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Table of abbreviations

A table summarising the abbreviations used throughout this report is presented below with the corresponding
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Abstract

Animal movement is a fundamental part of ecology, and aids in understanding and modelling of social responsibility

phenomena including population and community structure dynamics. Movement of animals is often characterised

by direction (measured on the circle) and distance (measured on the real line); but traditional employed models

often do not account for potential asymmetric directional movement, or departures from the usual gamma or

Weibull assumptions for distance. This study focuses on the modelling of circular data in this animal movement

environment on previously unconsidered circular distributions such as the sine-skewed von Mises distribution which

may allow and account for departures from symmetry. In addition, alternative models to the aforementioned

gamma or Weibull assumptions for distance are considered, namely the power Lindley (as a mixture of gamma

and Weibull) as well as a Gumbel candidate. Computational aspects and investigations of this joint modelling is

highlighted, particularly via the illustration of an extensive bootstrap study. A general hidden state Markov model

is used to incorporate both these essential components when estimating via the use of the EM algorithm, and

goodness of fit measures verifies the validity and viable future consideration of the newly proposed theoretical

models within this practical and computational animal movement environment. The ethics number for this study

is NAS124/2019.
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1 Introduction

In ecology, the understanding and relationship between animal movement and their respective habitat heterogeneity

(including the classification and characterisation of various strategies used by animals to locate sites for safety and

forage) are difficult. The understanding of these movement and behavioural patterns with consideration of the

consequences of climate change, pollution, land use and the proliferation of other invasive species and diseases

in the manner of the motion of hosts and their pathogens into new impuissant areas [40]. A major challenge in

the modelling of animal movement with consideration to various environmental features is in the validation of a

suitable statistical model and approach since the true and exact behaviours of animals are rarely known, despite

technological advancements in animal tracking.

Modelling animal movement and locations provide fundamental insights into mechanisms behind the distribu-

tion and behaviours of the particular animal. Originally, animal data collection was performed manually on foot by

using fieldwork. Various technological advancements, such as the development of the Global Positioning System

(GPS) and geographic information systems (GIS) permit the collection of large amounts of animal movement data

with a certain degree of accuracy. The collection of this data then allows researchers to investigate the influence

of the animal’s environment on the animal’s displacement. These developments provide more accurate readings

of movement and displacement which are not limited to logistics or sunlight, as well as images and footage of

the animals in their respective habitats without a human risk factor, which was prevalent when manual recordings

were originally performed.

There is no single universally known accepted method for the inference of the behavioural states (such as

resting", "foraging" and "travelling") which generate the recorded geographical location of animals. To model

animal movement, various robust statistical techniques and pliable animal movement models are required [32].

Within an equally-spaced discrete time environment, displacement may be characterised by the direction and

distance between two consecutive points with a circular-linear process modelling the movement within this two-

dimensional environment. A popular example of models used for animal movement are Hidden Markov Models

(HMMs) since they are flexible and practical to segment movement pathways into latent behavioural states [15]

of the animal’s movement. Other commonly used models include variants of random walk models, general linear

mixed models and independent mixture models.

Within this environment of animal movement models, directional movement and distance of the animal is

of utmost importance. This holds true for many animal movement models utilising hidden states to classify

the states of movement for the animal being investigated. Traditional models have included the Gamma and

Weibull distributions for distance modelling in conjunction with the von Mises distribution for directional modelling.

However, these models are sometimes limited in their flexibility and use in terms of accounting for potential

10



irregular movement patterns in both direction and distance. In this study, alternative parametric considerations

for distribution fitting for both distance and directional variables within the animal movement focus area within

statistical modelling are developed, proposed, and implemented.

1.1 Directional Models

In this section, core elements of statistical distribution theory and modelling aspects are reviewed relevant to

directional models and how they may be evaluated. The directional model includes the von Mises distribution,

which is popularly used in animal movement models to measure directional movement. In this section, the variable

θ denotes the direction in which the animal is turning whilst travelling.

1.1.1 Circular Models

Circular data is data which is measured on a unit circle in degrees or radians [10] which has a periodic nature.

Each circular observation may be considered as a point on a circle with a unit radius or vector in a plane Rn.

Furthermore, each observation may be specified by the angle being measured from the initially chosen direction

to the point on the circle corresponding to the relevant observation [28].

A popular circular distribution is the von Mises distribution which is denoted by M(µ, κ) and has a pdf

(probability density function) [28]:

g(θ;µ, κ) = 1
2πI0(κ) exp(κ cos(θ − µ)), −π ≤ θ ≤ π (1)

where I0 denotes the modified Bessel function of order 0 of the first kind (86).

The mean direction of the M(µ, κ) is denoted by µ ∈ [−π, π) and the concentration parameter is denoted by

κ ≥ 0. The von Mises distribution has a core role among other circular distributions and is often referred to as

the circular normal distribution. The variable θ is the directional deviation of the observed point from the mean

of the distribution [16].

The pdf of M(µ, κ) (1) is illustrated below for various values of µ and κ:

11



(a) The pdf of M(µ, κ) (b) The circular curve of M(µ, κ)

Figure 1: The pdf and circular curve of M(µ, κ) for −π ≤ θ ≤ π for different values of µ

(a) The pdf of M(µ, κ) (b) The circular curve of M(µ, κ)

Figure 2: The pdf and circular curve of M(µ, κ) for −π ≤ θ ≤ π for different values of κ

The shifts in values for µ and κ have different effects on the shape of the pdf and circular curve of M(µ, κ).

An increase in the value of µ results in the pdf shifting to the right whereas a decrease in µ results in a shift to

the left in the pdf. As the value of κ increases, the peak of the pdf increases and as it decreases, the pdf becomes

flatter and the peak decreases.

The von Mises distribution may be expressed with a mean direction µt depending on µt−1 and other explanatory

angles within circular regression models for biased correlated random walks (BCRW) which are introduced in

Section 5.2.3. This mean direction also depends on a homogenous error whose distribution depends on the

aforementioned concentration parameter κ. The von Mises is a favoured distribution due to its mathematical

tractability which can be implemented into circular regression models with relative analytic and computational
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ease. However, the symmetric, unimodal nature of the von Mises may be a limitation in modelling, particularly

in scenarios where the angular movement is skewed and multimodal. This would require a more flexible angular

distribution which is able to account for skewness and asymmetry.

Circular models can be quite challenging to implement into movement models. This is due to the complex

form structure and high mathematical complexity of its pdf and corresponding moments. Some circular models do

not have closed forms, making modelling and implementation quite difficult. Furthermore, multimodality in the

log-likelihood for estimating these parameters is common, making the optimisation for global maxima challenging;

so various alternative estimation procedures other than maximum likelihood need to be used.

Extensions of the von Mises distribution to model higher dimensions is obtained by expressing (1) in Cartesian

co-ordinates. An observation is then represented by a unit vector x and the corresponding mean is represented by

a unit vector denoted by ν. Then, (1) becomes [16]

g(θ; ν, κ) = 1
2πI0(κ) exp(κx′ν), −1 ≤ ν ≤ 1. (2)

In the two-dimensional case the unit vector is defined as, ν′ = [cos(µ), sin(µ)] and for three-dimensional case,

the unit vector is defined as, ν′ = [cos(ϕ), sin(ϕ) cos(µ), sin(ϕ) sin(µ)] [16]. The ϕ is the angular (directional)

deviation of the mean vector from the ’North Pole’ defined by the co-ordinate system, called the ’colatitude’ and

µ is the longitude of the mean vector.

1.2 Distance Models

In this section, core elements of statistical distribution theory and modelling aspects is reviewed regarding distance

models and how they may be evaluated. This distance refers to the distance travelled by the animal between

consecutive time steps i.e. their step lengths. To model this distance, any pdf on the positive real line may

be considered. Both distributions on the next page have a shape and scale parameter which makes them ideal

candidates for consideration. The shape and scale parameters give the distributions some unique characteristics,

however, may not always be suitable across all scenarios. For this reason, many other pdfs with different parameter

definitions may be considered and compared to the performance of the Gamma and Weibull distributions. These

distributions have been considered in literature by Nicosia et al. [32], Van Niekerk [40] and Langrock et al. [24].
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1.2.1 Gamma Distribution

The Gamma distribution is a continuous distribution which is popularly used in statistics. A continuous variable

X has the Gamma distribution with parameters κ > 0 and θ > 0 if it has the pdf [3]

f(x; θ, κ) = 1
θκΓ(κ)x

κ−1 exp
(

−x

θ

)
, x > 0 (3)

where Γ(·) denotes the gamma function (91) (see Appendix). If X has this pdf, it is denoted X ∼GAM(θ, κ).

The shape parameter is denoted by κ since it determines the shape of the pdf graph, dependent on the value of κ.

When κ < 1, the pdf exponentially decreases rapidly until it tends to zero. When κ = 1, the exponential decrease

is much slower than when κ < 1. When κ > 1, the pdf initially increases before slowly exponentially decreasing

towards zero.

The parameter θ denotes the scale parameter for the Gamma distribution. This parameter is of importance

because this ensures that the results will not be dependent on the scale of measurement used [3]. The cumulative

distribution function (CDF) of the Gamma distribution is [3]

F (x; θ, κ) =
∫ x

0

1
θκΓ(k)p

κ−1 exp
(

−p

θ

)
dp. (4)

Below, a table summarising the moments of the Gamma distribution is presented [3]:

Expected Value E(X) = κθ
Variance Var(X)=κθ2

Moment Generating Function MX(t) = (1 − θt)−k for t < 1
θ

The maximum likelihood estimators of the Gamma distribution parameters (θ and κ), are respectively given

by [3]:

θ̂ = x̄

κ̂
(5)

where x̄ denotes the sample mean from n considered observations and

ln(κ̂) − Γ′(κ̂)
Γ(κ̂) − ln

(
x̄

(
∏n

i=1 xi)
1
n

)
= 0 (6)

Note that the maximum likelihood estimator for κ does not have a closed form, so iterative procedures are used

for estimation.
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1.2.2 Weibull Distribution

The Weibull distribution is a continuous distribution popularly used as a failure-time distribution. A continuous

variable X has the Weibull distribution with parameters β > 0 and θ > 0 if it has the pdf [3] with the form

f(x, θ, β) = β

θβ
xβ−1 exp

(
−
(x
θ

)β
)
, x > 0 (7)

and zero otherwise. If X has this pdf, it is denoted X ∼Wei(θ, β). The shape parameter is denoted by β since

it determines the shape of the pdf graph, dependent on whether β < 1, β = 1 or β > 1. Furthermore, there are

various asymptotes associated with the choice of β, influencing the range of y values for the pdf. The parameter

θ is known as the scale parameter. The CDF of the Weibull distribution is [3]

F (x; θ, β) = 1 − exp
(

−
(x
θ

)β
)
, x > 0. (8)

Below, a table summarising the moments of the Weibull distribution is presented [3]:

Expected Value E(X) = θΓ
(

1 + 1
β

)
Variance Var(X)=θ2

{
Γ
(

1 + 2
β

)
− Γ2

(
1 + 1

β

)}
Moment Generating Function MX(t) =

∑∞
n=0

tnθn

n! Γ
(

1 + n
β

)
, β ≥ 1

The maximum likelihood estimators of the Weibull distribution parameters (θ and β), are respectively given

by [3]:

θ̂ =
(∑n

i=1 x
β
i

n

) 1
β

(9)

and the solution for the estimate of β̂ is the solution of the following equation

∑n
i=1 x

β
i ln(xi)∑n

i=1 x
β
i

− 1
β

−
∑n

i=1 ln(xi)
n

= 0. (10)

Note that (10) cannot be solved explicitly and would also require iterative procedures for estimation.

1.3 Background Literature On Animal Movement

Within the animal movement atmosphere, a variety of authors have developed animal movement models each with

their advantages and drawbacks. These models include individual-based models [25], multi-level models with a

generalised linear mixed model as the basis [29], advection-diffusion models [12], hidden Markov models (HMMs)

with independent mixture models [15], general hidden-state random walks [32], step selection function models

15



(SSF) [33] and biased correlated random walk (BCRW) models [11]. The selection of a particular model is based

on multiple factors, such as the aims and objectives of the study together with the chosen animal movement data

the researcher wishes to use for the application of the modelling process.

The wide variety of models already used by various authors, therefore, makes it an arduous task to design a

model which encompasses all the features of the animal’s environment and the movement of the animal within

its particular landscape whilst maintaining an interpretable and computationally efficient model. There have been

a limited amount of models which account for several movement taxis concerning features of the environment

[32]. Furthermore, models which are sufficiently flexible to account for multimodality and skewness are uncommon

in the animal movement focus area. These are common limitations in many models which should be addressed.

However, the construction and fitting process for models which can account for the aforementioned limitations

typically become more computationally demanding which is a drawback of mathematically complex modelling [32].

Many factors such as heterogeneity in the animal’s movement, step length, step angle distributions and mea-

surement errors in locations need to be addressed, which makes fitting a uniquely specified animal movement

model an arduous task [32]. However, with technological advancements, modelling improvements and further

research endeavours, implementation of such a model to satisfy the aims, objects and problem of this study would

be eased. Potential advantages and disadvantages of the model and its implementation will be critically evaluated

and compared with results obtained by other authors.

Latombe et al. (2014) designed an individual based model (IBM) 1 of a caribou’s movement that are based on

mechanisms which are generative at low emergence levels and which guarantees the model’s ability to generalise

accordingly. Forwarding mechanisms were used to parametrise the IBM’s trait, enabled by the artificial production

of surrogate data for variables at the low levels of emergence which are not accessible from the GPS data obtained.

This procedure enabled Latombe et al. (2014) to ensure that the IBM was statistically relevant to explain the

data as well as have identifiable parameters. The usage of the statistical mode as a feature of the IBM increased

the robustness of the model which therefore enabled the usage of k-fold cross-validation and emergent patterns

validation as two validation processes which are independent of each other. The advantage of using forward

modelling was the reduction of iterations required for computational ease. This system permitted a model design

that encompassed the complexity of the system as well as projections on future possible states which react

to different management plans. This ensured relevance in long-term scenario impact testing corresponding to

unobserved environmental configurations.

Moreau et al. (2012) made use of multi-level functional responses, where generalised linear mixed models

formed the modelling base for twenty-seven threatened forest-dwelling female caribou within and among certain

geographical home-ranges. It was illustrated that these functional responses may occur across multiple levels,
1IBM’s are an alternative predictive models which are able to easily integrate internal states in their relevant implementations [25]
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including nested echelons which adequately explained the plasticity in the observed habitat. Moreau et al. (2012)

discovered that there was a simultaneous response to both local and global human-related pollution disturbances

which provided evidence of a nested-echelon functional response. Their model indicated that the fixing of habitat

related requirements based on the habitat selection patterns detected were misleading due to the fact that it

overlooked malleability in the animals’ responses to habitat heterogeneity. The study demonstrated the importance

of the assessment of multi-level functional responses to explain and account for spatial dynamics and to evaluate

habitat patches losses for the caribou with human induced habitat loss [29].

Goodall et al. (2017) made comparisons between the Hidden Markov model (HMM) and independent mixture

models (IMM) using simulated and field data. While both methods have shown to provide interpretable results,

performance varied based on the data. The field data used was of sable antelope movement and African buffalo

in the Kruger National Park. All models were fitted and evaluated using R statistical software. Two methods of

comparison were used to formally compare the results of applying the two different models to the animal movement

data. The simulated data was obtained from the log-normal distribution with the parameters made identical to

that of the field data. The HMM was used as the true model with parameters assumed to be known with the true

states and the associated observed movements simulated from the true model. The HMM and IMM were fitted

to the simulated displacements with their underlying states predicted using the Viterbi algorithm and the mixture

likelihood clustering method respectively [15]. Comparisons were drawn using the state classification accuracy of

the model and the precision of parameter estimates comparing the known and estimated parameters and states.

Parameter comparisons were drawn using 90% confidence intervals and bootstrap standard errors of the estimated

parameters. This process was completed for state dependent distribution parameters for both methods as well as

the transition probabilities of the HMM [15]. The results indicated that the HMM model consistently obtained

confidence intervals which were narrower around parameters with smaller standard errors than the IMM’s. However,

for some of the data, the improvement shown by the HMM was marginal, indicating that the IMM provides an

capable alternative for the identification of an animal’s latent behavioural states. A general expectation in a

statistical perspective is for HMM’s to provide a superior balance between model extensibility and complexity for

animal movement modelling, but as shown by Goodall et al. (2017) the IMM could be an acceptable alternative

and possibly be more steadfast biologically.

Nicosia et al. (2017) propose a general hidden multi-state random walk model to describe animal movement with

a specific application to the movement of caribou in Canada. This proposed model takes movement behavioural

patterns with respect to environmental features into account using a generalisation of the biased correlated random

walk (BCRW) model where the mean direction depends on several directional targets. The direction and distance

between two consecutive locations is modelled by a circular-linear process and a hidden Markov process accounts

for changes in animal movement behaviours. This is achieved by more flexible hidden Markov state models which
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can account for directional persistence and the influence of multiple environmental targets varying across states

[32]. The EM algorithm tailored for this model was included which enabled the prediction of the hidden states

of the model and aided in the understanding of the roles of specific targets on the overall animal movement and

movement patterns. A simulation study was initially performed based on data simulating the movement of a

single animal in the plane. For this simulation study, a two-state Markov chain was generated, where the locations

of the animals was obtained by simulating a direction from a von Mises model and distance from a Markov

switching model. Two different scenarios with varying directional persistence and repulsion were used for the

simulation study. The application on the caribou movement was evaluated using two models; one with a Markov

specification for the hidden states and the other with a semi-Markov specification for the hidden states. The

distances travelled by the caribou were fitted using the gamma and Weibull distributions. The respective direction

i.e. turning angles are von Mises distributed with a specified mean direction and concentration parameter. An

important distinction to note in this model is that the model has two states, including directional persistence.

The directional analysis performed by Nicosia et al. (2017) identified two environmental features influencing the

caribou movement. Furthermore, it was discovered that directional persistence is only important when the animal

is travelling between sites. The conclusion reached by Nicosia et al. (2017) was that the proposed model describes

animal movement going towards a target well, specifically if the animal is attracted by two targets and if directional

bias is towards the closest target at a given step. This clearly improves on classical BCRW since this model permits

several movement behaviours of the animal [32].

Nicosia et al. (2017) proposed the Step Selection Function (SSF), which is a multi-state implementation of a

method which is based on a conditional logistic regression model which is used to describe animal movement. The

SSF is developed from comparing the observed animal location and other randomly sampled locations at each time

step. The SSF improves on a classical multi-state BCRW modelling since it allows a global movement strategy and

a discrete local habitat selection to evolve over time. The multi-state BCRW only considers the former [33]. Nicosia

et al. (2017) then proved that multi-state BCRW can be fitted using the multi-state SSF, which is further validated

in a simulation study and in the analysis of a real dataset. The simulation study performed included one target

which was placed in the centre of the map, which included a time-homogenous two-state Markov chain to generate

the transition matrix, as well as consensus von Mises model for the turning angles with explanatory angles simulated

from a gamma distribution, using the EM algorithm for model implementation with a filtering smoothing algorithm.

The specific scenario for this simulation study was that the animal demonstrated high directional persistence and

high attraction to the target in state 1, and high directional persistence and moderate repulsion from the target

in state 2. This simulation study illustrated that the SSF recovers well to the corresponding parameters of the

BCRW model, and has the opposite effect in the case where the control locations is a small number [33]. The

real dataset used was on the trajectory of an individual bison in Prince Albert National Park in Canada. The
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experiment distinguished between the two states and that movement and selection parameters can vary between

the two states [33]. The model was also able to identify bison foraging areas and popular trajectories when the

bison were moving between these areas. This enabled a few more significant movement behaviour findings in

their relevant movement states which highlighted certain behavioural and movement characteristics. Furthermore,

the association between the habitat features and exploratory mode gives further insight on landscape connectivity

which includes structural and functional components [33]. The findings also found that the proposed model obtains

nearly identical estimates between the multi-state general random walk model and the multi-state SSF model.

Duchesne et al. (2015) demonstrated that the log-likelihood function used for the estimation of the parameters

of the BCRW model can be approximated using the log-likelihood of SSFs. The relationship between the SSF

and BCRW models were illustrated by fitting the BCRW with maximum likelihood estimation and with the SSF

to model simulated movement data to the trajectory of bison trials in natural landscapes. Fitting a BCRW and

performing SSF analysis characterised both various movement taxes and ecology [11]. To initially estimate the

parameter β of the BCRW, the directional circular regression model and the consensus model circular regression

model were considered. The von Mises model was used to model the step angles for both the directional model and

consensus model. The simulation study was performed to compare the three methods, which are the directional

estimation method, consensus estimation method and SSF estimation method which involved two independent

animals moving on a landscape. This method of simulation avoided multicollinearity issues when simulating

movement for a single animal [11]. Three separate simulations were performed, each consisting of different

landscapes and characteristics. The results of the simulation study indicated that the estimators for the SSF and

consensus model were very similar, but the SSF estimator was slightly more variable. However, all three methods

used estimate β well, with small differences within each of the three simulations performed and each with their

own advantages and disadvantages. Another study was performed on bison trial data which was collected in Prince

Albert National Park, Canada. The analysis considered only movement taxes and directional persistence. The

estimates of the three methods are quite similar. The lack of differences between estimates might have been due to

a small amount of controls used for this particular experiment. The study therefore concludes that the BCRW and

SSF can result in similar inferences on animal movement with a broad set of outlined conditions. It was also proven

that when step angles follow a von Mises consensus BCRW model, using maximum likelihood estimation of the

parameters is equivalent to the estimation of the parameters using an SSF model with appropriate covariates and

a large number of control step angles which are randomly sampled from a uniform distribution [11]. Furthermore,

the study found that both SSF and BCRW are both useful tools for the identification of factors which control

movement decisions. The ease at which the SSF may be estimated using many statistical packages makes it

versatile and useful to use, especially since many covariates may be simultaneously considered, accelerating the

acquisition of information on the determinants of animal movement and their distributions.
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1.4 Aims and Objectives

The aims for this study is focused firstly on the goal is to introduce more flexible directional and distance models

within this existing Markovian framework which are able to accommodate the asymmetric and skewed directional

movement and observations on distance that potentially fits better under other real parametric considerations.

Secondly, the generalisation of the BCRW model to ensure that the mean direction depends on several directional

targets by embedding the directional model within the BCRW and whilst retaining interpretability will be addressed.

The EM algorithm is used to perform model fitting, enabling the posterior probabilities to be calculated for the

hidden states at each animal trajectory step.

The objectives of this study are as follows:

1. Fit a uniquely specified Markov switching model to various animal movement datasets with identifiable

parameters with a Markovian hidden process.

2. Use a circular regression model to model the direction i.e. step angle using the von Mises and sine-skewed

von Mises distributions.

3. Model the distances travelled using the Gamma, Weibull, power Lindley and Gumbel distributions.

4. Implement and fit the model using the EM algorithm and a filtering-smoothing algorithm for the hidden

Markov specification.

5. To validate the multi-state circular-linear process previously fitted by Nicosia et al. [32] on the movement

of caribou in Canada’s boreal forest by drawing comparisons on the estimates and new distributions to the

previously obtained results.

1.5 Outline of Study

In Section 2 the new directional and distance models are introduced and discussed. In Section 3 the model and its

modelling results are presented. In Section 4 the modelling results and report is concluded with special mention

of possible future research endeavours. In Section 5 (Appendix A) important theoretical results and background

theory of statistical concepts are introduced and discussed. In Section 6 (Appendix B) the code used for this

model is included.
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2 Alternative Considerations for Direction and Distance

Previously considered models were discussed in Section 1. In this section, alternative considerations are introduced.

Firstly, the directional models are introduced and thereafter, the distance models are introduced.

2.1 Direction

2.1.1 Sine-skewed von Mises Distribution

Classical circular models such as the wrapped Cauchy, wrapped normal and von Mises are subject to limitations

such as uni-modality and symmetry. The consideration and development of more flexible models which are not

restricted by such limitations is of interest.

Two methods that lead to distributions being capable of modelling asymmetry and potentially multimodality

involve the von Mises distribution. The first approach is symmetry modulation of the von Mises pdf, with the

second using mixtures of the von Mises distribution [1].

A popular method of creating skew-symmetric models is that of perturbation. The pdf of a random circular

variable Θ with corresponding location parameter −π ≤ η ≤ π is denoted by [1]:

f(θ) = 2f0(θ − η)G0(w(θ − η)), −π ≤ θ < π.

This is of importance in obtaining the expression for the sine-skewed von Mises (ssvM) pdf. In the general

approach, f0(·) and g0(·) are base circular pdfs which are symmetric around zero, with G0(θ) =
∫ θ

−π
g0(ϕ)dϕ the

cdf corresponding to g0(·) [1]. The weighting function denoted by w is an odd periodic function, which dictates

that w(−θ) = −w(θ) and w(θ) = w(θ + 2πz) for all integer values z, such that |w(θ)| ≤ π.

The issue of mathematical tractability in terms of how components are chosen arises with this construction.

This was addressed by using a wrapped Cauchy distribution and von Mises pdf for f0(·) because of their appealing

closed form. The two other components make use of the cdf of the circular uniform distribution with the following

form [1]:

G0(θ) = π + θ

2π ,

as well as the weighting function w(θ) = λπ sin(zθ). In the weighting function, the parameter λ ∈ [−1, 1] is the

skewing parameter and z is a positive integer value. These two choices correspond to perturbing f0 as [1]:

f(θ) = f0(θ − η)[1 + λ sin(z(θ − η))]. (11)

This pdf is left-skewed when λ > 0, right-skewed when λ < 0 and is unchanged when λ = 0. The results
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f(η − θ;λ) = f(η + θ;λ) and f(η) = f0(0) hold regardless of the value of λ [1]. Furthermore, the two endpoints

coincide, i.e. f(η − π) = limθ→η+πf(θ). When z ≥ 2, the pdf f(·) will be multimodal. In the case where z = 1,

(11) simplifies to:

f(θ) = f0(θ − η)(1 + λ sin(θ − η)). (12)

Any pdf obtained using (12) is referred to as a sine-skewed distribution. The cdf F (θ) of any distribution with

pdf (12) can be expressed as [1]:

F (θ) =
∫ θ

−π

(1 + λ sin(ϕ))f0(ϕ)dϕ = F0(0) + λ

∫ θ

−π

sin(ϕ)f0(ϕ)dϕ, (13)

where F0(θ) =
∫ θ

−π
f0(ϕ)dϕ is the cdf of the base symmetric distribution with pdf f0(θ).

To obtain the ssvM pdf , f0(θ) is substituted with the von Mises pdf in (12). The pdf of the ssvM distribution

is denoted by [1]:

f(θ) = exp(κ cos(θ − η))
2πI0(κ) (1 + λ sin r(θ − η)), −π ≤ θ < π, −1 ≤ λ ≤ 1, (14)

where κ ≥ 0 is the concentration parameter, −π ≤ η < π is the location parameter, ϕ ∈ [−1, 1] is the skewness

parameter and I0(κ) is the modified Bessel function of the first kind of order 0 with form (86). When r = 1, the

ssvM pdf may be both unimodal and bimodal depending on the parameter choices. However, when r > 1, the

value of r will then represent the number of modes that will be present in the pdf i.e. r = 2 will be bimodal, r = 3

will have three modes. This complements the versatility of the ssvM pdf in accounting for potential multimodality

in the data. The cdf of the ssvM is defined by [1]:

F (θ) = F0(θ) + λ

2πκI0(κ) (exp(−κ) − exp(κ cos r(θ − η))), −π ≤ θ < π, κ ≥ 0, −1 ≤ λ ≤ 1, (15)

where F0(θ) is the cdf of the base von Mises distribution.

Figure 3 illustrates pdf (14) for some arbitrary parameter choices:
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(a) The pdf of the ssvM

(b) The circular curve of the ssvM

Figure 3: The pdf and circular curve of the ssvM with λ = 1, r = 1 for −π < θ < π for different values of κ

As seen in Figure 3, as κ increases, the higher the peak of the pdf gets for a constant λ value. The lower the

value of κ, the more the pdf is skewed to the left. Now, the behaviour when the value of λ changes is illustrated:
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(a) The pdf of the ssvM (b) The circular curve of the ssvM

Figure 4: The pdf and circular curve of the ssvM with κ = 1, r = 1 for −π < θ < π for different values of λ

As seen in Figure 4 above, as λ increases, the more the pdf skews to the left. Figure 5 below illustrates the

bimodal nature of the (14):

(a) The pdf of the ssvM (b) The circular curve of the ssvM

Figure 5: The pdf and circular curve of the ssvM with λ = 0.5, r = 2 for −π < θ < π for different values of κ

The value of r = 2 illustrates the bimodal nature of the ssvM pdf in contrast to the previous unimodal pdfs

in Figures 3 and 4 when r = 1. The bimodal curves in 5 indicate that as κ increases, the peak of the pdf curves

also increases.

As part of the model investigation, the trigonometric moments are derived as a key theoretical characteristic

for this circular model.

Theorem 1. If a random variable θ has the pdf given by (14), then the pth trigonometric moment defined by (87)
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is given by [1]:

φp = exp(ipη)Ap(κ)
(

1 + ipλ

κ

)
(16)

where Ap(κ) = Ip(κ)
I0(κ) and Ip(κ) is the modified Bessel function of order p with form (86) and I0(κ) is the modified

Bessel function of the first kind of order 0.

Proof.

φp =
∫ π

−π

exp(ipθ) exp(κ cos(θ − η))
2πI0(κ) (1 + λ sin(θ − η))dθ

= exp(ipη)
[∫ π

−π

exp(ipθ) exp(κ cos(θ))
2πI0(κ) dθ +

∫ π

−π

λ
exp(ipθ) exp(κ cos(θ))

2πI0(κ) sin(θ)dθ
]

= exp(ipη)
[
φ∗

p + λ

∫ π

−π

exp(ipθ) exp(κ cos(θ))
2πI0(κ)

i(exp(−iθ) − exp(iθ))
2 dθ

]
where φ∗

p = Ap(κ) is the pth trigonometric moment of the von Mises distribution

= exp(ipη)
[
φ∗

p + iλ

2

(∫ π

−π

exp(iθ(p− 1)) exp(κ cos(θ))
2πI0(κ) dθ −

∫ π

−π

exp(iθ(p+ 1)) exp(κ cos(θ))
2πI0(κ) dθ

)]
= exp(ipη)

[
φ∗

p + iλ

2
(
φ∗

p−1 − φ∗
p+1
)]

= exp(ipη)
[
Ap(κ) + iλ

2 (Ap−1(κ) −Ap+1(κ))
]

= exp(ipη)
[
Ap(κ) + ipλ

κ
Ap(κ)

]
which leaves the final result.

2.2 Distance

2.2.1 Power Lindley Distribution

A random variable T has the Lindley distribution if it has the pdf [14]:

f(t) = β2

β + 1(1 + t) exp(−βt), t > 0, β > 0,

=pξ1(t) + (1 − p)ξ2(t) (17)

where p = β
β+1 , ξ1(t) = β exp(−βt) and ξ2(t) = β2t exp(−βt). This illustrates the Lindley distribution is a

mixture of an exponential distribution (88) (see Appendix) with scale parameter β and a Gamma distribution (3)

with a shape parameter equal to 2 and scale parameter β with a mixing proportion of p as defined above. By

applying the power transformation X = T
1
α to this variable, the pdf of the power Lindley is obtained as shown
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below [14]:

f(x) = αβ2

β + 1(1 + xα)xα−1 exp(−βxα)

=ps1(x) + (1 − p)s2(x), (18)

where p = β
β+1 , s1(x) = αβxα−1 exp(−βxα) and s2(x) = αβ2x2α−1 exp(−βxα).

It is observed that this power Lindley distribution, denoted by PL(β, α) is also a mixture of a Weibull dis-

tribution (7) with shape parameter α and scale parameter β with a generalised Gamma distribution (89) (see

Appendix) with shape parameters of α and 2, a scale parameter of β and with a mixing proportion of p (18).

The intrigue about PL(β, α) lies in its shape characteristics and its mixture distribution with the Gamma and

Weibull distributions whilst remaining tractable as a contender for the modelling of distances in the context of

animal movement modelling. The shape characteristics of f(x) are summarised below at the points x = 0 and at

x → ∞ [14]:

f(0) =


∞, if α < 1,

β2

β+1 , if α = 1,

0, if α > 1,

(19)

f(∞) =0, (20)

which indicates that the power Lindley distribution has three shapes for the pdf. These three shapes are illustrated

on the next page by Figure 6 for arbitrary choices of β and α:
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Figure 6: The pdf of PL(β, α) for various arbitrary parameter choices

The blue lines represent the first case, where α < 1 with f(0) clearly tending to ∞. The red lines represent the

second case, where α = 1 with the third case being represented by the green lines. These pdf lines indicate the

versatility in pdf shape of PL(β, α), making this an interesting consideration in the context of animal movement.

The n-th raw moment of PL(β, α) is given by [14]

µ′
n = E(Xn) =

nΓ( n
α )[α(β + 1) + n]
α2β

n
α (β + 1)

. (21)

Using equation (21) an expression for the mean and variance is given by:

E(X1) = µ =
Γ( 1

α )[α(β + 1) + 1]
α2β

1
α (β + 1)

(22)

E(X2) − E(X)2 = σ2 =
2Γ( 2

α )[α(β + 1) + 2]α2(β + 1) − Γ2( 1
α )[α(β + 1) + 1]2

α4β
2
α (β + 1)2

(23)

The maximum likelihood estimators for the parameters of PL(β, α) were previously derived in literature and

are given by [14]:

β̂(α̂) =
−
(∑n

i=1 x
α̂
i − n

)
+
√(∑n

i=1 x
α̂
i − n

)2 + 8n
∑n

i=1 x
α̂
i

2
∑n

i=1 x
α̂
i

(24)
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where α̂ is the solution to the following non-linear equation:

G(α) = n

α
+

n∑
i=1

xα
i ln(xi)
1 + xα

i

+
n∑

i=1
ln(xi) − β̂(α̂)

n∑
i=1

xα
i ln(xi) = 0 (25)

2.2.2 Gumbel Distribution

The Gumbel distribution belongs to a class of continuous extreme value distributions [8]. This Gumbel distribution

is a special case of the generalised extreme value type 1 distribution [22] and is unimodal with a pdf [8]

f(x) = 1
σ

exp
(

−x− µ

σ

)
exp

(
− exp

(
−x− µ

σ

))
, −∞ < x < ∞, (26)

where −∞ < µ < ∞ represents the location parameter and σ > 0 represents the scale parameter. If a random

variable X has this pdf, it is denoted by X ∼Gumbel(µ, σ). The corresponding cdf for the Gumbel distribution is

given by [8]

F (x) = exp
(

− exp
(

−x− µ

σ

))
. (27)

In the case where µ = 0 and σ = 1, this distribution is the standard extreme value distribution [8]. The

Gumbel distribution is typically used for modelling the maximum or minimum of a number of samples of various

distributions. The pdf is skewed to the right which is illustrated by Figure 7 for arbitrary parameter values:

Figure 7: The pdf of the Gumbel(µ, σ) distribution for various parameter values

It is noted from the figure above that the graph will shift to the left as µ increases and the peak will be higher
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as σ decreases. Although this distribution is not strictly positive, it is an interesting consideration for the modelling

of the distance of animal movement on the condition that the values are strictly positive.

Theorem 2. The moment generating function (mgf) for the Gumbel(µ, σ) is given by [8]

MX(t) = Γ(1 − σt) exp(µt). (28)

Proof. The mgf of the Gumbel(µ, σ) distribution is:

MX(t) =E(exp(tX))

=
∫ ∞

−∞

1
σ

exp(tx) exp
(

−x− µ

σ

)
exp

(
− exp

(
−x− µ

σ

))
dx

Let Y = exp
(
− x−µ

σ

)
therefore x = µ− σ ln(y)

=
∫ 0

∞
exp (−t(µ− σ ln(y))) exp(−y)dy

= exp(tµ)
∫ ∞

0
y−σt exp(−y)dy

= exp(tµ)Γ(1 − σt) since this is a gamma integral.

The derivation of the mean and variance of the Gumbel distribution is shown below.

Theorem 3. The mean and variance of the Gumbel(µ, σ) distribution is given by [8]:

E(X) =µ+ σγ (29)

V ar(X) =σ2π

6 , (30)

where γ represents the Euler-Mascheroni constant (93) (see Appendix).

Proof. Using the mgf (28) to derive the expression for the mean yields the following:

E(X) =∂MX(t)
∂t

∣∣∣
t=0

=[µ exp(tµ)Γ(1 − σt) + exp(tµ)Γ′(1 − σt)(−σ)]t=0

=µ+ σΓ′(1)

=µ+ σγ
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as desired .

Firstly, in order to obtain the variance, E(X2) will need to be computed from the mgf (28) as shown below:

E(X2) =∂2MX(t)
∂2t

∣∣∣
t=0

=µ[µ exp(tµ)Γ(1 − σt) + exp(tµ)Γ′(1 − σt)(−σ)] − σ[µ exp(tµ)Γ(1 − σt) + exp(tµ)Γ′′(1 − σt)(−σ)]
∣∣∣
t=0

=µ2 − µσΓ′(1) − µσΓ′(1) + σ2Γ′′(1)

=µ2 − 2µσΓ′(1) + σ2Γ′′(1)

Thereafter, the variance can be obtained in the following manner,

V ar(X) =E(X2) − E(X)2

=µ2 − 2µσΓ′(1) + σ2Γ′′(1) − [µ+ σΓ′(1)]2

=σ2Γ′′(1) − σ2Γ′(1)2

=σ2[Γ′(1)Ψ(1) + Γ(1)Ψ′(1) − Γ(1)2Ψ2(1)] using Result 9 in the Appendix

=σ2Ψ′(1)

=σ2π2

6 since Ψ′(1) = π2

6 .

The maximum likelihood estimators for the parameters of the Gumbel distribution which have been previously

derived by Mahdi and Cenac are [27]:

µ̂ =σ
{

ln(n) − ln
n∑

i=1
exp

(
−
[xi

σ

])}
(31)

x̄ =σ +
∑n

i=1 xi exp
(
−
[

xi

σ

])∑n
i=1 exp

(
−
[

xi

σ

]) (32)

where the estimate of σ is obtained explicitly from (32) and the estimate of µ is implicitly obtained from (31)

after the estimation of σ.
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3 Modelling Approach and Implementation

3.1 EM Algorithm

The Expectation Maximisation (EM) algorithm is an approach to performing maximum likelihood estimation in

the presence of latent variables and missing values. This algorithm has a crucial role in the modelling performed

in this section and is introduced. Suppose that there is a pdf function f(x,Θ) which is governed by parameters

set Θ and a dataset of size K drawn from f(x,Θ) [5]. Then, let X = {x1, ...,xK} and make the assumption

that the data vectors are independent and identically distributed, with the pdf being f(·). The likelihood of Θ

given the data is then

f(X|Θ) =
K∏

i=1
f(xi|Θ) = L(Θ|X). (33)

The goal of maximum likelihood estimation is to find the Θ that maximises L, which is Θ∗ where

Θ∗ = argmax
Θ

L(Θ|X) (34)

When the optimisation of the likelihood function is mathematically intractable, the EM algorithm is typically

used. As above, X is the observed data generated by f(·) and is called the incomplete data [5]. With the

assumption that a complete dataset exists, say Z = (X,Y) where Y denotes the missing information which is

unknown, random and presumed to be governed by an underlying distribution. Therefore a joint pdf is specified

[5]:

f(z|Θ) =f(x,y,Θ)
f(Θ)

=f(x,y,Θ)
f(Θ) ∗ f(x,Θ)

f(x,Θ)

=f(x,y,Θ)
f(x,Θ) ∗ f(x,Θ)

f(Θ)

=f(y|x,Θ)f(x|Θ). (35)

Using the joint pdf (35), a new likelihood function can be defined called the complete likelihood:

L(Θ|Z) = L(Θ|X,Y) = f(X,Y|Θ). (36)

This function is a random variable since Y, the missing information is unknown, random and presumed to be

governed by an underlying distribution. The original likelihood L(Θ|X) is called the incomplete-data likelihood
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[5].

The EM algorithm firstly finds the expected value of the complete-data log-likelihood logf(X,Y|Θ) with

respect to the unknown data Y given the current parameter estimates and observed data X. Note that no prior

knowledge of the parameter is included, and it is rather assumed that the choice of the parameter vector is equally

likely [6]. This expectation is defined as [5]:

Q(Θ,Θi−1) =E{log f(X,Y|Θ)|X,Θ(i−1))}

=
∫

y∈γ

log f(X,y|Θ)f(y|X,Θ(i−1))dy (37)

where Θ(i−1) represent the current parameter estimates being used to evaluate the expected value and Θ

are the new parameters being optimised to increase Q. Since X and Θ(i−1) are constants and Y is the random

variable which is governed by the distribution f(y|X,Θ(i−1)), the expectation may be rewritten into integral form

shown in (37) where γ denotes the space of values which y may assume.

The second step of the EM algorithm is the maximisation of the expectation in (37). The following is

determined:

Θ(i) = argmax
Θ

Q(Θ|Θ(i−1)).

Convergence of the algorithm is guaranteed since the EM algorithm positively converges to a local maximum

of the likelihood function. The two steps are repeated until two successive estimates are equal or approximately

equal within an arbitrary threshold ϵ > 0 , Θ∗ = Θ(i) = Θ(i−1) at some ith iteration [30].

The EM algorithm does however have some disadvantages. If there are many latent parameters in the model,

the number of local peaks tend to increase. The algorithm converges towards a local maximum and not the global

maximum, which is often difficult to determine.

3.2 Proposed Model

Using the work of Nicosia et al. [32] as a framework, alternative considerations for the directional and distance

components of the BCRW model are proposed. For the directional component, the ssvM (14) is proposed. For

the distance component, the power Lindley (18) and Gumbel distribution (26) are considered within this context.
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3.2.1 Hidden State Model Outline And Assumptions

Consider a data set which consists of the time series:

{yt, dt,xt, zt, t = 0, . . . , T} (38)

where

• yt ∈ [0, 2π) represents the direction between the animal’s location from time step t to time step t+ 1

• dt ≥ 0 represents the distance between the animal’s location from time step t to time step t+ 1

• xt = (x1t, . . . , xnt) are the values of the n explanatory angular (directional) variables which are measured

which could potentially be used to predict yt or dt.

• zt = (z1t, . . . , znt) are the values of the n explanatory real variables which are measured which could

potentially be used to predict yt or dt.

The explanatory variables xjt and zjt, j = 1, . . . , n are associated to the direction and distances of the animal

being observed with respect to the position of the animal at the previous time step i.e. t − 1. It should be

noted that the explanatory variable znt may also be an indicator variable in certain circumstances. The set of

all observed distances and directions are denoted by (y0:T , d0:T ) = {(yt, dt), t = 0, . . . , T} for simplicity. The

observed information for the variables involved, i.e. directions, distances and explanatory variables are denoted by

a filtration F 0
t . The reason for this denotation is to differentiate the observed data from unobserved data [32].

The hidden Markov process St (see Appendix A (5.2.6)) , t = 1, . . . , T is used in this model to represent the

behaviour i.e. state in which the animal is in at time t. This is due to the fact that animals exhibit multiple

behavioural patterns over time. These changes in behavioural patterns are not observed over time, so this hidden

state will account for these behavioural changes over the various time steps. The set of the possible hidden

states are denoted by S0:T = {S0, . . . , ST }. The complete data filtration is denoted by F c
t which is the filtration

generated by F 0
t and the hidden information until time t.

The joint pdf for the complete data is therefore:

f(y0:T , d0:T , S0:T ) =
T∏

t=1
g(St|F c

t−1)k(yt, dt|St,F
c
t−1) (39)

where g(·) represents the pdf of the hidden data and k(·) represents the pdf of the observed data.
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3.2.2 Directional Random Walk Model

In order for the directional-distance proposals to remain theoretically and empirically practical, specific assumptions

on the joint pdf in (39) need to be made which are highlighted below:

1. The observed processes y0:T and d0:T i.e. direction and distance respectively are independent given the

hidden process S0:T . This is expressed in the following manner

k(yt, dt|St,F
c
t−1) = f(yt|St,F

c
t−1)h(dt|St,F

c
t−1), t = 1, . . . , T. (40)

Furthermore, it is assumed that the processes y0:T and d0:T are of Markovian order 1 (see Appendix A

(5.2.4)) with respect to the hidden process St. This is assumed for both simplicity and computational ease.

Note that h(dt|St,F c
t−1) represents the conditional pdf of the distance dt.

2. Given the hidden process S0:T , it is assumed

f(yt|St,F
c
t−1) = f(yt|St,F

o
t−1), t = 1, . . . , T. (41)

Given that yt is Markovian of order 1 the distribution of yt does not depend on the previous states of

the hidden process and only depends on the current hidden state St. This relates to the Markov property

mentioned in Appendix A (5.2.4). It should be noted that f(yt|St,F c
t−1) depends on St and {yt−r}r<t as

well as environmental variables which were observed in F o
t−1. Therefore, it is supposed that the pdf of yt

given the observed information contained information in F o
t−1 with the knowledge that the hidden process

is in state S at time t is denoted by fs(·|F o
t−1).

3. Given the hidden process S0:T , it is assumed that

h(dt|St,F
c
t−1) = h(dt|St), t = 1, . . . , T. (42)

This implies that the distance is independent on the previous distances taken in the previous time steps.

i.e. dt is independent of dt−r, r = 1, . . . , t for time steps t = 1, . . . , T . This assumption is also made for

computational ease and modelling simplicity. The consequence of not making this assumption would be to

model the distances auto-regressively which would heavily impact computational time.

Specific parametric forms are considered for both fs(·) and hs(·) for the purpose of this study in order to

provide different parametric considerations for direction and distance. For the case of the distance hs(·), any

positive real line pdf may be considered. The power Lindley and Gumbel distributions are being considered for
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hs(·) in order to compare their respective modelling performances with the Gamma and Weibull distributions [32],

which are popularly used in this context for animal movement modelling.

3.2.3 Circular Multivariate Regression Model

In this section, the circular regression models for the BCRW are discussed. The BCRW model theory has been

introduced in (5.2.3) together with the linear-circular regression theory in Section (5.1) in Appendix A. Nicosia

et al. [32] considered yt to be von Mises distributed with its mean direction being dependent on yt−1 together

with other explanatory variables and a homogenous error [32]. This homogenous error depended on a fixed

concentration parameter κ. In these findings, it was discovered that multimodality often plagued the estimation

procedure, and highlighted that the log-likelihood for estimation was multimodal [32]. To combat this issue, a

consensus error model was adopted which was defined in a previous paper by Nicosia et al. [31]. This method is

adapted to the circular model being considered for comparison, namely the ssvM distribution [1]. The theory of

these distributions have been discussed in Section 2.

A consensus error model for the direction yt with knowledge of the animal being in state k depends on the

vector [32]

V k
t = κ

(k)
0

(
cos(yt−1)
sin(yt−1)

)
+

n∑
i=1

κ
(k)
i zit

(
cos(xit)
sin(xit)

)
, t = 1, . . . , T, (43)

where κ(k) = (κ(k)
0 , . . . , κ

(k)
n ) represent the unknown parameters dependent on state k. In terms of the von Mises

distribution, its mean direction denoted by µ(k)
t is the direction of V (k)

t . The parameters κ(k)
i quantify how target

i influences the animal’s directional movement. The same consensus model is adapted for the ssvM.

The concentration parameter of the von Mises distribution denoted by ℓ(k)
t is the length of the vector (43).

This indicates that the concentration parameter κ(k)
i is dependent on the relationship between the directional

targets under consideration. The concentration parameter ℓ(k)
t has a large value if yt−1 and the targets all point

in the same direction and therefore, the distribution of yt is concentrated around the mean direction. Using these

as underlying assumptions for the model, we have that the pdf of the direction given the observed data and

concentration parameter is [32]

fk(yt|F c
t−1;κ(k)) = exp{ℓ(k)

t cos(yt − µ
(k)
t )}

2πI0(ℓ(k)
t )

, , t = 1, . . . , T. (44)

Since µ(k)
t and ℓ(k)

t are the direction and length of the vectors (43) and (44), the pdf then becomes [32]

fk(yt|F c
t−1;κ(k)) =

exp{κ(k)
0 cos(yt − yt−1) +

∑n
i=1 κ

(k)
i zit cos(yt − xit)}

2πI0(ℓ(k)
t )

, , t = 1, . . . , T. (45)
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This parametrisation is of importance since it results in a numerically stable model with κ(k)
i being the canonical

parameters of a distribution which belongs to the exponential family. Similarly, for the ssvM, the pdf of the direction

is as follows:

fk(yt|F c
t−1;κ(k)) =

exp{κ(k)
0 cos(yt − yt−1) +

∑n
i=1 κ

(k)
i zit cos(yt − xit)}

2πI0(ℓ(k)
t )

×(
1 + λ

[
sin(yt − yt−1) +

n∑
i=1

zit sin(yt − xit)
])

, t = 1, . . . , T,−1 ≤ λ ≤ 1. (46)

Many special cases of this model exists in literature. These special cases extend to the consensus model

construction, number of hidden states, model assumptions, random walks and multi-state frameworks. These

special cases fall outside the scope of the current study.

3.2.4 The Markov Processes For The Hidden States

The hidden process S0:T is a homogenous Markov chain. A Markov chain is homogenous if and only if the transition

probabilities are not dependent of time t. The theory for the Markov chains and hidden Markov processes are

introduced in within this context, which implies that at any time step t, the animal is in a state ranging from

{1, . . . ,K} and g(St|F c
t−1) = g(St|St−1) [32]. This allows the description of S0:T as a discrete-time homogenous

multinomial process. This permits the definition of the sequence {St, t = 0, . . . , T} of multinomial vectors

St = (S1t, . . . , SKt) where Sit = 1 and Si′t = 0 for all i′ ̸= i whenever St = i for i, i′ = 1, . . . ,K.

At the time t = 0, it is set that P (Sk0 = 1) = (π0)k such that (π0)k ≥ 0, k = 1, . . . ,K and
∑K

k=1(π0)k = 1.

It should be noted that (π0)k represents the hidden process’ initial distribution. The assumption is made that

this initial distribution of the hidden process {(π0)k ≥ 0, k = 1, . . .K} is known. The transition probabilities are

denoted by πlk = P (Skt = 1|Sl,t−1 = 1) for l, k = 1, 2, . . . ,K. The hidden process contributes to the complete

data pdf given in (39) as a function of S0:T and the transition probabilities in the following way [32]

T∏
t=1

g(St|F c
t−1) =

T∏
t=1

K∏
l=1

K∏
k=1

π
Sl,t−1Skt

lk . (47)

The aforementioned methodology holds for any number of states K, but the case of K = 2 is the only case

considered in this scenario.
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3.2.5 Inferential procedures and EM algorithm

In this section, the inferential procedures and EM algorithm are explained. A procedure to estimate θ = (π, κ, ϕ),

where

• π represents the transition probabilities in a K × (K − 1) vector,

• κ represents the K × (p+ 1) unknown parameters for the directional model and

• ϕ represents the 2K parameters of the distance variable model.

Given that we have the series of observations as before denoted by (38), the likelihood function of the parameters

in the model are written as a product of the one-step ahead predictive pdfs,

L(θ) =
T∏

t=1

{
K∑

k=1
fk(yt|F 0

t−1, κ
(k))hk(dt, ϕ

(k))P (Skt = 1|F 0
t−1, θ)

}
(48)

where P (Stk = 1|F 0
t−1, θ) for t = 1, . . . , T represents the predictive probabilities which are recursively calculated

using a filtering-smoothing algorithm which will be presented in the next sub-section permitting the evaluation of

the likelihood function (48). The EM algorithm is used to estimate the likelihood to address modelling shortcomings

by previous authors such as [24]. The EM algorithm permits the prediction of the underlying state of the animal

at each time point which leads to greater knowledge of their movements and behavioural patterns as well as other

fascinating ecological significances.

The primary function of the EM algorithm (see section 3.1) is to maximise the likelihood in the presence of

missing or unobserved data, which is the current case. The observed data consists of the direction y0:T , the

distance d0:T and the unobserved data are the hidden states S0:T . To evaluate the EM algorithm, the complete

data log-likelihood function should be computed which follows from (39) and (48):

logLcomplete(θ; F 0
t−1) =

T∑
t=1

K∑
r=1

K∑
k=1

Sr,t−1Sktlog(πrk(nr, qr)) +
T∑

t=1

K∑
k=1

Sktlog(fk(yt|F 0
t−1, κ

(k)))

+
T∑

t=1

K∑
k=1

Sktlog(hk(dt|ϕ(k)) (49)

Let θ̂n denote the estimate of θ as previously defined after the nth iteration of the EM algorithm. The (n+1)th

iteration begins with one of the iteration of the E-step which computes the expected value of the complete data

log-likelihood with regards to the missing data’s conditional distribution given the observed data which is expressed

as follows:

Q(θ|θ̂n) =ES0:T [logLcomplete(θ; F c
T )|F 0

T , θ̂n]
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=
T∑

t=1

K∑
r=1

K∑
k=1

E(Sr,t−1Skt|F 0
T , θ̂n)log(πrk(nr, qr)) +

T∑
t=1

K∑
k=1

E(Skt|F 0
T , θ̂n)log(fk(yt|F 0

t−1, κ
(k)))

+
T∑

t=1

K∑
k=1

E(Skt|F 0
T , θ̂n)log(hk(dt|ϕ(k))) (50)

Hereafter, the value of θ̂n+1 is calculated in the M-step as the value of θ which will maximise Q(θ|θ̂n).

The E-Step

Within (50), there are two expected values which will have to be computed, namely E(Sr,t−1Skt|F 0
T , θ̂n) and

E(Skt|F 0
T , θ̂n). The computation of these expectations is done using a filtering smoothing algorithm specifically

for Markov chains which will start from t = 0. This algorithm will compute the "filtering" probabilities denoted by

P (ST |F 0
t ) with the use of predictive probabilities P (St|F 0

t−1) [32]. Finally, the final filtering probability denoted

by P (ST |F 0
T ) is the probability which is used to compute the smoothing probabilities P (St|F 0

T ) using Bayes

theorem. The filtering smoothing algorithm is further detailed below.

Filtering Smoothing Algorithm

The filtering smoothing algorithm for this Markov specification is presented. This algorithm will compute the two

expectations in (50) which both involve the hidden state Sk,t which is unobserved and conditional on the observed

data F 0
T [32]. Firstly, the expectations are expressed as probabilities:

E(Skt|F 0
T , θ̂n) =P (Skt = 1|F 0

T , θ̂n) (51)

E(Sr,t−1Skt|F 0
T , θ̂n) =P (Sr,t−1 = 1|Skt = 1,F 0

T , θ̂n)P (Skt = 1|F 0
T , θ̂n) by conditional probability (52)

Probability (52) is then computed using Bayes theorem due to the fact that St−1 is independent of the observed

data for t = 1, . . . , T given St and F 0
t−1. This therefore satisfies the requirements of Bayes theorem yielding the

following:

P (Sr,t−1 = 1|Skt = 1,F 0
T , θ̂n) =

π̂
(n)
rk P (Sr,t−1 = 1|F 0

t−1, θ̂n)∑K
i=1 π̂

(n)
ik P (Si,t−1 = 1|F 0

t−1, θ̂n)
, k = 1, . . . ,K, t = 0, . . . , T. (53)

Thereafter, the posterior expectations (51) and (52) need to be computed using the filtering smoothing algorithm

for the E-step of the EM algorithm for the (n+ 1)th step of the EM algorithm.
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Filtering The probability P (Smt = 1|F 0
T , θ̂n) will be computed for every m = 1, . . . T in the following manner

[13]:

P (Smt = 1|F 0
T , θ̂n) =

fm(yt|F 0
t−1, θ̂n)hm(dt, θ̂n)P (Smt = 1|F 0

t−1, θ̂n)∑K
k=1 fk(yt|F 0

t−1, θ̂n)hk(dt, θ̂n)P (Skt = 1|F 0
t−1, θ̂n)

, (54)

where

P (Sm1 = 1|F 0
0 , θ̂n) =

K∑
k=1

π̂
(n)
km(π0)k (55)

P (Smt = 1|F 0
t−1, θ̂n) =

K∑
k=1

π̂
(n)
kmP (Sk,t−1 = 1|F 0

t−1, θ̂n) for t = 2, . . . , T (56)

Smoothing The probability P (Smt = 1|F 0
T , θ̂n) will be computed for every m = 1, . . . T in the following manner

[13]:

Step 1: For t = T , set P (SmT = 1|F 0
T , θ̂n) which is the conditional probability that is computed at the last

filtering step (54).

Step 2: Recursion step: For t = T − 1, . . . , 0, the following is computed [32]:

P (SmT = 1|F 0
T , θ̂n) =

K∑
k=1

π̂
(n)
mkP (Smt = 1|F 0

t , θ̂n)P (Sm,t+1 = 1|F 0
T , θ̂n)∑K

i=1 π̂
(n)
ik P (Sit = 1|F 0

t , θ̂n)
. (57)

This filtering smoothing algorithm highlighted above enables the evaluation of the predictive probabilities in a

recursive manner using (56) resulting in the computation of the likelihood (48). Below, the M-step and further

details regarding the EM algorithm are outlined below.

The M-step

Within (50), the individual elements composing the sum are maximised separately due to the fact that they

each depend on different parameter sets. In the case where the hidden states are of a Markovian nature, the

maximisation of the hidden process is expressed by the expected number of transitions made from state r to state

k divided by the number of transitions leaving state r [32]:

π̂
(n+1)
rk =

∑T
t=1 E(Sr,t−1Skt|F 0

T , θ̂n)∑T
t=1 E(Sr,t−1|F 0

T , θ̂n)
, r, k = 1, . . . ,K. (58)

It should be noted that the log-likelihood for the directional component of the model is concave, due to the nature

of the von Mises and ssvM distributions which allows the maximum to be calculated with ease. The M-step of

the EM algorithm depends on hk(dt|ϕ(k)) which represents the distance component of the model. The estimates
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for this pdf is calculated using numerical optimisation such as the Newton-Raphson algorithm of the weighted

log-likelihood.

3.2.6 Sampling distributions

When computing the EM algorithm, there are certain quantities which are crucial to the inference of the model

which are not directly computed by the algorithm such as the numerical value of the maximised log-likelihood

for the observed data. The filtering smoothing algorithm which was detailed above may be used to evaluate

this likelihood (48). The filtering smoothing algorithm further allows the evaluation of the probability that the

animal is in a state k by using the value of E(Skt|F 0
T , θ̂n) which is in the "smoothing" step of the algorithm

specifically by (57). The computation of the maximised log-likelihood enables the numerical approximation of the

negative Hessian matrix. The Hessian matrix is a square matrix of the second derivatives of the parameters of the

log-likelihood. The inverse of this Hessian matrix is denoted by ν which is the estimate of the variance matrix of

the maximum likelihood estimators [32]. In this study, the R function optim is used to compute the numerical

approximation of the Hessian matrix.

Due to the mathematically complex nature of the model, the EM algorithm may converge to spurious or local

maxima of the likelihood function (48). This is typically caused by the likelihood being unbounded which is a

phenomenon commonly found in mixture models [32]. To combat this issue and maintain consistency in the

algorithm, the EM algorithm is run using many random initial starting values for a few iterations and perform a

check for spurious and local maxima. Thereafter, parameter values are chosen based on which values yield the

highest likelihood values for use as the starting values of the EM algorithm which is run until convergence [4].

The combination of short and long-run iterations of the EM algorithm forms a good strategy for the avoidance

of local and spurious maxima. The quasi-Newton algorithm is then run with a single iteration in order to obtain

an estimate for inverse of the Hessian matrix of the observed log-likelihood which is estimated at the maximum

likelihood estimates which are obtained from the EM algorithm. The quasi-Newton algorithm simply indicates

that the log-likelihood and its respective gradient are calculated recursively. The algorithm of finding the global

maximum of the observed log-likelihood function is described below [32]:

Initial Steps

• Let θ1, . . . , θN represent N random starting values for the EM algorithm. In this study, N = 50 was selected.

• For i = 1, . . . N , the EM algorithm will run until:

1. The first 50 iterations or
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2. The largest relative difference in parameter values between consecutive iterations is less than 0.01. The

final estimators obtained at the end are denoted by θ̂i, i = 1, . . . ,K.

The avoidance of spurious maxima

• For each of the θ̂i, the stationary distribution of the Markov chain is denoted by ν̂(i)
k , k = 1, . . . ,K, i =

1, . . . , N .

• Only keep the θ̂i such that the following condition holds:

min
k=1,...,K

ν̂
(i)
k > ϵ and max

r=1,...,p;k=1,...,K
|κ(k)(i)

r | < M.

It should be noted that in this study, M = 100 and ϵ = 0.001 was set for computational ease.

The avoidance of local maxima

• The initial value was set as θ0 = argmaxL(θ̂i). This then avoids the local maxima.

The Long-run EM algorithm

• Commence the EM algorithm using the θ0 as set in the previous step and run the algorithm until the first of

1. The largest relative difference in the parameter values between successive iterations is less than 10−8

or

2. 10 000 iterations.

This long-run algorithm is conservative with the number of iterations to allow the algorithm sufficient time

to converge to a final solution with respect to all parameters.

The Quasi-Newton iteration

• A single iteration of the quasi-Newton algorithm is run using the output of the long-run EM algorithm as

the starting values in order to obtain the final global maximum likelihood estimators of parameters in the

model as well as the estimation of their respective variance matrix i.e. the Hessian matrix.

It should be noted that the initial distribution (π0)k, k = 1, . . . ,K is involved in the calculation of the complete

or observed data likelihood, as shown above in the algorithm [32]. Due to this involvement, the model is fitted

twice. Firstly, (π0)k = 1
K which is the uniform distribution across the K states. Secondly, the model is refitted

using (π0)k = ν̂k which is the stationary distribution of the Markov chain computed using the first model fit. This

allows the model to have greater accuracy and more efficient convergence.
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3.2.7 Model Selection

The determination of the number of hidden states present in the model is typically an arduous task and is unknown.

In this scenario, two hidden hidden states are assumed based on previous literature and studies performed by various

authors in this research field [32]. The selection of two states for the hidden process enables interpretability within

the animal movement model environment. The directional targets and environmental features to be considered

were selected using the AIC, BIC and Wald’s test criteria. These criteria together with the log-likelihood values

were used to determine which combination of alternative direction and distance models could be useful when

modelling animal movement.

3.3 Results

In this section, the results for the fitted BCRW model (37) and the respective alternate parametric considerations

are presented. A variety of R functions are used whilst fitting the model which is available in Appendix B within

the code. This model was applied to data about the movement of forest caribou in Canada. This data involved 23

animals with various home ranges. Locations were measured every 4 hours during the 2006-2007 winter period, a

total number of 617 observations. The data consists of four variables, namely:

• yt: the direction of the animal at time point t.

• xcut: the direction to the closest cut (which is a forest stand which has been cut within a period ranging

from 5 to 20 years ago).

• xcenter: the direction pointing towards the centroid of a cluster of recently visited locations.

• dt: the distance between the animal’s location from time step t to time step t+ 1 in kilometres.

Before the modelling results are presented, the descriptive statistics of the data are shown for the reader to

understand the nature of the data and its variables. These descriptive results are shown in Table 1:

Value
Coefficient of Skewness 0.1400

Kurtosis -2.5076
Variance 0.0005

Mean 0.0014

Table 1: The descriptive statistics for direction yt

Based on Table 1, yt is slightly skewed to the right based on the coefficient of skewness and has a flat

distribution with thin tails based on the kurtosis value. The mean value is small, indicating that on average, the

direction of the animal at time point t will not change by a large angle. The low variance could indicate that
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the data consists of smaller turning angles majority of the time for the animals at the time points observed. The

corresponding rose plot for direction yt is shown in Figure 8:

Figure 8: Rose plot for direction yt

The rose plot represented by Figure 8 indicates that the animal paths tend to concentrate around direction

zero and seems to be quite uniform. This would imply that the animal would turn around and does not necessarily

have a preferred direction. The descriptive results for the distance dt are shown in Table 2:

Values
Min 0.0015

First Quartile 0.0642
Median 0.1259

Mean 0.3120
Third Quartile 0.2490

Max 10.0381

Table 2: The descriptive statistics for distance dt

It is noted that majority of the values of dt lie between 0 and 1, indicating that the animals tended to travel

small distances within the four hour intervals. A map indicating the animal trajectory is presented in Figure 9 [32]:
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Figure 9: The trajectories of the caribou in the observed time period where the blue circle represents the starting
point and the green circle represents the end of the observed trajectory. The area highlighted in yellow represents
the areas in the environment with regenerating cuts.

The locations which the caribou visits between times 0 and time t − 1 at time t are grouped into clusters.

For example, cluster 1 refers to the set of locations which were visited by the animal between times 0 and t1.

Within these clusters, the centroids are calculated and the cluster whose centroid is closest to the animal’s current

position is used in order to compute the direction xcenter.

A two-state model with K = 2 which was proposed and is fitted to the caribou data. For this model, state

1 represents the "travelling" state where larger distances are travelled whereas state 2 represents the "encamped"

state where minimal movement is noticed. The explanatory variables considered in this study are directional

persistence, xcut and xcenter. These explanatory variables are represented by the parameters κ(k)
persist, κ

(k)
cut and

κ
(k)
center in the model respectively where k = 1, 2 represents the current state of the model. In the model, nk and

qk denote the size and probability of the negative binomial distribution of the waiting time of state k. Both q1

and q2 form the transition probability matrix for the hidden Markov chain denoted as:

P =

1 − q1 q1

q2 1 − q2


The criterion used for comparison between the various models are AIC, BIC and likelihood. The parameter

estimates with their corresponding standard errors (S.E) are shown for each of the states in the model. The first

directional model to be presented is the von Mises distribution. The results will be shown together with the four
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distance models. The first two to be presented in Table 3 is the case where the distance is fitted using the Gamma

distribution and Weibull distribution. In Table 3, ϕ(k)
1 and ϕ(k)

2 represent the shape and scale parameters of the

Gamma distribution and the Weibull distribution for state k respectively. These two parametric considerations

reflects that of Nicosia et al. [32] and is used as a basis of comparison for the distance models considerations. In

Tables 3 and 4, the "*" indicates that these parameters are insignificant at a 10% level of significance.

von Mises (Markov)
Gamma Weibull

Estimate S.E Estimate S.E

State 1

q1 0.2788 0.0891 0.2716 0.0859
n1 1 - 1 -

κ
(1)
persist 1.2666 0.3328 1.2225 0.3326
κ

(1)
cut 0.1601* 0.3013 0.1582* 0.2929

κ
(1)
center 0.3733* 0.2994 0.3298* 0.2895
ϕ

(1)
1 0.6478 0.1373 0.7179 0.0954
ϕ

(1)
2 3.0445 0.8451 1.425 0.5103

State 2

q2 0.0231 0.0231 0.0258 0.0258
n2 1 - 1 -

κ
(2)
persist 0.0274* 0.0618 0.0183* 0.0644
κ

(2)
cut 0.1454 0.0698 0.146 0.0712

κ
(2)
center 0.259 0.0694 0.2612 0.0705
ϕ

(2)
1 1.2626 0.0774 1.1143 0.0478
ϕ

(2)
2 0.1351 0.012 0.1757 0.0093

Likelihood -794.91 - -798.301 -
AIC 1613.8199 - 1620.603 -
BIC 1666.9183 - 1673.701 -

Run Time 76.01s - 92.69s -

Table 3: The estimation of the model with the von Mises distribution for the directional component and the
Gamma and Weibull distributions as the distance component

The consideration of the von Mises distribution for the directional component with the power Lindley and

Gumbel distributions as the distance component is now presented in Table 4. Herein, ϕ(k)
1 and ϕ

(k)
2 represent

the scale and shape parameters of the power Lindley distribution and the location and scale parameters for the

Gumbel distributions respectively for state k.

45



von Mises (Markov)
Power Lindley Gumbel

Estimate S.E Estimate S.E

State 1

q1 0.0734 0.0409 0.9484 0.1879
n1 1 - 1 -

κ
(1)
persist 0.1872 0.0707 0.9161 0.4563
κ

(1)
cut -0.0852 0.0883 -0.8856 0.4668

κ
(1)
center 0.1868 0.0743 0.9493 0.4168
ϕ

(1)
1 3.3596 0.1758 0.2099 0.0123
ϕ

(1)
2 0.7012 0.0287 0.1407 -

State 2

q2 0.2709 0.2709 0.2824 0.2824
n2 1 - 1 -

κ
(2)
persist -0.7817* 0.4073 -0.0034* 0.1054
κ

(2)
cut 4.5847 1.5542 0.3707 0.1118

κ
(2)
center 3.9761* 1.2426 0.1774* 0.1066
ϕ

(2)
1 4.1603 0.3915 0.2109 0.0066
ϕ

(2)
2 0.7602 0.0264 0.1388 -

Likelihood -1005.93 - -523.568 -
AIC 2035.856 - 1071.135 -
BIC 2088.954 - 1124.234 -

Run Time 65.65s - 72.53s -

Table 4: The estimation of the model with the von Mises distribution for the directional component and the power
Lindley and Gumbel distributions as the distance component

Based on the results from the tables above, the Gumbel distribution seems to perform the best amongst the

other distance considerations based on the BIC values. However, as mentioned earlier, this should be erred with

caution as the pdf may not always lie on the positive real line due to pdf tails which extend to the left. However,

based on the estimates above in Table 4, both parameter values are positive indicating that the pdf is positive in

this particular modelling scenario. This may not necessarily hold true across different datasets as the modelling

of animal movement is a data-driven process. This illustrates that the Gumbel distribution could be a useful tool

and valid for consideration in the distance modelling of animal movement.

The Gamma distribution performed the second best for modelling the distances, followed by the Weibull and

power Lindley distributions in terms of BIC values. It is interesting that although the power Lindley distribution

is a mixture of the Gamma and Weibull distributions, it seems to have the worst performance. The results of the

power Lindley distribution for distance modelling of animal movement together with the von Mises for directional

movement will be studied more closely in the next section using a bootstrap procedure.

The second case which is considered is the ssvM distribution for the directional component of the model. The

results will be shown together with the four distance models. The notation follows in the same way as for the

von Mises results above. The skewness parameter λ will initially need to be set before the respective models are

run. To this end, the model was run multiple times using various values ranging from λ = 0.1, . . . , 0.9 and used
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the corresponding AIC and BIC values to determine which value of λ was most suitable. The circular plot below

illustrates that there is unfortunately no skewness present in the directional data, so an arbitrarily small value of

λ = 0.1 is selected, which noted a minor increase in the AIC and BIC values.

Figure 10: The kernel density plot of yt

The first to be presented in Table 5 is the case where the distance is fitted using the Gamma and Weibull

distributions with the ssvM fitting the directional component with the aforementioned skewness parameter set

at λ = 0.1. In Table 5, ϕ(k)
1 and ϕ

(k)
2 represent the shape and scale parameters of the Gamma and Weibull

distributions respectively for state k.
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ssvM (Markov)
Gamma Weibull

Estimate S.E Estimate S.E

State 1

q1 0.2788 0.0891 0.2716 0.0859
n1 1 - 1 -

κ
(1)
persist 1.2666 0.3328 1.2225 0.3326
κ

(1)
cut 0.1601* 0.3013 0.1582* 0.2929

κ
(1)
center 0.3733* 0.2994 0.3298* 0.2895
ϕ

(1)
1 0.6478 0.1373 0.7179 0.0954
ϕ

(1)
2 3.0445 0.8451 1.425 0.5103

State 2

q2 0.0231 0.0231 0.0258 0.0258
n2 1 - 1 -

κ
(2)
persist 0.0274* 0.0618 0.0183* 0.0644
κ

(2)
cut 0.1454 0.0698 0.146 0.0712

κ
(2)
center 0.259 0.0694 0.2612 0.0705
ϕ

(2)
1 1.2626 0.0774 1.1143 0.0478
ϕ

(2)
2 0.1351 0.012 0.1757 0.0093

Likelihood -795.4334 - -798.825 -
AIC 1614.8669 - 1621.65 -
BIC 1667.9653 - 1674.748 -

Run Time 78.39s - 96.23s -

Table 5: The estimation of the model with the ssvM distribution for the directional component and the Gamma
and Weibull distributions for the distance component

The consideration of the von Mises distribution for the directional component with the power Lindley and

Gumbel distributions as the distance component is now presented in Table 6. Herein, ϕ(k)
1 and ϕ

(k)
2 represent

the scale and shape parameters of the power Lindley distribution and the location and scale parameters for the

Gumbel distributions respectively for state k.
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ssvM (Markov)
Power Lindley Gumbel

Estimate S.E Estimate S.E

State 1

q1 0.2942 0.1128 0.8344 0.2177
n1 1 - 1 -

κ
(1)
persist 3.4148 1.5498 0.5617 0.3463
κ

(1)
cut -4.0876 1.8133 -0.5757 0.3541

κ
(1)
center 1.014 0.8774 0.7412 0.3215
ϕ

(1)
1 3.1673 0.3069 0.2134 0.0106
ϕ

(1)
2 0.7712 0.0907 0.1416 -

State 2

q2 0.0114 0.0114 0.3723 0.3723
n2 1 - 1 -

κ
(2)
persist 0.0591* 0.0585 0.0021* 0.1446
κ

(2)
cut 0.2478 0.0654 0.4198 0.1481

κ
(2)
center 0.3326* 0.0682 0.1467* 0.1485
ϕ

(2)
1 3.5031 0.1794 0.2095 0.0069
ϕ

(2)
2 0.7075 0.0288 0.1382 -

Likelihood -1012.17 - -524.586 -
AIC 2048.35 - 1073.171 -
BIC 2101.448 - 1126.27 -

Run Time 67.19s - 74.96s -

Table 6: The estimation of the model with the ssvM distribution for the directional component and the power
Lindley and Gumbel distributions for the distance component

Based on the results presented in Tables 5 and 6, similar results have been observed as the von Mises directional

component in Tables 3 and 4. The BIC values differ slightly across all distributions with the Gumbel distribution

still providing the best result, with the other distance distributions performing in the same order as earlier. This

illustrates the versatility of the ssvM in this modelling context, noting only minor increases in computational times

across all models. The same significances across parameters are noted for both the von Mises and ssvM modelling

scenarios. It should be noted that this ssvM model will certainly perform better than the von Mises distribution

in the presence of skewed data, but detailed investigations in this matter is beyond the scope of this study.

For the first state of the model, large estimates were obtained across all models for the average distance

travelled by the animal i.e. ϕ̂
(k)
1 ϕ̂

(k)
2 except the Gumbel distribution which seems to be an outlier in its per-

formance. An interesting point to highlight is that the power Lindley obtained similar distances to the Gamma

distribution in state one, which reinforces the intrigue to further investigate it’s performance in the next section.

The caribou exhibit positive directional persistence in their movement illustrated by κ(1)
persist across the models. The

two environmental factors considered in the model had varying results across the models. For both the Weibull

and Gamma models, κ(1)
cut and κ

(1)
center had positive estimates with fairly large standard errors. In contrast, the

power Lindley and Gumbel models noted a negative estimate for κ(1)
cut and a positive estimate for κ(1)

center with fairly

large standard errors. The Gumbel and power Lindley seem to be a more logical choice in this case, since Figure 9
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illustrates that the animal never reaches the regenerating cuts area. These large standard errors could be due to

the fact that there is limited amounts of data which is available for state 1. In order to obtain the average speed

of at which the animal moves in this state, ϕ̂(1)
1 ϕ̂

(1)
2 /4 is computed. The Gamma distribution reported a distance

of approximately 494m per hour, with the power Lindley reporting 611m per hour, the Weibull reporting 255m per

hour and lastly, the Gumbel reporting 7m per hour. The Gumbel distribution clearly doesn’t provide a reasonable

estimation in this scenario as previously highlighted by the average distances obtained.

For the second state of the model, the animal is in its "encamped" state in which it is primarily stationary.

Smaller estimates were found for the average speeds with the Gamma reporting 44m per hour and the Weibull

reporting 49m per hour. The power Lindley and Gumbel distributions were quite different with their results, noting

357m per hour and 7.4m per hour respectively. The directional persistence κ(2)
persist was found to be insignificant in

this state across all models which is a sensible result given the stationary movement state of the caribou. Both of

the environmental factors considered in the model were found to be significant. It is interesting to note that κ(2)
cut

was significant and positive for this state across all models when the caribou never reaches this area as illustrated

by Figure 9. This may be a fortuitous relationship given the north-south movement trajectory of the caribou and

the southern location of the regenerating tree cuts.

The stationary distribution of the latent fitted Markov chain is in the first state with the corresponding

probability q̂2
q̂2+q̂1

. This probability can also show the number of sightings the caribou was observed travelling.

Using the von Mises directional results, the stationary distributions are summarised in the table below:

Probability No. of travelling States
Gamma 0.0765 47

Power Lindley 0.1126 69
Weibull 0.0868 54
Gumbel 0.2294 142

Table 7: Stationary distribution of the latent fitted Markov chain for state 1

The number of travelling states observed for the caribou expressed in the table above provides an explanation

to the low precision and high standard errors found across all models in the first state. The Gumbel distribution

found the largest amount of travelling states yet, provided the smallest estimate for distance travelled. In contrast,

the power Lindley distribution found a larger amount of travelling states than the Gamma and Weibull counterparts

and provided a larger estimate for distance travelled, which is a logical result.

Using the stationary distributions in Table 7 and parameter estimates obtained in Tables 3 and 4, the following

plots in Figure 11 were made to illustrate how the various distributions fitted the distances for state 1:
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(a) Gamma distance fit (b) Weibull distance fit

(c) Power Lindley distance fit (d) Gumbel distance fit

Figure 11: The various distance component fits for the model for state 1

Figure 11 illustrates that the power Lindley and Gamma distributions fit the distances relatively well with the

Weibull distribution providing a slightly worse fit. The worst is clearly the Gumbel distribution, where the shape

of the pdf hardly resembles that of distances being modelled. It should once again be noted that the modelling

of animal movement is a data driven process. Although the Gumbel distribution has the worst distance modelling

performance, it might be better suited to modelling shorter distances.

The state of the caribou’s position at time t may be identified using the smoothed probabilities P (Stk =

1|FT ; θ̂MLE), t = 1, . . . , T , k = 1, 2 which is computed in the smoothing step of the filtering-smoothing algorithm

within the E-step of the EM algorithm. This is visually depicted for the Weibull distribution with a von Mises

directional component in the following figure:
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Figure 12: The hidden state probabilities illustrated for each time step of the caribou’s movement trajectory.

In Figure 12, the red colour represents being in state 1 i.e. P (St1 = 1|FT ; θ̂MLE) = 1 and the blue colour

represents being in state 2 i.e. P (St2 = 1|FT ; θ̂MLE) = 1. The caribou movement was clearly influenced by

various factors which include directional persistence, which only affected their movement in state 1. Furthermore,

the directional analysis revealed that the two environmental factors considered, xcut and xcenter, influenced their

movement which enabled the generation of plots such as Figure 12 which may be used to identify areas of

movement for the different movement states of the caribou [32]. This model and its various alternate parametric

considerations provide a more generalised set of modelling tools and results for animal movement modelling.

3.4 Bootstrap

Bootstrapping is a popular resampling method which is typically used to estimate statistics on a population by

sampling from the population dataset with replacement. This is the simplest method to obtain the sampling

distribution of sample statistics [18].

The procedure of bootstrapping stems from the idea of resampling from the original population many times

with replacement, where each resample is the same size as the original random sample [18]. The detail of sampling

with replacement is of utmost importance in bootstrap sampling, because it permits the chance of drawing any

observation more than once. If this were not the case, the bootstrap sample would ultimately contain the population

again in each sample with its observations in a different order. The desired statistic is calculated for each resample

and the distribution of all the collective resample statistics is called the bootstrap distribution [18]. This bootstrap

distribution provides many insights into the shape, spread and behaviour of the sampling distribution of the statistic

52



being calculated.

In the previous section, the power Lindley distribution was considered as an alternative for the distances in

animal movement modelling. Upon closer inspection of the obtained estimates, the power Lindley distribution

proved to be a unique consideration in the context of animal movement modelling in light of its parametric

performance and interpretability to the Gamma and Weibull distributions. The motivation for further investigation

into this model is the construction of the power Lindley distribution, which consists of a mixture between the

Gamma and Weibull distributions as well as the appeal of increased computational efficiency as illustrated by

the lower model run times in Table 4. In this section, a bootstrap procedure is performed using the von Mises

distribution for the directional component to obtain the sampling distribution for the parameters of the power

Lindley distribution from the fitted model. It should be noted that both the directional and distance components

were jointly modelled, but only the distance component fits are illustrated. This bootstrap study aims to "mimic"

real data for illustrative purposes which will be able to highlight the potential capabilities of the power Lindley

distribution.

The algorithm for the bootstrap of the power Lindley distribution is outlined below:

1. Generate m = 50, 100, 200, 300 samples of size n = 617 i.e. the size of the dataset with replacement from

the original dataset.

2. Calculate and store the estimated parameters of the power Lindley obtained from fitting the model i.e ϕ(k)
1

and ϕ
(k)
2 defined as in the previous section for states k = 1, 2 as well as the AIC, BIC and log-likelihood

values for each resample.

3. Calculate the bootstrap distribution and sample summary statistics for each of the parameters.

4. Plot a histogram for the bootstrap distribution with a vertical reference line for the median.

Across all the histograms, the solid black vertical reference line represent the median value of the sample

statistic. The median is considered to be a more robust measure of location than the mean due to the skewed

nature of some of the bootstrap distributions.

The results for the summary statistics and bootstrap distributions are shown in Table 8 for m = 50:
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Min 1st Quartile Median Mean 3rd Quartile Max
ϕ

(1)
1 2.64 3.32 3.47 3.52 3.65 5.08
ϕ

(2)
1 2.01 3.43 3.56 3.64 3.69 7.16
ϕ

(1)
2 0.61 0.69 0.70 0.71 0.73 0.97
ϕ

(2)
2 0.58 0.69 0.72 0.73 0.74 1.53

AIC -166.79 840.84 1208.68 1453.45 1797.92 4518.81
BIC -113.69 893.94 1261.78 1506.55 1851.01 4571.90
LL -2247.40 -886.96 -592.34 -714.72 -408.42 95.39

Table 8: Summary statistics of the bootstrap distributions obtained for m = 50

(a) ϕ
(1)
1 (b) ϕ

(2)
1 (c) ϕ

(1)
2

(d) ϕ
(2)
2

(e) AIC (f) BIC

(g) LL

Figure 13: Bootstrap histograms for m = 50

When m = 50, the number of resamples is still relatively small. These values resemble the results found in

the previous section, however, a large spread of values is noted for the estimates. It is interesting to note that the

AIC and BIC values have decreased in comparison to the results shown in Table 4. Furthermore, the bootstrap

distributions of the metrics are all right-skewed, with the exception of the likelihood bootstrap distribution. How-

ever, this might be due to the relatively small sample size taken and the large amount of variability exhibited by

the bootstrap results. This can be further investigated when the sample size increases.

The results for the summary statistics and bootstrap distributions are shown in Table 9 for m = 100:
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Min 1st Quartile Median Mean 3rd Quartile Max
ϕ

(1)
1 2.64 3.29 3.47 3.53 3.68 5.38
ϕ

(2)
1 2.01 3.32 3.54 3.62 3.70 7.16
ϕ

(1)
2 0.54 0.68 0.71 0.71 0.74 0.97
ϕ

(2)
2 0.58 0.68 0.71 0.73 0.74 1.53

AIC -363.29 848.22 1231.16 1461.97 1833.92 6078.44
BIC -310.20 901.32 1284.26 1515.07 1887.02 6131.54
LL -3027.22 -904.96 -603.58 -718.98 -412.11 193.65

Table 9: Summary statistics of the bootstrap distributions obtained for m = 100

(a) ϕ
(1)
1 (b) ϕ

(2)
1 (c) ϕ

(1)
2

(d) ϕ
(2)
2

(e) AIC (f) BIC

(g) LL

Figure 14: Bootstrap histograms for m = 100

These values obtained when m = 100 resemble the results found in the previous section, however, a large spread

of values is once again noted for the estimates. It is interesting to note that the AIC and BIC values have decreased

in comparison to the results shown in Table 4 but increased slightly from when m = 50. Furthermore, the bootstrap

distributions all have the same skewness properties exhibited in the previous sample, where the histograms are

right-skewed with the exception of the likelihood bootstrap distribution. Large amounts of variability exhibited

are exhibited by the results once again which is shown by the spread of values obtained in Table 9. An interesting
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observation is the range of values from the minimums of the AIC and BIC to the third quartile. The minimum

values obtained are clearly extremely low, coupled with meaningful parameter estimates which are interpretable.

These AIC and BIC values range from approximately -300 to the 1880, which is still comparable to the results

obtained by the other distributions in Tables 3 and 4.

The results for the summary statistics and bootstrap distributions are shown in Table 10 for m = 200:

Min 1st Quartile Median Mean 3rd Quartile Max
ϕ

(1)
1 1.97 3.31 3.51 3.60 3.83 5.38
ϕ

(2)
1 2.01 3.32 3.52 3.59 3.73 7.16
ϕ

(1)
2 0.54 0.68 0.71 0.72 0.75 1.00
ϕ

(2)
2 0.56 0.68 0.71 0.72 0.74 1.53

AIC -633.49 945.82 1345.71 1605.15 2031.15 7865.78
BIC -580.39 998.92 1398.81 1658.25 2084.25 7918.88
LL -3920.89 -1003.58 -660.86 -790.57 -460.91 328.74

Table 10: Summary statistics of the bootstrap distributions obtained for m = 200

(a) ϕ
(1)
1 (b) ϕ

(2)
1 (c) ϕ

(1)
2

(d) ϕ
(2)
2

(e) AIC (f) BIC

(g) LL

Figure 15: Bootstrap histograms for m = 200

The values obtained for m = 200 follow the same trend of obtaining similar values as the original model,

which is to be expected. Another increase in the AIC and BIC value is noted but it is still significantly lower than

56



the values obtained in Table 4. The same skewness properties are exhibited as the previous two samples, which

illustrates consistency in the bootstrap results. The power Lindley parameter estimates remain fairly consistent

across the sample sizes to the original values obtained.

The results for the summary statistics and bootstrap distributions are shown in Table 11 for m = 300:

Min 1st Quartile Median Mean 3rd Quartile Max
ϕ

(1)
1 1.97 3.32 3.50 3.60 3.80 6.60
ϕ

(2)
1 1.99 3.29 3.51 3.57 3.73 7.16
ϕ

(1)
2 0.54 0.69 0.71 0.72 0.75 1.07
ϕ

(2)
2 0.52 0.68 0.71 0.72 0.75 1.53

AIC -633.49 937.37 1371.99 1652.03 2090.86 7865.78
BIC -580.39 990.47 1425.09 1705.13 2143.96 7918.88
LL -3920.89 -1033.43 -674.00 -814.02 -456.68 328.74

Table 11: Summary statistics of the bootstrap distributions obtained for m = 300

(a) ϕ
(1)
1 (b) ϕ

(2)
1 (c) ϕ

(1)
2

(d) ϕ
(2)
2

(e) AIC (f) BIC

(g) LL

Figure 16: Bootstrap histograms for m = 300

The parameter values remain fairly similar across all bootstrap samples for the various sample sizes. These

parameter values of ϕ(k)
1 and ϕ(k)

2 for k = 1, 2 are similar to the values obtained by Table 4. Drawing comparisons

between these bootstrap results against the original results reveals that the AIC and BIC values are higher than
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the Gumbel distribution, but lower than the other models. The minimum values obtained by the bootstrap

further emphasise the potential of the power Lindley distribution as a preferable model for distance modelling for

a variety of samples and across different sample sizes. The minimum values and first quartile values obtained

for the estimates as well as the AIC and BIC measures indicate that in certain circumstances, the power Lindley

can strongly outperform the parametric counterparts considered in this study whilst retaining interpretability and

computational efficiency. This is an important result to note, given the appealing features of the power Lindley’s

modelling performance and results previously discussed. The results obtained by this bootstrap procedure reinforce

that the power Lindley distribution is an ideal candidate for the modelling of distances within animal movement

modelling for this specific data modelling scenario. The performance of the power Lindley for modelling distances in

animal movement illustrates better performance than the Weibull and Gamma distributions, whilst still remaining

true to the movement nature of the caribou. It is still important to note that the modelling of animal movement

is a data driven process and no distribution or model will be a universally accepted candidate for all modelling

instances.

Figure 17: The dependence structure of the model within the BCRW

Figure 17 provides a visual summary of the model and its respective components. This summarises the

dependence structure within the model between the explanatory variables, observed bivariate process (39) and the

hidden process.
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4 Conclusion

The modelling of animal movement is a data dependent process. A variety of alternative parametric models

were considered for the modelling of animal movement in this study. The von Mises and ssvM distributions were

considered for the directional component of the multi-state BCRW model with the Gamma, Weibull, power Lindley

and Gumbel distributions being considered for the distance component. This model comprises of a two-state BCRW

model with hidden Markovian states to account for the movement behaviour of the animal. This model has the

ability to account for multiple movement behaviours as well as the animal’s response to environmental factors. In

this modelling scenario, two environmental factors were accounted for together with one directional explanatory

variable. This model was estimated using an EM algorithm with a filtering-smoothing algorithm embedded within

the E-step of the EM algorithm.

The modelling results illustrated that the von Mises distribution for the directional component together with the

Gumbel distribution for the distance component of the model provided the best results using BIC as the measure

of performance. However, upon closer inspection of the parameter estimates obtained, the Gumbel distribution

failed to adequately provide meaningful parametric results in terms of animal movement modelling for this specific

dataset. The Gamma distribution performed well in comparison to the Weibull and power Lindley counterparts

which was detailed by Nicosia et al. [32], however, interpretation of the power Lindley estimates revealed similar

parametric results to that of the Gamma and Weibull. Despite having a higher BIC value, the power Lindley’s

nature of being a mixture of Gamma and Weibull distributions warranted further investigation into its performance

via a bootstrap simulation study. This bootstrap simulation study revealed that as the number of samples increased,

the median BIC value decreased and was ultimately lower than the Weibull and Gamma distribution’s BIC values.

This would therefore indicate that the power Lindley is a valid consideration for modelling an animal’s distance in

animal movement models in terms of tractability, computational efficiency and model performance.

Animal poaching is a current international issue. Animal movement models which are able to account for

multiple types of animal behaviour, track movement patterns and are easily interpretable will be a valuable asset

to ecologists and conservationists. This modelling framework with the alternative parametric direction and distance

considerations might provide a foundation for future animal movement models to improve on in both accuracy

and efficiency.

There are multiple possible options for further extensions of the methods presented in this study. The consid-

eration of the generalised von Mises distribution and Exponentiated Cardioid for directional movement modelling

of animal movement. A variety of other distributions or mixture models could be considered for the distance

modelling of the animals to extend the current range of considered distance models. Random effects could be

introduced into the model to account for the simultaneous analysis of multiple individuals but will require a new
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numerical procedure to estimate the model, which could prove to be difficult. Various special cases can be consid-

ered to extend the consensus model construction, such as increasing the number of hidden states, changing model

assumptions and implementing multi-state modelling frameworks. A semi-Markov approximation for the hidden

Markov model can be implemented into this modelling framework. A contamination study can be performed where

the data is intentionally polluted with random errors to test the robustness and flexibility of the model when faced

with data of this nature.
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5 Appendix A

5.1 Linear - Circular Regression

Circular data has a periodic nature which fundamentally differs from linear data. Measurements on a circle at

360° and 0° represent the same direction whereas they would be on opposite ends of a linear scale [10]. Early

findings on linear-circular regression were based on the assumption that the circular response θ follows the von

Mises distribution (1) given predictors X = x . Considering the von Mises distribution, the mean µ is regressed

over observations xi using a circular link function h(·) [39],

µi = µ0 + h(xi). (59)

The circular link function has had many proposed functions, such as h(x) = β′x [16] and h(x) = 2πF (x) [20]

where F (x) denotes the marginal function of x. Maximum likelihood approaches were proposed to estimate the

regression parameters, but it proved to be difficult to optimise the likelihood functions due to multimodality and

unidentifiability of parameters [39].

An alternative approach would be to use non-parametric smoothing which involves finding an unknown regres-

sion function µ(·) minimising the angular risk function denoted by [39],

E[1 − cos(θ − µ(X))|X = x]. (60)

The minimiser of risk is tan−1(s(x), c(x)), where s(x) = E[sin(θ)|X = x] and c(x) = E[cos(θ)|X = x].

Non-parametric estimates of s(·) and c(·) are achieved using locally weighted regression over sin(θ) and cos(θ)

respectively across the individual observations, where the estimates are then substituted into the minimiser of the

risk therefore yielding the estimate of µ(x) [39].

The treatment of the circular responses as the projection of unobserved bivariate normal variables on the unit

circle is an alternative approach to regression. This method is defined as [36],

θ = tan−1
(
yi2

yi1

)
for yi1 > 0 (61)

where (yi1, yi2) represents a bivariate normal vector with a covariance of Σ and respective mean µi = ν′xi. For

this approach, Σ = I where I denotes the identity matrix is fixed where and the EM algorithm is used to estimate

ν [36][39].

The approach of a wrapped distribution could also be used, whereby a circular response θ is regarded as the

result of the modulo operation on a real random variable. When the real variable follows a pdf denoted by f(·),
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the corresponding circular response follows a wrapped distribution with the pdf [39]

fw(θ) =
∞∑

Z=−∞
f(θ + 2Zπ + π). (62)

This pdf is achieved by wrapping the aforementioned pdf f(·) around the circumference of a unit circle. This pdf

is popularly used to describe a probability distribution for a circular random variable.

A linear model for the von Mises distributions in the two-dimensional case is now introduced. Suppose a sample

of M observations (x1, t1), . . . , (xM, tM) is obtained from (2) with κ > 0, the i − th mean vector having the

form [16]

ν′ = [cos(α0 + α′ti), sin(α0 + α′ti)], (63)

where α′ti = α1t1i + · · · + αqtqi and the total number of distinct ti’s exceed q where q denotes the number of

parameters being fitted to the model. In the case where the measurement errors of the x’s are negligibly small,

the log-likelihood is

L(α0, . . . , αq) = constant + κ

M∑
i=1

x′
ivi (64)

The maximum likelihood solutions for the parameters α̂0, α̂1, . . . , α̂q are obtained as the solutions to the system

which consists of q + 1 equations

∂L(α̂0, . . . , α̂q)
∂α̂i

= 0, i = 0, 1, . . . , q. (65)

The result that (65) equals zero implies that [16]

tan(α̂0) =
[

M∑
i=1

x′
i

(-sin(α̂′ti)
cos(α̂′ti)

)][ M∑
i=1

x′
i

(cos(α̂′ti)
sin(α̂′ti)

)]−1

, (66)

where α̂0 may be obtained as a function of α̂1, . . . , α̂q. An explicit solution to (64) is not possible, so an iterative

procedure such as the Gauss-Newton algorithm may be used. To make use of the Gauss-Newton method [16], the

Taylor expansion would be required.

A natural model for regression of a linear variable X on an angular variable θ is [28]:

X|θ ∼ N(α+ β1 cos(θ) + β2 sin(θ), σ2) (67)

The above is multiple linear regression of X on (cos(θ),sin(θ)) where θ is the angular variable.

Suppose that Θ is a circular response variable measured at values x1, ..., xn of a k-dimensional explanatory

variable X. When dealing with a one-dimensional explanatory variable, the proposition of wrapping the line onto
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the circle leads to Gould’s regression model [16] where

Θi ∼ M(µ+ βxi, κ), i = 1, ..., n. (68)

Note that µ, β and κ are unknown parameters and Θ1,..., Θn are independent. This model is the circular

response regression model. It has the disadvantage of having a likelihood that has infinitely many maxima of

comparable size [28] and a non-identifiable β when the xi’s are equally spaced. This creates the problem of finding

the maximum likelihood estimators. This problem is caused by the helical regression function h(x) = βx(mod2π)

which wraps the real line around the circle infinitely many times. To avoid this problem, link functions h(·) which

are one-to-one functions which map onto (−π, π) satisfying h(0) = 0 may be used [28].

5.2 Theory of Random Walks and Estimation

In this section, theory about random walks, Markov processes and their estimation is presented.

5.2.1 Random Walk

The simplest examples of a stochastic process is the white noise process, which is defined as the independent

sequence of random variables X0, X1, ... which are all identically distributed. A random walk is a stochastic

process which is formed by the consecutive summation of identically, independently distributed random variables.

Let {Xt: t = 0, 1, 2, ...} denote the white noise process, and let Y0, Y1, ... be a sequence of random variables where

Y0 = 0 and Yt =
∑t

i=1 Xi for all t ≥ 1. Then, the process {Yt: t = 0, 1, 2..} is called a random walk process [41].

The random walk has increments which are independent, therefore having the Markov property which indicates

that the probabilities of future events depend only on the state of the random walk at the latest point (tn) in time

for which we have information and not on any previous points in time.

A special case of the random walk is the simple random walk. This is the case when Xt is either +1 or -1 with

respective probabilities p and 1 − p. This represents independent steps which are to the left with a probability of

1 − p or to the right with a probability of p. In this case, Yt will denote the position of the process after t steps.

5.2.2 Multi-State Random Walk

Another variant of random walks is the multi-state random walk. The primary idea of the multi-state random

walk (MRW) is a random walk on a lattice structure, where the process may be at each site in a number of

internal states with properties which affect the random walk [7]. Consider random walks in Zd with a bounded,

symmetrical increment distribution. An irreducibility criterion is imposed to ensure that all points may be reached
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in the lattice Zd [26]. The integer lattice Zd is defined as follows [26]:

Zd = {(x1, ..., xd) : xj ∈ Z} (69)

where the superscripts denote components and subscripts would denote elements i.e. the point xj written in

component form is xj = (x1
j , ..., x

d
j ).

The standard basis of unit vectors in Zd are denoted by e1 = (1, 0, ..., 0), ..., ed = (0, ..., 0, 1). Th e prime

example in the discrete case would be to consider the simple random walk starting at k ∈ Zd. In the case, the

simple random walk could be a Markov chain with state space Zd and corresponding transition probabilities defined

as [26]:

P{Sn+1 = z|Sn = y} = 1
2d , z − y ∈ {±e1, ..., ed} (70)

Alternatively, this simple random walk may be considered as the sum of a sequence of i.i.d random variables [26]:

Sn = k +X1 + ...+Xn (71)

where P{Xj = ej} = P{Xj = −ej} = 1
2d , j = 1, ..., d.

5.2.3 Biased Correlated Random Walk / Correlated Random Walk

Random walks were initially used as simple models for movement and were uncorrelated and unbiased. Contextually,

uncorrelated indicates that the movement is independent of previous directions, implying that the locations after

each successive step in the random walk is dependent only on the location of the previous step, which is indeed

the Markov property. The unbiased aspect means that no single direction is preferred, and the direction in which

the animal might move at each step is completely random.

Correlated random walks (CRWs) involve a quantified correlation between successive steps called persistence

[9]. This ’persistence’ produces a local directional bias where each step has a tendency to point in the same

direction as the previous step. However, the strength of the local directional bias which diminishes over time.

Step orientations are uniformly distributed in the long term [9]. Taking into consideration that animals tend to

have a forward persistence to move or walk in a forward direction, CRW’s are popularly used to model animal

paths in a variety of contexts. By increasing the probability of moving in a certain direction, a global directional

bias may be introduced into the model. Paths that contain a consistent bias in a preferred direction or towards

a specific target are biased random walks (BRWs) or biased and correlated random walks (BCRWs) in the event

that persistence is also observed. This bias may be caused by a multitude of factors ranging from fixed external

environmental factors to choices of direction by individuals at each step in the process. The target direction and
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bias are not necessarily fixed over the entire path taken and could possibly vary per location and time. Direction,

functional form and magnitude of bias may be quantified in the case where directional targets are fixed for all

individuals in the population [9].

The primary difference between a CRW and BCRW is that the bias present in a BCRW is consistent and does

not diminish over time, whereas the local directional bias in a CRW does diminish over time. CRWs and BCRWs

are often referred to as velocity jump processes since both processes involve random changes in velocity over time

[9]. BCRWs discretise the path taken and the movement made between times t and t+1 is a two-dimensional step

vector for all times t = 0, 1, . . . , T . A polar representation (yt, dt) of the step vector often used where the step

angle yt ∈ [−π, π) provides the direction of the movement occurring at time t with respect to reference direction,

where dt is the respective step length. Let ψt be an angle indicating the direction toward the target at time t.

This angle ψt is the angle of a line joining the animal’s position at time t and the target’s position with respect

to the reference direction [11]. The step angle denoted by yt is the result of compromising between movement

and directional persistence in response to ψt. A compromise made by the step angle yt may be modelled and

quantified by setting the mean direction µt to the vector direction of the vector [11]

vt =
(

cos(yt−1)
sin(yt−1)

)
+ β

(
cos(ψt)
sin(ψt)

)
. (72)

To find an expression for the mean direction µt, a rotation of a de-centred angle which is defined as the direction

of the sum of unit vectors which correspond to the angle ψt. Suppose the parametrisation for the de-centring

vector is (u1, u2) = r(cos(α), sin(α)) where r is a real number and α is an angle [38]. Using this notation, the

direction of (u1 + cos(x), u2 + sin(x))T may be written as [38]:

= 1
{r2 + 1 + 2r. cos(α− x)} 1

2

 r. cos(α) + cos(x)

r. sin(α) + sin(x)


= 1

{r2 + 1 + 2r. cos(x− α)} 1
2

 cos(α) − sin(α)

sin(α) cos(α)


 r + cos(x− α)

sin(x− α)



Now, rotating the vector above yields the general form of the de-centred predicted direction as

1
{r2 + 1 + 2r. cos(x− α)} 1

2

 cos(ϕ) − sin(ϕ)

sin(ϕ) cos(ϕ)


 r + cos(x− α)

sin(x− α)


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where ϕ ∈ [0, 2π). Rewriting this general form in terms of angles will yield the expression for the angle of the

de-centred predictor [38]:

θ(x, ϕ, yα, r) =ϕ+ atan{sin(x− α)}(mod2π)

=atan{r sin(ϕ) + sin(x+ ϕ− α), r cos(ϕ) + cos(x+ ϕ− α)}(mod2π),

where

atan(a, b) =


atan( a

b ) for b > 0

atan( a
b ) + π for b < 0.

Making use of this parametrisation, the mean µt is defined as [11]

µt = atan{sin(yt−1) + β sin(ψt), cos(ψt) + β cos(ψt)} (73)

The parameter β is a weight of the strength of attraction of the target in relation to the directional persistence

in the animal’s compromise when choosing the following movement angle [11]. A CRW is obtained when β = 0,

resulting in µt = yt−1 and a biased random walk (BRW) is obtained when β → ∞ resulting in µt = ψt−1.

Duchesne et al. (2015) demonstrated that the aforementioned expected movement in the BCRW is defined by

(72) since this specific definition of the mean direction provides a stable definition invariant to the addition or

subtraction of 2π to the angle.

The estimation of β is of particular importance since it weighs the strength of attraction of the target relative

to the animal’s directional persistence compromise when choosing the next movement angle. Maximum likelihood

methods may be used, but an angular (directional) or consensus model needs to firstly be initialised.

The directional model is obtained by assuming that the step angles yt are von Mises distributed with average

direction of µt and a concentration parameter κ > 0 with pdf (1). This estimation method consists of the

parameters β and κ via maximisation of the likelihood constructed with (1) [11].

5.2.4 Markov Process

The Markov process {Xt} is a stochastic process with property that when the value of {Xt} is given, the values

of Xs for s > t are independent the values of Xu for u < t [35]. This implies that the probability of the future

behaviour of the process with the current state known, is independent of knowledge of the past behaviour of the

process. A stochastic process has the Markov property if the following condition holds [35]:

P{Xn+1 =j|X0 = a0, ..., Xn−1 = an−1, Xn = a}
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=P{Xn+1 = j|Xn = a} (74)

for all time points n and states a0, ..., an−1, a, j.

A discrete Markov chain is classified as a Markov process with a discrete state space and parameter space

T = {0, 1, 2, . . . }. A stochastic process is called a Markov chain if for all time points n, if it is true that [35]

P{Xn+1 =an+1|X1 = a1, ..., Xn = an}

=P{Xn+1 = an+1|Xn = an} (75)

for all states a1, ..., an, an+1. The one-step transition probability denoting the probability of Xn+1 being in state

k given that Xn is in state j and is denoted Pn,n+1
jk . It is defined as,

Pn,n+1
jk = P{Xn+1 = k|Xn = j} (76)

If the transition probabilities are independent of n i.e., the time variable, the Markov chain has stationary transition

probabilities.

A Markov process is called a Markov jump process if it has a continuous parameter space T = [0,∞) and a

discrete state space. A stochastic process is called a Markov jump process if for all time points n it is true that

P{Xn+1 =an+1|X1 = a1, ..., Xn = an}

=P{Xn+1 = an+1|Xn = an} (77)

The transition probability denoting the probability of Xt being in state j given that Xs is in state a is P{Xt =

j|Xs = a}. The transition probability is defined as [35]:

P{Xt = j|Xs = a} = Paj(s, t). (78)

5.2.5 Markov Renewal Process

A renewal event is defined as the event where an object is replaced by another object from the same set the moment

it fails [19]. For example, suppose the experiment involves a set of machinery whose lifetimes are independent.

This particular experiment consists of using one machine at a time, and when this machine fails, it is immediately

replaced. This example constitutes a renewal event. Let N(t) denote the number of renewal events till time t,

with the assumption that first machine was turned on at time t = 0. The time until failure of Tn of the first n
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machines is then given by [19]

T0 =0 (79)

T1 =X1

T2 =X1 +X2

...

Tn =X1 +X2 + · · · +Xn (80)

The process {N(t), t ≥ 0} is therefore a counting process, which is known as a renewal process which is generated

by the inter-arrival times {Tn, n ≥ 1} which denotes the number of renewals up to time t. In a renewal process,

the holding times do not necessarily need to be exponentially distributed, and may assume any distribution on

positive numbers with the condition that the holding times are independent and identically distributed (i.i.d) with

a mean that is finite.

The Markov renewal process is a generalisation of a renewal process where the sequence of holding times is

not i.i.d. The distribution of the sequence of holding times are dependent on the states in a Markov chain. Let

S denote the state space and the stochastic process Xt ∈ S be a Markov chain with n = 0, 1, 2... as the states

of the process [41]. Let (Xn, Tn) denote a sequence of random variables, where Tn represent the jump times of

the states and Xn are the historical states. The inter-arrival times of the states in Tn are τn = Tn − Tn−1. The

sequence (Xn, Tn) is called a Markov renewal process if for any n ≥ 0, τ ≥ 0 ,a, j ∈ S it is true that [41]:

P{τn+1 ≤ τ,Xn+1 =j|(X0, T0), (X1, T1), ..., (Xn = a, Tn)}

=P{τn+1 ≤ τ,Xn+1 = j|Xn = a}. (81)

The state transition probabilities are defined by [41]:

Haj(τ) = P{τn+1 ≤ τ,Xn+1 = j|Xn = a}. (82)

5.2.6 Hidden Markov Model

A hidden Markov model (HMM) is a Markov chain where the state is exclusively partially observable. This broadly

implies that a HMM is a Markov process split into an observable component and an unobservable component. A

HMM is characterised by the following [37]:

1. N , which denotes the number of states within the model. The states are generally interconnected so that
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any state may be reached from any other state. The state space is denoted by S. The state at a time t is

denoted by qt, and the set of N individual states are denoted as S = {S1, S2, ..., SN } [37].

2. M , which represents the number of distinct observational symbols per state corresponding to the physical

output of the system being modelled. The individual symbols are V = {v1, ..., vM }.

3. A, which denotes the transition probability matrix, where each aij denotes the probability of moving from

state i to state j such that
∑N

j=1 aij = 1 ∀i. It is defined as [37]

aij = P{qt+1 = Sj |qt = Si}, 1 ≤ i, j ≤ N. (83)

In the case where each state can reach any other state, aij > 0,∀i, j, otherwise, aij = 0 for more than one

i, j pair.

4. B, which is the probability distribution of the observation symbol in state j, where B = {bj(k)} where

bj(k) = P{vk at t|qt = Sj}, 1 ⪕ j ⪕ N, 1 ⪕ k ⪕M. (84)

5. π, which is the initial state distribution where

π = πi = P{qi = Si}, 1 ⪕ i ⪕ N. (85)

Note that πi is the probability that the Markov chain starts in state i and
∑N

i=1 πi = 1.

The entire parameter space of the HMM is then denoted by λ = (A,B, π) for simplicity. An ergodic model is a

model with the property that each state can reach every other state in a finite number of steps. The figure below

illustrates an HMM model with one discrete hidden node and one continuous or discrete node per slice [41].

In Figure 18, the circles represents continuous nodes, squares represent discrete nodes, clear nodes indicate

hidden states, and shaded nodes mean that they are observed. An instance of the HMM process is shown in the

trellis, where thick lines represent state paths and thin lines represent available transitions of states. The state

transition probabilities are specified within matrix A i.e., the transition probability matrix. The initial state is s0

which is chosen according to the initial state distribution π. Equivalently, the underlying Markov chain of the

HMM can be expressed by the state transition diagram. The process produces observation o1 with corresponding

emission probability bs0,s1o1 while transitioning from state s0 to s1, which continues until the final observation oT
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Figure 18: HMM process illustration

5.3 Useful Results

All useful results used for theoretical results are shown below:

Result 1. The modified Bessel function function of the first kind and of order p is defined by [28]:

Ip(κ) = 1
2π

∫ 2π

0
cos(pθ) exp(κ cos(θ))dθ (86)

with a corresponding power series expansion

Ip(κ) =
∞∑

n=0

1
Γ(p+ n+ 1)Γ(n+ 1)

(κ
2

)2n+p

.

Result 2. The pth trigonometric moment about the mean direction is given by [28]:

φp = āp + ib̄p, (87)

where

āp = 1
n

n∑
i=1

cos(θi − θ̄), b̄p = 1
n

n∑
i=1

sin(θi − θ̄)
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Then,

φ1 = R̄

where θ̄ and R̄ denote the mean direction and mean resultant length respectively. The mean direction θ̄ is the

average of the angles θ1, . . . , θn of the unit vectors x1, . . . ,xn. The mean resultant length R̄ is given by

R̄ =

(1
2

n∑
i=1

cos(θi)
)2

+
(

1
2

n∑
i=1

sin(θi)
)2
 1

2

Result 3. The binomial expansion states that for n ∈ R if | a
b | < 1 [3],

(a+ b)n =
n∑

k=0

(
n

k

)
akbn−k

where each
(

n
k

)
is a positive integer known as the binomial coefficient.

Result 4. A continuous random variable X has the exponential distribution with parameter θ > 0 if it has the

pdf of the form [3]

f(x; θ) = 1
θ

exp
(

−x

θ

)
, x > 0 (88)

Result 5. A random variable X has the generalised Gamma distribution GG(α, τ, λ) if it has the pdf of the form

[21]:

f(x|α, τ, λ) = τ

λΓ(α)

(x
λ

)(ατ−1)(exp(−( x
λ ))τ )

, x ≥ 0, τ, α, λ > 0 (89)

where Γ(·) is the gamma function, α and τ are the shape parameters and λ is the scale parameter.

Result 6. The Jacobi-Anger expansion is denoted by [2]

exp(kcos(θ)) = I0(k) + 2
∞∑

j=1
Ij(k) cos(jθ) (90)

where Ij(k) is the Bessel function of order j.

Result 7. The gamma function is denoted by Γ(κ) for all κ > 0 is given by [3]

Γ(κ) =
∫ ∞

0
xκ−1 exp(−x)dx. (91)

The gamma function also has the following properties:

Γ(κ) =(κ− 1)Γ(κ− 1) for κ > 1
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Γ(n) =(n− 1)!

Γ
(

1
2

)
=

√
π (92)

Result 8. The Euler-Mascheroni constant is defined by [23]:

γ = lim
n→∞

(
n∑

i=1

1
i

− log(n)
)

(93)

which approximately equates to γ = 0.57721567.

Result 9. There are three important properties regarding the Gamma function, namely [17]:

1. ∂ log Γ(x)
∂x = Γ′(x)

Γ(x) = Ψ(x) where Ψ(x) = −γ +
∑∞

n=0

(
1

n+1 − 1
x+n

)
where γ is from (93).

2. Γ′(x) = Γ(x)Ψ(x).

3. Γ′′(x) = Γ′(x)Ψ(x) + Γ(x)Ψ′(x) where Ψ′(x) =
∑∞

n=0
1

(x+n)2 .

Result 10. The following trigonometric relations and inequalities hold for x ∈ R [34];

1. | sin(x)| < x and | cos(x)| < 1

2. sin(x) + cos(y) = 2 sin
(

x+y
2
)

cos
(

x−y
2
)
.
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6 Appendix B

6.1 Code

All the models have been included in a single code chunk for the reader. The data is available here https:

//www.sciencedirect.com/science/article/abs/pii/S0167947316301736.

library(LindleyR)

library(rmutil)

# This is the Euclidean distance between two points. The parameters x0, y0 are the

↪→ coordinates of one point. x1, y1 coordinates of the other point.

getDistance <- function(x0, y0, x1, y1) { ##this gets me the Eucledian distance

as.vector(sqrt((x1 - x0)^2 + (y1 - y0)^2))

}

# This is the Angle between two points. It calculates the angle between a vector pointing

↪→ North whose origin is the point (x0, y0) and a vector whose origin is also point (

↪→ x0, y0) and which contains point (x1, y1). Input in radians.

getAngle <- function(x0, y0, x1, y1) { ##this gets me the angle between two points

at <- atan2(y1 - y0, x1 - x0)

as.vector(at)

}

# This is the weighted von Mises distribution in the state k. This Function computes the

↪→ weigthed von Mises distribution in the state k wrt to smooth probabilities.

#kappa is the matrix of parameters associated to the von Mises distributions

# E.smooth: matrix T*K of smooth probabilities

# data: data frame of the directions (y), distances (d), explanatory angles variables (x)

↪→ and explanatory real variables (z)

#L: the weighted log-likelihood function related to the direction

LL.vonMises <- function(kappa, E.smooth, data, k) { ##Weighted von mises distribution in

↪→ state k
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x <- data$x

y <- data$y

z <- data$z

steps <- length(y)

y0 <- y[1] #inital direction

L <- 0 #initial LL set to zero

t <- 1 #time 1

conc <- sqrt( (kappa %*% (c(sin(y0), z[t, ] * sin(x[t, ]))))^2 + (kappa %*% (c(cos

↪→ (y0), z[t, ] * cos(x[t, ]))))^2)

l.t0 <- E.smooth[t, k] * (-log(2 * pi * besselI(conc, 0, expon.scaled = FALSE)) +

↪→ kappa %*% (c(cos(y[t] - y0), z[t, ] * cos(y[t] - x[t, ]))))

if (!is.na(l.t0))

L <- L + l.t0 #we are updating

for (t in (2:(steps))) {

conc <- sqrt((kappa %*% (c(sin(y[t - 1]), z[t, ] * sin(x[t,

↪→ ]))))^2 + (kappa %*% (c(cos(y[t - 1]), z[t, ] * cos(x[

↪→ t,]))))^2)

#likelihood

l.tk <- E.smooth[t, k] * (-log(2 * pi * besselI(conc,

0, expon.scaled = FALSE)) + kappa %*% (c(cos(y[t] -

y[t - 1]), z[t, ] * cos(y[t] - x[t, ]))))

if (!is.na(l.tk))

L <- L + l.tk #updating

}

return(L)

}

# Weigthed distribution of distance: Function that computes the weigthed distribution of

↪→ the distances

# During the M step of the EM algorithm, we have to maximize the weigthed distribution of

↪→ distances.
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#param : parameters c(log(shape),log(scale)) of the distances

#d: vector of observed distances

#weight: vector of weight of each observation

# dist: type of distribution on the step length. The choices are ’gamma’,’weibull’,’

↪→ lindley’ and ’gumbel’.

#L: the weighted distribution related to the distance

l.dist = function(param, d, weight, dist = "gumbel") {

shape = exp(param[1])

scale = exp(param[2])

if (dist == "gamma")

L = sum(weight * dgamma(d, shape = shape, scale = scale, log = TRUE))

if (dist == "weibull")

L = sum(weight * dweibull(d, shape = shape, scale = scale, log = TRUE))

if(dist == "lindley") #this is new. Trying things

L = sum(weight * dplindley(d,shape, abs(scale),log=TRUE))

if(dist == "fisk")

L = sum(weight * dfisk(d, scale = scale,shape1.a = shape, log = TRUE))

if(dist == "lomax")

L = sum(weight* dlomax(d,scale,shape,log = TRUE))

if(dist == "gumbel")

L = sum(weight* dgumbel(d,scale ,shape,log = TRUE))

return(L)

}

# Filtering-Smoothing algorithm : computes filtering and smoothing probabilities

#param: list of parameters of the model

#data: data frame of the directions (y), distances (d), explanatory angles

↪→ variables (x) and explanatory real variables (z)

#type: angle-dist’ for bivariate model on direction-step length and ’angle’ for

↪→ univariate model on direction

#dist: type of distribution on the step length. The choices are ’gamma’,’weibull

↪→ ’,’lindley’ and ’gumbel’.
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#E.smooth: Matrix T*K of the smooth probabilities {P(S_{tk}=1|F_{T})}

#E.filter: Matrix T*K of the filter probabilities {P(S_{tk}=1|F_{t-1})}

#LogLike: Value of the log-likelihood function w.r.t the parameters

FilterSmooth <- function(param, data, type = "angle", dist = "gumbel") {

# initialization:

pi0 <- param$pi0 #starting values of 0.7 and 0.3 for initial pi

P <- param$P #the markov chain(the transition matrix)

kappa <- param$kappa

thetalin <- param$thetalin

K <- length(pi0) #2, since we are doing a 2 state HMM

p <- length(kappa[1, ]) - 1

# information on the data set

x <- as.matrix(data$x)

y <- as.matrix(data$y)

z <- as.matrix(data$z)

d <- as.matrix(data$d)

steps <- length(y)

y0 <- y[1]

E.smooth0 <- rep(0, K)

E.filter <- matrix(0, steps, K)

LogLike <- 0 #starting point

i <- 1

P.trans <- as.vector(pi0 %*% P) #updating the transition probability matrix

#likelihood

l <- as.vector(sqrt((kappa %*% (c(sin(y0), z[i, ] * sin(x[i, ]))))^2 + (

↪→ kappa %*% (c(cos(y0), z[i, ] * cos(x[i, ]))))^2))

#von mises density

f <- as.vector((1/(2 * pi * (besselI(l, 0, expon.scaled = FALSE)))) * exp(

↪→ kappa %*% (c(cos(y[i] - y0), z[i, ] * cos(y[i] -x[i, ])))))

g <- rep(1, length(f)) #We will store the density of the distance

if (type == "angle-dist" & dist == "gamma")

g <- dgamma(d[1], shape = thetalin[, 1], scale = thetalin[, 2])
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if (type == "angle-dist" & dist == "weibull")

g <- dweibull(d[1], shape = thetalin[, 1], scale = thetalin[, 2])

if (type == "angle-dist" & dist == "lindley")

g <- dplindley(d[1], abs(thetalin[, 1]), abs(thetalin[,2]))

if (type == "angle-dist" & dist == "gumbel")

g <- dgumbel(d[1], thetalin[, 1], thetalin[,2])

f.renorm <- as.vector(exp(log(f * g) - max(log(f * g))))

denom <- (P.trans) %*% f.renorm

E.filter[1, ] <- as.vector((P.trans * f.renorm))/denom #the E step

if (!is.na(log((P.trans) %*% (f * g))))

LogLike <- log((P.trans) %*% (f * g)) #updating loglikelihood

# 1. filtering Algorithm

for (i in (2:steps)) {

P.trans <- as.vector(E.filter[i - 1, ] %*% P) #updating transition

↪→ probability matrix

l <- as.vector(sqrt((kappa %*% (c(sin(y[i - 1]), z[i, ] * sin(x[i,

↪→ ]))))^2 + (kappa %*% (c(cos(y[i - 1]), z[i, ] * cos(x[i, ])))

↪→ )^2))

f <- as.vector((1/(2 * pi * (besselI(l, 0, expon.scaled = FALSE))))

↪→ * exp(kappa %*% (c(cos(y[i] - y[i - 1]), z[i, ] * cos(y[i] -

↪→ x[i, ]))))) #von mises pdf

g <- rep(1, length(f)) #density of the distance distribution

#we have the weibull option and the gamma option

#The gamma was preferred based on AIC/BIC

if (type == "angle-dist" & dist == "gamma")

g <- dgamma(d[i], shape = thetalin[, 1], scale = thetalin[, 2])

if (type == "angle-dist" & dist == "weibull")

g <- dweibull(d[i], shape = thetalin[, 1], scale = thetalin[,2])
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if (type == "angle-dist" & dist == "lindley")

g <- dplindley(d[1], abs(thetalin[, 1]), abs(thetalin[,2]))

if (type == "angle-dist" & dist == "gumbel")

g <- dgumbel(d[1], thetalin[, 1], thetalin[,2])

f.renorm <- as.vector(exp(log(f * g) - max(log(f * g)))) #the "

↪→ difference"

denom <- (P.trans) %*% f.renorm

E.filter[i, ] <- as.vector(P.trans * f.renorm)/denom

if (!is.na(log((P.trans) %*% (f * g))))

LogLike <- LogLike + log((P.trans) %*% (f * g))

}

# 2. Smoothing Algorithm

E.smooth <- matrix(0, steps, K)

E.smooth[steps, ] <- E.filter[steps, ]

for (t in (steps - 1):1) {

for (l in (1:K)) {

for (k in (1:K)) {

denom <- (E.filter[t, ]) %*% P[, k]

num <- (P[l, k] * E.filter[t, l] * E.smooth[t + 1, k

↪→ ])

if (!is.na(num/denom)) #ensuring we do not get null

↪→ results with an iteration

E.smooth[t, l] <- E.smooth[t, l] + num/denom

}

}

}

for (l in (1:K)) {

for (k in (1:K)) {

denom0 <- pi0 %*% P[, k]

num0 <- P[l, k] * pi0[l] * E.smooth[1, k]

if (!is.na(num0/denom0))
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E.smooth0[l] <- E.smooth0[l] + num0/denom0

}

}

out <- list(E.smooth0 = E.smooth0, E.filter = E.filter, E.smooth = E.smooth

↪→ , LogLike = LogLike)

class(out) = "Filter-Smooth" #assigning the class using brute force to

↪→ ensure we know what is happening in the main code script

out

}

#Observed Log-likelihood function with a Markovian hidden process: compute the

↪→ observed log-likelihood given the assumption that the underlying hidden

↪→ process is Markovian.

#theta: vector of all the parameters of the model in this order: P, kappa and

↪→ thetalin

#data: data frame of the directions (y), distances (d), explanatory angles

↪→ variables (x) and explanatory real variables (z)

#pi0: vector of initial distribution of the hidden process

#nb.target: number of targets

#type of the model: ’angle-dist’ for bivariate model on direction-step length and

↪→ ’angle’ for univariate model on direction (Default).

#dist: type of distribution on the step length. The choices are ’gamma’ (Default)

↪→ or ’weibull’

logL <- function(theta, data, pi0, nb.target, type, dist) {

x <- data$x

y <- data$y

z <- data$z

d <- data$d

steps <- length(y)
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y0 <- y[1]

p <- nb.target #number of targets

K <- length(pi0) #number of states

kappa <- NULL

P <- NULL

for (l in (1:K)) {

#note: L is the increment in the loop, not a parameter!!

#K is the number of states in the HMM (2 state HMM)

#theta and kappa are the estimated parameter(vectors) with the

↪→ relevent degrees of freedom

# to correctly account for the states in the transition probability

↪→ matrix

# the rows will sum to 1! This needs to happen!

# The condition is acocunted for in the code.

P <- rbind(P, c(theta[(1 + (l - 1) * (K - 1)):(1 + (l - 1) * (K - 1)

↪→ + K - 2)], 1 - sum(theta[(1 + (l - 1) *

(K - 1)):(1 + (l - 1) * (K - 1) + K - 2)])))

kappa <- rbind(kappa, theta[((K * (K - 1) + 1 + (l - 1) * (p + 1)))

↪→ :((K * (K - 1) + 1) + (l - 1) * (p +

1) + (p))])

}

thetalin <- theta[c((length(theta) - K * 2 + 1):length(theta))]

E.filter <- matrix(0, steps, K)

LogLike <- 0 #initial value

x <- as.matrix(x)

z <- as.matrix(z)

80



cond <- "OK"

i <- 1

P.trans <- as.vector(pi0 %*% P) #updating the transition probability matrix

l <- as.vector(sqrt((kappa %*% (c(sin(y0), z[i, ] * sin(x[i,]))))^2 + (

↪→ kappa %*% (c(cos(y0), z[i, ] * cos(x[i, ]))))^2)) #likelihood

f <- as.vector((1/(2 * pi * (besselI(l, 0, expon.scaled = FALSE)))) * exp(

↪→ kappa %*% (c(cos(y[i] - y0), z[i, ] * cos(y[i] - x[i, ]))))) #von

↪→ mises

g <- rep(1, length(f)) #distance distribution/density

if (type == "angle-dist") {

if (dist == "gamma")

g <- dgamma(d[1], shape = thetalin[c(1, 3)], scale = thetalin[c(2,4)

↪→ ])

if (dist == "weibull")

g <- dweibull(d[1], shape = thetalin[c(1, 3)], scale = thetalin[c(2,

↪→ 4)])

if (dist == "lindley")

g <- dplindley(d[1], abs(thetalin[c(1, 3)]), abs(thetalin[c(2, 4)]))

if (dist == "gumbel")

g <- dgumbel(d[1], thetalin[c(1, 3)],thetalin[c(2, 4)])}

f.renorm <- as.vector(exp(log(f * g) - max(log(f * g)))) #Update

denom <- (P.trans) %*% f.renorm

E.filter[1, ] <- as.vector((P.trans * f.renorm))/denom

if (is.na(log((P.trans) %*% (f * g))) == FALSE)

LogLike <- log((P.trans) %*% (f * g))

# 1. Algorithm filtering
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for (i in (2:steps)) {

P.trans <- as.vector(E.filter[i - 1, ] %*% P)

l <- as.vector(sqrt((kappa %*% (c(sin(y[i - 1]), z[i,] * sin(x[i, ])

↪→ )))^2 + (kappa %*% (c(cos(y[i - 1]),z[i, ] * cos(x[i, ]))))

↪→ ^2))

f <- as.vector((1/(2 * pi * (besselI(l, 0, expon.scaled = FALSE))))

↪→ * exp(kappa %*% (c(cos(y[i] - y[i - 1]), z[i, ] * cos(y[i] -x

↪→ [i, ])))))

if (type == "angle-dist") {

if (dist == "gamma")

g <- dgamma(d[i], shape = thetalin[c(1, 3)],

scale = thetalin[c(2, 4)])

if (dist == "weibull")

g <- dweibull(d[i], shape = thetalin[c(1, 3)],

scale = thetalin[c(2, 4)])

if (dist == "lindley")

g <- dplindley(d[1], thetalin[c(1, 3)], abs(thetalin[c(2, 4)

↪→ ]))

if (dist == "gumbel")

g <- dgumbel(d[1], thetalin[c(1, 3)], thetalin[c(2, 4)])

}

f.renorm <- as.vector(exp(log(f * g) - max(log(f * g))))

denom <- (P.trans) %*% f.renorm

E.filter[i, ] <- as.vector(P.trans * f.renorm)/denom

if (is.na(log((P.trans) %*% (f * g))) == FALSE)

LogLike <- LogLike + log((P.trans) %*% (f * g))

}

return(LogLike) #this likelihood will tell us whether or not the underlying

↪→ process is markovian or
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}

#Transition matrix is semi_Markov process:Function that compute the transition

↪→ matrix of the approximated semi-Markov process

# m: vector of the size of the Dwell times

#p: vector of probabilities of the Dwell times.

#Gamma: Transition matrix

gen.Gamma <- function(m, p) {

Gamma <- diag(sum(m)) * 0

## state aggregate 1

if (m[1] == 1) {

#gamma = transition probability matrix = (1-q1, q1, q2,1-q2) 2x2

Gamma[1, 1] <- 1 - dnbinom(0, size = p[1], prob = p[3])

Gamma[1, 2] <- 1 - Gamma[1, 1]

}

if (m[1] > 1) {

Gamma[1, m[1] + 1] <- dnbinom(0, size = p[1], prob = p[3])

Gamma[1, 2] <- 1 - Gamma[1, m[1] + 1]

for (i in 2:(m[1] - 1)) {

cc <- rep(1, sum(m))

for (k in 1:(i - 1)) {

cc[k] <- Gamma[k, k + 1]

}

dd <- prod(cc)

if (dd > 1e-12)

Gamma[i, m[1] + 1] <- dnbinom(i - 1, size = p[1],

prob = p[3])/dd

if (dd < 1e-12)

Gamma[i, m[1] + 1] <- 1
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Gamma[i, i + 1] <- 1 - Gamma[i, m[1] + 1]

}

cc <- rep(1, sum(m))

for (k in 1:(m[1] - 1)) {

cc[k] <- Gamma[k, k + 1]

}

dd <- prod(cc)

if (dd > 1e-12)

Gamma[m[1], m[1] + 1] <- dnbinom(m[1] - 1, size = p[1],

prob = p[3])/dd

if (dd < 1e-12)

Gamma[m[1], m[1] + 1] <- 1

Gamma[m[1], m[1]] <- 1 - Gamma[m[1], m[1] + 1]

}

## state aggregate 2

if (m[2] == 1) {

Gamma[2, 2] <- 1 - dnbinom(0, size = p[2], prob = p[4])

Gamma[2, 1] <- 1 - Gamma[2, 2]

}

if (m[2] > 1) {

Gamma[m[1] + 1, 1] <- dnbinom(0, size = p[2], prob = p[4])

Gamma[m[1] + 1, m[1] + 2] <- 1 - Gamma[m[1] + 1, 1]

for (i in 2:(m[2] - 1)) {

cc <- rep(1, sum(m))

for (k in 1:(i - 1)) {

cc[k] <- Gamma[m[1] + k, m[1] + k + 1]

}

dd <- prod(cc)

if (dd > 1e-12)

Gamma[m[1] + i, 1] <- dnbinom(i - 1, size = p[2],

prob = p[4])/dd

if (dd < 1e-12)
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Gamma[m[1] + i, 1] <- 1

Gamma[m[1] + i, m[1] + i + 1] <- 1 - Gamma[m[1] + i, 1]

}

cc <- rep(1, sum(m))

for (k in 1:(m[2] - 1)) {

cc[k] <- Gamma[m[1] + k, m[1] + k + 1]

}

dd <- prod(cc)

if (dd > 1e-12)

Gamma[m[1] + m[2], 1] <- dnbinom(m[2] - 1, size = p[2],

prob = p[4])/dd

if (dd < 1e-12)

Gamma[m[1] + m[2], 1] <- 1

Gamma[m[1] + m[2], m[1] + m[2]] <- 1 - Gamma[m[1] + m[2], 1]

}

Gamma

}

#Observed Log-likelihood function with a semi-Markovian hidden process: Function

↪→ that compute the observed log-likelihood given the assumption that the

↪→ underlying hidden process is semi markov

logLSemi <- function(theta, y0, data, pi0, nb.target, m = c(30,

30), type = "angle-dist", dist = "gumbel") {

if (m[1] == 1) #if we have accuracy of 1 for state 1

theta[1] = 1

if (m[2] == 1)

theta[3] = 1

theta[c(1, 3)] <- exp(theta[c(1, 3)])
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theta[c(2, 4)] <- inv.logit(theta[c(2, 4)]) #exp(x)/1-exp(x)

n <- length(theta)

theta[c((n - 3):n)] <- exp(theta[c((n - 3):n)])

p <- nb.target #no. of targets

K <- length(pi0) #length of inital distribution of the hidden process

x <- data$x

y <- data$y

z <- data$z

d <- data$d

steps <- length(y)

p1 <- c(theta[1], theta[2])

p2 <- c(theta[3], theta[4])

kappa <- rbind(theta[5:(5 + (p))], theta[(5 + p + 1):(length(theta) -

4)])

thetalin <- theta[c((length(theta) - 3):length(theta))]

P <- gen.Gamma(m, cbind(c(p1[1], p2[1]), c(p1[2], p2[2]))) #this is the

↪→ transition matrix of a semi markov process

kappacopy <- NULL

thetalincopy <- NULL

for (i in (1:m[1])) { #1 till 30

kappacopy <- rbind(kappacopy, kappa[1, ])

thetalincopy <- rbind(thetalincopy, thetalin[1:2])

}

for (i in (1:m[2])) {

kappacopy <- rbind(kappacopy, kappa[2, ])

thetalincopy <- rbind(thetalincopy, thetalin[3:4])

}

kappa <- kappacopy

thetalin <- thetalincopy

param = list(pi0 = pi0, kappa = kappacopy, thetalin = thetalincopy,
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P = P)

data <- list(x = x, y = y, z = z, d = d)

type = "angle-dist"

E.filter <- matrix(0, steps, K)

LogLike <- 0

x <- as.matrix(x)

z <- as.matrix(z)

cond <- "OK"

# initialization

i <- 1

P.trans <- as.vector(pi0 %*% P)

l <- as.vector(sqrt((kappa %*% (c(sin(y0), z[i, ] * sin(x[i,

]))))^2 + (kappa %*% (c(cos(y0), z[i, ] * cos(x[i, ]))))^2))

f <- as.vector((1/(2 * pi * (besselI(l, 0, expon.scaled = FALSE)))) *

exp(kappa %*% (c(cos(y[i] - y0), z[i, ] * cos(y[i] -

x[i, ])))))

if (type == "angle-dist") {

if (dist == "gamma")

g <- dgamma(d[1], shape = thetalin[, 1], scale = thetalin[,

2])

if (dist == "weibull")

g <- dweibull(d[1], shape = thetalin[, 1], scale = thetalin[,

2])

if (dist == "lindley")

g <- dplindley(d[1], abs(thetalin[, 1]), abs(thetalin[, 2]))

if (dist == "fisk")

g <- dfisk(d[1], thetalin[, 1], thetalin[, 2])

if (dist == "lomax")

g <- dlomax(d[1], thetalin[, 1], thetalin[, 2])

if (dist == "gumbel")
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g <- dgumbel(d[1], thetalin[, 1], thetalin[, 2])

}

f.renorm <- as.vector(exp(log(f * g) - max(log(f * g))))

denom <- (P.trans) %*% f.renorm

E.filter[1, ] <- as.vector((P.trans * f.renorm))/denom

if (is.na(log((P.trans) %*% (f * g))) == FALSE)

LogLike <- log((P.trans) %*% (f * g))

# 1. Filtering algorithm

for (i in (2:steps)) {

P.trans <- as.vector(E.filter[i - 1, ] %*% P)

l <- as.vector(sqrt((kappa %*% (c(sin(y[i - 1]), z[i,] * sin(x[i, ])

↪→ )))^2 + (kappa %*% (c(cos(y[i - 1]), z[i, ] * cos(x[i, ]))))

↪→ ^2))

f <- as.vector((1/(2 * pi * (besselI(l, 0, expon.scaled = FALSE))))

↪→ * exp(kappa %*% (c(cos(y[i] - y[i - 1]), z[i, ] * cos(y[i] -

↪→ x[i, ])))))

if (type == "angle-dist") {

if (dist == "gamma")

g <- dgamma(d[i], shape = thetalin[, 1], scale = thetalin[,

2])

if (dist == "weibull")

g <- dweibull(d[i], shape = thetalin[, 1], scale = thetalin[,

2])

if (dist == "lindley")

g <- dplindley(d[1], abs(thetalin[, 1]), abs(thetalin[, 2]))

if (dist == "gumbel")

g <- dgumbel(d[1], thetalin[, 1], thetalin[, 2])

}
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f.renorm <- as.vector(exp(log(f * g) - max(log(f * g))))

denom <- (P.trans) %*% f.renorm

E.filter[i, ] <- as.vector(P.trans * f.renorm)/denom

if (is.na(log((P.trans) %*% (f * g))) == FALSE)

LogLike <- LogLike + log((P.trans) %*% (f * g))

}

return(LogLike)

}

############################# EM-algorithm ###############

# Fit the general hidden random walk model using initial parameter

#param: list of all the parameters of the model in this order: P, kappa and

↪→ thetalin.

#data: data frame of the directions (y), distances (d), explanatory angles

↪→ variables (x) and explanatory real variables (z)

#EMMax: numbers of EM algortihm’s maximum iteration

#EMMin: numbers of EM algortihm’s minimum iteration

#precision: of the convergence, i.e. EM converge if the minimum between two

↪→ consecutives estimations is less than 10^(-{precision})

#beta: Matrix p*K of normalized coefficient beta associated to the targets.

#LL: Value of the maximized log-likelihood function

#s: Numbers of EM algirithm’s iteration

#P:estimated transition matrix

#pi0:initial probability distribution

#kappa: matrix (p+1)*K of the parameters associated to the direction

#thetalin: matrix 2*K of the parameters associated to the distance

#thetathistory: of estimated parameters in the EM algorithm

89



fitGHRW <- function(param, data, EMMax = 50, precision = 2, EMMin = 10, type = "

↪→ angle-dist", dist = "gumbel") {

# initialization:

pi0 <- param$pi0 #initial probability distribution

P <- param$P #initial transition probability matrix

kappa <- as.matrix(param$kappa) #directional parameters

thetalin <- param$thetalin #distance parameters

K <- length(pi0) #no. of states

p <- length(kappa[1, ]) - 1 # no. of targets

x <- as.matrix(data$x)

y <- as.vector(data$y)

z <- data$z

d <- data$d

steps <- length(y)

y0 <- y[1]

thetat <- E.smooth <- E.filter <- E.smooth0 <- paramop <- param1 <- param2

↪→ <- NULL

LL <- 2 #starting point

LL.prev <- 1

s <- 1

paramop <- param1 <- param2 <- param3 <- NULL

for (i in seq(along = pi0)) {

param1 <- c(param1, P[i, -K]) #q1

param2 <- c(param2, t(kappa[i, ]))

param3 <- c(param3, t(thetalin[i, ]))

}
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paramopold <- c(param1, param2, param3)

paramopnew <- paramopold + 1

# Em algorithm

while (norm(as.matrix(paramopnew - paramopold), type = "M") >

10^(-precision) && s < EMMin) {

paramopold <- paramopnew

########### E-step

if (s > EMMax) { #EMMAx is the max iteration we’re willing to do.

break

}

#filtering smoothing algorithm

FS <- FilterSmooth(param, data, type, dist)

E.smooth0 <- FS$E.smooth0

E.filter <- FS$E.filter

E.smooth <- FS$E.smooth

LL.prev <- FS$LogLike

Pa <- param$P

############ M-step

num <- matrix(0, K, K)

P <- matrix(0, K, K)

for (h in seq(along = pi0)) {

denom <- sum(E.smooth[-steps, h]) + E.smooth0[h]

for (k in seq(along = pi0)) {

for (t in c(2:length(y[]))) {

v <- E.filter[t - 1, ] %*% Pa

num[h, k] <- num[h, k] + E.smooth[t, k] * Pa[h
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↪→ ,

k] * E.filter[t - 1, h]/v[k]

}

v <- pi0 %*% Pa

num[h, k] <- num[h, k] + E.smooth[1, k] * Pa[h,

k] * pi0[h]/v[k]

P[h, k] <- num[h, k]/denom

}

}

for (i in seq(along = pi0)) {

op <- optim(param$kappa[i, ], LL.vonMises, E.smooth = E.

↪→ smooth,

data = data, k = i, control = list(fnscale = -1),

method = "L-BFGS-B") #optimises for us!!!!

kappa[i, ] <- op$par

if (type == "angle-dist")

op2 <- optim(log(param$thetalin[i, ]), l.dist,

d = d, weight = E.smooth[, i], dist = dist,

control = list(fnscale = -1), method = "L-BFGS-B")

thetalin[i, ] <- exp(op2$par)

}

ind <- order(-kappa[, 1])

kappa <- kappa[ind, ]

thetalin <- thetalin[ind, ]

P <- P[ind, ind]

param <- list(pi0 = pi0, kappa = kappa, thetalin = thetalin,

P = P)
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FSL <- FilterSmooth(param, data, type, dist)

LL <- FSL$LogLike

# check for spurious maximum

beta <- kappa[, 2:(p + 1)]/kappa[, 1]

a <- eigen(t(P))

ind <- which.max(abs(a$values))

pstatio <- as.matrix(abs(a$vectors[, ind])/norm(as.matrix(a$vectors

↪→ [,

ind]), "o"))

critkappa <- max(abs(kappa[, 1]))

# look for a spurious maxima

if (min(pstatio) < 1e-04 | critkappa > 100 | max(abs(beta)) >

100 | min(P) < 10^(-5) | min(thetalin) < 0.01 | max(thetalin) >

20)

break

s <- s + 1

paramop <- param1 <- param2 <- param3 <- NULL

for (i in seq(along = pi0)) {

param1 <- c(param1, P[i, -K])

param2 <- c(param2, t(kappa[i, ]))

param3 <- c(param3, t(thetalin[i, ]))

}

paramop <- c(param1, param2, param3)

paramopnew <- paramop

thetat <- rbind(thetat, paramop)

}

FSL <- FilterSmooth(param, data, type, dist)
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LL <- FSL$LogLike

out <- list(beta = beta, LL = LL, s = s, P = P, pi0 = pi0,

kappa = kappa, thetalin = thetalin, thetat = thetat)

class(out) = "fitGHRW"

out

}

############################# Global maximum of the likelihood function

↪→ ###############

# Fit the general hidden random walk model: Function that find the global maximum

↪→ of the likelihood of General hidden random walk model on data

#EMMax: vectors of size 2 of the numbers of EM algortihm’s maximum iteration (

↪→ short, long)

#EMMin: vectors of size 2 of the numbers of EM algortihm’s minmum iteration (short

↪→ , long)

#precision: vector of size 2 of the convergence of the precision of short and long

↪→ run algorithm

#semi indicates TRUE for the semi-Markov estimation. Default is FALSE.

#Markov:List of estimation with a Markovian hidden structure

#SemiMarkov: List of estimation with a semi-Markovian hidden structure

#EM.itermax: Number of EM algorithm iterations

#fit: of the model with {likelihood}, {AIC}, {BIC}

#kappa: matrix of the estimated parameters associated to the direction with

↪→ standard errors.

#phi: matrix of the estimated parameters associated to the distance with standard

↪→ errors.

#P.Markov:estimated transition matrix with standard errors. Note that for each

↪→ state k, only k-1 probabilites are displayed, i.e. P(S_t=j|S_{t-1}=k), for

↪→ j=1...K-1.
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#Dwell.SemiMarkov: estimated parameters of the Dwell time in each state of the

↪→ semi_Markov process

GHRandomWalk <- function(data, K, paraminitiaux = NULL, nb_init = 50, EMMax = c

↪→ (50, 2000), precision = c(2, 8), EMMin = c(10, 1000),

type = "angle-dist", dist = "gumbel", semi = FALSE) {

pi0 <- paraminitiaux$pi0

kappainit <- paraminitiaux$kappainit

thetalininit <- paraminitiaux$thetalininit

L = length(thetalininit[1, ])

Pinit <- paraminitiaux$Pinit

x <- as.matrix(data$x)

y <- as.vector(data$y)

z <- data$z

d <- data$d

steps <- length(y)

y0 <- y[1]

# 1 etat

if (K == 1)

print("please use the consensus function")

if (K > 1) {

# initialization

LLprec <- -exp(100)

condition <- FALSE

thetat1 <- thetat <- NULL

if (is.null(pi0)) {

w <- runif(K)

pi0 <- w/sum(w)

}
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# Estimation for nb_init initial parameters

print("short-run EM algorithm")

j <- 1

while (j < nb_init) {

if (is.null(kappainit)) {

kappa <- NULL

thetalin <- NULL

for (i in seq(along = pi0)) {

conc <- runif(1, min = 2, max = 30) #random

↪→ deviates from uniform distribution

kappa <- rbind(kappa, c(conc, conc * runif(p,

↪→ min = -1, max = 1)))

}

}

if (type == "angle-dist") { #for the bivariate model on

↪→ direction-step length

if (is.null(thetalininit))

thetalin <- matrix(runif(K * L, min = 1, max = 10), K

↪→ , L)

}

if (!is.null(kappainit))

kappa <- kappainit + t(replicate(K, runif(p + 1, -1, 1)))

if (!is.null(thetalininit)) {

if (type == "angle-dist")

thetalin <- thetalininit + matrix(runif(K * L, min =

↪→ 1, max = 5), K, L)

}

if (is.null(Pinit)) {

P <- NULL

for (i in seq(along = pi0)) {

vect <- runif(K)
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P <- rbind(P, vect/sum(vect))

}

}

param <- list(kappa = kappa, thetalin = thetalin,

P = P, pi0 = pi0)

# Estimation

S <- fitGHRW(param, data, EMMax[1], precision[1], EMMin[1],

↪→ type, dist) #fitting the model

SP <- S$P

a <- eigen(t(P)) #getting the eigenvalues of the transition

↪→ matrix

LL <- S$LL

ind <- which.max(abs(a$values))

#getting the normalised ratios

pstatio <- as.matrix(abs(a$vectors[, ind])/norm(as.matrix(

↪→ a$vectors[,ind]), "o"))

critkappa <- min(abs(S$kappa[, 1]))

# check for False maxima

if (min(pstatio) > 1e-04 && critkappa < 100 && max(abs(S$beta

↪→ )) <

100 && min(P) > 10^(-5) && min(thetalin) > 0.01 &&

LL > LLprec) {

condition <- TRUE

kappaop <- S$kappa

Pop <- S$P

thetalinop <- S$thetalin

LLop <- S$LL

thetat <- S$thetat

LLprec <- LLop

}
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print(paste0(round(j/nb_init * 100), "% of the short-run EM

↪→ algorithm done"))

j <- j + 1

}

thetat1 <- thetat

# Long-run EM algorithm

if (condition == "FALSE") {

LL <- -exp(100)

s <- 0

print("Not enough initial parameters! Please try again.")

break

}

if (condition == "TRUE") {

print("long-run EM algorithm...")

param <- list(kappa = kappaop, thetalin = thetalinop,

P = Pop, pi0 = pi0)

S <- fitGHRW(param, data, EMMax[2], precision[2],

EMMin[2], type, dist)

kappaop <- S$kappa

Pop <- S$P

thetalinop <- S$thetalin

beta <- S$beta

s <- S$s

LL <- S$LL

param.Markov <- list(kappa = kappaop, thetalin = thetalinop,

P = Pop, pi0 = pi0)

thetat <- rbind(thetat1, S$thetat)

theta1 <- theta2 <- theta3 <- NULL
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for (i in seq(along = pi0)) {

theta1 <- c(theta1, Pop[i, -K])

theta2 <- c(theta2, (kappaop[i, ]))

theta3 <- c(theta3, thetalinop[i, ])

}

theta <- c(theta1, theta2, theta3)

theta.Markov = theta

nb.target <- length(kappaop[1, ]) - 1

}

thetat <- thetat[-1, ]

if (length(thetat) == 0) {

print("need more initial condition")

break

}

V3 <- optim(theta, fn = logL, gr = NULL, data = data,

pi0 = param$pi0, nb.target = nb.target, type = type,

dist = dist, method = "L-BFGS-B", control = list(fnscale = -1),

hessian = TRUE, lower = theta - 10^-4 * rep(1, length(theta)),

upper = theta + 10^-4 * rep(1, length(theta)))

if (det(V3$hessian) != 0)

V <- -(solve(V3$hessian))

if (det(V3$hessian) == 0)

V <- -pinv(V3$hessian)

paramkappafinal <- NULL

for (i in seq(along = pi0)) {

se = sqrt(diag(V[(K * (K - 1) + 1 + (i - 1) * (p +

1)):(K * (K - 1) + 1 + p + (i - 1) * (p + 1)),

(K * (K - 1) + 1 + (i - 1) * (p + 1)):(K * (K -

1) + 1 + p + (i - 1) * (p + 1))]))

paramkappa <- cbind(kappaop[i, ], se, round(1 - pnorm(abs(
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↪→ kappaop[i,

]/se)), 4))

colnames(paramkappa) <- c(paste0("estimate ", "(k=",

i, ")"), paste0("s.e. ", "(k=", i, ")"), paste0("p.value ",

"(k=", i, ")"))

paramkappafinal <- cbind(paramkappafinal, paramkappa)

}

paramPfinal <- NULL

for (i in seq(along = pi0)) {

paramP <- cbind(as.matrix(Pop[i, -K]), as.matrix(sqrt(diag(as

↪→ .matrix(V[(1 +

(i - 1) * (K - 1)):(1 + (i - 1) * (K - 1)), (1 +

(i - 1) * (K - 1)):(1 + (i - 1) * (K - 1))])))))

colnames(paramP) <- c(paste0("estimate ", "(P", i,

".)"), paste0("s.e. ", "(P", i, ".)"))

paramPfinal <- cbind(paramPfinal, paramP)

}

rownames(paramPfinal) <- paste0("P.", 1:(K - 1))

paramdistfinal <- NULL

V.dist = diag(as.matrix(V[c((length(theta) - 2 * K +

1):length(theta)), c((length(theta) - 2 * K + 1):length(theta))]))

for (i in seq(along = pi0)) {

paramdist <- cbind(as.matrix(thetalinop[i, ]), as.matrix(sqrt

↪→ (V.dist[c(1 *

(i == 1) + 3 * (i == 2), 2 * (i == 1) + 4 * (i ==

2))])))

colnames(paramdist) <- c(paste0("estimate ", "(k=",

i, ")"), paste0("s.e. ", "(k=", i, ")"))

paramdistfinal <- cbind(paramdistfinal, paramdist)

}

100



# semi-Markov result for a 2-states

if (K > 2 & semi)

cat("Semi-Markovian approximation with more than 2 state is too

↪→ demanding... please select K=2")

if (K == 2 & semi) {

p1op <- c(log(1), logit(Pop[1, 2]))

p2op <- c(log(1), logit(Pop[2, 1]))

theta <- c(p1op, p2op, kappaop[1, ], kappaop[2, ],

log(thetalinop[1, ]), log(thetalinop[2, ]))

nb.target <- length(kappaop[1, ]) - 1

m <- c(30, 30)

w <- runif(sum(m))

pi0 <- w/sum(w)

minL = -exp(16)

for (l in (1:nb_init)) {

thetaop = theta + runif(length(theta), -1, 1)

V3 <- optim(thetaop, fn = logLSemi, gr = NULL,

y0 = y0, data = data, pi0 = pi0, nb.target = nb.

↪→ target,

m = m, dist = dist, method = "L-BFGS-B", control =

↪→ list(fnscale = -1,

maxit = 10^(8)), hessian = TRUE)

if (V3$value > minL) {

minL = V3$value

V2 = V3

}

}

V <- sqrt(diag(-(solve(V2$hessian)))) #actually solves the

↪→ hessian to find the maxima and minima

p1op <- c(exp(V2$par[1]), inv.logit(V2$par[2]))
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sp1op <- c(p1op[1] * V[1], p1op[2] * (1 - p1op[2]) *

V[2])

p2op <- c(exp(V2$par[3]), inv.logit(V2$par[4]))

sp2op <- c(p2op[1] * V[3], p2op[2] * (1 - p2op[2]) *

V[4])

kappaop <- V2$par[c(5:((5 + 2 * nb.target + 1)))]

skappaop <- V[c(5:((5 + 2 * nb.target + 1)))]

n <- length(V)

thetalinop <- exp(V2$par[c((n - 3):n)])

sthetalinop <- thetalinop * V[c((n - 3):n)]

paramkappafinalS <- NULL

paramkappafinalS <- cbind(kappaop[1:(nb.target +

1)], skappaop[1:(nb.target + 1)], kappaop[(nb.target +

2):(2 * (nb.target + 1))], skappaop[(nb.target +

2):(2 * (nb.target + 1))])

colnames(paramkappafinalS) <- c("estimate (k=1)",

"s.e.", "estimate (k=2)", "s.e.")

Dwell <- rbind(c(p1op[1], sp1op[1], p1op[2], sp1op[2]),

c(p2op[1], sp2op[1], p2op[2], sp2op[2]))

colnames(Dwell) <- c("size", "s.e", "prob", "s.e")

rownames(Dwell) <- c("p1", "p2")

paramdistfinalS <- NULL

paramdistfinalS <- cbind(thetalinop[c(1, 2)], sthetalinop[c

↪→ (1,

2)], thetalinop[c(3, 4)], sthetalinop[c(3, 4)])

colnames(paramdistfinalS) <- c("phi (k=1)", "s.e",

"phi (k=2)", "s.e")
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P <- gen.Gamma(m, cbind(c(p1op[1], p2op[1]), c(p1op[2],

p2op[2])))

Pa <- P

kappaop <- rbind(t(paramkappafinalS[, 1]), t(paramkappafinalS

↪→ [,

3]))

kappacopy <- NULL

thetalincopy <- NULL

for (i in (1:m[1])) {

kappacopy <- rbind(kappacopy, kappaop[1, ])

thetalincopy <- rbind(thetalincopy, thetalinop[1:2])

}

for (i in (1:m[2])) {

kappacopy <- rbind(kappacopy, kappaop[2, ])

thetalincopy <- rbind(thetalincopy, thetalinop[3:4])

}

param = list(pi0 = pi0, kappa = kappacopy, thetalin =

↪→ thetalincopy,

P = P)

data <- list(x = x, y = y, z = z, d = d)

FS <- FilterSmooth(param, data, type, dist)

E.smooth0 <- FS$E.smooth0

E.filter <- FS$E.filter

E.smooth <- FS$E.smooth

LL.prev <- FS$LogLike

}

fit.Markov = list(likelihood.Markov = LL, AIC.Markov = -2 *

LL + 2 * length(theta.Markov), BIC.Markov = -2 *
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LL + log(length(y)) * length(theta.Markov))

if (semi)

fit.SemiMarkov = list(likelihood.SemiMarkov = LL.prev,

AIC.SemiMarkov = -2 * LL.prev + 2 * length(theta),

BIC.SemiMarkov = -2 * LL.prev + log(length(y)) *

length(theta))

Markov <- list(param = param.Markov, P.Markov = paramPfinal,

kappa.Markov = paramkappafinal, phi.Markov = paramdistfinal,

fit.Markov = fit.Markov)

if (semi)

SemiMarkov <- list(Dwell.SemiMarkov = Dwell, kappa.SemiMarkov =

↪→ paramkappafinalS,

phi.SemiMarkov = paramdistfinalS, fit.SemiMarkov = fit.SemiMarkov)

out <- list(Markov = Markov, param = param, EM.itermax = s)

if (semi)

out <- list(Markov = Markov, param = param, SemiMarkov = SemiMarkov,

EM.itermax = s)

}

class(out) <- "GHRandomWalk"

out

}

#x An object, produced by the \code{\link{consensus}} function, to print.

# \dots Further arguments to be passed to \code{print.default}.

print.GlobalMaxima <- function(x, ...) {

cat("\nMarkov specification:")

cat("\nMax log-likelihood and classical criteria:", x$fit.Markov,

"\n")

cat("\nParameters of directions :\n")

print.default(x$fit.Markov$kappa.Markov, print.gap = 2, quote = FALSE,
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right = TRUE, ...)

cat("\n")

cat("\nParameters of distances :\n")

print.default(x$fit.Markov$phi.Markov, print.gap = 2,

quote = FALSE, right = TRUE, ...)

cat("\n")

cat("\nTransition matrix :\n")

print.default(x$fit.Markov$P.Markov, print.gap = 2, quote = FALSE,

right = TRUE, ...)

cat("\n")

invisible(x)

}

####################### consensus 1 state

#######################

#Consensus Model: Function that fit a consensus model for angular variables and

↪→ its method.

#pginit: The approximate number of points on the grid of possible initial beta

↪→ values tried when initbeta is not given. The default is 1000, which runs

↪→ quickly. A large value of makes the function slower.

#maxiter: The maximum number of iterations. The default is 1000.

#mindiff: The minimum difference between two max cosine to be reached.

#formula: A formula with the dependent angle on the left of the ~ operator and

↪→ terms specifying the explanatory variables on the right. These terms must

↪→ be written x:z, where x is an explanatory angle which relative importance

↪→ might depend on the positive variable z. It is not mandatory to specify a z

↪→ variable for each explanatory angle. For model=’simplified’, the first

↪→ explanatory angle listed is the reference direction (if a z variable was

↪→ specified for this angle, it is ignored).
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#MaxLL: the maximum value of the log likelihood

#parameters: the parameter estimates and their standard errors (obtained from two

↪→ definitions)

#varcov1: the estimated variance covariance matrix for the parameter estimates (

↪→ obtained from the first definition)

#varcov2: the estimated variance covariance matrix for the parameter estimates (

↪→ obtained from the second definition)

#parambeta: the beta parameter estimates and their standard errors (obtained by

↪→ linearization)

#varcovbeta1:the estimated variance covariance matrix for the beta parameter

↪→ estimates (obtained by linearization)

#varcovbeta2:the estimated variance covariance matrix for the beta parameter

↪→ estimates (Sandwhich form)

#autocorr: the autocorrelation of the residuals

#iter.detail:the iteration details

#converge: an indicator of convergence

#call: the function call

consensus <- function(formula, data, model = "simplified", weights = NULL,

↪→ initbeta = NULL, control = list()) {

call <- mfcall <- match.call()

model <- model[1]

### information from formula and data

mfargs <- match(c("formula", "data"), names(mfcall), 0L)

mfcall <- mfcall[c(1L, mfargs)]

mfcall[[1L]] <- as.name("model.frame")

mf <- eval(mfcall, parent.frame())

# useful objects

nobs <- nrow(mf)
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nomterms <- attr(attr(mf, "terms"), "term.labels")

nterms <- length(nomterms)

p <- if ("simplified" == model)

nterms - 1 else nterms

nparam <- if ("simplified" == model)

p + 1 else p + 2

# paramname <- paste0(’kappa’, 0:p)

paramname <- nomterms

if ("complete" == model)

paramname <- c(paramname, paste0("beta", p + 1))

# first column = response variable

y <- as.vector(mf[, 1])

# explanatory variables

noms <- strsplit(nomterms, split = ":")

noms <- do.call(rbind, noms)

if ("simplified" == model) {

x0 <- mf[, noms[1, 1]]

noms <- noms[-1, , drop = FALSE]

}

matx <- as.matrix(mf[, noms[, 1], drop = FALSE])

if (ncol(noms) == 1) {

matz <- matrix(1, ncol = ncol(matx), nrow = nrow(matx)) # all z are

↪→ 1

} else {

matz <- as.matrix(mf[, noms[, 2], drop = FALSE])

matz[, noms[, 2] == noms[, 1]] <- 1 # unspecified z are 1

}

weight = rep(1, nobs) * (is.null(weights)) + (!is.null(weights)) *

weights #this is the weights for the "weighted" von mises.

### log-likelihood function

LL <- function(param) {
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angleref <- if ("simplified" == model)

x0 else rep(param[p + 2], nobs)

# length of the vector

#this is from V_t(k) eqtn 5

sinmu <- param[1] * sin(angleref) + (matz * sin(matx)) %*%

param[2:(p + 1)]

cosmu <- param[1] * cos(angleref) + (matz * cos(matx)) %*%

param[2:(p + 1)]

long <- as.vector(sqrt(sinmu^2 + cosmu^2))

# predicted value form the model

mui <- as.vector(atan2(sinmu, cosmu))

# log likelihood : of the consensus model

term1 <- param[1] * cos(y - angleref) + (matz * cos(y -

matx)) %*% param[2:(p + 1)]

# LL <- sum(weight*term1) - sum(weight*log(besselI(long, 0,

# expon.scaled = FALSE)))

LL <- sum(term1) - sum(log(besselI(long, 0, expon.scaled = FALSE)))

list(LL = LL, long = long, mui = mui)

}

# Function that update parameter of the log-likelihood

# function

paramUpdate <- function(paramk, long, mui) { #updating the parameters

angleref <- if ("simplified" == model)

x0 else rep(paramk[p + 2], nobs)

matx0 <- cbind(angleref, matx)

matz0 <- cbind(rep(1, nobs), matz)

# score vector

Along <- as.vector(besselI(long, 1, expon.scaled = FALSE)/besselI(

↪→ long,

0, expon.scaled = FALSE))
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matu <- matz0 * (cos(y - matx0) - cos(matx0 - mui) *

Along)

if ("complete" == model) {

matu <- cbind(matu, paramk[1] * sin(y - angleref) -

sin(mui - angleref) * Along) #along is a scaled modified

↪→ bessel(ratio??)

}

vecs <- colSums(matu) #sum columnwise(downwards)

names(vecs) <- paramname

# Fisher information matrix

Xc <- matz0 * cos(matx0 - mui)

Xs <- matz0 * sin(matx0 - mui)

if ("complete" == model) {

Xc <- cbind(Xc, paramk[1] * sin(mui - paramk[p +

2]))

Xs <- cbind(Xs, paramk[1] * cos(mui - paramk[p +

2]))

}

Dc <- diag(1 - Along/long - Along^2, nrow = nobs, ncol = nobs)

Ds <- diag(Along/long, nrow = nobs, ncol = nobs)

matI <- t(Xc) %*% Dc %*% Xc + t(Xs) %*% Ds %*% Xs

colnames(matI) <- rownames(matI) <- paramname

# update of parameters

dparam <- as.vector(solve(matI, vecs))

paramk1 <- paramk + dparam

list(paramk1 = paramk1, dparam = dparam, matu = matu,

matI = matI)

}

# initial values of parameters beta we try 10 000 differents
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# possible values

#this is random selection of initial values with 10000 different options

if (is.null(initbeta)) {

#taking both the complete and simplified model options into account

pginit <- if (is.null(control$pginit))

1000 else control$pginit

pg <- round(pginit^(1/nparam))

possparam <- rep(list(seq(-1, 1, length.out = pg + 2)[-c(1,

pg + 2)]), p + 1)

if ("complete" == model)

possparam[[nparam]] <- seq(0, 2 * pi, length.out = pg +

2)[-c(1, pg + 2)]

possVal <- cbind(expand.grid(possparam), NA)

colnames(possVal) <- c(paramname, "LL")

maxLL <- function(param) LL(param = param)$LL

possVal[, nparam + 1] <- apply(possVal[, 1:nparam], 1,

maxLL)

paramk <- unlist(possVal[which.max(possVal[, nparam +

1]), 1:nparam])

} else {

if (length(initbeta) != nparam)

stop("for the requested model, ’initparam’ must be of length ",

nparam)

paramk <- initbeta

}

# log likelihood value with respect to initial parameter

calcul <- LL(param = paramk)

maxLLk <- calcul$LL

long <- calcul$long
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mui <- calcul$mui

# Initialization

iter <- iter.sh <- 0

maxiter <- if (is.null(control$maxiter))

1000 else control$maxiter

mindiff <- if (is.null(control$mindiff))

1e-06 else control$mindiff

conv <- FALSE

# Initialisation of the matrix of informations during the

# iterations

iter.detail <- matrix(NA, nrow = maxiter + 1, ncol = nparam +

3)

colnames(iter.detail) <- c(paramname, "maxLL", "iter", "nitersh")

iter.detail[1, ] <- c(paramk, maxLLk, iter, iter.sh)

# start of the fit

while (!conv && iter <= maxiter) {

# update of the parameters

maj <- paramUpdate(paramk = paramk, long = long, mui = mui)

paramk1 <- maj$paramk1

dparam <- maj$dparam

# computation of the log-likelihood

calcul <- LL(param = paramk1)

maxLLk1 <- calcul$LL

long <- calcul$long

mui <- calcul$mui

# if the criteria as decrease then do step halving

iter.sh <- 0

while (maxLLk1 < maxLLk) {

iter.sh <- iter.sh + 1

paramk1 <- paramk + dparam/(2^iter.sh)

calcul <- LL(param = paramk1)

maxLLk1 <- calcul$LL
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long <- calcul$long

mui <- calcul$mui

if (iter.sh >= maxiter)

break

}

#Accounting for possible non-convergence

# Does the criteria increase more than mindiff?

if (maxLLk1 < maxLLk) {

conv <- FALSE

warning("the algorithm did not converge, it failed to

↪→ maximize the log likelihood")

break

} else {

conv <- if (maxLLk1 - maxLLk > mindiff)

FALSE else TRUE

paramk <- paramk1

maxLLk <- maxLLk1

iter <- iter + 1

iter.detail[iter + 1, ] <- c(paramk, maxLLk, iter,

iter.sh)

}

}

if (iter > maxiter + 1) { #we do not want to run more than the stipulated

↪→ amount of simulations

warning("the algorithm did not converge, the maximum number of

↪→ iterations was reached")

} else {

iter.detail <- iter.detail[1:(iter + 1), , drop = FALSE]

}

### Computation of standard errors and Fisher information

### matrix for the final parameters.
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if (maxLLk == maxLLk1) {

maj <- paramUpdate(paramk = paramk, long = long, mui = mui)

}

matu <- maj$matu

matI <- maj$matI

# parametric estimation of the covariance matrix

v1 <- solve(matI) #we obtain the covariance matrix here

# non parametric estimation

mid <- matrix(0, ncol = nparam, nrow = nparam)

for (i in 1:nobs) {

mid <- mid + t(matu[i, , drop = FALSE]) %*% matu[i, ,

drop = FALSE]

}

v2 <- v1 %*% mid %*% v1

### Results for the betas

paramb <- paramk[2:(p + 1)]/paramk[1]

matDeriv <- rbind(-paramk[2:(p + 1)]/paramk[1]^2, diag(1/paramk[1],

nrow = p, ncol = p))

vb <- t(matDeriv) %*% v1[1:(p + 1), 1:(p + 1)] %*% matDeriv

vb2 <- t(matDeriv) %*% v2[1:(p + 1), 1:(p + 1)] %*% matDeriv

# names(paramb) <- colnames(vb) <- rownames(vb)

# <-colnames(vb2) <- rownames(vb2)<- paste0(’beta’, 1:p)

names(paramb) <- colnames(vb) <- rownames(vb) <- colnames(vb2) <- rownames(

↪→ vb2) <- paramname[-1]

### Output

zvalue <- abs(paramk)/sqrt(diag(v1))

p <- round(2 * pnorm(abs(paramk)/sqrt(diag(v1)), lower.tail = FALSE),

5)

parameters <- cbind(paramk, sqrt(diag(v1)), zvalue, p)
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# colnames(parameters) <- c(’estimate’, paste(’stderr’, 1:2,

# sep=’’))

colnames(parameters) <- c("estimate", "stderr", "z value",

"P(|z|>.)")

rownames(parameters) <- paramname

parambeta <- cbind(paramb, sqrt(diag(vb)), sqrt(diag(vb2)))

colnames(parambeta) <- c("estimate", paste("stderr", 1:2,

sep = ""))

res <- sin(y - mui)

autocorr <- acf(res, plot = FALSE)

out <- list(MaxLL = maxLLk, parameters = parameters, varcov1 = v1,

varcov2 = v2, parambeta = parambeta, varcovbeta1 = vb,

varcovbeta2 = vb2, autocorr = autocorr, matx = matx,

matz = matz, y = y, long = long, mui = mui, iter.detail = iter.detail,

call = call)

class(out) <- "consensus"

out

}

#’ @param x An object, produced by the \code{\link{consensus}} function, to print.

#’ @param \dots Further arguments to be passed to \code{print.default}.

print.consensus <- function(x, ...) {

cat("\nMaximum log-likelihood :", x$MaxLL, "\n")

cat("\nParameters:\n")

print.default(x$parameters, print.gap = 2, quote = FALSE,

right = TRUE, ...)

cat("\n")

# cat(’\nBeta Parameters:\n’) print.default(x$parambeta,

# print.gap = 2, quote = FALSE, right=TRUE, ...) cat(’\n’)

invisible(x)

}
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##### plot smooth proba on the trajectory (K=2 states)

#####

# Plot smooth probabilities on trajectory

#Function that smooth eacgh step of the trajectory by the smooth probabilites:

↪→ This plot can be used to characterize spatially the behaviour of the animal

↪→ .

#param: list of all the parameters of the model in this order: P, kappa and

↪→ thetalin.

#data: data frame of the directions (y), distances (d), explanatory angles

↪→ variables (x) and explanatory real variables (z)

#long: vectors of longtitude coordinates of the trajectory (x axis)

# lat: vectors of latitude coordinates of the trajectory (y axis)

PlotEstim <- function(data, param, long, lat, type = "angle-dist",

dist = "gumbel") {

K <- length(param$pi0)

p <- length(param$kappa[1, ]) - 1

steps <- length(data$y)

FS <- FilterSmooth(param, data, type, dist) #get the smoothed probabilities

E.smooth <- FS$E.smooth

explo <- 1

position <- cbind(long, lat)
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Sx1 <- max(position[, 1]) - min(position[, 1])

Sy1 <- max(position[, 2]) - min(position[, 2])

x1 <- seq(min(position[, 1]) - 0.1 * Sx1, max(position[,

1]) + 0.1 * Sx1, length.out = 1024)

y1 <- seq(min(position[, 2]) - 0.1 * Sy1, max(position[,

2]) + 0.1 * Sy1, length.out = 1024)

Map <- matrix(1, length(x1), length(y1))

image(x1, y1, (Map), col = "white")

n <- 5

colorter <- rgb(c(seq(0, 1, 1/n), rep(1, n)), c(abs(seq(0,

1 - 1/n, 1/n)), 1, abs(seq(1 - 1/n, 0, -1/n))), c(rep(1,

n), abs(seq(1, 0, -1/n))))

for (i in (2:(length(position[, 1]) - 1))) {

classe <- floor(E.smooth[i, explo] * 10) + 1

segments(position[i - 1, 1], position[i - 1, 2], position[i,

1], position[i, 2], lwd = 1, col = colorter[classe])

}

}

library(boot)

library(circular)

library(Renext)

library(pracma)

library(fitdistrplus)

library(VGAM)

library(LindleyR)

library(Renext)

library(maxLik)

library(tictoc)

# Please load the appropriate workspace
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tic("Model Run Time:")

source("Core Paper Main 2.R")

## simply importing the data into R

jeu <- data.frame(read.table(file = "caribou.txt", header = TRUE))

# initialization parameter of the EM algorithm with a one state model

n <- length(jeu$y);

#this is the precision of the movement. The -n is a lag n times before the current

↪→ index

jeu$yprec <- c(0, jeu$y[ - n]); # we now have a column with the data in y starting

↪→ from zero and the rest lagged from one spot

mc <- consensus(formula = y ~ yprec + xcut + xcenter, data = jeu);

#parameters column 1: estimate

#parameters column 3: z-value

kappac <- cbind(mc$parameters[, 1], mc$parameters[, 3]);

dmom <- ini.mixexp2(jeu$d); #this will give us an estimate(mixing probability) and

↪→ two rates

mel.d <- mledist(jeu$d, distr = "gamma"); #this function fits a univariate

↪→ distribution using mle for gamma distribution

#Gamma

gamma_func<- function(aa){

shape1<- aa[1]

scale1<- aa[2]

sum(dgamma(jeu$d,shape = shape1,scale = scale1,log=TRUE))

}

m<- maxLik(gamma_func, start = c(1,1),method = "NR")

summary(m)
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#Weibull

wei_func<- function(aa){

shape1<- aa[1]

scale1<- aa[2]

sum(dweibull(jeu$d,shape = shape1,scale = scale1,log=TRUE))

}

m<- maxLik(wei_func, start = c(1,1),method = "NR")

summary(m)

# Power lindley

pl_func<- function(aa){

shape1<- aa[1]

scale1<- aa[2]

sum(dplindley(jeu$d,theta = shape1,alpha = scale1,log=TRUE))

}

m<- maxLik(pl_func, start = c(1,1),method = "NR")

summary(m)

# Gumbel Distribution

gumbel_func<- function(aa){

loc <- aa[1]

scale1<- aa[2]

sum(dgumbel(jeu$d, loc, scale1, log = TRUE))

}

m<- maxLik(gumbel_func, start = c(1,1),method = "NR")

summary(m)

pi0 <- c(0.7, 0.3); #initial distribution parameters

#these are the starting points for kappa1 and kappa2, from the initial estimation

↪→ above.
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kappainit <- rbind(c(kappac[1, 1], kappac[2:3, 1]),

c(kappac[1, 1], kappac[2:3, 1]));

#these are the random starting points for the phi’s from the initial estimate

↪→ above.

#this will be the gamma parameters used for further estimation

#This is the one you use when you have Weibull and Gamma!!

#thetalininit <- rbind(c(mel.d$estimate[1], 1/mel.d$estimate[2]),

# c(mel.d$estimate[1], 1/mel.d$estimate[2]))

# This is the one you use when you have the lindley and Gumbel

thetalininit <- rbind(c(m$estimate[1], m$estimate[2]),

c(m$estimate[1], m$estimate[2]))

#colnames(thetalininit) <- c("shape", "scale");

#for when we have Power Lindley

colnames(thetalininit) <- c("scale", "shape");

paraminitiaux <- list(pi0 = pi0, kappainit = kappainit,

thetalininit = thetalininit, Pinit = NULL);

# data set for the fit

target <- cbind(jeu$xcut, jeu$xcenter);

p <- length(target[1, ]); #number of states we will be dealing with

z <- matrix(1,n,p); #matrix of 1’s, with n rows and p columns i,e, 617x2 matrix of

↪→ 1’s

jeu <- list(x = as.matrix(target), y=as.vector(jeu$y),

z = z, d = as.vector(jeu$d))
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# FIT

K <- 2 #states

#The GHRandomWalk will fit the actual model

GM <- GHRandomWalk(data = jeu, K, paraminitiaux, nb_init = 5, dist = "gumbel");

GM

toc()

### My tabular things to reproduce the tabular output

table_results<- rbind(

round(c(1-GM$Markov$P.Markov[1],GM$Markov$P.Markov[2]),4),

c(1,"-"),

round(c(GM$Markov$P.Markov[3],GM$Markov$P.Markov[3]),4),

c(1,"-"),

round(c(GM$Markov$kappa.Markov[1],GM$Markov$kappa.Markov[4]),4),

round(c(GM$Markov$kappa.Markov[2],GM$Markov$kappa.Markov[5]),4),

round(c(GM$Markov$kappa.Markov[3],GM$Markov$kappa.Markov[6]),4),

round(c(GM$Markov$phi.Markov[1],GM$Markov$phi.Markov[3]),4),

round(c(GM$Markov$phi.Markov[2],GM$Markov$phi.Markov[4]),4),

round(c(GM$Markov$kappa.Markov[10],GM$Markov$kappa.Markov[13]),4),

round(c(GM$Markov$kappa.Markov[11],GM$Markov$kappa.Markov[14]),4),

round(c(GM$Markov$kappa.Markov[12],GM$Markov$kappa.Markov[15]),4),

round(c(GM$Markov$phi.Markov[5],GM$Markov$phi.Markov[7]),4),

round(c(GM$Markov$phi.Markov[6],GM$Markov$phi.Markov[8]),4),

c(round(GM$Markov$fit.Markov$likelihood.Markov,4),"-"),

c(round(GM$Markov$fit.Markov$AIC.Markov,4),"-"),

c(round(GM$Markov$fit.Markov$BIC.Markov,4),"-"))
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table_results<- as.data.frame(table_results)

steps <- length(jeu$y); #length of data i.e. 617 steps

position <- matrix(0, steps, 2); #matrix of 617x2 of zeros

position[1, ] <- c(0, 0); #starting position is (0,0): x y co-ordinates

for (i in (2:steps)) #we exclude the first position since it is zero

{

position[i, ] = position[i - 1, ] + jeu$d[i] * 1000 * cbind(cos(jeu$y[i]),

↪→ sin(jeu$y[i]));

}

PlotEstim(jeu, param = GM$param, long = position[, 1], lat = position[, 2])

box()
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