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1. Introduction 
 
A programme of action for the remedial treatment of accident prone locations basically involves a four-phase 
process : 
 
a) the identification of accident prone locations (APL’s), 
b) the prioritisation of APL’s, 
c) the identification and implementation of appropriate remedial measures, and  
d) the evaluation of the effectiveness and efficiency of remedial measures. 
 
An accident prone location is a location that experience an significantly above average number of accidents 
when compared to similar sites. 
 
The identification phase involve the initial identification of ‘unsafe’ sites based on measures of accident risk, 
such as an accident rate. 
 
The prioritisation phase involves ranking the sites according to the likely cost-effectiveness of remedial 
measures. It is important that scarce resources are allocated to those schemes that provide the most cost-
effective return on investment. 
 
The identification of appropriate remedial measures requires a detailed investigation into the factors 
contributing to accidents, with a view of devising strategies to reduce the negative impact of these factors. 
 
The objective of the evaluation phase is to determine the effectiveness of  remedial treatments in order to 
determine the extent to which targets are met and for the quantified effects of various treatments to be fed 
back into future studies. Once the effectiveness is known, the efficiency i.e. actual cost effectiveness can be 
determined. 
 
Before one any of these phases can be embarked upon it is important to first analyse accident data in a 
systematic manner to obtain a reliable and valid measure of the true level of safety at a location. 
 
For the purposes of this paper the level of safety at a location is defined as the ‘true’ underlying accident 
rate. An accident rate represents the risk to a road user for using the transportation system. 
 
A measure of safety is the end product of a process of measurement, (the principles of which will be 
described), when raw accident data is partitioned and validated (by means of classifications and 
categorisations) in a manner that ensure these indicators accurately represent the true level of safety at a 
location. These measures of safety form the foundation for all methods and procedures relating to accident 
remedial schemes.  



 
It is important that the results obtained from applying identification, prioritisation and evaluation methods and 
procedures to reflect reality as closely as possible. The extent to which ‘reality’ is achieved will depend firstly 
on the accuracy of the safety measures, and secondly on the reliability and validity of the analytical method 
chosen to do the analysis. The mathematical and statistical procedures can be fairly straight forward but 
there are always special considerations and pitfalls that the analyst must be aware of. 
 
The objectives of this paper are to a) define reliable estimates of safety at a location in order to  identify, 
prioritise an evaluate accident prone locations, b) to provide  guidelines on choosing appropriate 
methodologies and c) to highlight where appropriate the special considerations and pitfalls the analyst 
should be aware of. 
 
 
2. THE MEASUREMENT OF SAFETY 
 
2.1 INTRODUCTION 

  
This section will first explain the concepts of reliability and validity and what steps can be taken to improve 
the reliability and validity of a safety measure.  
 
The statistical properties of accident data will then be investigated. Knowledge of these properties is 
important to decide on the most appropriate methodology to measure safety. Thereafter a methodology 
based on an emperical Bayesian approach will be presented. 
 
2.2 MEASUREMENT THEORY 
 
2.2.1 Validity and Reliability 
 
With any type of measurement validity and reliability are two very important considerations. 
 
Validity is concerned with the soundness and the effectiveness of the indicator. It raises the question 
whether an indicator measures what it is suppose to measure as well as how comprehensively and 
accurately.   
 
Reliability deals with how dependable and accurate an indicator is. An indicator must be reliable across time 
(stability reliability) as well as across sub-populations (representative reliability).  
 
2.2.2 Measurement Error 
 
Any measurement (X) or observed value consists of 3 different components: a)True perfect value (T), b) 
Systematic Error (S) and c) Random Error ( R) 
 
Where  X = T + S + R 
 
Under conditions of perfect validity X = T i.e. there are no systematic and random errors. The validity and 
reliability of a measurement can be improved by focussing on eliminating S and R. 
 

 2.2.2.1 R - Random error 
 
Accidents are random events. It is therefor unlikely that an observed measurement of accident data will be 
equal to the true value T. For more details please refer to Section 2.3 on the statistical properties of accident 
data.  
 

 The random error associated with a safety measurement can be reduced by using an appropriate 
methodology  for estimating safety. For more details please refer to Section 2.4 on methods for the 
estimation of safety. 

 



2.2.2.2 S - Systematic Error 
 

Whereas random error is a statistical phenomenon, systematic errors are ‘man-made’ and can be avoided. It 
is the result of external influences, which distorts a measurement in a systematic way.  The most common 
causes of systematic errors relating to accident data is a) the underreporting of accidents, and the b) 
inaccurate, incorrect and incomplete completion of accident report forms. 

 
In order to minimise the systematic error the following remedial measures could be taken: 

   
a) Exclude from the analysis data that is associated with significant systematic errors such as for example 

‘damage only’ accident data.  
b) Systematic errors as a result of inaccurate or missing data can really only be reduced by having a good, 

well managed, accident data collection system.  
 

2.3 STATISTICAL PROPERTIES OF ACCIDENT DATA 
 
The number of accidents (x) at a location is statistically described as a variable with a Poisson distribution :  
 

  
m - the true level of safety – e.g. accidents/mvkm ( denoted by T in Section 2.2.2). 
E - the level of exposure  - e.g. million vehicle kilometres (mvkm) 
 

The MLE ( Maximum Likelihood Estimator) of m is given by 
E

x
R = . 

 
According to Nembhard(15) R is a reasonable estimate of m provided E is large. For small values of E the 
estimate becomes unstable. The MLE estimator can be improved on by using a Bayesian estimator. 
 
The difference between x and m*E is related to the random error mentioned in Section 2.2.2.1. 
 
The value of m varies between different sites according to the Gamma distribution: 
 
 

 
 
Where 
 
α - The shape parameter and β - The scale parameter. 
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The distribution of x between different sites can be described by the Negative Binomial distribution: 
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Where K = 1/k is the dispersion parameter and the mean and variance are: 
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The smaller the value of K the less the dispersion. If K = 0 then Equation 5 reverts to the Poisson 
distribution. The value of K is a measure of the degree of similarity between a sample of sites. The smaller 
the value of K the more similar the sites are, and vice versa. 
 
2.4 SAFETY ESTIMATION 
 
A common method of defining the safety at a location is by means of a risk estimate. Risk estimates are 
used to describe the safety level of transportation systems in a manner that is invariable to their exposure 
level. The most widely used measure of transportation-system risk is the accident rate.(8) 
 
An accident rate is determined by dividing the observed accident frequency by a measure of exposure. 
 
Exposure can be defined as the number of opportunities for an accident to occur. Exposure is thus related to 
the ‘intensity’ of use. The determination of an accident rate in this manner serves to compensate for 
differences in ‘intensity of use’ thereby making comparisons between different entities and time periods more 
meaningful.  
 
The challenge facing the analyst is to find a reliable and valid measure of safety (accident rate) that will 
satisfy the research objective. This requires that decisions be made on an appropriate accident measure as 
well as an appropriate measure of exposure. 
 
2.4.1 Accident Measure 
 
The chosen accident measure must support the objective of the research. If, for example, the objective of the 
research is to make inferences about pedestrian safety only pedestrian related accidents should be 
considered, or if the objective is to assess the safety impact of surface treatment on intersection approaches 
only head-rear type collisions on the treated approaches could be considered.  
 
A decision will also be required as to which severity classes to include in the accident measure. As shown 
before the reliability of a safety estimate could be enhanced by excluding ‘damage-only’ type accidents. 
However excluding ‘damage-only’ type accidents will not always be appropriate depending on the objective 
of the research. 
 
If one of the objectives is also to make inferences about the severity of accidents at a location then the 
accident measure could be expressed in terms of an EAN (Equivalent Accident Number). The EAN is 
determined by applying a weight factor to the total number of accidents in each severity class (fatal, serious, 
slight and damage only) and then summing up across all the classes. The magnitude of the weighting factor 
is related to the relative cost of an accident where ‘damage-only’ type accident has a weight equal to 1 (one). 
 
2.4.2 Exposure measure 
 
The main reason for the inclusion of an exposure measure is to compensate for differences in intensity of 
use so as to make comparisons meaningful. In order for exposure to do the job of compensating the safety 
performance function (the relationship between the accident measure and exposure) must be a straight line 
i.e. linear. 
 
When the Safety Performance Function is not a straight line, the accident rate will change as the amount of 
traffic change even if there was no intervention and the road remained the same. It is possible for the 
accident rate to decrease even as the facility becomes less safe. It is also possible when two facilities are 
compared with each other for the safer facility to have a higher accident rate than the other facility. 
 
For an exposure measure to be completely valid the relationship between it and the accident measure must 
be completely linear. This can be achieved by identifying an exposure measure that is highly correlated with 
the total number of opportunities for an accident, as determined by the accident measure, to occur. 
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The most common measure of exposure for estimating the accident rate on road segments is as follows: 
 

610*365***. −= nLAADTE  
 
and for intersections : 
 
 

∑ −= 610*365** nAADTE in  
 
 
AADT   - Annual Average Daily Traffic 
L   - Length of segment in km. 
n  - Number of years over which data was collected 
ΣAADTin  - Sum of all flows entering an intersection 
 
 
These measures of exposure do not provide reliable estimates of safety for the following reasons: 
 
a) Various researchers have found (5) that the relationship between E and most accident measures (e.g. all 

accidents, injury accident etc.) to be non-linear. For instance the number of single-vehicle accidents tend 
to increase initially with E, then reach a maximum and, as traffic grows further, the number of single 
vehicle accidents declines.  

 
Hauer (5) claims that the use of the exposure measure as shown in Equation 9, especially for particular 
intersection accident types (e.g. head-rear accidents), to be logically unsatisfactory.  The number of rear-
end collisions on approach A of an intersection will strongly depend on the flow on approach A and 
depend only weakly on the flow on approaches B, C and D. Similarly it is expected that collisions 
between vehicles from streams A and B moving at right angles to each other might be related to the 
product of flows A and B. 

 
In order to evaluate the safety effect of converting angle parking to parallel parking along a street McCoy 
et al. (9) used as a measure of exposure, not the total vehicle miles over the study section, but the total 
number of vehicle mile-hours per parking bay. This measure of exposure was determined from the 
product of travel and parking use per parking bay. It is considered a more reliable measure of exposure 
than the traditional total vehicle miles measure because it takes into account the level of parking activity. 
In a similar fashion the level of pedestrian safety at a location cannot be determined reliably by using a 
measure of exposure that does not account for the level of pedestrian activity. 

 
b) In the exposure function a time-average value of traffic flow, the AADT is used. There exist a causal 

relationship between flow and accidents, The effect (accidents) is observed over a long period of time 
during which the cause (traffic flows) has assumed widely different values, but for which only the 
average value of the cause is known. The causal link between accidents and AADT is therefor indirect.  
This lead to the issue of argument averaging which according to Mensah et al. (11) could introduce, 
depending on the form of the SPF, a large and significant bias. 

 
2.4.3 Estimation Methods 
 
Even after choosing a reliable and valid accident measure and a measure of exposure to calculate an 
accident rate the reliability of such an accident rate can still be in question because of the regression-to-
mean effect. 
 
Because of the random nature of accidents it is unlikely that the accident rate (R) at a location is equal to the 
true underlying accident rate (m). According to Nicholson (6) five years is the most suitable time period upon 
which to base an estimate of the true level of safety. According to Berlanger (2) using such long periods 
does not solve the problem because many factors can influence the value of m over time, such as changes 
in speed limits, traffic patterns etc. Therefor R is not necessarily a reliable measure of the safety even if it 
was estimated from data collected over extended periods of time. Using R instead of m to make inferences 
could introduce the regression- to-mean bias. If R was used to choose sites for treatment because of a poor 
accident record then the value of m will be over estimated and a potentially large positive regression-to-
mean effect will result from this. 
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The first step towards determining and eliminating the regression-to-mean effect is to identify a sample of 
sites, called a reference group. The requirement is that the expected number of accidents of a treated site 
with a set of given characteristics (geometry, traffic flow) be the same as the expected accident frequency of 
a reference group site with identical characteristics. 
 
An initial estimation of safety for a particular location can be obtained by determining the average accident 
rate for all reference group sites. 
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n – Number of sites in reference group 
 
In spite of being similar each site could have its own regional character, driver population, etc. giving it a 
unique level of safety m. Therefor m varies from site to site. The distribution of m’s between sites in the 
reference group can be described by a Gamma density function with mean E(m) and variance VAR(m). 
 
A more accurate Bayesian estimate of the level of safety at a location can be obtained by combining  the 
initial estimate E(m) and the observed accident rate at a site R using the following equations . This 
procedure will ensure that the true level of safety reflects also the characteristics that are unique to that site. 
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where E’ – the harmonic mean of the exposures (E) of all sites in the reference group. 
 
The true level of safety at a site is a convex combination of the observed accident rate (R) and the 
underlying Gamma mean, E(m). As mentioned before at low levels of exposure the accident rate R, the 
maximum likelihood estimator of m, becomes unstable.  With the Bayesian estimator (Equation 11) the 
significance of R reduce with decreasing values of E while the significance of E(m) increases. Thus when a 
site has a low level of exposure its true level of safety will be closely related to the average level of safety for 
similar locations while the level of safety at a site with a high level of exposure will be closely related to the 
observed accident rate. 
 
To allow for, amongst others, the non-linear nature of safety performance functions Hauer et al.(4) has 
supplemented the empirical Bayesian approach with multivariate modelling techniques. Instead of using data 
from the reference group to calculate E(m) and VAR(m) directly, the data is used to develop a prediction 
model by regressing the observed accident frequency at a site to its traffic flows (AADT’s).   
 
E(m) and VAR(m) are determined from the calibrated accident prediction model. These values are then 
combined with th observed accident frequency at a particular site in order to determine E(m|x) and VAR(m|x) 
using the following equations : 
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where 

 
 
Mountain et al. (12) has indicated how E(m) and VAR(m) can be estimated using an existing prediction 
model without having to go through the multivariate regression exercise. 
 
The methods proposed by Hauer et al.(4), Mountain et al.(12) are all based on an empirical Bayesian 
approach. Since the Bayesian approach estimates and work with true levels of safety the regression to mean 
effect is automatically accounted for.  
 
3. IDENTIFICATION OF ACCIDENT PRONE LOCATIONS 
 
A location can be considered accident prone it experiences an abnormally high accident rate or accident 
potential relative to locations of similar characteristics or relative to a chosen criterion. 
 
The Institution of Highways and Transportation’s 1986 Guidelines refer to four types of accident reduction 
plans ; a) single site (blackspot) plans , b) route action plans (blackroutes), c) area action plans and d) mass 
action plans. 
 
According to Nicholson (15, 16) experience with accident reduction programmes indicates that the expected 
percentage reduction and economic return is higher for site plans than route plans, and higher for route 
plans than area plans. The effectiveness and economic return of an accident reduction plan, however, 
depends on the extent to which accidents are clustered at particular sites or along particular routes or areas. 
The implementation of a single site reduction plan while the level of clustering is low is unlikely to yield better 
benefits then route or area plans. 
 
The higher the level of clustering the more suitable single site plans are, and the less the level of clustering 
the more suitable route and area plans become. Nicholson (15, 16) has developed a number of indices that 
can be used to assess the level of accident clustering. 
 
In choosing an appropriate identification methodology the following issues require consideration. (Deacon) 
 
a) The availability of financial and personnel resources. 
b) The type and availability of non-accident data such as traffic volumes, road geometric etc. 
c) The efficiency of the identification method. An efficient method maximises the probability of identifying a 

truly hazardous location as hazardous, and minimises the probability of identifying a non-hazardous site 
as hazardous. 

d) The method should identify sites that are most correctable using engineering countermeasures and 
which will yield maximum benefits per Rand invested. 

e) The method should be compatible with existing administrative and information systems. 
 
The known methods for identifying hazardous locations can be classified onto the following three broad 
categories: a) Classical Methods, b) Bayesian methods and c) Neural network and fuzzy logic methods. 
 
a) Classical Methods 
 
The most common classical methods to identify accident prone locations are : 
 

• Accident Number 
• Rate method 

• Rate Number method 
• Rate Control method 

 
The Accident Rate method tends to favour locations with low exposures. This could lead to sites with very 
low levels of exposure to be incorrectly identified as accident prone locations. In order to prevent this the 
Accident Rate method is combined with the Accident Number method which  tend to favour high volume 
locations. This method is called the Rate Number method. 
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The Rate Control method involve calculating for each site its critical accident rate. If the observed accident 
rate exceeds the critical rate the location is then tagged as an accident prone location.  
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Rcr - Critical accident rate 
Ra  - Average critical rate of reference group 
EI - Exposure at site i. 
K - Statistical constant = 1.645 for a 95 % degree of confidence. 
 
This equation is based on the assumption that accidents between the sites in the reference group is Poisson 
distributed. It is also assumed that all sites have the same level of safety and that is estimated by Ra . This 
assumption is only valid if the dispersion factor k ( see Equation 5) is equal to zero, which would be the case 
if there is a large degree of similarity between the sites. If k > 0 then the accidents are distributed according 
to the Negative Binomial distribution and equation becomes invalid. 
 
 
b) Bayesian methods  
 
Bayesian methods basically involves determining the pdf’s (probability density functions) of E(m) and E(m|x, 
E) and then determining P{E(m|x, E) > E(m)}. If this probability exceed say 95 % then the site is considered 
hazardous. 
 
Bayesian methods have been shown to be more efficient (). I.e. it produces less false negatives (the no. of 
truly hazardous sites  not selected), more true positives ( the no. of truly hazardous selected) and less false 
positives ( the number of non-hazardous sites selected). 
 
c) Neural network and fuzzy classification techniques 
 
This method utilise safety experts’ knowledge to classify accidents according to their contributing factors and 
causes into the three road system components (vehicles, driver and road environment. The membership of 
each accident in the road environment component was used as a measure of accident correctability by road 
improvement. 
 
The advantage of this method is its ability to identify accident prone locations that are most promising to be 
treated by road improvements, thus increasing the potential effectiveness of safety improvements. 
 
 
4. PRIORITISATION 
 
Once a list of APL’s have been identified the next step is to investigate and identify appropriate and cost 
effective solutions to the safety problems at each site on the list. The investigation of and the implementation 
of remedial measures obviously consume resources. To maximise the benefit from using resources it is 
important to focus on those locations with the highest potential for accident reduction. 
 
A common approach is to list locations according their accident rates. According to McGuigan(10) using the 
accident rate produce a list of blackspots that are biased towards low accident totals and low traffic usage 
(exposure) at which the scope for accident reduction is severely restricted.  
 
An important principle to remember is that accident rates, or other measures of safety, can only be compared 
if there exist  a reasonable expectancy of equality between sites. The fact that a 4-legged intersection has a 
higher accident rate than a 3-legged intersection does not mean that the 4-legged intersection is a better 
candidate for remedial action. The accident rate for a 4 legged intersection is logically expected to be higher 
than that of a 3-legged intersection because of the higher number of conflicts at a 4-legged intersection. 
 
If the ‘blackspot’ list consist of locations where the ‘expectancy of equality’ principle is not valid the accident 
rate cannot be used to prioritise the sites. 
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What makes a site more suitable than another for remedial action is the extent to which its level of safety 
exceeds the average of all similar locations.  
 
There are two ways in which this could be measured : 
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Another useful ranking criterion is the PAR (Potential Accident Reduction) :  
 

ii ESPAR *1=  
 
The PAR is not a direct measurement of cost effectiveness since it does not include for the cost of remedial 
measures. It does however provide a strong indication of the potential benefit that can be obtained from 
applying remedial measures. 
 
5. EVALUATION OF REMEDIAL MEASURES 
 
The evaluation of safety improvements is considered a vital component of safety management. The 
objectives are to establish the effectiveness of improvements and develop accident warrant guidelines, both 
of which are required to make safety decisions and to set priorities. 
 
The evaluation of a remedial measure has two main objectives : 
• Estimating the effectiveness of a treatment i.e. the degree to which safety improved. 
• Estimating the efficiency of a treatment i.e. the degree to which the treatment was economically feasible. 
 
An effective treatment is not always an efficient treatment. 
 
Determining the effectiveness of an treatment requires first of all an estimation of what the level of safety 
would have been had no remedial measures been undertaken. This level of safety is then compared to the 
observed level of safety after treatment. The general approach is to estimate the ‘what would have been’ 
level of safety by determining the level of safety before treatment, and then to assume that this level of safety 
would have continued to prevail had no treatment taken place. 
 
The Accident Reduction Factor (ARF) is determined by the difference between the expected ‘before’ level of 
safety and the expected ‘after’ level of safety divided by the expected ‘before’ level of safety. 
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5.1 METHODOLOGICAL ISSUES 
 
i) After the implementation of an engineering measure there is often a ‘settling in’ period in which the 

traffic adjust to the ‘new’ environment. To eliminate the bias that this could introduce the treatment 
year is normally excluded from the analysis. 

 
ii) Because locations are selected for treatment on the basis of an abnormally poor level of safety 

during the ‘before’ period, the regression-to-mean effect could cause safety effects to be significantly 
overestimated. 

 
iii) To eliminate the regression-to-mean effect and to account for changes in external factors between 

the ‘before’ and ‘after’ periods most evaluation methods make use of a reference group of untreated 
sites similar to the site under investigation. 

 
iv) The successful treatment of a site could cause the accidents at adjoining sites to increase. This is 

called accident migration. One explanation put forward to explain this phenomenon is that drivers 
compensate for the reduction in risk produced by an treatment by behaving in a more risky manner 
e.g. higher speed, reduced caution etc. This effect could be global or local. Global compensation 
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would redistribute the accidents over the whole network in a manner that is virtually undetectable, 
whereas local compensation simply reduce the saving at the treated site itself. 

 
v) The effect of an engineering countermeasure/s could decay over time, which if not accounted for, 

could lead to an underestimation of the true safety effect. It must be decided beforehand whether the 
decay effect or a portion thereof should form part of the treatment effect or whether it should be 
excluded. 

 
vi) Improved sites could generate or attract traffic from other sites in the network. This increase in 

exposure could lead to an increase in accidents, which if not accounted for could cause the true 
effect to be underestimated. There is a school of thought that since the increase in exposure is a 
direct consequence of the treatment that the increase in exposure should not be taken into account. 

 
vii) The magnitude of the safety effect at site could be a function of the level of safety at that site before 

improvements were undertaken. This is an important consideration in determining the safety effect of 
treatments that were applied to ‘safe’ and ‘unsafe’ sites alike e.g. large scale resurfacing 
programmes. The safety effect of a remedial measure is best determined by only analysing locations 
with an abnormally poor level of safety. 

 
viii) The effect of external influences e.g. changes in legislation, law enforcement programmes, change 

in speedlimit, routine maintenance, etc. could compromise the validity and reliability of the results 
obtained from a before and after study. 

 
5.2 EVALUATION METHODS 
 
The known evaluation methods can be categorised as either a) conventional, or b) Bayesian in nature. 
 
a) Conventional 
 
The most common conventional methodologies are the a) simple before-and-after , and the b) before-and 
after with comparison group methods.  
 
It has been shown that because of the regression-to-mean effect the simple before-and-after method 
consistently overestimates the true safety effect, especially if periods of less that 5 years are used for the 
before and after periods respectively. The method becomes more reliable when periods of 5 yeas and longer 
is used, but can be seriously compromised by temporal changes in the operational and environmental 
characteristic if the site and its surroundings. 
 
According to Al-Masaeid (1) the theoretical basis of the before-and-after with comparison group method is 
theoretically sound (provided that the study site is similar to the comparison groups in all respects; accident 
history, geometric characteristic and operational characteristics. Using sites with similar geometric and 
operational characteristic but dissimilar levels of safety will cause that the RTM effect to remain unaccounted 
for. In such cases Bayesian methods are used to determine the RTM effect, which is then combined with the 
results of the ‘before-and after with comparison group’ study to get a better estimate of the true effect.  
 
This method make use of an control ratio C to predict what the number of accidents would have been had no 
remedial measures been undertaken. The control ratio is determined by the ratio of the number of ‘after’ 
accidents to the number of ‘before’ accidents for the control group. 
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This method assumes that changes in the level of exposure as a result of the remedial action equals the 
change in the exposure of the control group over the same period. 
 
b) Bayesian Methods 
 
The Bayesian procedure involves estimating the true ‘before’ accident rate , E(mb|xb, Eb), and its pdf as well 
as the true ‘after’ accident rate E(ma|xa, Ea) and its pdf. Having knowledge on the respective pdf’s of E(mb|xb, 
Eb) and E(ma|xa, Ea) allow for the accurate determination of P(ma < mb) 
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Bayesian methods are considered superior to the conventional methods for the following reasons : 
 
i) The regression-to-mean effect is automatically accounted for. 
ii) Less accident information (at least 2 years) is required. 
iii) The reference group is used to determine the parameters of the prior distribution, and as these are 

updated with site information to obtain the posterior parameters, the significance of the prior 
parameters decrease. This has the implication that the criteria for selecting comparison groups can 
be relaxed compared to the requirements of the before-and after method with comparison groups. 

iv) The output from the Bayesian methods allow for statistical inferences to be made on the estimated 
value of the ARF. 

v) In the complete absence of a suitable reference group accident models can be used. 
 
6. CONCLUSION 
 
To be effective an accident remedial scheme requires the systematic analysis of accident data during each 
phase of the process – identification, prioritisation and evaluation. This paper presented some general 
guidelines on how the analysis of accident data could be undertaken to first of all measure true levels of 
safety and how to use this information to identify, prioritise and evaluate accident prone locations. 
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