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1. Introduction

This expository article is a compilation of universal algebraic prerequisites
and tools for the analysis of non-classical logics, with particular (but not
exclusive) reference to substructural logics. As such, it is selective and not
a fully representative précis of contemporary universal algebra, although it
does recount some quite recent developments. It is influenced by standard
texts, including [8, 25, 58, 59, 115], and by the more specialized monographs
[50, 68, 81].

The history of universal algebra is entwined with that of mathematical
logic. Although A.N. Whitehead’s 1898 treatise [146] gave the subject its
name, it conceived of the common algebra of groups, vector spaces and
their relatives in terms of formal deductive systems, and it was only in the
1930s that the first significant results of universal algebra appeared. They
include Garrett Birkhoff’s characterization of varieties as equationally ax-
iomatized classes and were followed before long by his subdirect decomposi-
tion theorem. The promotion of model theory in the middle decades of the
twentieth century—particularly by Alfred Tarski in the West and by A.I.
Maltsev in the Soviet Union—narrowed the gap between between algebra
and logic again, as did Tarski’s revival of the algebraic theory of binary rela-
tions (see [100]) and his investigations of general deductive systems. By the
early 1960s, however, universal algebraists were pursuing problems outside
the methodological scope of model theory. Congruence lattices had become
an indispensable tool, and results of Bjarni Jónsson had illuminated the
structure of congruence distributive varieties. The investigation of general
commutators began in the 1970s, with tame congruence theory following in
the 1980s. The classification of varieties via Maltsev conditions was by now
a major organizational theme. A much fuller history of universal algebra up
to the mid-1980s can be found in the introduction to [115].

In parallel with these developments, the diverse assortment of non-classical
logics invented during the twentieth century was beginning to undergo some
mathematical unification. Kripke’s semantics brought order to the study of
modal logics in the 1960s and, among other contributions, Ono and Komori’s
seminal paper [124] of 1985 heralded a general theory of substructural logics
for which the most recent advances of universal algebra were once again ripe
investigative tools.

1



2 JAMES G. RAFTERY

By the late 1980s, the discourse of universal algebra had been largely
transformed by the work of Ralph McKenzie and his students and collabo-
rators; their influence continues to dominate the subject. One question from
the 1950s has remained at the forefront of research, however: which finite
algebras have a finitely axiomatizable equational theory? This problem is
connected in various ways with the sizes of subdirectly irreducible algebras
in varieties, another enduring theme of the discipline. A significant new
application emerged around the turn of the 21st century, when the theory
of Maltsev conditions began to throw fresh light on the tractability of con-
straint satisfaction problems (see for instance [6, 92]). Conversely, the study
of such problems has provoked new insights in universal algebra itself, some
of which will be mentioned here.

2. Basic Concepts and Results

An algebra A = 〈A;F 〉 comprises a non-empty set A (its universe) and an
indexed family F = {fA : f ∈ F} of finitary basic operations on A. Thus, F
is itself a set (whose elements are called operation symbols) and each fA is
a function from the cartesian power An to A, for some non-negative integer
n, called the rank of fA. By n–ary, we mean ‘of rank n’. Nullary (i.e.,
0–ary) operations are identified with distinguished elements of A, because
we identify A0 with {∅}.

The function sending each f ∈ F to the rank of fA is called the type of
A, and algebras with the same type are said to be similar. A (similarity)
type can be defined without reference to particular algebras as any function
from a set F into the set ω of non-negative integers. Finite types are often
abbreviated, e.g., a group 〈G; ·,−1 , e〉 has type 〈2, 1, 0〉.

A subuniverse of an algebra A is a subset of A, closed under the basic
operations of A. It becomes a subalgebra of A when equipped with the
appropriate restrictions of these operations, provided it is not empty, and
A is then called an extension of this subalgebra. Arbitrary intersections of
subuniverses are again subuniverses. Reducts of A arise by discarding basic
operations, and subreducts are subalgebras of indicated reducts. We call A
an expansion of each of its reducts.

The direct product
∏
i∈I Ai of a family {Ai : i ∈ I} of similar algebras

is their cartesian product, on which the appropriate basic operations are
defined in terms of those of the algebras Ai in the obvious co-ordinatewise
fashion. Products of empty families are understood to have universe {∅}.

A homomorphism h : A −→ B between similar algebras is a function that
preserves the basic operations fA of A, in the sense that

h(fA(~a)) = fB(h(a1), . . . , h(an)) for all ~a = a1, . . . , an ∈ A,

where n is the rank of fA. We call h an embedding if it is also injective,
and an isomorphism if it is bijective. As usual, h : A ∼= B signifies that
h is an isomorphism. The target of a surjective [bijective] homomorphism
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is called a homomorphic [isomorphic] image of the domain. An endomor-
phism [automorphism] of A is a homomorphism [isomorphism] h : A −→ A.
If h : A −→ B is a homomorphism, and C and D are subalgebras of A and
B, respectively, then h[C] and h−1[D] are subuniverses of B and A, respec-
tively. The corresponding subalgebras are denoted by h[C] and h−1[D].

A class K of similar algebras is called a variety if it is closed under the
class operators H, S and P (standing for homomorphic images, subalgebras
and direct products). The smallest such class containing K is HSP(K) [138].
The class operator for isomorphic images will be denoted by I. The earliest
result of universal algebra not predicted by classical algebra is Birkhoff’s
Theorem below; its proof will be discussed in Section 3.

Theorem 2.1. (Birkhoff [12]) A class of similar algebras is a variety iff it
can be axiomatized by equations.

For example, groups 〈G; ·,−1 , e〉 form a variety, because they are exactly the
algebras of type 〈2, 1, 0〉 satisfying the equations

x · (y · z) ≈ (x · y) · z, x · e ≈ x ≈ e · x, x · x−1 ≈ e ≈ x−1 · x.

Here, ≈ is just formalized equality; it prevents notational clashes with =.

An algebra A is generated by a subset X of A if no proper subalgebra
of A contains X. In this case, if m is any cardinal ≥ |X|, we say that A
is m–generated (so that ‘finitely generated’ means ‘m–generated for some
finite m’). If X generates A and h : A −→ B is a homomorphism, then
h[X] generates h[A].

An algebra is said to be finite if it has a finite universe. A variety K is
locally finite if each of its finitely generated members is finite. A surprising
amount of information about the structure of K can then be inferred if we
know that, for some polynomial p and all m ∈ ω, K contains at most p(m),

or even at most 2p(m), non-isomorphic m–generated algebras, see [11, 70].

Given a class K of algebras similar to A, we say that A is K–free over X
if X generates A and every function from X into an algebra B ∈ K can be
extended to a homomorphism from A to B. (The extension is then unique.)
In this case, we call X a K–free generating set for A. Provided that X 6= ∅
or that some nullary basic operations are available, there is a K–free algebra
A over X, with A ∈ ISP(K) (see Section 3). Any bijection from X to a
K–free generating set for another K–free algebra C ∈ HSP(K) extends to a
unique isomorphism from A to C. We therefore denote A by FK(X), or by
FK(m) if m = |X|. It follows that FK(X) ∈ K whenever K is a variety.

If we employ the elements of B ∈ K (or those of a generating set for B)
as free generators for a K–free algebra F ∈ ISP(K) and then map these back
to themselves, we obtain a surjective homomorphism F −→ B. This yields
the following result, which is used in the proof of Birkhoff’s Theorem.

Theorem 2.2. ([12]) Let K be a variety. Then every algebra in K is a
homomorphic image of a K–free algebra in K. In fact, for any cardinal
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m, every m–generated algebra in K is a homomorphic image of FK(m),
provided that FK(m) exists.

A variety is said to be finitely generated if it has the form HSP(A) for
some finite algebra A (or equivalently, HSP(M) for some finite set M of finite
algebras). Boolean algebras, distributive lattices and semilattices (i.e., idem-
potent commutative semigroups) form finitely generated varieties, generated
in each case by the unique 2–element member of the class. If K = HSP(A),
then FK(m) can be embedded into the direct power AAm =

∏
i∈Am A, for

every cardinal m. This, with Theorem 2.2, yields:

Corollary 2.3. Every finitely generated variety is locally finite.

A congruence (relation) on an algebra A is the kernel

{〈a, b〉 ∈ A2 : h(a) = h(b)}
of a homomorphism h with domain A, i.e., it is an equivalence relation θ on
A, compatible with each basic operation fA of A in the sense that whenever
ak ≡θ bk (i.e., 〈ak, bk〉 ∈ θ) for k = 1, . . . , n, then

fA(a1, . . . , an) ≡θ fA(b1, . . . , bn),

n being the rank of fA. This compatibility demand means that θ is a
subuniverse of the direct square A2 = A×A. Thus, the set A/θ of equiva-
lence classes a/θ (a ∈ A) becomes a (factor) algebra A/θ of the same type
as A, under the unambiguous natural definition of the basic operations:
fA/θ(a1/θ, . . . , an/θ) = fA(a1, . . . , an)/θ. Moreover:

Theorem 2.4. If h : A −→ B is a homomorphism, then A/θ ∼= h[A],
where θ is the kernel of h. The isomorphism identifies each a/θ with h(a).

This is the Homomorphism Theorem (or First Isomorphism Theorem) of
universal algebra.

An algebra A is said to be simple if it has just two congruences. These
must be the identity relation idA = {〈a, a〉 : a ∈ A} and the total relation A2.
In this case, A has no nontrivial homomorphic image, other than isomorphic
images, by the previous result. (An algebra is called trivial if its universe is
a singleton. A class of algebras is nontrivial if it has a nontrivial member.)
Every nontrivial variety contains a simple algebra [101].

Theorem 2.5. (Second Isomorphism Theorem) If θ and ϕ are congruences
of an algebra A, with θ ⊆ ϕ, then ϕ/θ := {〈a/θ, b/θ〉 : 〈a, b〉 ∈ ϕ} is a
congruence of A/θ and (A/θ)/(ϕ/θ) ∼= A/ϕ.

This follows from Theorem 2.4, because a/θ 7→ a/ϕ (a ∈ A) is a well-defined
homomorphism from A/θ onto A/ϕ, whose kernel is ϕ/θ.

Arbitrary intersections of congruences are again congruences, so the set
of congruences of an algebra A becomes a lattice ConA = 〈ConA;∧,∨〉,
when ordered by inclusion. The meet θ ∧ ϕ of two congruences is θ ∩ ϕ,
while their join θ ∨ ϕ is the transitive closure of θ ∪ ϕ. In fact, ConA is a
complete sublattice of the lattice of equivalence relations on A.
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Theorem 2.6. (Correspondence Theorem) For any congruence θ of an
algebra A, the interval sublattice [θ,A2] := {ϕ ∈ ConA : θ ⊆ ϕ} of
ConA is isomorphic to ConA/θ under the map ϕ 7→ ϕ/θ.

An abiding insight of universal algebra is that the congruence lattices
of algebras in a well-behaved variety contain much structural information
about the algebras themselves. The smallest congruence of A containing a
set X ⊆ A2 is denoted by ΘAX. We write ΘA{〈a, b〉} as ΘA(a, b).

Lemma 2.7. Every finitely generated congruence

θ = ΘA{〈a1, b1〉, . . . , 〈an, bn〉}

of an algebra A is compact in ConA, i.e., whenever θ ⊆ ΘAX, then
θ ⊆ ΘAY for some finite Y ⊆ X.

Conversely, compact congruences are finitely generated, so ConA is an
algebraic lattice—i.e., a complete lattice in which every element is the join
of a set of compact elements.

A subdirect product B of a family {Ai : i ∈ I} of similar algebras is a
subalgebra of their direct product, such that each of the natural projec-
tion homomorphisms πj :

∏
i∈I Ai −→ Aj (j ∈ I) restricts to a surjection

from B to Aj (so each Aj is a homomorphic image of B). An embed-
ding h : A −→

∏
i∈I Ai is called a subdirect embedding if h[A] is a subdirect

product of {Ai : i ∈ I}.
An algebra A is subdirectly irreducible if its identity congruence is not

the intersection of any family of non-identity congruences of A—i.e., idA
is completely meet-irreducible in the lattice ConA. This amounts to the
demand that any subdirect embedding h of A into a product

∏
i∈I Ai is

trivial—in the sense that πjh : A ∼= Aj for some j ∈ I. A subdirectly irre-
ducible algebra is therefore nontrivial; its smallest non-identity congruence
is called its monolith.

Obviously, all simple algebras—and in particular, all 2–element algebras—
are subdirectly irreducible. A variety is said to be semisimple if its sub-
directly irreducible members are simple. This applies to the varieties of
Boolean algebras, of distributive lattices and of semilattices. In these three
varieties, an algebra A is subdirectly irreducible iff |A| = 2.

Birkhoff’s subdirect decomposition theorem is the following result (which
relies on the axiom of choice).

Theorem 2.8. (Birkhoff [13]) Every algebra A is isomorphic to a subdirect
product of subdirectly irreducible algebras.

As the subdirectly irreducible algebras in this statement are homomorphic
images of A, they belong to every variety containing A. This yields:

Corollary 2.9. Every variety K is determined by its class Ksi of subdirectly
irreducible members—in fact K = IPS(Ksi).
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Here, PS is the class operator corresponding to subdirect products. For
any class K of similar algebras, we have SP(K) ⊆ PSS(K). Less obviously,
S(K) ⊆ HPS(K), whence HSP(K) = HPS(K) (see [90] and [29, p. 171]).

The subdirect decomposition theorem is important because it is not gen-
erally possible to decompose algebras as direct products of directly indecom-
posable algebras. Instead, the building blocks of a variety are its subdirectly
irreducible members. In fact, Theorem 2.8 instantiates a purely lattice-
theoretic result: in an algebraic lattice (such as ConA), every element is
the meet of a set of completely meet-irreducible elements.

3. Terms and Term Operations

Universal algebraists are typically more concerned with compositions of
operations than with basic operations. Let ρ : F −→ ω be a similarity type
and X a set of objects called variables. The set T = Tρ(X) of all terms
of type ρ (over X) is defined recursively as follows: X ⊆ T and if f ∈ F
with ρ(f) = n and t1, . . . , tn ∈ T , then f(t1, . . . , tn) ∈ T . Here, f(t1, . . . , tn)
is just a formal string of symbols. However, T is naturally the universe of
an algebra T = T ρ(X), the term algebra over X, whose basic operations
are the functions fT : 〈t1, . . . , tn〉 7→ f(t1, . . . , tn), f ∈ F . Nullary operation
symbols of ρ are identified with elements of T , so T exists unless X = ∅ and
ρ includes no nullary symbol. In fact, T ∼= FKρ(X), where Kρ is the class of
all algebras of type ρ, and we sometimes denote T as T (k), where k = |X|.

For m ∈ ω and ~x = x1, . . . , xm ∈ X, the expression ‘t(~x) ∈ T ’ signifies
that t ∈ T and that the variables occurring in t are among x1, . . . , xm. Every
such expression gives rise, in each algebra A of type ρ, to an m–ary term op-
eration t(~x)A : Am −→ A (abbreviated as tA when ~x is understood), which is
also defined recursively: if t is xi, then tA is the i th projection πi : A

m −→ A;
if tAj : Am −→ A is defined for j = 1, . . . , n and t is f(t1, . . . , tn) ∈ T , where

f ∈ F , then tA(~a) := fA(tA1 (~a), . . . , tAn (~a)) for all ~a ∈ Am. The expression
t(~x) is sometimes called an m–ary term, even if x1, . . . , xm don’t all occur in
t. In an Abelian group G, for instance, if z + ((x+ y) + (−z)) is written as
t(x, y, z, w), then the corresponding term operation tG : G4 −→ G is given
by tG(a, b, c, d) = a+G b.

The compatibility of congruences and homomorphisms with basic opera-
tions extends inductively to term operations. In any algebra A, the smallest

subuniverse containing a subset B consists of all tA(~b) such that tA is a term

operation of A and ~b a tuple of elements of B, whose length is the rank of
tA. (Here and whenever the set of variables is not specified, it is assumed
to be infinite.)

For any nontrivial class K of algebras of type ρ and any set X for which
T = T ρ(X) exists, we define

ΦK(X) := {ϕ ∈ ConT : T /ϕ ∈ IS(K)} and θ = θK(X) :=
⋂

ΦK(X).
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The map x 7→ x := x/θ (x ∈ X) is injective, as K is nontrivial. In fact,
we may identify F = FK(|X|) with T /θ, because T /θ can be shown K–free
over {x : x ∈ X} and it belongs to ISP(K) (apply Theorem 2.4 to the map
t 7→ 〈t/ϕ : ϕ ∈ ΦK(X)〉). Then, given t(x1, . . . , xm) ∈ T , we write t for the
element t/θ of F , i.e., t = tF (x1, . . . , xm). For s, t ∈ T , we can show that

(1) s = t iff (every algebra in) K satisfies the equation s ≈ t,
using the fact that F is K–free over {x : x ∈ X}.

The nontrivial half of Birkhoff’s Theorem 2.1 can now be explained as
follows. Let K be a variety and Σ the equational theory of K, i.e., the set of
equations (over some infinite set of variables) that are satisfied by K. Let K′

be the class of all models of Σ, i.e., all algebras of K’s type satisfying Σ. (Of
course, any two infinite sets of variables produce the same K′ from K.) Now
K ⊆ K′ and these two classes satisfy the same equations. So, if we construct
free algebras from term algebras in the above manner, then (1) ensures
that FK′(X) = FK(X) for every infinite X. Thus, each A ∈ K′ belongs to
H(FK(X)) for a sufficiently large X, by Theorem 2.2. But FK(X) ∈ ISP(K),
and so K′ ⊆ HSP(K) = K, i.e., K = K′. This means that K is axiomatized
by the equations in Σ.

The following generalization of (1) is useful in establishing ‘Maltsev con-
ditions’ (see the proofs of Theorems 4.1 and 5.9 below).

Lemma 3.1. A variety K satisfies a quasi-equation

(2) (s1(~x) ≈ t1(~x) & . . . & sm(~x) ≈ tm(~x)) =⇒ s(~x) ≈ t(~x)

iff ΘF (s, t) ⊆ ΘF {〈si, ti〉 : i = 1, . . . ,m}, where F is as above and X
includes the variables ~x. In this case, for every A ∈ K and ~a ∈ A, we have

ΘA(sA(~a), tA(~a)) ⊆ ΘA{〈sAi (~a), tAi (~a)〉 : i = 1, . . . ,m}.

Note that quasi-equations have finite length. In fact, (2) is really a univer-
sally quantified first order sentence, with suppressed quantifiers on the left.
(Readers are assumed to have encountered the basic definitions of first order
logic—such as that a sentence is a formula with no free variable. Alterna-
tively, see the concise account in [25, Sec. V.1].)

When ordered by inclusion, the varieties of type ρ form a lattice Λ(ρ),
in which the meet of two varieties K and M is their intersection; the join
is HSP(K ∪M). In fact, Λ(ρ) is isomorphic to the dual of the (algebraic)
lattice of fully invariant congruences of T = T ρ(ℵ0)—i.e., congruences θ
such that whenever s ≡θ t then h(s) ≡θ h(t) for every endomorphism h of
T . For this reason, Λ(ρ) can be treated as a set. The isomorphism identifies
each fully invariant θ ∈ ConT with HSP(T /θ). It allows us to show that
every nontrivial variety has a minimal nontrivial subvariety (Zorn’s Lemma

applies), and that a variety with m operation symbols has at most 2max{m,ℵ0}

subvarieties, where m is any cardinal.

The polynomial operations of an algebra A = 〈A;F 〉 are the term opera-
tions of 〈A;F ∪ F0〉, where F0 consists of the elements of A, considered as
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nullary operations. In particular, constant functions Ak −→ A are polyno-
mial operations of A, for every k ∈ ω. Of course, A and 〈A;F ∪ F0〉 have
the same congruences.

Definition 3.2. A finite nontrivial algebra A is said to be primal [ function-
ally complete] if, for each k ∈ ω, every function f : Ak −→ A is a term
[polynomial] operation of A.

If A is primal, then FHSP(A)(n) ∼= A|A|
n

for all n ∈ ω. The canonical
example is the 2–element Boolean algebra, cf. Theorem 13.4. The n–valued
Post algebras are also primal, see [25, pp. 26, 174].

Definition 3.3. The discriminator d : A3 −→ A of a set A is defined by

d(a, b, c) = a if a 6= b, and d(a, a, c) = c.

A discriminator term for a class K of similar algebras is a term t(x, y, z)
such that for every A ∈ K, the operation tA is the discriminator of A. In
this case, HSP(K) is called a discriminator variety.

Clearly, any primal algebra A generates a discriminator variety; in fact,
HSP(A) = IPS(A) [45]. The class of cylindic algebras of any fixed finite
dimension is another example of a discriminator variety, see [25, p. 165].
In a class of algebras with a discriminator term, many quantifier-free first
order formulas are equivalent to equations, and this makes the concept use-
ful (see for instance [77]). Discriminator varieties are semisimple; actually,
their members are ‘Boolean products’ of simple ones. The Boolean product
construction will not be discussed here, but is described in [25, Sec. IV.8–9].

A finite nontrivial algebra is functionally complete iff its discriminator is
a polynomial operation, in which case, if it has no proper subalgebra, then it
has a discriminator term (see [8, Chap. 7]). We shall return to these notions
in Theorems 4.5, 6.10, 6.11 and 8.4. For more information about polynomial
operations, see [78].

4. Permutability of Congruences

The relational product θ ◦ ϕ of binary relations θ and ϕ on the universe
of an algebra A is defined as follows. For a, b ∈ A,

a ≡θ◦ϕ b iff a ≡θ c and c ≡ϕ b for some c ∈ A.

If θ and ϕ are congruences, then θ ◦ ϕ is a reflexive subuniverse of A ×A
and the following conditions are equivalent:

θ ◦ ϕ = ϕ ◦ θ, θ ◦ ϕ ⊆ ϕ ◦ θ, θ ◦ ϕ = θ ∨ ϕ,

where θ ∨ ϕ is the join ΘA(θ ∪ ϕ) in the lattice ConA. We say that A is
congruence (2–) permutable if these conditions hold for all θ, ϕ ∈ ConA. It
is congruence n–permutable if, instead, the congruences of A satisfy

θ ◦ ϕ ◦ θ ◦ ϕ ◦ . . . = ϕ ◦ θ ◦ ϕ ◦ θ ◦ . . .
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(with n factors on each side). Note that n–permutability implies (n + 1)–
permutability. A class of algebras is congruence [n–] permutable if its mem-
bers are. Congruence permutable varieties are often called Maltsev varieties,
because of the next result, which is the prototype for ‘Maltsev conditions’.

Theorem 4.1. (Maltsev [103]) A variety K is congruence permutable iff
there is a term q(x, y, z) such that K satisfies the equations

q(x, y, y) ≈ x and q(x, x, y) ≈ y.

The implication from left to right illustrates a general method. Because
K is a variety, F = FK(3) = T ρ(X)/θK(X) ∈ K, where X = {x, y, z}.
Therefore, F is congruence permutable. Set θ = ΘF (x, y) and ϕ = ΘF (y, z).
Then 〈x, z〉 ∈ θ ◦ ϕ = ϕ ◦ θ, so there exists q(x, y, z) ∈ Tρ(X) (and q =
qF (x, y, z) in F ) such that 〈x, q〉 ∈ ϕ and 〈q, z〉 ∈ θ. By Lemma 3.1, K
satisfies both y ≈ z =⇒ x ≈ q(x, y, z) and x ≈ y =⇒ q(x, y, z) ≈ z. That
is, K satisfies q(x, y, y) ≈ x and q(x, x, z) ≈ z.

Conversely, if a ≡θ c ≡ϕ b for some θ, ϕ ∈ ConA, where A ∈ K, then
a = qA(a, c, c) ≡ϕ qA(a, c, b) ≡θ qA(c, c, b) = b.

The term q in Theorem 4.1 is called a minority term (or Maltsev term)
for K. The variety of groups is congruence permutable, with minority term
q(x, y, z) = xy−1z, or more accurately, (x(y−1))z.

Congruence (n+1)–permutable varieties can be characterized in the spirit
of Theorem 4.1, using a more general scheme of equations (see [65]):

x ≈ q1(x, y, y)

qi(x, x, y) ≈ qi+1(x, y, y) (i = 1, . . . , n− 1)

qn(x, x, y) ≈ y.

Theorem 4.2. If θ is a congruence of a 3–permutable algebra A and
h : A −→ B is a homomorphism, then {〈h(a), h(a′)〉 : 〈a, a′〉 ∈ θ} is a
congruence of B.

The 3–permutability demand cannot be dropped, although the proof uses
only the fact that θ ◦ ϕ ◦ θ = ϕ ◦ θ ◦ ϕ, where ϕ is the kernel of h.

Congruence permutable varieties have a number of desirable properties,
of which two are stated below. The first is known as Fleischer’s Lemma; it
is involved in the proof of Theorem 4.5.

Theorem 4.3. ([42]) Let h : A −→ A1×A2 be a subdirect embedding, where
A belongs to a congruence permutable variety. Then there exist an algebra
C and surjective homomorphisms hi : Ai −→ C (i = 1, 2) such that

h[A] = {〈a1, a2〉 ∈ A1 ×A2 : h1(a1) = h2(a2)}.

Theorem 4.4. ([47]) Let K be a congruence permutable variety, and A ∈ K.
If a subdirect embedding h : A −→ A1×· · ·×An (n finite) exists, where each
Ai is simple, then A ∼= Am1 × · · · ×Amk for some m1, . . . ,mk ∈ {1, . . . , n}
(with k finite).
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Theorem 4.5. ([46]) A finite algebra A is primal iff HSP(A) is congruence
permutable and A is simple and has no proper subalgebra and no automor-
phism other than the identity map.

The following is a variant of Maltsev’s Lemma. It characterizes congruence
generation in arbitrary algebras.

Lemma 4.6. Let a1, . . . , am, b1, . . . , bm, c, d be elements of an algebra A.
Then 〈c, d〉 ∈ ΘA{〈a1, b1〉, . . . , 〈am, bm〉} iff there exist finitely many 2m–
ary polynomial operations p1, . . . , pk of A such that

c = p1(a1, . . . , am, b1, . . . , bm)

pi(b1, . . . , bm, a1, . . . , am) = pi+1(a, . . . , am, b1, . . . , bm) (i = 1, . . . , k − 1)

pk(b1, . . . , bm, a1, . . . , am) = d.

If, moreover, A belongs to a congruence (n + 1)–permutable variety, then
there are m–ary polynomial operations p1, . . . , pk, with k ≤ n, such that

c = p1(a1, . . . , am)

pi(b1, . . . , bm) = pi+1(a1, . . . , am) (i = 1, . . . , k − 1)

pk(b1, . . . , bm) = d.

5. Variants of Distributivity

Recall that a lattice is said to be distributive or modular or meet semi-
distributive if it satisfies the respective law (3) or (4) or (5) below.

x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ z)(3)

y 4 x =⇒ x ∧ (y ∨ z) ≈ y ∨ (x ∧ z)(4)

x ∧ y ≈ x ∧ z =⇒ x ∧ (y ∨ z) ≈ x ∧ y(5)

In fact, a lattice is distributive iff it is modular and meet semi-distributive.
Modular lattices form a variety, as (4) is equivalent to an equation in ∧,∨.
Meet semi-distributive lattices do not form a variety [51].

Theorem 5.1. A lattice L is modular iff, for each a, b ∈ L, the sublattice
[a ∧ b, a] := {c ∈ L : a∧b ≤ c ≤ a} is isomorphic to the sublattice [b, a ∨ b]
under the map x 7→ x ∨ b.

An algebra is said to be congruence [meet semi-] distributive or modular if
it has a [meet semi-] distributive or modular congruence lattice, respectively.
These adjectives are also applied to classes of algebras if all members of
the class have the indicated property. Much information about congruence
distributive varieties can be found in the survey [77].

Theorem 5.2. ([73]) Every congruence 3–permutable algebra is congruence
modular.

Examples 5.3. Lattices are congruence distributive (Example 5.7 below)
but need not be congruence n–permutable for any integer n ≥ 2, while semi-
lattices are congruence meet semi-distributive but need not be congruence
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modular [51], and groups are congruence permutable but not generally dis-
tributive. Implication algebras 〈A;→〉 (i.e., the → subreducts of Boolean
algebras) form a congruence distributive and 3–permutable variety, which
is not congruence permutable. Many familiar logics are modeled by congru-
ence distributive varieties. The ↔ fragments of classical and intuitionistic
logic are exceptions; they correspond to congruence modular varieties that
are not distributive (see for instance [71]).

Theorem 5.4. Let A and B be algebras in a congruence distributive vari-
ety. Then every congruence of A×B has the form

θ � ϕ := {〈〈a, b〉, 〈a′, b′〉〉 : 〈a, a′〉 ∈ θ and 〈b, b′〉 ∈ ϕ}

for suitable congruences θ, ϕ of A,B, respectively, so ConA × ConB is
naturally isomorphic to Con (A×B), under the map 〈θ, ϕ〉 7→ θ � ϕ.

This consequence of congruence distributivity is known as the Fraser-Horn
property, after [48]. It is not a characterization, because it obtains also in
the variety of rings with identity, which is not congruence distributive.

An algebra (or class of algebras) is called arithmetical if it is both con-
gruence distributive and congruence permutable. The name ‘arithmetical’
comes from the following variant of the Chinese Remainder Theorem:

Theorem 5.5. An algebra A is arithmetical iff the following is true for
every positive integer n: any simultaneous system of relations

x ≡θi ai, i = 1, . . . , n

(with each ai ∈ A and each θi ∈ ConA) can be solved for x in A, provided
that ai ≡θi∨θj aj whenever i 6= j.

In the next result, the second item should be compared with Theorem 4.1.
Its proof is in the same spirit.

Theorem 5.6. (Pixley [127]) Let K be a variety.

(i) If there is a term m(x, y, z) such that K satisfies

m(x, x, y) ≈ m(x, y, x) ≈ m(y, x, x) ≈ x,

then K is congruence distributive.

(ii) K is arithmetical iff there is a term t(x, y, z) such that K satisfies

t(x, y, y) ≈ t(y, y, x) ≈ t(x, y, x) ≈ x.

We call m and t a majority term and a 2
3 -minority term (or Pixley term)

for K, respectively. Clearly, the latter is also a minority term. Although the
converse of (i) is false, every arithmetical variety has a majority term. If m
and q are majority and minority terms (respectively) for a variety K, then
t(x, y, z) = q(x,m(x, y, z), z) is a 2

3 -minority term for K.
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Example 5.7. The variety of lattices is congruence distributive, because
m(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) is a majority term for this class.
Likewise, expansions of lattices are congruence distributive. The variety
of residuated lattices 〈A; ·, \, /,∧,∨, 1〉 (see [56]) is arithmetical, because
q(x, y, z) = (x/((z\y) ∧ 1)) ∧ (z/((x\y) ∧ 1)) is a minority term for these
algebras, whence q(x,m(x, y, z), z) is a 2

3 -minority term.

Although congruence distributivity (for varieties) is not characterized by
the existence of a majority term, it is still a Maltsev condition, and so is
congruence modularity. The respective ‘Maltsev schemes’ were provided
by Jónsson [74] and by Day [35] (see [62] also). The one for distributivity
postulates ternary terms t0, . . . , tn such that the variety satisfies

t0(x, y, z) ≈ x ≈ ti(x, y, x) for all i ≤ n, tn(x, y, z) ≈ z,
ti(x, x, z) ≈ ti+1(x, x, z) for even i < n,

ti(x, z, z) ≈ ti+1(x, z, z) for odd i < n.

Modularity will be discussed in Section 6. Even congruence meet semi-
distributivity turns out to be a Maltsev condition [83, 94]. This claim and
the precise meaning of ‘Maltsev condition’ will be elaborated in Section 12.

An algebra A is said to be congruence regular provided that its congru-
ences are determined by any single congruence class, i.e., whenever a ∈ A
and ϕ,ψ ∈ ConA with a/ϕ = a/ψ, then ϕ = ψ. When A has a nullary
basic operation c, we can consider a more widely applicable variant of this
definition: for all ϕ,ψ ∈ ConA, if cA/ϕ = cA/ψ, then ϕ = ψ. This is called
c–regularity (or point regularity when c is understood). A class of algebras
is congruence regular or c–regular if its members are.

Lemma 5.8. ([63]) If a variety is congruence regular or point regular, then
it is congruence modular and congruence n–permutable for some integer n.

Theorem 5.9. ([30, 40, 41]) A variety K is congruence regular iff there are
ternary terms d1(x, y, z), . . . , dm(x, y, z) such that K satisfies

(d1(x, y, z) ≈ z & . . . & dm(x, y, z) ≈ z) ⇐⇒ x ≈ y.

It is c–regular iff there are binary terms d1(x, y), . . . , dm(x, y) such that K
satisfies

(d1(x, y) ≈ c & . . . & dm(x, y) ≈ c) ⇐⇒ x ≈ y.

In the case of c–regularity, the argument from left to right uses the algebra
F = FK(2) ∈ K, freely generated by x, y. Let

ϕ = ΘF (x, y) and ψ = ΘF ((c/ϕ)× {c}).

Then c/ϕ ⊆ c/ψ, i.e., c/ϕ = c/(ϕ ∩ ψ), so ϕ ⊆ ψ, by the c–regularity of F .
That is, ΘF (x, y) ⊆ ΘF {〈d, c〉 : d ∈ c/ϕ}. As ConF is an algebraic lattice,
there is a finite subset {d1, . . . , dm} of c/ϕ such that

ΘF (x, y) ⊆ ΘF {〈di, c〉 : i = 1, . . . ,m},
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by Lemma 2.7. Then K satisfies (&i di(x, y) ≈ c) =⇒ x ≈ y, by Lemma 3.1.
And for each i, we have 〈di, c〉 ∈ ΘF (x, y), so by the same lemma, K satisfies
x ≈ y =⇒ di(x, y) ≈ c, i.e., di(x, x) ≈ c.

Example 5.10. The variety of groups is congruence regular, as it satisfies
xy−1z ≈ z ⇐⇒ x ≈ y. MV–algebras form a congruence regular variety [7]
and so do quasigroups. Discriminator varieties (and in particular, Boolean
algebras) are congruence regular. The variety of residuated lattices is 1–
regular, as it satisfies ((x\y) ∧ 1 ≈ 1 & (y\x) ∧ 1 ≈ 1) ⇐⇒ x ≈ y. It is
not congruence regular. The algebraic counterparts of algebraizable logics
(in the sense of [21]) visibly generalize point regular varieties, as they are
characterized by quasi-equations of the form

(&i,j si(dj(x, y)) ≈ ti(dj(x, y))) ⇐⇒ x ≈ y.

Using (1) and Lemmas 3.1, 4.6 and 5.8, we can replace the quasi-equations
in Theorem 5.9 by equational schemes. In the case of point regularity, we
get a Maltsev condition consisting of dj(x, x) ≈ c (j = 1, . . . ,m) and the
following, where k is less than the variety’s degree of permutability:

x ≈ t1(x, y, d1(x, y), . . . , dm(x, y))

ti(x, y, c, . . . , c) ≈ ti+1(x, y, d1(x, y), . . . , dm(x, y)) (1 ≤ i < k)

tk(x, y, c, . . . , c) ≈ y.

Actually, a more complex scheme of this kind (corresponding to the first
claim in Lemma 4.6, rather than the second) can be used to prove Lemma 5.8,
which in turn justifies the simpler form of the above scheme.

Example 5.11. Integral residuated lattices satisfy x 4 1 and x 4 y/(x\y)
and x/1 ≈ x and x\x ≈ 1 ≈ x/x. Consequently, they satisfy

x ≈ x ∨ [x/((y\x)/(y\x))]

x ∨ [x/((y\x)/1)] ≈ x ∨ y ∨ (x/(y\x)) ∨ [y/((x\y)/(x\y))]

x ∨ y ∨ (x/1) ∨ [y/((x\y)/1)] ≈ y ∨ (y/(x\y))

y ∨ (y/1) ≈ y.

These equations witness the 1–regularity and congruence 4–permutability of
any variety of \, /,∨, 1 subreducts of integral residuated lattices. The class
of all such subreducts is itself a variety [145] and is not 3–permutable [130].

6. Abelian Algebras

Recall that a group G is Abelian iff [G,G] is trivial, where [ , ] is the com-
mutator operation on normal subgroups. A general commutator theory for
all congruence permutable varieties (including a notion of Abelianness) was
provided in the 1970s by J.D.H. Smith [137]. It was extended to congruence
modular varieties by Hagemann and Herrmann [64]. Alternative approaches
to the modular theory were then provided by Gumm [62] and by Freese and
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McKenzie [50]. The main concepts are recounted here. Some of the theory’s
striking applications are Theorems 6.3, 9.10(i) and 10.4(i) below.

Suppose ~c = c1, . . . , cn and ~d = d1, . . . , dn are elements of an arbitrary

algebra A, where n ∈ ω. Given θ ∈ ConA, we write ~c ≡θ ~d if we want to
signify that ci ≡θ di for i = 1, . . . , n.

Definition 6.1. The centralizer θ∗ of θ ∈ ConA is the binary relation on
A which identifies elements a, b iff, for every term t(x, ~y) of A’s type and for

all tuples ~c, ~d ∈ A of the same length as ~y, such that ~c ≡θ ~d, we have

(6) tA(a,~c) = tA(a, ~d) iff tA(b,~c) = tA(b, ~d).

It can be shown that θ∗ ∈ ConA. The centre ζA of A is the congruence
(A2)∗. We say that A is Abelian if ζA = A2, i.e., if (6) holds for all t and

all a, b,~c, ~d ∈ A. A class of algebras is said to be Abelian if its members are.

Examples 6.2. If θ is a congruence of a group G = 〈G; ·,−1 , e〉 and H is
the normal subgroup e/θ, then e/θ∗ = {a ∈ G : ah = ha for all h ∈ H} (see
for instance [8, Ex. 7.18]), and G is Abelian in the above sense iff it satisfies
xy ≈ yx. Likewise, all modules over rings are Abelian. This motivates the
terminology, but the notions make sense for arbitrary algebras. For instance,
if θ is a congruence of a lattice L, then θ∗ is the pseudocomplement of θ in
ConL, i.e., it is the largest ϕ ∈ ConL for which θ ∩ ϕ = idL. And, for an
ideal I = 0/θ of a ring R, the annihilator {r ∈ R : Ir = {0} = rI} is 0/θ∗.

Two algebras are said to be polynomially equivalent if they have the same
universe and the same polynomial operations. Note that the polynomial
operations of a left module M over a ring R all have the simple form

〈x1, . . . , xn〉 7→ m+
∑n

i=1
rixi (n ∈ ω, m ∈M , r1, . . . , rn ∈ R).

The following result of C. Herrmann is known as the Fundamental Theorem
of Abelian Algebras.

Theorem 6.3. ([67]) In a congruence modular variety K, every Abelian
algebra A is polynomially equivalent to a module over a ring with identity.

The proof in [50] begins by showing that A is affine, i.e., there is a term
d(x, y, z) of K and an Abelian group structure +,−, 0 on A such that

dA(a, b, c) = a− b+ c and sA(~a−~b+ ~c) = sA(~a)− sA(~b) + sA(~c)

for all a, b, c ∈ A, all term operations sA of A and all n–tuples ~a,~b,~c ∈ A,
where n is the rank of sA. This implies that dA is a homomorphism from
A3 to A, but 0 need not be definable by means of term operations of A.
(Conversely, affine algebras are always Abelian and generate congruence
permutable—hence modular—varieties. It is easy to see that modules are
affine.) The production of d is nontrivial; it is described after Definition 6.6.
An affine algebra A, as above, is polynomially equivalent to the natural
(unital) left R–module expansion of 〈A; +,−, 0〉, where R is the subring



UNIVERSAL ALGEBRAIC METHODS FOR NON-CLASSICAL LOGICS 15

(with identity) of the endomorphism ring of 〈A; +,−, 0〉 consisting of all
unary polynomials p of A such that p(0) = 0, cf. [115, Thm. 4.155].

In Chapter 9 of [50], a stronger result than Theorem 6.3 is proved: for
every congruence modular variety K, the Abelian algebras in K constitute
a subvariety M, and there is a single ring R with identity such that M is
equivalent, in a strong sense, to a variety of R–modules.

Definition 6.4. Let θ, ϕ, ψ be congruences of an algebra A. We say that
ϕ centralizes ψ modulo θ if θ ⊆ ϕ ∩ ψ and ϕ/θ ⊆ (ψ/θ)∗ in ConA/θ. The
smallest θ ∈ ConA for which this is true is called the commutator of 〈ϕ,ψ〉
and denoted by [ϕ,ψ].

This congruence always exists—it is the intersection of all congruences
modulo which ϕ centralizers ψ. Thus, [ϕ,ψ] ⊆ ϕ ∩ ψ, and [ , ] preserves ⊆
in both arguments. Clearly, an algebra A is Abelian iff [A2, A2] = idA, iff
[ϕ,ψ] = idA for all ϕ,ψ ∈ ConA. Less obviously, A is Abelian iff idA is
an equivalence class of some congruence on A ×A [115, p. 253]. There are
attendant notions of solvability and nilpotence (see [80, 81] in particular).
In congruence modular or meet semi-distributive varieties, we always have
[ϕ,ψ] = [ψ,ϕ], and the operation [ , ] turns congruence lattices into resid-
uated lattice-ordered groupoids [50]. In the meet semi-distributive case,
[ϕ,ψ] = ϕ ∩ ψ (see Theorem 12.10).

Examples 6.5. If congruences θ, ϕ correspond to normal subgroups H,K
of a group G, then [θ, ϕ] corresponds to the normal subgroup generated by
{aba−1b−1 : a ∈ H and b ∈ K}, so [θ, ϕ] = idG means that the elements
of H commute with those of K. In a ring, the commutator of congruences
corresponding to ideals I, J corresponds itself to IJ + JI.

Definition 6.6. By a difference [weak difference] term for a variety K, we
mean a term d(x, y, z) such that whenever A ∈ K and θ ∈ ConA with
〈a, b〉 ∈ θ, then dA(a, a, b) = b [dA(a, a, b) ≡[θ,θ] b] and dA(a, b, b) ≡[θ,θ] a.

The accounts of Theorem 6.3 in [62, 50] reveal that any congruence mod-
ular variety K has a difference term—which can serve as the term d in the
above proof-sketch of 6.3. It can be obtained from Day’s Maltsev scheme
for congruence modularity [35], which postulates 4–ary terms m0, . . . ,mn,
such that K satisfies

m0(x, y, z, u) ≈ x ≈ mi(x, y, y, x) for all i ≤ n, mn(x, y, z, u) ≈ u,
mi(x, x, y, y) ≈ mi+1(x, x, y, y) for all even i < n,

mi(x, y, y, z) ≈ mi+1(x, y, y, z) for all odd i < n.

We define ternary terms q0, . . . , qn by q0(x, y, z) = z and

qi+1(x, y, z) =

{
mi+1(qi(x, y, z), y, x, qi(x, y, z)) i odd
mi+1(qi(x, y, z), x, y, qi(x, y, z)) i even.

It can then be shown that qn is a difference term for K.
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Congruence meet semi-distributive varieties have a much simpler differ-
ence term, viz. d(x, y, z) = z. In fact, Abelian algebras are affine in any
variety possessing a weak difference term [83].

A class K of similar algebras has the congruence extension property (CEP)
if every congruence on a subalgebra B of a member of K is the restriction
B2 ∩ ϕ of some congruence ϕ on the parent algebra. In this case, HS(K) ⊆
SH(K) and any nontrivial subalgebra of a simple algebra in K is simple.
Abelian groups, modules, semilattices, distributive lattices and commutative
residuated lattices all have the CEP. The CEP is closely connected with
‘local deduction theorems’ in abstract algebraic logic [31, 43, 44].

Theorem 6.7. (Kiss [88, 89]) Let K be a congruence modular variety.

(i) If K has the congruence extension property and A ∈ K, then

[θ, ϕ] = θ ∩ ϕ ∩ [A2, A2] for all θ, ϕ ∈ ConA.

(ii) The displayed condition in (i) holds for all A ∈ K iff every non-
Abelian subdirectly irreducible algebra A ∈ K has the property that
[θ, ϕ] is a non-identity congruence of A whenever θ and ϕ are.

Theorem 6.8. ([50, Thm. 8.5]) The following conditions on a congruence
modular variety K are equivalent.

(i) K has the Fraser-Horn property (see Theorem 5.4).
(ii) K contains no nontrivial Abelian algebra.
(iii) The centre ζA of each A ∈ K is the identity relation.
(iv) [θ,A2] = θ whenever A ∈ K and θ ∈ ConA.
(v) [A2, A2] = A2 for all A ∈ K.

Two varieties K1 and K2 of the same type are said to be independent if
there is a term t(x1, x2) such that Ki satisfies t(x1, x2) ≈ xi for i = 1, 2. If
K1 and K2 are subvarieties of a variety K, we write K = K1 ⊗ K2 to signify
that K1 and K2 are independent and K = HSP(K1 ∪ K2). We then call K
the varietal product of K1,K2. In this case, every A ∈ K is isomorphic to
an algebra of the form A1 × A2 with Ai ∈ Ki for i = 1, 2, and ConA is
naturally isomorphic to ConA1 ×ConA2.

Theorem 6.9. (Herrmann [67]) Let M = HSP(D ∪ A), where M is a con-
gruence modular variety, D is a congruence distributive variety and A is an
Abelian variety. Then M = D⊗ A.

The genesis and proof of the next theorem are described in [8, Chap. 7].

Theorem 6.10. A finite nontrivial algebra in a congruence permutable va-
riety is functionally complete iff it is simple and non-Abelian.

A nontrivial variety is said to be minimal if it has no nontrivial proper
subvariety. An algebra is said to be strictly simple if it is finite and simple
and has no nontrivial proper subalgebra. Clearly, every locally finite minimal
variety is generated by a strictly simple algebra.
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Theorem 6.11. ([67]) Let A be a strictly simple algebra in a congruence
modular variety K, and assume that HSP(A) is not Abelian. Then HSP(A)
is congruence distributive, and if K is congruence permutable, then A has
a discriminator term.

Corollary 6.12. Every locally finite congruence modular [permutable] min-
imal variety is congruence distributive [a discriminator variety ] or Abelian.

7. Filtered Products

For consistency, the results of this section are stated for algebras, but
they can be extended to structures with relations (as well as operations),
except for Theorem 7.4.

Recall that a filter over a set I is a lattice-filter U of the Boolean algebra of
all subsets of I, i.e., it is a non-empty set of subsets of I, closed under taking
supersets and finite intersections. It is an ultrafilter over I if it excludes ∅
and is not properly contained in any filter over I, except for the filter of all
subsets of I. In this case, for any J, J ′ ⊆ I, if J ∪ J ′ ∈ U , then J ∈ U or
J ′ ∈ U (in particular, just one of J, I\J belongs to U). Note that there is
no ultrafilter over ∅.

Given a family {Ai : i ∈ I} of similar algebras and a filter U over I, the
relation θU identifies all pairs a, b ∈

∏
i∈I Ai such that

a(i) = b(i) for all i in some member of U .

It is a congruence of
∏
i∈I Ai. The factor algebra

(∏
i∈I Ai

)
/θU is called a

reduced product of the algebras Ai. It is an ultraproduct if U is an ultrafilter
over I (whence I 6= ∅). In this case, roughly speaking, first order properties
of tuples hold modulo θU iff they hold co-ordinatewise throughout some
element of U . We use the term ultrapower when the algebras Ai are all the
same. If B is an ultrapower AI/θU of A, then A is called an ultraroot of B.
Any algebra can be embedded into each of its ultrapowers by the obvious
map a 7→ 〈a, a, a, . . . 〉/θU .

Lemma 7.1. ([25, p. 146]) If K is a finite set of finite algebras, then any
ultraproduct of members of K is isomorphic to a member of K.

A class of algebras is called elementary if it can be axiomatized by a set
of first order sentences, and strictly elementary if it can be axiomatized by
one such sentence. The following result combines contributions of  Loś [97],
Keisler [86] and Shelah [135].

Theorem 7.2. Let K ⊆ Kρ, where Kρ is the class of all algebras of type ρ
and K is closed under isomorphic images.

(i) K is elementary iff it is closed under ultraproducts and ultraroots.
(ii) K is strictly elementary iff both K and Kρ\K are closed under ultra-

products.
(iii) Two algebras satisfy the same first order sentences iff they have iso-

morphic ultrapowers.
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Theorem 7.2(i) is related to the Compactness Theorem of first order logic,
which says (in the case of algebras) that a set Σ of first order sentences has
a model in Kρ provided that every finite subset of Σ does (see [25, p. 212]).
Equivalently, for any set Σ ∪ {Φ} of first order sentences, if every model of
Σ in Kρ is a model of Φ, then the same is true for some finite Σ′ ⊆ Σ.

The symbols PR and PU stand for closure under reduced products and
ultraproducts, respectively. A class K of similar algebras is called a quasi-
variety if it is closed under I, S,P and PU. The smallest such class containing
K is Q = ISPPU(K) (which coincides with ISPR(K)). Every algebra in Q is
isomorphic to a subdirect product of algebras that embed into ultraproducts
of members of K, because SP(M) ⊆ PSS(M) for every M.

Theorem 7.3. ([104, 61]) A class of similar algebras is a quasivariety iff it
can be axiomatized by a set of quasi-equations.

If Σ is a set of [quasi-] equations axiomatizing a [quasi] variety K, then
the [quasi-] equations satisfied by K can be derived from Σ using a fixed
set of purely [quasi-] equational inference rules. (See [12] or [25, Sec. II.14]
in the case of varieties and [134] or [58, Sec. 2.2] for quasivarieties.) If,
moreover, K is strictly elementary, then it can be axiomatized by a finite
set of [quasi-] equations. This follows from the Compactness Theorem (in
conjunction with Theorems 2.1 and 7.3).

Theorem 7.4. ([9]) Every locally finite congruence modular minimal variety
is minimal as a quasivariety.

An algebra A = 〈A;F 〉 is said to be locally embeddable into a class K of
algebras of the same type if every finite subset B of A can be extended to
an isomorphic copy C of an algebra from K, in such a way that all partial

A–operations on elements of B are preserved—i.e., whenever fA(~b),~b ∈ B
then fC(~b) = fA(~b).

Theorem 7.5. (cf. [58, pp. 15–17]) A is locally embeddable into K iff A
can be embedded into an ultraproduct of members of K.

The proof makes use of the Compactness Theorem and the diagram ∆B of
each B ⊆ A, which consists of the true atomic and negated atomic sentences
of the expansion AB of A by nullary operations cb corresponding to the
elements b ∈ B. Note that ∆A holds in an algebra E of same type as AA

iff a 7→ cEa is an embedding of A into the appropriate reduct of E.

Corollary 7.6. Every algebra can be embedded into an ultraproduct of finitely
generated subalgebras of itself.

An algebra in a variety K is said to be finitely presented (in K) if it
is isomorphic to FK(m)/θ for some m ∈ ω and some finitely generated
congruence θ. For example, in the variety G of groups, the dihedral groups
Dn are isomorphic to F /ΘF {〈an, e〉, 〈b2, e〉, 〈ba, a−1b〉}, where F = F G(2)
and a, b are its free generators. More generally, every finite algebra of finite
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type is finitely presented in any variety containing it. Every algebra in a
variety K is locally embeddable into the class Kfp of all finitely presented
algebras in K [58, Prop. 2.1.18], whence K = ISPU(Kfp), by Theorem 7.5.

Let Kfin denote the class of all finite algebras in a variety K. If each
member of K is locally embeddable into Kfin then K is said to have the finite
embeddability property (FEP). To establish this, it suffices to show that each
subdirectly irreducible algebra in K is locally embeddable into Kfin, see for
instance [16, Lem. 3.7]. Clearly, every locally finite variety has the FEP.

The next result is essentially due to Evans [39] (also see [23]).

Theorem 7.7. The following conditions on a variety K are equivalent.

(i) K has the finite embeddability property.
(ii) Every finitely presented algebra in K is isomorphic to a subdirect

product of finite algebras.
(iii) K is generated as a quasivariety by its class of finite members, i.e.,

K = ISPPU(Kfin).

If these conditions hold and K is finitely axiomatized and has finite type,
then it has a decidable universal theory, i.e., the set of universally quantified
first order sentences satisfied by K is recursive.

The last claim instantiates a principle—often called Harrop’s Theorem,
after [66]—which may be stated as follows: if S is a recursive set of sentences
in the language of a finitely formalized first order theory T , where the proper
axioms of T belong to S, then the set of theorems of T belonging to S is
also recursive, provided that every non-theorem of T within S has a finite
counter-model. The finiteness assumptions ensure that both the theorems
of T within S and the finite models of T can be enumerated effectively,
and this yields an obvious decision procedure. In Theorem 7.7, the FEP
guarantees the existence of the finite counter-models when S consists of
universally quantified sentences. On the same grounds, if a variety K of
finite type is finitely axiomatized and generated by its finite members (as a
variety, i.e., K = HSP(Kfin)), then K has a decidable equational theory.

Example 7.8. The variety of all commutative residuated lattices (CRLs)
lacks the FEP, although it is generated by its finite members [123] and hence
has a decidable equational theory. The variety of CRLs satisfying xn ≤ xm
has the FEP whenever m,n ∈ ω with m 6= n > 0 [144]. These facts relate
to the decision and deducibility problems of various substructural logics.

To demand that a variety has a decidable (full) first order theory is very
restrictive. The structure of locally finite varieties with this property has
been largely determined by McKenzie and Valeriote [116], building on earlier
work of Burris and McKenzie [24] in the congruence modular case. The ar-
guments make extensive use of tame congruence theory, which was developed
in [68] by Hobby and McKenzie.
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8. Definable Principal Congruences

A congruence of an algebra A is said to be principal if it has the form
ΘA(a, b). We say that a variety V has definable principal congruences (DPC)
if there is a first order formula Φ[x, y, z, w] with four free variables such that
for every A ∈ V and a, b, c, d ∈ A, we have

(7) 〈c, d〉 ∈ ΘA(a, b) iff Φ[a, b, c, d] is true in A.

If, in addition, we can choose for Φ a (finite) conjunction of equations, then
V is said to have equationally definable principal congruences (EDPC).

Even in the case of DPC, Maltsev’s Lemma 4.6 reveals much about the
logical form that Φ can be assumed to take, but we shall not pursue this
detail here. It is easy to see that a variety V with EDPC has the principal
CEP, i.e., every principal congruence ΘB(a, b) of a subalgebra B of an
algebra A ∈ V is the restriction B2 ∩ ΘA(a, b) of a principal congruence
of A. By a result of Day [36], the principal CEP entails the CEP in any
variety, so varieties with EDPC have the CEP.

A join semilattice with 0 is a semilattice 〈S;∨〉 having a least element,
where we define u ≤ v iff u∨ v = v. Its ideals are its non-empty downward-
closed subuniverses, and they form an algebraic lattice when ordered by
inclusion, in which meets are intersections. We say that 〈S;∨〉 is dually
Brouwerian if, for any a, b ∈ S, there is a smallest c ∈ S such that a ≤ b∨ c.
In this case, the ideal lattice of 〈S;∨〉 is distributive. The set of compact
(i.e., finitely generated) congruences of any algebra A is naturally a join
semilattice with 0, whose order is set inclusion.

Theorem 8.1. (Köhler & Pigozzi [91]) A variety has EDPC iff each of its
members has a dually Brouwerian semilattice of compact congruences.

Every algebraic lattice (in particular, every congruence lattice) is natu-
rally isomorphic to the ideal lattice of its own join semilattice of compact
elements [59, p. 22], so it follows from Theorem 8.1 that every variety with
EDPC is congruence distributive.

In a variety V with DPC, the class Vs [Vsi] of all simple [subdirectly
irreducible] algebras in V is elementary, because V is. Indeed, an algebra
A ∈ V belongs to Vs [Vsi] iff there exist distinct a, b ∈ A such that for all
distinct c, d ∈ A, we have ΘA(a, b) = ΘA(c, d) [ΘA(a, b) ⊆ ΘA(c, d)], so the
claim follows from (7). In particular, if V is a finitely axiomatized variety
with DPC, then Vs and Vsi are strictly elementary. The first item in the
next theorem follows from these observations and Theorem 7.2. The second
was proved in [5], and the third combines results from [5, 52, 91]; its forward
implication has been explained above.

Theorem 8.2. Let V be a variety.

(i) If V has DPC, then Vs and Vsi are both closed under ultraproducts.
(ii) Every locally finite variety with the CEP has DPC.
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(iii) V has EDPC iff it is congruence distributive and has both DPC and
the CEP.

Examples 8.3. The variety of distributive lattices has EDPC, since in these
algebras we always have

c ≡Θ(a,b) d iff (a ∧ b ∧ c = a ∧ b ∧ d and a ∨ b ∨ c = a ∨ b ∨ d ).

The variety of commutative residuated lattices 〈A; ·,→,∧,∨, 1〉 satisfying
(x ∧ 1)2 ≈ x ∧ 1 has EDPC. Here, reading u ≤ v as u ∧ v = u, we have

c ≡Θ(a,b) d iff (a↔ b) ∧ 1 ≤ (c↔ d) ∧ 1,

where a↔ b abbreviates (a→ b)∧ (b→ a). The variety of interior algebras
(a.k.a. closure algebras) has EDPC as well. In this case

c ≡Θ(a,b) d iff c ∧ �(a↔ b) = d ∧ �(a↔ b).

In commutative rings with identity, we have

c ≡Θ(a,b) d iff ∃x (c− d = x(a− b)),
so this variety has DPC. It does not have EDPC, as it is not congruence
distributive. For similar reasons, the variety of modules over a finite ring
with identity has DPC but lacks EDPC. The same applies to semilattices—
in fact, every variety generated by a 2–element algebra has DPC [10].

An algebra A is said to be finitely subdirectly irreducible if idA is not the
intersection of any two non-identity congruences, i.e., it is meet-irreducible
in ConA. The class of all such algebras in a variety V is denoted by
Vfsi. Thus, Vs ⊆ Vsi ⊆ Vfsi. (Trivial algebras in V belong to Vfsi but not
to Vsi.) The property of not being finitely subdirectly irreducible persists
in ultraproducts, as a consequence of Maltsev’s Lemma 4.6. Thus, for a
finitely axiomatized variety V, if Vfsi is an elementary class, then it is strictly
elementary, by Theorem 7.2(ii).

A variety V is said to be filtral if every congruence θ on a subdirect product
A of subdirectly irreducible algebras in V is determined by a suitable filter
U over the index set I of the product—that is to say,

θ = {〈a, b〉 ∈ A2 : {i ∈ I : a(i) = b(i)} ∈ U}.

Theorem 8.4. Let V be a variety.

(i) ([52, 53]) V is filtral iff it is semisimple and has EDPC. In this case,
every nontrivial finitely subdirectly irreducible algebra in V is simple.

(ii) ([18, 53]) V is congruence permutable and filtral iff it is a discrimi-
nator variety.

For example, the variety of distributive lattices is filtral, but not a discrim-
inator variety. The idea of filtrality originates with Magari [102].

For varieties that are the algebraic counterparts of algebraizable logics,
EDPC corresponds to the existence of ‘deduction theorems’ [22]. This dis-
covery of Blok and Pigozzi was suggested by Theorem 8.1. For analogous
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connections between ‘inconsistency lemmas’, filtrality and dually pseudo-
complemented semilattices of compact congruences, see [131, 26].

9. Controlling Irreducible Algebras

In the light of Birkhoff’s subdirect decomposition theorem, the following
definitions are natural.

Definition 9.1. A variety V is said to be residually < m, where m is a
cardinal, if |A| < m for every A ∈ Vsi. In this case, the smallest such m is
called the residual bound of V. We say that V is residually small if it has a
residual bound, and residually finite if it is residually < ℵ0.

Every residually finite variety has the FEP, by Theorem 7.7. Every variety
generated by a 2–element algebra has a finite residual bound, but a variety
generated by a 3–element algebra of type 〈2〉 need not be residually small
[141]. In principle, it is easier to analyze a variety if its residual bound exists
and is not too large. On a finite set, there are only finitely many operations
of any given finite rank. Thus, any variety of finite type with a finite residual
bound is finitely generated, by Corollary 2.9, as it has only finitely many
non-isomorphic subdirectly irreducible members, each of which is finite. The
next theorem provides two contrasting results about residual size. A more
detailed breakdown of possibilities is given in [112].

Theorem 9.2. Let V be a variety with m operation symbols, where m is a
(possibly infinite) cardinal.

(i) (Taylor [139]) If V has a subdirectly irreducible member of cardinal-

ity greater than 2max{m,ℵ0}, then V has arbitrarily large subdirectly
irreducible members.

(ii) (Quackenbush [129]) Suppose V is locally finite. If V contains only
finitely many finite subdirectly irreducible algebras, up to isomor-
phism, then V contains no infinite subdirectly irreducible algebra
(and therefore has a finite residual bound).

To see that (ii) holds, note that every variety V is generated as a quasi-
variety by the finitely generated members of Vsi, by Corollaries 2.9 and 7.6.
So, when V is locally finite, it is generated as a quasivariety by the class K of
finite members of Vsi, but in (ii), K is assumed to be the isomorphic closure
of a finite set of finite algebras. Thus,

V = ISPPU(K) = IPSSPU(K) ⊆ IPSS(K),

by Lemma 7.1, whence all subdirectly irreducible algebras in V belong to
IS(K) and are therefore finite.

The converse of Theorem 9.2(ii) (ignoring the parenthetical text) is false
[5]. Refuting the so-called RS Conjecture, McKenzie [112] showed that it is
false even for finitely generated varieties. It is an open problem, however,
for finitely generated varieties of finite type. This is the
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Restricted Quackenbush Problem: Must a finitely generated and resid-
ually finite variety of finite type have a finite residual bound?

Some partial answers are given below. First, for varieties with DPC, the
answer is positive. In fact, the following is true.

Theorem 9.3. (Baldwin & Berman [5]) Let V be a variety with DPC.

(i) If V is residually small, then it has a finite residual bound.
(ii) If V has finite type and contains infinitely many non-isomorphic

finite subdirectly irreducible algebras, then it contains subdirectly ir-
reducible algebras of every infinite cardinality.

In the absence of DPC, it is not generally easy to identify the subdirectly
irreducible members of a variety HSP(K), even if we fully understand K.
The situation improves in congruence modular (and especially distributive)
varieties, as the next two results show.

Theorem 9.4. ([50]) Let K be a class of algebras in a congruence modular
variety, let A be a subdirectly irreducible algebra in HSP(K), and let θ be the
centralizer of the monolith µ of A. Then A/θ ∈ HSPU(K). In particular,
if [µ, µ] 6= idA, then A ∈ HSPU(K).

The following result of B. Jónsson pre-dates Theorem 9.4. Its proof used
Jónsson’s Lemma, which says that, for any finitely subdirectly irreducible
factor algebra C/ϕ of a congruence distributive subalgebra C of a product∏
i∈I Ai, we have ϕ ⊇ C2 ∩ θU (see page 17) for some ultrafilter U over I.

Theorem 9.5. (Jónsson [74]) Let K be a class of algebras in a congruence
distributive variety, and let A be a finitely subdirectly irreducible algebra in
HSP(K). Then A ∈ HSPU(K). Thus, HSP(K) = IPSHSPU(K).

If K consists of finitely many finite algebras, then A ∈ HS(K), and so
HSP(K) = IPSHS(K).

The restriction of Theorem 9.5 to subdirectly irreducible algebras A fol-
lows from Theorem 9.4, as the commutator of two congruences is just their
intersection in the congruence distributive case. The last claim in Theo-
rem 9.5 follows from the first and Lemma 7.1, and it implies the following.

Corollary 9.6. ([74]) A finitely generated congruence distributive variety V
has a finite residual bound, and only finitely many subvarieties. Moreover,
two non-isomorphic subdirectly irreducible algebras in V cannot satisfy the
same equations.

In fact, if A is a subdirectly irreducible algebra in a locally finite congru-
ence distributive variety HSP(K), then A ∈ ISPUHS(K), see [50, Cor. 10.3].

It is natural to ask whether the distributivity demand in Corollary 9.6
can be relaxed. Before doing so, we should note that for residually small
varieties, the assumption of congruence modularity is less restrictive than it
appears. To this end, we make the next definition.
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Definition 9.7. A congruence equation is a formal equation in the binary
symbols ∧,∨, ◦. It is satisfied by an algebra A if it becomes true whenever
we interpret the variables of the equation as congruence relations of A, and
for arbitrary binary relations θ and ϕ on A, we interpret θ∧ϕ, θ∨ϕ and θ◦ϕ
as θ ∩ ϕ, ΘA(θ ∪ ϕ) and the relational product, respectively. A congruence
equation is satisfied by a class of algebras if it is satisfied by every member
of the class. It is nontrivial if some algebra fails to satisfy it.

It follows that a congruence equation involving ∧,∨ only (not ◦) is non-
trivial iff it fails in some lattice. It is possible to exhibit infinitely many
inequivalent congruence equations of this kind, all weaker than congruence
modularity, see [37] and [81, Sec. 1.2]. Strikingly, however, they collapse in
residually small varieties:

Theorem 9.8. (Kearnes & Kiss [81]) If a residually small variety satisfies
a nontrivial congruence equation in ∧,∨ only, then it is congruence modular
(and conversely, of course).

This recent result should be borne in mind when reading Theorems 9.10(i),
9.11, 9.16 and 10.4(i), and Corollary 9.12 (which were proved much earlier).
Moreover, for each integer n ≥ 2, every congruence n–permutable variety
satisfies a nontrivial congruence equation in ∧,∨ only [93, 95], so Theo-
rem 9.8 specializes as follows.

Corollary 9.9. Every residually small congruence n–permutable variety is
congruence modular.

The following partial generalizations of Corollary 9.6 have been obtained.

Theorem 9.10. Let V be a variety.

(i) (Freese & McKenzie [49]) If V is finitely generated, congruence mod-
ular and residually small, then it has a finite residual bound.

(ii) (Kearnes & Willard [85]) If V is congruence meet semi-distributive,
residually finite and of finite type, then it has a finite residual bound.

As an instance of (i), the variety generated by a finite nontrivial module
over a finite ring with identity has a finite residual bound (cf. Example 9.17
below); it is not congruence distributive. Non-distributive witnesses of (ii)
include the variety of semilattices and certain varieties generated by tourna-
ments [106]. The proof of (i) uses the next result.

Theorem 9.11. (Freese & McKenzie [49]) Let V be a congruence modular
variety. If V is residually small, then for all A ∈ V and θ, ϕ ∈ ConA,

(8) θ ∩ [ϕ,ϕ] ⊆ [θ, ϕ] (equivalently, θ ∩ [ϕ,ϕ] = [θ ∩ ϕ,ϕ]).

The converse holds if V is finitely generated.

Corollary 9.12. Let V be a locally finite variety with the CEP.

(i) If V is finitely generated and congruence modular, then it is residu-
ally small.
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(ii) If V is residually small, then it has a finite residual bound.

Here, (i) follows from Theorems 6.7(i) and 9.11, as the condition displayed
in 6.7(i) entails (8), while (ii) follows from Theorems 8.2(ii) and 9.3(i).

In summary, the restricted Quackenbush problem has a positive solution
for all varieties that have DPC or are congruence meet semi-distributive
or satisfy a nontrivial congruence equation in ∧,∨ only—and hence for all
n–permutable varieties and all varieties with the CEP.

Injectivity and Amalgamation.

An algebra C in a variety V is said to be V–injective if, whenever A ∈ V
and B ∈ S(A), then each homomorphism from B into C can be extended
to A. Clearly, every such C is an absolute retract in V, i.e., whenever D ∈ V
is an extension of C, then there is a surjective homomorphism h : D −→ C
such that h|C = idC .

Definition 9.13. We say that a variety V has enough injectives if every
algebra in V can be embedded into a V–injective member of V.

In this case, each D ∈ V has an injective hull, i.e., it has a V–injective ex-
tension E ∈ V such that no proper extension of D within E is V–injective,
except for E itself. This E is unique up to an isomorphism that fixes D, so
it is denoted by E(D); it may also be characterized as a maximal essential
extension of D within V, where ‘essential’ signifies that non-identity congru-
ences of the extension restrict to non-identity congruences of D. Moreover,
|E| ≤ 2max{|D|,ℵ0,m}, where m is the number of operation symbols of V [139].

Definition 9.14. We say that injections are transferable in a class K of
similar algebras if, for any embedding u : A −→ B and homomorphism
g : A −→ C, with A,B,C ∈ K, there exist an embedding v : C −→ D and
a homomorphism h : B −→D, with D ∈ K, such that v ◦ g = h ◦ u.

◦
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A

?

- B

?

u

hg

v

The amalgamation property for K is the variant of this demand in which g
and h are also embeddings.

The connection between these properties and residual size is as follows.

Theorem 9.15. Let V be any variety.

(i) ([139]) V has enough injectives iff it is residually small and injections
are transferable in V.

(ii) ([1, 139]) Injections are transferable in V iff V has the congruence
extension property and the amalgamation property.
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Theorem 9.16. (Kearnes [79]) Every residually small congruence modular
variety with the amalgamation property has the congruence extension prop-
erty, and therefore has enough injectives.

Example 9.17. The variety of all left modules over a ring R with identity
witnesses Theorem 9.16. It is residually < m, where m is any strict upper
bound on the (set of) cardinalities of the injective hulls E(R/A) of the
cyclic modules R/A got from the maximal left ideals A of R. Indeed, every
subdirectly irreducible module M has a smallest nonzero submodule N
(corresponding to the monolith under the isomorphism θ 7→ 0/θ between
congruences and submodules), and of course N is simple, hence cyclic, and
therefore isomorphic to one such R/A. But M is an essential extension
of N , and injective hulls are maximal essential extensions, so M can be
embedded into E(N).

The following theorem combines results in [60, 117].

Theorem 9.18. Let V be a variety with the CEP. If Vfsi or Vsi is closed
under nontrivial subalgebras and has the amalgamation property, then V
itself has the amalgamation property.

Actually, the results in [60, 117] are formally stronger, as they weaken the
hypothesis that V[f]si be amalgamable: it is enough that the algebra D in
the definition should belong to V (as opposed to V[f]si).

For varieties with the CEP that are algebraic counterparts of algebraiz-
able logics, the amalgamation property corresponds to the ‘deductive inter-
polation property’, see for instance [33, 87]. (There are analogous corre-
spondences between the surjectivity of epimorphisms and various Beth-style
definability properties, see [17, 118].)

Examples 9.19. The variety of commutative residuated lattices (CRLs) is
not residually small, but it has the amalgamation property and the CEP, so
injections are transferable in this variety (see [56]). In the variety V gener-
ated by the class C of all totally ordered CRLs, we have Vfsi = C (partly on
account of Theorem 9.5), and C is obviously closed under subalgebras. The-
orem 9.18 is used in [117] to show, inter alia, that V has the amalgamation
property, because C does. The same principle has been used to determine
completely the amalgamable varieties of Heyting and interior algebras [54],
of commutative GMV-algebras [117] and of Sugihara monoids [105]. These
families encompass the algebraic counterparts of super-intuitionistic logics,
normal extensions of the modal logic S4,  Lukasiewicz logics, and axiomatic
extensions of the relevance logic RMt, respectively.

Direct Decomposition.

An algebra A is said to be directly indecomposable if |A| > 1 and whenever
A ∼= B×C, then |B| or |C| is 1. For an arbitrary algebra, a decomposition
into directly indecomposable direct factors need not exist, and when it exists,
it need not be essentially unique. This problem is analyzed in detail in [115,
Chap. 5]. One positive result in this connection is the following.
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Theorem 9.20. ([27]) Let h : B =
∏
i∈I Bi

∼=
∏
j∈J Cj , where all Bi and

Cj are directly indecomposable. If B is congruence distributive, then there
is a bijection λ : J −→ I and a family of isomorphisms hj : Bλ(j)

∼= Cj ,
j ∈ J , such that h(b) = 〈hj(bλ(j)) : j ∈ J〉 for all b = 〈bi : i ∈ I〉 ∈ B.

Obviously, every finite algebra is isomorphic to the direct product of a
finite family of directly indecomposable (finite) algebras.

Definition 9.21. A variety is said to be directly representable if it is finitely
generated and contains only finitely many finite directly indecomposable
algebras, up to isomorphism.

It follows from Quackenbush’s Theorem 9.2(ii) that a directly repre-
sentable variety has a finite residual bound. All proper subvarieties of the
variety of Abelian groups are directly representable. It is not known for
which finite rings R (with identity) the variety of all R–modules is directly
representable but, modulo this question, the class of directly representable
varieties has been completely described by McKenzie [110]. In particular:

Theorem 9.22.

(i) A directly representable variety is congruence permutable and has
DPC, and its subdirectly irreducible members are simple or Abelian.

(ii) A finitely generated congruence meet semi-distributive variety is di-
rectly representable iff it is semisimple and arithmetical.

The forward implication in (ii) follows from (i); its converse uses Theo-
rem 4.4. The distributive case of (ii) was established by Burris [25, p. 189],
before the publication of [110].

10. Some Finite Basis Theorems

Suppose M is a finite set of finite algebras of the same finite type. Ev-
ery isomorphically-closed subclass of HS(M) is of course strictly elementary,
but the variety HSP(M) need not be finitely axiomatizable [99]. In 1993,
McKenzie settled Tarski’s finite basis problem by providing a construction
that assigns to each Turing machine T a finite algebra A(T ) of finite type
such that T halts iff HSP(A(T )) is finitely axiomatizable [113]. Thus, it is
undecidable whether a set M of the above kind generates a finitely axioma-
tizable variety ; the corresponding question for quasivarieties is still open.

In contrast, Theorems 10.3, 10.4 and 10.10 below supply sufficient condi-
tions for HSP(M) or ISP(M) to be finitely axiomatized, and these conditions
have all been shown to be algorithmically verifiable (from M). They, to-
gether with Theorems 10.1 and 10.5, support a speculation known as

Park’s Conjecture ([125]): Every variety of finite type with a finite resid-
ual bound is finitely axiomatized.

Theorem 10.1. (McKenzie [109]) Every residually small variety V of finite
type with DPC is finitely axiomatized (by equations).
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The idea of the proof is as follows. Let Φ be as in condition (7) of
Section 8. By Theorem 9.3(i), V has a finite residual bound, so Vsi is the
isomorphic closure of a finite set {S1, . . . ,Sn} of finite algebras. There is
therefore a first order sentence Ψ which says (of an algebra) that (7) holds
for all elements a, b, c, d and if the algebra is subdirectly irreducible, then
it is isomorphic to one of S1, . . . ,Sn. As V satisfies Ψ, the Compactness
Theorem shows that, for some finite subset Σ of the equational theory of V,
every model of Σ is a model of Ψ. Then Σ axiomatizes V, by Corollary 2.9,
because the subdirectly irreducible algebras satisfying Σ will satisfy Ψ, and
will therefore belong to V.

Every directly representable variety of finite type is finitely axiomatized,
by Theorems 9.22(i) and 10.1. Another consequence of 10.1 is that every
2–element algebra of finite type generates a finitely axiomatized variety, but
this was known earlier [98]. In contrast, the variety generated by a 3–element
algebra of type 〈2〉 need not be finitely axiomatizable [119]. (As for infinite
types, even a 2–element lattice with infinitely many additional nullary op-
erations generates a variety that is clearly not finitely axiomatizable.)

The following finite basis theorem of Jónsson does not impose local finite-
ness conditions, although it was motivated by Theorem 10.3, which does. Its
proof uses the Maltsev condition for congruence distributivity on page 12.

Theorem 10.2. (Jónsson [75]) Let V be a congruence distributive variety of
finite type, such that the class Vfsi is strictly elementary. Then V is finitely
axiomatized.

From Theorems 9.5 and 10.2, we immediately obtain Baker’s Finite Basis
Theorem (which pre-dates 10.2):

Theorem 10.3. (Baker [2]) Every finitely generated congruence distributive
variety of finite type is finitely axiomatized.

This has been generalized beyond the congruence distributive case:

Theorem 10.4. Let V be a variety of finite type.

(i) (McKenzie [111]) If V is finitely generated, congruence modular and
residually small, then it is finitely axiomatized.

(ii) (Willard [148]) If V is congruence meet semi-distributive and resid-
ually finite, then it is finitely axiomatized.

The residual finiteness demand in (ii) has been weakened in [3]. The
following common generalization of (i) and (ii) has been established recently
by Kearnes, Szendrei and Willard. (Recall Definition 6.6.)

Theorem 10.5. ([84]) If a variety of finite type has a difference term and
a finite residual bound, then it is finitely axiomatized.

A common generalization of Theorem 10.1 and Baker’s Theorem has been
obtained by Baker and Wang: a variety V with definable principal subcon-
gruences is finitely axiomatized, provided that Vsi is strictly elementary. See
[4] (or [8]) for the relevant definitions and the proof.
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A class of algebras is said to be universal if it is axiomatizable by a set of
universally quantified first order sentences—equivalently, it is closed under
I, S and PU. In the context of algebras, a positive universal sentence is a
universally quantified disjunction of conjunctions of equations (of finite total
length). Up to logical equivalence, these are just the sentences that persist
under H, S and PU (see [28]). Like Theorem 10.2, the next three results
make no assumption about residual size or local finiteness. All of them use
ideas occurring in the proof of 10.2 and the first is actually a special case.

Theorem 10.6. ([19]) Let V be a finitely axiomatized variety with EDPC.
If a subclass K of V is axiomatized by finitely many positive universal sen-
tences, then the variety HSP(K) is finitely axiomatized.

A variety V is said to have equationally definable principal meets (EDPM)
if it has finitely many pairs 〈ui(x, y, z, w), vi(x, y, z, w)〉, i ∈ I, of 4–ary terms
such that for all A ∈ V and a, b, c, d ∈ A,

ΘA(a, b) ∩ΘA(c, d) = ΘA{〈uAi (a, b, c, d), vAi (a, b, c, d)〉 : i ∈ I}.

Theorem 10.7. ([20, 32]) For a variety V, the following are equivalent.

(i) V has EDPM.
(ii) V is congruence distributive and Vfsi is a universal class.
(iii) V is congruence distributive and, for all A ∈ V, the intersection of

any two compact congruences of A is compact.
(iv) There are finitely many pairs 〈ui, vi〉, i ∈ I, of 4–ary terms such

that Vfsi satisfies

(& i∈I ui(x, y, z, w) ≈ vi(x, y, z, w)) ⇐⇒ (x ≈ y or z ≈ w).

Moreover, a variety V of finite type with EDPM is finitely axiomatized iff
Vfsi is strictly elementary.

The pairs that witness (iv) also witness EDPM, and vice versa. From The-
orems 8.2(i),(iii), 8.4(i) and 10.7, we deduce:

Corollary 10.8. A filtral variety has EDPM, and if it has finite type, then it
is finitely axiomatized iff its class of simple members is strictly elementary.

Example 10.9. Commutative residuated lattices A = 〈A; ·,→,∧,∨, 1〉 have
EDPM. For a, b ∈ A, we have ΘA(a, b) = ΘA((a↔ b)∧ 1, 1) and if a, b ≤ 1,
then ΘA{〈a, 1〉, 〈b, 1〉} = ΘA(a∧b, 1) and ΘA(a, 1)∩ΘA(b, 1) = ΘA(a∨b, 1).
This follows from Lemma 3.1 and basic properties of the algebras [56]. In
fact, A is finitely subdirectly irreducible iff 1 is join-irreducible in the lattice
〈A;∧,∨〉. That demand can be expressed, as in Theorem 10.7(iv), by

((x↔ y) ∧ 1) ∨ ((z ↔ w) ∧ 1) ≈ 1 ⇐⇒ (x ≈ y or z ≈ w) .

A quasivariety Q is relatively congruence meet semi-distributive if every
A ∈ Q has a meet semi-distributive lattice of relative congruences—these
are the congruences θ such that A/θ ∈ Q, and they always form an algebraic
lattice in which meets are intersections.
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Theorem 10.10. ([38]) For any finite set M of finite algebras of the same
finite type, if the quasivariety ISP(M) is relatively congruence meet semi-
distributive, then it is finitely axiomatized (by quasi-equations).

The distributive case of this result was proved earlier, by D. Pigozzi [126].
It is not currently known whether Theorem 10.10 remains true when we
replace ‘meet semi-distributive’ by ‘modular’ in its statement. (This will be
the case if, in addition, HSP(M) is congruence modular and residually small
[38].) Quasivarietal analogues of Theorems 10.1, 10.2, 10.6 and 10.7 can be
found in [32, 121, 122], and further finite basis theorems for quasivarieties
in [38, 58, 107].

11. Lattices of Subvarieties

Universal algebraic methods are particularly useful when it comes to an-
alyzing the lattice of axiomatic extensions of a given logic, as these often
correspond to the subvarieties of a congruence distributive variety.

Theorem 11.1. ([74]) For any two subvarieties V,W of a congruence dis-
tributive variety, we have

(HSP(V ∪W))si = Vsi ∪Wsi and (HSP(V ∪W))fsi = Vfsi ∪Wfsi.

This follows from Theorem 9.5, as PU(V∪W) ⊆ V∪W. Indeed, V∪W is an
elementary class, because V and W are. As varieties are determined by their
subdirectly irreducible members and ∩ distributes over ∪, we can infer:

Corollary 11.2. ([74]) The lattice of subvarieties of a congruence distribu-
tive variety is itself distributive.

From Theorems 10.2 and 11.1, we obtain:

Corollary 11.3. Let V be a congruence distributive variety of finite type,
such that Vfsi is strictly elementary. Then the join HSP(V1 ∪ V2) of any two
finitely axiomatized subvarieties V1,V2 of V is itself finitely axiomatized.

Example 11.4. ([55]) By Example 10.9 and Corollary 11.3, the varietal
join of two finitely axiomatized varieties of commutative residuated lattices
is still finitely axiomatized.

In a lattice M , we denote by [x) the set of all upper bounds of an element
x (including x itself), and by (x] the set of all lower bounds. We say that
x splits M if M = [x) ∪̇ (y] for some element y, where ∪̇ indicates disjoint
union (hence x 6≤ y). This (unique) y is called the splitting conjugate of x.

Example 11.5. Recall that a lattice is modular iff its sublattices do not
include the (subdirectly irreducible) pentagon N5, depicted below.



UNIVERSAL ALGEBRAIC METHODS FOR NON-CLASSICAL LOGICS 31

r���
r

@
@
rr�
�

r
@
@

@

Thus, every variety of lattices either contains HSP(N5) or is contained in
the class of modular lattices (and not both). Because the class of modular
lattices is itself a variety, it is a splitting conjugate for HSP(N5) in the
lattice of all varieties of lattices, hence HSP(N5) splits this lattice.

We express this by saying that in the variety of lattices, N5 is a splitting
algebra and its conjugate variety is the variety of modular lattices. In ex-
tending this terminology to arbitrary varieties, it is convenient to insist that
splitting algebras be subdirectly irreducible. In the absence of this demand,
we could prove that every splitting algebra generates the same variety as a
subdirectly irreducible splitting algebra, so there is no loss of generality.

Theorem 11.6. (cf. [108]) If a congruence distributive variety V is gener-
ated (as a variety) by its finite members, then every splitting algebra in V is
finite, and any two non-isomorphic splitting algebras have distinct conjugate
varieties.

A partial converse is supplied by the next theorem:

Theorem 11.7. ([19]) In a variety V with EDPC, every finitely presented
subdirectly irreducible algebra A is a splitting algebra and its conjugate va-
riety is just the class of all B ∈ V such that A /∈ SH(B).

Corollary 11.8. Let V be a variety of finite type with EDPC. If V is
generated by its finite members, then the splitting algebras in V are exactly
the finite subdirectly irreducible algebras in V.

The assumptions of Corollary 11.8 apply to interior algebras, to Heyting
algebras and to commutative residuated lattices satisfying (x ∧ 1)2 ≈ x ∧ 1.

Results of this kind can be useful when proving that a variety V of finite
type has (no fewer than) 2ℵ0 subvarieties. This happens, for instance, when
V has EDPC and a sequence An of finite simple members, none of which
embeds into any other. Let Wn be the conjugate variety of An, which
exists by Theorem 11.7. For m 6= n, it is given that An /∈ IS(Am), so
An /∈ SH(Am), because Am is simple. Thus, HSP{Am : m 6= n} ⊆ Wn, by
Theorem 11.7, and so HSP(An) 6⊆ HSP{Am : m 6= n}. It follows that there
are as many distinct (semisimple) subvarieties of V as there are subsets of
ω.

The concept of splitting was introduced by Whitman [147]. It occurs in
McKenzie’s analysis of varieties of lattices [108], in Jankov’s work on exten-
sions of intuitionistic logic [72] and in Blok’s determination of the degrees of
incompleteness of all normal modal logics [14, 15] (also see [96, 132, 133]).
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12. Maltsev Conditions

Our discussion of Maltsev conditions can be made more systematic. In
what follows, it is convenient to assume that no algebra under discussion
has a nullary basic operation. This is not restrictive, as nullary operations
can be construed as unary operations f for which f(x) ≈ f(y) holds.

An idempotent variety is one that satisfies f(x, x, . . . , x) ≈ x for each of
its basic operation symbols f . More generally, a term t is idempotent over
a variety V if V satisfies t(x, x, . . . , x) ≈ x.

Definition 12.1. A variety U of type ρ : F −→ ω can be interpreted into
a variety V of type τ : G −→ ω if there is a function D : F −→ Tτ (ℵ0) such
that for every A ∈ V, the algebra AD := 〈A; {D(f)A : f ∈ F}〉 belongs
to U. When this is true, we write U ≤I V. The relation ≤I is transitive.
If there is also an interpretation E of V into U such that ADE = A and
BED = B for all A ∈ V and B ∈ U, we say that U and V are termwise
equivalent.

Example 12.2. The variety of semilattices 〈A;∨〉 can be interpreted into
the variety of implication algebras 〈A;→〉, using the definition

x ∨ y = (x→ y)→ y.

The respective varieties of Boolean algebras and Boolean rings (with iden-
tity) are termwise equivalent.

Definition 12.3. If U is a finitely axiomatized variety of finite type, then
the class of varieties V with U ≤I V is called the strong Maltsev class defined
by U, and the condition U ≤I V (on V) is called a strong Maltsev condition.

If Un (n ∈ ω) is a decreasing sequence (with respect to ≤I) of finitely
axiomatized varieties of finite type, then the class of varieties

{V : Un ≤I V for some n ∈ ω}
is called the Maltsev class defined by this sequence, and the associated con-
dition on varieties V is called a Maltsev condition. It is said to be idempotent
if the varieties Un are idempotent, and nontrivial if it fails for some variety
V (equivalently, for the variety of sets). It is linear if the axioms t1 ≈ t2 for
each Un can be chosen linear, i.e., each ti contains at most one occurrence
of a basic operation symbol. Strong Maltsev conditions can be thought of
as Maltsev conditions defined by constant sequences.

A congruence permutable variety K with minority term q satisfies a non-
trivial linear idempotent strong Maltsev condition, because the idempo-
tent variety of algebras 〈A; qA〉 of type 〈3〉 satisfying q(x, y, y) ≈ x and
q(x, x, y) ≈ y is interpretable into K. Most of the familiar varieties of clas-
sical algebra or logic satisfy nontrivial idempotent Maltsev conditions. An
exception is the variety of semigroups. Maltsev classes are characterized by
their closure properties, as in the next result, whose formulation is taken
from [76].
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Theorem 12.4. ([140, 120]) A class C of varieties is a Maltsev class iff it is
upward-closed with respect to ≤I and closed under the binary varietal product
operation ⊗ and every member of C is contained in a finitely axiomatized
member of C.

Our definition of ⊗ as a partial binary operation on varieties of the same
type (in Section 6) is adequate for the statement of Theorem 12.4. Up to
term equivalence, however, ⊗ is the restriction of a total binary operation
on varieties of all possible types, under which Maltsev classes are still closed.
For the details, see [76] or [59, p. 357].

The following characterization of varieties satisfying nontrivial idempotent
Maltsev conditions combines contributions in [81, 128, 142, 149].

Theorem 12.5. For any variety V, the following conditions are equivalent.

(i) V satisfies a nontrivial congruence equation in ∧, ◦ only (see Defi-
nition 9.7).

(ii) V satisfies a nontrivial idempotent Maltsev condition.
(iii) There exist an integer n > 1, an n-ary term t that is idempotent

over V and a choice of (not necessarily distinct) variables xij , yij
(1 ≤ i, j ≤ n) such that xii 6= yii for each i and V satisfies

t(x11, . . . , x1n) ≈ t(y11, . . . , y1n)

· · · · · ·
t(xn1, . . . , xnn) ≈ t(yn1, . . . , ynn).

The equivalence of (ii) and (iii) follows from a result of Taylor [142, Cor. 5.3].
When (iii) holds, we call t a Taylor term for V, and there is no loss of gener-
ality in assuming that every xij and yij belongs to {x, y}. The implication
(i)⇒ (ii) is essentially given by an algorithm of Wille [149] and Pixley [128];
see [81, Sec. 4]. The converse is implicit in the implication (1)⇒ (5) of [81,
Thm. 4.12]. 1

The lattice D1 of all convex subsets of a totally ordered 3–element set is
depicted below. (It is neither modular nor meet semi-distributive.)
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Theorem 12.6. (Kearnes & Kiss [81]) A variety V satisfies no nontrivial
idempotent Maltsev condition iff D1 is a sublattice of the congruence lattice
of some member of V.

1 There, for a given V, the term on the right of the displayed inclusion in (5) can
be replaced by a ∧, ◦ term; cf. the proof of [81, Thm. 4.7]. Further characterizations of
the varieties in Theorem 12.5 are provided in [81], one of which is the satisfaction of a
nontrivial congruence equation in the infinitary language of meet-continuous lattices.
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For locally finite varieties, Theorem 12.6 was proved by Hobby and McKen-
zie [68] in the context of tame congruence theory. Kearnes and Kiss show
that if an arbitrary variety V satisfies a nontrivial idempotent Maltsev con-
dition then the congruence lattices of all algebras in V satisfy

(x ∧ y ≈ w & x ∧ z ≈ w & x[2] ≈ w) =⇒ x ∧ (y ∨ z) ≈ w,

where x[2] := x∧(y∨z)∧[(y∧(x∨z))∨(z∧(x∨y))]. To see that D1 violates
this quasi-equation, take {x, y, z} to be the unique 3–element generating set
for D1, with x as the meet-reducible generator. It is also shown in [81] that
various other small lattices can play the role of D1 in Theorem 12.6.

Any variety with a weak difference term (Definition 6.6) satisfies a non-
trivial idempotent Maltsev condition; the converse holds for locally finite
varieties [68], but not generally—see [81, Sec. 6.1]. The Fundamental Theo-
rem of Abelian Algebras extends in a weaker form to varieties of this kind:

Theorem 12.7. (Kearnes & Szendrei [83]) In a variety satisfying a non-
trivial idempotent Maltsev condition, every Abelian algebra is a subreduct of
an algebra polynomially equivalent to a module over a ring with identity.

In the present century, interest in idempotent Maltsev conditions has been
stimulated by their connection with the tractability of constraint satisfac-
tion problems, see [6, 92]. In the statement of Theorem 12.5, the rank n of
the Taylor term t ostensibly depends on the variety V. For locally finite va-
rieties, however, the rank is uniformly bounded. This was shown by Siggers
[136], who exhibited a 6–ary Taylor term. After seeing that result, Kearnes,
Markovic and McKenzie were able to prove the following.

Theorem 12.8. ([82]) A locally finite variety V satisfies a nontrivial idem-
potent Maltsev condition iff it has an idempotent term t(x, y, z, w) such that
V satisfies t(x, y, z, y) ≈ t(y, z, x, x).

The order-dual of the lattice D1 is denoted by D2. Extending results
about locally finite varieties in [68], Kearnes and Kiss [81] have shown:

Theorem 12.9. The following conditions on a variety V are equivalent.

(i) V satisfies a nontrivial congruence equation in ∧,∨ only.
(ii) V satisfies an idempotent Maltsev condition that fails in the variety

of semilattices.
(iii) The lattice D2 cannot be embedded into the congruence lattice of any

algebra from V.

The varieties satisfying these conditions have weak difference terms [83].
As noted earlier, they include all congruence n–permutable varieties. Re-
cently, Valeriote and Willard [143] have shown that an idempotent variety
U is n–permutable for some n iff U 6≤I DL, where DL is the variety of dis-
tributive lattices. Thus, an arbitrary variety is n–permutable for some n iff
it satisfies an idempotent Maltsev condition that fails in DL.
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The smallest modular non-distributive lattice M3 is depicted below. The
next theorem combines results from [81, 83, 94, 148].

s���
ss

@
@

@
s���

s
@
@

@

Theorem 12.10. For a variety V, the following conditions are equivalent.

(i) V is congruence meet semi-distributive.
(ii) V is congruence neutral, i.e., the commutator equation [ϕ,ψ] = ϕ∩ψ

holds for all ϕ,ψ ∈ ConA, whenever A ∈ V.
(iii) M3 cannot be embedded into the congruence lattice of any member

of V.
(iv) V satisfies an idempotent Maltsev condition that fails in any non-

trivial variety of modules.
(v) There exists a finite family {〈si(x, y, z), ti(x, y, z)〉 : i ∈ I} of pairs

of ternary terms such that V satisfies

si(x, y, x) ≈ ti(x, y, x) (i ∈ I);

x ≈ y ⇐⇒ &i∈I [si(x, x, y) ≈ ti(x, x, y)⇐⇒ si(x, y, y) ≈ ti(x, y, y)].

The idempotent Maltsev conditions mentioned in Theorems 12.9 and
12.10 can be chosen linear. If a variety satisfies the conditions in one of
those theorems, then it clearly witnesses Theorem 12.5. The variety of
semilattices witnesses 12.10, but obviously not 12.9. The variety generated
by the 2–element group exhibits the reverse behavior.

Theorem 12.11. ([81]) A variety satisfies the conditions of Theorems 12.9
and 12.10 iff it is congruence join semi-distributive, i.e., the congruence
lattices of its members satisfy x ∨ y ≈ x ∨ z =⇒ x ∨ (y ∧ z) ≈ x ∨ y.

13. Categorical Equivalence

Varieties can obviously be considered as (concrete) categories. Termwise
equivalent varieties are then categorically equivalent, but not conversely. We
have noted in passing that various metalogical properties of deductive sys-
tems have algebraic counterparts such as congruence extensibility, EDPC
and certain amalgamation or epimorphism-surjectivity properties. As it
happens, these are categorical properties, i.e., they will persist under any
category equivalence between two varieties of possibly different type—in
which case they may be more easily established in one variety than in the
other. It is therefore desirable to have purely algebraic criteria for the exis-
tence of such category equivalences.
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An algebraic characterization of categorical equivalence for arbitrary pairs
of varieties (among other classes) is provided in McKenzie’s paper [114]. In
principle, it allows us to establish an equivalence without producing two ex-
plicit functors. The characterization involves two constructions: idempotent
images and matrix powers. We recall the definitions here.

Given an algebra A and a positive integer k, let Tk(A) be the set of all
k-ary terms of A’s type, and let T (A) =

⋃
0<n∈ω Tn(A). For a unary term

σ ∈ T1(A), the σ-image of A is the algebra

A(σ) = 〈σA[A]; {tσ : t ∈ T (A)}〉,

where, for each positive n and each t ∈ Tn(A),

tσ(a1, . . . , an) = σA(tA(a1, . . . , an)) for a1, . . . , an ∈ σA[A].

Thus, every term of A gives rise to a basic operation of A(σ).

For each positive n, the n-th matrix power A[n] of A is the algebra with
universe An whose basic operations are all conceivable operations on n-tuples
that can be defined using the term operations of A. More precisely,

A[n] = 〈An; {mt : t ∈ (Tkn(A))n for some positive k ∈ ω}〉,

where, for each t = 〈t1, . . . , tn〉 ∈ (Tkn(A))n, we define mt : (An)k −→ An as
follows: if aj = 〈aj1, . . . , ajn〉 ∈ An for j = 1, . . . , k, then

πi(mt(a1, . . . , ak)) = tAi (a11, . . . , a1n, . . . , ak1, . . . , akn)

for each of the n projections πi : A
n −→ A.

Let K be a class of similar algebras. A unary term σ of K is said to be
externally idempotent in K if K satisfies σ(σ(x)) ≈ σ(x), and invertible in K
if K satisfies

x ≈ t(σ(t1(x)), . . . , σ(tr(x)))

for some positive integer r, some unary terms t1, . . . , tr and some r-ary term
t. Let K(σ) and K[n] denote the isomorphic closures of {A(σ) : A ∈ K} and

{A[n] : A ∈ K}, respectively. If K is a variety then so are K(σ) and K[n],
provided that σ is externally idempotent in K.

McKenzie’s result, restricted to varieties, is as follows.

Theorem 13.1. (McKenzie [114]) Two varieties K and M are categorically
equivalent iff there is a positive integer n and an invertible externally idem-
potent unary term σ of K[n] such that M is termwise equivalent to K[n](σ).

The equivalence functor K −→ M sends each A ∈ K to a reduct of A[n](σ).

Example 13.2. An IUML-algebra is a bounded residuated distributive
lattice-ordered commutative idempotent monoid with an order-reversing in-
volution ¬ that fixes the monoid identity 1. A Gödel algebra is a subdirect
product of totally ordered Heyting algebras. Both classes algebraize sig-
nificant logics. It is shown in [57] that, among other correspondences, the
varieties of IUML-algebras and Gödel algebras are categorically equivalent.
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The proof uses Theorem 13.1. From left to right, the externally idempotent
term σ is x ∧ 1, with n = 1. It is invertible because IUML-algebras satisfy

x ≈ (x ∧ 1) · ¬((¬x) ∧ 1) ≈ t(σ(t1(x)), σ(t2(x))),

where t1(x) is x and t2(x) is ¬x and t(x, y) is x · ¬y (and · is the monoid
operation). The result is used in [57] to derive new properties of the logic
algebraized by IUML-algebras.

A similar term σ can be used, with Theorem 13.1, to confirm the well-
known category equivalence between lattice-ordered Abelian groups and can-
cellative hoops (cf. [16]). Morita-equivalent rings are another specialization.

The following two results pre-date [114], but elegant proofs based on The-
orem 13.1 can be found in [114].

Theorem 13.3. ([34]) A category equivalence between varieties preserves
all linear Maltsev conditions.

Theorem 13.4. ([69, 34]) A variety K is categorically equivalent to the
variety of Boolean algebras iff K = HSP(A) for some primal algebra A.
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