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Abstract

In most applications, anomaly detection operates in an unsupervised mode
by looking for outliers hoping that they are anomalies. Unfortunately, most
anomaly detectors do not come with explanations about which features make
a detected outlier point anomalous. Therefore, it requires human analysts to
manually browse through each detected outlier point’s feature space to obtain
the subset of features that will help them determine whether they are genuinely
anomalous or not. This paper introduces sequential explanation (SE) meth-
ods that sequentially explain to the analyst which features make the detected
outlier anomalous. We present two methods for computing SEs called the out-
lier and sample-based SE that will work alongside any anomaly detector. The
outlier-based SE methods use an anomaly detector’s outlier scoring measure
guided by a search algorithm to compute the SEs. Meanwhile, the sample-
based SE methods employ sampling to turn the problem into a classical feature
selection problem. In our experiments, we compare the performances of the
different outlier- and sample-based SEs. Our results show that both the out-
lier and sample-based methods compute SEs that perform well and outperform
sequential feature explanations.

Keywords: Outlier explanation, Sequential feature explanation, Sequential
explanation, Anomaly validation, Explainable Al

1. Introduction

Anomalies are known as “rare” data points generated by a process that is
distinct from the process generating the “normal” data points (Siddiqui et al.,
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Figure 1: Plot (a) shows an outlier detected by an arbitrary anomaly detector in a 2-
dimensional feature space, while plots (b) and (c) show the detected outlier visualised in
Features 1 and 2, respectively. It is clear from plots (b) and (c) that the outlier detected in
the plot (a) is outlying only in Feature 1.

2019a). Anomaly detection is the problem of identifying the process that gen-
erates the anomalies within a dataset. A variety of application domains have
applied anomaly detection over the years. An anomaly in any one of these do-
mains could represent an interesting phenomenon or a severe cause of concern
which will need to be addressed urgently by a human analyst analysing the data.
An anomaly in insurance claims data could represent fraudulent claims, whereas
an anomaly in astronomical data could represent discoveries of new galaxies or
new planets.

Analysts use a variety of anomaly detection methods in these domains to
identify anomalies. In most cases, the process generating the anomalies is un-
known, resulting in anomaly detection methods in real-world applications to
operate in an unsupervised mode by looking for outliers in the dataset, hoping
that they are anomalies (Siddiqui et al., 2019a; Emmott et al., 2015). An outlier
is a data point that deviates so much from the other data points in the dataset.
It arouses suspicions that a different process generated it. However, outliers do
not always equate to anomalies. For example, a company’s computer security
application may exhibit an unusually high amount of copying and printing ac-
tivities at the end of the month. These activities could cause concern compared
to other days of the month, making them appear highly outlying and classified
as anomalous activities. However, because these activities occurred at the end
of the month and there are month-end processes such as payrolls and monthly
audits that need to be copied and printed, there is a valid explanation behind
the high amounts of copying and printing exempt them from being anomalous.
Due to this, a human analyst must investigate the outliers to decide which ones
are most likely to be true anomalies and deserve further investigation.

An analyst provided with an outlier point faces the challenge of identifying
the features that makes it outlying. In most cases, the analyst needs manually
browse through the outlier point’s entire feature space to determine the outlying
subset of features that will give them enough information to classify whether
the outlier point is genuinely anomalous or not. Identifying the outlying subset
can be extremely challenging even for a few features characterise the feature
space, especially when feature interactions are critical in the decision making
(Siddiqui et al., 2019a).
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Figure 2: Similar to Figure 1, however, the detected outlier in this case is not outlying in
Feature 1 or Feature 2. The outlier is outlying due to the feature interactions of Feature 1
and Feature 2

For example, Figures 1 (a) and 2 (a) show different scenarios of outliers
in two-dimensional feature space datasets. For each figure, the red data point
represents an outlier detected using an arbitrary anomaly detector, while the
blue data points represent the normal data points. We observe from Figure 1
(a) that the outlier point is outlying because it does not form part of the cluster
of blue data points. In contrast, from Figure 2 (a), we observe that the outlier
is outlying because it does not form part of the linear trend followed by the
blue data points. An analyst analysing these outlier points would want to know
along which features the outliers are outlying to make a judgement on whether
they are truly anomalous or not. Figures 1 (b) and (c¢) show visualisations of the
outlier in Figure 1 (a) in Features 1 and 2 respectively. We observe from Figure 1
(c) that the outlier appears normal in Feature 2, whereas, from Figure 1 (b) the
outlier is outlying in Feature 1. Therefore, Feature 1 is the outlying feature
subspace that the analyst must identify to decide whether it provides enough
information to classify the outlier as anomalous or not. On the other hand, we
observe from Figures 2 (b) and (c) that the outlier in Figure 2 (a) is not outlying
when considering Features 1 and 2 independently. The outlier is only outlying
due to the interactions of Feature 1 and Feature 2 in Figure 2 (a).

To assist the analyst with identifying the outlying subset of features, Sid-
diqui et al. (2019a) developed an outlier explanation called a sequential feature
explanation (SFE). An SFE for a detected outlier point is an ordered sequence
of features. The order of the features in the SFE indicates their importance of
explaining to the analyst, which features makes the outlier point outlying. An
SFE for a detected outlier point incrementally presents the outlying features to
the analyst by first presenting the first feature in the SFE. If the analyst can
decide that the outlier point is anomalous or with only one feature presented,
then the analyst’s job is done. If the analyst cannot decide based on the sin-
gle feature presented, then the next feature in the SFE is presented. Now the
analyst has seen the two most prominent features that explain why the out-
lier point is outlying. The process will continue until the analyst has acquired
enough information to decide whether the outlier point is an anomaly or not.

The current SFE computation methods (Siddiqui et al., 2019a) only work
for anomaly detectors with an assumption that they can compute outlier scores
for an outlier point in any given subset of features. Siddiqui et al. (2019a) em-



ployed an Ensemble Gaussian Mixture Model (EGMM) (Glodek et al., 2012) as
their anomaly detector. They used the model’s marginal densities to compute
the outlier scores for an outlier point in any given subset of features. With
this assumption, the SFEs generate explanations that explain why the EGMM
judged an outlier point to be outlying and not why the outlier is outlying in gen-
eral. In practice, most anomaly detectors do not provide these scores trivially.
It then makes it impossible to compute SFEs that explain why the particular
anomaly detector judged an outlier point to be outlying except for density-based
anomaly detectors such as the EGMM (Siddiqui et al., 2019a). The dependence
of the assumption on the anomaly detector is one of the disadvantages of SFEs
because computing the outlier scores in any given feature space is a non-trivial
task for most anomaly detectors. Another disadvantage of SFEs is their se-
quential greedy nature which results in the “nesting effect”. Once a feature is
added to the SFE, it cannot be removed, and this could provide sub-optimal
explanations to the analyst. For example, the subset of the five best features in
the SFE must contain the subset of the one, two, three and four best-chosen fea-
tures in the SFE. In practice, the five best features may not contain any of the
best one, two, three, or four best-chosen features (Nakariyakul and Casasent,
2009), which could lead to the analyst making a wrong decision or requiring the
presentation of more features from the SFE to make their final decision.

The minimum feature prefix (MFP) (Siddiqui et al., 2019a) is used to eval-
uate SFE methods. Because there are no ground truth explanations, the ap-
proach’s idea is to construct a simulated analyst for each anomaly detection
benchmark using supervised learning on the ground truth about which points
are anomalies and normal. The simulated analyst provides a probability score
of how anomalous a data point is. The MFP is the minimum number of fea-
tures required for the analyst to reach a probability threshold of how anomalous
a data point is given the number of features presented in the SFE. However,
the first problem we observe regarding the evaluation of SFEs using MFPs is
that two or more explanations with the same MFP could be considered to be
equal even if one of the SFEs returns significantly higher probabilities than the
other. For example, if the first four features in one SFE returns probabilities
of 0.1,0.3,0.5,0.82 and another SFE returns probabilities of 0.7,0.75,0.78,0.95,
then they both have an MFP of 4 if the simulated analyst’s probability threshold
is 0.8. However, the second SFE is far more superior than the first SFE because,
for every sequential feature presented to the analyst, it always returns higher
probabilities. The second problem is that the supervised learning model used
to compute the probabilities of the simulated analyst does not take class imbal-
ances into account. Anomaly detection benchmarks are imbalanced because the
anomalies are generally significantly fewer than the normal data points. There-
fore, fitting a model that does not take class imbalance into account introduces
a bias towards the normal class of data points (Krawczyk, 2016). The third
problem we observed is that the outlier point whose probability is being pre-
dicted in the given feature space is used to train the simulated analyst model.
Including the data point that requires a prediction in the training set of the
model introduces a bias towards its probability prediction.



In this paper, we make two contributions. The first contribution is to intro-
duce a new outlier explanation called a sequential explanation (SE) to address
the shortcomings of the SFEs. The second contribution is introducing a new
evaluation method called the area under the analyst certainty curve (AUCC)
that addresses the shortcomings of the MFP. Similar to an SFE, an SE for a
detected outlier point is presented sequentially to the analyst. The SE first
presents the analyst with the first feature subset containing one feature. If the
analyst can decide that the outlier point is anomalous or not based on that one
feature, then the analyst’s job is done. If the analyst cannot decide based on the
single feature presented, then the next feature subset containing two features in
the SE is presented. The process of presenting the analyst with the best feature
subsets in increasing size will continue until the analyst has acquired enough in-
formation to decide whether an outlier point is an anomaly or not. The SE has
three advantages over the SFE. Firstly, SEs do not enforce the SFE assumption,
which restricted SFEs to only work on “score-based” anomaly detectors that can
compute outlier scores for an outlier point in any given subset of features. Sec-
ondly, SEs do not suffer from the nesting effect. Thirdly, the explanations of the
SEs are not subjective to the anomaly detector used, and the SE can be used
as an additional step for any black-box anomaly detection algorithm to explain
what makes the detected outlier points outlying. We introduce two methods
of computing SEs called the sample and outlier-based SEs. Sample-based SEs
turn the problem of computing SEs into a classical supervised feature selection
problem by using a sampling method to create a balanced inlier and outlier class
and then use the features that best separate its inlier and outlier class as the SE.
While outlier-based SEs compute SEs by using an anomaly detector’s outlier
scoring measure guided by a search algorithm to identify the features that make
the outlier point of interest outlying based on the outlier scoring measure used.

The remainder of the paper is outlined as follows. Section 2 reviews related
work. Sections 3 and 4 present the outlier and sampled-based SEs respectively.
Section 5 presents the data and the evaluation methods, while Section 6 contains
our experiments. Lastly, Section 7 concludes the paper.

2. Related Work

There are a few anomaly detection methods that provide explicit outlier ex-
planations that attempt to explain why the anomaly detector considered them
as outliers. The idea behind these explanations is to make the analyst un-
derstand the inner workings of the anomaly detector itself by providing the
analyst with outlier explanations that explain why a detected outlier point is
outlying according to the anomaly detector used. ABOD (Kriegel et al., 2008),
SOD (Kriegel et al., 2009), COP (Kriegel et al., 2012), LOGP (Dang et al., 2014)
and LODI (Dang et al., 2013) are anomaly detection methods that provide ex-
plicit explanation that attempt to explain the inner workings of the anomaly
detector.

In order to explain the inner workings of the EGMM, Siddiqui et al. (2019a)
introduced SFEs. A length k£ SFE for a data point x is an ordered list of feature



indices & = (e1,...,e;) where k < d and d is the dimensionality of the data
point x. Features that appear earlier in the order are considered to be more
important to the high outlier score of a point. The notation & denotes the set of
the first ¢ feature indices of £. Also, for any set of feature indices S and a data
point x, xs denotes the projection of xs onto the feature subspace specified by
S. Therefore, given an SFE &£ for a data point x, the point is incrementally
presented to the analyst by first presenting feature xg,. If the analyst can make
a judgement based on only that information, then the analyst’s job is done.
Otherwise, the analyst is shown the next feature together with the previous
feature, which is xg,. The process of incrementally adding features to the set
of presented features continues until the analyst can make a decision. Siddiqui
et al. (2019a) developed the Marginal and Dropout SFE methods to explain to
the analyst why an outlier point is outlying according to the anomaly detector
and for the analyst also to understand the inner working of the EGMM.

Let f be a density-based anomaly detector that predicts the probability of a
data point being normal in any given feature subspace. There are two Marginal
SFEs, namely the sequential marginal SFE (SeqMArg) and the independent
marginal SFE (IndMarg). SeqMarg adds one feature at a time to the SFE &.
At each step, it adds the feature that minimises the joint marginal density with
the previously selected features in the SFE. More formally, SeqMarg computes
the following explanation:

SeqMarg: e —arg min f(xe. 1) )
JEEi—1

where &; is the complement &; and represents the set the feature indices not se-
lected in &;. SeqMarg takes into account feature interactions because it considers
previously selected features in the SFE before it adds a new feature. IndMarg
is a marginal method that does not take feature interactions into accounts and
assumes features are independent. IndMarg only requires computation of indi-
vidual marginals f(x;) and adds features into the SFE &£ by sorting the features
in increasing order of f(x;).

There are two Dropout SFEs, namely the sequential dropout SFE (SeqDO)
and the independent dropout SFE (IndDO). IndDO assigns a score of f(x —
x;)— f(x) for each feature i, where we denote the removal of x; from x by x—x;.
To obtain the IndDo SFE, the features are sorted in descending order of their
scores. SeqDo is defined as:

SeqDO : ¢; =arg max f(xz,_;). (2)
JEEi—1

More recently Siddiqui et al. (2019b) applied SFEs to explain the inner
workings of the Isolation Forest (Liu et al., 2008) anomaly detector. To use
SFEs to explain the inner workings of an anomaly detector, the anomaly detector
should compute outlier scores for an outlier point in any given subset of features.
Therefore, Siddiqui et al. (2019b) were able to compute the outlierscores of
an arbitrary outlier point x projected onto a feature subspace S (i.e xs) by



considering the threshold tests involving features only from S across all trees in
the Isolation Forest (Siddiqui et al., 2019b).

Most anomaly detection methods do not provide explanations and operate
as black-boxes such that it is hard to identify the features that are responsible
for a data point receiving a high outlier score. In general, obtaining outlier
explanations that can explain the inner workings of each anomaly detection
algorithm is a non-trivial task, and this is not the aim of our work.

The non-trivial task of explaining an anomaly detector’s inner working has
led to the development of outlier explanation methods that can explain any
outlying data point regardless of the anomaly detector used to detect anoma-
lies. These explanations are not subjective to the anomaly detector and do not
explain their inner workings but rather attempt to explain what makes the de-
tected outliers outlying in general. Therefore, the field of outlier explanations
has led to the development of the following type of explanations: outlier ex-
planations for groups of outliers (Kopp et al., 2020; Macha and Akoglu, 2018;
Angiulli et al., 2013; Kuo and Davidson, 2016), pictorial explanations (Gupta
et al., 2019), explaining outliers using decision rules (Pevny and Kopp, 2014)
and outlying aspects mining (Duan et al., 2015; Vinh et al., 2015, 2016).

Outlier explanations for groups of outliers compute explanations about
what makes the identified outliers outlying as groups, instead of explaining the
outlier points to the analyst one at a time. Explainer (Kopp et al., 2020),
XPacs (Macha and Akoglu, 2018), EXPREX (Angiulli et al., 2013) and the work
done in (Kuo and Davidson, 2016) all focus on identifying the subset of features
that explain what makes outliers as groups outlying. Explaining outliers in a
group or a set of groups has two key advantages (Macha and Akoglu, 2018).
Firstly, it saves the analyst time, rather than the analyst having to go through
the outliers one at a time. Secondly, it draws attention to outliers that form
patterns, which are potentially more critical because they are repetitive. In our
work, we focus on developing methods that can explain detected outliers one at
a time rather than explaining them in groups. We are interested in explaining
outliers one at a time to the analyst because firstly, outliers do not always fall
into clusters or groups because they might be scattered. Secondly, the clusters
could miss important features for certain outliers, which will be critical to the
analyst’s judgment. Lastly, the field of explaining outliers to analysts one at a
time is still novel, and SEs are required to cover the gaps we have identified in
our problem definition.

Pictorial explanations use visualisations to explain outliers. Gupta et al.
(2019) introduced LookOut which explains outliers using visualisations. Given
outliers from an arbitrary anomaly detector, LookOut finds two-dimensional
scatter plots that visualise the feature subspace where the outliers are deviating
from the rest of the dataset the most. Similarly, Liu et al. (2020), introduced LP-
Explain whose key idea is to cluster outliers based on their behavior and identify
the optimal two-dimensional subspaces to visualise each cluster of outliers (Liu
et al., 2020). In our work, we are interested in identifying feature subspaces that
are beyond two-dimensional. Also, LP-Explain visualises the outliers as groups
while we are more interested in explaining outliers one at a time.



Explainer (Kopp et al., 2020) explains outliers using decision rules learned
by training a random forest, where one class consists of the outlier point of
interest and the second class consists of k randomly selected data points from
the rest of the dataset. From this random forest, Explainer extracts individual
classification rules which are represented in disjunctive normal form. The rules
are extracted along the path from the root node to the leaf of the decision trees.
Since each tree in the random forest is trained to separate a single point from &
randomly selected data points, its training set is extremely imbalanced, and its
height is very small, therefore resulting in very short explanations. In our work,
we are interested in computing as many features in the explanation as required
by the analyst. Explainer can also be used to explain groups of outliers (Kopp
et al., 2020), however in our work we are only interested in explaining outliers
one at a time

Outlying aspects mining (Duan et al., 2015; Vinh et al., 2015, 2016;
Boukela et al., 2020) identify which subset of features make a data point different
from the rest of the dataset. It is used to obtain the best feature subspace
that distinguishes a data point from the rest of the dataset, whether it is an
outlier or a normal data point. Outlying aspects mining tackles the problem
from three different angles known as the score-and-search, feature selection and
hybrid-based methods. Score-and-search based methods first define an outlier
scoring measure to measure how outlying a data point is compared to the rest of
the dataset in an arbitrary feature subspace. Score-and-search based methods
obtain the outlying aspects by computing the outlier scoring measure of all
possible feature subspaces and selecting the subspace that returns the best score
as the outlying aspects. To avoid the dimensionality bias of comparing feature
subspaces of different sizes, OAMiner (Duan et al., 2015) computes an expensive
density score that requires the computation of the outlier scoring measure of
every data point in every feature subspace in order to find a data points outlying
aspects. Feature selection based methods (Micenkova et al., 2013) transform
the outlying aspect mining problem into a classic two class feature selection
problem and select the feature that best separate the classes as the outlying
aspects. Hybrid based methods (Vinh et al., 2015) use a combination of a
score-and-search a feature rankig method. The first stage ranks the features
according to their potential to make a data point outlying, while the second
stage is a search-and-score based approach on the top-ranked features from
the first stage. Outlying aspect mining and our work are very similar with
a few important differences to note. In our work, we are not interested in
finding the most outlying feature subspace. In order to find the most outlying
feature subspace the computationally expensive density score needs to be used
in order to avoid dimensionality bias. To compute outlier-based SEs, we are
not comparing outlier scoring measures of feature subspaces of different sizes
because we are only interested in identifying the best feature subspace for each
explanation of size ¢ in the SE. SEs are therefore computationally cheaper than
outlying aspect methods because we do not have to use the density score because
we only compare feature subspaces of the same size against each other.



3. Outlier-based Sequential Explanations

Outlier-based SEs compute SEs by using an anomaly detector’s outlier scor-
ing measure guided by a search algorithm to identify the features that make the
outlier point of interest outlying based on the outlier scoring measure used. An
outlier scoring measure ¢ : RISl — R is a measure of outlyingness that assigns
a real number to the data point x in feature subspace S.

3.1. SE notation

The following notation is used in the paper, unless specified otherwise:

e Let x € X represents a d-dimensional data point from the anomaly bench-
mark dataset X that contains n data points. We represent the i*" data
point in X by x®.

e Let S be any set of the feature indices. Then we denote xg as the projec-
tion of the data point x onto the feature subspace specified by S, while x
represents the data point in the full feature space.

e SE(x)* = (ey,ea,...,ex), represents an ordered SE list of size k for the
data point x, where each e; represents a subset of feature indices of size i
and e; contains the first best feature index to be presented to the analyst,
eo contains the two best feature indices to present to the analyst and so
on.

e SE(x) = SE(x)4, is the full SE for x.
e SE(x); = e;, is the i'" explanation of size i in SF(x).

o SE(x)o = 0.

8.2. Anomaly detectors

There are a variety of anomaly detection algorithms available in litera-
ture (Chandola et al., 2009). We selected a few unsupervised anomaly detection
algorithms in our work that cover different approaches to scoring outliers. The
selection of algorithms is not exhaustive, but it is a good representation of
the field by trying to cover several different solution approaches that cover dif-
ferent assumptions and properties when scoring outliers. We use the outlier
scoring measure of each anomaly detection algorithms to compute the outlier-
based SEs. We selected the Kernel density estimation (KDE) (Chandola et al.,
2009), One-Class Support Vector Machine (OCSVM) (Chandola et al., 2009),
Local outlier factor (LOF) (Breunig et al., 2000), k-means and Isolation Forests
(iForests) (Liu et al., 2012) anomaly detectors to compute our outlier scoring
measure. Appendix A provides a detailed summary of these anomaly detectors
and the computation of their outlier scoring measures.



8.8. Sequential search outlier-based SEs

3.8.1. Sequential forward selection

Forward selection:. Forward selection (F'S), is a greedy sequential search method
that adds one feature at a time to the previously selected subset of features in
the SE. At each step, it adds the feature that maximises the outlier score of the
previously selected features in the SE. More formally, F'S computes the following
outlier-based SE:

SE(X)l = SE(X)Z‘,l U agmax ¢(XSE(x)i_1Uj)7 (3)
JESE(x)i-1

where SFE(x); are the subset of features not selected in SE(x);.

Independent forward selection:. Independent forward selection (IND-FS), re-
quires computation of the outlier score for each individual feature ¢(x;) for
j=1,...,d. To compute the SE, IND-FS sorts the features in increasing order
of their scores ¢(x;). More formally, IND-FS computes the following outlier-
based SE:

SE(x); = SE(x);—1 U argmax ¢(x;). (4)
JESE(x)i—1

3.8.2. Sequential backward selection

Backward selection:. Backward selection (BS), starts with a full set of features,
and at each iteration removes the feature that returns the lowest decrease in the
outlier score and adds it to the SE. More formally, BS computes the following
explanation:

SE(x); = SE(x);—1 U argmin ¢(Xgzge, ,\;)- (5)
JESE(x)i 1

Independent backward selection:. For each feature x; of the data point x, inde-
pendent backward selection (IND-BS) assigns it with a score of ¢(x_;) — ¢(x),
where x_; denotes the removal of feature x; from x. The removal of the features
with the lower scores make x appear most outlying. IND-BS sorts the features
in increasing order of their scores to compute the explanation. More formally,
IND-BS computes the following outlier-based SE:

S0 = SEx)i U angmin (90x-5) — 0() 0

3.4. Meta-heuristic search outlier-based SE

8.4.1. Particle swarm optimisation

The sequential search algorithms compute SEs that suffer from the nesting
effect. To combat the nesting effect, we introduce a new novel Particle Swarm
Optimisation (PSO) meta-heuristic search that restricts the search of the feature
subspace to only subsets of a specific size instead of searching over a range of

10



Algorithm 1: PSO for a fixed size subset of size i

Input: x, X,
Output: gbest
for j=1to P do

i f(x,

4.

Initialise the particle p; by sampling without replacement i features
from the full set of features {1,...,d}
Initialise the particle’s best position to its initial position:

pbest; = p;

< f(Xgbest) then

)
B Upciate the swarms best known position: gbest = p;

for g=1 to G do
for j =1to P do
Update(p, ):
1.
2.

3.

Pool all the unique features from p;, pbest; and gbest;

Randomly select ¢ features from the unique pool of features;

Each of the ¢ randomly selected features has a fixed probability of
mutation m ;

Elements selected for mutation are assigned new feature values at
random from all the features not included in the pool of unique features

from step 1.

if f(xp,) > f(Xpbest;) then
Update the particle j’s best known position: pbest; = p,
J j

if f(xp,) > f(Xgbest) then
| Update the swarms best known position: gbest = p;

subset sizes. Therefore, when we require SE(x);, the PSO meta-heuristic will
restrict the search to only feature subspaces of size i. The PSO (Kennedy and
Eberhart, 1995) meta-heuristic search is known for its fast convergence and its
tendency to fall into sub-optimal solutions. In order to take the PSO out of
sub-optimal solutions and improve exploration, we include a mutation factor
which also reduces the convergence rate.

Let f : Rl — R represent the fitness function to be optimised by the PSO
search algorithm, P represent the total number of particles in the swarm, pbest;
be the best-known position of particle j, gbest be the best-known position of
the entire swarm, and G represent the total number of generations. The PSO
meta-heuristic algorithm is presented in Algorithm 1. For outlier-based SEs, to
compute SE(x); of a data point x based on the PSO meta-heuristic we replace
the fitness function f with the outlier scoring measure ¢. After the PSO has
undergone G generations, we set SE(x); = gbest.

11



4. Sample-based Sequential Explanations

Sample-based SEs turn the problem of computing SEs into a classical super-
vised feature selection problem by using a sampling method to create a balanced
inlier and outlier class and then using the features that best separate its inlier
and outlier class as the SE. We now define the sample-based SEs adapted from
the work by Micenkova et al. (2013).

4.1. Sampling method

We first provide the definitions of the k-distance and reference set. The
k-distance of a data point x € X, denoted by k-distance(x), is the distance
d(x,x’) between x and its k-th nearest neighbour x’ in the data set X. The
reference set of a data point x, denoted by Ry(x), is the set of points p € X
whose distance from x is less than or equal to k-distance(x). More formally the
reference set is defined as follows:

Ri(x) = {p € {X\ {x}}|d(x,p) < k-distance(x)}. (7)

For a data point x, the following steps are followed to compute the inlier
and outlier class of x (Micenkova et al., 2013).

1. We define the sampled inlier class of x from X \ {x} as a union of its
reference set Ry (x) and a set of randomly drawn data points from X \
{{x} U Rk(x)} as:

I(x) = Ri(x) U{g;}1, (8)

where each q; is randomly chosen from X\ {{x}URk(x)} and r = |Ri(x)|.
2. We define the outlier class of x as:

O(x) = {x} U{z;}1, (9)

where each z; is randomly sampled from N(x,\?1), s = |Z(x)|, I is the
d x d identity matrix and A = - id - k-distance(x), and « is a user defined
parameter which controls the width of the distribution.

3. We obtain SE(x); by selecting the best i features that separate the inlier
and outlier classes using a feature selection algorithm.

4.2. Feature selection methods

Wrapper-based methods obtain a feature subset by using a classifier as a
black-box and the classifier’s performance as the objective function guided by
a search algorithm to identify the best features that represent the data (Chan-
drashekar and Sahin, 2014). In our work we use Support Vector Machines (Hearst
et al., 1998) (SVMs) as our classifier. The feature selection methods we use to
compute the wrapper-based sample-based SEs are the Forward selection SVM
(FS-SVM) (Chandrashekar and Sahin, 2014), Backward selection SVM (BS-
SVM) (Chandrashekar and Sahin, 2014) and PSO-SVM. For FS-SVM to obtain
SE(x);, the algorithm starts with an empty set. At each iteration, it classifies
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Table 1: Summary of Goldstein and Uchida (2016) anomaly detection benchmark datasets.

[ Data set | Size | #Features | #Anomalies |
ALOI 50000 27 1508
Annthyroid 6916 21 250
Satellite 5100 36 75
KDD99 620098 38 1052

Table 2: Summary of Emmott et al. (2015) motherset anomaly detection benchmark datasets.

Anomaly Normal 2 Anomaly #Data
Motherset #Features class class Points
N . Benchmarks
size size (Range)
Pageb 10 560 4913 129 195-4466
Shuttle 9 9074 48926 120 6000-6000
Abalone 7 2081 2096 295 885-1906
Concrete 8 515 515 180 249-468
Wine 11 4113 4113 180 3165-3739
Yeast 8 977 977 120 400-888
Magic Gamma 10 12332 12332 300 2000-6000

the training data over the 3 cross-validation folds using an SVM and adds the
feature that maximises the average classification accuracy over the 3 folds with
the current subset of already chosen features into SE(x); until ¢ features are
selected. Conversely, BS-SVM starts with a full set of features and at each it-
eration, it removes the feature that returns the lowest decrease in the average
classification accuracy. PSO-SVM uses Algorithm 1 to search for SEs that are
not nested. The fitness function f of the PSO-SVM is simply the average clas-
sification accuracy of the SVM that separates the inlier and outlier classes over
3 cross-validation folds.

Embedded-based methods perform feature selection during the training pro-
cess of the classifier (Chandrashekar and Sahin, 2014). In our work we use
Recursive Feature Elimination (RFE) (Guyon et al., 2002) to take feature
interactions into account. We use SVM Recursive Feature Elimination (SVM-
RFE) (Guyon et al., 2002) and Random Forests Recursive Feature Elimination
(RF-RFE) (Liaw and Wiener, 2002) as our embedded-based sample-based SEs.

Filter-based methods make use of a feature ranking function to measure the
relevance of each feature. Features with the highest relevance measure are the
chosen features to represent the data best. We use the information theoretic
methods Maximum relevance minimum redundancy (mRmR) (Brown et al.,
2012) and Mutual information feature selection (MIFS) (Brown et al., 2012) as
our filter-based sample-based SEs.

5. Data and Evaluations

5.1. Data

Due to the lack of publicly available real-world labelled anomaly detection
benchmark datasets, we use the constructed anomaly benchmark datasets from
Goldstein and Uchida (2016) and Emmott et al. (2015) for our experiments.
Table 1 and 2 present a summary of the Goldstein and Uchida (2016) and
Emmott et al. (2015) anomaly benchmarks respectively.
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Goldstein and Uchida (2016) constructed their anomaly benchmarks from
supervised learning labelled datasets by selecting one class as the anomalous
class and randomly sampling a small portion of the data points to create it,
whereas, the normal class is created by randomly sampling a larger portion
of the data points from another class. While, Emmott et al. (2015) named
the original datasets that they were sampling from to create their anomaly
benchmarks the “motherset” datasets. For each motherset, they created an
anomalous and normal class. Then to create their corpus of anomaly detection
benchmark datasets, they sampled data points from the motherset such that
desired measured properties in the anomaly benchmarks are obtained. In the
end, they created thousands of anomaly benchmark datasets each with its own
set of desired properties from each motherset. We concentrated on anomaly
benchmark datasets that have an anomaly frequency between 1% — 2%. Ta-
ble 2 gives a summary of the motherset datasets we used in our experiments.
For example, the Abalone motherset was used to generate 295 anomaly bench-
marks. The motherset contains 2081 and 2096 data points in its anomaly and
normal classes, respectively. While the number of data points in the anomaly
benchmark datasets created from the motherset range between 885 — 1906.

5.2. Evaluations using the area under the analyst certainty curve

Similar to Siddiqui et al. (2019a), we let the function A(x,S) = P(x =
anomaly|xs) represent the simulated analyst. A(x,S) returns the probability
of the data point x being anomalous considering only the features specified in
the feature space S . Given SE(x)*, we define the analyst certainty curve for
the first k feature subsets of the SE of x as the curve that plots the coordinates
(1, A(x,SE(x);) for ¢ = 1,...,k. Intuitively, the higher the analyst certainty
curve the better the quality of the SE because the selected feature subsets in
the SE are returning high probabilities of the analyst detecting the anomalies
given the features presented to them. To measure the performance of the SE,
we measure the area under the curve of the analyst certainty curve (AUCC)
and divide it by k so that the AUCC is between 0 and 1.

We now specify how we obtain the analyst function A(x,S). For the Emmott
et al. (2015) datasets we construct the training set over the motherset, while for
the Goldstein and Uchida (2016) datasets we constructed the training set over
the actual anomaly benchmark datasets. We used a brute force method to obtain
A(x,S) by training a discriminative model only in the feature space specified
by S. It leads to multiple trained models because we train a model for every
feature space S encountered in the SEs. For each model we train, we exclude
that data point whose SEs we are evaluating in the training set so that we
avoid any bias in our probability estimations. To obtain “reliable” probability
estimates even in the case of imbalanced datasets, we used the sampling and
bagging methods specified by Wallace and Dahabreh (2013) and a RF model to
predict the probability estimates for A(x,S).
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Figure 3: With a threshold of 0.8, SE 1 and 2 have an MFP of 7 and 8 if the threshold is 0.9.
The AUCC of SE 1 is 0.67 and 0.46 for SE 2. The AUCC captures that SE 1 outperforms SE
2

6. Experimental Results and Discussions

We now present our experimental results. For the Goldstein and Uchida
(2016) anomaly benchmark datasets, we averaged the AUCCs of the anoma-
lies to obtain the benchmarks average AUCCs. Whereas for the Emmott et al.
(2015) datasets we first averaged the AUCCs of the anomalies for each bench-
mark to obtain its average AUCC followed by averaging the average AUCCs of
each benchmark dataset which was constructed from the same motherset to ob-
tain an average of the AUCCs of the motherset’s anomaly detection benchmark
datasets. Each analyst certainty curve contains error bars which represent a
95% confidence interval of the results over five runs per SE. For the Emmott
et al. (2015) datasets we generated the SEs until the analyst is presented with
all the features. It enables us to analyse the analyst’s conditional probability
from the first feature subset up until the full set of features are presented. While
for the Goldstein and Uchida (2016) datasets, we generated the SEs up to the
first seven feature subsets because the dimensionality of the anomaly benchmark
datasets was large. Appendix B details how we chose the parameters for the
outlier and sample-based SEs in our experiments.

6.1. Analysis of results using the analyst certainty curves and AUCCs

We now show why the AUCC is a better evaluation measure than the MFP.
Figure 3 presents a good arbitrary example of two competing SEs with the same
MFP. If the simulated analyst’s threshold of detection is 0.8, then SE 1 and SE
2 both have an MFP of 7. If the threshold is 0.9, then the MFP for both SEs
would be 8. However, from observing the analyst certainty curves it is clear
that SE 1 identifies feature subsets that return higher conditional probabilities
than SE 2. In addition, the AUCC of SE 1 is 0.67, whereas, the AUCC for SE
2 is 0.46. The AUCC captures the difference in performances of the SEs much
better than the MFP.

Figure 4 presents the analyst certainty curves of the top performing outlier-
based SEs of the Wine, Pageb and Magic Gamma datasets. The average AUCC
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Figure 4: Analyst certainty curves of the top performing outlier-based SEs of the Wine, Pageb
and Magic Gamma datasets

of the Random SE across the Pageb motherset anomaly benchmarks is 0.7753,
while the best performing outlier-based SE, iForest FS has an average AUCC
of 0.8329. From the analyst certainty curves we observe that the first feature
that iForest F'S SE selects returns the analyst with a conditional probability of
0.85 of being certain that the data points presented are anomalous. While the
Random SE returns a probability of 0.42. Considering the next two features
in the iForest FS and Random SEs, the conditional probability of the analyst’s
detection increases to 0.91 for the iForest FS SE, while it increases to 0.73 for
the Random SE. The AUCCs provides a measure to compare which SEs perform
better than the other, while a visual inspection of the analyst certainty curves
provides insights on the trajectory analysis of the SEs performance for each
feature subset.

From the analyst certainty curves of the Emmott et al. (2015) datasets,
we observe three different types of curves. Type 1 curves are monotonically
increasing with respect to the number of features presented to the simulated
analyst until the SE presents the analyst with the full set of features. All of
the Random SEs are type 1 analyst curves. Type 2 curves are monotonically
increasing with respect to the number of features presented to the simulated
analyst up until a peak is reached, after which it monotonically decreases until
the SE presents the analyst with the full set of features. The Magic Gamma
motherset iForest, KDE, LOF FS SEs are Type 2 SEs. Type 3 curves are
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Table 3: Outlier-based SE AUCCs of the Emmott et al. (2015) datasets. The bold black
AUCCSs represent the best performing search methods for each outlier scoring measure, while
the bold red AUCCs represent the overall best performing methods per dataset.

Anomaly AD Opt
Dataset Detoctor IND FS FS IND BS BS Oracle Oracle Random
iForest 0.7257 0.7316 0.7348 0.7337 0.7502
OCSVM 0.7138 0.7255 0.7316 0.7300 0.7447
Abalone LOF 0.7353 0.7407 0.7335 0.7296 0.7520 0.8096 0.6966
Kmeans 0.7223 0.7210 0.7245 0.7244 0.7450
KDE 0.7220 0.7291 0.7029 0.7025 0.7438
iForest 0.8051 0.8156 0.8044 0.8042 0.8290
OCSVM 0.7480 0.7562 0.7675 0.7645 0.7800
Concrete LOF 0.7844 0.7908 0.7839 0.7932 0.7991 0.8605 0.7231
Kmeans 0.7642 0.7938 0.7800 0.7905 0.8053
KDE 0.7984 0.8083 0.7820 0.7875 0.8229
iForest 0.7753 0.7837 0.7746 0.7733
Magic OCSVM 0.7513 0.7616 0.7595 0.7598
Gamma LOF 0.7536 0.7768 0.7709 0.7645 - 0.8641 0.7250
Kmeans 0.7649 0.7685 0.7714 0.7688
KDE 0.7785 0.7816 0.7564 0.7630
iForest 0.8328 0.8329 0.8287 0.8300
OCSVM 0.8163 0.8266 0.8162 0.8159
Pageb LOF 0.8133 0.8139 0.8033 0.8025 - 0.8780 0.7753
Kmeans 0.8199 0.8194 0.8200 0.8214
KDE 0.8285 0.8242 0.8031 0.8045
iForest 0.8574 0.8565 0.8614 0.8615
OCSVM 0.8471 0.8064 0.8459 0.8571
Shuttle LOF 0.8477 0.8673 0.7983 0.7960 - 0.8834 0.7680
Kmeans 0.8677 0.8694 0.85106 0.8521
KDE 0.866 0.8670 0.615 0.6208
iForest 0.7749 0.7795 0.7742 0.7752
OCSVM 0.7525 0.757 0.7664 0.7635
Wine LOF 0.7754 0.783 0.7638 0.762 - 0.8769 0.7305
Kmeans 0.7671 0.7717 0.7729 0.7716
KDE 0.7726 0.7820 0.7492 0.7555
iForest 0.6517 0.6168 0.6680 0.6730 0.6895
OCSVM 0.6331 0.6483 0.6515 0.6293 0.6642
Yeast LOF 0.6410 0.6526 0.6309 0.6284 0.6701 0.7992 0.5913
Kmeans 0.6687 0.6655 0.6524 0.6578 0.6912
KDE 0.6787 0.6851 0.6706 0.6739 0.7035

monotonically increasing with respect to the number of features presented up
until they reached a plateau that is equal to the conditional probability of the
presentation of the full set of features. All the Wine top performing outlier-
based SEs are Type 3 SEs.

6.2. Random and Oracle SEs

In addition to the SEs presented, we compute the Random and Oracle SEs. A
Random SE is a SE that randomly presents features to the analyst. Random SEs
provide a lower bound on the attainable performance of our SEs. An OptOracle
SE is an optimal SE that is allowed access to the simulated analyst (Siddiqui
et al., 2019a), where SE(x); is the set of i features that maximise the simulated
analyst’s conditional probability A(x, SFE(x);). Lastly, an anomaly detector’s
Oracle (AD Oracle) SE is an outlier-based SE, where SE(x); is the set of ¢
features that maximise the anomaly detector’s outlier scoring measure. An AD
Oracle provides the best outlier-based SE that an AD’s outlier scoring measure
can compute.

6.3. Outlier-based SE results

Due to the small dimensionality of the Emmott et al. (2015) motherset
anomaly benchmarks, we only used the sequential search outlier-based SEs and
excluded the PSO meta-heuristic search algorithm because the dimensionality
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Table 4: Outlier-based SE AUCCs of the Goldstein and Uchida (2016) datasets

Anomaly AD
Dataset Detector IND FS FS IND BS BS PSO Random

iForest 0.5269 0.5705 0.5617 0.5552 0.5810
OCSVM 0.5278 0.5381 0.5574 0.5528 0.5685

Aloi LOF 0.5344 0.5241 0.5273 0.5073 0.5486 0.4075
Kmeans 0.5294 0.5552 0.5589 0.5524 0.5771
KDE 0.5597 0.5602 0.4626 0.4900 0.5858
iForest 0.8429 0.8385 0.8375 0.8423 0.8491
OCSVM 0.7653 0.7604 0.6890 0.6703 0.7906

Annthyroid LOF 0.8392 0.8296 0.7990 0.7935 0.8431 0.5659
Kmeans 0.7795 0.7856 0.7599 0.7911 0.8088
KDE 0.7447 0.7705 0.6954 0.7116 0.7936
iForest 0.8476 0.8500 0.8472 0.8482 0.8506
OCSVM 0.8465 0.8493 0.7550 0.7708 0.8500

Kddo9g LOF 0.8458 0.8398 0.8475 0.8461 0.8485 0.6913
Kmeans 0.8385 0.8411 0.8215 0.8206 0.8428
KDE 0.8459 0.8449 0.7267 0.7520 0.8505
iForest 0.8226 0.8250 0.7827 0.7919 0.8307
OCSVM 0.7953 0.8089 0.7783 0.7770 0.8209

Satellite LOF 0.7838 0.7758 0.7562 0.7634 0.8049 0.6435
Kmeans 0.8124 0.8163 0.7954 0.7735 0.8292
KDE 0.8031 0.8118 0.7481 0.7716 0.8275

of the anomaly benchmark datasets are small relative to the number of compar-
isons we make using the PSO meta-heuristic search. For example, the Magic
Gamma motherset anomaly benchmark datasets have 11 features which are the
most features from the Emmott et al. (2015) benchmarks. A dimensionality
of 11 features has a total of 2048 combinations. In our work, we restrict the
total number of comparisons in the PSO meta-heuristic search to a maximum
of 3000 per feature subset of size ¢ in the SE SE(x);. Therefore, in place of the
PSO meta-heuristic search algorithm, we use the AD Oracle SE to obtain the
optimal subset of features to add in the SE based on the AD’s outlier scoring
measure. Due to the large amount of the Emmott et al. (2015) anomaly bench-
mark datasets from each motherset, we only computed the AD Oracle SEs for
the Abalone, Concrete and Yeast motherset anomaly benchmarks.

6.3.1. Comparison to Oracles

We observe from Table 3 that all of the AD Oracle SEs from the Abalone,
Concrete and Yeast motherset anomaly benchmarks outperform their corre-
sponding AD IND-FS, FS, IND-BS and BS SEs. These results show that a
more extensive search in the search space yields improved results compared to
using greedy sequential search methods. Also, the results show that there is a
need for search methods that are not greedy and that a more extensive search
improves the outlier-based SEs. The OptOracle SE outperforms all of the AD
Oracle SEs for the Abalone, Concrete and Yeast motherset anomaly benchmark
datasets. This shows that an exhaustive search across each AD’s outlier scoring
measure does not obtain the same SE as the OptOracle SE. The reason OptOr-
acle SEs outperform the AD Oracle SEs could be due to the difference in the
assumptions and properties of the anomaly detectors and OptOracle’s notions
of how to score outliers.

6.3.2. Comparison to Random, OptOracle and PSO
OptOracle significantly outperforms all of the SEs, whereas, all of the SEs
significantly outperform the Random SE with an exception to the Shuttle moth-
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erset KDE sequential backward selection SEs. Using the Goldstein and Uchida
(2016) datasets, we compare the sequential search methods to the PSO meta-
heuristic search method. From the AUCCs, we observe that given an AD’s out-
lier scoring measure, the PSO meta-heuristic algorithm outperforms its corre-
sponding sequential search SEs. The AUCCs show that the PSO meta-heuristic
computes better SEs than the sequential search methods for the same AD scor-
ing measure. The PSO meta-heuristic SE using an AD’s outlier scoring measure
can be outperformed by a sequential search method SE using a different AD out-
lier scoring measure. For example, the LOF PSO SE for the Aloi dataset has
an average AUCC of 0.5489 and iForest FS has an average AUCC of 0.5705.
Similar examples are observed throughout the results in Table 4. The PSO meta-
heuristic search only outperforms the sequential search methods that make use
of the same AD outlier scoring measure and does not necessarily perform bet-
ter than all the sequential search methods that use different AD outlier scoring
measures. The reason behind this could be because of the different assumptions
and properties used by the different AD outlier scoring measures. A sequen-
tial search outlier-based SE using an AD outlier scoring measure that measures
the correct properties and uses the correct assumptions for a specific dataset
will outperform a PSO meta-heuristic SE using an AD outlier scoring measure
that measures incorrect properties and uses the incorrect assumptions to score
outliers on the dataset.

6.3.3. Sequential forward versus sequential backward selection SEs

To compare the sequential forward and backward selection search methods,
we used a ranking measure to rank the methods in descending order of their
AUCCs. Using Tables 3 and 4 we ranked each row according to the sequential
forward and backward selection search methods from 1 to 4 in descending order,
then for each dataset we computed the mean rank for each search method.
Lastly, we computed the mean of the mean ranks of each sequential backward
and forward selection search method across all the datasets. Overall, FS has the
lowest mean rank followed by IND-FS, BS and IND-BS. The sequential forward
selection SEs outperform the sequential backward selection SEs.

6.3.4. Comparison of AD outlier scoring measures

For the Goldstein and Uchida (2016) datasets, we ranked the results of each
outlier-based SE for each dataset from 1 to 36 using the AUCCs in Table 4.
For each AD outlier scoring measure, we calculate its mean rank by calculating
the mean of each row. Then for each AD outlier scoring measure, we computed
the mean of the mean ranks across the Goldstein and Uchida (2016) datasets.
Overall, iForest has the lowest mean ranking followed by k-means, LOF, KDE
and OCSVM. Similarly, we obtained the same results for the Emmott et al.
(2015) motherset datasets in Table 3.

6.4. Sample-based SE results

We now analyse the results of the sample-based SEs. The AUCC results of
the sample-based SEs can be found in Tables 5 and 6 for the Emmott et al.

19



Table 5: Sample-based SE AUCCs of the Emmott et al. (2015) datasets

Opt

Dataset FS SVM | BS SVM | mRmR | MIFS | SVM RFE | RF RFE | o P% | Random
Abalone 0.7334 0.727 0.7274 0.7279 0.7372 0.7289 0.8096 0.6966
Concrete 0.8089 0.8061 0.8152 0.8015 0.8132 0.8156 0.8605 0.7231
Magic 0.7873 0.7783 0.7752 0.7788 0.7813 0.7857 0.8641 0.7250
Gamma
Pageb 0.8305 0.8271 0.8322 0.8319 0.8286 0.8300 0.8780 0.7753
Shuttle 0.8474 0.8397 0.8410 0.8545 0.8667 0.8616 0.8834 0.7680
Wine 0.7761 0.7659 0.7659 0.7748 0.7758 0.7770 0.8769 0.7305
Yeast 0.6629 0.6698 0.6266 0.6627 0.6761 0.6177 0.7992 0.5913

Table 6: Sample-based SE AUCCs of the Goldstein and Uchida (2016) datasets

Dataset FS SVM |BS SVM [mRmR | MIFS |SVM RFE |RF RFE ;’\ES{ Random
Annthyroid| 0.8158 0.8130 0.8210 [0.8217 0.8348 0.8143 0.8273 0.5659
Aloi 0.5656 0.5424 0.5065 [0.5313 0.5905 0.5359 0.5742 0.4075
Kddo9 0.8069 0.7857 0.8502 | 0.8476 0.8490 0.8484 0.8145 0.6913
Satellite 0.8343 0.8343 0.8130 [0.8069 0.8237 0.8218 [0.8368]| 0.6435

(2015) and Goldstein and Uchida (2016) datasets respectively.

6.4.1. Comparison to Random, OptOracle and PSO-SVM

From the AUCCs and analyst certainty curves, we observe that all of the
sample-based SEs significantly outperform the Random SE. However, from the
Emmott et al. (2015) dataset AUCCs there is a large gap between the sample-
based SEs and the OptOracle SEs. The gap shows that there is a need for
improved feature selection methods that are not greedy. From the AUCCs
of the Goldstein and Uchida (2016) datasets we observe that the PSO-SVM
SE outperforms the greedy feature selection based FS-SVM and BS-SVM SEs.
However, it does not always perform better than the other sample-based SEs.
For example, in the Annthyroid, Aloi and KDD99 datasets, the SVM-RFE SE
outperforms the PSO-SVM SE. A possible explanation for this would be that
the PSO-SVM is a wrapper based feature selection method that relies on the
accuracy of the SVM to select features. We observed in most cases that the SVM
classifier was not able to obtain a 100% accuracy when splitting the inlier and
outlier classes for the features that returned the highest classification accuracy,
therefore resulting in sub-optimal solutions. The PSO-SVM SE improved on the
greedy wrapper-based FS-SVM and BS-SVM SEs only, and it fails to outperform
the other SE methods consistently.

6.4.2. Comparison of feature selection methods

To obtain the best performing feature selection methods, we used a ranking
measure to compare the different methods. For each of the results in Tables 5
and 6, we ranked each feature selection method for each dataset from 1 to 6
excluding the PSO-SVM in the Goldstein and Uchida (2016) datasets. We then
averaged the rankings for each feature selection method across the datasets to
obtain the overall mean rank. Overall, SVM-RFE had the lowest rank, followed
by FS-SVM, RF-RFE, mRmR, MIFS and BS-SVM. Considering the Goldstein
and Uchida (2016) dataset alone and the including PSO-SVM SE, we found
that SVM-RFE had the lowest rank, followed by PSO-SVM, FS-SVM, mRmR,
RF-RFE, MIFS and BS-SVM.
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Table 7: SFE AUCCs of the Emmott et al. (2015) datasets

Opt

Dataset IndMarg SeqMarg IndDo SeqDo Orapcle Random
Abalone 0.7212 0.7298 0.7133 0.7144 0.8096 0.6966
Concrete 0.8006 0.8113 0.7948 0.8001 0.8605 0.7231
Magic Gamma 0.7765 0.7851 0.7771 0.7723 0.8641 0.7250
Pageb 0.8287 0.8269 0.8103 0.8110 0.8780 0.7753
Shuttle 0.8661 0.8670 0.7269 0.7227 0.8834 0.7680
‘Wine 0.7628 0.7794 0.7618 0.7628 0.8769 0.7305
Yeast 0.6747 0.6778 0.6741 0.6736 0.7992 0.5913

Table 8: SFE AUCCs of the Goldstein and Uchida (2016) datasets

Dataset IndMarg SeqMarg IndDo SeqDo Random
Aloi 0.5550 0.5742 0.5208 0.5343 0.4075
Annthyroid 0.7808 0.7896 0.7374 0.7436 0.5659
Kddo9g 0.8501 0.8477 0.7139 0.7315 0.6913
Satellite 0.8200 0.8234 0.7901 0.8001 0.6435

6.5. Sample-based versus outlier-based SEs

For the Emmott et al. (2015) datasets, we used the same ranking method as
in Section 6.4.2 and ranked the AUCCs of the outlier and sampled-based SEs
from Tables 3 and 5 respectively and obtained the following rankings: SVM-RFE
had the lowest rank, followed by FS-SVM, RF-RFE, the iForest SEs, mRmR,
MIFS, BS-SVM, the EGMM SEs, the LOF SEs, the k-means SEs and the
OCSVM SEs. For the Goldstein and Uchida (2016) datasets, we ranked the
AUCC s of the outlier and sample-based SEs from Tables 4 and 6 respectively
and obtained the following rankings: SVM-RFE had the lowest rank, followed
by PSO-SVM, the iForest SEs, FS-SVM, RF-RFE, mRmR, MIFS, BS-SVM,
the EGMM SEs, the LOF SEs, the k-means SEs and the OCSVM SEs. It is
clear from these results that the sample-based SEs outperform the outlier-based
SEs in terms of AUCCs.

6.6. SEs versus SFEs

Table 7 and Table 8 contain the SFE results for the Emmott et al. (2015)
and Goldstein and Uchida (2016) datasets respectively. We observe from both
tables that the dominant SFE method is the SeqMarg SFE, while from Table 8
in we observe that the PSO applied to the SFEs improves their results.

We now compare the best performing SFEs against the best performing out-
lier and sample-based SE methods for each data dataset. For the Emmott et al.
(2015) datasets, the best performing outlier and sample-based SEs outperform
the best performing SFE with the exception to the Wine and Yeast datasets
where SeqMarg outperforms the best performing sample-based SE only and
for the Magic gama dataset where SeqMarg outperforms the best performing
outlier-based SE. For the Goldstein and Uchida (2016) datasets, all of the best
performing outlier and sample-based SE outperform the best performing SFEs.
The results show that our SEs are able to generate explanations that will guide
the analyst to the features that will enable them to make judgements about
whether detected outlier points are anomalous are not. In addition our SEs
outperform SEs in terms of the quality of the explanations without being lim-
ited to the SFEs limitations.
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Table 9: Annthyroid outlier-based SE running times
IND.FS | FS IND-BS | BS PSO

iForest 9.45 19.65 10.73 23.37 681.27
OCSVM 1.52 7.02 3.17 11.22 7.77
LOF 0.82 13.80 31.60 60.01 17.32
k-means 1.47 19.30 7.19 21.70 23.97
KDE 0.01 0.27 0.05 0.57 4.64

Table 10: Annthyroid sample-based SE running times
[ FS-SVM | BS-SVM | mRmR | MIFS | SVM-RFE | RF-RFE | PSO-SVM |
[[115 | 2.76 | 012 | 012 [ 0.58 | 0.59 | 27.00 |

Table 11: Annthyroid SFE running times
[ IndMarg | SeqMarg | IndDo [ SeqDo |
[ 0.86 | 1.39 | 10.73 | 2.28 |

6.7. Running times

We now compare the running times of the SEs and the SFEs. Tables 9,
10 and 11 contain the average running times over the first 100 anomalies of
the Annthyroid dataset. We ran our experiments in Sections 6.3 and 6.4 using
multiple servers that gave us access to between 64 and 128 CPUs and gigabytes
RAM. The servers enabled us to use multiprocessing and caching of results in
RAM in order to optimise the running times for the experiments. In order to
fairly compare the running times without multiprocessing, we ran the SEs and
SFEs using a single CPU for the running times measured in Tables 9, 10 and
11.

We observe from the running times that the iForest SE take the longest to
compute. In particular, iForest PSO SE takes the longest time to compute.
Also, we observe from the outlier-based SEs that the SEs that use the Ind-FS
an Ind-BS sequential search are the fastest to compute, followed by the FS
sequential search. From the LOF SE running times, we observe that LOF PSO
runs faster than LOF BS and LOF IND-BS even though it searches through
a much smaller subspace than the latter two SEs. The reason for this could
be because the LOF outlier scoring measure takes long to compute when the
feature subspace is large, and the IND-BS and BS sequential search methods
search in the full feature space, unlike the PSO which only does its search up
to the first 7 features. The sample-based SFEs had the fastest running times
except for PSO-SVM. In particular, SVM-RFE, which is the best performing
SFE overall has a fast running time. Some SEs may produce good results, but
they may also take longer to compute the required features into the SEs. The
analyst could then choose to trade off a good performing SE for alternative SEs
that are computationally cheaper to compute even though they do return the
best results.

6.8. Limitations and drawbacks

We have identified the following limitations and drawbacks of our research
that leave room for further improvements:

22



1) In computing the SEs, we employed meta-heuristic search methods to prune
the search space for each outlier data point. The use of meta-heuristic search
methods is computationally expensive because we had to search for the SEs
for each data point, which required many computational resources.

2) For the outlier-based SEs, each outlier detection method required us to
choose the parameters we would use to compute the SEs. For each anomaly
detection benchmark dataset, we computed the data points’ outlier scores
using the anomaly detection method. We then performed hyperparameter
optimisation using grid search to find the parameters that return the highest
area under the receiver operating characteristic curves (AUC ROC) in the
whole feature space. The optimal parameters in the full feature space are
used to compute the outlier-based SEs. The disadvantage of using the opti-
mal parameters from the full feature space is that it might not be optimal
for the lower-dimensional feature subspaces.

3) For the sample-based SEs, we used the grid search method to obtain the
feature selection methods’ optimal parameters. We then selected the pa-
rameters that return the highest average classification accuracy using 3-fold
cross-validation in the full feature space. Similar to the drawbacks of the
outlier-based SEs, using the optimal parameter from the full feature space
might not be optimal for the lower-dimensional feature subspaces.

7. Conclusion

This paper introduced a new outlier explanation called a sequential explana-
tion (SE) that addresses the shortcomings of the sequential feature explanations
(SFEs). The SEs can be computed by either using the sample or outlier-based
approaches. Outlier-based SEs compute SEs using an anomaly detector’s out-
lier scoring measure guided by a search algorithm to identify the features that
make the outlier point of interest outlying based on the outlier scoring measure
used. Whereas sample-based SEs turn the problem of computing SEs into a
supervised feature selection problem using a sampling method to create a bal-
anced inlier and outlier class and use feature selection to select the features that
best separate the two classes as the SEs. We also introduced a new evaluation
method called the area under the analyst certainty curve (AUCC).

Our results showed that the AUCC is a better measure than the minimum
feature prefix (MFP) and provides us with more insights into the performances
of the SEs. We, therefore, used the AUCCs to evaluate and compare the SFEs,
outlier and sample-based SEs.

For the outlier-based SEs, we found that the particle swarm optimisation
(PSO) meta-heuristic search only outperforms the greedy search methods that
use the same outlier scoring measure. However, it does not necessarily perform
better than all of the greedy explanation methods that use different outlier
scoring measures for their SEs. From the sequential search methods, forward
selection provided the best SEs followed by independent forward selection, back-
ward selection and IND-independent backward selection. The iForest anomaly
detector outlier measure computes the best performing outlier-based SEs.
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For the sample-based SEs, we found that the PSO meta-heuristic search
only outperforms the greedy search methods that use the same outlier scoring
measure. However, it does not necessarily perform better than all of the greedy
explanation methods using different outlier scoring measures for their SEs. We
also found that SVM-RFE outperformed PSO-SVM. A possible explanation for
this would be that the PSO-SVM is a wrapper based feature selection method
that relies on the SVM’s accuracy to select features. We observed in most
cases that the SVM classifier was not able to obtain a 100% accuracy when
splitting the inlier and outlier classes for the features that returned the highest
classification accuracy, therefore resulting in sub-optimal solutions.

Comparing the SFEs to the SEs, we found that in most cases, the best
performing outlier and sample-based SEs outperformed the best performing
SFE. It shows that our SEs provide better explanations than SFEs. Overall,
the sample-based SE, SVM-RFE SE, returned the best performing SE, which
also takes a reasonable time to compute.

Appendix A. Anomaly detector outlier scoring measures

We now summarise each of the anomaly detection algorithms and how their
outlier scoring measure is computed.

Appendiz A.1. Kernel density estimation

A Kernel density estimation (KDE) (Silverman, 1986) is a non-parametric
statistical method used to estimate the probability density function (pdf) of a
dataset. KDEs do this by using a kernel function to estimate the local densities
of each data point in the dataset and then obtain the overall pdf by aggregating
the local data densities of the data points. The outlier score of a data point is
the probability of the data point not belonging to the fitted pdf. More formally,
the KDE outlier scoring measure of a data point x in the feature subspace S is
defined as (Silverman, 1986) :

(s —2)2

1 -5
P(xs) =1~ Z e T —
[S]/2
n(2m) [Lies hs zeXs\{xs}

where hg is the bandwidth of feature s € S.

Appendiz A.2. One-Class Support Vector Machine

The One-Class Support Vector Machine (OCSVM) (Schélkopf et al., 2001) is
a model based anomaly detection method. Similar to an SVM for classification,
an OCSVM transforms a dataset in the feature space R? to a higher-dimensional
feature space RP, where d < p. In the transformed space, the OCSVM max-
imises the distance from the hyperplane to the origin, which results in learnt
regions that contain the training dataset in the original space. For anomaly de-
tection, we assume that a vast majority of the data is normal and that anomalies
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contribute less to the computation of the region where the training data lies.
The outlier score of each data point is the distance of the data point to the
learnt region. Data points that fall within the region are considered to be in-
liers and have negative scores, whereas, data points outside the region have
positive scores. More formally, the OSVM problem is reduced to the following
optimisation problem:

Inin w2 + Z & = p; (A.2)
subject to: (A.3)
W-Q(xg))Zp—& foralli=1,...,n; (A.4)
&E>0foralli=1,...,n, (A.5)

where w is the normed vector of the hyperplane, 6 is a kernel map that trans-
forms the training examples into the space RP, &; are nonzero slack variables, v
is an upper bound on the fraction of outliers and a lower bound of the fraction
of support vectors, and p is the intercept of the hyperplane.

Using Lagrange techniques and using a kernel function K for the dot-product
calculations, the OCSVM outlier scoring function of a data point x in the feature
subspace S is:

P(xs) = (w-0(x Zaz (xs.x) = p (A.6)

, where xg) € Xs, «; are the Lagrange multipliers and K (xs,xg))

0(xs)T0(xW),Vi=1,2,...,n

Appendiz A.3. Local outlier factor

Local outlier factor (LOF) (Breunig et al., 2000) is a nearest neighbourhood
based anomaly detect method. For a data point x, the LOF algorithm compares
its local density to the local densities of its k-nearest neighbours (k-nn). A data
point will get a high outlier score if its density is significantly lower than the
density of its k-nn (Breunig et al., 2000). More formally the LOF outlier scoring
function of a data point x in the feature subspace S is formulated as follows:

Let k-distance(xs) be the distance of the data point x to its k'" nearest
neighbour in the feature subspace specified by S. Then we define the reachability
distance between xg,ts € Xgs as:

reachability-distancey, (xs, ts) = maz{k-distance(ts), d(xs,ts))} (A.7)
and the local reachability density of xs is defined by

reachability-distance, (xs, t
lrd(XS) _ 1/(Zt€k—nn(xs) y k( S )

| k-nn(xs) | (A-8)

25



Then the LOF outlier score of xg is:

Z Ird(t)
tek-nn(x, rd(x
B(xg) = heknnixs) Idlxs) (A.9)

| k-nn(xs) |

Appendiz A.4. k-means anomaly detector

The k-means anomaly detector is a clustering based anomaly detector that
works on the assumptions that normal data points lie close to their closest
cluster centroid, while outliers are far away from it (Chandola et al., 2009).
The anomaly detector first clusters the data into k clusters using Lloyds algo-
rithm (Kanungo et al., 2002), then it assigns each data point the distance from
its closest cluster as its outlier score (Chandola et al., 2009). Data points with
the largest distances from their closest cluster centroids are considered to be
outliers because they do not belong to a specific cluster. More formally, the
k-means outlier scoring measure of a data point x in the feature subspace S is
formulated as follows:

P(xs) = [xs — exsl2; (A.10)

where ¢y represents the data point xs’s closest cluster centroid and || - || is
the Euclidean distance or Lo vector norm.

Appendiz A.5. Isolation Forests

Isolation Forests (iForests) (Liu et al., 2012) isolates data point by first
randomly selecting a feature and a random split value between the maximum
and minimum values of the selected feature in order to partition the data point
into the region it belongs in. The process of randomly partitioning the data
point continues until it is entirely isolated. Since a tree structure can represent
recursive partitioning, the number of splittings required to isolate a data point
is equivalent to the path length from the root node to the terminating node.
Averaging the path length over a forest of random trees forms a measure of
normality. Random partitioning produces shorter paths for outliers. Therefore,
when a forest of random trees collectively produces shorter path lengths for
particular data points, they are highly likely to be outliers. More formally, the
iForest outlier scoring measure of a data point x in the feature subspace S is
formulated as follows:

b(xs) = _2%7 (A.11)
where h(xs) is the path length of xs, ¢() is the average path length of an
unsuccessful search in a binary search tree, and v is the subsample size.
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Appendix B. Hyperparameter Optimisation

Appendiz B.1. Outlier-based SEs

We now discuss how we chose the parameters of the outlier-based SEs. For
each anomaly detection benchmark dataset, we computed the data points’ out-
lier scores using the respective anomaly detection method. We then performed
hyperparameter optimisation using grid search to find the parameters that re-
turn the highest area under the receiver operating characteristic curves (AUC
ROC) in the full feature space. The optimal parameters in the full feature space
are used to compute the outlier-based SEs.

It is non-trivial to identify the range of values to perform grid search on.
Therefore we chose to perform a grid search between a range of values that
cover the parameter space when the parameter has a low value and a high value.
For the k-means anomaly detector we use grid search to find the optimal k for
k=2,...,8. For each k, we calculated the AUC ROC using the ground truth of
the benchmark. We chose the k value for each benchmark that gave us the high-
est AUC ROC and used it to compute the SEs for the k-means outlier scoring
measure. We grid searched on k = 15, . .., 20 for each anomaly detection bench-
mark dataset for the LOF anomaly detector. For the bandwidth of the KDE we
applied grid search on [0.001,0.01,0.1,1,10] and also on Silvermans (Silverman,
1986) and Scotts (Scott, 2010) rule of thumbs. For OCSVM we used a linear
kernel and a RBF kernel and applied grid search on C' = [0.01,0.1, 1, 10] on both
kernels and v = [0.001,0.01,0.1, 1] on the RBF kernel. For the EGMM anomaly
detector, we used the same parameters as in Siddiqui et al. (2019a), while for
iForests, we used the default parameters recommended in Liu et al. (2012) of
100 trees and a sub-sampling size of 256.

For the PSO, we limited the total number of computations in each search
space to 3000 by setting G = 75 and P = 40. We set the mutation factor for
each feature to m = 0.1. Also, to decrease the number of computations, we
cached and saved all of our results in a hash table stored in RAM so that if
the PSO algorithm generates the same particles we do not need to compute the
value of their fitness function again, instead we do a quick look up the in the
hash table.

Appendiz B.2. Sample-based SEs

We now discuss how we chose the parameters of the sample-based SEs. To
create the inlier and outlier class for a data point x, we set its k for the reference
set Ry (x) to k = 0.1%n and set o = 0.35 as suggested in Micenkova et al. (2013)
. For each data points inlier and outlier class, we optimise the parameters of
the feature selection methods that will compute its sample-based SEs by using
the grid search method and selecting the parameters that return the highest
average classification accuracy using 3-fold cross-validation in the full feature
space.

For the feature selection methods that use SVM, we used a linear kernel and
a RBF kernel and applied grid search on C' = [0.01,0.1, 1,10] on both kernels
and v = [0.001, 0.01, 0.1, 1] on the RBF kernel. We selected the parameters from
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the grid search that return the highest average classification accuracy using 3-
fold cross-validation in the full feature space to compute the SEs. For MIFS,
we used 8 = 1 as suggested in Battiti (1994) and used 100 trees for RF-RFE,
while mRmR did not require any parameters.
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