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Figure S1. Various steps during the preparation of activated carbons with and without the use of 

graphene as additive. The reaction under microwave irradiation at 500 W (190°C, 2h) results in 

the production of hydrogel which possesses porous structure. The activation of hydrogel at high 

temperature ca. 700°C results in nanoporous carbon materials. 
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Figure S2. Model shows the gradual development of pores. 1 the formation of the polymer mesh 

with active agents, 2 is a temperature dependent process before carbonization that leads heat 

deformation of the mesh structure of polymer, 3 occurs during the  carbonization process 

whereby the volatiles agents escape creating the pores within the carbon matrix and 4 is the final 

structure obtained after the process.

Figure S3. Nitrogen gas adsorption/desorption isotherm of the carbon sample obtained after 

activation of PVA (10 wt.%) alone at different temperature from 700°C to 900°C. 
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Figure S4. (a) Nitrogen gas adsorption/desorption isotherm of the nanoporous carbon sample 

obtained after activated of the hydrogel composite with PVP:PVA ratio of 1:9 at 700°C. (b-g) the 

pore size distribution for carbon materials obtained from composite with increasing PVP to PVA 

ratio 1:9 to 6:4.  
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Figure S5. Scanning electron microscopy (SEM) images of the activated carbons obtained from 

the hydrogel composite material with PVP:PVA ratio (a) 1:9, (b) 2:8, (c) 3:7, (d) 4:6 and (e) 5:5. 

The composite material is firstly activated at 700°C and then after washing and cleaning it is 

post-treated again at 700°C to obtain carbon samples for electrode preparation for constructing 

supercapacitor cells. 
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Sample 1:9 2:8 3:7 4:6 5:5 6:4

BET (m2 g-1) 1230 1249 1347 1846 606 440

micropore volumea

(cm3/g)a

0.47 0.48 0.48 0.49 0.29 0.15

Total pore volumeb

(cm3/g)b

2.25 2.27 2.26 2.63 2.30 2.89

Pore diameterc

(nm)c

2.67 2.64 2.66 2.36 3.80 5.64

a t-Plot micropore volume

b Single point adsorption total pore volume of pores less than 131 nm diameter at P/Po = 0.98

c BJH Desorption average pore diameter (4V/A)

Table S1. BET surface area and porous textural data obtained for carbon materials after 

activation of hydrogel composite at 700°C for various increasing PVP to PVA ratio from 1:9 to 

6:4. Highest surface area of 1846 m2 g-1 is achieved for sample 4:6 with microporous structure 

and an average pore diameter of 2.36 nm.  

Figure S6. SEM images of carbon samples obtained after activation of three-component mixture 

of PVP:PVA (4:6) with graphene at varying mass proportion.
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Figure S7. Raman spectra of (a) lab-scale prepared graphene in the range 1000 cm-1 to 3000 cm-

1, and (b) the carbon materials PVP+PVA and PVP+PVA+graphene in the wavenumber 900 cm-1 

to 1900 cm-1 showing the D-band and G-band, (c) shows the comparison of D- and G-bands 

between two carbon samples with normalized y-axis.  
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Figure S8. X-ray diffraction of carbon materials with and without graphene as labeled in the 

main text. XRD patterns for the synthesized samples match with graphite peaks. (JCPDS 01-089-

7213) as amorphous sample.
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Figure S9. Electrochemical performance of symmetric supercapacitor using PVP+PVA (a-c) and 

PVP+PVA+graphene (d-f) based electrodes in 5 mol L-1 NaNO3 (a) cyclic voltammograms at 2 

mV s-1, (b-c) galvanostatic charge/discharge curves at various specific currents from 0.2 A g-1 to 

5 A g-1 (d) CVs at scan rates of 2 mV s-1 up to 1.6 V, (e-f) galvanostatic charge/discharge curves 

at various specific currents from 0.2 A g-1 to 5 A g-1, comparison of galvanostatic charge 

discharge curves (0.2 A g-1) for PVP+PVA (g) and PVP+PVA+graphene (h) based 

supercapacitors before (solid line) and after (dashed line) 10000 galvanostatic charge/discharge 

cycles up to 1.6 V. 
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Figure S10. Galvanostatic charge/discharge curves (0.2 A g-1) of symmetric supercapacitors in 5 

mol L-1 NaNO3 up to various voltage from 0.8 V to 1.6 V for (a) PVP+PVA and (b) 

PVP+PVA+graphene. 
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Figure S11. CV comparison of symmetric supercapacitor using PVP+PVA (a-b) and 

PVP+PVA+graphene (c-d) based electrodes in 5 mol L-1 NaNO3 at different scan rates up to 200 

mV s-1.
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Figure S12. Nyquist plots at different voltage from open circuit voltage up to 1.6 V for 
symmetric supercapacitor using PVP+PVA based electrodes in 5 mol L-1 NaNO3 electrolyte.  

Figure S13. Phase angle versus frequency for carbon/carbon symmetric supercapacitors using (a) 

PVP+PVA based electrodes and (b) PVP+PVA+graphene based composite electrodes in 5 mol 

L-1 NaNO3. The data is obtained at various voltage steps from OCV to 1.6 V. 
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Figure S14. Evolution of real (black circles) and imaginary (blue squares) capacitance versus 

frequency at various voltage steps from OCV to 1.6 V for the carbon/carbon supercapacitor 

using PVP+PVA based electrodes in 5 mol L-1 NaNO3.  
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Figure S15. Evolution of real (black circles) and imaginary (blue squares) capacitance versus 

frequency at various voltage steps from OCV to 1.6 V for the carbon/carbon supercapacitor 

using PVP+PVA+graphene based electrodes in 5 mol L-1 NaNO3.  

Carbon 

material
Electrolyte

Gravimetric 

capacitance 

(F/g)

Energy 

density 

Wh/kg

Power 

density 

W/kg

Areal 

capacitance

(F/cm2)

Areal 

Energy 

density 

Wh/cm2

Areal 

Power 

density 

W/cm2

PVP+PVA
5 mol L-1 

NaNO3
96 8 2000 191 0.017 0.02

PVP+PVA

+graphene

5 mol L-1 

NaNO3
163 12 2000 324 0.115 0.02

 Table S2. Summary of electrochemical performance of the symmetric supercapacitor devices 

using PVP+PVA and PVP+PVA+graphene based electordes in 5 mol L-1 NaNO3.


