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Abstract 

A critical gap of knowledge has been noted in breast cancer detection, prognosis, 

and evaluation between tumor microenvironment and associated neoplasm. 

Artificial intelligence has multiple subsets or methods for data extraction and 

evaluation, including artificial neural networking, which allows computational 

foundations, similar to neurons, to make connections and new neural pathways 

during data set training. Deep machine learning and artificial intelligence hold 

great potential to accurately assess Tumour Micro Environment (TME) models 

employing vast data management techniques.1-6 

Despite the significant potential AI holds, there is still much debate surrounding 

the appropriate and ethical curation of medical data from Picture Archiving and 

Communication Systems (PACS).  Artificial Intelligence (AI) output's clinical 

significance holds its outcome based on its human predecessor's data training 

sets. Integration between biomarkers, risk factors, and imaging data will allow the 

best predictor models for patient-based outcomes.  
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Introduction: 36 

The tumor microenvironment or surrounding stroma contains various vital  

components such as immune cells and extracellular matrix, which act against  

antitumor immune cells. This leads to tumor progression, and ultimately  

metastasis7-10. The stromal environment contains many interesting signaling  

pathways and molecular structures related to prognostic outcomes of breast  

cancer9. The genetic alterations of cancer cells related to signaling pathways  

control both the processes of tumorigenesis and progression. These alterations  

are due to overexpression of oncogenic mutations such as growth factor receptor  

tyrosine kinases and nuclear receptors such as estrogen receptors. Due to the  

above complexities related to cancer signaling networks, the efforts to produce  

anticancer drugs are challenging due to inordinate signaling pathways, translating  

to pathway reactivation. However, individual pathways, such as Ras-ERK, are  

strongly related to cancer mutations and promise targeted therapies in the  

future11.  

The latest studies are now focusing on the tumor microenvironment as a critical  

element for determining tumor development, progression, and treatment  

response5,8,12-13.  

In the same research interest, artificial intelligence has multiple subsets or  

methods for data extraction and evaluation. One such method is artificial neural  

networking5,12,14-16, which allows computational foundations, similar to neurons,  

to make connections and new neural pathways during data set training ( See  

Figure 1). One such method used for quantitative biology is massive parallel  
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Figure 1. Illustration of mechanistic framework model. 
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reporter assay (MPRA), which assesses DNA4. This allows biologists the ability to  

predict molecular interactions and gene interactions. The mechanistic framework  

of gene regulation allows the possibility of new therapies to be developed2,7-8,13.  

There is a lack of congruence between biologists and Artificial Neural Networking  

(ANN) systems; the latest custom ANNs allow mathematical assumptions of  

common biological concepts so that the output is relayed as how a biologist would  

interpret results6,12,14-16.  

The first attempt at computerizing medical images17 occurred during the 1960s,  

which is, to date, an important research topic in medical imaging with recent  

research delving into the artificial intelligence era for the medical field18-20.  

Computer-Aided Detection (CAD) serves as a diagnostic aid to support the  

physician's role by using non-invasive and accurate computer systems17. CAD  

incorporates quantitative analysis of images during the diagnostic process,  

proven from previous studies to increase the sensitivity of diagnosis by 21.2% and  

reduce the false-negative rate of diagnostic screening by 77%. Despite this figure,  

automated detection software is not widely used during breast screening21. A  

prospective study using CAD software during diagnosis has shown a 74% increase  

in cancer detection21. Certain technical advances in breast imaging—such as  

harmonic tissue imaging, compound imaging, and an extended field of view— 

have made its use integral during a breast cancer diagnosis. Standardized CAD  

techniques used in conjunction with ultrasound reduce the inter-observer  

variation.20   
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The detection rate of invasive cancers measuring less than 1 cm increases with 

the use of CAD systems. It can reduce false-negative rates from 31% to 19%,22-23 

in conjunction with dedicated breast imagers. The system assigns various 

sensitivity and specificity rates to cancers based on the lesion type. The sensitivity 

for malignant calcifications is 86–99% with CAD, with only 57% marked as 

amorphous calcifications24. The sensitivity for masses is estimated at 43–85%25. 

Further research is required to recognize suspicious asymmetries as they develop 

over time during serial imaging follow-up and assess the medico-legal implication 

of retained CAD-marked image information. A more extensive explanation of the 

various AI subtypes is discussed below. 

Artificial Neural Networking (ANN) is the process of nonlinear mapping between 

set inputs to outputs. It achieves physical performance using dense processing 

elements similar to biological neurons. The ANN can learn and generalize from 

the examples given. Success is measured if complex linear functions govern the 

relationship between variables. Evolutionary computing consists of a collection of 

algorithms based on population evolution towards the solution of a problem. It is 

subdivided into genetic algorithms, genetic programming as well as evolutionary 

algorithms. Successful use is measured utilizing selecting features for 

classification of mammogram calcifications4,10,26-28.  

Overall the best approach is to combine these three main methods, for example, 

using a fuzzy logic system to design ANN evolutionary computing in automatic 

training and generating ANN architecture. Feature extraction can reduce an image 

to a small set of parameters called features (See Figure 4). The quality of a feature 
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depends on its contribution to detection, cancer classification, and the  

preprocessing steps and classification methods17,27,29.  

The quality of features cannot be categorized; due to the quality of a feature  

depending on its contribution to detection, classification, prognosis, and features  

dependent on its preprocessing steps and the classification measures. There are  

various types of features, such as geometric features, which refers to factors such  

as size and shape. The boundary is the starting point of extracting an object using  

AI. Various boundary methods are used, such as binary sets, which refers to the  

sets of pixels in a grayscale image, and edge detection, which defines an object by  

its edges. Other geometric features include area, volume, contrast, counting  

pixels inside an object boundary, perimeters as well as shape (no single shape  

descriptor can be used on its own to define an object)15-16,28,30-32.   

A computation method of predictive models through algorithms is referred to as  

machine learning. As more data is applied to the training data set, accuracy and  

predictability are optimized. Over the years, advances in algorithms and machine  

learning have allowed deep learning in recent studies. This has a similar output as  

the human brain's neural architecture, with neural nets responding to multiple  

data set training cycles using statistical frameworks. This learning method is ideal  

for image classification in radiology and pathology with above-average accuracy  

compared to human reader outputs3,6,28,33-35.  
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The tumor microenvironment  

The breast cancer microenvironment can be subdivided into three main subsets: 

local, regional, and distant. Each of these proposed subsets contains cellular 

contents such as fibroblasts, leukocytes, extracellular matrix, cytokines, growth 

factors, and hormones7, described in detail below as the various cell type subsets 

related to breast cancer diagnosis and prognosis. 

As Dvorak stated, tumors are much more than wounds that do not heal. Tumor 

cells undergo significant changes causing release from regulatory signals, 

promoting proliferation and invasion. The most crucial factor thereof is the 

overexpression of Vascular Endothelial Growth Factor (VEGF), allowing 

surrounding stroma to be incorporated in its progression process.36 

The use of AI technology to improve diagnostic detection rates and remote 

disease monitoring can reduce the overall time required for overall patient 

treatment planning. Anti-VEGF agents and AI-generated prognosis have been 

studied using vision loss, which could promote the prevention of vision loss before 

its occurrence37. 

The angiogenesis process includes a complex interplay between tumor, 

endothelial, and stromal cells, promoting tumor growth. A study in 2006 found a 

novel method of assessing angiogenesis employing chick embryo and its 

chorioallantois membrane. An automated image analysis method was developed 

able to quantify the microvessel density and growth potential in images. This 

shows the potential to be used for tumor growth detection in breast cancer 

imaging,6,8,14,36,38; however, it lacks efficacy for extensive tumor series analysis of 
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TME. Other methods proposed for TME composition analysis are Gene Set  

Enrichment Analysis (GSEA- San Diego), xCell (California), and Timiner (Russia),  

which allows immunogenic analysis and quantification of the immune infiltrate5,8- 

9,13,16,39-40.   

GSEA41 is a computational method able to define concordant differences between  

two biological states as a statistical output (See Figure 2)41. xCell42 is a novel  

signature-based method used for 64 immune and stromal cell types. Utilizing in  

silico analyses and cross-comparison to cytometry immunophenotyping, xCell  

shows excellent promise when compared to other methods42. Timiner43 is a  

computational pipeline used for the assessment of tumor-to-immune cell  

interactions based on sequencing data.   

Anther computational method44 in 2016 reported a Microenvironment Cell  

Populations counter (MCP counter) that analysis the transcriptomic markers in  

single-cell populations, but this method is robust compared to other used  

samples.8  

The discussion below states the current body of knowledge and attributes of each  

factor/cell/protein related to breast cancer and the tumor microenvironment,  

followed by the latest technology and insights related to artificial intelligence and  

deep machine learning. 
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Figure 2. A method of gene expression signature profiling. 
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Fibroblasts and tumor progression  

The vast majority of cells within the TME are fibroblasts, secrete various soluble  

factors modulating tumor stroma, growth, and invasion properties. Recent  

studies have found that cancer-associated fibroblasts have unique protein  

expression profiles making them unique in their identification properties. A bi- 

directional signaling pathway9 has also been suggested between these unique  

fibroblasts and their adjacent cancer cells, suggesting a possible influence in the  

transcription of breast cancer cell profiles. This was also affirmed by Orimo et al.  

38, that cancer-associated fibroblasts enhance tumor angiogenesis.  

These individual cells' origin has been suggested as either bone marrow, normal  

fibroblasts, and even epithelial-mesenchymal transition processes7.  

The microcellular environment is maintained by fibroblasts using remodeling of  

the extracellular matrix9,36. Fibroblasts, associated with carcinoma, have unique  

characteristics that promote tumor progression, presenting as either  

heterogeneous or myofibroblasts with fibroblast activation protein. The potential  

of carcinoma-associated fibroblasts promoting tumor growth uses secreted  

stromal-derived factor-1, acting as a paracrine activator that increases tumor cell  

proliferation through CXCR438.  

An interesting finding was a co-culture of fibroblasts in healthy breast tissue  

"educating" fibroblasts to secrete HGF to promote tumor progression activities.  

The main question that arises from these studies is: "where do these cancer- 

associated fibroblasts derive from?". One hypothesis is that healthy fibroblasts  
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undergo phenotype modification from constant aberrant signaling from adjacent  

tumor cells45.  

Dendritic cells (DC) and the role of Estrogen receptors  

Dendritic cells play an essential role in prohibiting neoplastic cell growth by  

presenting antigens to CD4+ and CD8+ and T cells7-10,13-14,36,38-39. Dendritic cells'  

maturation process depends on their local microenvironment, which determines  

its tolerance of immunosuppression of localized neoplastic invasion. Surrounding  

tumor-associated stroma has shown in previous studies DC with an inability to  

stimulate antitumor immunity. These so-called tumor-associated DC produce  

proangiogenic factors, enhancing endothelial cell migration, causing tumor  

progression6,8,14,36,38.   

DCS has multiple roles in essential processes such as immunity, autoimmunity,  

and differentiation of T cells. They are mainly activated by stress response or  

pathogen-induced damage, which causes the secretion of cytokines stimulating T  

lymphocytes and immune response. Estrogen receptors play a crucial role in DC  

function7-10. When the DCS ligand binds to ERs, it triggers migration processes.  

Recent studies have shown that treatment of E2 alongside mature DCs and T cells  

could stimulate T cell proliferation6,13.  

Fibroblast, dendritic cells, and artificial intelligence  

Fibroblasts play a role in mortality prediction of idiopathic pulmonary fibrosis  

(IPF). The use of AI to quantify prognostic histological features was studied, and  

found interstitial mononuclear inflammation and intra-alveolar macrophages  

proved as novel biomarkers in detecting IPF46. A group of researchers at Osaka  
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University developed an artificial intelligence-based system to identify various  

cancer cells utilizing microscopic images. A convolutional neural network was  

trained with 8000 images of cells obtained from a phased contrast microscope.  

Following the data set training process, another 2 000 images were tested to  

distinguish mouse cancer cells from human cells and radioresistant cells from  

radiosensitive ones. This study holds much promise in developing a universal  

system able to identify and distinguish between all variants of cancer cells47.  

Another researcher group based in Boston and Tufts Medical Centre, developed  

multiple artificial intelligence tools to detect and tract dendritic cells. An AI  

algorithm was developed using in vivo confocal microscopy (IVCM) analysis of the  

human cornea, typically done manually, making it a time-consuming process. The  

use of such AI models for analysis ensures high accuracy and reduced objectivity  

associated with human analysis48.  

Macrophages, lymphocytes and the role of Estrogen receptors  

Macrophages associated with tumor cells display unique phenotyping, promoting  

tumor growth, angiogenesis, and tissue remodeling4-5,7-10,12-16,36.   

The immune response includes a key role of macrophages to promote T cell  

recruitment and activation. Their collaborative activation alongside T and B cells  

is due to cytokines, chemokines being released7,14,39. Despite their functional role  

in tumor defense, they are actively present in the tumor microenvironment  

leading to tumor progression and immunosuppression. Many articles report ER  

present in macrophage precursor cells during various stages of its differentiation  

process. E2 treatment has shown to change macrophage behavior2-10,12,14-16,38-39.  
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A key player in recent research in the tumor microenvironment has been  

lymphocytes16. Lymphocytes are mostly T cells, CD4+ helper cells, T reg with CD4+,  

and CD 8+ cells.   

T reg cells in the tumor microenvironment block its normal antitumor function  

and suppress other immune cells such as CD8+ T cells. T reg also produces a large  

amount of RANKL4-10,12-16,33,36,38-39, which promotes metastasis and RANK- 

expressing neoplastic cells. A high concentration of T reg cells is associated with  

advanced type breast cancer. This is postulated as neoplastic cells recruiting T reg  

using prostaglandin E2 secretion, suppression effector cells, producing an  

immunosuppressive microenvironment.4,7,9,15,36  

Macrophages, lymphocytes, and artificial intelligence  

Machine learning (ML) can distinguish various cell and tissue types in a biopsy  

specimen based on a training set of "ground truth" examples. A research study in  

2018 made use of ML algorithms as a method to identify macrophages from  

digital scans of non-small cell lung carcinoma tissue slides. The study compared  

pathologist output to the ML algorithm, which held improved accuracy compared  

to human- reader intervention and output.49  

A Working Group collaboration with the Massive Analysis and Quality Control  

Consortium works on machine learning algorithms to characterize tumor- 

infiltrating lymphocytes. Such methods will enhance the validity of prognostic  

prediction methods in pathology. besides the clinically evident improved  

prediction rates of ML, it also permits changes to the current feature set used for  
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ML analysis, thus improving accuracy and interpretation to current standard  

methods.50  

Extracellular matrix (ECM), Mast cells, and neutrophils  

The main proteins within the complex ECM are collagen (structural), fibronectin  

(glycoproteins), and chondroitin sulfate (proteoglycans). Recent studies have  

shown that ECM9 is more versatile than initially thought, acting as a critical player  

in cell growth, proliferation, and migration. In cancer, ECM is typically  

disorganized in appearance, causing abnormal feedback regulatory mechanisms.  

This is mainly due to ECM metabolism being altered by CAF and immune cells5,8- 

9,13,16,39. One of the main proteins within ECM, namely collage, promotes cancer  

cell invasion using collagen IV degradation. ECM also promotes the passage of  

cytokines and growth factors, enabling intercellular communication. The  

alteration in protein activity is seen in cancer is associated with patient outcomes.  

Mast cells (MCs) form part of the immune system, associated with parasitic  

infections. Depending on the type of inflammatory stimulus, mast cells release  

various inflammatory mediators. Mucosal MCs produce tryptase, whereas  

connective tissue MCs secretes tryptase, chymase, and carboxypeptidases. All of  

these enzymes, along with IL-8, TGF-β, and TNF-α, have a strong association with  

angiogenesis and MMP modulation of various breast cancer phenotypes.5,14-15  

ERα has been found evident in mast cells. The treatment of E2 has shown, in rat  

mast cell models, a release of histamine. This process is enjoyable because  

histamine release plays a role in breast cancer promotion utilizing its H3R and H4R  

receptors. 6,13  
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Neutrophils are a fundamental component of the immune response, acting as a  

first-line defense mechanism against infection employing phagocytosis.  

Neutrophils work alongside other immune-fighting cells such as macrophages and  

Dendritic cells (DCs).5,8-9,13,16,39  

Neutrophils are known to have nuclear receptions, and E2 and ER binding help  

regulate neutrophil survival and function. Several serine proteases are secreted  

by neutrophils, such as neutrophil elastase (NE), proteinase 3 (PR3), and cathepsin  

G (CG), essential for infectious agent elimination and inflammation  

modulation.7,36  

Mast cells, extracellular matrix, neutrophils, and artificial intelligence  

One of the critical elements of mast cell granules is histamine, as it has been  

shown to promote tumor cell proliferation and growth of mammary carcinomas  

through H2 receptors51. A study attempting to assess through machine learning  

functional genomic networks discovered histamine hypersensitivity in response  

to a local inflammatory response, which begs the question of its underlying  

molecular and genetic traits and how machine learning could promote its  

prognostic indicators role in tumor progression52. Many research studies coin  

mast cells as the most misunderstood cell type during breast cancer proliferation  

and immune response since its discovery 140 years ago, making them a key focus  

of future research endeavors53.  

Advances in 3D cell tissue engineering have led to the development of "cancer on  

a chip" platforms, which allow the TME model to have improved analytic outputs,  

especially for discovering the role of the extracellular matrix during tumor  
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progression. The possibility of integrating artificial intelligence for improved drug  

screening models is made possible through these chip platforms54-55.  

Microscopy has reached the age of digitization with outputs such as CellaVision,  

which classifies degenerated lymphocytes and web-like remnants. The  

researchers hypothesize that these remnants are Neutrophil Extracellular Traps  

(NETs). They aim to develop an AI platform able to detect NETs rapidly on blood  

smears56.  

The use of computational models to screen endocrine-active compounds holds  

much promise as a cost-effective alternate method in practice. A machine- 

learning algorithm was applied to over 7500 compounds related to nuclear  

estrogen receptor (ERα and ERβ) activity. The model's performance was  

evaluated using receiver-operating curve values obtained from fivefold cross- 

validation procedures, which proved values ranging from 0,56-0,866,35.  

The following sections elaborate on the surrounding environments related to  

breast cancer and TME. Each section will discuss the current trends and research  

and the latest AI technology being developed. 
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Breast cancer and local microenvironment  

Normal mammary gland development relies on appropriate cross-talk between  

epithelial and stromal cells, inhibiting abnormal cell growth and neoplasm  

formation. Myoepithelial cells have previously been known for their tumor  

suppression capabilities as they produce a base membrane barrier around luminal  

epithelial cells. The loss of such myoepithelial cells would promote in-situ  

carcinoma to invasive type carcinoma4,7-8,10,38. Two models have been suggested  

to explain this carcinoma invasion. The 'escape model' suggests genetic changes  

of tumor epithelial cells, allowing the invasion to adjacent ducts. The 'release'  

model suggests that the tumor microenvironment disrupts the basement  

membrane, allowing tumor cells to spread into the stroma (See Figure 3).  Figure  

3 describes the concept of escaped immune cells during the transition from in situ  

to invasive carcinoma. Both of these models prove the importance of both  

epithelial and stromal components in tumor progression.39  

   Artificial intelligence and the local microenvironment  

In the last decade, many approaches have been used to quantify the non- 

cancerous cell populations from acquired tumor samples, using computational  

algorithms with different statistical frameworks and data sets. The two most  

common algorithms used for TME estimation are regression-based deconvolution  

algorithms and gene-set enrichment methods. The algorithms are dependent on  

pre-acquired knowledge of the data sets for accurate measurement, a statistical  

framework, and a pre-determined signature for each cell type. The regression- 

based deconvolution algorithm determines the gene expression profile ratio in  
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Figure 3. Illustration of escape model from in situ to invasive carcinoma. A: In situ carcinoma and the immune environment. B: Locally invasive in situ carcinoma. C: 
Invasive carcinoma causes enrichment of TREG gene sets and less activated CD8 + T cells. 
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the total tumor expression profile. Gene-set enrichment assigns scores to the  

various cell types as a function of its expression in each gene set57.  

A recent study of the University of Eastern Finland6 developed an AI model  

capable of predicting breast cancer risk based on demographic risk factors and  

genetic variants. The method used for the AI model is a gradient tree with  

adaptive iterative searching methods. The gene interaction map included ESR1 an  

FGFR1 genes2,4-9,13-16,36,38,58, linked to estrogen receptor subtype breast cancer.  

Since cancer incidence is a multifactorial process, the use of AI in predicting breast  

cancer risk through this novel method holds much promise for future disease  

incidence6,12,15.  
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Breast Cancer and the Metastatic microenvironment 

During the complex metastasis process, tumor cells either have a dormant state 

or an active state of forming micrometastases. During the primary tumor 

recruitment, the cytokines select associated bone-marrow cells to incur a 

premetastatic process before tumor mobilization occurs. It has been noted from 

previous studies that fibroblasts and cancer cells travel alongside one another 

during the metastatic process. Breast cancer cells promote receptor activate 

nuclear factor κβ ligand (RANKL) through active secretion of cytokines and growth 

factors4,6-7,9,13,36,38. This activates osteoclast formation and bone resorption. 

RANKL has more recently been noted in the formation of lung metastases, thus 

providing a hypothesis of specific immune cells partaking in metastases' 

formation. 

The seed planted in the soil concept confirms that malignant disease remains the 

foundation of a tumor progressing, whereas the tumor microenvironment 

facilitates these cancer cells' invasion ability. For this reason, research currently 

focuses on epithelial-mesenchymal transition (EMT), where specific mediators 

allow the progression of tumor cells to invasive type lesions. Examples of these 

mediators are IL-1, IL-6, and IL-8, which allow tumor cell proliferation with EMT 

increasing their ability to metastasize4,7,16,38. 

A fundamental attribution to tumor progression and drug resistance is the tumor 

microenvironment. This implies that various ill-controlled cells all relate to cancer 

progression. This concept has been around since the 1880s, where Steven Paget 

suggested the "seed and soil" concept59, where fertile soil (the tumor 
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microenvironment) and the seed (cancer cells) work in harmony to promote 

growth. 

Both intrinsic and extrinsic inflammatory pathways promote an inflammatory 

microenvironment. Tumor cells promote inflammatory mediators, which leads to 

the progression of cancer within the microenvironment using T cells, NK cells, 

macrophages, and dendritic cells.36 

Artificial intelligence and the metastatic microenvironment 

Recent AI insights allow assessing molecular subtypes and their therapeutic 

response utilizing predictive image analysis of breast cancer phenotypes.  

In a research study of the TCGA Breast Phenotype Group5,15, multidisciplinary 

researchers phenotypically characterized 84 solid breast tumors to gain insights 

into the underlying molecular characteristics and gene expression profiles. 

Significant similarities were noted between enhancement texture (entropy) and 

molecular subtypes (normal-like, luminal A, luminal B, HER2-enriched, basal-like) 

even after controlling for tumor size (P = .04 for lesions ≤2 cm; P = .02 for lesions 

from 42 to ≤5 cm). 14-15,36,39,59 

Regarding treatment outcomes, a semi-manual delineation method of tumor 

volume using breast MRI imaging proved a high prediction anomaly for low 

recurrence rate in patients, proving the potential for digital automation in its 

prediction outcomes. 
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Breast Cancer and infiltrated immune cell microenvironment  

Significant gene expression changes occur within myoepithelial cells, confirming  

a change during tumor progression in the microenvironment. An example of  

overexpression of genes is chemokine CXCL14, binding to CXCR4, promoting  

proliferation and migration of tumor cells. Others also confirmed this study that  

changes in the stroma and gene expression occur most frequently when healthy  

breast tissue transitions to DCIS. 7,38,58  

Since breast cancer is a heterogeneous disease, it has three main phenotypes:  

luminal, human epidermal growth factor receptor type, and triple-negative type.  

Since breast cancer promotes an inflammatory microenvironment, immune  

filtration is presently based on Estrogen Receptor (ER) presence7,13,33,38. There is  

a substantial proportion of natural killer cells and neutrophils within ER-positive  

breast cancer and cytotoxic and TCD4+ cells in smaller amounts. The presence of  

eosinophils, monocytes, and B lymphocytes proved a good prognosis following  

chemotherapy.5,8,39,59  

Artificial intelligence and molecular alterations of the microenvironment  

Despite the significant potential AI holds, there is still much debate surrounding  

the appropriate and ethical curation of medical data from Picture Archiving and  

Communication Systems (PACS).  The clinical significance of AI output still holds  

its outcome based on its human predecessor's data training sets.   

The integration between biomarkers, risk factors, and imaging data will allow the  

best predictor models for patient-based outcomes.5,7,60  
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State of the art research has found a machine learning approach, named  

CytoReason(Version 1.0)1, distinguishing between nivolumab responders and  

non-responders. Since adipocytes are postulated to be involved in the tumor  

microenvironment, this study also showed evidence of their regulatory role in  

ipilimumab resistant nivolumab patients. The study requires extensive research  

on adipocytes' role in tumor progression, leading to new immunotherapy  

methods. Cytoreason1 integrates genetics, proteomics, cytometry, and literature  

with machine learning to help create disease models.   

A key focus on T-cell subsets related to cancer immunology and therapy is  

adamant as a prediction of such subsets could promote advances in immunology  

research. A research group developed a method, Immune Cell Abundance  

Identifier (ImmuCellAI – China), which allows gene set signature-based algorithms  

to estimate the abundance of 24 immune cell types from gene expression data61.  

However, the method has limitations, such as measuring the abundance of cells  

being limited to the deviation from gene signatures. The method also did not  

include spatiotemporal attributes of the immune cells61.   

A wild-type adeno-associated (AAV) particle capsid is currently the most  

commonly used gene therapy method due to its established ability to deliver gene  

material to organs. However, few naturally derived AAV capsids are deficient in  

the essential components required for gene therapy. A group of researchers at  

Harvard developed machine learning technology to engineer new, improved  

capsids for therapeutic use.   
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Starting at Harvard in 2015, the authors set out to overcome the limitations of  

current capsids by developing new machine-guided technologies to rapidly and  

systematically engineer a suite of new, improved capsids for widespread  

therapeutic use, which outperformed AAVs generated by conventional random  

mutagenesis approaches. This demonstrates a powerful tool for sizeable broad- 

scale DNA synthesis, iterative machine-guided design to develop improved  

synthetic AAV capsids62-63.  

The current and latest trends to local, metastatic, and microenvironment hold  

much potential for the forthcoming years in breast cancer research and AI  

technology. The next section discusses the most recent research and trials, which  

have been done in the past year of 2020.  
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Artificial intelligence and beyond  

A recent 2020 study in Italy16,34 focused their research on predicting the disease,  

establishing a therapeutic plan, and patient-focused follow-up sessions. In this  

regard, a multidisciplinary approach has been encouraged during the  

development of the Multigene Signature Panels and Nottingham Prognostic  

Index. Machine learning allows the cross-correlation of prognostic indicators to  

determine possible markers related to patient outcomes. Two machine learning  

methods were deployed, namely Artificial Neural Networking and Support Vector  

Systems using SPSS IBM Modeller 18.1 software. Their accuracy, sensitivity and  

specificity was measured as 95,29%-96-86%, 0,35-0,64 and 0,97-0,99  

respectively34. The study was limited to a select study population without long- 

term recurrence following 20 years of remission in breast cancer patients.  

Breast cancer comprises a complex genetic background, and the intricate  

relationship between these cancer cells and surrounding stromal/immune cells is  

essential to ensure adequate treatment methods are implemented. In vitro cell  

culture systems lack the dedicated physiological outputs during drug testing8,38.  

Mouse models have the ideal animal model for assessing drug tolerance;  

however, it is limited in testing humans' tumor microenvironment.  Various  

models have been proposed for tumor microenvironment studies, where the  

latest in vitro 3D models can study both cell-cell and cell-material interactions  

parametrically.8,38  
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Figure 4. Illustration of ML mechanistic framework. ML, machine learning. 
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The use of stromal-to-epithelial yield using spatial extraction of features is also a  

novel approach to assessing disease progression. These studies allow further  

insights into the role of epithelial and stromal cells and an alternate tiered  

approach to deep machine learning.4,9-10,14,16,36,38-40,44,59  

The main answer all therapists, pathologists, and clinicians require is an improved  

prognosis method in breast cancer. Shimizu and Nakayama64, developed a  

complete atlas of prognostic breast cancer genes, a computational framework  

and prediction score, applicable to all breast cancer subsets. The method is  

unique in its stratification of patients at the clinical stage and estrogen receptor- 

negative subtypes64.  

28



 

Conclusion 

The use of tissue engineering65 in cancer research allows an accurate 

representation of TME in human studies5,10,15. Since there is currently vast 

recognition of TME in tumor progression, it is now the current therapeutic 

research focus. New strategies to normalize the surrounding stroma, modulation 

of the immune system, and antitumor activity enhancement are evident. The 

critical role of E2 and its signaling pathways requires more research on the use of 

intertumoral therapy as part of an adjuvant therapy approach to immune 

response. 

Despite some limitations in mouse models, the data supports the role of TME in 

the treatment of breast cancer.4,6-7,9-10,13,15,33,66 

The various tumor microenvironment elements and their latest research 

endeavors using AI and DML shows that the purpose of improved prognostic and 

therapeutic methods is adamant. The role of unique cancer signaling pathways, 

targeted therapies, and novel diagnostic trends will boast significant strides when 

conjoined with the AI, as mentioned earlier in practice. The development of a 

comprehensive prognostic cancer gene mutation atlas will be a step into the 

future generation for pathologists, even more so as a multidisciplinary approach 

for developing the Multigene Signature Panels and Nottingham Prognostic Index. 

Although most studies are experimental and within clinical trials, the possibility 

of integrating such methods in clinical practice is an almost certain future. 
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