerical results in Table 5.1.” Then they proceed to
argue: “As the elliptic regularity assumptions (4.1) - (4.2) from Theorem 4.2 are violated,
we do not expect L2-error rates of the order 1 + σ for this problem. Indeed, in Table 5.1
we observe convergence rates close to 4

3.”

“To explain this behaviour, let us consider the following weaker elliptic regularity
assumption: for any f ∈ L2(Ω) we assume that the solution of the problem

−∇ · (c∇z) = f in Ω,

z = 0 on ∂Ω,

belongs to H1+s(Ω) for a parameter s ∈
(

1
2 , 1

]
and satisfies the following bound:

‖z‖1+s ≤ CS‖λ‖0.”

No motivation or reference is given for this assumption. We conclude that not all the
observed results are adequately explained by the theory and further research is indicated.

 
 
 



Chapter 6

Applications

In this chapter we apply the theory in Chapter 3 to some of the model problems intro-
duced in Chapter 1.

6.1 The multidimensional wave equation with weak
damping

6.1.1 Error estimate for the semi-discrete approximation

Recall from Section 2.5 the spaces:

V = V (Ω) is the closure of the test functions in H1(Ω);

W is the space L2(Ω) with inner product c;

X = L2(Ω).

The semi-discrete form of the model problems, Problem MW and Problem HHCE are
special cases of Problem Gh. A finite dimensional subspace Sh of V is constructed using
(in two dimensions) piecewise linear basis functions on triangle elements and (in three
dimensions) piecewise linear basis functions on tetrahedron elements. Note that the basis
functions must satisfy the forced boundary condition: zero on ∂Ω−Σ. We can therefore
give the Galerkin finite element approximation of the weak variational forms of the model
problems.

132
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Recall that f̃ : t→ f(·, t).

Problem MWh

Given a function f̃ ∈ C([0, T ],L2(Ω)), find a function uh ∈ C2((0, T ), Sh) such that u′h
is continuous at 0 and for each t ∈ (0, T )

c (u′′h(t), v) + a (u′h(t), v) + b (uh(t), v) =
(
f̃(t), v

)
L2(Ω)

for each v ∈ Sh (6.1.1)

while uh(0) = uh0 , u′h(0) = uh1 .

We now consider the semi-discrete error estimate in Theorem 3.1.5 and apply it to the
model problems. We need to investigate whether the assumptions used in this theorem
hold for the problems.

Piecewise linear basis functions on triangle elements

We consider the interpolation theory discussed in Appendix B. A general interpolation
assumption (Assumption GI) is used in Section 3.1.2. For this situation we have that

H(V, k) = Hk(Ω) ∩ V (Ω).

Instead of Assumption GI we have a specific estimate which depends on a concrete
subspace Sh and a specific interpolation operator. For simplicity, first consider the two
dimensional case on a rectangle with triangle elements. In Section B.2 we denote the
interpolation operator for piecewise linear basis functions on triangle elements by Π4. If
k ≥ 2, then there exists a constant Ĉ4 such that for any u ∈ Hk(Ω)

|Π4u− u|m,Ω ≤ Ĉ4h
2−m|u|k,Ω for m = 0, 1, 2.

Since the space V (Ω) ⊂ H1(Ω), we have that ‖Π4u(t)− u(t)‖V ≤ Ĉ4h|u(t)|k,Ω, and so

‖ep(t)‖W ≤ ‖u(t)− Π4u(t)‖W ≤ κ1‖u(t)− Π4u(t)‖V ≤ κ1Ĉ4h|u(t)|k,Ω,

for t ∈ [0, T ] and k ≥ 2. Similarly,

‖e′p(t)‖W ≤ κ1Ĉ4h|u′(t)|k,Ω,

for t ∈ [0, T ] and k ≥ 2.
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Error estimate

Suppose that uh0 = Π4u0 and uh1 = Π4u1. If the solution u of Problem MW (and
Problem HHCE) satisfies u(t) ∈ H2(Ω) and u′(t) ∈ H2(Ω), then it follows that for
t ∈ [0, T ],

‖u(t)− uh(t)‖W ≤ ‖ep(t)‖W +
√

2
‖Pu0 − u0‖W + 3T‖u1 − uh1‖W

+(1 + 3TCW )‖u0 − uh0‖W + 3
∫ T

0
‖e′p‖W + 3CW

∫ T

0
‖ep‖W


≤ κ1Ĉ4h|u(t)|2,Ω + κ1Ĉ4

√
2h
|u0|2,Ω + 3T |u1|2,Ω

+(1 + 3TCW )|u0|2,Ω + 3
∫ T

0
|u′(t)|2,Ω + 3CW

∫ T

0
|u(t)|2,Ω


≤ κ1Ĉ4h|u(t)|2,Ω + κ1Ĉ4

√
2h
3T |u1|2,Ω + (2 + 3TCW )|u0|2,Ω

+3 max
t∈[0,T ]

|u′(t)|2,Ω + 3CW max
t∈[0,T ]

|u(t)|2,Ω

.

Piecewise linear basis functions on tetrahedron elements

We now consider the three dimensional case on a 3-interval (“brick”) with tetrahedron
elements. From Section B.4 we have that for piecewise linear basis functions on tetrahe-
dron elements the interpolation operator is denoted by Πt. If k ≥ 2, then there exists a
constant Ĉt such that for any u ∈ Hk(Ω) we have

|Πtu− u|m,Ω ≤ Ĉth
2−m|u|k,Ω for m = 0, 1, 2.

The error estimate follows in the exact same way as for piecewise linear basis functions
on triangle elements as done above.

6.1.2 Fully discrete error estimate

We can apply the error estimates for the fully discrete approximation of Problem G to
our model problems. Consider the scheme from Section 3.2.

 
 
 



Chapter 6. Applications 135

Problem MWh-D

Find a sequence {uhk} ⊂ Sh such that for k = 0, 1, 2, . . . , N − 1,

δtu
h
k = vk+ 1

2
, (6.1.2)

c(δvk, ϕ) + a(vk+ 1
2
, ϕ) + b(uhk+ 1

2
, ϕ) = 1

2(f(tk) + f(tk+1), ϕ)X (6.1.3)

for each ϕ ∈ Sh, while uh0 = uh(0) = dh and uh1 = u′h(0) = vh.

For the result below, we either have that Π = Π4 or Π = Πt. Recall the notation from
Section 3.3: u(k) ∈ L2

(
[0, T ];Y

)
if u(k)(t) ∈ Y for each t and

∫
[0,T ] ‖u(k)‖2

Y <∞.

Suppose

(a) uh0 = Πu0 and uh1 = Πu1,

(b) u′′ ∈ L2([0, T ], H2(Ω) ∩ V (Ω)),

(c) f̃ ∈ C2([0, T ],L2(Ω)) and

(d) the sequence {uhk} is a solution of Problem MWh-D.

Then

‖u(tk)− uhk‖W ≤ κ1Ĉh|u(t)|2,Ω + κ1Ĉ
√

2h
3T |u1|2,Ω + (2 + 3TCW )|u0|2,Ω

+3 max
t∈[0,T ]

|u′(t)|2,Ω + 3CW max
t∈[0,T ]

|u(t)|2,Ω


+7T 2τ 2 max ‖u(4)

h ‖0 + 7Tτ 2 max ‖u′′′h ‖0 +
√

2CW τ 4 max ‖u′′′h ‖0,

for each tk ∈ (0, T ).

6.1.3 Convergence with less restrictive regularity assumptions

The assumption that u′′(t) ∈ H2(Ω) is necessary to obtain the error estimate of order h in
Subsection 6.1.2. However, under less restrictive regularity assumptions, the solution uh
of Problem MWh converges to the solution u of Problem MW as h tends to zero. (This is
not mentioned in [BV13].) The convergence can be obtained without assuming anything
more than the result of Theorem 2.5.4 in Section 2.5. Note that H2(Ω) is dense in H1(Ω),
and since V ⊂ H1(Ω), it follows that H2(Ω) ∩ V is dense in V (see Appendix A).
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Lemma 6.1.1. For any ε > 0 and any u ∈ V (Ω), there exists a δ > 0, such that

‖u− Πu‖V < ε for h < δ

and
‖u− Pu‖V < ε for h < δ.

Proof. Since Π is bounded (Appendix B),

‖u− Πu‖V ≤ ‖u− y‖V + ‖y − Πy‖V + ‖Πy − Πu‖V
≤ (1 + ‖Π‖V ) ‖u− y‖V + ‖y − Πy‖V .

Since H2(Ω) ∩ V (Ω) is dense in V (Ω), and u ∈ V (Ω), there exists a y ∈ H2(Ω) ∩ V (Ω)
such that ‖u− y‖V < (1 + ‖Π‖V )−1 ε

2. It follows that

‖u− Πu‖V ≤ (1 + ‖Π‖V ) ‖u− y‖V + ‖y − Πy‖V
≤ ε

2 + Ch‖y‖H2(Ω).

There exists a δ such that for h < δ, Ch‖y‖H2(Ω) ≤
ε

2, and so

‖u− Πu‖V ≤ ε

2 + ε

2 = ε.

This proves the first estimate.

The second estimate follows from the fact that P is a projection.

Theorem 6.1.2. Suppose u is the solution of Problem MW and uh is the solution of
Problem MWh. If the initial conditions are chosen such that uh0 = Πu0 and uh1 = Πu1,
then

lim
h→0
‖u(t)− uh(t)‖W = 0 for t ∈ [0, T ].
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Proof. Following from Theorem 3.1.5 we have

‖u(t)− uh(t)‖W ≤ ‖u(t)− Pu(t)‖W +
√

2
‖Pu0 − uh0‖W + 3T‖u1 − uh1‖W

+3TCW‖u0 − uh0‖W + 3
∫ T

0
‖u′ − Pu′‖W

+3CW
∫ T

0
‖u− Pu‖W


≤ κ1

‖u(t)− Pu(t)‖V +
√

2
‖Pu0 − uh0‖V + 3T‖u1 − uh1‖V

+3TCW‖u0 − uh0‖V + 3
∫ T

0
‖u′ − Pu′‖V

+3CW
∫ T

0
‖u− Pu‖V

.
Note that u(t), u′(t) ∈ V for all t ∈ (0, T ) (Section 2.5) and so Pu(t), Pu′(t) ∈ V for all
t ∈ (0, T ). We can therefore use Lemma 6.1.1 to estimate all the terms on the right hand
side of the above equation. Consider for example:

‖Pu0 − uh0‖V ≤ ‖Pu0 − u0‖V + ‖u0 − Πu0‖V ≤ 2ε

for h < δ.

Also,
‖u′(t)− Pu′(t)‖V ≤ ε,

and so
∫ T

0
‖u′(t)− Pu′(t)‖V dt ≤ Tε,

for h < δ.

The rest of the terms are estimated in the same way, and so ‖u(t) − uh(t)‖W → 0 as h
tends to zero.
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Fully discrete error estimate

A fully discrete error estimate can be obtained by using the result above together with
Equation (3.3.1) in Section 3.3. Recall that

‖uh(tk)− uhk‖W ≤ 7T 2τ 2 max ‖u(4)
h ‖W + 7Tτ 2 max ‖u′′′h ‖W

+
√

2CW τ 4 max ‖u′′′h ‖W .

Corollary 6.1.3. For h and τ sufficiently small, we have

‖u(tk)− uhk‖W ≤ ‖u(tk)− uh(tk)‖W + ‖uh(tk)− uhk‖W ≤ 2ε.

6.2 The Reissner-Mindlin plate

We can also apply the theory discussed in Chapter 2 and Chapter 3 ([VV02] and [BV13])
to the Reissner-Mindlin plate model introduced in Section 1.4.

6.2.1 Weak variational form

To obtain the weak variational form of the problem, we consider the variational equations
in Section 1.4.5. We show that this problem is of the same form as Problem G. Add
equations (1.4.13) and (1.4.15):

h
∫∫

Ω
∂2
twv dA+ I

∫∫
Ω
∂2
tψ · φ dA

+ bB(ψ,φ) + h
∫∫

Ω
(∇w +ψ)(∇ v + φ) dA =

∫∫
Ω
qv dA. (6.2.1)

To make the formulation precise, we introduce the following product spaces.

Product spaces

X = L2(Ω)× L2(Ω)2

Hk = Hk(Ω)×Hk(Ω)2

T = T1(Ω)× T2(Ω)

We define the space V as the closure of T in H1.
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Bilinear forms For u and v in V , define

c(u, v) = h(u1, v1)Ω + I(u2, v2)Ω
0,2 and

b(u, v) = bB(u2, v2) + h
(
∇u1 + u2,∇v1 + v2

)Ω

0,2
.

A natural inner product for X is

(x, y)X = (x1, y1)0 + (x2, y2)0,2,

where (·, ·)0 and (·, ·)0,2 denote the inner products for L2(Ω) and L2(Ω)2 respectively.
(See Appendix A, Section A.2.3 on Sobolev spaces of vector valued functions.) Denote
the corresponding norm by ‖ · ‖X .

Proposition 6.2.1. Let u and v be any elements of X. Then there exist positive con-
stants Ki such that

K1‖u‖X ≤ c(u, u) ≤ K2‖u‖2
X .

Proof. The result follows from the fact that c(u, u) = h‖u1‖2
Ω + I(‖u2‖Ω

0,2)2.

Proposition 6.2.2. The bilinear form c is an inner product for the space X.

Proof. The bilinear form c is a symmetric bilinear form and c(u, u) ≥ K1‖u‖2
X by Propo-

sition 6.2.1.

Definition 6.2.3. Inertia space

The norm ‖·‖W is defined by ‖u‖W =
√
c(u, u). We refer to the vector space X equipped

with the norm ‖ · ‖W as the space W .

Proposition 6.2.4. The norms ‖ · ‖W and ‖ · ‖X are equivalent.

Proof. It follows directly from Proposition 6.2.1.

Let f(t) = 〈q(·, t),0〉 and J an open interval containing zero. We can now formulate the
weak variational form of the Reissner-Mindlin plate model.
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Problem RMW

Find u such that for each t ∈ J , u(t) ∈ V , u′(t) ∈ V , u′′(t) ∈ W and

c(u′′(t), v) + b(u(t), v) = (f(t), v)X for each v ∈ V,

while u(0) = u0 = 〈w0,ψ0〉 and u′(0) = ud = 〈w1,ψ1〉.

Before we discuss existence and convergence of the problem, we need the following results.

Proposition 6.2.5. V is a dense subset of W .

Proof. T1(Ω) is dense in L2(Ω) and T2(Ω) is dense in L2(Ω)2. Consequently T is dense
in X. Since T ⊂ V ⊂ X, the result follow from Proposition 6.2.4.

Theorem 6.2.6. There exist a constant Kb such that

|b(u, v)| ≤ Kb‖u‖H1 ‖v‖H1 ,

for each u ∈ V .

Proof. The terms in bB(u2, v2) are all of the form
∫∫

Ω
∂iu2,i ∂jv2,j dA.

Applying the Cauchy-Schwartz inequality to each term and adding we obtain

|bB(u2, v2)| ≤ K‖u2‖1,2 ‖v2‖1,2.

Consider the other term in b. By the Cauchy-Schwartz inequality,

|(∇u1 + u2,∇v1 + v2)0,2| ≤ ‖∇u1 + u2‖0,2 ‖∇v1 + v2‖0,2

≤ 2‖∇u1 + u2‖2
0,2 + 2‖∇v1 + v2‖2

0,2.

Now, ‖∇u1 + u2‖2
0,2 = |u1|21 + ‖u2‖2

0,2 ≤ ‖u1‖2
1 + ‖u2‖2

0,2, and hence

‖∇u1 + u2‖2
0,2 ≤ 2‖u1‖2

1 + 2‖u2‖2
0,2 ≤ 2‖u‖2

H1 .
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Theorem 6.2.7. Korn’s lemma
There exists a constant Cb such that

bB(u, u) ≥ Cb‖u‖2
1,2 for each u ∈ V.

Proof. See [Bra01, p.289] or the references in [Wu06].

Corollary 6.2.8. The bilinear form b is an inner product for V .

Definition 6.2.9. Energy space
The space V equipped with the inner product b is referred to as the energy space. The
norm ‖ · ‖V is defined by ‖u‖V =

√
b(u, u).

From Theorems 6.2.6 and 6.2.7 we have the next result.

Corollary 6.2.10. The norms ‖ · ‖V and ‖ · ‖H1 are equivalent on V .

We have shown that Assumptions E1, E2 and E3 hold. Since the vibration is undamped,
E4 is automatically satisfied. Let q̃ : t → q(·, t). Recall the definition of the space Eb
from Section 2.2.2. For this application, Eb is defined to be

Eb = { x ∈ V
∣∣∣ there exists a y ∈ L2(Ω) such that (y, v)L2(Ω) = b(x, v) for all v ∈ V }.

Again in a similar manner as in Subsection 2.5.3, a sufficient condition for existence of a
solution will be when u0 ∈ H2 ∩ V .

Theorem 6.2.11. Suppose q̃ ∈ C1(J,L2(Ω)), then there exists a unique solution

u ∈ C1 (J, V ) ∩ C2 (J,W ) ,

for Problem RMW for each u0 ∈ Eb and ud ∈ V .

Proof. Since q̃ ∈ C1(J,L2(Ω)), f ∈ C1(J,X) and the result follows from Theorem 2.2.3.

Remark In [Wu04] existence and uniqueness for solutions of the Reissner-Mindlin
plate model (analogous to that of [LM72]) is proved, as well as some regularity results
similar to those in [Eva98]. This paper has not been investigated in detail.
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6.2.2 Finite element approximation

The finite element approximation is considered in [Wu05]. From the introduction to the
article [Wu05], we conclude that this is the first result on convergence of the finite element
method for the vibration of a Reissner-Mindlin plate. Wu formulates it as follows: “The
static analysis is the foundation of the dynamic analysis. On the other hand, the a priori
estimates for hyperbolic problems are developed in [Dup73] and [Bak76]. The method is
extended to elasto-dynamic problems by explicit finite elements” [Wu03].

Wu uses the quadrilateral four-node Bath-Dvorkin (B-D) element, which employs piece-
wise bilinear shape functions. He observed that the convergence rates were optimal for
the deflection and rotation, but deterioration in convergence rate and locking are clearly
observed for the velocities.

Problem RMWh

Find a function uh ∈ C2(0, T ) such that u′h is continuous at 0 and for each t > 0,
uh(t) ∈ Sh and

c(uh′′(t), v) + b(uh(t), v) = (q(·, t), v1) for each v ∈ Sh (6.2.2)

while uh(0) = uh0 = 〈wh0 ,ψh
0〉 and u′h(0) = uhd = 〈wh1 ,ψh

1〉.

The existence of a unique solution follows from [BV13, Theorem 3.1] (see Chapter 3)
provided that q̃ is continuous w.r.t. the norm of L2(Ω).

Interpolation

In [Wu05] the domain Ω is a rectangle. We define an interpolation operator on Hk =
Hk(Ω) × Hk(Ω)2. For piecewise bilinear basis functions on rectangular elements Πu is
defined as follows. If u ∈ Hk, then

Πu = 〈Πbu1,ΠBu2〉,

where Πb and ΠB are defined in Appendix B.

Proposition 6.2.12. There exists a Ĉ > 0 such that

‖Πu− u‖H1 ≤ Ĉh‖u‖2 for each u ∈ H2.
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Proof. From Appendix B we have that

‖Πbu− u‖1,Ω ≤ Ĉh|u|2,Ω for u ∈ H2(Ω)

and
‖ΠBu− u‖1,2 ≤ Ĉh|u|2,2 for u ∈ H2(Ω)2.

From the definition of Π, we have

‖Πu− u‖2
H1 = ‖Πbu1 − u1‖2

1,Ω + ‖ΠBu2 − u2‖2
1,2.

The result follows.

Using the result above and equivalence of the norms ‖ · ‖V and ‖ · ‖H1 (Corollary 6.2.10),
we obtain the following estimate: For u ∈ H2,

‖Πu− u‖V ≤ Ĉh‖u‖2. (6.2.3)

6.2.3 Inertia norm error estimates

Since no damping is present, it follows that the results for weak damping in Chapter 3
(based on [BV13]) are valid. For this problem we have that H = Hk ∩ V .

We first apply the result from Theorem 3.1.6.

Suppose that we choose uh0 = Πu0 and uh1 = Πu1. If the solution u of Problem RMW
satisfies u′ ∈ L2([0, T ], H2 ∩ V ), then

‖u(t)− uh(t)‖W ≤ κ1Ĉh‖u(t)‖2 +
√

2κ1Ĉh

3T‖u1‖2 + (2 + 3TCW )‖u0‖2

+ 3
∫ T

0
‖u′(·)‖W + 3CW

∫ T

0
‖u(·)‖W

.
for each t ∈ [0, T ].

Remark Theoretically convergence follows from the discussion above, but in practice
locking may be a problem as observed in the numerical experiments in [Wu05]. However,
with piecewise bicubic basis functions satisfactory results are obtained (see [LVV09]).
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Remark Alternatively, we can let Shi denote a subspace ofH2(Ω) consisting of piecewise
Hermite bicubic functions that vanish on the boundary of Ω. Defining

Sh = Sh1 × Sh2 × Sh3 ,

then Sh is a finite dimensional subspace of V . These elements were used in [LVV09] with
success.

6.2.4 Fully discrete

Since we used the method of [BV13] to split the semi-discrete and fully discrete error
estimates, one is now in a fortunate position to decide what algorithm to use for the fully
discrete approximation. Suppose one were to choose to use the algorithm in Problem Gh-
D (Section 3.2).

Problem RMWh-D
Find a sequence {uhk} ⊂ Sh such that for k = 0, 1, 2, . . . , N − 1,

δtu
h
k = vk+ 1

2
,

c(δtvk, ψ) + b(uhk+ 1
2
, ψ) = 1

2([f(tk) + f(tk+1)], ψ)X

for each ψ ∈ Sh, while uh0 = uh(0) = dh and v0 = u′h(0) = vh.

Recall that we know from Theorem 3.2.1 that if q̃ ∈ C2([0, T ],L2(Ω)), then

‖uh(tk)− uhk‖W ≤ 7T 2τ 2 max ‖u(4)
h ‖W + 7Tτ 2 max ‖u′′′h ‖W

+
√

2CW τ 4 max ‖u′′′h ‖W

for each tk ∈ (0, T ).

Now we can use this result together with the result in the previous subsection (Section
6.2.3) to obtain the main result.
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Suppose uh0 = Πu0 and uhd = Πud. If u′(t) ∈ L2([0, T ], H2 ∩V ), q̃ ∈ C2([0, T ],L2(Ω)) and
the sequence {uhk} is a solution of Problem RMWh-D, then

‖u(tk)− uhk‖W ≤ κ1Ĉh‖u(t)‖2 +
√

2κ1Ĉh

3T‖u1‖2 + (2 + 3TCW )‖u0‖2

+3
∫ T

0
‖u′(·)‖W + 3CW

∫ T

0
‖u(·)‖W

+ 7T 2τ 2 max ‖u(4)
h ‖W

+7Tτ 2 max ‖u′′′h ‖W +
√

2CW τ 4 max ‖u′′′h ‖W .

for each tk ∈ (0, T ), where α = 1 for k = 3 and α = 2 for k ≥ 4.

Recall that an estimate for ‖u(4)
h ‖W in terms of the data can be obtained.

6.2.5 The approach taken by Wu

In Section 2 of [Wu05] the plate vibration problem (Problem RM) is formulated and the
weak variational form is stated (but not derived). This is Equation (2.6). Estimates and
the existence theorem with references to other articles are given.

The fully discrete problem is formulated in Section 3 and the explicit scheme explained.
The fully discrete method is the same as in [Wu03], see Section 6.3 of this dissertation.

In Section 4 the projection is defined and the decomposition of the errors introduced as
in Section 2.3 of this dissertation. The notation in [Wu05] is the author’s own and differs
from [Dup73] and [Bak76]. (The fact that all these papers use different notation makes
comparison a time consuming task.)

6.3 Linear elasto-dynamics

In this section we briefly consider the work done in [Wu03]. In the introduction we read.
This paper is devoted to the evaluation of the accuracy and convergence of the explicit
finite element method for linear structural dynamics.
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6.3.1 Equation of motion

Consider an elastic body with density ρ. The displacement of a point x in the reference
configuration at time t is u(x, t) and the velocity is v = ∂tu.

From the conservation law for momentum, we have the equation of motion (see [Fun65,
Sec 5.5, 5.7]))

ρ∂2
t u = div T + f ,

where T is the first Piola stress tensor and f an external body force (density force). In
the case of small local displacements, we may assume that T is the Cauchy stress tensor
(which is symmetric).

In the matrix representation of T the stress components are denoted by σij and div T
is a vector with components

[div T]i = ∂1σi1 + ∂2σi2 + ∂3σi3 for i = 1, 2, 3.

The strain tensor E is defined by

εij = 1
2 (∂iuj + ∂jui) .

It is possible to derive a system of partial differential equations using Hooke’s law

T = E

1 + ν
E + νE

(1 + ν)(1− 2ν)tr(E)I,

where E is Young’s modulus and ν Poisson’s ratio. Note that here the symbol “tr”
denotes the trace of the tensor (matrix).

Problem Wu03

Suppose Ω ⊂ E3 is the reference configuration for a solid executing small vibrations. The
boundary of Ω consists of two parts Σ and Γ. The problem is to find u such that

the equation of motion is satisfied in Ω;

Hooke’s law is satisfied in Ω;

the specified displacement for u = U is satisfied on Σ;
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the specified traction Tn = g is satisfied on Γ;

the initial conditions u(x, 0) = u0 and ∂tu(x, 0) = u1 is satisfied in Ω.

Remark The problem in [Wu03] is the system of equations labelled (2.1). Initially
[Wu03] assumes an arbitrary U, but when giving the variational form assumes that
U = 0, “without loss of generality.”

6.3.2 Variational form

It follows from the divergence theorem that
∫∫∫

Ω
div (Tv) dV =

∫∫
∂Ω

T v · n dS,

where n is the unit outward normal on ∂Ω. Also, from the properties of the divergence
we have

div (Tv) = div T · v + tr(TV),

where V is the Jacobi matrix for v. Since T is symmetric, it follows that
∫∫∫

Ω
div T · v dV = −

∫∫∫
Ω
tr(TV) dV +

∫∫
∂Ω

T n · v dS.

It therefore follows that the variational form of Problem Wu03 is to find a displacement
u such that the boundary condition on Σ is satisfied and

∫
Ω
ρ∂2

t u · v dV =
∫

Ω
c tr (E V) + k tr (E) tr (V) dV +

∫
Ω

f · v dV +
∫

Γ
g · v dS,

for each v ∈ T (Ω̄) = {v ∈ C1(Ω̄)3 : v = 0 on Σ} and where

c = E

1 + ν
, k = νE

(1 + ν)(1− 2ν) .

If the bilinear forms is defined by

b(u,v) =
∫

Ω
c tr (E V) + k tr (E) tr (V) dV,

and

c(u,v) =
∫

Ω
ρ∂2

t u · v dV,
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then the variational form of Problem Wu03 is similar to that for the wave equation.

6.3.3 Weak variational form and existence

The two-dimensional vibration problem is similar to the Reissner-Mindlin plate model
in Section 6.2, Problem RMW. The three-dimensional case differs slightly. Note that
the undamped case is considered. The abstract formulation is the same and the theory
depends on Korn’s inequality (see [Bra01, p.289] and Theorem 6.2.7), which gives the
positive definiteness of the bilinear form b. The spaces under consideration are:

• X = L2(Ω)3;

• W is the space L2(Ω)3 with norm ‖ · ‖W =
√
c(·, ·);

• V is the closure of the space of test functions in H1(Ω)3.

Problem Wu03W

Find u such that for each t > 0, u(t) ∈ V , u′(t) ∈ V , u′′(t) ∈ W and

c(u′′(t), v) + c(u(t), v) = (f(t), v)Ω + (g(t), γv)Γ for each v ∈ V,

while u(0) = u0 and u′(0) = ud.

If g = 0, we find that the problem is a special case of the general linear vibration
problem introduced and discussed in Chapter 2 (with no damping). We can therefore
use the results from the article [VV02], discussed in Chapter 2, in the same way as for
Problem RMW. Note that the existence result cited by Wu are also not applicable if
g 6= 0.

Let J be an interval containing zero, and suppose f ∈ C1(J,L2(Ω)). Then there exists a
unique solution

u ∈ C1
(
J, V

)
∩ C2

(
J,W

)
,

for Problem Wu03W for each u0 ∈ Eb and ud ∈ V .

Remark In [Wu03], Lions and Magenes [LM72] is cited for existence. Also, in [Wu03]
it is mentioned that “. . . the regularity of a solution is discussed in [Eva98, Chapter 7],
for the system of one function with homogeneous Dirichlet type displacement boundary
conditions, similar to Eq (2.1′). Here, we suppose the argument can be extended to the
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2-D and 3-D elasto-dynamics system, without proof.” However, it should be noted that
Problem Wu03W is similar to Problem RMW and the proofs are given in [Wu04], see
the remark on page 141 at the end of Subsection 6.2.1.

6.3.4 Semi-discrete approximation

The finite element approximation for this problem is considered in [Wu03] and [Wu06].
However, no error estimate for the semi-discrete case is derived. We have a special
case of Problem Gh in Chapter 3 and apart from the obvious differences between two-
dimensional and three-dimensional elements, we can apply [BV13] (Theorem 3.1.6 in
Chapter 3 in this dissertation). The results are not stated here since it is analogous to
that of the Reissner-Mindlin plate model, Sections 6.2.2 and 6.2.3. Recall that Sh is a
finite dimensional subspace of V .

Problem Wu03Gh

Find uh ∈ C2(0, T ) such that u′h is continuous at 0 and for each t > 0, uh(t) ∈ Sh and

c(u′′h(t), v) + c(uh(t), v) = (f(t), v)Ω + (g(t), v)Γ for each v ∈ Sh,

while uh(0) = uh0 and u′h(0) = uhd .

6.3.5 Fully discrete approximation

The fully discrete scheme in [BV13] (Chapter 3 in this dissertation), which is implicit,
can theoretically be applied to this three-dimensional elasto-dynamics problem.

In the introduction of [Wu03] we read: “Among many numerical schemes implemented in
commercial software, the explicit finite element method has been successfully employed
to solve transient, large deformation, dynamics problems which are subject to impact
loading.” Also, in the introduction to [Wu06] the importance of the explicit method is
stressed. “The explicit finite element method has been extensively developed for the
transient dynamic analysis to meet the increasing demand of engineering application.”

We also read in the abstract of [Wu06] that “ with smooth solutions, it is shown that by
using diagonal mass matrix or consistent mass matrix, the displacement, velocity, and
the energies have the same convergence rates.” In the introduction of [Wu06], it is also
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remarked that “ the diagonal mass matrix is one of the important features making the
explicit method sufficient and practical.”

From this it is clear that according to Wu, the explicit method is preferable to an implicit
method, due to high computational costs. Any finite element method tends to be implicit
due to the presence of the mass matrix M . Therefore, to make a finite element method
explicit, the mass matrix M is changed to a diagonal matrix by so called mass lumping.
We therefore briefly discuss the explicit scheme used in [Wu03].

The semi-discrete problem can be discretised into a system of ordinary differential equa-
tions as in Section 3.2. Recall the following notation. For x̄ ∈ Rn let

Thx̄ = Σn
i=1xi φi ∈ Sh,

where Sh is the span of the set of basis functions {φ1, φ2, . . . , φn}. If a function w has
values in Sh, then we define a function w̄ by

w̄(t) = T−1
h w(t),

with values in Rn.

Problem Wu03Gh can now be written as a system of ordinary differential equations:

Mū′′ +Kū = F (t) with ū(0) = ūh0 and ū′(0) = ūhd ,

with the matrices M and K given in Section 3.2, and ūh0 = T−1
h uh0 and ūhd = T−1

h uhd .

Recall that the time interval [0, T ] is divided into N steps with a step length τ = T
N

and
that we denote the approximation of uh(tk) by uhk. [Wu03] uses the central difference
method for time discretisation. In variational form:

(ρδ2
t u

h
k, v) + b(uhk, v) = (f(tk), v) ,

(uh0 , v) = (P2u0, v) ,

(uh1 , v) = (P2ud, v) ,

where

δtu
h
k = uhk+1 − uhk

τ
and

δ2
t u

h
k = δtu

h
k − δtuhk−1
τ

= uhk+1 − 2uhk + uhk−1
τ 2 .
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Implementing this scheme for the system of ordinary differential equations we obtain

τ−2M (ūk+1 − 2ūk + ūk−1) +Kūk = F (tk),

with
ū(0) = ūh0 and ū′(0) = ūhd .

Using mass lumping the matrix M is replaced by the diagonal matrix D to become

τ−2D (ūk+1 − 2ūk + ūk−1) +Kūk = F (tk).

The system is now essentially explicit since it is a trivial matter to compute D−1.

The time integration procedure followed by Wu is explained in [Wu03]. The following
explanation follows the article [Wu03] precisely.

Let the velocity be denoted by v̄k = δtūk.

(1) Move one step
ūk = ūk−1 + τ v̄k− 1

2
,

(2) calculate forces
Fk = Kūk + F (tk),

(3) calculate acceleration
āk = D−1Fk,

(4) update the velocity
v̄k+ 1

2
= δtūk− 1

2
+ τ āk,

(5) go back to step (1).

Wu ([Wu03]) does not explain how the first step works. For the above to work, the first
step is obtained by setting

ūhd = v̄0 =
v̄ 1

2
+ v̄− 1

2

2
and using

ā0 =
v̄ 1

2
− v̄− 1

2

τ

to get

ū1 = ū0 + τ v̄ 1
2

= ūh0 + τ
(
τ

2 ā0 + v̄0

)
.
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6.3.6 Numerical experiments

In the article [Wu03], the author provides numerical experiments to compare to the
theoretical results. The first two examples concern the longitudinal vibration of a rod.
In both cases explicit solutions (analytical solutions) are available.

In Example 1 [Wu03] the solution has a fourth order time derivative, hence the solution
satisfies the assumption of the theory. Wu then states “it is observed that the numeri-
cal results match the theoretical a priori estimates, . . . Both displacement and velocity
achieve the optimal rates.”

In Example 2 Wu examined a second case with possibly lower regularity. However, it is a
solution with a third order time derivative so the predictions of the theory differs slightly
from Example 1. Wu noted: “it is observed that the convergence rates of displacement in
both L2 and H1 norm match the theoretical results, which are still the optimal. However,
the convergence rates of velocity and energies are better than the theoretical results.”

In Example 3 Wu considers a two-dimensional problem: in-plane vibration of a rectan-
gular plate. He assumes that the theory in [Eva98] (Section 2.4 of this dissertation) is
applicable and thus the solution has a fourth order time derivative. The author found
“. . . that the convergence rates in both the L2-norm and H1 semi-norm match the theo-
retical results . . . which are still optimal. However, the convergence rates of velocity and
energies are better than the theoretical results.”

In Example 3 the initial displacement is zero. If the theory in [Eva98] is applicable the
solution is smoother than a classical solution. If the conditions of Theorem 2.2.3 are met
the solution will be less smooth than in Example 3, but almost a classical solution. In
our view that would have been a more useful experiment.

We conclude that the theory does not explain all the observed numerical results.

 
 
 



Chapter 7

Conclusion

7.1 Overview

As mentioned in the introduction, the general aim of the research is to investigate the
disparity that was noticed in the theory between the existence of solutions and the regu-
larity assumed on these solutions for convergence of the finite element method. In almost
all of the articles that were considered, an existence result (in [LM72]) for the existence
of a weak solution is quoted, but in proving convergence of the Galerkin approxima-
tion, substantially more differentiability properties for the solution are assumed. These
articles are [Bak76], [GSS06], [Kar11a], [Kar11b], [Kar12] and [Dup73]. In [GS09] and
[Wu06] existence is not mentioned. The assumptions used for convergence theory are
very restrictive; the solution is required to be smoother than even a classical solution.
The detail of this is given in Section 2.4.

We first consider the theory of existence of a solution to a general linear vibration prob-
lem, called Problem G, in Chapter 2. We investigated the article of Van Rensburg and
Van der Merwe [VV02] published in 2002. The theory in [VV02] is convenient to use in
this dissertation since it is given in terms of bilinear forms - a requirement for the finite
element method. To compare we examined alternative theories on existence of solutions
to hyperbolic partial differential equations, such as those in [Eva98] and [LM72]. We also
presented the improved regularity and higher regularity results of a solution to the multi-
dimensional wave equation without damping (in [Eva98]). To obtain this, compatibility
conditions are required on the initial and boundary data. The limitations of these results
are that no damping is considered and only homogeneous Dirichlet boundary conditions
are considered.
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In conducting the literature study, the article of [BV13] published in 2013 came under
consideration (see Chapter 3). In the article convergence is proved, but with weaker
assumptions than the other articles considered. However, it is still necessary to assume
higher regularity of the solution. In the article semi-discrete and fully discrete error
estimates for the Galerkin approximation of a general linear second order hyperbolic
problem are derived. Viscous type damping is also incorporated and as such the results
in [BV13] could be applied to problems like the multi-dimensional wave equation with
weak damping, the hyperbolic heat conduction equation and the Reissner-Mindlin plate
model. The results and proofs in the article [BV13] are mostly given in sufficient detail
in the article, hence the focus in this dissertation was to compare the article to other
research results, and to highlight significant parts of proofs.

A recent article on the continuous Galerkin method, [Kar11a], is analysed in detail in
Chapter 4. The problem that Karaa [Kar11a] considers is the general Dual-Phase-Lag
model introduced in Subsection 1.3.4. A fully discrete error estimate in the L2-norm
is derived. The approximation method in time in [Kar11a] is the general Newmark
method. Special cases of this scheme include the central difference scheme and the
average acceleration method. The Dual-Phase-Lag model that is considered includes
strong damping (see Section 2.6), where other articles usually only include weak damping
or no damping at all. The proofs in [Kar11a] posed a challenge to follow and it was
necessary to provide more steps and reasons for greater readability. Possible oversights
or omissions in the proofs were discovered and either rectified or reported on.

It was decided to include the discontinuous Galerkin finite element method in the inves-
tigation, to see if it has any impact on the assumptions on the regularity of solutions
required for convergence. To be specific, we wanted to determine whether the assump-
tions made on the regularity of solutions for convergence of the solution are less restrictive
than those made for the continuous Galerkin method. In Chapter 5 the work done on
the discontinuous Galerkin (DG) method by Grote, Schneebeli and Schötzau [GSS06] is
investigated. This article deals with the symmetric interior penalty DG method (SIPDG)
for the spatial discretization of the second-order scalar wave equation. In the article error
estimates for the semi-discrete DG method are derived, in both the energy norm and the
weaker L2-norm. These two estimates are proven in greater detail in this dissertation,
and some results that aid in the proofs of these estimates are also provided in more detail.
The L2-norm error estimate is based on the proof of the error estimate in [Bak76] for
the continuous Galerkin finite element method, but in this dissertation we showed that
the proof could be streamlined following [BV13] (see Section 3.1.1). We also report on
the article [GS09] where a fully discrete error estimate in the L2-norm is derived for the
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SIPDG method. The authors use the semi-discrete formulation from [GSS06] and the
central difference scheme in time.

We apply the general theory from Chapters 2 and 3 to some of the model problems, in
Chapter 6. To be precise, a section each is devoted to the multidimensional wave equation
with weak damping, the Reissner-Mindlin plate model and linear elasto-dynamics.

7.2 Results

To start, consider Theorem 3.1.5 in Subsection 3.1.2. We have the following error estimate
for the semi-discrete approximation: for t ∈ [0, T ],

‖u(t)− uh(t)‖W ≤ ‖ep(t)‖W +
√

2
‖Pu0 − u0‖W + 3T‖u1 − uh1‖W

+(1 + 3TCW )‖u0 − uh0‖W + 3
∫ T

0
‖e′p‖W + 3CW

∫ T

0
‖ep‖W

.
For this result no additional assumptions are necessary; the properties of the solution
guaranteed by Theorem 2.2.3 are sufficient. To proceed, estimates are necessary for the
projection errors

‖u(t)− Pu(t)‖W and ‖u′(t)− Pu′(t)‖W , (7.2.1)

and for the errors in approximating the initial states

‖u1 − uh1‖W and ‖u0 − uh0‖W . (7.2.2)

As mentioned, most articles assume that the initial conditions uh0 and uh1 are the projec-
tions with respect to the weaker space W of the initial conditions u0 and u1 respectively.
In none of the articles is it mentioned how to obtain these projections.

Now consider the multi-dimensional wave equation with weak damping. To obtain op-
timal estimates for the projection errors (7.2.1), the regularity assumption u′(t) ∈
H2(Ω) for t ∈ [0, T ] is necessary (see Subsection 6.1.1).

Also, if it is assumed that the initial conditions uh0 and uh1 are the L2-projections of the
initial conditions u0 and u1 respectively, it should be assumed that u0, u1 ∈ H2(Ω), in
order to obtain optimal order estimates for (7.2.2).
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There is clearly a lack of convergence results for classical solutions or weak solutions.
The situation for other model problems, e.g. the vibration of a plate is the same. The
assumptions made on the regularity of the solution u by making use of the discontinuous
Galerkin finite element method to obtain a semi-discrete error estimate (Theorem 5.3.2
and Theorem 5.3.3) are only fractionally better than those for the continuous Galerkin
finite element method.

In the article of Basson and Van Rensburg [BV13], a fully discrete error estimate is
obtained by first deriving estimates for

‖u(tk)− uh(tk)‖W and ‖uh(tk)− uhk‖W ,

and then combining these two estimates with the use of the triangle inequality to obtain
a fully discrete error estimate. Consider Theorem 3.2.1 in Subsection 3.2.3. We have the
following estimate for ‖uh(tk)− uhk‖W :

‖uh(tk)− uhk‖W ≤ 7T 2τ 2 max ‖u(4)
h ‖W + 7Tτ 2 max ‖u′′′h ‖W

+
√

2CW τ 4 max ‖u′′′h ‖W .

For this estimate to hold, it is assumed that uh ∈ C4[0, T ] and this is the case if
f ∈ C2([0, T ], X), which is realistic. However, note that nothing is mentioned in [BV13]
about estimates for ‖u(4)

h ‖W and ‖u′′′h ‖W . It is not necessary to assume the existence of a
third or fourth order derivative on the exact solution u as is done in all the other articles
considered. Strict compatibility conditions must be imposed on the initial data and
regularity conditions on the forcing function to yield these higher regularity properties
(see Section 2.4).

Again the result is that convergence results for classical solutions and weak solutions are
not available.

In Section 6.1 we proved that the results obtained from existence theory in Section 2.2.1
are sufficient for convergence of the semi-discrete and fully discrete approximations, but
no result on the order of convergence could be obtained.

In Section 5.7 and Subsection 6.3.6 numerical experiments in [GSS06] and [Wu03] are
discussed briefly. Interesting phenomena are observed and to a large degree the theory
and experiments agree. However, there are indications that the order of convergence may
in some cases be better than predicted by the theory.
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7.3 Further research

The investigation has confirmed that there is a problem when applying theoretical results
to real world problems. Further research is required to either improve on the regular-
ity theory for hyperbolic type partial differential equations or improve the convergence
theory for finite element approximations.

Numerical experiments suggest that it should be possible to obtain error estimates with
less restrictive regularity assumptions.

One possibility is to do further research to extend the work done in [BV13]:

• obtain estimates for u(4)
h

• investigate if weaker regularity assumptions can be made for the case when strong
damping is present;

• apply the general method on structures consisting of linked elastic bodies.

Further research is possible on the time-stepping schemes in [Kar11a], [Kar11b] and
[Kar12]. For example, one could investigate the application of methods to the multi-
dimensional wave equation with general damping.

The discontinuous Galerkin method looks promising. Further investigation of the proofs
in [GSS06] may lead to results where less restrictive spatial regularity is required.

Fundamentally the approach to prove optimal order convergence in all articles considered
is related to the approach of Baker [Bak76]. A challenge would be to find an alternative
method to obtain an estimate for the difference between the elliptic projection error and
the Galerkin approximation. Hopefully an alternative method may yield convergence
results with less restrictive regularity assumptions. In this context mixed finite elements
may provide an alternative.

Another consideration would be to study how the compatibility conditions placed on
the initial and boundary data in the books of Evans [Eva98] and Wloka [Wlo87] can be
interpreted when applying it to systems of linked elastic bodies.

Model problems with “almost” classical solutions are important in practice. For example
the solution u of the multi-dimensional wave equation has the properties u(t) ∈ H2(Ω),
u′(t) ∈ H1(Ω) and u′′(t) ∈ L2(Ω). The conjecture is that ‖u(t) − uh(t)‖L2(Ω) ≤ Khα
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where α > 0. Further research should start with either doing numerical experiments or
search the literature for numerical experiments that can be used to “test” this conjecture.

 
 
 



Appendix A

Sobolev Spaces

A.1 The space L2(Ω)

Consider an open subset Ω of Rn and denote its closure by Ω̄. The space L2(Ω) consists
of functions f such that f 2 is Lebesgue integrable on Ω.

Theorem A.1.1. The space L2(Ω) is a Hilbert space with inner product

(u, v) =
∫

Ω
uv =

∫
Ω
uv dµ,

where µ is the n-dimensional Lebesgue measure.

Proof. See [Rud76, Theorem 3.11, p. 69].

Notation Unless otherwise stated, the norm on L2(Ω) is denoted by ‖ · ‖ or ‖ · ‖0.

Definition A.1.2. Set Af := {x ∈ Ω : f(x) 6= 0} and Sf to be the closure of Af in Ω,
where Ω is open. Then define C∞0 (Ω) := {f ∈ C∞(Ω) : Sf ⊂ Ω}.

If f ∈ C∞0 (Ω), then the distance between Sf and the boundary of Ω is positive.

Theorem A.1.3. The space C∞0 (Ω) is dense in L2(Ω).

Proof. See [Ada75, Theorem 2.13, p.28].
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A.2 Sobolev Spaces

A.2.1 The one dimensional case

Let the open interval (a, b) be denoted by I and the closed interval [a, b] by Ī. The
Sobolev space Hm(I) is the subspace of functions in L2(I) with weak derivatives up to
order m.

Definition A.2.1. Weak Derivative of order m
Suppose u ∈ L2(I) and there exists a v ∈ L2(I) such that

(u, φ(m)) = (−1)m(v, φ) ∀ φ ∈ C∞0 (I),

then v is called the weak derivative of order m of u and is denoted by Dmu.

In this dissertation no distinction will be made between weak and ordinary derivatives
as far as notation is concerned, i.e. Du is denoted by u′.

Definition A.2.2. Inner product on Hm(I)
For u and v in Hm(I) we define

(u, v)m =
m∑
k=0

(u(k), v(k)) for m = 0, 1, 2, . . . .

Definition A.2.3. Semi-norm on Hm(I)
For any m ≥ 1 and any function u ∈ Hm(I), we define

|u|m =
√

(u(m), v(m)) = ‖u(m)‖.

Definition A.2.4. Norm on Hm(I)
For any function u ∈ Hm(I) we define

‖u‖m =
√

(u, u)m for m = 0, 1, 2, . . . .

A.2.2 The higher dimensional case

Let Ω be an open subset of Rn. The Sobolev spaces Hm(Ω) is the subspace of functions
in L2(Ω) with weak partial derivatives up to order m in L2(Ω).
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Notation Let α = (α1, α2, . . . , αn), then Dα = Dα1Dα2 · · ·Dαn and |α| = α1 + α2 +
. . .+ αn.

Definition A.2.5. Weak partial derivative of order m
Suppose u ∈ L2(Ω) and there exists a v ∈ L2(Ω) such that

(u,Dαφ) = (−1)|α|(v, φ) ∀ φ ∈ C∞0 (Ω),

then v is called the weak derivative of order |α| of u and is denoted by Dmu.

Remark In this dissertation no distinction will be made between weak and ordinary
derivatives as far as notation is concerned.

Definition A.2.6. Inner product on Hm(Ω)
For u and v in Hm(Ω) we define

(u, v)m =
∑
|α|≤m

(Dαu,Dαv) for m = 0, 1, 2, . . . .

The bilinear form (u, v)m has all the properties of an inner product.

Definition A.2.7. Semi-norm on Hm(Ω)
For any m ≥ 1 and any function u ∈ Hm(Ω) we define

|u|m =
√ ∑
|α|=m

(Dαu,Dαu).

Definition A.2.8. Norm on Hm(Ω)
For any function u ∈ Hm(Ω) we define

‖u‖m =
√

(u, u)m for m = 0, 1, 2, . . . .

Definition A.2.9. The space H1
0 (Ω)

The space H1
0 (Ω) is defined to be the closure of the space C∞0 (Ω).

Notation If we need to distinguish between different domains, we will denote the
norm and semi-norm by ‖ · ‖m,Ω and | · |m,Ω.
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A.2.3 Sobolev spaces of vector valued functions

Definition A.2.10. For f, g in Hm(Ω),

[f, g]m = (f (m), g(m)) and

|f |m =
√

[f, f ]m for m = 0, 1, . . .

The function | · |m is a semi-norm for m ≥ 1.

Definition A.2.11. u ∈ L2(Ω)2 if ui ∈ L2(Ω) for i = 1, 2.

u ∈ L2(Γ)2 if ui ∈ L2(Γ) for i = 1, 2.

u ∈ Hk(Ω)2 if ui ∈ Hk(Ω) for i = 1, 2.

[u, v]m,2 = [u1, v1]m + [u2, v2]m for u ∈ Hm(Ω)2 and v ∈ Hm(Ω)2 .

|u|m,2 =
√

[u, u]m,2 for u ∈ L2(Ω)2 .

The function | · |m,2 is a semi-norm for m ≥ 1.

When we need to distinguish between domains, we will use superscripts Ω and Γ in the
cases of a double subscript, e.g. ‖ · ‖Ω

m,2 and ‖ · ‖Γ
m,2 .

Definition A.2.12. The inner product for Hm(Ω)2 is defined by

(f, g)m,2 =
m∑
k=0

[f, g]k,2 for m = 0, 1, . . .

Definition A.2.13. The norm for Hm(Ω)2 is defined by

‖f‖m,2 =
√

(f, g)m,2 for m = 0, 1, . . .

Notation H0(Ω) = L2(Ω) and H0(Ω)2 = L2(Ω)2.

A.3 Fundamental properties of Sobolev Spaces

Suppose Ω is a bounded open interval or a bounded open convex subset of Rn.

It is not necessary to require that Ω be convex, but it is sufficient for our purpose. In
the theory it is usually assumed that Ω is star shaped or has the cone property.
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Remark L2(Ω) = H0(Ω).

Theorem A.3.1. The space Hm(Ω) is complete.

Proof. See [Ada75, Theorem 3.2, p.45]

Theorem A.3.2. Cm(Ω̄) is dense in Hm(Ω) with respect to the norm of Hm(Ω).

Proof. See [OR76, Theorem 2.10, p. 53].

Remark A function v ∈ Hm(Ω) can be approximated by a function in Cm(Ω̄): if
v ∈ Hm(Ω), then for any ε > 0 there exists a ϕ ∈ Cm(Ω̄) such that ‖v − ϕ‖m < ε.

Theorem A.3.3. Sobolev’s Lemma
Let m be any non-negative integer. If u ∈ Hp(Ω) where p > m+ n

2 , then u ∈ C
m(Ω̄) and

‖Dαu‖sup ≤ ‖u‖p for |α| ≤ m.

Proof. See [OR76, Theorem 3.10, p. 80]

A.4 Trace

Lemma A.4.1. Let u ∈ Hs(Ω), s > 1
2 . Then there exists a trace γ0 of the function u

on ∂Ω and C > 0 such that

‖γ0u‖
Hs− 1

2 (∂Ω)
≤ C‖u‖Hs(Ω).

Further, if s > 3
2 , there exists a trace ∂u

∂n
on ∂Ω and

∥∥∥∥∥∂u∂n
∥∥∥∥∥
Hs− 3

2 (∂Ω)
≤ C‖u‖Hs(Ω).

This lemma is a special case of the Trace Theorem [OR76, Theorem 4.18, p.143].
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A.5 Broken Sobolev Spaces

This section is included for convenience and is from [Riv08].

Broken Sobolev spaces are natural spaces to work with the discontinuous Galerkin meth-
ods. Let Ω be a subspace of Rn, and subdivide it into elements E. Here an element E
can be a triangle or quadrilateral when n = 2 and a tetrahedron or hexahedron when
n = 3. It is assumed that the intersection of any two elements is either empty, a vertex,
an edge, or a face. Such a subdivision is called a conforming mesh, and is denoted by
Mh, with h = maxE∈Mh

hE, where hE is the diameter of element E.

Assumption BSs1

The subdivisionMh is regular, i.e. there is a constant ρ > 0 such that for every E ∈Mh,

hE
ρE
≤ ρ,

where ρE the maximum diameter of a ball inscribed in E.

Definition A.5.1. Broken Sobolev space of order m

Hm(Mh) := {v ∈ L2(Ω) : for every E ∈Mh, v|E ∈ Hm(E)}.

Definition A.5.2. Broken norm and seminorm
The broken Sobolev space Hm(Mh) is equipped with the norm

|‖v‖|Hm(Mh) =
 ∑
E∈Mh

‖v‖2
m,E

 1
2

and the broken seminorm

|‖∇v‖|H0(Mh) =
 ∑
E∈Mh

‖∇v‖2
0,E

 1
2

.

We now have
Hm(Ω) ⊂ Hm(Mh) and Hm+1(Mh) ⊂ Hm(Mh).
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A.6 Elliptic regularity

Theorem A.6.1. [Eva98, Theorem 4, p. 317] (Boundary H2-regularity)
Assume that

(a). aij ∈ C1(Ω), bi, c ∈ C(Ω)(i, j = 1, . . . , n) and

(b). f ∈ L2(Ω).

Suppose that u ∈ H1
0 (Ω) is a weak solution of the elliptic boundary value problem


Lu = f in Ω

u = 0 on ∂Ω.
(A.6.1)

Assume finally ∂Ω ∈ C2. Then u ∈ H2(Ω) and we have the estimate

‖u‖2 ≤ C (‖f‖0 + ‖u‖0) , (A.6.2)

with the constant C depending only on Ω and the coefficients of L.
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Interpolation

The results in this appendix are simplified versions of the theory in [OR76, Chapter 6],
[OC83, Chapter 4] and [SF73, Chapter 5].

B.1 The one dimensional case

The interpolation error

Theorem B.1.1 below is formulated as a special case of a general result. This result may
be found in [SF73, p.144], [OC83, p.76] and [OR76, p.279].

We will use Ĉ to denote a generic constant. Also denote the interpolation operator on an
element by Πe and the interpolation operator on the entire domain by Π. (The definitions
are given in [SF73], [OR76] and [OC83]).

Theorem B.1.1. Suppose there exists an integer k such that for each element

s(Πe) + 1 ≤ k ≤ r(Πe) + 1

for the interpolation operator Π. Then there exists a constant Ĉ such that for any
u ∈ Hk(I) we have

|Πu− u|m,I ≤ Ĉhk−m|u|k,I for m = 0, 1, . . . , k.

The interpolation operator is denoted by ΠL for piecewise linear basis functions and by
Πc for Hermite cubics.
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Corollary B.1.2. Hermite cubic basis functions.
There exists a constant Ĉc such that if u ∈ Hk(I) for

a) 2 ≤ k ≤ 4, then

‖u− Πcu‖m ≤ Ĉch
k−m|u|k, m = 0, 1, . . . , k.

b) k > 4, then
‖u− Πcu‖m ≤ Ĉch

4−m|u|4, m = 0, 1, . . . , 4.

Proof. It is clear that s(Πc) = 1 and it can be shown that r(Πc) = 3. Consequently
Theorem B.1.1 is applicable with k = 2, 3 or 4.

Corollary B.1.3. Piecewise linear basis functions
There exists a constant ĈL such that if u ∈ Hk(I) for k ≥ 2, then

‖ΠLu− u‖1 ≤ ĈLh|u|2

Proof. It is clear that s(ΠL) = 1 and it can be shown that r(ΠL) = 1. Consequently
Theorem B.1.1 is applicable with k = 2.

B.2 The two-dimensional case

Theorem B.2.1 below is formulated as a special case of a general result. As mentioned
before, this result may be found in [SF73, p.144], [OC83, p.76] and [OR76, p.279]. In
the theorem, h = max he, where he is the diameter of the element Ωe.

Theorem B.2.1. Suppose there exists an integer k such that for each element

s(Πe) + 2 ≤ k ≤ r(Πe) + 1

for the interpolation operator Π. Then there exists a constant Ĉ such that for any
u ∈ Hk(Ω) we have

|Πu− u|m,Ω ≤ Ĉhk−m|u|k,Ω for m = 0, 1, . . . , k.

Remark The constant Ĉ depends on the shape of the elements in the finite element
mesh.

 
 
 



Appendix B. Interpolation 168

Corollary B.2.2. Piecewise linear basis functions on triangle elements.
The interpolation operator is denoted by Π4. If k ≥ 2, then there exists a constant Ĉ4
such that for any u ∈ Hk(Ω) we have

|Π4u− u|m,Ω ≤ Ĉ4h
2−m|u|k,Ω for m = 0, 1, 2.

Corollary B.2.3. Piecewise bilinear basis functions on rectangle elements.
The interpolation operator is denoted by Πb. If k ≥ 2, then there exists a constant Ĉb
such that for any u ∈ Hk(Ω) we have

|Πbu− u|m,Ω ≤ Ĉbh
2−m|u|k,Ω for m = 0, 1, 2.

Corollary B.2.4. Hermite cubic basis functions.
The interpolation operator is denoted by Πc. If k ≥ 2, then there exists a constant Ĉc
such that for any u ∈ Hk(Ω) we have

|Πcu− u|m,Ω ≤ Ĉch
2−m|u|k,Ω for m = 0, 1, 2.

B.3 Vector-valued functions

If an interpolation operator Π is defined on Hk(Ω) we may define one on Hk(Ω)2. For
u = 〈u1, u2〉 ∈ Hk(Ω)2, we define

Π2 u = 〈Πu1, Πu2〉 .

The seminorm of order k for Hk(Ω)2 is denoted by | · |k,2 and

|u|2k,2 = |u1|2k + |u2|2k .

(See Appendix A.)

Lemma B.3.1. If ‖Π v − v‖m ≤ Ĉhk−m|v|k for v ∈ Hk(Ω), then

‖u− Π2u‖m,2 ≤ Ĉhk−m|u|k,2 for u ∈ Hk(Ω)2.
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Proof.

|u− Π2 u|2m,2 = |u1 − Πu1|2m + |u2 − Πu2|2m

For piecewise bilinear basis functions on rectangles, let ΠB u = 〈Πb u1,Πb u2〉.

Corollary B.3.2. If k ≥ 2, then there exists a constant Ĉ such that, for all u ∈ Hk(Ω)2

|u− ΠB u|m,2 ≤ Ĉh|u|2,2 for m = 0, 1, 2.

Proof. The result follows from Corollary B.2.3 and Lemma B.3.1.

For piecewise bicubic basis functions on rectangles, let ΠBc u = 〈Πbc u1,Πbc u2〉.

Corollary B.3.3. If k ≥ 2, then there exists a constant Ĉ such that, for all u ∈ Hk(Ω)2

|u− ΠBc u|m,2 ≤ Ĉh|u|2,2 for m = 0, 1, 2.

B.4 Three-dimensional case

Theorem B.2.1 is also valid for the three-dimensional case.

Corollary B.4.1. Piecewise linear basis functions on tetrahedron elements.
The interpolation operator is denoted by Πt. If k ≥ 2, then there exists a constant Ĉt
such that for any u ∈ Hk(Ω) we have

|Πtu− u|m,Ω ≤ Ĉth
2−m|u|2,Ω for m = 0, 1, 2.

B.5 General interpolation assumption

Assumption GI

There exists a subspace H(V, k) of V , and positive constants CΠ and α (depending on
V and k) such that for u ∈ H(V, k):

‖u− Pu‖V ≤ CΠh
α‖u‖H(V,k),
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where ‖ · ‖H(V,k) is a norm or semi-norm associated with H(V, k).

 
 
 



Appendix C

Some inequalities

Lemma C.1. Young’s inequality
For any ε > 0 we have

ab ≤ a2

2ε + εb2

2 .

Proof. We have
(εa− ε−1b)2 ≥ 0,

which implies that
ε2a2 + ε−2b2 ≥ 2ab

and the result follows.

Lemma C.2. We have
(x− y, y) ≤ 1

2(x, x)− 1
2(y, y).

Proof. Following from the Cauchy-Schwartz inequality and Young’s inequality we have

(x− y, y) = (x, y)− (y, y)

≤ (x, x) 1
2 (y, y) 1

2 − (y, y)

≤ 1
2(x, x) + 1

2(y, y)− (y, y)

= 1
2(x, x)− 1

2(y, y).
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Appendix D

Notation

Nonstandard notation in Chapter 3

u(k) ∈ L2
(
J ;Y

)
if u(k)(t) ∈ Y for each t and

∫
J ‖u(k)‖2

Y <∞.
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