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Abstract: Despite making significant progress in tackling its HIV epidemic, South Africa, with
7.7 million people living with HIV, still has the biggest HIV epidemic in the world. The Government,
in collaboration with developmental partners and agencies, has been strengthening its responses
to the HIV epidemic to better target the delivery of HIV care, treatment strategies and prevention
services. Population-based household HIV surveys have, over time, contributed to the country’s
efforts in monitoring and understanding the magnitude and heterogeneity of the HIV epidemic.
Local-level monitoring of progress made against HIV and AIDS is increasingly needed for decision
making. Previous studies have provided evidence of substantial subnational variation in the HIV
epidemic. Using HIV prevalence data from the 2016 South African Demographic and Health Survey,
we compare three spatial smoothing models, namely, the intrinsically conditionally autoregressive
normal, Laplace and skew-t (ICAR-normal, ICAR-Laplace and ICAR-skew-t) in the estimation of
the HIV prevalence across 52 districts in South Africa. The parameters of the resulting models are
estimated using Bayesian approaches. The skewness parameter for the ICAR-skew-t model was not
statistically significant, suggesting the absence of skewness in the HIV prevalence data. Based on
the deviance information criterion (DIC) model selection, the ICAR-normal and ICAR-Laplace had
DIC values of 291.3 and 315, respectively, which were lower than that of the ICAR-skewed t (348.1).
However, based on the model adequacy criterion using the conditional predictive ordinates (CPO),
the ICAR-skew-t distribution had the lowest CPO value. Thus, the ICAR-skew-t was the best spatial
smoothing model for the estimation of HIV prevalence in our study.

Keywords: Bayesian; disease mapping; skew-t distribution; ICAR-normal; ICAR-Laplace; spatial
random effects; spatial model

1. Introduction

Governments in sub-Saharan Africa (SSA), in collaboration with non-governmental
organizations and private sectors, design national strategic plans and policies, allocate
resources and implement programs in the fight against the HIV/AIDS epidemic [1,2]. Such
efforts are designed to reduce HIV-related infection, morbidity and mortality. As well
as understanding the level of the HIV epidemic at the national level, most governments
in the region have implemented a decentralized approach to governance and service
provision. Thus the need for reliable local (district)-level HIV statistics to support decision
making regarding the delivery of HIV care, treatment and prevention services [3,4]. Most
of the countries in SSA rely on data obtained from national HIV surveys for monitoring
the level of the HIV epidemic and subsequence responses. However, the national HIV
surveys are mostly empowered to produce reliable HIV estimates at national and provincial
level. Crude HIV estimates at small area level could be exaggeratedly estimated due to
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small numbers, resulting in unstable variances [5–7]. Consequently, HIV prevention and
treatment programs tailored to small areas could be based on unreliable evidence [8].

As a result, modelling approaches are used for generating local-level estimates from
survey data that are originally meant to provide reliable estimates at national and provin-
cial levels [9,10]. The most used approach has been using spatial smoothing models where
spatial components are incorporated in the model as random effects. The spatial models
produce reliable disease rates with improved accuracy for small areas with few sparse
observations by incorporating information from local, spatially contiguous areas. The struc-
tured random effect in spatial models represents clustering of diseases over geographical
areas, unobserved environmental or frailty factors which are spatially correlated but are
not included as covariates in a model [11–13]. Structured spatial random effects (which
consider the local effects) are mostly modelled using the intrinsic conditional autoregressive
normal (ICAR-normal) model (Besag et al [13], Carlin and Banerjee [14]). The ICAR-normal
model offers greater flexibility for modelling the spatial correlation than the linear mixed
effects model, with only a global random effect. However, a normal spatial distribution
on the structured spatial effect could be restrictive, as there could be a possibility that the
normality assumption could be misspecified [15]. Misspecification of the distribution of the
random effects may result in estimates of diseases rates that are biased [16,17]. The usual
approach is to transform the data to normality, for example by performing a logarithm of
the rates. However, if there was an appropriate theoretical model, transformation could
be avoided, as it is difficult to interpret results from transformed data. In addition, the
transformation could result in the loss of information [17].

A few approaches have been proposed to reduce the impact of a normal distribution
assumption for spatial random components. For example, Lunn et al [18] and Manda [19]
proposed a double exponential and a mixture of ICAR-normal and ICAR-double expo-
nential, respectively, to better capture possible wider tails for the spatial random effects.
Kim and Mallick [20] and Azzalini and Capitanio [21] considered a skew-normal spatial
model for point referenced data. However, the structured spatial skewed random fields
suffer identifiability problems (since the skewness parameter may be unknown) [22] and
must be determined uniquely [23]. To solve this identifiability problems, Zhang and El-
Shaarawi [24] defined a skewed stationary Gaussian process for spatial random effect
based on the work by Azzalini and Capitanio [21]. In addition, Allard and Naveau [25] and
Zareifard and Jafari Khaledi [26] introduced a skew-normal spatial random field based on
Domınguez-Molina et al [27] and Palacios and Steel [28], respectively, for point referenced
data. Other skewed spatial distributions are the skew-normal by Rantini et al [29] and
Fernández and Steel [30].

Our aim, in this study, is to model the district-level HIV prevalence in South Africa
using spatial smoothing methods. There is ample evidence of substantial small area
variation in the distribution of HIV prevalence in Sub-Saharan Africa [31,32]. Similarly
evidence has also been found in South Africa by Kim et al [33] and Gutreuter et al [34].
The distribution of the district HIV prevalence could be skewed and non-normal. Thus,
we estimated the spatial distribution of the HIV prevalence among the districts in South
Africa using the ICAR-normal [13], ICAR skew-t distribution (Nathoo and Ghosh [35]) and
ICAR-Laplace [18] using the 2016 South African Demographic and Health Survey data.
The next section presents the description of the spatial models used and the HIV data.
Section 3 contains the results obtained from fitting the models to the data. We discuss the
results in Section 4 and conclude in Section 5.

2. Methods and Data Source
2.1. Skew-t Spatial Random Effects Distribution

Let Yi be the number of HIV positive individuals out of a sample of size ni in
district i (i = 1, . . . , 52). Both Yi and ni are adjusted to account for the survey design
to become the effective number of HIV cases, Y∗i , and the effective sample size, n∗i [35–38].



Int. J. Environ. Res. Public Health 2021, 18, 11215 3 of 10

A three-stage Bayesian hierarchical spatial smoothing model for a binary HIV outcome
uses a binomial distribution at stage one as

Y∗i |pi ∼ Binomial(n∗i , pi), i = 1, . . . , 52

where pi is the proportion (prevalence) of HIV in district i and is modelled at the second
stage by a logit link function using a set of district-level predictor variables, Xi, and both
unstructured and spatially structured random effects, as introduced by Besag et al. (1991).

log
(

pi
1− pi

)
= β0 + Xiβ + ui + vi

where β0 is the intercept; β is a vector of regression coefficients for predictor variable in Xi;
ui is the unstructured random component and it is assumed to follow a normal distribution,
ui ∼ N

(
0, σ2

u
)
; vi is the structured spatial random component for district i.

The structured spatial random effects could be modelled using an intrinsic conditional
autoregressive normal (ICAR-normal) prior (Besag et al [13], Knorr-Held and Best [12] and
Carlin and Banerjee [14]) as

vi|v−i ∼ ICARN
(

µv, σ2
v

)
= N

(Σj∼iv
mi

,
σ2

v
mi

)
where mi is the number of neighbours of district i. Lunn et al [18] suggested an alternative
model based on a Laplace/double exponential distribution (ICAR-Laplace), which is given
as ui ∼ ICARL

(
µu, σ2

u
)
.

However, in situations where the distribution of HIV prevalence data could be non-
normal and asymmetric, alternative spatial smoothing models that are robust and flexible
could fit the data better. As a result, Nathoo and Ghosh [35] suggested the skew-t (ICAR-
skew-t) spatial smoothing model, defined as

vi|v−i ∼ STv

(Σj∼ivj

mi
,

σ2
v

mi
, δv

)
For easy implementation in most Bayesian statistical software, Sahu et al [39] presented

a suitable representation of skew-t distribution with k degrees of freedom. Suppose
y ∼ skew− t (k), then it could be expressed as y = η−

1
2 (∆|X0|+ X), where X0 ∼ N(0, 1),

X ∼ N
(
µ, σ2), ∆ is the skewness parameter and η ∼ gamma

(
k
2 , k

2

)
. The hierarchical

set-up of this stochastic representation can be given as Y/w ∼ N
(

µ + ∆w, Σ
η

)
, where

|X0| = w ∼ N(0, Ik)I(w > 0). Thus, the ICAR-skew-t for the structured spatial random
effect can be expressed as

vi ∼ N
(Σj∼isj

mi
+ δvwi,

σ2
s

η ∗mi

)

where wi ∼ N(0, I)I(wi > 0), si/S−i
∼ N

(
Σj∼isj

mi
, σ2

s
mi

)
and σ2

s and δv are the variance
of si and the skewness parameter, respectively. The hierarchical representation of the
ICAR-skew-t model is shown in the Appendix A.

2.2. Methods for Comparing Competing Models

In this study, we used the deviance information criterion (DIC) and conditional
predictive ordinates (CPO) for comparing models. The deviance information criterion was
developed by Spiegelhalter et al [40] as a method used for comparing models in a Bayesian
framework. It is a measure of a model’s goodness of fit or adequacy adjusted for a measure
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of model complexity measured as effective number of parameters. Let θ and y = y1, . . . , y1
be the model parameter and data respectively, then DIC is expressed as

DIC = D + pD= 2D− D
(
θ
)

where D = Eθ/y[D(θ)] = Eθ/y[−2log p(y/θ)] and is the posterior mean deviance that

measures the goodness of fit or adequacy pD = D− D
(
θ
)
= Eθ/y[D(θ)]− D

(
Eθ/y[θ]

)
=

Eθ/y[−2log p(y/θ)]− [− 2log p
(
y/θ(y)

]
is a measure of the effective number of parame-

ters and measures model complexity; larger values of pD suggests higher complexity of
the model. It is also defined as the difference between the posterior mean of the deviance
and the deviance at the posterior means of the parameters of interest; in other words, it
is considered as the expected excess of the true residuals over the estimated residuals in
the data conditional on the parameter θ [16]. Let θ1, . . . , θk be parameter estimates from a
converged Markov chain, then D is estimated as 1

k ∑k
1 D(θk) and D

(
θ
)
= D( 1

k ∑k
1 θk).

The CPO is a leave-one-out cross validation approach that measures the posterior
probability of observing yi when the model is fitted to all data excluding yi and it measures
the predictive ability of the fitted model. Let Y = Y1, Y2, . . . , Yn be the nX1 data vector and
Y−i be the data vector without yi. Then, the conditional predictive ordinate for observation
yi is given as

CPOi = f
(
yi/y−i

)
=
∫

f (yi/θ)P(θ/y−i)dθ = Eθ/y

[
1

f (yi/θ)

]
where θ is the parameter vector, yi is the ith observation and y−i is the observed data
set except yi. Thus, one can estimate the value of the inverse of CPOi by averaging the
inverse probability function evaluated at yi for each θk produced from the posterior density.
The CPOi values could be easily determined from the standard MCMC output which is
given as

CPOi =

[
1
k

K

∑
k=1

1
f
(
yi/θk

)]−1

which is the harmonic mean of the probability density function evaluated at yi for each
θk, where K is the number of iterations. For discrete data, the comparison of CPOi with
the relative frequency determined from data without yi (y−i) enables the assessment
of the predictive capacity of the fitted model to the data. In order to compare two or
more competing models, the overall CPO values of each model are assessed, given as
CPO = ∏i CPOi; A model with higher CPO value suggests better predictive performance
than the other models; hence, this model is preferred over other models. Mostly, the CPO
value is close to zero, thus the negative of the sum of the log of the CPOi is used as indicated
by Cai et al [41] and is given by LScv = −∑k

i=1 logCPOi. Thus, a model with the lowest
LScv value is the best model in terms of its predictive capacity.

2.3. Implementation

The model parameters were determined using a Bayesian estimation approach via
Markov Chain Monte Carlo (MCMC) as implemented in OpenBUGS [42]. The prior dis-
tributions for the regression coefficients and the unstructured random component were
the same for all the three models. The prior distribution for the intercept was β0 ∼
uniform on (−∞, ∞) and the prior for the regression coefficients was βq ∼ N(0, 0.00001),
where q = 1, 2, 3, 4; the variance parameters σ2

u and σ2
v were given as inverse gamma

prior distributions with shape and scale parameters set at 20 and 2000, respectively. The
skewness parameters for ICAR-skew-t were assigned δv ∼ N(0, 0.01) prior. We conducted
a sensitivity analysis to determine the impact of the hyper-parameters of the priors on the
outcome variable; for this, we chose the most commonly used hyper-parameters, such
as IG(1000, 1000), IG(10, 10), IG(1, 10) and IG(2, 2000). Since prior distributions with
larger variances are considered in the model, the estimates from this analysis are expected
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to be relatively robust. Moran’s I test was conducted on the model residuals to determine
the presence of spatial correlation [43]. We ran 100,000 iterations for each model to make
inferences. We determined the number of initial iterations that needed to be discarded
by assessing the history plots of each model and for each parameter. Similarly, we also
investigated the autocorrelation plots of each model and each parameter to determine the
selection intervals to avoid correlation problems in the generated chains.

2.4. Data

The data analyzed were obtained from the 2016 South African Demographic and
Health Survey (SADHS 2016). The SADHS 2016 was conducted for evaluating the country’s
health programs by monitoring key milestones such as mortality, fertility, maternal and
child health, nutrition, HIV, gender-based violence, etc. The data for measuring these
indicators were collected by asking respondents relevant sociodemographic and behavioral
characteristic questions and by collecting biological specimens. The SADHS 2016 survey
employed a multistage stratified cluster sampling design to select households and/or
respondents for the sample. All women between the age of 15 and 49 and men between
the ages of 15 and 59 were included in the survey. Interview data were collected from a
total of 8514 women and 3618 men and 6912 individuals were tested for HIV seropositivity.
More information about SADHS 2016 can be obtained from the full study report [44].

The observed district-level HIV prevalence was computed by taking the survey design
into account. The effective sample sizes in each district was determined by dividing the
observed number of sample size at each district by the design effect [36]; the effective
number of HIV cases is thus the product of effective sample size and the weighted preva-
lence. The number of HIV tests conducted in the survey by district varied substantially,
with a sample size of between 8 tests and 455 tests, with a median sample size of 111 tests.
There were some districts with zero count of HIV positive individuals in the sample. For
this, we assigned them the average of the simulated data from a normal distribution with
mean value equal to the average of the log of prevalence in the neighboring districts and
variance as the variance of the log of the prevalence pi calculated from all the neighboring
districts divided by the number of neighbors, shown in Figure 1b; the map in Figure 1a
shows the raw data not adjusted for zero positive cases. A skewness test was conducted
on the prevalence, with and without adjusting for zero HIV prevalence, but no significant
skewness was found.
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Figure 1. Map of HIV prevalence by district in South Africa before (a) and after (b) adjusting the data for zero positive tests
in some districts.

The covariates included in the models are the multidimensional poverty index con-
structed using the 2016 community survey data [45], HIV prevalence among pregnant
women obtained from the 2017 National Antenatal Sentinel Survey report [46], population
density and male condom distribution coverage obtained from the 2017 district health
barometer report [47]. Previous studies indicate that these factors are associated with HIV
prevalence ecologically as well as individually [3,48].
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3. Results

The skewness parameters for ICAR-skew-t were not significant, perhaps suggesting
that the spatial component is lighter tailed (see Table 1). The model with the lowest
LScv and DIC values was deemed to be the best model in its predictive performance and
goodness of fit, respectively. Thus, as can be seen in Table 1, the model with the lowest
LScv (170.5) is the ICAR-skew-t model, followed by the ICAR-normal model (LScv= 172.4).
The ICAR-normal model and the ICAR-Laplace model have the lowest (291.3) and second
lowest (315) DIC values, respectively. The difference in the DIC values between these
models is more than five, suggesting that there is substantial difference between the two
models in terms of goodness of fit to the data, according Spiegelhalter et al [40]; however, a
study by De la Cruz and Branco [49] indicated that DIC is not appropriate for such type of
complex models. Thus, based on the LScv values, the ICAR-skew-t model was the best in
terms of its predicative capacity as compared to the other two models used in this study.

Table 1. Comparison of the fitted models using DIC and CPO.

Covariates ICAR-Normal ICAR-Laplace ICAR-Skew-t

Intercept 2.473 (−3.288, −1.65) −2.542 (−3.321, −1.743) −2.538 (−3.625, −1.469)
Population density −0.0001 (−0.0003, 0.0002) −0.0001 (−0.0003, 0.0002) 0.0001 (−0.0003, 0.0002)

Male condom distribution −0.0070 (−0.0183, 0.0069) −0.0064 (−0.0178, 0.0039) −0.0069 (−0.0177, 0.0032)
Multidimensional poverty index 0.81056 (−2.826, 4.7939) 0.593 (−3.139, 4.357) 0.8934 (−2.915, 4.71)

ANC HIV prevalence 3.778 (1.673, 5.7058) 3.974 (2.074, 5.897) 3.831 (1.7, 5.931)
σ2

v 0.0061 (0.0006, 0.6596) 0.0059 (0.0006, 0.9225) 0.0088 (0.0009, 0.4719)
σ2

u 0.0066 (0.0007, 0.2281) 0.0106 (0.0011, 0.2434) 0.0031 (0.0004, 0.1688)
δu 0.05 (−0.6, 0.62)

DIC 291.3 315 348.1
LScv 172.4 174 170.5

As a sensitivity analysis, we ran the analysis using different sets of hyper-parameters
for priors of the precision parameters. Thus, the mean difference in the values of the
outcome variables at different choices of hyper-parameter values was observed at the
third digit after the decimal point, which suggests the absence of a significant impact on
the outcome variable. The Moran’s I test statistic was significant (p-value = 0.000001),
suggesting that residuals were spatially clustered. As shown in Table 1, district-level ANC
prevalence is the strong predictor of district-level HIV prevalence determined from the
2016 SADHS data, whereas the other covariates were not statistically significant.

Figure 2e, shows the prevalence of HIV by district in South Africa estimated using
the ICAR-skew-t spatial model (best model). According to the estimates from this model,
most of the districts with high levels of HIV prevalence are located in southeastern parts
of the country, while low levels of HIV prevalence are in the southwestern parts. This
pattern is the same for all the maps produced using estimates from different models with or
without covariates. Maps (a), (c) and (e) are estimates of the ICAR-normal, ICAR-Laplace
and skew-t models with covariates, respectively; the spatial pattern of HIV prevalence
is the same for these models, except the estimate from the ICAR-normal model for one
district in the northwestern part. Maps (b), (d) and (f) are estimates of the ICAR-normal,
ICAR-Laplace and skew-t models without covariates and the pattern of HIV prevalence by
district is the same for the estimates determined using these models. One notable difference
for the pattern of estimates with and without covariates for the models is that the level of
HIV prevalence is lower for estimates with covariates than those without covariates in two
districts in the western part.
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4. Discussion

HIV is a leading cause of disease burden in sub-Saharan Africa. In the era of decentral-
ized approach to governance and service provision, designing effective HIV intervention
programs and monitoring strategies at local administrative levels requires reliable esti-
mates of local variation in HIV burden. Our study compared three spatial smoothing
models, namely, the intrinsically conditionally autoregressive normal, Laplace and skew-t
(ICAR-normal, ICAR-Laplace and ICAR-skew-t) in the estimation of the HIV prevalence
across 52 districts in South Africa. It analyzed HIV prevalence data from the 2016 South
African Demographic and Health Survey. The models were fitted using the Markov Chain
Monte Carlo method in OpenBUGS, a freely available Bayesian statistical package. We
found that the ICAR-skew-t distribution was the best spatial smoothing model for the
estimation of HIV prevalence in our study.

We found that the districts with high levels of HIV prevalence were in the southeastern
parts of the country, while low levels of HIV prevalence corresponded to the southwestern
parts. Our findings are similar to those by Gutreuter et al [34] and Woldesenbet et al [46].
The estimates of HIV prevalence by district in South Africa could help governmental and
non-governmental originations, as well as the private sector, to know the level of the
epidemics at lower administrative level, thus prioritizing and plan appropriate public
health programs tailored to each community and evaluating the combined impact of
national and local public health programs.

A major weakness of our study could be that there were no HIV data in some of
the sparsely populated districts; hence, we simulated data from neighboring districts to
estimate prevalence of HIV in such districts; thus, the estimates for these districts may
not be reliable and should be interpreted with caution. In addition, a limited number of
predictors was included in the model; hence, some important predictors of district-level
HIV prevalence might be missing.

5. Conclusions

In conclusion, alternative spatial distributions to ICAR-normal should be considered
for modeling spatial disease outcomes. The spatial random effects could be skewed
or non-normal and misspecification of the distribution of random effects could lead to
estimates that are biased. This could lead to implications in the estimation of disease
burden, adversely impacting policy derivations. In our study, we found that the intrinsic
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conditional autoregressive skew-t (ICAR-skew-t) model was the best in predicting district-
level HIV prevalence compared to the ICAR-normal and ICAR-Laplace spatial models
based on an analysis of the 2016 South African Demographic and Health Survey (2016
SADHS) data. District antennal clinic HIV prevalence was the most influential predictor of
the district-level 2016 SADH HIV prevalence.
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Appendix A

Hierarchical representation of the disease mapping model presented in Section 2.1,
assuming the spatial random components follows skew-t distribution is given as follows

Y = Y1, Y2, . . . , Yn

be a one-dimensional random variable with binomial distribution

logit (pi) = β0 + Xiβ + ui + vi

ui ∼ N
(
0, σ2

u
)

vi/Si, σ2
v , δv, wi, ∼ N

(
Σj∼iuj

mi
+ δuwi,

σ2
s

η∗mi

)
si/S−i

∼ N
(

Σj∼isj
mi

, σ2
s

mi

)
wi ∼ N(0, I)I(wi > 0)

η ∼ gamma
(

k
2 , k

2

)
βi ∼ N(β0,Λ), i = 0, 1, 2, . . . , k

where k is the number of covariates

σ2
v ∼ IG(Ω, v)

δu ∼ N(0, Γ)

σ2
s ∼ IG(Ω, u)

k ∼ Exp(k0)I(k > 2)

where pi is the weighted prevalence corresponding to Yi i = 1, 2, . . . , 52, σ2
u and σ2

v are
variance of the spatial and the heterogeneous random component, I(wi > 0) is an indicator
function, IG is inverse gamma and Exp is exponential.

https://dhsprogram.com/Data/
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Based on the likelihood distribution and the above prior specifications the posterior
distribution of all the parameters assuming conditional independence between the response
variable and the hyper parameters is given as

p
(
µ, β, u, v, σ2

u , σ2
v , δu, w, k, η, s/y

)
∝ L
(
y/β, u, v, σ2

s , σ2
v , δu, w, s

)
P
(

β, u, v, σ2
s , σ2

v , δu, w, k, η
)

= ∏i p(yi/µi)∏j(p(β j/Λ)p(Λ))p
(
u/σ2

s
)

p
(
σ2

s
)

p
(
v/σ2

v
)

p
(
σ2

v
)

p
(
s/σ2

s
)

p(w)p(δu)p(k)p(η)
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