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SUMMARY 

 

Chronic obstructive pulmonary disease (COPD) is a leading cause of death and is highly 

prevalent in South Africa (19% in adults over the age of 40 years). Inflammation of the lungs 

in COPD impairs the immune response and allows colonisation and infection with bacteria and 

viruses, that may cause exacerbations of the disease. 

 

Culture-independent technologies have greatly increased the understanding of the lung 

microbiome. The most widely used method for targeted metagenomics is 16S rRNA 

sequencing. The IS-Pro (intergenic spacer profiling) method provides an alternative targeted 

metagenomics approach; however, the two methods have not been compared. 
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There is limited data on the microbiome in the lungs of COPD patients in Africa. Due to local 

environmental conditions, immunological differences and clinical comorbidities, such as HIV, 

the microbiome may be different from that reported in studies from other countries. The purpose 

of this study was to identify the lung microbiome and lung virome in COPD patients in South 

Africa and to determine if the COPD disease states result in differences in its composition. 

Next-generation sequencing was used to determine the microbiome and virome of COPD 

patients from hospitals in Pretoria, South Africa and the IS-Pro method was compared to 

targeted metagenomics. 

 

Twenty-four patients over the age of 40 years with a confirmed COPD diagnosis and no 

Mycobacterium tuberculosis infection were included; eighteen were in the stable state of 

diseases and six were in the exacerbation state of disease. Sputum specimens were collected 

from all consenting participants and DNA and RNA were extracted directly from the specimens 

using commercial kits. The extracted bacterial DNA was sent for targeted metagenomics and 

the IS-Pro method and the extracted viral DNA and RNA were sent for shotgun metagenomics 

sequencing.  

 

The lung of the COPD participants showed a diverse microbiome with over 77 genera identified 

and the Firmicutes phylum predominating. When the stable and exacerbation states of COPD 

disease were compared, no significant differences in the alpha and beta diversity between the 

disease states were observed. However, during exacerbation state of the disease, the abundance 

of key phyla had decreased. Analysis of the virome showed a high prevalence of BeAn 58058, 

a close relative of the smallpox virus, with bacteriophages being the second most prevalent 

viruses. 

 

When comparing the IS-Pro method to targeted metagenomics, an increased relative abundance 

of Proteobacteria with the IS-Pro method was observed, which was attributed to known lung 

pathogens, such as Burkholderia. The IS-Pro method was able to classify more operational 

taxonomic units (OTUs) to a species level, however, the unclassified OTUs from the IS-Pro 

method could only be classified to a phylum level.  

 

To conclude, a diverse COPD microbiome was observed, with a virome that was dominated by 

the BeAn 58058 virus. The COPD disease states showed no variations in terms of diversity, 

however, the relative abundances of key phyla differed between disease states for the bacterial 
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microbiome. Future studies should focus on longitudinal studies of the sputum microbiome in 

an African setting as well as functional metatranscriptomics studies with a focus on antibiotic 

resistance and virulence factors. 

 

506/500 words 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction  

Chronic obstructive pulmonary disease (COPD) is a lung disease that is characterised by 

progressive airflow limitation (Simpson et al., 2016). This disease is one of the world’s leading 

causes of death, with the vast majority (90%) of deaths occurring in low- and middle-income 

countries (Lalloo et al., 2016). Most of these deaths could be attributed to the South Asia region, 

with 81.2 deaths per 100 000 individuals attributed to COPD (Soriano et al., 2020). South 

Africa ranks amongst the countries with the highest prevalence of COPD (>19% in adults over 

the age of 40 years), however, this information is over ten years old and as only one city was 

studied, the prevalence is not representative of the entire country (Buist et al., 2007; Viviers 

and Van Zyl-Smit, 2015). The increased incidence of COPD risk factors in this city i.e. Cape 

Town suggest that this prevalence is higher than the general South African prevalence (Abdool-

Gaffar et al., 2019). Regardless, data suggest that the worldwide prevalence may increase in 

the coming years due to increased exposure to risk factors, such as smoking (not as important 

in South Africa; fewer people are smoking), indoor air pollution and genetic factors (van 

Gemert et al., 2011). Additionally, in South Africa, other factors contribute to COPD 

prevalence such as tuberculosis (TB), exposure to mining and human immunodeficiency virus 

(HIV) (Allwood and van Zyl-Smit, 2015). In South Africa, the high burden of HIV (20.4% 

amongst adults between the ages 15 and 49 years old) increases the risk of TB and is associated 

with a decline in lung health (Lalloo et al., 2016; UNAIDS, 2020). With the increased use of 

antiretroviral therapy (ART), HIV-positive individuals live longer and has a higher lifetime 

exposure risk to factors that contribute to COPD (Lalloo et al., 2016). In South Africa, 

approximately 3.7 million people are using ART (PEPFAR, 2020).  

 

Chronic obstructive pulmonary disease (COPD) is characterised by progressive airway 

obstruction (Lee et al., 2016; Macnee et al., 2016). Diagnosis of COPD is done using spirometry 

(to determine lung function) (Global Initiative for Obstructive Lung Disease, 2019). Spirometry 

is a method whereby the volume of air that a patient can expel from the lungs (after inhalation) 

is measured (Global Initiative for Obstructive Lung Disease, 2019). The forced expiratory 

volume in one second (FEV1)/forced vital capacity (FVC) ratio, with a value below 0.7 is used 

to establish COPD diagnosis (Vogelmeier et al., 2017). The spirometry is used to classify the 
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different stages of COPD as follows: i) mild/Global Initiative for Obstructive Lung Disease 

(GOLD) 1 (FEV1% ≥80), ii) moderate/ GOLD 2 (FEV1% between 50 and 79), iii) severe/ 

GOLD 3 (FEV1% between 30 and 49) and iv) very severe/ GOLD 4 (FEV1% <30) (Vogelmeier 

et al., 2017). Differential diagnosis between COPD and other lung diseases is usually done 

through the use of chest computed tomography (CT) (Global Initiative for Obstructive Lung 

Disease, 2019). 

 

One of the key features of COPD is the inflammation of the airways (Cullen and McClean, 

2015; Fan et al., 2016). Like other diseases causing airway inflammation, such as cystic fibrosis 

(CF), this inflammation facilitates colonisation of the lungs by microorganisms such as bacteria 

and viruses, partially due to impaired local immune response (Molyneaux et al., 2013; Cullen 

and McClean, 2015). Inflammation of the lungs in COPD can cause bronchiolitis (by affecting 

the small airways), chronic bronchitis (by affecting the large airways) or emphysema (by 

affecting lung parenchyma) (MacNee, 2006; Macnee et al., 2016; Global Initiative for 

Obstructive Lung Disease, 2019). 

 

During COPD, there are points where the patients experience a worsened state of disease 

(Miravitlles and Anzueto, 2015). This worsened state can present as either respiratory or non-

respiratory symptoms (such as fatigue and malaise) and is referred to as an exacerbation (Pavord 

et al., 2016). These exacerbations are often triggered by a bacterial infection, viral infection or 

bacterial-viral co-infection (Aaron, 2014; Shimizu et al., 2015; Bellinghausen et al., 2016). The 

exacerbations caused by bacteria are often due to the acquisition of a new strain of the 

colonising bacteria entering the lung, e.g. a new Pseudomonas aeruginosa strain enters the lung 

that is already colonised with P. aeruginosa, causing an exacerbation (Aaron, 2014). Bacteria 

and viruses have been detected in stable COPD patient as well, however, the role that these 

microorganisms play in stable state COPD is unclear (Doring et al., 2011; D'Anna et al., 2016). 

To provide clarity on the issue of colonisation (the roles of bacteria in disease have not yet been 

elucidated) vs infection (cause inflammation and damage) in these patients (as well as other 

chronic lung diseases), Leung et al. (2017) have defined colonisation as the presence of 

microorganisms in the absence of infective symptoms. 

 

While some viruses have been detected during the stable state of COPD, the majority of viruses 

have been detected as aetiological agents during exacerbations (D'Anna et al., 2016). The most 

commonly isolated viruses (during exacerbations) are the rhinoviruses, however, other viruses 
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such as adenovirus, coronavirus, influenza viruses, metapneumovirus, parainfluenza virus and 

respiratory syncytial virus have been detected (Doring et al., 2011; Cullen and McClean, 2015; 

D'Anna et al., 2016). The majority of these viruses have been identified using virus-specific 

targeted polymerase chain reaction (PCR)-based techniques; these can only detect known 

viruses and as such the true viral community within the COPD lung may be unknown (Willner 

et al., 2009).  

 

The lung microbiome has been studied in a variety of patient groups including those with 

asthma, CF and HIV infection as well as in healthy individuals (Sze et al., 2014; Boutin et al., 

2015; Huang and Boushey, 2015; Twigg et al., 2017). The COPD lung microbiome has been 

investigated as well and studies have shown that the Proteobacteria phylum predominates in 

COPD lung, while the Bacteroidetes phylum predominates in healthy individuals (Sze et al., 

2014; Dickson and Huffnagle, 2015; Huang and Boushey, 2015). Studies of the lung 

microbiome of HIV infected individuals have shown an increased prevalence (53.7% of 82 HIV 

infected individuals across six research sites) of Tropheryma whipplei (a microorganism 

associated with the gastrointestinal tract), compared to HIV uninfected individuals (23.4% of 

77 HIV uninfected individuals across six research sites) (Lozupone et al., 2013; Twigg et al., 

2017). Studies that compared the lung microbiome in “healthy” HIV-positive and HIV-negative 

individuals in the absence of lung disease observed that the lung microbiome was 

indistinguishable between the two groups (Twigg et al., 2017). However, as HIV infection 

progresses (in the absence of ART) a decrease in microbial diversity has been noted (Twigg et 

al., 2017). This pattern of decreased microbial diversity in advanced stages of the disease has 

also been seen in advanced CF and COPD (Mammen and Sethi, 2016). Studies done on the 

exacerbation state of COPD infection have shown that there is no significant change in alpha 

diversity of the bacterial population in the COPD lung (Dickson et al., 2014; Sze et al., 2014; 

Mammen and Sethi, 2016). However, a change in abundance of certain phyla such as 

Proteobacteria was noted (Dickson et al., 2014; Sze et al., 2014; Sze et al., 2015; Mammen 

and Sethi, 2016).  

 

The microbiome in COPD and other disease states has been elucidated using technologies such 

as real-time PCR assays, restriction fragment length polymorphism and sequencing (both 

Sanger and next-generation sequencing) (Zakharkina et al., 2013; D'Anna et al., 2016). The 

majority of these methods target the 16S rRNA gene, a gene which is conserved across all 

bacteria (Williams, 2013; Zakharkina et al., 2013; Dickson et al., 2014; D'Anna et al., 2016). 
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The hypervariable regions of the 16S rRNA gene are used, with hypervariable regions V1-V3 

and V3-V5 being used most often (Cui et al., 2014).  

 

Another region which has been targeted in microbiome studies is the intergenic spacer (IS) 

region between the 16S rRNA and 23S rRNA genes (Budding et al., 2016). This IS region is 

polymorphic and as it is present in all bacterial species, it makes it the target of choice for 

methods such as the IS-Pro (intergenic spacer profiling) method (Budding et al., 2016). The IS-

Pro method is a bacterial profiling method, which is based on the polymorphism in length and 

sequences of the IS region and can identify bacteria by comparing the profile generated against 

a reference database (Budding et al., 2010; Budding et al., 2016). This method can detect and 

identify bacterial species regardless if there are single-species or if part of a complex 

microbiome (Budding et al., 2016). The advantage of this method is that it has a faster 

turnaround time and is less technically complex (more user-friendly) than targeted 

metagenomics (16S rRNA sequencing) (Budding et al., 2016). The IS-Pro method has not been 

used to study the lung microbiome but has been used successfully to study faecal, intestinal, 

urogenital and vaginal microbiomes (Daniels et al., 2014; de Meij et al., 2016; Koedooder et 

al., 2018; Koedooder et al., 2019). 

 

While, bacteria, fungi and viruses have been shown to influence the course of diseases, such as 

COPD, the majority of studies done on the “microbiome” have focused solely on the bacterial 

microbiome and not the fungal (mycobiome) and viral microbiome (also known as the virome) 

(Cabrera-Rubio et al., 2012; Molyneaux et al., 2013; Williams, 2013; Zakharkina et al., 2013; 

Huang et al., 2015; Sze et al., 2015; D'Anna et al., 2016).  

 

While studies have been done on detecting viruses in COPD, most of these studies have been 

done using PCR and on only a select few viruses (Molyneaux et al., 2013). The reason for this 

is that PCR requires prior knowledge of the sequence of the intended target (Wylie, 2017). The 

use of next-generation sequencing (NGS) removes this bias and can identify previously 

unknown viruses (Wylie, 2017). However, even with NGS, studying the virome can be 

challenging. One of the reasons is that viruses are more challenging to identify, in part due to a 

lack of a consensus sequence that can be used as a target for amplification (of the viral 

sequences); both bacteria and fungi have the 16S rDNA and the internal transcribed spacer 

(ITS) regions, respectively that are universal sequences that are present in all organisms 

(Williams, 2013; Wang, 2020). Two ways have been used to overcome this problem: i) shotgun 
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metagenomic sequencing i.e. sequencing all DNA within a sample, no matter its origin (whether 

bacterial, viral or human) and ii) purifying the viruses (before extraction) through size-filtration 

or density-screening (Williams, 2013). Another challenge is the diversity of the viruses that are 

capable of infecting humans, as viruses can be either DNA or RNA viruses (International 

Committee on Taxonomy of Viruses, 2011; Cadwell, 2015). The DNA viruses can be either 

double-stranded (dsDNA) viruses, single-stranded (ssDNA) viruses or reverse transcriptase 

DNA viruses (International Committee on Taxonomy of Viruses, 2011). The RNA viruses are 

complex that in addition to double-stranded (dsRNA) and reverse transcriptase RNA viruses, 

the single-stranded (ssRNA) viruses can be either positive sense or negative sense viruses 

(International Committee on Taxonomy of Viruses, 2011). The majority of viruses that infect 

COPD patients belong to the positive and negative sense ssRNA virus groups (Buss and Hurst, 

2015). To ensure that all ssRNA viruses are sequenced using NGS, the ssRNA is converted to 

complementary DNA (cDNA) and then to double-stranded DNA (Lysholm et al., 2012). While 

these methods have not been used to study the virome in COPD, they have been successfully 

used in CF (Lim et al., 2013).  

 

In South Africa, there is no data on the lung microbiome composition of COPD patients. Studies 

have been done on the COPD microbiome in countries such as Spain and the USA, however, 

the microbiome found in these other countries may not be the same as in South Africa (Cabrera-

Rubio et al., 2012; Dickson et al., 2014; Sze et al., 2015). Variables such as the local 

environmental conditions and other clinical comorbidities such as HIV and TB infection have 

the potential to affect the microbiome composition (Cabrera-Rubio et al., 2012; Dickson et al., 

2014; Sze et al., 2015). Several studies have focused on the lung microbiome in HIV patients, 

however, none of these studies recruited COPD patients, none of these studies were conducted 

on the African continent and none of them compared HIV-positive and HIV-negative patients 

(Williams et al., 2016). Thus, it is unknown what potential effect the HIV status of a patient 

can have on the microbiome in COPD patients. The purpose of this novel study is to determine 

the effect that HIV status has on the lung microbiome during stable and exacerbation states of 

COPD and to determine the effect that viruses (the virome) have on the composition of the 

bacterial lung microbiome in these COPD patients. 
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1.2. Aim 

The aim of this study was to identify and determine the variations in the lung microbiome (using 

next-generation sequencing and the IS-Pro method) and virome (using next-generation 

sequencing) in COPD patients with and without HIV infection in Pretoria, South Africa. 

 

1.3. Objectives 

The objectives of this research study were: 

 

• To collect sputum specimens from COPD patients with and without HIV infection in 

stable and exacerbation states of disease from lung and HIV clinics at a tertiary 

academic hospital (20 individuals in each of the four groups) 

• To determine and compare the composition of the bacteria present in the lung 

microbiome of COPD patients in the four groups, using a subset of a minimum of five 

patients per group, using next-generation sequencing  

• To determine and compare the composition of the bacteria present in the lung 

microbiome of COPD patients in the four groups, using the IS-Pro method 

• To determine if the virome has an effect on the lung microbiome composition in stable 

and exacerbation states of disease and in the context of HIV infection, using a subset of 

a minimum of five patients per group 
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CHAPTER 2 

LITERATURE REVIEW 

 

(Excerpts from Chapter 3 that was submitted as a review article can be found in Chapter 2) 

 

2.1 Introduction 

Microorganisms are ubiquitous and can be found everywhere (Barton and Northup, 2011). The 

study of these microorganisms and their environments has been termed microbial ecology 

(Barton and Northup, 2011). There are several different approaches (e.g. culture) to studying 

the microbial community structure in different environments, with molecular-based approaches 

being the most popular (Barton and Northup, 2011). According to Bikel et al. (2015), a 

microbiome can be considered as an ecological community (or an ecosystem) with multiple 

microorganisms interacting with each other and their environment. The composition of the 

(microbial) ecosystem in the human body is highly adaptive (changing as needed in response 

to outside influences), dependent on host genetics (as well as anatomical and physiological 

characteristics) and can be influenced by lifestyle choices (e.g. diet) and the environment 

(McDonald et al., 2015; Lloyd-Price et al., 2016; Marimón, 2018). Any change that disrupts 

the physiological microbial community, a term referred to as dysbiosis, can potentially 

influence the health of an individual and may cause a disease phenotype as a result (Lloyd-Price 

et al., 2016).  

 

Chronic obstructive pulmonary disease (COPD) is a disease that is influenced by microbiome 

alterations (Shukla et al., 2017). The disease is characterised by persistent airway obstruction 

and inflammation of the lungs (Celli et al., 2004; Global Initiative for Obstructive Lung 

Disease, 2019). Chronic obstructive pulmonary disease ranks as the fourth of the leading causes 

of deaths worldwide (Lopez-Campos et al., 2016). Even though the African continent has a 

lower life expectancy (than Europe and the USA), due to risk factors including smoking, 

inhalation of biomass fuels fumes and HIV infection, which are prevalent in Africa, COPD can 

be considered a public health concern on the African continent (Adetunji and Bos, 2006; Sze et 

al., 2012; Lalloo et al., 2016; Macnee et al., 2016; Pefura-Yone et al., 2016).  

 

 
 
 



15 

 

This review aimed to increase the understanding of the human microbiome and COPD. Key 

areas of research that will be discussed including the different methods used to study the 

microbiome.  

 

2.2 Overview of the human microbiome 

The human microbiome can be defined as all the microorganisms present in and around the 

human body (including archaea, bacteria, fungi, protozoans and viruses) along with their 

genetic material (i.e. genomes) (Human Microbiome Project, 2012; Martin et al., 2014; 

Marchesi and Ravel, 2015; Mammen and Sethi, 2016). However, this definition of the 

microbiome has been disputed, with the argument being that the environmental conditions 

surrounding a habitat (e.g. the human body) form part of the microbiome (Marchesi and Ravel, 

2015). The argument is that the definition of a “biome” includes both biotic (living) and abiotic 

(non-living) factors (Marchesi and Ravel, 2015). Marchesi and Ravel (2015) argue that the 

microorganisms along with their genetic material should be referred to as the metagenome and 

only when this metagenome is combined with the environment should the term microbiome be 

used (Marchesi and Ravel, 2015). In this literature review, the term microbiome will be used to 

describe the microorganisms found in the human body. 

 

The human body has been estimated to house over 10 trillion microbial cells, with bacterial 

cells predominating (Savage, 1977; Ursell et al., 2012; Martin et al., 2014). It has been 

postulated that the human microbiome has co-evolved with the human body, with these 

microorganisms performing essential functions for the human host, including the development 

of the immune system (Hooper and Gordon, 2001; Bäckhed et al., 2005; Gill et al., 2006; 

Martin et al., 2014; Mammen and Sethi, 2016). It had been previously estimated that for every 

human cell in the human body, there are a million bacterial cells (Sze et al., 2014). Recent data 

shows that it is a vast overestimation and the ratio is closer to 1:1, however, the number of 

bacteria in the human body still outnumber other microorganisms, such as fungi and archaea 

(Sender et al., 2016). As a result, the term microbiome is often used to describe the bacterial 

cells and their genomes (the bacteriome) instead of the full microbiome (Zaura et al., 2014).  

 

The earliest microbiome studies have been attributed to Antonie van Leeuwenhoek in the 1680s 

(Porter, 1976; Ursell et al., 2012). In these studies, van Leeuwenhoek observed and compared 

what he termed “animalcules” (Porter, 1976; Ursell et al., 2012). He collected several different 

types of specimens including saliva, teeth scrapings and stool samples not only from himself 
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but from other people as well (van Leeuwenhoeck, 1677; van Leeuwenhoek, 1682; 

Leevvenhoeck, 1684; Dobell, 1920; Porter, 1976; Ursell et al., 2012). Research of the human 

microbiome continued (focusing on the gastrointestinal tract), with several articles published in 

the 1970s (summarised in a review by Savage in 1977) (Savage, 1977; Goodrich et al., 2014). 

While van Leeuwenhoek used microscopy to study the microbiome, these studies used culture 

techniques instead (Savage, 1977). In 1977, Woese and Fox were able to use 16S rRNA 

sequencing to differentiate bacteria phylogenetically, paving the way for future microbiome 

studies (Woese and Fox, 1977; Biteen et al., 2016). Recent advances in DNA-based 

technologies resulted in the scope and scale of these projects increasing (Goodrich et al., 2014; 

Mammen and Sethi, 2016). However, human microbiome projects focus primarily on the 

gastrointestinal tract (the gut) and there is no known consortium on the lung microbiome. 

Research into the lung microbiome has lagged behind other body sites (especially the 

gastrointestinal tract), in part due to a past hypothesis that stated that the healthy lung is a sterile 

body site and colonisation of the lung only occurs in disease (Charlson et al., 2011; Mammen 

and Sethi, 2016). The first article published regarding the microbiome of the lung was in 2003 

and focused on the lung disease, cystic fibrosis (CF) (Rogers et al., 2003). In comparison, 

studies were done on the gut microbiome using molecular techniques as early as in 1996 

(Wilson and Blitchington, 1996; Vaughan et al., 2000; Zoetendal et al., 2004). 

 

2.3 Methods used to study the microbiome 

Microbiomes, including the human microbiome, were previously studied using culture-based 

techniques (Mitchell and Glanville, 2018). These techniques have been proven to be unreliable 

as less than 1% of all bacteria can be cultured (Mammen and Sethi, 2016). However, Lau et al. 

(2016) were of the opinion that due to molecular methods being unable to distinguish between 

viable and non-viable cells, culturing of microorganism is still the best option (Lagier et al., 

2012; Lau et al., 2016). These scientists proposed the use of enrichment steps and diverse 

culture conditions to elucidate the microbiome, using what has been termed “culturomics” 

(Lagier et al., 2012). However, the use of culturomics, (especially in a diagnostic setting) can 

often be time-consuming and expensive, particularly for polymicrobial infections (Boase et al., 

2013). Additionally, culture-based methods are unable to detect viable but non-culturable 

bacteria (VNBC), fastidious microorganisms and viruses (that require tissue culture) using 

conventional culture media (Hodinka, 2013; Zhao et al., 2017; Mobed et al., 2019). Culture-

independent methods, such as sequencing, on the other hand, are quicker (than culture-

dependent methods; that take hours as opposed to days) and are becoming increasingly cheaper 
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and therefore may be more suitable in a diagnostic setting (Pallen et al., 2010; Wang and 

Salazar, 2016). Culture-independent methods, used to study the microbiome can follow one of 

two approaches: i) a targeted approach (i.e. targeted metagenomics), where a specific region of 

the microbial genome is targeted, e.g. 16S rRNA or intergenic spacer (IS) region, or ii) a 

shotgun metagenomic approach, where all microbial genetic material is sequenced (Thurber et 

al., 2009; Wommack et al., 2012).  

 

2.3.1 Targeted approach to study the microbiome 

Using a targeted approach to study the microbiome is not a new concept and has been used 

since the late 20th century (in the 1970s and 1980s) (Hiergeist et al., 2015). Fluorescence in situ 

hybridisation (FISH) was one of the first molecular techniques used to study the gut 

microbiome, by using specific probes to target a region of DNA such as the 16S rRNA region 

of bacteria in faecal samples (Franks et al., 1998; Morgan and Huttenhower, 2012; Hiergeist et 

al., 2015; Lloyd-Price et al., 2016). Other approaches that have been used to study the 

microbiome include i) denaturing gradient gel electrophoresis (DGGE), ii) microarrays and iii) 

terminal restriction length polymorphisms (T-RFLP) (Table 2.1) (Hiergeist et al., 2015; Huang 

et al., 2017). However, the most popular approach to studying the microbiome is sequencing. 

(Hermann-Bank et al., 2013; Hiergeist et al., 2015; Hill et al., 2016). Previously the Sanger 

sequencing method was used but this has now been replaced with next-generation sequencing 

technologies (NGS) (Hermann-Bank et al., 2013; Hiergeist et al., 2015; Hill et al., 2016). 

 

Table 2.1:  Alternative methods to sequencing that have been used to study the 

microbiome 

Method Description References 

DGGE PCR is used to target a specific region e.g. 16S rRNA with primers that 

have GC-rich tails and are run on a gel with a denaturing (chemical) 

gradient. The fragments will separate based on the %GC content and 

sequence; each band on the gel should correspond to a species 

(Strathdee and Free, 

2013; Hill et al., 2016) 

T-RFLP Targets the 16S rRNA sequence as well, however, it utilises 

fluorescently labelled primers to target the sequence and is digested 

with restriction enzymes, followed by capillary electrophoresis 

(Huang et al., 2017) 

Microarrays Utilise fluorescent probes to target known sequences (Hill et al., 2016) 

Quantitative 

PCR (qPCR) 

Real-time PCR utilises probes to detect a fluorescence signal. The 

intensity of the signal is dependent on the amount of amplicon i.e. 

specific region of DNA that is targeted 

(Hermann-Bank et al., 

2013; Hill et al., 2016; 

Kralik and Ricchi, 

2017) 
DGGE: Denaturating gradient gel electrophoresis 

DNA: Deoxyribonucleic acid 

PCR: Polymerase chain reaction 
RNA: Ribonucleic acid 

T-RFLP: Terminal restriction length polymorphisms 
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Most of these culture-independent approaches (particularly NGS approaches) have focused on 

using the 16S ribosomal RNA (rRNA) gene region as a target (also known as the small subunit 

(SSU) rRNA) (Kembel et al., 2012; Martin et al., 2015). Ribosomal RNA is useful for 

determining phylogenetics as this protein is present in all forms of prokaryotic (as 16S rRNA) 

and eukaryotic organisms (as 18S rRNA) i.e. it is universal, is easily isolated and is highly 

conserved (i.e. the sequences and the length of the genes change very little with time) (Woese 

and Fox, 1977; Gürtler et al., 2014; Hiergeist et al., 2015). The 16S rRNA gene can be found 

as part of the ribosomal RNA (rrn) operon, together with 23S rRNA and 5S rRNA genes and 

intergenic spacer (ITS) regions (Gürtler et al., 2014).  

 

The 16S rRNA gene region is ideal for quantifying the microbiome as it has both conserved 

and hypervariable regions (Kembel et al., 2012; Marsland et al., 2013; Hiergeist et al., 2015; 

Amato, 2017). To date, nine hypervariable regions within the 16S rRNA gene have been 

identified and are commonly referred to as V1-V9 (Mammen and Sethi, 2016; Nguyen et al., 

2016; Amato, 2017). None of these hypervariable regions can distinguish all bacteria (from 

each other), however, some show more promise than others (Tremblay et al., 2015; Mammen 

and Sethi, 2016; Amato, 2017). Two sets of regions are popular and have been used in 

microbiome studies: i) The V1-V3 region and ii) V3-V4 region (region of choice for the 

Illumina platforms, as per the manufacturer’s advice) (Tremblay et al., 2015; Mammen and 

Sethi, 2016; Amato, 2017). 

 

Primers are designed to bind to the conserved regions of DNA, however the amplicons 

produced need to span across the hypervariable regions to be discriminatory (Hiergeist et al., 

2015; Amato, 2017). Selecting which the primer pair should be used for a study is dependent 

on not only the coverage that the primer pair offers but also on the sequence length that is 

required (Parada et al., 2016). The sequence length required is platform-dependent; e.g. PacBio 

(Pacific Biosciences, USA) can sequence the entire 16S rRNA gene (PacBio generates long 

reads up to 20 kb and the 16S rRNA gene is 1 550 bp) and may therefore use different primers 

than MiSeq (Illumina, USA), which is only able to run short reads (150 bp to 350 bp) (Clarridge, 

2004; Rhoads and Au, 2015; Amato, 2017; Faner et al., 2017; Pollock et al., 2018). The 

incorrect selection of primers could lead to bias against a species or even an entire phylum 

(Klindworth et al., 2013; Tremblay et al., 2015). The choice of primers has a significant impact 

on a dataset and if different primers are used to study the same microbiome, different datasets 

(for each primer pair) may occur which can significantly impact the results (relative abundances 
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may be different or may cluster differently) to the point, where studies using different primer 

pairs cannot be compared to each other (Tremblay et al., 2015; Hiergeist et al., 2016). 

 

Regardless of the advances, NGS has allowed a better understanding of the microbiome, 

however, its use in diagnostic settings are currently not feasible (Hamady and Knight, 2009; 

Budding et al., 2016). While the cost of NGS has decreased significantly (due to newer 

technologies that can read more base-pair sequences in a single run and are more accurate), it 

is still relatively expensive to be used in a clinical diagnostic setting (as part of routine 

diagnostics), especially in resource-limited settings (Hamady and Knight, 2009; Budding et al., 

2016; Goodwin et al., 2016; Boers et al., 2019; Avila-Rios et al., 2020). Additionally, NGS 

generates large amounts of data, which requires bioinformatics analysis by trained personnel 

and is time-consuming and can cause a delay in the time to results (Hamady and Knight, 2009; 

Budding et al., 2016). Fingerprinting (or profiling) techniques provide an alternative solution 

to this problem by reducing cost and (sometimes) saving time (Daniels et al., 2014). While 

there are several fingerprinting/profiling techniques available to study the microbiome 

including T-RFLP, none of these methods have been standardised and are often not 

reproducible between different researchers and different laboratories (Hamady and Knight, 

2009; Eck et al., 2017; Huang et al., 2017).  

 

Budding et al. (2010) developed a method termed the “IS-Pro” (intergenic spacer profiling) 

method to resolve the shortcomings of the available methods. The advantage of the IS-Pro 

method over other currently available methods is that it is standardised, reproducible, easy to 

use, doesn’t require expensive equipment (to be purchased) and it is fast (results are available 

one day after uploading to the IS-Pro software) (Eck et al., 2017). The IS-Pro method targets 

the intergenic spacer region that occurs between the 16S and 23S rRNA genes in the rrn operon 

(Gürtler et al., 2014; Eck et al., 2017). This region of the DNA is highly polymorphic (and yet 

species-specific) and the IS-Pro method uses the variation in length and sequence 

polymorphism to identify and differentiate the bacteria within a sample (Budding et al., 2016). 

The IS-Pro method has been validated and successfully used to characterise the gastrointestinal 

(gut) microbiome in several disease states, where it is highly reproducible (Budding et al., 2010; 

Budding et al., 2014; Grasman et al., 2014; Rutten et al., 2015; Aguirre et al., 2016; de Meij et 

al., 2016a; de Meij et al., 2016b; Janssens et al., 2016; Eck et al., 2017; Lankelma et al., 2017; 

Muller et al., 2017). Although the IS-Pro method has been used to characterise other 
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microbiomes, such as the vaginal microbiome, it has not been used before on sputum specimens 

to study the lung microbiome (Budding et al., 2016; Koedooder et al., 2018).  

 

2.3.2 Metagenomics approach to study the microbiome  

The term metagenome was first used by Handelsman et al. (1998) to describe the collective 

genomes of soil microorganisms. In this initial metagenomics study, DNA was isolated from 

bacteria, digested by restriction enzymes and cloned into vectors and screened for products of 

interest, such as antibiotics. Metagenomics has come a long way since these initial studies as 

the development of newer sequencing platforms (NGS) has resulted in higher throughput, 

cheaper cost per base sequencing and has resulted in the exclusion of the cloning step, thereby 

reducing time and money (Bragg and Tyson, 2014).  

 

This metagenomic approach to sequence microbial communities has since become known as 

shotgun metagenomics and can be loosely defined as random sequencing of the total DNA from 

a microbial community (Bragg and Tyson, 2014; Amato, 2017). The first step to shotgun 

metagenomics is the same as with the targeted approach i.e. the extraction of DNA, which is 

followed by shearing of the DNA (Zhou et al., 2015). The DNA can be sheared or fragmented 

using several different methods including restriction enzyme digestion and sonication (Zhou et 

al., 2015). The DNA is ligated to adapters that act as priming sites for sequencing (van Dijk et 

al., 2014; Zhou et al., 2015). Next-generation sequencing will yield multiple short reads that 

are assembled and annotated using bioinformatic approaches (Zhou et al., 2015). 

 

Unlike bacteria, viruses lack a consensus sequence, making metagenomics an ideal approach to 

study viral diversity within an environment (i.e. virome) (Wylie et al., 2012; Amato, 2017). 

Viruses are extremely diverse, differing in size and can be double-strand DNA (dsDNA) 

viruses, reverse transcriptase DNA viruses, single-stranded DNA (ssDNA) viruses, double-

strand RNA (dsRNA) viruses, single-stranded RNA (ssRNA) viruses (both positive and 

negative sense) and reverse transcriptase viruses (The International Committee on Taxonomy 

of Viruses (ICTV), 2012; Cadwell, 2015). However, viral DNA obtained from total DNA of a 

sample represents less than 0.1% of the total DNA (due to the small size of viral genomes), 

even though viruses outnumber other microorganisms such as bacteria (for every microbial cell 

there are approximately 10 viruses) (Qin et al., 2010; Bikel et al., 2015; Amato, 2017). The best 

way to improve viral DNA and RNA isolation and to obtain adequate sequencing depth is to 

purify viral particles (VP) before extraction (Goodrich et al., 2014; Bikel et al., 2015). 
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Enriching the sample (for viral particles) can be done using physical means (filtration and/or 

density gradient centrifugation), enzymatic means (usually DNase) or non-specific 

amplification (Datta et al., 2015; Kleiner et al., 2015). Thereafter, ssDNA and ssRNA viruses 

need to be converted to dsDNA by using reverse transcriptase PCR (RT-PCR) to create cDNA 

(Lysholm et al., 2012; Waugh et al., 2015). The non-specific amplification procedure uses a 

single primer that is sequence-independent and was developed by Reyes and Kim (1991), this 

method is known as sequence-independent single primer amplification (SISPA) (Reyes and 

Kim, 1991; Datta et al., 2015). The procedure has undergone several modifications, including 

the addition of DNase I treatment and the use of random primers for PCR amplification of DNA 

and RNA (Froussard, 1992; Allander et al., 2001; Allander et al., 2005; Lysholm et al., 2012; 

Kallies et al., 2019). 

 

2.3.3 Analysis of microbiome data generated  

Regardless of the method used to study the microbiome (or the virome), the data generated 

directly from NGS often requires additional analysis (Kuczynski et al., 2011a). Next-generation 

sequencing platforms will generate an output file which is either a fastq file or a fasta file along 

with a qual file (Ju and Zhang, 2015). The fastq file contains a combination of the sequencing 

(i.e. nucleotide) data, like the fasta file and the quality score data associated with the sequencing 

data (which can be stored separately as a qual file) (Cock et al., 2010). Since most NGS 

platforms can generate large amounts of sequences per run, it is often quicker and cheaper to 

run samples together in a single run (multiplex) (Di Bella et al., 2013).  

 

There are several pipelines which are available to study the microbiome (i.e. the bacterial 

microbiome) including metagenomics-rapid annotation using subsystems technology (MG-

RAST), mothur, quantitative insights into microbial ecology (QIIME), QIIME2, the ribosomal 

database project (RDP) pyrosequencing tools, workflow for the alignment, taxonomy and 

ecology of ribosomal sequences (W.A.T.E.R.S) and visualization and analysis of microbial 

population structures (VAMPS) (Meyer et al., 2008; Cole et al., 2009; Schloss et al., 2009; 

Caporaso et al., 2010; Hartman et al., 2010; Kuczynski et al., 2011a; Ursell et al., 2012; Huse 

et al., 2014; Amato, 2017). The most frequently used of these pipelines are mothur and QIIME; 

due to their high accuracy, ability to identify operational taxonomic units (OTUs) to a genus 

level and their ability to use any reference database (Plummer and Twin, 2015; Bik, 2016; 

Amato, 2017; Almeida et al., 2018).  
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Quantitative insights into microbial ecology (QIIME) is a python-based software that uses 

command-line prompts (Kuczynski et al., 2011b; Ashton et al., 2016; Lakhujani and 

Badapanda, 2017). The bioinformatics workflow for 16S rRNA gene analysis, using a program 

such as QIIME usually involves the following steps (or a variation thereof): i) creating a 

mapping file, ii) de-multiplexing, iii) quality filtering (including the removal of chimeras), iv) 

OTU picking, v) taxonomic assignment of OTUs, vi) construction of OTU table, vii) OTU 

filtering, viii) rarefaction and ix) diversity analysis (Caporaso et al., 2010; Kuczynski et al., 

2011a; Kuczynski et al., 2011b; McDonald et al., 2012a; Morgan and Huttenhower, 2012; 

Navas-Molina et al., 2013; Jervis-Bardy et al., 2015; Ju and Zhang, 2015; Ashton et al., 2016; 

Bik, 2016; Lakhujani and Badapanda, 2017). 

 

The mapping file is a text file (.txt) that contains the sample name, a description of the sample, 

the barcodes and primers used and any metadata associated with the sample (Kuczynski et al., 

2011b; Navas-Molina et al., 2013). This information is required for the processing of samples 

(for de-multiplexing and the removal of primers and barcodes) and subsequent analysis (e.g. β-

diversity) (Kuczynski et al., 2011b; Navas-Molina et al., 2013). During de-multiplexing (a 

crucial step when multiple samples have been included in a single run), the sequences within 

the fastq file are “separated” and linked back to the relevant samples and the primers and 

barcode sequences are removed (Kuczynski et al., 2011b; Navas-Molina et al., 2013; Ju and 

Zhang, 2015). Quality filtering is applied to the sequencing reads to ensure that the downstream 

analysis is not affected e.g. diversity estimates may be inflated due to poor quality reads 

(Bokulich et al., 2013; Kumar et al., 2014; Ju and Zhang, 2015; Amato, 2017). Several criteria 

can be applied to the sequencing reads to improve their quality including i) removal of all 

sequences that are too short or too long i.e. sequence length, ii) removal of sequences with a 

certain length of homopolymers (a section of sequence that has the same (single) base repeated 

consecutively), iii) removal of ambiguous bases, iv) removal of chimeric sequences (sequences 

that have formed from the sequences of two or more microorganisms) and v) removal of bases 

with low quality (Phred) scores (Ju and Zhang, 2015; Amato, 2017). These Phred scores can be 

found in either the .qual file (which is associated with a particular fasta file) or form part of the 

fastq file (Cock et al., 2010). The Phred score is the probability that the given base is incorrect 

and is usually denoted with a Q (Ewing and Green, 1998; Ewing et al., 1998; Cock et al., 2010; 

Bokulich et al., 2013; Navas-Molina et al., 2013; Lee et al., 2016). The Phred score is calculated 

with the formula Q= −10 log10P; where Q is the quality value for the base and P is the 

probability that the base is incorrect (Ewing and Green, 1998; Ewing et al., 1998; Cock et al., 
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2010; Bokulich et al., 2013; Navas-Molina et al., 2013; Lee et al., 2016). A Phred score of 10 

can be interpreted that there is a 1 in 10 chance of an incorrect base and the accuracy of the base 

is 90% (Ewing and Green, 1998; Ewing et al., 1998; Cock et al., 2010; Bokulich et al., 2013; 

Navas-Molina et al., 2013; Lee et al., 2016). 

 

After the sequencing reads have been quality filtered, the next step is to cluster the sequences 

into OTUs (Navas-Molina et al., 2013; Goodrich et al., 2014; Ju and Zhang, 2015; Amato, 

2017). Each OTU is equivalent to a microbial taxon and the level of sequence similarity denotes 

the taxonomic rank (Goodrich et al., 2014; Franzen et al., 2015). Even though there is no unified 

species definition/concept for bacterial species, a 97% sequence similarity of the 16S rRNA 

gene is typically used (Stackebrandt and Goebel, 1994; Konstantinidis et al., 2006; Goodrich 

et al., 2014; Kim et al., 2014; Franzen et al., 2015). There are three different approaches which 

can be used to cluster OTUs (also known as OTU picking): i) closed reference, ii) de novo 

reference or iii) open reference (Navas-Molina et al., 2013; Goodrich et al., 2014; Ju and Zhang, 

2015; Amato, 2017).  

 

The closed reference method clusters each sequence from the dataset against sequences in 

existing reference databases such as Greengenes, RDP or SILVA and an OTU is assigned if 

there is ≥97% identity (DeSantis et al., 2006; Pruesse et al., 2007; Cole et al., 2009; McDonald 

et al., 2012b; Navas-Molina et al., 2013; Goodrich et al., 2014; Amato, 2017). A disadvantage 

of this method is that it discards any sequence that fails to match against the chosen database, 

however, this method is faster than the others (Goodrich et al., 2014; Amato, 2017). According 

to the de novo approach, sequences are grouped/clustered against each other based on sequence 

identity (97% identity) without using an external database (Navas-Molina et al., 2013; 

Goodrich et al., 2014; Amato, 2017). The open reference approach combines both the closed 

reference and de novo methods (Navas-Molina et al., 2013; Goodrich et al., 2014; Amato, 

2017). Using the open reference approach, each sequence is matched against the reference 

database and if it matches, an OTU is assigned (Navas-Molina et al., 2013; Goodrich et al., 

2014; Amato, 2017). However, if the sequence does not match it is clustered using the de novo 

approach (Navas-Molina et al., 2013; Goodrich et al., 2014; Amato, 2017). The open reference 

approach is the recommended approach, as it ensures that all sequences are kept (potentially 

new microorganism) and it is quicker than the de novo method (Navas-Molina et al., 2013; 

Goodrich et al., 2014; Amato, 2017). 
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Once OTUs have been picked, these clusters need to be assigned a taxon (Navas-Molina et al., 

2013; Goodrich et al., 2014; Ju and Zhang, 2015; Amato, 2017). Using QIIME, a reference 

sequence (the default setting is to choose the most abundant sequence) is chosen for each OTU 

(Navas-Molina et al., 2013). The way the taxa is assigned depends on the method used; the 

closed reference method assigns the taxa directly to each sequence during the OTU picking 

process from the database whereas with the de novo method the OTUs have to be assigned to a 

taxon using a reference dataset (such as the Greengenes database) after clustering (Navas-

Molina et al., 2013). 

 

After the taxonomic assignment has occurred, an OTU table is constructed (Kuczynski et al., 

2011b; Navas-Molina et al., 2013). This OTU table shows the abundance of each OTU within 

each sample in the dataset and is generated in a Biological Observation Matrix (BIOM) format 

(Kuczynski et al., 2011b; McDonald et al., 2012a; Navas-Molina et al., 2013). A second quality 

filtering step, referred to as OTU filtering, is performed after the OTU table has been generated 

and it involves the removal of OTUs that are present in low numbers and any unwanted taxa, 

such as archaeal or host DNA (Navas-Molina et al., 2013). 

 

In a sequencing run, the number of sequences obtained (sequencing depth) can differ between 

samples for technical reasons and not biological reasons, which can affect diversity estimates 

(Goodrich et al., 2014). To account for this variable sequence depth, a process termed 

rarefaction is applied (Goodrich et al., 2014). In the rarefaction (also known as random 

sampling) approach, the dataset is normalised by randomly selecting the same amount of 

sequences from each sample (Goodrich et al., 2014; Ju and Zhang, 2015). The final step in 

microbiome studies is to perform alpha (within sample) and beta (between sample) diversity 

analysis (Kuczynski et al., 2011b; Morgan and Huttenhower, 2012; Navas-Molina et al., 2013; 

Goodrich et al., 2014; Ju and Zhang, 2015). 

 

2.3.4 Statistics used in microbiome studies 

There are two diversity measures of importance in microbiome studies: alpha diversity and beta 

diversity (Lozupone and Knight, 2008; Kuczynski et al., 2011b; Morgan and Huttenhower, 

2012; Navas-Molina et al., 2013; Goodrich et al., 2014; Ju and Zhang, 2015). Alpha diversity 

refers to the bacterial diversity within a single sample while beta diversity describes the 

diversity between samples (Knight et al., 2018). The alpha diversity provides information on 

how complex a sample is, i.e. the more bacteria there is in a sample (higher alpha diversity), 
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the more interactions occur within the sample, whereas beta diversity shows how similar the 

different samples are to each other in terms of their bacterial composition (Mammen and Sethi, 

2016; Stubbendieck et al., 2016; Finotello et al., 2018).  

 

The research question determines which diversity measure(s) is appropriate for data analysis 

(Navas-Molina et al., 2013). Selection of the appropriate measure(s) for analysis is based on 

the following study characteristics: i) is the aim of the study to test for alpha diversity or beta 

diversity? ii) is the presence/absence of particular taxa the only information required or is the 

abundance important? (qualitative measures vs quantitative measures) and iii) are all taxa 

regarded as equally related to each other or are the taxa considered divergently related, i.e. not 

all species are equally related to each other [species (taxon)-based measures vs divergent 

(phylogenetic)-based measures] (Lozupone and Knight, 2008; Hamady and Knight, 2009).  

 

Alpha diversity measures provide information on how diverse a single sample is and this can 

be compared to other samples; it is useful when comparing a diseased individual to a healthy 

individual to determine if the diseased individual’s microbiome is less or more diverse 

(Lozupone and Knight, 2008). However, even if two communities have similar alpha diversity 

measures, it does not mean that the two communities share the same taxa (Wagner et al., 2018). 

Beta diversity measures show the number of shared species between communities (Lozupone 

and Knight, 2008). When deciding whether to use qualitative (presence/absence) or quantitative 

measures, the following points should be taken into consideration: i) quantitative measures are 

most useful when the data has a strong environmental filter (if subtle changes occur, qualitative 

measures are unable to take note of the difference) and ii) qualitative measures are most useful 

when rare species are present; with presence/absence data rare species are given the same 

weight as common species and as a result rare species are emphasised (Podani et al., 2013; 

Jovel et al., 2016). A phylogenetic approach would provide more evolutionary information; 

however, when studying a new environment, there may be a new taxon whose lineage has not 

been defined (Zaura, 2012; Chao et al., 2016). In this instance, it would be more appropriate to 

use a taxon-based approach (Zaura, 2012; Chao et al., 2016) 

 

The most used statistical measures used for alpha diversity are Chao1, the Shannon index and 

the Simpson index (Morris et al., 2014). According to Morris et al. (2014), an ideal alpha 

diversity measure does not exist and each alpha diversity measure interprets results differently, 

however, by using more than one alpha diversity measure, a more complete understanding of 
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the interactions within the community may be possible. Table 2.2 summarises the advantages 

and disadvantages of each statistical method to measure alpha diversity. 

 
 
 



27 

 

Table 2.2: Summary of characteristics of alpha diversity measures that can be used in microbiome studies 

Statistical 

tool 

Taxon/ 

Phylogenetic 

Equations Advantages Disadvantages References 

Qualitative 

Chao1 Taxon 

𝑺𝑪𝒉𝒂𝒐𝟏  =  𝑺𝒐𝒃𝒔 + 
𝒏𝟏

𝟐

𝟐𝒏𝟐
 where 𝑆𝑜𝑏𝑠 is the number of observed species, 

n1 is the number of singletons (single reads) and n2 is the number of 

doubletons 

Precise All species are regarded as equally 

related. 

Requires abundance data (e.g. OTU 

table) 

(Chao, 1984; 

Hughes et al., 

2001; Lozupone 

and Knight, 

2008; Magurran 

and McGill, 

2010; Lemos et 

al., 2011; 

Magurran, 

2013; Ashton et 

al., 2016) 

Abundance-

base 

coverage 

(ACE) 

Taxon 

𝑺𝑨𝑪𝑬  =  𝑺𝒂𝒃𝒖𝒏𝒅  +
𝑺𝒓𝒂𝒓𝒆

 𝑪𝑨𝑪𝑬
 +  

𝑭𝟏

𝑪𝑨𝑪𝑬
 𝜸𝑨𝑪𝑬

𝟐  where 𝑆𝑎𝑏𝑢𝑛𝑑 is the number of 

abundant species, Srare is the number of rare species, CACE=1-
F1

Nrare
⁄ (F1 is the number of species with i individuals) 

and Nrare = ∑ iFi
10
i=1  

Considers both 

rare and abundant 

species 

All species are regarded as equally 

related. 

Only provides information on the 

species observed 

(Chazdon et al., 

1998; Hughes et 

al., 2001; 

Lozupone and 

Knight, 2008; 

Lemos et al., 

2011; 

Magurran, 

2013; Ashton et 

al., 2016) 

Phylogenetic 

Diversity 

(PD) 

Phylogenetic 
PD = (N-1) + no. of internal nodes of the minimum spanning path, 

where N is the size of the taxa 

Provides both 

branch length and 

topographical 

information 

Requires a phylogenetic tree; More 

weight is given to richness (over 

evenness); analysis is difficult with 

populations of different sample sizes 

(Faith, 1992; 

Lozupone and 

Knight, 2008; 

Magurran, 

2013; Lean and 

Maclaurin, 

2016) 
OTU: Operational taxonomic unit 
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Table 2.2: Summary of characteristics of alpha diversity measures that can be used in microbiome studies (continued) 

Statistical 

tool 

Taxon/ 

Phylogenetic 

Equations Advantages Disadvantages References 

Quantitative 

Shannon’s 

Index 
Taxon 𝑯 =  − ∑ 𝒑𝒊𝒊 𝒍𝒏 𝒑𝒊 ; where pi is the number of individuals in species si 

Confounds 

species richness 

and evenness; 

sensitive to rarer 

species 

All species are regarded as equally 

related; Sensitive to sample size; 

Values have no absolute meaning 

(Shannon, 1984; 

Lozupone and 

Knight, 2008; 

Allen et al., 

2009; Lemos et 

al., 2011; Daly 

et al., 2018; 

Willis, 2019) 

Simpson’s 

Index 
Taxon 𝑫 =  − ∑ 𝒑𝒊

𝟐
𝒊  ; where pi is the number of individuals in species si 

Suitable for 

smaller sample 

sizes; robust 

All species are regarded as equally 

related; Requires abundance data; not 

intuitive; Values have no absolute 

meaning; does not account for 

unobserved species 

(Simpson, 1949; 

Lozupone and 

Knight, 2008; 

Allen et al., 

2009; Lemos et 

al., 2011; 

Magurran, 

2013; Daly et 

al., 2018; 

Willis, 2019) 

Theta (θ) Phylogenetic 

θ (π) = ∑ ∑ pij<i
k
i=1 pjdij  where k is the number of distinct sequences, 

𝑝𝑖  is the frequency of the first (ith) sequence, pj is the frequency of 

the second sequence (jth)and dij is the number of (nucleotide) 

differences between the two sequences 

Provides a 

phylogenetic 

measurement 

Richness is not considered 
(Martin, 2002; 

Lozupone and 

Knight, 2008) 

Jackknife Unknown 
JACK1 = SO + 

r1(n-1)

n
; where SO is the number of species observed in 

n quadrants and r1 is the number of species present in one quadrant 

Precise; useful in 

populations 

where there is 

resampling 

Sensitive to sample size (Heltshe and 

Forrester, 1983; 

Palmer, 1990; 

Morgan and 

Huttenhower, 

2012; 

Magurran, 

2013) 
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The Bray-Curtis (also known as Sorenson quantitative index), unweighted UniFrac and 

weighted UniFrac are the preferred statistical tools for measurement of beta diversity (Zhao et 

al., 2015). Table 2.3 shows the various beta-diversity measures that can be used to study the 

microbiome and Figure 2.1 provides information on how to choose a beta diversity measure in 

the context of different study designs. 

 

 

Figure 2.1: Algorithm to guide the choice of statistical measures to determine beta 

diversity in microbiome studies. Step 1 is choosing between a quantitative or 

a qualitative measure. Step 2 is deciding whether to consider the 

phylogenetic relationship between operational taxonomic units (OTUs). 

Other considerations, such as sample size, help inform the final decision on 

which measure to use (Koleff et al., 2003; Chao et al., 2006; Lozupone et al., 

2007; Lozupone and Knight, 2008; Magurran and McGill, 2010; Chang et 

al., 2011; Lemos et al., 2011; Evans and Matsen, 2012; Morgan and 

Huttenhower, 2012; Li et al., 2013; Magurran, 2013; Rempala and Seweryn, 

2013; Wong et al., 2016; Xia and Sun, 2017; Wagner et al., 2018). 
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Table 2.3: Summary of characteristics of beta diversity measures that are used in microbiome studies 

Statistical 

tool 

Taxon/ 

Phylogeneti

c 

Equations Input Output (results) Interpretation of results Pros and 

Cons 

References 

Qualitative 

Sorenson 

Index/ 

Dice’s 

coefficient 

Taxon 

𝜷𝒔𝒐𝒓 =  
𝟐𝒂

𝜶𝟏+𝜶𝟐
; where a is the total number of 

species that occur in both populations, α1 is 

the total number of species in population 1 

and α2 is the total number of species in 

population 2 

OTU table A value between 0 and 1 

The closer the number is 

to one, the more similar 

the samples are 

Pros: 

Simple and 

intuitive 

Cons: All 

species are 

regarded as 

equally 

related 

(Sørensen, 1948; 

Koleff et al., 2003; 

Chao et al., 2006; 

Lozupone and 

Knight, 2008; 

Lemos et al., 2011; 

Li et al., 2013) 

Jaccard Taxon 

𝜷𝒋 =  
𝒂

𝜶𝟏+𝜶𝟐−𝒂
; where a is the total number of 

species that occur in both populations, α1 is 

the total number of species in population 1 

and α2 is the total number of species in 

population 2 

OTU table A value between 0 and 1 

The closer the number is 

to one, the more similar 

the samples are 

Pros: 

Simple and 

intuitive 

Cons: All 

species are 

regarded as 

equally 

related 

(Jaccard, 1912; 

Koleff et al., 2003; 

Chao et al., 2006; 

Lozupone and 

Knight, 2008; 

Lemos et al., 2011) 

Unweighted 

UniFrac 
Phylogenetic 

𝑼 =
∑ 𝒃𝒊|𝑨𝒊−𝑩𝒊|𝒏

𝒊

∑ 𝒃𝒊𝒏
𝒊

; where bi is the branch length 

from branch i, Ai is the number of 

sequences/reads from branch i in population A 

and Bi is the number of sequences/reads from 

branch i in population B 

Phylogenetic 

tree 

A phylogenetic tree which 

indicates from which 

sample the sequences are 

from at the end of the 

node (from one sample, 

both samples, etc.) 

If a node is shared 

between samples; the 

branch length will be 

shared indicating a 

similarity. 

Pros: can 

compare 

samples 

from 

different 

conditions 

Cons: 

Gives to 

much 

weight to 

rare OTUs 

(Lozupone and 

Knight, 2005; 

Lozupone et al., 

2007; Lozupone 

and Knight, 2008; 

Chang et al., 2011; 

Xia and Sun, 2017) 

OTU: Operational taxonomic unit 
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Table 2.3: Summary of characteristics of beta diversity measures that are used in microbiome studies (continued) 

Statistical 

tool 

Taxon/  

Phylogeneti

c 

Equations Input Output (results) Interpretation of 

results 

Pros and 

Cons 

References 

Quantitative 

Sorenson 

quantitative 

index/ Bray-

Curtis Index 

Taxon 

𝑩𝑪𝒊𝒋  =  
𝑺𝒊+𝑺𝒋−𝑪𝒊𝒋

𝑺𝒊+𝑺𝒋
; where 𝑆𝑖 is the number of 

species in population i, Sj is the number of 

species in population j and Cij is the total 

number of species (at the location with the 

fewest species) 

OTU table A value between 0 and 1 

The closer the number 

is to one, the more 

similar the samples are 

Pros: Robust 

Cons: 

sensitive to 

sample size; 

samples 

populations 

must be the 

same size 

 

(Chao et al., 2006; 

Lozupone and 

Knight, 2008; 

Magurran and 

McGill, 2010; 

Morgan and 

Huttenhower, 2012; 

Li et al., 2013; 

Schroeder and 

Jenkins, 2018) 

Morisita-

Horn 

measures 

Taxon 

𝑪𝑴𝑯 =
𝟐 ∑ 𝒑𝒊𝟏𝒑𝒊𝟐

𝒔
𝒊=𝟏

∑ 𝒑𝒊𝟏
𝟐 + ∑ 𝒑𝒊𝟐

𝟐𝒔
𝒊=𝟏

𝒔
𝒊=𝟏

; where pi1 is the 

proportional abundance (percentage) of 

species in i in population 1 and pi2 and pi1 is the 

proportional abundance (percentage) of 

species in i in population 2 

OTU table A value between 0 and 1 

The closer the number 

is to one, the more 

similar the samples are 

Pros: Not 

sensitive to 

sample size 

Cons: can 

overlook 

rarer OTUs 

(Morisita, 1959; 

Horn, 1966; Chao et 

al., 2006; Lozupone 

and Knight, 2008; 

Magurran and 

McGill, 2010; 

Magurran, 2013; 

Rempala and 

Seweryn, 2013; 

Wagner et al., 2018) 

Weighted 

UniFrac 
Phylogenetic 

𝑼 = ∑ 𝒃𝒊 |
𝑨𝒊

𝑨𝑻
−

𝑩𝒊

𝑩𝑻
|𝒏

𝒊 ; where bi is the branch 

length from branch i, Ai is the number of 

sequences/reads from branch i in population 

A, AT is the total number of sequences/reads 

in population A, Bi is the number of 

sequences/reads from branch i in population B 

and BT is the total number of sequences/reads 

in population B 

Phylogenetic 

tree 
A phylogenetic tree 

A weight is given to the 

sequences based on 

their relative 

abundance. The width 

of the branch indicates 

the weight 

Pros: can 

compare 

samples 

from 

different 

conditions 

Cons: Gives 

too much 

weight to 

more 

abundant 

OTUs 

(Lozupone et al., 

2007; Lozupone and 

Knight, 2008; Evans 

and Matsen, 2012; 

Wong et al., 2016; 

Xia and Sun, 2017) 

OTU: Operational taxonomic unit 
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Beta diversity measures provide information on whether there are variations in the microbial 

composition between different populations or groups, but this measure is unable to identify the 

factors that are responsible for such variation (Tuomisto and Ruokolainen, 2006; Legendre, 

2007). Variations between populations, if present, may be caused by i) biological interactions 

within the community, ii) environmental conditions (another variable) or iii) random variation 

(no known cause for the variation) (Legendre et al., 2005). The best approach to understanding 

the variation in beta diversity is to perform multivariate analysis (Tuomisto and Ruokolainen, 

2006).  

 

Multivariate analysis of microbiome data can be performed in two ways: i) the distance-based 

approach that uses distance/dissimilarity matrices (beta diversity measures) such as the Bray-

Curtis measure, or ii) the canonical approach that uses raw data i.e. OTU table (Legendre and 

Legendre, 2012; GUSTA ME, 2014; Buttigieg and Ramette, 2014). The distance-based 

approach is discussed in more detail below. The canonical approach uses the OTU table and 

requires that some assumptions be made on the relationship between the groups (linear, 

unimodal, etc.), i.e. how the data will be distributed (Ramette, 2007; Buttigieg and Ramette, 

2014). Table 2.4 summarises the various distance-based and canonical multivariate tests that 

are available. 
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Table 2.4:  Examples of multivariate tests to analyse microbiome data (Paliy and 

Shankar, 2016) 

Test Abbreviations Raw 

data/Distance-

based 

Type of 

assumed 

relationship 

Exploratory/ 

Interpretive/ 

Discriminatory 

Ordination/ 

clustering 

Principal coordinate analysis PCoA Distance-based N/A Exploratory Ordination 

Hierarchical clustering HCA Distance-based N/A Exploratory Clustering 

k-means clustering N/A Distance-based N/A Exploratory Clustering 

Nonmetric multidimensional 

scaling 
NMDS Distance-based N/A Exploratory Ordination 

Orthogonal projections to latent 

structure discriminant analysis 
OPLS-DA Raw data Linear Discriminatory Ordination 

redundancy analysis RDA Raw data Linear Interpretive Ordination 

Discriminatory function analysis DFA/ LDA Raw data Linear Discriminatory Ordination 

Canonical correlation analysis CCorA Raw data Linear Interpretive Ordination 

Canonical correspondence 

analysis 
CCA Raw data Unimodal Interpretive Ordination 

Principal component analysis PCA Raw data Linear Exploratory Ordination 

Correspondence analysis CA Raw data Unimodal Exploratory Ordination 

Detrended correspondence 

analysis 
DCA Raw data Unimodal Exploratory Ordination 

Procrustes analysis PA Any data N/A Interpretive Ordination 

Hypothesis Tests* 

Multivariate analysis of variance 

with permutation 
PERMANOVA Distance-based N/A Interpretive N/A 

Analysis of group similarities ANOSIM Distance-based N/A Interpretive N/A 

Mantel test N/A Distance-based N/A Interpretive N/A 

N/A-Not applicable 

*Hypothesis tests: used to test for significant differences between groups. Used after canonical (raw data) or distance-based approach. 

 

In the distance-based approach, the first step is to ensure that all the data is in the same scale 

and format (Anderson, 2001; Ramette, 2007). This is achieved by standardising and 

normalising the data (Anderson, 2001; Ramette, 2007). The second step is to choose a distance 

measure to be used, e.g. Bray-Curtis (Anderson, 2001; Ramette, 2007). The third step is to 

visualise the similarity and dissimilarity between objects using cluster analysis or ordination 

(Anderson, 2001; Ramette, 2007). Patterns in a dataset may be observed using either cluster 

analysis or ordination (Anderson, 2001; Ramette, 2007). The more similar the samples are, the 

closer the samples will cluster (Frades and Matthiesen, 2010). 

 

There are two types of multivariate clustering: hierarchical and k-means clustering (user-

defined clustering; the user decides how many groups the data should be clustered into) 

(Anderson, 2001; Ramette, 2007; Buttigieg and Ramette, 2014). Hierarchical clustering is more 

appropriate for small datasets whereas k-means clustering is the most suitable tool for large 

datasets (Buttigieg and Ramette, 2014; Rodriguez et al., 2019). There are several different 
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hierarchical clustering methods, including i) single-linkage clustering (also known as nearest 

neighbour clustering) e.g. minimum spanning tree (MST), ii) complete-linkage clustering and 

iii) average-linkage e.g. unweighted pair-group method with arithmetic mean (UPGMA) 

clustering (Legendre and Legendre, 2012; Buttigieg and Ramette, 2014). The user-defined 

method, k-means clustering uses an algorithm which requires three parameters from the user: 

i) the number of clusters, which is defined as K, ii) cluster initialisation (choosing initial 

clusters) and iii) a distance matrix (Khan and Ahmad, 2004; Ramette, 2007; Jain, 2010; Bai et 

al., 2012; Buttigieg and Ramette, 2014). 

 

The term ordination can be defined as “the arrangement of units in some order” (Legendre and 

Legendre, 2012). In ecology, ordination is used to visualise objects on reference axes (Ramette, 

2007; Legendre and Legendre, 2012). Ideally, each descriptor in the study should be plotted as 

an axis; however, if there are more than three descriptors, it is not possible to be visualised on 

paper (Legendre and Legendre, 2012). As a result, the axes are chosen based on descriptors that 

the researchers are interested in (Legendre and Legendre, 2012). As the graph(s) represent the 

variability in a reduced space (dimensionally), these methods are referred to as ordination in 

reduced space (Legendre and Legendre, 2012). An example of an ordination method is principal 

coordinate analysis (PCoA) (Ramette, 2007; Legendre and Legendre, 2012; Buttigieg and 

Ramette, 2014; Paliy and Shankar, 2016). Clustering can be combined with ordination in a 

method called non-metric dimensional scaling (NMDS) (Ramette, 2007; Legendre and 

Legendre, 2012; Buttigieg and Ramette, 2014; Paliy and Shankar, 2016). 

 

The last step in the distance approach (for multivariate analysis) is to test for the significant 

differences between the groups (Anderson, 2001; Ramette, 2007). Several test statistics can be 

used including analysis of similarities (ANOSIM), the Mantel test and permutational 

multivariate analysis of variance (PERMANOVA) (Ramette, 2007; Paliy and Shankar, 2016). 

The most popular test statistics is the PERMANOVA method, in part due to the fact it can be 

used in studies which have a small sample size (Tang et al., 2016). Each of these methods test 

a different null hypothesis (Anderson and Walsh, 2013). 

 

Choosing the appropriate approach (and tests) for multivariate analysis can be complicated for 

researchers who do not have a thorough understanding of statistical analytical methods and as 

such the risk of making the incorrect conclusions is higher (Buttigieg and Ramette, 2014). To 

help researchers understand multivariate analysis and to choose the right tools, Buttigieg and 
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Ramette (2014) developed an interactive website called GUSTA ME 

(https://sites.google.com/site/mb3gustame/home), that acts as a resource tool for microbial 

ecologist and other researchers studying the microbiome.  

 

These statistical analyses (including α-diversity, β-diversity and multivariate analysis) can be 

performed using software tools (Hodkinson and Grice, 2015). There are several software tools 

currently available, including MATLAB (Hodkinson and Grice, 2015). One of the more popular 

tools is “R”, an open-source software tool; which has several packages specific for microbiome 

data including “phyloseq”, “picante” and “micropower” (Kembel et al., 2010; McMurdie and 

Holmes, 2013; Navas-Molina et al., 2013; Kelly et al., 2015). In addition to the statistical 

analysis, these tools can also be used to visualise data (Navas-Molina et al., 2013) 

 

2.3.5 Visualisation of microbiome data 

The data generated from microbiome studies is complex and multi-dimensional (Foster et al., 

2012). Most microbiome studies aim to understand a specific biological question or test a 

specific hypothesis; however, it is difficult to sort through all the different layers of information 

to answer these questions (Foster et al., 2012). By using visualisation techniques, researchers 

can find patterns in the data and critically analyse and interpret the data (Foster et al., 2012). 

However, due to the sheer number of data visualisation techniques, data visualisation in 

microbiome studies can be challenging (Foster et al., 2012; Vazquez-Baeza et al., 2013). 

 

One of the first ways in which microbiome data can be visualised is in an OTU table (McDonald 

et al., 2012a; Sedlar et al., 2016). Most bioinformatics pipelines, including QIIME, create an 

OTU table (in a BIOM file) during the workflow process (Sedlar et al., 2016; Dhariwal et al., 

2017). However, it is difficult to answer research questions based on the OTU table alone, 

especially in large datasets, as the information is presented in an unsorted tabular format 

(Dhariwal et al., 2017). As a result, the OTU table is not used for the analysis itself but rather 

it is often a starting point for other visualisation techniques such as heat maps and Venn 

diagrams (Sedlar et al., 2016). In QIIME, the OTU table can be used to summarise the relative 

abundance of each taxon (each taxon is shown as a percentage of the total taxa within the 

sample) in plots such as bar and pie graphs (Navas-Molina et al., 2013; Huse et al., 2014).  

 

Alpha diversity measures are often depicted as box plots (box and whisker diagram) or as 

rarefaction curves (used more with Sanger sequencing) (Navas-Molina et al., 2013; Dhariwal 
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et al., 2017). The beta diversity analysis is depicted using hierarchical clustering (as a 

dendrogram), non-metric multidimensional scaling (NMDS) or principal coordinate analysis 

(PCoA) (Legendre and Legendre, 2012; Navas-Molina et al., 2013; Dhariwal et al., 2017). 

 

2.4 Factors that influence the microbial composition 

The local environment within an anatomical site can affect the microbiome, with each site in 

the body having a unique microbiome (Weinstock, 2012; Zhou et al., 2013; Taylor et al., 2016).  

Other factors that influence the microbiome include: i) the growth (reproductive) rate of 

microorganism within the anatomical site, ii) the addition (immigration) of new 

microorganisms to the anatomical site and iii) the removal (elimination or extinction) of 

microorganisms from the anatomical site (Dickson et al., 2015a).  

 

The growth of the microorganisms within a local environment (within the human body) is 

dependent on physiochemical factors, such as temperature, oxygen tension, pH and nutrient 

supply (Dickson et al., 2015a; Lopes et al., 2015; Taylor et al., 2016). Interactions between 

host epithelial cells, the concentration of inflammatory cells (e.g. alveolar macrophages) and 

interspecies interactions, such as competition with other microorganisms, in the local 

environment can affect the growth rate as well (Venkataraman et al., 2015; Dickson et al., 

2016). Surfactant, which is produced by alveolar type II cells (AECII/ATII cells) can inhibit 

growth, due to its antibacterial properties (Palange and Simonds, 2013; Haghi et al., 2014; 

Standring, 2015; Adar et al., 2016). The pulmonary surfactant consists of phospholipids and 

proteins (mostly surfactant proteins SP-A, SP-B and SP-C) and is recycled by AECII cells or 

removed by alveolar macrophages (Palange and Simonds, 2013; Haghi et al., 2014; Standring, 

2015).  

 

Microorganisms can enter (immigrate to) the lung from either inhalation or microaspiration 

(O'Dwyer et al., 2016). Inhalation is the process of air intake into the respiratory system 

(Palange and Simonds, 2013). Air that is breathed in from the environment contains, along with 

microorganisms, gases (both oxygen and toxic gases) and particles (Nicod, 2005; Simkhovich 

et al., 2008; Palange and Simonds, 2013). Factors such as geography and climate can affect the 

microbiome (Beck et al., 2012; Kim et al., 2017; Twigg et al., 2017). The type of air particles, 

gases and microorganisms found is dependent on the local environment, for example, the air 

from an urban environment may contain higher levels of metal particles (from exhaust fumes, 

etc.) than the air from a rural environment (Simkhovich et al., 2008; Mateos et al., 2018). 
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Microaspiration, on the other hand, is when a small volume of matter from the gastrointestinal 

tract or oropharynx is inhaled into the respiratory tract (Lee et al., 2010). It is through this 

process (microaspiration) that microorganisms from the gastrointestinal tract and oral cavity 

can enter the respiratory tract and contribute to the lung microbiome (Lee et al., 2010; Beck et 

al., 2012; Budden et al., 2017; Chung, 2017). 

 

When particles, such as microorganisms enter the lung (through breathing in), these are cleared 

through mucociliary clearance, the primary defence mechanism of the lung (see Figure 2.2) 

(Dickson et al., 2016; O'Riordan and Smaldone, 2016; Bustamante-Marin and Ostrowski, 

2017). The airways in a healthy individual have two layers, ciliated epithelial cells and an 

airway surface layer, which is sub-divided into two layers, a mucus layer and low viscosity 

periciliary layer (facilitates ciliary beating) (Bustamante-Marin and Ostrowski, 2017). The 

particles are trapped in the mucus layer and transported up the trachea by the beating cilia 

(Dickey et al., 2015; Bustamante-Marin and Ostrowski, 2017). The particles i.e. 

microorganisms are either coughed up (exiting the human body) or are swallowed (enter the 

gastrointestinal tract) (Dickey et al., 2015; Bustamante-Marin and Ostrowski, 2017). The other 

way in which microorganisms are eliminated from the lung is through innate and adaptive 

immune defences (Dickson et al., 2016).  
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Figure 2.2: A diagrammatical representation of mucociliary clearance components 

(MCC). The airway surface liquid (ASL) layer is divided into a mucus layer 

(mobile) in the top and periciliary layer (stationary) on the bottom. The 

ciliated cells are present as part of the periciliary layer (PCL) as well as 

below it. In some instances, a surfactant layer (shown in blue below the 

mucus layer) is present (Bustamante-Marin and Ostrowski, 2017). 

 

Additionally, the microbiome of the gastrointestinal tract (gut) can affect the lung microbiome 

and vice versa, via the gut-lung axis (O'Dwyer et al., 2016; Taylor et al., 2016; Budden et al., 

2017). The idea is that there is cross-talk between the gastrointestinal tract and lungs and that 

immunological changes in one may affect the other (Marsland et al., 2015; Budden et al., 2017). 

Additionally, the gastrointestinal tract may act as a source of metabolites for the lung (Marsland 

et al., 2015). There have been studies that suggest that dietary changes, such as the addition of 

fibre (and its metabolites), can change the lung microbiome by affecting the immunological 

Ciliated cells 
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component in the lung i.e. immune responses in the gastrointestinal tract e.g. cytokine response 

may result in an immune response elsewhere e.g. in the lings (Marsland et al., 2015; Budden et 

al., 2017; Kim et al., 2017). The microbiome of a healthy lung is primarily affected by 

immigration and elimination of microorganisms from the lungs, however, in a diseased lung, 

the growth rate of the microorganism present in the lung primarily affects the microbiome 

(Dickson et al., 2016). 

 

2.5. Microbial composition of the healthy lung 

The respiratory system can be subdivided into two sections: the upper respiratory tract (URT) 

and lower respiratory tract (LRT) (Man et al., 2017). The URT consists of the anterior nares, 

nasal passages, paranasal sinuses, nasopharynx, oropharynx and a portion of the larynx (above 

vocal cords) (Man et al., 2017). The LRT portion of the respiratory system starts at the trachea, 

branches off into bronchi (and subsequently bronchioles) and ends in millions of alveoli, where 

gas exchange occurs (Hogan et al., 2014; Man et al., 2017). The entire LRT is lined with 

epithelium (Hogan et al., 2014). However, in a mature LRT, the type of epithelium differs in 

structure and composition throughout the LRT (Hogan et al., 2014). There are over 40 different 

types of epithelial cells in a mature LRT (Li et al., 2015). The LRT can be separated into three 

regions based on the epithelial structure and is as follows: i) the trachea and bronchi, ii) the 

bronchioles and iii) the alveoli (Li et al., 2015). The epithelial cells in the trachea and bronchi 

are pseudostratified columnar epithelial cells and include basal, club (Clara), ciliated and goblet 

cells (Palange and Simonds, 2013; Li et al., 2015). Dispersed amongst these cells are 

submucosal glands (Fahy and Dickey, 2010; Li et al., 2015). These glands consist of mucous 

cells and serous cells (Fahy and Dickey, 2010). The bronchioles are made up of ciliated cells, 

goblet cells, neuroendocrine (Kulchitsky) cells and secretory club cells (Palange and Simonds, 

2013; Li et al., 2015). The alveoli are composed of two types of epithelial cells (pneumocytes) 

and connective tissue (Palange and Simonds, 2013; Li et al., 2015; Standring, 2015). These 

alveoli cells are referred to as alveolar type I (AECI/ATI cells) and AECII/ATII cells (Guillot 

et al., 2013; Palange and Simonds, 2013). These cells produce components of the extracellular 

matrix (ECM) and growth factors (Palange and Simonds, 2013). The AECI cells are responsible 

for gas exchange (Palange and Simonds, 2013; Hogan et al., 2014). 

 

In the healthy lung, nutrient supply is low and this may contribute to the low biomass in the 

lung (Makino et al., 2003; Dickson et al., 2016; Scheiermann and Klinman, 2017; Vecchio-

Pagan et al., 2017). It has been suggested that the lung microbiome in healthy individuals is 
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transient, with the constant movement of bacteria (Charlson et al., 2011; Budden et al., 2017). 

However, several phyla are predominant in the healthy lung and include Firmicutes, 

Proteobacteria, Actinobacteria and Bacteroidetes (Beck et al., 2012; O'Dwyer et al., 2016; 

Marimón, 2018). At a genus level, Prevotella, Veillonella and Streptococcus were found to be 

present in all the studies done using healthy volunteers (as of 2018) (Chung, 2017; Marimón, 

2018). In the elderly, Rothia and Lactobacillus species were more prevalent (Marimón, 2018). 

 

In the healthy lung, viruses can be found as well (Jankauskaite et al., 2018). The healthy lung 

virome has limited diversity and is comprised of mostly DNA viruses and bacteriophages 

(Jankauskaite et al., 2018). Additionally, retroviruses can be incorporated into the human 

genome and have been found in the lung; however, the effect that these viruses may have on 

diseases in the lung is unknown (Flight et al., 2019). One of the most common virus families 

found is the Anelloviridae (Flight et al., 2019). The Anelloviridae are non-enveloped ssDNA 

viruses (negative sense), that can mutate at a high rate (Spandole et al., 2015). This family of 

viruses (i.e. Anelloviridae) has not been associated with disease in humans (Abbas et al., 2019). 

 

2.6 Changes in the lung microbiome during disease 

During lung disease the respiratory ecosystem changes (Dickson et al., 2016). Factors such as 

cell biology and innate defences may be altered (Huffnagle and Dickson, 2015). Changes in 

nutrient supply e.g. accumulation of inflammatory by-products due to reactive oxygen species 

(ROS) and reactive nitrogen species (RNS), results in some phyla increasing and outgrowing 

other bacteria in the lungs (Winter and Baumler, 2014; Scales et al., 2016). In lung diseases, 

mucus is often hyper secreted (Williams et al., 2006; Dickson et al., 2015b). Mucus has a gel-

like structure and its main component is mucin, a glycoprotein that is primarily consisting of 

50% to 90% carbon (Rabiu and Gibson, 2002; Fahy and Dickey, 2010; Alrahman and Yoon, 

2017). Bacteria, such as Pseudomonas aeruginosa (an opportunistic pathogen) can utilise 

carbon as a growth medium to outgrow competitors (Rabiu and Gibson, 2002; Alrahman and 

Yoon, 2017). Table 2.5. shows the different changes to the lung microbiome based on different 

diseases. 

 

 

 

 

 

 
 
 



41 

 

Table 2.5: Overview of the changes to the lung microbiome in different lung diseases 

and HIV 

Disease Change to the microbiome References 

COPD Increase in Proteobacteria (increases with disease severity and 

with exacerbations) 

(Erb-Downward et al., 2011; 

Dickey et al., 2015; Adar et al., 

2016; Mammen and Sethi, 2016) 

HIV Lower alpha diversity and increased prevalence of Tropheryma 

whipplei 

(Twigg et al., 2017). 

CF Burkholderia, Pseudomonas and Staphylococcus are present in 

high abundances 

(Hery-Arnaud et al., 2019) 

TB Higher alpha diversity (Hong et al., 2016) 

Asthma Increase in Proteobacteria and a decrease in Bacteroidetes (O'Dwyer et al., 2016) 
CF: Cystic fibrosis 

COPD: Chronic obstructive pulmonary disease 
HIV: Human immunodeficiency virus 

TB: Tuberculosis 

 

2.7 An overview of chronic obstructive pulmonary disease 

Chronic obstructive pulmonary disease (COPD) is a complex respiratory disease which is 

characterised by persistent respiratory symptoms due to exposure to noxious particles or gases 

(Sarioglu et al., 2016; Vogelmeier et al., 2017). Chronic obstructive pulmonary disease 

accounts for 5.1% of the global mortality and impaired quality of life (Lee et al., 2016; Oliveira 

et al., 2018). The disease affects over 300 million people worldwide and the reported prevalence 

of COPD in sub-Saharan Africa ranges from 4.1% to 24.8% (Salvi, 2015). The highest reported 

prevalence (23.8%) was from a study conducted in Cape Town, South Africa that formed part 

of the Burden of Obstructive Lung Disease (BOLD) study conducted in 2006 (Buist et al., 

2007). 

 

2.7.1 Pathogenesis and clinical manifestations of chronic obstructive pulmonary disease 

At an anatomical level, COPD can affect the small airways, large airways and lung parenchyma 

that results in bronchiolitis, chronic bronchitis or emphysema, respectively (MacNee, 2006; 

Macnee et al., 2016; Global Initiative for Obstructive Lung Disease, 2019). These changes 

occur as a result of chronic inflammation in the lungs (Hogg et al., 2017; Caramori et al., 2018; 

Global Initiative for Obstructive Lung Disease, 2019). This inflammation is a result of both 

innate and adaptive immune responses (Brusselle et al., 2011). Figure 2.3 depicts the innate and 

adaptive responses in the COPD lung. 

 

The inflammatory response in COPD is not a normal response and appears to occur as a result 

of chronic irritants such as smoke (Global Initiative for Obstructive Lung Disease, 2019). 

Cigarette smoke generates both a particulate fraction and a gas fraction, each of which contains 
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over 1015 free radicals (Fischer et al., 2015). These free radicals, i.e. ROS, cause a shift in the 

normal balance of oxidants and antioxidants, causing oxidative stress (Fischer et al., 2015; 

McGuinness and Sapey, 2017). This oxidative stress causes damage to DNA, proteins and lipids 

(McGuinness and Sapey, 2017; Ng Kee Kwong et al., 2017). The damage caused to DNA 

includes shortening of telomere length (accelerates ageing) and histone 

acetylation/deacetylation (changes gene expression) (Milic et al., 2015; Eapen et al., 2017). 

 

 

Figure 2.3: Diagram showing the innate and adaptive immune components in chronic 

obstructive pulmonary disease. Smoke activates innate immune responses 

by activating the epithelial cells, macrophages and natural killer (NK) cells. 

Dendritic cells activate the adaptive immune response including B cells and 

T cells (Brusselle et al., 2011). 

 

In addition to the direct damage to the cells and tissues, the ROS can initiate inflammation by 

inducing proinflammatory cytokines, chemokines and proteases (Fischer et al., 2015; Footitt et 

al., 2016; Eapen et al., 2017). The ROS can also suppress the phagocytotic and efferocytotic 

 
 
 



43 

 

(removal of dead cells and debris) abilities of neutrophils and alveolar macrophages; increasing 

apoptotic cells and bacteria (Fischer et al., 2015; Eapen et al., 2017; Yamasaki and Eeden, 

2018). Additionally, the neutrophils and macrophages (which are increased in the COPD lung) 

contribute to inflammation through the release of chemokines, cytokines, ROS, and proteases, 

such as neutrophil elastase and matrix metallopeptidases (MMP12, MMP-9 and MMP-1) 

(Chung and Adcock, 2008; King, 2015; Eapen et al., 2017). These proteases can degrade 

collagen, lung parenchyma and other cells, causing tissue damage, resulting in emphysema 

(Dey et al., 2018). 

 

Chronic obstructive pulmonary disease covers several different clinical phenotypes 

(Papaioannou et al., 2009). Individuals with COPD often present with breathlessness 

(dyspnoea), chronic coughing and sputum production (Lee et al., 2016; Vogelmeier et al., 

2017). Breathlessness/dyspnoea is defined as “a subjective experience of breathing discomfort 

that consists of qualitatively distinct sensations that vary in intensity” by the American Thoracic 

Society (ATS) (American Thoracic Society, 1999; Robson, 2017). Breathlessness is not 

constant and can vary according to activities (Mullerova et al., 2014). A chronic cough in this 

context is defined as a cough that persists for more than eight weeks (Irwin and Madison, 2000; 

Martin and Harrison, 2015). Data suggests that females are more susceptible to chronic 

coughing (as a symptom); which may explain why females with COPD report respiratory 

symptoms more often (Dicpinigaitis and Rauf, 1998; Kastelik et al., 2002; Martinez et al., 2007; 

Kavalcikova-Bogdanova et al., 2016; Plevkova et al., 2017). 

 

2.7.2 Clinical diagnosis and assessment of chronic obstructive pulmonary disease 

Diagnosing COPD is not an easy endeavour, primarily since there is no clear-cut definition for 

the disease; however, all definitions agree that the disease is pulmonary and is heterogeneous 

(Andreeva et al., 2017). In this study, the Global Initiative of Chronic Obstructive Lung Disease 

(GOLD) guidelines definition is used, which states that COPD is “characterised by persistent 

respiratory symptoms and airflow limitation that is due to airway and/or alveolar abnormalities 

usually caused by significant exposure to noxious particles or gases” (Global Initiative for 

Obstructive Lung Disease, 2019).  

 

If a person over the age of 40 years old has shortness of breath, chronic cough and sputum 

production combined with a history of smoking or exposure to other risk factors such as 

pollution, biofuels and occupational hazards e.g. dust from mines, fumes and gases (the 
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symptoms are discussed in detail in section 2.2.1), a diagnosis of COPD should be considered 

according to the GOLD guidelines (Vogelmeier et al., 2017). While these symptoms and risk 

factors are indicative of COPD, other tests need to be performed to confirm the diagnosis and 

to assess the severity of the disease (Vogelmeier et al., 2017). The South African guidelines are 

the same as the GOLD guidelines except for additional risk factors, such as HIV and previous 

Mycobacterium tuberculosis infection which should be taken into consideration as well 

(Abdool-Gaffar et al., 2019). 

 

Spirometry, (a test used to determine the lung function of an individual) is performed as follows: 

first, the patient takes a deep breath (inhalation) and then the patient exhales (blows out) as fast 

as they possibly can into the instrument (Bailey, 2012; Koegelenberg et al., 2012; Vogelmeier 

et al., 2017). This test is repeated two more times, to get an accurate reading and can be repeated 

up to seven times (Koegelenberg et al., 2012). The instrument measures the volumes of exhaled 

air and plots it on a volume (y-axis) vs time (x-axis) graph or a flow (y-axis) vs volume (x-axis) 

graph, which is referred to as a spirogram (Koegelenberg et al., 2012). Several measures are 

obtained from the instrument and include: i) forced vital capacity (FVC); the maximum volume 

of air exhaled after maximum inhalation and ii) forced expiratory volume in one second (FEV1); 

the volume of air exhaled in the first second (Koegelenberg et al., 2012; Global Initiative for 

Obstructive Lung Disease, 2019). A ratio of these two values (often expressed as a percentage), 

FEV1/FVC is used as well (Koegelenberg et al., 2012; Global Initiative for Obstructive Lung 

Disease, 2019). A person suffering from COPD typically shows decreased FEV1 and FVC 

values (Koegelenberg et al., 2012; Global Initiative for Obstructive Lung Disease, 2019). 

However, to determine if the airflow limitation is reversible or not, a bronchodilator (dilates the 

airways) is used (Koegelenberg et al., 2012; Global Initiative for Obstructive Lung Disease, 

2019). A post-bronchodilator FEV1/FVC ratio of <0.70 is typically used for the diagnosis of 

COPD, however, this cut-off value has been brought into question as it may lead to 

overdiagnosis in the elderly and underdiagnosis in younger adults (Pellegrino et al., 2005; 

Culver et al., 2017). The European Respiratory Society (ERS) and the American Thoracic 

Society (ATS) recommend the use of lower limits of normal (LLN) values instead (Pellegrino 

et al., 2005; Culver et al., 2017; Global Initiative for Obstructive Lung Disease, 2019). These 

values (LLN) consider the lower five percent of a healthy population as abnormal (Brazzale et 

al., 2016; Global Initiative for Obstructive Lung Disease, 2019). An FEV1/FVC ratio that is 

below the LLN is suggestive of obstruction (Brazzale et al., 2016; Global Initiative for 

Obstructive Lung Disease, 2019). Even though the FEV1/FVC ratio may lead to under-
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/overdiagnosis, GOLD still recommends the use of this ratio over LLN; stating that it is the 

only parameter used in diagnosis (Global Initiative for Obstructive Lung Disease, 2019). Table 

2.6 shows the tests used for the diagnosis and assessment of COPD and their advantages and 

disadvantages.  

 

Table 2.6: Tests for the diagnosis and assessment of chronic obstructive pulmonary 

disease and their advantages and disadvantages 

Test Description of the test Advantages Disadvantages Reference 

Lung Physiology 

Spirometry 

Measurement of the volume of air 

that is exhaled and inhaled over a 

period of time 

Non-invasive and 

sensitive 

Equipment requires 

training to use 

(Miller et al., 2005; Make 

and Martinez, 2008; 

Moore, 2012; Gold and 

Koth, 2016) 

Lung volume 

test 

Detects the volume of air in the 

lungs after inhalation, exhalation 

and after a tidal breath (volume of 

air displaced during normal 

breathing) 

Able to detect 

airflow limitations 

as the disease 

progress an increase 

in lung capacity 

occurs 

N/A 

(Make and Martinez, 

2008; Papaioannou et al., 

2009; Bailey, 2012; Global 

Initiative for Obstructive 

Lung Disease, 2019) 

Arterial blood 

gas 

A blood test that measures the pH, 

oxygen and carbon dioxide levels 

in the blood. It is the lungs ability 

to move oxygen and remove 

carbon dioxide 

Useful in 

determining if 

oxygen therapy will 

help the patient 

Only recommended 

for patients with 

possible respiratory 

failure 

(Make and Martinez, 

2008; Papaioannou et al., 

2009; McKeever et al., 

2016; Global Initiative for 

Obstructive Lung Disease, 

2019) 

Pulse oximetry Measures the oxygen saturation Non-invasive 
Not as accurate as 

arterial blood gas 

(Make and Martinez, 

2008; Amalakanti and 

Pentakota, 2016; Global 

Initiative for Obstructive 

Lung Disease, 2019) 

Diffusing 

capacity test 

(DLCO) 

Measurement of carbon monoxide 

(CO) transfer from alveoli to red 

blood cells i.e. the diffusion of 

CO (due to its high affinity for 

haemoglobin) 

Is indicative for 

emphysema; as the 

disease progress 

there are fewer 

alveoli and as such 

less diffusion. Non-

invasive 

Requires trained 

individuals 

(Matheson et al., 2007; 

Make and Martinez, 2008; 

Papaioannou et al., 2009; 

Bailey, 2012; Lumb, 

2016b; Global Initiative 

for Obstructive Lung 

Disease, 2019) 

Lung structure 

Radiology e.g. 

X-ray 

Provides images of the lung to 

visualise any changes 

Rules out other 

possible causes of 

symptoms 

(differential 

diagnosis) 

Can detect 

emphysema 

Not diagnostic for 

COPD 

(Washko, 2010; Global 

Initiative for Obstructive 

Lung Disease, 2019) 

N/A: Not available   
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Table 2.6: Tests for the diagnosis and assessment of chronic obstructive pulmonary 

disease and their advantages and disadvantages 

Test Description of the test Advantages Disadvantages Reference 

Genetics 

Alpha-1 

antitrypsin 

deficiency 

screening 

Screens for a genetic marker 

on the SERPINA1 gene that 

encodes for protease inhibitor 

(protects the lung tissue from 

destruction) 

N/A 

The frequency of 

this gene is much 

lower in the Asian 

and African 

populations than in 

Caucasian 

populations and 

therefore cannot be 

used for diagnosis 

in these populations 

(de Serres, 2002) 

Patient-reported 

Questionnaires 

e.g. Modified 

British Medical 

Research Council 

(mMRC) and 

COPD assessment 

test (CAT) 

Patients are asked to answer 

questions based on their 

symptoms 

Gives information 

on the severity of 

symptoms 

Cannot be used in 

the diagnosis of 

COPD 

(Global Initiative 

for Obstructive 

Lung Disease, 

2019) 

Physical capacity 

Exercise/Physical 

activity testing 

e.g. Six-minute 

walk test 

Patients are monitored for 

physical signs of fatigue and 

breathlessness, the distance 

walked in six minutes and 

pulse oximetry during the 

exercise 

Able to predict 

patients who are at 

higher risk for 

morbidity/mortality 

N/A 

(A. T. S. 

Committee on 

Proficiency 

Standards for 

Clinical 

Pulmonary 

Function 

Laboratories, 

2002; Enright, 

2003; Holland et 

al., 2014; Enright, 

2016; Waatevik et 

al., 2016; Global 

Initiative for 

Obstructive Lung 

Disease, 2019) 
N/A: Not available  

 

Some of the above methods (Table 2.6) e.g. X-ray cannot be used on their own to diagnose 

COPD, however, these tests help rule out other diseases which may have similar symptoms and 

may help in disease management by providing additional information, such as lung structure 

(Global Initiative for Obstructive Lung Disease, 2019). While breathlessness and coughing are 

suggestive of COPD, these symptoms may also be suggestive of other lung diseases, such as 

asthma (Lumb, 2016a; Anzueto and Miravitlles, 2018; Global Initiative for Obstructive Lung 

Disease, 2019). Table 2.7 summarises these diseases and how to differentiate them from COPD. 

Asthma shares many overlapping features with COPD including airway narrowing (airflow 

limitation) and inflammation (Price et al., 2010; Lange et al., 2016). However, the type of 
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inflammation differs between the two diseases; asthma is primarily eosinophilic inflammation 

and COPD is primarily neutrophilic inflammation (however, some COPD patients do present 

with an eosinophilic phenotype) (Postma and Rabe, 2015; Loureiro, 2016). However, in older 

patients, these two diseases may overlap, in a condition known as asthma-COPD overlap 

syndrome (ACOS/ACO) (Postma and Rabe, 2015). 

 

Table 2.7:  Differential diagnosis of chronic obstructive pulmonary disease  

Disease How to differentiate the disease from COPD Reference 

Asthma Post-bronchodilator spirometry (COPD shows limited 

reversibility whereas asthma often shows reversibility after 

therapy) 

Age of onset (asthma usually has an early onset) 

Asthmatic often have allergies 

(Celli et al., 2004; Postma and 

Rabe, 2015; Global Initiative for 

Obstructive Lung Disease, 2019) 

Bronchiectasis Chest CT (bronchial dilation and wall thickening is present in 

bronchiectasis) 

(Celli et al., 2004; Price et al., 

2010; Global Initiative for 

Obstructive Lung Disease, 2019) 

Obliterative 

bronchiolitis 

Chest CT shows areas of decreased lung density (Celli et al., 2004; Price et al., 

2010; Burgel et al., 2013; Global 

Initiative for Obstructive Lung 

Disease, 2019) 

Diffuse 

panbronchiolitis 

High-resolution chest CT shows hyperinflated areas 

Mostly seen in Asians, rare in Caucasians  

(Celli et al., 2004; Price et al., 

2010; Burgel et al., 2013; Global 

Initiative for Obstructive Lung 

Disease, 2019) 
COPD: Chronic obstructive pulmonary disease 

CT: chest tomography  

 

The management of COPD requires the assessment of four factors: i) degree of airflow 

limitation (spirometry), ii) symptoms [through tests such as questionnaires, such as the COPD 

assessment test (CAT) or modified British Medical Research Council test(mMRC), six-minute 

walk test, etc.], iii) risk of exacerbation (number of exacerbations per year) and iv) 

comorbidities (Papaioannou et al., 2009; Lange et al., 2016; Global Initiative for Obstructive 

Lung Disease, 2019). There are several assessment tools, including the “ABCD” tool (featured 

in the 2011 GOLD update and has replaced the previously used GOLD stages 1-4) and the 

newly refined ABCD tool (Global Initiative for Obstructive Lung Disease, 2019). The refined 

ABCD tool (recommended by GOLD) is a combination of both the GOLD stages and the 

ABCD classification previously used, using both spirometric and symptomatic data (Global 

Initiative for Obstructive Lung Disease, 2019). The FEV1 values for the GOLD stages (now 

known as Grades) are as follows: i) GOLD 1 is ≥80, ii) GOLD 2 is 50 to 79, iii) GOLD 3 is 30 

to 49 and iv) GOLD 4 is <30. The ABCD classification has four groups that are divided as 

follows: i) group A; patients with either no exacerbations or a mild exacerbation (doesn’t 

require hospitalisation) that have a low mMRC and CAT, ii) group B; patients with either no 
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exacerbations or a mild exacerbation that have high mMRC and CAT scores, iii) group C; 

patients with either two or more exacerbations or a single exacerbation requiring hospitalisation 

have low mMRC and CAT scores and iv)group D; patients with either two or more 

exacerbations or a single exacerbation requiring hospitalisation have high mMRC and CAT 

scores (Global Initiative for Obstructive Lung Disease, 2019).  

 

The ABCD classification can be summarised as follows; group A consists of patients with 

barely any symptoms and no exacerbation risk, group B consists of patients that are 

symptomatic but have no exacerbation risk, group C consists of patients with little to no 

symptoms but with a high exacerbation risk and group D consists of patients that are 

symptomatic and have a high exacerbation risk (Lange et al., 2016; Global Initiative for 

Obstructive Lung Disease, 2019). Assessment of spirometry and symptoms helps with the 

management of COPD itself, however, comorbidities also need to be taken into account in 

disease management as they may influence several factors including increased hospitalisation 

(Global Initiative for Obstructive Lung Disease, 2019).  

 

2.7.3 Management and treatment of chronic obstructive pulmonary disease 

The first step in the management of COPD is to stop the patient from smoking i.e. smoking 

cessation (Global Initiative for Obstructive Lung Disease, 2019). By quitting smoking patients 

show an initial increase in lung function (even though lung inflammation persists after smoking 

cessation) and have a better response to other therapies (Jimenez-Ruiz et al., 2015; Global 

Initiative for Obstructive Lung Disease, 2019). Smoking cessation is done using nicotine 

replacement products, such as a transdermal patch or by prescribing antidepressants or 

varenicline (Global Initiative for Obstructive Lung Disease, 2019). The use of vaccines, such 

as the influenza vaccine and the pneumococcal vaccine, is recommended by GOLD, as these 

vaccines can reduce the rate of infections (Ruso et al., 2015; Ambrosino and Bertella, 2018; 

Global Initiative for Obstructive Lung Disease, 2019).  

 

Stable COPD is managed by reducing disease symptoms and exacerbation (Global Initiative 

for Obstructive Lung Disease, 2019). This management is done through the use of 

bronchodilators, antimuscarinic drugs, methylxanthines, inhaled corticosteroids, 

phosphodiesterase-4 (PDE4) inhibitors and antibiotics [such as azithromycin, to reduce the risk 

of exacerbations in patients who are critically ill, require mechanical ventilation or present with 

the three cardinal symptoms (increased dyspnoea, increased sputum volume and increased 
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sputum purulence)] (Global Initiative for Obstructive Lung Disease, 2019) (Table 2.8). In 

addition to pharmacological (drug) therapy, COPD is managed through pulmonary 

rehabilitation (increase in physical activity) and oxygen therapy (where needed) (Palange and 

Simonds, 2013; Global Initiative for Obstructive Lung Disease, 2019). Patients are also 

encouraged to self-manage i.e. monitor the signs and symptoms of the disease, address risk 

factors (such as diet), adhere to medications and follow-up with doctors/nurses (Palange and 

Simonds, 2013; Global Initiative for Obstructive Lung Disease, 2019). 

 

Table 2.8:  List of the different drugs used to treat chronic obstructive pulmonary 

disease and their modes of action and recommended usage (Abdool-Gaffar 

et al., 2019; Global Initiative for Chronic Obstructive Lung Disease, 2020) 

Drug Mode of action Examples 
Role in COPD 

therapy 
Recommendations 

Short-acting beta-

antagonist (SABA) 

Alters smooth 

muscle tone; allows 

the widening of the 

airways 

Salbutamol 
Short-term 

relief 

For use in mild COPD 

(symptomatic management) 

Long-acting beta-

antagonist (LABA) 

Alters smooth 

muscle tone; allows 

the widening of the 

airways 

Formoterol 

Decreases 

exacerbations 

and symptoms 

improve 

For use in moderate COPD 

Short-acting 

anticholinergic 

(SAMA) 

Block the effects of 

acetylcholine 

Ipratropium 

bromide 

Short-term 

relief 

For use in mild COPD 

(symptomatic management) 

Long-acting 

anticholinergic 

(LAMA) 

Block the effects of 

acetylcholine 
Tiotropium 

Decreases 

exacerbations 

and hospital 

visits 

For use in moderate COPD 

Methylxanthine 

Has a 

bronchodilator 

effect; however, this 

drug is highly toxic 

Theophylline 
Improved 

quality of life 
No recommendations 

Corticosteroids Anti-inflammatory Fluticasone 

Improves lung 

function and 

decreases 

exacerbations 

 

Use in combination therapy (only 

inhaled therapy recommended) 

Phosphodiesterase 

inhibitors 

Inhibit the 

breakdown of cyclic 

AMP 

Roflumilast 
Decreases 

exacerbations 

For use in severe COPD with a 

history of exacerbations 

Mucolytics Break down mucus Erdostreine 
May decrease 

exacerbations 

Not recommended by the South 

African Thoracic Society (SATS) 
COPD: Chronic obstructive pulmonary disease 

 

An exacerbation in COPD is defined as an “acute worsening in respiratory symptoms that 

results in additional therapy” (Palange and Simonds, 2013; Global Initiative for Obstructive 

Lung Disease, 2019). These exacerbations have a high impact on morbidity and mortality as 

well as quality, however, the majority of these exacerbations go unreported (to healthcare 
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providers) (Wilkinson et al., 2004; Palange and Simonds, 2013; Global Initiative for 

Obstructive Lung Disease, 2019). There are three categories of exacerbations: i) mild, ii) 

moderate and iii) severe (requires hospitalisation) (Global Initiative for Obstructive Lung 

Disease, 2019). Exacerbations can be triggered by either an infection (bacterial or viral) or by 

the environment e.g. pollution (Palange and Simonds, 2013; Global Initiative for Obstructive 

Lung Disease, 2019). Chronic obstructive pulmonary disease exacerbations are treated with two 

goals in mind: i) reduce the impact of the exacerbation and ii) prevent further exacerbations 

(Global Initiative for Obstructive Lung Disease, 2019). Pharmacological options are the 

mainstay for treatment of exacerbations and include the use of short-acting bronchodilators (act 

quickly), systemic corticosteroids and antibiotics (Palange and Simonds, 2013; Global Initiative 

for Obstructive Lung Disease, 2019). 

 

2.7.4 Chronic obstructive pulmonary disease and human immunodeficiency virus  

The human immunodeficiency virus (HIV) is one of the leading causes of death in South Africa 

(Statistics South Africa, 2018). As of 2018, 13.1% of the South African population has been 

infected with HIV i.e. are HIV-positive (Statistics South Africa, 2018). Amongst the provinces 

in South Africa, KwaZulu-Natal has the highest prevalence and Western Cape has the lowest 

prevalence with Gauteng having an intermediate prevalence (Shisana et al., 2014; Human 

Sciences Research Council (HSRC), 2018). Table 2.9 shows the HIV prevalence in South 

Africa in 2012 and 2017. 

 

Table 2.9:  The HIV prevalence in the 15 to 49 age group from 2012 to 2017, per 

province in South Africa (Shisana et al., 2014; Human Sciences Research 

Council (HSRC), 2018).  

Province 2012 (%) 2017 (%) 

Western Cape 7.8 12.6 

Northern Cape 11.9 13.9 

Limpopo 13.9 17.2 

Gauteng 17.8 17.6 

North West 20.3 22.7 

Mpumalanga 21.8 22.8 

Eastern Cape 19.9 25.2 

Free State 20.4 25.5 

KwaZulu Natal 27.9 27.0 

 

In South Africa, there are about 3.4 million people on antiretroviral therapy (ART) and the ART 

programme is one of the largest in the world (Moorhouse et al., 2019). With the use of ART, 

HIV-positive individuals live longer (than in the pre-ART era) (Lalloo et al., 2016). However, 
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HIV-positive individuals on ARTs show signs of chronic inflammation and 

accelerated/premature ageing that causes complications (comorbidities) such as liver disease, 

heart disease, diabetes and pulmonary disease (Deeks et al., 2013; Butler et al., 2018).  

 

Human immunodeficiency virus is considered an independent risk factor for COPD, as 

individuals with HIV show a higher prevalence of emphysema and a decreased FEV1 

(independent of smoking status) (Drummond et al., 2016; Lalloo et al., 2016; Presti et al., 2017; 

Bigna et al., 2018). Besides smoking, previous lung infections by bacteria (such as 

Pneumocystis jirovecii and Tropheryma whipplei), biomass exposure (e.g. burning of wood or 

coal), pulmonary tuberculosis, inadequate inflammatory response and oxidative stress have 

been implicated as the cause of COPD development in HIV-positive individuals (Drummond 

et al., 2016; Lalloo et al., 2016; Presti et al., 2017; Bigna et al., 2018). Additionally, HIV is 

associated with increased frequency of exacerbations, especially in individuals with a low CD4 

count (Collini and Morris, 2016; Depp et al., 2016; Drummond et al., 2016). 

 

2.8 South African healthcare system 

In South Africa, despite the high HIV burden, healthcare is a low economic priority (Mayosi 

and Benatar, 2014; Malakoane et al., 2020). In most healthcare institutions, long waiting times, 

lack of proper medicines and inadequate safety precautions are common (Malakoane et al., 

2020). The South African healthcare system can be divided into private and public sectors 

(Malakoane et al., 2020). The public sector is further divided into primary (clinics), secondary 

(district hospitals) and tertiary (academic hospitals) facilities (Malakoane et al., 2020). Only 

16% of the population has access to private healthcare and only 30% of the country’s doctors 

work in the public sector, placing an additional burden on the healthcare system (Mayosi and 

Benatar, 2014). Most HIV infected individuals only have access to the public sector and as such 

do not have proper access to healthcare (only have access to an overburden system) (Bogart et 

al., 2013). Additionally, for proper management of diseases like COPD, access to tertiary 

institutions is required, to which most of the population does not have access to (Abdool-Gaffar 

et al., 2019). 

 

2.9 Summary 

The human microbiome constitutes all the archaea, bacteria, fungi, protozoans and viruses 

found in and on the human body along with their genetic material. The most common 

microorganisms in the human microbiome are bacteria. These bacteria i.e. the bacteriome have 
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been studied using targeted molecular approaches, such as 16S rDNA sequencing (also known 

as targeted metagenomics) and the IS-Pro method. Both methods target the 16S rRNA gene 

which is conserved in all bacteria. The targeted metagenomics sequencing targets hypervariable 

regions of the 16S rRNA gene that can be used to differentiate between different bacterial 

genera. The IS-Pro method targets the intergenic spacer region between the 16S rRNA and 23S 

rRNA genes and is variable in both length and sequence content and can be used to identify 

bacteria to a species level. 

 

Additionally, the bacteriome has been studied using a metagenomics approach. This approach 

also allows the study of the viruses i.e. the virome and any other sequences of interest e.g. 

parasites. The metagenomics approach is useful as all the DNA present in a sample is sequenced 

and identification of the viruses is conducted using bioinformatics. The data generated from the 

targeted approaches, such as 16S rRNA sequencing and the IS-Pro method also require 

additional analysis using bioinformatics approaches. The IS-Pro method uses its propriety 

software for analysis. However, analysis of 16S rRNA sequencing and metagenomics data can 

be conducted using online tools such as MG-RAST or python-based tools, such as QIIME2. 

Steps can be undertaken to ensure good quality sequences and taxonomic assignment of the 

OTUs i.e. the sequences have occurred. After these steps have been performed and an OTU 

table generated; the data is compared within the group (alpha diversity) and between groups 

(beta diversity). Beta diversity measures are used in conjunction with multivariate analysis to 

compare groups or populations to determine if there is any variation in the microbial 

composition and which of the factors may be responsible. 

 

Factors that have been shown to affect microbial composition includes pH, temperature and the 

introduction/removal of bacteria to/from the environment e.g. the human lung. In the human 

healthy lung, immigration and elimination of microorganisms primarily affect the microbiome 

whereas as in the diseased lung, the growth rate of microorganism is the primary affecter. The 

predominating phyla in a healthy lung are Firmicutes, Proteobacteria, Actinobacteria and 

Bacteroidetes. The most common genera include Prevotella, Veillonella and Streptococcus. In 

disease states, this microbiome is altered e.g. in the COPD lung, Proteobacteria increases with 

disease severity. 

 

Chronic obstructive pulmonary disease is a progressive respiratory disease that is characterised 

by irreversible airflow limitations. Clinical phenotypes include breathlessness, chronic cough 

 
 
 



53 

 

and sputum production. This disease is diagnosed using clinical features and spirometry. Risk 

factors for the disease include dust from mines, HIV and previous Mycobacterium tuberculosis 

infection. There is no cure for this disease, however, COPD can be managed through 

interventions, such as smoking cessation, vaccinations (to prevent exacerbations), drugs e.g. 

short-acting beta antagonist and oxygen therapy. However, in South Africa, the diagnosis and 

management of COPD is complicated by the poor healthcare system that has resulted in long 

waiting times and lack of proper medications at healthcare institutions.  

 

This literature review highlights that while there have been major advances in the field of 

human microbiome studies, the COPD lung microbiome still requires further investigation. In 

this study, the sputum microbiome of the COPD lung was investigated. It was expected that 

even though the targeted metagenomics and the IS-Pro methods will yield different outputs; 

both these methods would generate an OTU table that can be used to compare the two different 

technologies. Both these methods targeted the 16S rRNA gene and as such similar microbial 

composition and diversity were expected. Studies have shown that the stable and exacerbation 

states of the disease have similar microbial profiles; however, the abundances of these phyla 

may change during the different disease states; which was what was expected in this study. It 

was expected that with the virome data, mostly DNA viruses would have been identified and 

that most of these viruses (including RNA viruses) would be known respiratory viruses. This 

study was expected to improve the current understanding of the COPD lung microbiome and 

the IS-Pro method was selected as a possible alternative tool to study the microbiome. 
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CHAPTER 3 

Basic overview of the methods used in the statistical analysis of microbiome studies 

 

The editorial style of Critical Reviews in Microbiology was followed in this chapter 

(Excerpts from Chapter 2 can be found in Chapter 3) 

 

Abstract  

The decreasing cost of sequencing has increased the number of researchers studying the 

microbiome and the amount of data that is generated. The rising number of microbiome studies 

warrants a thorough understanding of the statistical methods that are used to analyse 

microbiome data, to ensure transparency, quality and generalisability of results.  

 

A microbiome study has methodological steps whereby sequencing reads are generated and 

analysed. The final output from sequence analysis programs (after quality control and 

clustering) is an operational taxonomic unit (OTU) table, which displays the abundance of each 

OTU. With the advance of sequencing techniques, data outputs have expanded from simple 

descriptive observations to diversity measures that determine the differences in the microbiome 

within groups (alpha diversity) and between groups (beta diversity).  

 

This review provides a critical overview of the appropriate application of the various statistical 

methods that are used in microbiome studies. Guidance on the use of the different alpha and 

beta diversity measures is provided, highlighting the advantages and disadvantages of each 

measure, followed by a discussion of multivariate analysis of microbiome data. The review is 

concluded with the observation that a large variety of statistical measures is used and that 

further standardisation of analysis methods is warranted. While other reviews have discussed 

these topics in detailed, this review is the first review to provide a basic overview of the different 

methods used in the analysis of microbiome studies for readers with no statistical background 

knowledge. 

 

Keywords: Microbiome; statistical analysis; alpha diversity; beta diversity; multivariate 

analysis;   
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3.1 Introduction 

Microorganisms are among the most abundant organisms on Earth, with bacteria accounting 

for 15% of the Earth’s biomass and can persist in a wide variety of habitats including the human 

body [1, 2]. The microbiome is defined as all the microorganisms along with their genetic 

material (i.e. genomes) that are found in a specific environment, for example in the human 

gastrointestinal tract or lungs [3-6]. These microbiomes are complex and often provide essential 

functions for that particular environment [7-9]. In humans, the microbiome is an important 

component of host immunity and host metabolism [7-9]. The microbiome, in turn, is influenced 

by several host factors, such as the local environment (e.g. available nutrients, pH, temperature, 

etc. in the human lung) and movement of microorganisms in and out of the environment (e.g. 

movement of microorganisms out of the human gastrointestinal tract and into human lung) [10-

13]. 

 

The advance of next-generation sequencing (NGS) technologies has enabled in-depth analysis 

of microbiomes; the study of microbial communities can be referred to as microbial ecology 

[14-17]. Microbial ecology has two important components: i) the diversity of the community 

and ii) the function of the community [14]. There are two types of studies that can be conducted 

to determine the diversity of the microbial environment: i) targeted metagenomics studies or ii) 

shotgun metagenomics studies; shotgun metagenomics has the added benefit of being able to 

determine the function of the microbial environment as well (if required) [18].  

 

Several different analysis and statistical measures are available, which can be used to determine 

the diversity of the microbiome. However, if researchers do not have an adequate understanding 

of the methods, choosing an appropriate approach, is difficult and may result in incorrect 

conclusions [19]. 

 

This review provides an overview of the factors that should be taken into consideration when 

analysing microbiome data. The statistical approaches to the different microbiome diversity 

measures are discussed, including the advantages and disadvantages of each method, and 

guidance is provided on the appropriate use of certain measures. Statistical tools, including 

multivariate analysis, for microbiome data are reviewed. A roadmap with detailed steps to guide 

and support researchers to conduct specific types of microbiome analysis is provided (Figure 

3.1). Table 3.1 provides a glossary of the terms used in this study.  
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3.2 Conducting a microbiome study 

The first step to ensure that a study generates meaningful data is developing an appropriate 

research question with clear measurable objectives [20-22]. The research hypothesis drives the 

experimental design; one of the most important concerns in a microbiome study [20-22]. 

Several factors should be taken into consideration for a high-quality experimental design 

including the use of appropriate controls (positive and negative controls), sample collection, 

metadata, possible confounders and DNA extraction procedures (technical variation) [20-22]. 

Each of the above factors introduces technical variation in the study (and in some instances 

biological variation), which has been shown to impact on the bacterial composition that is 

measured in the microbiome and downstream analyses [23]. Two major approaches can be used 

to study the microbiome: i) the targeted approach where a specific region of the microbial 

genome is studied, i.e. targeted metagenomics approach or ii) an untargeted approach where all 

the microbial genetic material is analysed, i.e. shotgun metagenomics approach [21, 24, 25].  

 

3.3 Analysis of microbiome data 

Any microbiome study will include the following steps: i) sample collection and storage, ii) 

total bacterial DNA extraction (direct extraction from the sample) and iii) sequencing analysis 

[22]. In the case of the targeted metagenomics approach, a variable region of the 16S rRNA 

gene, such as the V1-V3 region is sequenced [26]. This region of the 16S rRNA gene has the 

highest similarity to the full-length sequence of the 16S rRNA gene and is, therefore, one of the 

more popular choices for sequencing using the 27F and 518R primers and the MiSeq platform 

(Illumina, USA) [27-29]. Several other primers and platforms can be used for 16S rRNA 

sequencing as summarised by Tremblay et al. (2015) [26]. With the untargeted approach i.e. 

shotgun metagenomics, all DNA present is sequenced [30]. 

 

3.3.1 Analysis of data generated from the targeted metagenomics approach 

With the targeted approach, all bacterial DNA in the sample is extracted and specific regions, 

such as the V1-V3 region are amplified [22, 31]. After amplification using the specific primers, 

the library preparation is performed and this step includes the addition of adapters, indices and 

barcodes [32, 33]. Library preparation is followed by sequencing [32]. Next-generation 

sequencing, such as sequencing using the MiSeq platform (Illumina, USA) uses the adapters 

added during the library preparation phase to bind to oligonucleotides present on the company’s 

propriety flow cell, enzymes add nucleotides to the fragments of DNA on the cell and reversible 
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dye-terminator nucleotides are briefly washed over the cell (with enough time to attach and 

with the excess nucleotides washed away); this process is repeated for several cycles [34]. 

 

After sequencing is completed, the data are available in one of four formats: i) demultiplexed 

single-end fastq file, ii) multiplexed single-end fastq file, iii) demultiplexed paired-end fastq 

file or iv) multiplexed paired-end fastq file [35-37]. Using programs, such as quantitative 

insights into microbial ecology (QIIME), QIIME2 or mothur, these sequences are 

demultiplexed (if multiplexed) or joined (if paired-end) [31, 38-41]. The overall data quality is 

improved by trimming the length of low-quality sequences, discarding short sequences and 

removal of chimeric sequences (sequences that formed from two different microbes) and 

singletons (sequence only observed once) [31, 38-43]. These processes result in a final output 

of the analysis, which is an operational taxonomic unit (OTU) table (with QIIME 2, this table 

is also referred to as a feature table) [40, 44, 45]. This table shows the abundance of each OTU 

within each sample in the dataset and is generated in a Biological Observation Matrix (BIOM) 

format (default file format for QIIME) [40, 44, 46-48]. Several software packages can use this 

.biom file to perform further analysis using diversity measures and to visualise the data as 

described in more detail later (see Figure 3.1). 

 

3.3.2 Analysis of data generated using a shotgun metagenomics approach 

As mentioned previously with a shotgun metagenomics approach (untargeted approach), all the 

DNA present in a sample is sequenced [30]. Similar to the targeted approach, all DNA and/or 

RNA in a sample is extracted [32, 49]. Extraction is followed by cDNA synthesis (for single-

stranded DNA and RNA) and fragmentation [32, 49]. After fragmentation, library preparation 

(with adapters and barcodes) and sequencing are performed [32]. 

 

The analysis of metagenomics sequencing data is an expanding field, however, there is no 

standardisation and the workflow for the analysis of shotgun metagenomics (is different from 

the targeted metagenomics (16S rRNA sequencing) [15, 20, 21, 50, 51]. However, the first step 

for both methods is the same: quality control; with the shotgun metagenomics approach, this 

includes the filtering of low-quality sequences, demultiplexing and removal of adaptors [21, 

50, 52, 53]. One of the problems with shotgun metagenomic sequencing is the presence of host 

DNA [54]. The removal of reads associated with host DNA is often the second step in the 

shotgun metagenomic analysis. After the removal of host DNA, sequences can be analysed in 

one of two ways: i) read-based profiling (a sequence read refers to the DNA characters in the 
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sequence) i.e. comparative assembly or ii) assembly-based profiling i.e. de novo assembly [20, 

32, 52, 53, 55, 56]. The read-based profiling performs taxonomic classification by mapping the 

reads directly to genomes or marker genes, whereas the assembly-based profiling first 

assembles the shorter reads into contigs (longer continuous sequences) that are subsequently 

binned (sorted) by similarity and assembled to genomes or annotated contigs (in databases) [20, 

52, 57]. Several programs can be used to analyse metagenomics data including metagenomic 

rapid annotations using subsystems technology (MG-RAST) (phylogenetic and functional 

analysis of metagenomes), CLC genomics workbench (using the microbial genomics module), 

MEGAHIT (assembly) and METAGEN (binning) and Kraken (taxonomic 

classification/binning) [20, 21, 52, 53, 57, 58]. These programs generate matrices (tables with 

rows and columns) that can be used to determine alpha and beta diversity [20, 59, 60]. 

 

3.3.3 Challenges of microbiome data 

There are several aspects of microbiome data that makes analysis challenging [61]. These 

aspects include the following: i) each sample may have a different library size i.e. a different 

number of sequences are present in the samples, ii) there may be zero counts present in the data 

and iii) the total number of reads does not accurately reflect the absolute number of 

microorganisms present [61]. One of the ways in which these “problems” are overcome is by 

normalising the data [61]. 

 

3.4 Normalisation of data and rarefaction 

One such method of normalisation is rarefaction. Rarefaction adjusts for differences in library 

sizes by selecting a threshold (equal to or less than the smallest number of reads) and randomly 

discards sequences from the larger samples (with more reads); this method is essentially random 

subsampling [62, 63]. However, the usefulness of rarefaction has been questioned and has been 

considered unnecessary for microbiome studies; McMurdie and Holmes (2014) have stated that 

the use of rarefaction is inadmissible as it omits valid data [62, 63]. 

 

There are several other ways in which the data can be normalised. These methods include i) 

scaling the read counts by the total number of reads and ii) converting the data to relative 

abundance [20]. 
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3.5 Diversity measures used in microbiome studies 

There are two diversity measures of importance in microbiome studies: alpha diversity and beta 

diversity [22, 46, 47, 64-66]. Alpha diversity refers to the bacterial diversity within a single 

sample while beta diversity describes the diversity between samples [20]. The alpha diversity 

provides information on how complex a sample is, i.e. the more bacteria there is in a sample 

(higher alpha diversity), the more interactions occur within the sample, whereas beta diversity 

shows how similar the different samples are to each other in terms of their bacterial composition 

[6, 67, 68].  

 

The research question determines which diversity measure(s) is appropriate for data analysis 

[46]. Selection of the appropriate measure(s) for analysis is based on the following study 

characteristics: i) is the aim of the study to test for alpha diversity or beta diversity? ii) is the 

presence/absence of particular taxa the only information required or is the abundance 

important? (qualitative measures vs quantitative measures) and iii) are all taxa regarded as 

equally related to each other or are the taxa considered divergently related; i.e. not all species 

are equally related to each other [species (taxon)-based measures vs divergent (phylogenetic)-

based measures] [64, 69].  

 

3.5.1 Alpha diversity 

Alpha diversity measures provide information on how diverse a single sample is and this can 

be compared to other samples; it is useful when comparing a diseased individual to a healthy 

individual to determine if the diseased individual’s microbiome is less or more diverse [64]. 

However, even if two communities have similar alpha diversity measures, it does not mean that 

the two communities share the same taxa [70]. Beta diversity measures show the number of 

shared species between communities [64]. When deciding whether to use qualitative 

(presence/absence) or quantitative measures, the following points should be taken into 

consideration: i) quantitative measures are most useful when the data has a strong 

environmental filter (if subtle changes occur, qualitative measures are unable to take note of the 

difference) and ii) qualitative measures are most useful when rare species are present; with 

presence/absence data rare species are given the same weight as common species and as a result 

rare species are emphasised [71, 72]. A phylogenetic approach would provide more 

evolutionary information; however, when studying a new environment, there may be a new 

taxon whose lineage has not been defined [73, 74]. In this instance, it would be more appropriate 

to use a taxon-based approach [73, 74] 
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The most used statistical measures used for alpha diversity are Chao1, the Shannon index and 

the Simpson index [75]. According to Morris et al. (2014), an ideal alpha diversity measure 

does not exist and each alpha diversity measure interprets results differently, however, by using 

more than one alpha diversity measure, a more complete understanding of the interactions 

within the community may be possible [75]. The Chao1 measure gives more weight to rare 

species, whereas the Shannon index and the Simpson index give more weight to the common 

species [76, 77]. The Shannon index is more sensitive to the number of different species in the 

community (richness) whereas the Simpson index is more sensitive to the relative abundance 

of the species (evenness) [78]. Table 3.2 summarises the advantages and disadvantages of each 

statistical method to measure alpha diversity. 

 

However, these measures (particularly the Shannon and Simpson indices) are not very intuitive 

and are often difficult to compare and interpret [79]. A solution to this problem is the usage of 

Hill numbers; these were created by Hill (1973) and were re-introduced to the field of microbial 

ecology by Jost (2007) [80-82]. The advantage of Hill numbers is that these numbers: i) obey 

the replication principle, ii) are intuitive, iii) can easily convert the Shannon and Simpson 

indices and iv) allow comparisons between studies [81, 83]. Additionally, these numbers are 

more sensitive to rare species/OTUs [79]. The Hill numbers use a scaling parameter i.e. q, that 

is referred to as the order of diversity. Three q values are important: i) when q=0, this is 

equivalent to species richness and rare OTUs are favoured with this value, ii) when q=1, this is 

equivalent to the exponential Shannon index, both abundant and rare species are given equal 

value and ii) when q=2, this is equivalent to the inverse of the Simpson index and abundant 

OTUs are favoured with this value [79]. While the Hill numbers are most used with Shannon 

and Simpson indices, these effective numbers have also been applied to phylogenetic alpha 

diversity measures and beta diversity measures [81, 84] 

 

3.5.2 Beta diversity 

The Bray-Curtis, unweighted UniFrac and weighted UniFrac are the preferred statistical tools 

for the measurement of beta diversity, used in conjunction with multivariate analysis [19, 85]. 

Table 3.3 shows the various beta-diversity measures that can be used to study the microbiome 

and Figure 3.2 provides information on how to choose a beta diversity measure in the context 

of different study designs. 
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Beta diversity measures provide information on whether there are variations in microbial 

composition between different populations or groups, but this measure is unable to identify the 

factors that are responsible for such variation [86, 87]. Variations between populations, if 

present, may be caused by i) biological interactions within the community, ii) environmental 

conditions (another variable) or iii) random variation (no known cause for the variation) [88]. 

The best approach to understanding the variation in beta diversity is to perform multivariate 

analysis [86].  

 

3.6 Multivariate analysis of microbiome data to understand variation in beta diversity 

In the literature, the term multivariate analysis is used interchangeable with the term 

multivariable analysis [89]. However, the two terms have different meanings [89]. Multivariate 

analysis involves the analysis of multiple outcomes whereas multivariable analysis involves the 

analysis of a single outcome with multiple variables. One of the reasons that these terms are 

used is interchangeably that microbiome data is inherently multivariate [90]. However, for the 

purpose of this review the term multivariate analysis will be used as most of the methods 

mention in this review have been referred to a multivariate analysis. Multivariate analysis of 

microbiome data can be performed in two ways: i) the distance-based approach that uses 

distance/dissimilarity matrices (beta diversity measures) such as the Bray-Curtis measure, or ii) 

the canonical approach that uses raw data i.e. OTU table [19, 91, 92]. The distance-based 

approach is discussed in more detail below. The canonical approach uses the OTU table and 

requires that some assumptions be made on the relationship between the groups (linear, 

unimodal, etc.), i.e. how the data will be distributed [19, 93]. Choosing the appropriate approach 

(and tests) for multivariate analysis can be complicated for researchers who do not have a 

thorough understanding of statistical analytical methods and as such the risk of making the 

incorrect conclusions is higher [19]. To help researchers understand multivariate analysis and 

to choose the right tools, PL Buttigieg and A Ramette (2014) developed an interactive website 

called GUSTA ME (https://sites.google.com/site/mb3gustame/home), that acts as a resource 

tool for microbial ecologist and other researchers studying the microbiome [19]. Table 3.4 

summarises the various distance-based and canonical multivariate tests that are available.  

 

3.6.1 Distance-based approaches 

In the distance-based approach, the first step is to ensure that all the data is in the same scale 

and format [93, 94]. This is achieved by standardising and normalising the data [93, 94]. The 

second step is to choose a distance measure to be used, e.g. Bray-Curtis [93, 94]. The third step 
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is to visualise the similarity and dissimilarity between objects using cluster analysis or 

ordination [93, 94]. Patterns in a dataset may be observed using either cluster analysis or 

ordination [93, 94]. The more similar the samples are, the closer the samples will cluster [95]. 

 

3.6.1.1 Clustering methods 

There are two types of multivariate clustering: hierarchical and k-means clustering (user-

defined clustering; the user decides how many groups the data should be clustered into) [19, 

93, 94]. Hierarchical clustering is more appropriate for small datasets whereas k-means 

clustering is the most suitable tool for large datasets [19, 96]. There are several different 

hierarchical clustering methods, including i) single-linkage clustering (also known as nearest 

neighbour clustering) e.g. minimum spanning tee (MST), ii) complete-linkage clustering e.g. 

and iii) average-linkage e.g. unweighted pair-group method with arithmetic mean (UPGMA) 

clustering [19, 91]. The user-defined method, k-means clustering uses an algorithm which 

requires three parameters from the user: i) the number of clusters, which is defined as k, ii) 

cluster initialisation (choosing initial clusters) and iii) a distance matrix [19, 93, 97-99]. 

 

3.6.1.2 Ordination 

The term ordination can be defined as “the arrangement of units in some order” [91]. In ecology, 

ordination is used to visualise objects on reference axes [91, 93]. Ideally, each descriptor in the 

study should be plotted as an axis; however, if there are more than three descriptors, it is not 

possible to visualise on paper [91]. As a result, the axes are chosen based on descriptors that 

the researchers are interested in [91]. As the graph(s) represent the variability in a reduced space 

(dimensionally), these methods are referred to as ordination in reduced space [91]. An example 

of an ordination method is principal coordinate analysis (PCoA) [19, 91, 93, 100]. Clustering 

can be combined with ordination in a method called non-metric dimensional scaling (NMDS) 

[19, 91, 93, 100]. 

 

3.6.1.3 Test for statistical significance 

The last step in the distance approach (for multivariate analysis) is to test for the significant 

differences between the groups [93, 94]. Several test statistics can be used including analysis 

of similarities (ANOSIM), the Mantel test and permutational multivariate analysis of variance 

(PERMANOVA) [93, 100]. The most popular test statistics is the PERMANOVA method, in 

part due to the fact it can be used in studies which have a small sample size [101]. Each of these 

methods tests a different null hypothesis [102], 
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3.7 Differential abundance analysis of microbiome data 

An alternative analysis approach is to compare the abundance of the microorganisms across the 

different groups studied e.g. control vs treatment [20]. However, determining the differences 

between the communities is difficult as microbial data is inherently compositional. The relative 

abundance of the microbiome is considered compositional as it sums to one [61]. There are, 

however, several challenges with the analysis of compositional data: i) analysis does not work 

with data that contains zero counts (as mentioned previously); however, microbiome data 

usually have zeros (often presence/absence of an OTU) [103]. In addition to the zero counts, 

microbial data are often overdispersed [104]. To overcome these challenges, negative binomial 

and zero-inflated models have been used [104]. The zero-inflated models include zero-inflated 

poisson (ZIP), zero-inflated gaussian (ZIG) and zero-inflated negative binomial (ZINB). Other 

methods that have been used in differential abundance analysis include machine learning e.g. 

random forest regression, log-ratio transformation [additive (alr), centered (clr) and 

isometric(ilr)], generalised linear model (GLM) [20, 61, 105]. The R software has several 

packages (tools) which can be used to analyse differential abundances which are listed in Table 

3.5. 

 

3.8 Conclusions 

In this rapidly expanding field of microbiome research, large amounts of data are generated. 

The study of this data forms part of a field of study referred to as microbial ecology. One of the 

main components of microbial ecology is studying the diversity of microbial communities. 

There are two ways in which this diversity can be measured and analysed: (i) the diversity 

within the communities (alpha diversity) and (ii) the diversity between communities (beta 

diversity), including determination of factors that explain differences between populations 

using multivariate analysis. There is a large variety of statistical measures available to analyse 

the microbiome and in this review, guidance has been provided on how, where and when to use 

these appropriately. The number of measures that can be used to study diversity is continuously 

increasing and is compounding the difficulty in choosing the appropriate statistical measure. 

The most important factor is the research question of the study; followed by sample size and 

the environment, such as the human lung being studied. While this review aims to provide a 

guide on the analysis of microbiome data, guidelines and consensus for microbiome studies 

from sample collection to statistical analysis are still needed. The way forward is for 

microbiome analysis to be standardised, with clear guidelines. However, this is extremely 

difficult as each study may have different considerations that need to be taken into account and 
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different research questions to be answered. The authors recommend the use of Hill numbers 

for alpha diversity analysis (however, this methodology has a steep learning curve) as these 

effective numbers can be compared across different measures and studies and for beta diversity 

analysis, the authors recommend the use of multivariate analysis with either a phylogenetic or 

non-phylogenetic beta diversity measure.  

 

LIST OF ABBREVIATIONS 

ANOSIM:  Analysis of group similarities 

CA:   Correspondence analysis 

CCA:   Canonical correspondence analysis 

CCorA:  Canonical correlation analysis 

DCA:   Detrended correspondence analysis 

DFA/LDA:  Discriminatory function analysis 

HCA:    Hierarchical clustering 

MST:   Minimum spanning tree 

N/A:   Not available 

NGS:   Next generation sequencing 

NMDS:  Nonmetric multidimensional scaling 

OPLS-DA:  Orthogonal projections to latent structure discriminant analysis 

PA:   Procrustes analysis 

PCA:   Principal component analysis 

PCoA:   Principal coordinate analysis 

PERMANOVA: Multivariate analysis of variance with permutation 

RDA:   Redundancy analysis 

UPGMA:  Unweighted pair-group method with arithmetic mean 
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Table 3.1: Glossary of terms used in the analysis of microbiome  
Term Definition References 

Abundance Number of observed clustered sequences (or OTUs) [61, 106, 107] 

Alpha diversity The average diversity within an environment e.g. sputum specimen. [37, 108] 

Beta diversity Comparison of the diversity between different environments/samples [37, 108] 

Biom Biological observation matrix [48] 

Canonical analysis Direct comparison between matrices in their simplest form e.g. OTU table [109] 

Clustering (also 

referred to as 

binning) 

Grouping similar objects together by partitioning into subsets [110] 

Demultiplexed reads Reads that were previously in the same run and already have their barcodes removed [111, 112] 

Discriminatory 

analysis 

Analysis that discriminates data into groups i.e. classifies data. It measures 

predictor/discriminant variables against mutually exclusive groups (grouping variables) 
[100, 113, 114] 

Diversity A range of differences (variability) within, among or between groups [83, 115] 

Diversity measures Measures/indices used to quantify diversity [116] 

Evenness A measure of the relative abundance of different taxonomic units (OTUs) in a community [6, 117-119] 

Exploratory analysis 
Analysis that is used to find patterns in data. It measures an object (e.g. sample) against a 

variable (e.g. abundance of OTUs) 
[93, 100] 

Fastq file Read sequences with a quality file [120] 

Interpretive analysis 

Analysis that interprets relationships between data. It measures explanatory variables 

(independent variables), such as environmental factors, different sample groups or patient 

metadata against response variables (variables of interest) such as OTU table. 

[93, 100, 121] 

Microbiome 
All microorganisms living in a habitat, such as the human lungs, their genetic material and 

the surrounding environmental conditions 
[5, 118] 

Multiplexed reads 
Reads from multiple samples joined in a single run with each sample having a unique 

barcode 
[111, 112] 

Next generation 

sequencing 

High throughput rapid parallel sequencing. Also known as high throughput sequencing 

(HTS) 
[6, 122, 123] 

Ordination 

Arrangement of data points across a reduced number of axes (one or more), whilst keeping 

trends and preserving distances between objects (data points). Visualised as two- or three-

dimension plots 

[22, 37, 100, 

124, 125] 

OTU Operational taxonomic unit. Group of similar DNA sequences (often at 97% similarity) [118, 126-128] 

Paired-end reads 
Reads generated from DNA sequenced using forward and reverse primers i.e. at both ends. 

Have two outputs (read files) 
[36, 129] 

Phylogeny 
The evolutionary history of the microorganism i.e. how the microorganism diversified 

over time 
[130-132] 

Qualitative Non-ordered data that is observed and has mutually exclusive categories [133-135] 

Quantitative Ordered data that is measured [134] 

Random variation A variation which has no known explanation or root cause [136] 

Read 
A string of sequences (base pairs) generated by the next generation sequencing 

instrument/platform 
[137] 

Richness Number of unique OTUs in a community 
[6, 117-119, 

138] 

Single-end read Read generated from DNA only being sequenced from one end. Has one output (read file) [36, 129] 

Taxa (taxon) The taxonomic rank of a microorganism (or any organism). [128] 

Taxonomy Hierarchical classification and identification [130, 132, 139] 

Unimodal 

distribution 
Data that has only one peak on the variable density plot [111, 112] 
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Table 3.2: Summary of characteristics of alpha diversity measures that can be used in microbiome studies  

Statistical 

tool 

Taxon/ 

Phylogenetic 
Equations 

Advantages Disadvantages 
References 

Qualitative 

Chao1 Taxon 

𝑺𝑪𝒉𝒂𝒐𝟏  =  𝑺𝒐𝒃𝒔 + 
𝒏𝟏

𝟐

𝟐𝒏𝟐
 where 𝑆𝑜𝑏𝑠 is the number of observed species, 

n1 is the number of singletons (single reads) and n2 is the number of 

doubletons 

Precise All species are regarded as equally 

related. 

Requires abundance data (e.g. OTU 

table) 

[64, 140-142] 

[117, 143, 144] 

Abundance-

base 

coverage 

(ACE) 

Taxon 

𝑺𝑨𝑪𝑬  =  𝑺𝒂𝒃𝒖𝒏𝒅  +
𝑺𝒓𝒂𝒓𝒆

 𝑪𝑨𝑪𝑬
 +  

𝑭𝟏

𝑪𝑨𝑪𝑬
 𝜸𝑨𝑪𝑬

𝟐  where 𝑆𝑎𝑏𝑢𝑛𝑑 is the number of 

abundant species, Srare is the number of rare species, CACE=1-
F1

Nrare
⁄ (F1 is the number of species with i individuals) 

and Nrare = ∑ iFi
10
i=1  

Considers both 

rare and abundant 

species 

All species are regarded as equally 

related. 

Only provides information on the 

species observed 

[64, 140, 141, 

143-145] 

Phylogenetic 

Diversity 

(PD) 

Phylogenetic 
PD = (N-1) + no. of internal nodes of the minimum spanning path, 

where N is the size of the taxa 

Provides both 

branch length and 

topographical 

information 

Requires a phylogenetic tree; More 

weight is given to richness (over 

evenness); analysis is difficult with 

populations of different sample sizes 

[64, 144, 146, 

147] 

Quantitative 

Shannon’s 

Index 
Taxon 𝑯 =  − ∑ 𝒑𝒊𝒊 𝒍𝒏 𝒑𝒊 ; where pi is the number of individuals in species si 

Confounds 

species richness 

and evenness; 

sensitive to rarer 

species 

All species are regarded as equally 

related; Sensitive to sample size; 

Values have no absolute meaning 
[62, 64, 76, 143, 

148, 149] 

Simpson’s 

Index 
Taxon 𝑫 =  − ∑ 𝒑𝒊

𝟐
𝒊  ; where pi is the number of individuals in species si 

Suitable for 

smaller sample 

sizes; robust 

All species are regarded as equally 

related; Requires abundance data; not 

intuitive; Values have no absolute 

meaning; does not account for 

unobserved species 

[62, 64, 76, 143, 

144, 148, 150]  

Theta (θ) Phylogenetic 

θ (π) = ∑ ∑ pij<i
k
i=1 pjdij  where k is the number of distinct sequences, 

𝑝𝑖  is the frequency of the first (ith) sequence, pj is the frequency of 

the second sequence (jth)and dij is the number of (nucleotide) 

differences between the two sequences 

Provides a 

phylogenetic 

measurement 

Richness is not considered 

[64, 151] 

Jackknife Unknown 
JACK1 = SO + 

r1(n-1)

n
; where SO is the number of species observed in 

n quadrants and r1 is the number of species present in one quadrant 

Precise; useful in 

populations 

where there is 

resampling 

Sensitive to sample size 

[66, 144, 152, 

153] 
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Table 3.3: Summary of characteristics of beta diversity measures that are used in microbiome studies 

Statistical 

tool 

Taxon/ 

Phylogenetic 
Equations Input Output (results) Interpretation of results Pros and Cons References 

Qualitative 

Sorenson 

Index/ 

Dice’s 

coefficient 

Taxon 

𝜷𝒔𝒐𝒓 =  
𝟐𝒂

𝜶𝟏+𝜶𝟐
; where a is the total number of species 

that occur in both populations, α1 is the total number of 

species in population 1 and α2 is the total number of 

species in population 2 

OTU table A value between 0 and 1 

The closer the number is to 

one, the more similar the 

samples are 

Pros: Simple and 

intuitive 

Cons: All species are 

regarded as equally 

related 

[64, 143, 

154-157] 

Jaccard Taxon 

𝜷𝒋 =  
𝒂

𝜶𝟏+𝜶𝟐−𝒂
; where a is the total number of species 

that occur in both populations, α1 is the total number of 

species in population 1 and α2 is the total number of 

species in population 2 

OTU table A value between 0 and 1 

The closer the number is to 

one, the more similar the 

samples are 

Pros: Simple and 

intuitive 

Cons: All species are 

regarded as equally 

related 

[64, 143, 

155, 157, 

158] 

Unweighted 

UniFrac 
Phylogenetic 

𝑼 =
∑ 𝒃𝒊|𝑨𝒊−𝑩𝒊|𝒏

𝒊

∑ 𝒃𝒊𝒏
𝒊

; where bi is the branch length from 

branch i, Ai is the number of sequences/reads from 

branch i in population A and Bi is the number of 

sequences/reads from branch i in population B 

Phylogenetic 

tree 

A phylogenetic tree which 

indicates from which 

sample the sequences are 

from at the end of the 

node (from one sample, 

both samples, etc.) 

If a node is shared between 

samples; the branch length 

will be shared indicating a 

similarity. 

Pros: can compare 

samples from 

different conditions 

Cons: Gives to much 

weight to rare OTUs 

[64, 104, 

159-161] 

Quantitative 

Sorenson 

quantitative 

index/ Bray-

Curtis Index 

Taxon 

𝑩𝑪𝒊𝒋  =  
𝑺𝒊+𝑺𝒋−𝑪𝒊𝒋

𝑺𝒊+𝑺𝒋
; where 𝑆𝑖 is the number of species in 

population i, Sj is the number of species in population j 

and Cij is the total number of species (at the location 

with the fewest species) 

OTU table A value between 0 and 1 

The closer the number is to 

one, the more similar the 

samples are 

Pros: Robust 

Cons: sensitive to 

sample size; samples 

populations must be 

the same size 

 

[64, 66, 

117, 156, 

157, 162] 

Morisita-

Horn 

measures 

Taxon 

𝑪𝑴𝑯 =
𝟐 ∑ 𝒑𝒊𝟏𝒑𝒊𝟐

𝒔
𝒊=𝟏

∑ 𝒑𝒊𝟏
𝟐 + ∑ 𝒑𝒊𝟐

𝟐𝒔
𝒊=𝟏

𝒔
𝒊=𝟏

; where pi1 is the proportional 

abundance (percentage) of species in i in population 1 

and pi2 and pi1 is the proportional abundance 

(percentage) of species in i in population 2 

OTU table A value between 0 and 1 

The closer the number is to 

one, the more similar the 

samples are 

Pros: Not sensitive to 

sample size 

Cons: can overlook 

rarer OTUs 

[64, 70, 

117, 144, 

157, 163-

165] 

Weighted 

UniFrac 
Phylogenetic 

𝑼 = ∑ 𝒃𝒊 |
𝑨𝒊

𝑨𝑻
−

𝑩𝒊

𝑩𝑻
|𝒏

𝒊 ; where bi is the branch length from 

branch i, Ai is the number of sequences/reads from 

branch i in population A, AT is the total number of 

sequences/reads in population A, Bi is the number of 

sequences/reads from branch i in population B and BT 

is the total number of sequences/reads in population B 

Phylogenetic 

tree 
A phylogenetic tree 

A weight is given to the 

sequences based on their 

relative abundance. The 

width of the branch 

indicates the weight 

Pros: can compare 

samples from 

different conditions 

Cons: Gives too 

much weight to more 

abundant OTUs 

[64, 104, 

161, 166, 

167] 
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Table 3.4: Examples of multivariate tests to analyse microbiome data [43] 

Test Abbreviation 

Raw 

data/Distance-

based 

Type of 

assumed 

relationship 

Exploratory/ 

Interpretive/ 

Discriminatory 

Ordination/ 

Clustering 

Orthogonal projections to latent 

structure discriminant analysis 
OPLS-DA Raw data Linear Discriminatory Ordination 

Discriminatory function analysis DFA/ LDA Raw data Linear Discriminatory Ordination 

Hierarchical clustering HCA Distance-based N/A Exploratory Clustering 

k-means clustering N/A Distance-based N/A Exploratory Clustering 

Principal coordinate analysis PCoA Distance-based N/A Exploratory Ordination 

Nonmetric multidimensional 

scaling 
NMDS Distance-based N/A Exploratory Ordination 

Principal component analysis PCA Raw data Linear Exploratory Ordination 

Correspondence analysis CA Raw data Unimodal Exploratory Ordination 

Detrended correspondence 

analysis 
DCA 

Raw data Unimodal 
Exploratory Ordination 

Procrustes analysis PA Any data N/A Interpretive Ordination 

Canonical correspondence 

analysis 
CCA 

Raw data 
Unimodal Interpretive Ordination 

Redundancy analysis RDA Raw data Linear Interpretive Ordination 

Canonical correlation analysis CCorA Raw data Linear Interpretive Ordination 

Hypothesis Tests 

Multivariate analysis of variance 

with permutation 
PERMANOVA Distance-based N/A Interpretive  N/A 

Analysis of group similarities ANOSIM Distance-based N/A Interpretive  N/A 

Mantel test  N/A Distance-based N/A Interpretive N/A 

N/A- Not available/not applicable 

 

Table 3.5: Different tools available in R for differential abundance analysis  

Name of the tool 
Type of transformation 

(Normalisation) 
Zero Handling Statistical test(s) 

Additional 

information 
Reference 

ALDEx Log-ratio 

Dirichlet 

distribution (Monte-

Carlo instances) 

Welch’s t-test 

Wilcoxon 

Kruskal-Wallis (two 

or more groups) 

Requires a 

large number 

of samples 

[103] 

DESeq2 Negative binomial GLM Bayesian shrinkage Wald Test N/A [61] 

metagenomeSeq 
Zero-inflated Gaussian 

(ZIG) 
N/A N/A N/A [61] 

edgeR Negative binomial GLM Bayesian shrinkage Unknown 

More 

conservative 

than DESeq2 

[61] 

ANCOM Log-ratio N/A Mann-Whitney N/A [61] 

N/A- Not available/not applicable 
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Figure 3.1: Flow diagram summarising the steps required in microbiome analysis 

using the targeted approach. Abbreviations: OTU: Operational taxonomic 

unit; CCA: Canonical correspondence analysis; PCA: Principal component 

analysis CA: Correspondence analysis; DCA: Detrended correspondence 

analysis; PCoA: Principal coordinate analysis; NMDS: Nonmetric 

multidimensional scaling; OPLS-DA: Orthogonal projections to latent structure 

discriminant analysis; RDA: Redundancy analysis; DFA/LDA: Discriminatory 

function analysis; CCorA: Canonical correlation analysis; PERMANOVA: 

Multivariate analysis of variance with permutation; ANOSIM: Analysis of 

group similarities; ANOVA: Analysis of variance; analysis of similarities 

(ANOSIM) [20-22, 46, 88, 104, 168-172]. 
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Figure 3.2: Algorithm to guide the choice of statistical measures to determine beta 

diversity in microbiome studies. Step 1 is choosing between a quantitative 

or a qualitative measure. Step 2 is deciding whether to consider the 

phylogenetic relationship between operational taxonomic units (OTUs). 

Other considerations, such as sample size, help inform the final decision 

on which measure to use [64, 66, 70, 104, 117, 143, 144, 155-157, 159, 161, 

164, 166, 167]. 
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CHAPTER 4 

Lung microbiome of stable and exacerbated COPD patients in Pretoria, South Africa 

 

 The editorial style of the Microbiome Journal was followed in this chapter 

 

Abstract 

Background 

Chronic obstructive pulmonary disease (COPD) is a progressive lung disease characterised by 

the occurrence of exacerbations triggered by bacterial or viral infections. The aim of this study 

was to determine the composition of the lung microbiome and lung virome in patients with 

COPD in an African setting and to compare their composition between participants with stable 

and exacerbation states of disease. 

 

Methods 

Twenty-four adult patients with COPD were recruited from three hospitals in Tshwane Health 

District, South Africa. Spontaneously expectorated sputum was collected for microbiological 

analysis. Bacterial DNA was extracted using the Isolate II Genomic DNA Kit (Bioline, UK). 

Targeted metagenomics was performed to determine the microbiome composition and analysed 

using quantitative insights into microbial ecology 2 software. Viral DNA and RNA were 

extracted from selected samples using the Isolate II Genomic DNA Kit (Bioline, UK). and the 

QIAmp Viral RNA Kit (Qiagen, Germany) followed by conversion to cDNA. Shotgun 

metagenomics sequencing (virome) of pooled DNA and RNA was performed on the MiSeq 

platform and analysed using Kraken 2 software.  

 

Results  

The most abundant phyla across all microbiome samples were Firmicutes (ranging from 41% 

to 91%), Proteobacteria (ranging from 3% to 62%), Bacteroidetes (ranging from 3% to 22%) 

and Actinobacteria (ranging from 1% to 22%). The following genera were most prevalent: 

Haemophilus, Streptococcus, Veillonella, Prevotella and Granulicatella. Both Chao1 [median 

values of 147.06 and 115.56, interquartile (IQR) values of 63.67 and 17.92, p-value= 0.58] and 

Simpson diversity measures (median values of 0.84 and 0.86, IQR values of 0.13 and 0.08, p-

value=0.72) of the microbiome did not differ significantly between participants with stable 

(n=18) and exacerbation states (n=6) of COPD. No distinct clusters were observed using PCoA 
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and weighted UniFrac measures for beta diversity. However, a difference in the abundances 

between stable and exacerbation states of disease was observed for the following genera: i) 

Actinomyces (lower), ii) Granulicatella (higher), iii) Haemophilus (higher) and iv) Veillonella 

(lower). Virome analysis showed a high abundance of the BeAn 58058 virus, a member of the 

Poxviridae family, in all six samples (abundances ranged from 90% to 94% across the samples).  

 

Conclusions  

This study is among the first to report lung microbiome composition in COPD patients from 

Africa. Compared to the other settings relatively high frequencies of Haemophilus and low 

frequencies of Streptococcus genera (although this genus was present in all samples) were 

observed. In this small sample set, no differences in alpha or beta diversity between stable and 

exacerbation disease states were observed, but an unexpectedly high frequency of BeAn 58058 

virus was observed. These observations highlight the need for further research of the lung 

microbiome of COPD patients in African settings. 
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4.1 Background  

Chronic obstructive pulmonary disease (COPD) is a progressive lung disease that results in 

progressive airflow limitation (i.e. obstruction) [1, 2]. Chronic obstructive pulmonary disease 

is one of the world’s leading causes of death (ranked as the third leading cause of death) [3]. 

Symptoms of COPD include a chronic cough, dyspnoea and sputum production [4, 5]. These 

symptoms affect the quality of life of the individual suffering from this disease [6]. There is 

limited data concerning the prevalence of COPD in the African continent; the last reported 

prevalence data on COPD in South Africa was in 2005 (19% in men and women over 40 years 

of age); this data was from a single city i.e. Cape Town and may not be representative of the 

whole country [7-10]. This disease has been linked to smoking, exposure to occupational dust 

(e.g. working in a mine), burning of biomass and fossil fuels, previous Mycobacterium 

tuberculosis (TB) infection and to HIV; all of these risk factors are highly prevalent in South 

Africa [10].  

 

Exacerbation of airway inflammation and its associated symptoms are other factors that affects 

the quality of life for these individuals [10]. Patients suffering from COPD often move between 

a stable state of disease (where symptoms are absent to mild) to an exacerbation state of disease 

(defined as worsening of symptoms, respiratory and/or non-respiratory) [11, 12]. The frequency 

of these exacerbations increases over the course of the disease, as the lung damage due to COPD 

progresses [13]. Exacerbations can be triggered by: i) environmental pollutants, ii) an unknown 

cause or iii) infection with bacteria and/or viruses [14]. Bacterial and viral infections account 

for between 30% to 50% of all exacerbations [15]. However, bacteria have been detected in the 

stable state of disease as well and the association between these microorganisms and disease is 

unclear [16, 17].  

 

To better understand the role of microorganisms in COPD disease, the use of next-generation 

sequencing (NGS) can be employed to study the microbiome (defined as the genetic material 

of the microorganism in the community) [18]. Next-generation sequencing is high-throughput, 

parallel sequencing technology [19, 20]. It has been used to sequence whole genomes of 

bacteria and viruses, perform transcriptomics (studying the complete set of RNA transcripts 

produced by the genomes) and to study the microbiome/metagenome [19]. The advantage of 

NGS over culturing and other molecular methods is that it can detect unculturable bacteria and 

provide information regarding the diversity, composition and functional roles of members of 

the microbiome [21, 22]. An important drawback is that the cost of sequencing is still relatively 
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high, especially in the African continent [23]. Next-generation sequencing can be employed in 

one of two ways: i) using a targeted approach or ii) using a shotgun metagenomics approach 

[24, 25]. 

 

The targeted approach is commonly used to study the microbiome and is employed by targeting 

the 16S rRNA gene [26, 27]. This gene is useful for studying the bacterial microbiome as it is 

universally present and conserved within all bacteria [28-30]. Studying the virome, i.e. viral 

component of the microbiome is more challenging as: i) most viruses are difficult to culture, ii) 

there is no consensus sequence to study viruses and iii) viruses are diverse and may be ssDNA, 

ssRNA, dsDNA or dsRNA [31-33]. By using shotgun metagenomics (i.e. random sequencing 

of the DNA from the microbial community) along with cDNA synthesis to study the virome, 

these challenges can be overcome [34-36].  

 

In South Africa, there is no data on the composition of the lung microbiome in COPD patients.  

Previous studies on the lung microbiome of COPD patients were conducted in Europe and the 

USA [37-39]. Furthermore, there have been limited studies on the lung virome in COPD [40, 

41]. It is important to study not only the microbiome in the African continent in countries, such 

as South Africa but also the virome as local environmental conditions, e.g. climate and clinical 

comorbidities, e.g. HIV (which is highly prevalent in sub-Saharan Africa) have the potential to 

affect the microbiome. The aim of this study was to determine the composition of the lung 

microbiome and the lung virome in the sputum of COPD patients and to compare their 

composition between stable and exacerbation states of disease. 

 

4.2 Methods 

4.2.1 Study setting and patient recruitment criteria 

Chronic obstructive pulmonary disease (COPD) patients admitted to or attending clinics (for 

scheduled check-ups at the lung unit, HIV clinics or at the private practice) at one of three 

hospitals in the Tshwane Health district (one academic, one district and one private) were 

invited to participate in the study. Written informed consent was obtained from all participants 

if the inclusion and exclusion criteria were met (Table 4.1). The planned patient groups were 

as follows: i) stable state COPD in HIV-positive individual, ii) stable state COPD in HIV-

negative individuals, iii) exacerbation state COPD in HIV-positive individuals and iv) 

exacerbation state COPD in HIV-negative individuals. Healthy controls were not included as 

sputum specimens are difficult to obtain from healthy individuals. The sample size per group 
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was determined as follows: a sample size of 20 per group was considered more than adequate 

to identify meaningful shifts and differences in the microbiome. All participants that met the 

inclusion and exclusion criteria were included in the study. Participants were classified as either 

in the stable or in the exacerbation state based on the definition by Vogelmeier et al. (2017). 

An exacerbation state was defined as acute worsening of respiratory symptoms and any patient 

not in an exacerbation state was considered stable. Ethical approval was granted from the 

Research Ethics Committee, Faculty of Health Sciences, University of Pretoria (REC no: 

237/2017). All aspects of the research were conducted by the candidate unless otherwise stated. 

 

Table 4.1: Inclusion and exclusion criteria for COPD patients in this study 

Stable state 

Inclusion criteria Exclusion criteria 

HIV patients on antiviral therapy (ART) Active tuberculosis infection (receiving treatment) 

Over 40 years of age Receiving immunosuppressants 

Able to provide informed consent Cancer 

 Lung surgery within the last six months 

 Unable to answer the questionnaire (CDQ) 

 Antibiotics within last month 

Exacerbation state 

Inclusion criteria Exclusion criteria 

HIV patients on antiviral therapy (ART) Active tuberculosis infection (receiving treatment) 

Over 40 years of age Receiving immunosuppressants 

Able to provide informed consent Cancer 

Increased/worsening of respiratory symptoms 48 h 

before the visit 

Lung surgery within the last six months 

 Unable to answer the questionnaire (CDQ) 

 Unable to give informed consent 

  Antibiotics therapy 24 h before admission 

 Antibiotic therapy administered for more than 12 h 

after admission 
ART: Antiviral therapy 

CDQ: Chronic obstructive pulmonary disease diagnostic questionnaire 
h: hour 

HIV: Human immunodeficiency virus 

 

4.2.2 Extraction of DNA and RNA and cDNA synthesis 

Spontaneously expectorated sputum specimens were collected from participants at a single time 

point, transported on ice and stored at -80°C (Innova U535 Upright, Eppendorf, Germany) until 

batch processing could occur (no preservation medium was used). The sputum specimens were 

treated with an equal volume of 0.1% dithiothreitol (DTT) (Roche Diagnostics, Switzerland) to 

reduce sputum viscosity and were homogenised for 30 seconds (sec) (Vortex-Genie® 2; 

Scientific Industries Inc., USA) [42-44]. The samples were split into three aliquots for: i) 

bacterial DNA extraction (aliquot 1), ii) viral DNA and RNA extraction (aliquot 2) and iii) 

storage at -80°C (aliquot 3, for future studies) (Innova U535 Upright, Eppendorf, Germany).  
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The bacterial extraction aliquot (aliquot 1) was centrifuged (Spectrafuge™ 24D, Labnet 

International Inc., USA) at 4 000 x g for 30 min before extraction. The pellet was used for 

extraction and bacterial DNA was extracted using the Isolate II Genomic DNA Kit (Bioline, 

UK). The manufacturer’s instructions (protocol 9.2) were followed with the addition of 10 

mg/mL lysozyme (Sigma-Aldrich, USA), 3 U/µL lysostaphin (Sigma-Aldrich, USA) and 6.75 

µL of 10 U/µL mutanolysin (Sigma-Aldrich, USA) to the hard-to-lyse buffer [20 mM Tris 

(Sigma-Aldrich, USA) pH 8.0; 1% Triton X-100 (Amresco, USA); 2 mM EDTA (Sigma-

Aldrich, USA)]. 

 

The viral DNA and RNA aliquot was treated with DNase I to remove host (human) DNA [10 

U/mL TURBO™ DNase (Ambion, USA)] at 37°C for 30 min (AccuBlock™ Digital Dry Bath, 

Labnet International Inc., USA), followed by inactivation with 15 mM 

ethylenediaminetetraacetic acid (EDTA) (Sigma-Aldrich, USA) at 75°C for 10 min 

(AccuBlock™ Digital Dry Bath, Labnet International Inc., USA) according to the 

manufacturer’s instructions [45]. The samples (after processing) were further split into two 

separate aliquots for DNA and RNA extraction, respectively, i.e. aliquot 2 was split into two 

aliquots (aliquots 2.1 and 2.2.). The viral DNA aliquot (aliquot 2.1) was centrifuged 

(Spectrafuge™ 24D, Labnet International Inc., USA) at 4 000 x g for 30 min before extraction. 

The pellet was used for extraction with the Isolate II Genomic DNA Kit (Bioline, UK) 

according to the manufacturer’s instructions (protocol 9.13). The RNA extraction (aliquot 2.2) 

was performed according to the manufacturer’s instructions using the QIAmp Viral RNA kit 

(Qiagen, Germany). The RNA was converted to cDNA using the SuperScript First-Strand 

Synthesis System for RT-PCR (Invitrogen, USA) using the random hexamer primers supplied 

according to the manufacturer’s instructions (BioRad T100™ Thermal Cycler, BioRad 

Laboratories Inc., USA). The second synthesis (to convert cDNA and ssDNA) was performed 

using Klenow Fragment (New England Biolabs, USA) (Bio-rad T100™ Thermal cycle, Bio-

rad Laboratories Inc., USA). The converted cDNA and ssDNA (along with dsDNA) were 

amplified with KAPA HiFi polymerase (Roche, Switzerland) and the FR20RV primer as 

described previously (BioRad T100™ Thermal Cycler, BioRad Laboratories Inc., USA) [46]. 

All converted cDNA, ssDNA and dsDNA were pooled together. 

 

4.2.3 Targeted and shotgun metagenomics approach 

The targeted metagenomics was performed at Inqaba Biotechnical Industries, South Africa. 

Steps performed by the company included PCR amplification, library preparation, purification 
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of the products, indexing and sequencing of V1-V3 region of the 16S rRNA gene using the 

MiSeq platform (Illumina, USA) at Inqaba Biotec Industries, South Africa. After, the targeted 

approach, a subset of six (representative) samples were selected for virome sequencing (due to 

high cost of sequencing) according to the following criteria: i) samples should be from both 

states of disease and ii) samples should be representative of the diversity in the samples; based 

on the number of operational taxonomic units (OTUs) as follows: i)one for low diversity (<40 

OTUs), ii) one for intermediate diversity (between 40 OTUs and 50 OTUs) and iii) one for high 

diversity (>50 OTUs). Shotgun metagenomics of the amplified and pooled virome samples was 

performed using the MiSeq platform (Illumina, USA) at the National Institute for 

Communicable Diseases of South Africa (NICD). Steps performed by the company included 

sample purification, library preparation, indexing and sequencing. The fragments of the 16S 

rRNA sequences were analysed using QIIME2 (using Greengenes database) following the 

moving picture tutorial (which included quality control steps done using Deblur that removed 

low-quality sequences and ensured that all sequences had the same read length). Human DNA 

was removed from the virome sequences using Bowtie2 (with Hg38 reference genome) and the 

virome sequences were analysed using Kraken 2 [on the Galaxy platform (with the virome 

(2019) databases] [47-49]. The viral sequencing results were compared to the virus-host 

database (https://www.genome.jp/virushostdb/view/) to determine the host of the viruses 

identified [50]. 

 

4.2.4 Statistical analysis and data visualisation  

The data were analysed on R using the following packages: i) Qiime2R (to import QIIME2 

data), ii) phyloseq (alpha diversity, beta diversity, statistical tests, principal coordinate analysis 

analysis (PCoA), hierarchical clustering and relative abundance of the taxa), iii) ggplot2 (for 

the plotting of all graphs) and iv) DESeq2 (to determine if there was a log2fold difference). A 

p-value < 0.05 was considered significant (for any of the statistical tests). 

 

4.3 Results  

4.3.1 Patient demographics 

A total of 80 participants were planned to be included in the study, however due to the strict 

inclusion and exclusion criteria as well as the limited number of patients attending the clinic or 

being admitted to the hospital, this number could not be realised. A total of 24 participants were 

enrolled in the study; 18 males and six females aged from 50 years old to 82 years old (median= 

60 years old with a standard deviation of 7.34). Only one of the participants was HIV-positive. 
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Participants were distributed across the three hospitals as follows: i) Hospital A (Tertiary 

Academic Hospital): 16 participants, ii) Hospital B (District Hospital): one participant and 

Hospital C (Private Hospital): seven participants. Eighteen of the participants were in the stable 

state of disease at the time of sampling and six of the participants were in the exacerbation state 

of disease at the time of sampling. Four of the participants had never smoked, nine of the 

participants were current smokers and 11 participants had stopped smoking. 

 

4.3.2 The sputum microbiome  

A total of 631 OTUs were identified across the 24 samples for the microbiome. These OTUs 

were divided into 14 phyla, 27 classes, 37 orders, 70 families and 77 genera. Twenty-two 

percent (140/631) of all OTUs could be classified to a species level. The relative abundance of 

unclassified species ranged from 32% to 94% between samples.  

 

 

Figure 4.1: Bar plots showing the relative abundance of the differing phyla by disease 

state occurring in the sputum microbiome of 24 COPD participants using 

targeted metagenomics across the different samples. Firmicutes are shown in 

blue, Proteobacteria in purple, Bacteroidetes in green and Actinobacteria in 

red. The graph is separated into the exacerbation state (n=6) and stable state 

(n=18). The specimens are ordered according to the prevalence of Firmicutes. 

 

 
 
 



130 

 

The most abundant genera were Streptococcus (detected in all 24 samples, with abundances 

ranging from 19% to 82%), Haemophilus (detected in all 24 samples, with abundances ranging 

from 0.02% to 61%), Prevotella (detected in all 24 samples, with abundances ranging from 

0.1% to 22%), Veillonella (detected in all 24 samples, with abundances ranging from 0.15% to 

19%) and Granulicatella (detected in all 24 samples, with abundances ranging from 0.12% to 

11%). The most abundant species in the 22% of the OTUs that could be classified to species 

level were: i) Haemophilus influenzae (detected in 21/24 samples, with abundance ranging from 

0.01% to 61%), ii) Haemophilus parainfluenzae (detected in 22/24 samples, with abundance 

ranging from 0.01% to 16%), Prevotella melaninogenica (detected in all 24 samples, with 

abundance ranging from 0.08% to 15%), Veillonella dispar (detected in 21/24 samples, with 

abundance ranging from 0.02% to 9%) and Veillonella parvula (detected in 23/24 samples, with 

abundance ranging from 0.07% to 9%). Additionally, sample M20 showed a high abundance 

of Serratia marcescens (41%), sample M4 showed a high abundance of Pseudomonas spp. 

(49%) (could not be classified to a species level) and sample M26 showed a high abundance of 

Staphylococcus aureus (13%). 

 

4.3.3 Comparison of exacerbation and stable states of disease for the microbiome  

The relative abundance of the Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria and 

Proteobacteria phyla differed across the disease states; with a higher abundance of Firmicutes 

(63% in the exacerbation state and 61% in the stable state) and a lower abundance of 

Actinobacteria (5% in the exacerbation state and 8% in the stable state), Bacteroidetes (9% in 

the exacerbation state and 11% in the stable state) and Proteobacteria (17% in the exacerbation 

state and 19% in the stable state), during the exacerbation state (Figure 4.2). At a genus level 

(Figure 4.3), the exacerbation state showed changes in 75 genera; with 49 genera that had a 

lower relative abundance and 26 genera that had a higher abundance. Key genera that showed 

lower relative abundance during the exacerbation state included Porphyromononas (0.19% in 

the exacerbation state and 3.92% in the stable state), Serratia (0.00% in the exacerbation state 

and 2.99% in the stable state), Staphylococcus (0.00% in the exacerbation state and 1.02% in 

the stable state) and Streptococcus (47.88% in the exacerbation state and 49.61% in the stable 

state). Genera that showed a higher relative abundance in the exacerbation state included 

Granulicatella (5.30% in the exacerbation state and 3.06% in the stable state), Haemophilus 

(16.82% in the exacerbation state and 11.08% in the stable state), Prevotella (10.02% in the 

exacerbation state and 7.87% in the stable state) and Veillonella (6.92% in the exacerbation 
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state and 4.44% in the stable state). Although, the relative abundance differed across the disease 

state, with DESeq2 analysis no significant difference was observed. 

 

 

 

Figure 4.2: Bar plots showing the relative abundance of the different phyla in the 

sputum microbiome of COPD participants as determined by targeted 

metagenomics compared across the exacerbation state (n=6) and stable state 

(n=18). The relative abundance is shown as a proportion of total abundance 

for the disease state. 
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Figure 4.3: Bar plots showing the relative abundance of the genera in the sputum 

microbiome of COPD participants by disease state. The relative abundance 

is shown as a proportion of total abundance for the disease state. 

 

There was no significant difference in the alpha diversity between disease states for the 

microbiome using the Wilcoxon sum rank test for both Chao1 (p-values=0.58) and Simpson 

diversity measures (p-value=0.72) (Figure 4.4). Beta diversity measures showed no distinct 

clustering for any of the variables using PCoA and the weighted UniFrac measures i.e. there 

was overlap between the two disease states (Figure 4.5).  
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Figure 4.4: The alpha diversity boxplot of the sputum microbiome compared across 

the exacerbation state (n=6) and stable state (n=18) of COPD using Chao1 

and Simpson diversity measures. Each dot on the graph represents a 

sample. The boxes represent the interquartile range (IQR) and the 

horizontal line represents the median. The median values for the Chao1 

diversity measure were as follows: i) stable state=147.06 and ii) 

exacerbation state=115.56. The median values for the Simpson diversity 

measures were as follows: i) stable state=0.84 and ii) exacerbation 

state=0.86. The IQR values for the Chao1 diversity measure were as 

follows: i) stable state=63.67 and ii) exacerbation state=17.92. The IQR 

values for the Simpson diversity measure were as follows: i) stable 

state=0.13 and ii) exacerbation state=0.08. 
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Figure 4.5: Principal coordinate analysis (PCoA) plot derived using the weighted 

UniFrac diversity measure comparing the different disease states of COPD 

in the sputum microbiome The ellipses show the different states of disease 

with the exacerbation state (n=6) indicated in red and the stable state (n=18) 

indicated in blue; with the dots represent in each sample. 

 

4.3.4 The sputum virome 

Six samples were selected for virome analysis as follows: i) one low diversity sample (<40 

OTUs) from the exacerbation state of disease, ii) ) one low diversity sample (<40 OTUs) from 

the stable state of disease, iii) one medium diversity sample (between 40 OTUs and 50 OTUs) 

from the exacerbation state of disease, iv) one medium diversity sample (between 40 OTUs and 

50 OTUs) from the stable state of disease, v) one high diversity sample (>50 OTUs) from the 

exacerbation state of disease and vi) one high diversity sample (>50 OTUs) from the stable 

state of disease. A total of 3 480 operational taxonomic units (OTUs) were identified across the 

six samples for the virome. The taxonomic classification identified 16 phyla, 34 classes, 53 

orders, 141 families and 826 genera. Most of the OTUs [95% (3 306/3 480)] could be classified 

up to a species level. The most abundant family across all samples was the Poxviridae family 
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(detected in all six samples, with abundances ranging from 90% to 93%), followed by the 

bacteriophage families Myoviridae (detected in all six samples, with abundances 0.63% to 

2.11%) and Siphoviridae (detected in all six samples, with abundances 1.08% to 1.55%) and 

lastly by Herelleviridae (detected in all six samples, with a abundances ranging from 0.08% to 

0.16%) (Figure 4.6). 

 

 

Figure 4.6: Bar plots showing the abundance of viruses at a family level; the most 

prevalent families were as follows: i) Poxviridae (indicated in light green), 

ii) Siphoviridae (indicated in green-yellow), iii) Myoviridae (indicated in 

dark green); iv) Herelleviridae (indicated in blue). Viruses that had no 

taxonomic designation at the phyla or family level are indicated by NA (not 

available). The abundance is shown as the number of operational 

taxonomic units. 
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Figure 4.7: Bar plot showing the distribution of viruses across the different samples 

(n=6) of the sputum virome of COPD participants based on their hosts. 

 

The most prevalent species was BeAn 58058, a member of the Poxviridae family that was 

detected in all specimens sent for virome sequencing (Figure 4.7) followed by bacteriophages 

(associated with both Gram-positive and Gram-negative bacteria). Most of the viruses 

identified were dsDNA viruses (ranging from 97.23% to 98.15%). 

 

4.4 Discussion 

In this study, the composition of the sputum microbiome of COPD participants was investigated 

and was compared between the different disease states, i.e. stable state of disease and 

exacerbation state of disease. Two phyla predominated, Firmicutes and Proteobacteria; with 

Streptococcus and Haemophilus being the most prevalent genera. However, this study observed 

no significant differences between the exacerbation and stable states of disease in COPD, in 

terms of relative abundance, alpha diversity and beta diversity for the sputum microbiome in 

COPD. With the virome, a high prevalence of the virus, BeAn 58058 was observed. In this 

study, there was difficulty in recruiting HIV-positive individuals with COPD and as a result, 
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only a single HIV-positive participant was recruited in this study. There were several possible 

reasons for the low recruitment rate of HIV-positive individuals suffering from COPD 

including: i) active TB cases were excluded from the study (no participants with HIV-TB 

overlap), ii) the HIV population at the hospitals may have been a younger population and iii) 

the HIV population in South Africa is mostly female and COPD is often underdiagnosed in the 

female population [51-58]. 

 

In both the stable state and exacerbation states of disease, the results showed that four phyla 

dominated, i.e. Firmicutes (ranging from 26% to 91%), Proteobacteria (ranging from 2% to 

62%), Bacteroidetes (ranging from 2% to 29%) and Actinobacteria (ranging from 1% to 22%). 

This is in agreement with previous studies conducted on the lung microbiome (including the 

healthy lung and other disease states), that have observed that these four phyla are known to be 

dominant in the lung [59, 60; 68]. Similar to this study, those studies also had small sample 

sizes (less than 30 participants), however, these studies: i) had different patient groups (included 

asymptomatic smokers, asthmatics, healthy controls and younger patients), ii) used different 

specimen types, such as bronchoalveolar lavage (BAL) (invasive specimen) and iii) used 

different sequencing technologies, such as 454 pyrosequencing [59-62; 68]. Despite these 

differences, these four phyla have always dominated in the lung, although the prevalence of 

these phyla may differ in specific diseases, with some phyla, such as Proteobacteria being more 

prevalent in asthma and COPD [59-62]. However, the changes in the microbial composition of 

the COPD lung (e.g. the higher prevalence of Proteobacteria), occurs only once the disease has 

progressed; in mild COPD disease, the microbial composition is similar to that of the healthy 

lung as can be observed in this study where Firmicutes has a higher prevalence [63, 64]. In this 

study, when comparing the disease states, a higher abundance of the Firmicutes phylum (2% 

higher in the exacerbated state) and a lower abundance of the Proteobacteria (2% lower in the 

exacerbation state), Actinobacteria (3% lower in the exacerbation state) and Bacteroidetes 

phyla (2% lower in the exacerbation state) in the exacerbation state were observed. This is in 

agreement with studies that have compared stable and exacerbation states of COPD disease and 

have observed an increase in one or more phyla (either Proteobacteria or Firmicutes) often 

associated with a decrease in the other phyla (either Proteobacteria or Firmicutes) [65-70]. 

None of the studies specified the percentage increase of either phylum during exacerbations; 

however, these studies did indicate which phyla increased, except Millares et al. (2015) [65-

70]. In most of these studies Proteobacteria were higher, however in the Jubinville et al. (2018) 

and Wang et al. (2020) studies, Firmicutes were higher as well [65-70]. All of these studies 
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were conducted using sputum specimens, had a variety of different sample sizes (ranging from 

nine participants to 281 participants), were conducted in USA, Europe and China, used different 

sequencing technologies (454 sequencing, MiSeq sequencing and PhyloChip) and targeted 

different regions of the 16S rRNA gene (V1-V3, V3-V5, V6-V8, V4, V3-V4 or full-length) 

[65-70]. No association were noted between the choice of primer pair and the most prevalent 

phyla. 

 

The genera that showed the highest frequency in this study, across both disease states, were 

Granulicatella (Firmicutes), Haemophilus (Proteobacteria), Prevotella (Bacteroidetes), 

Streptococcus (Firmicutes) and Veillonella (Firmicutes). This is in agreement with previous 

studies conducted on the microbiome of COPD lung and the healthy lung, where these genera 

along with Pseudomonas and Porphyrononas are detected in high abundances (independent of 

the disease state) [71, 72]. Most of these studies were conducted in the USA or Europe using 

either sputum or BAL specimens and 454 sequencing. The genera identified in this study 

(during stable state and exacerbation state) were similar to a study conducted by Wang et al. 

(2016) [68]. However, the abundances of these genera differed when compared to the study by 

Wang et al. (2016): i) some genera, such Haemophilus had a higher prevalence [5.7% increase 

in this study and 3% increase in Wang et al. (2016)] and ii) some genera, such as Streptococcus 

[1.7% decrease in this study and 3% decrease in Wang et al. (2016)] had a lower prevalence. 

The differences in abundances of the genera could be attributed to the different study population 

and setting; the study by Wang et al. (2016), had a larger study population (n=87) compared to 

this study (n=24) and was conducted in the United Kingdom (UK) (developing country vs 

developed country). The difference in the sequencing methodology between this study and the 

study by Wang et al. (2016) could account for the differing prevalence as well; this study used 

targeted the V1-V3 regions of the 16S rRNA gene using MiSeq platform (Illumina, USA) 

whereas Wang et al. (2016) targeted the V3-V5 regions of the 16S rRNA gene using 454 

sequencing (Roche Diagnostics, UK). Geographical location and local environmental 

conditions, such as air pollution have been shown to affect the lung microbiome and could 

explain the difference in relative abundance between the two studies [13, 73]. Additionally, 

seasonal variation may play a role in the bacteria identified [74]. Most of the exacerbation 

samples in this study were collected in either autumn or winter. In Pretoria, the dry season is in 

winter which is in contrast to the United Kingdom, where the dry season generally falls in 

summer. 
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Additionally, the bacteria that showed a higher prevalence (between 2% to 6% higher) during 

the exacerbation state of disease, i.e. Granulicatella, Haemophilus, Prevotella and Veillonella, 

have been associated with gastrointestinal reflux disease (GERD) [75]. As a result of COPD 

patients having a common cough, GERD is associated with COPD and is considered a 

comorbidity [76]. In fact, GERD has been observed to be a predictor of exacerbations in COPD 

and implies that a higher prevalence of these bacteria could be used as a potential indicator of 

COPD exacerbations [76, 77]. 

 

In this study, bacterial alpha diversity and beta diversity analysis showed no difference between 

disease states. This observation is in agreement with previous COPD studies except for a study 

by Jubinville et al. (2018) who observed a difference in alpha diversity when comparing paired 

samples, i.e. the diversity in the paired samples differed across the disease state with most 

exacerbation samples showing a higher diversity [65-67, 69]. All these studies were conducted 

in Europe (the UK and Spain) or Northern America (Canada and USA) using sputum 

specimens, with most studies having less than 30 participants and most studies used the 454 

sequencing. The only difference between these studies and the study by Jubinville et al. (2018) 

was the diversity measure used; most of the other studies used the Shannon index (often 

combined with Chao1 and Faith PD diversity measure), whereas Jubinville et al. (2018) used 

the Simpson index. Unlike, the Shannon index, the Simpson index is affected more by the 

relative abundances (i.e. evenness) of the species in a sample; this suggests that during the 

exacerbation state of disease, the abundances of species/OTUs changes but not the number of 

species/OTUs (richness) [78].  

 

In this study, the most prevalent viral family was Poxviridae followed by Siphoviridae and 

Myoviridae. When compared to the only two other studies that have focused on the COPD lung 

virome, this study differed in the relative abundance of the key families [40, 41, 79]. The study 

by Garcia-Nunez et al. (2018) used sputum specimens (n=10) from paired stable and 

exacerbation patients (n=5) in Spain. The study by van Rijn et al. (2019) used nasopharyngeal 

swabs (n=88) collected from exacerbation patients between 2006 and 2010 and was conducted 

in Norway. The most prevalent viral families in these studies were Anelloviridae (negative 

sense DNA virus with no known pathogenicity in humans) and Siphoviridae (double-stranded 

DNA bacteriophages that have been found in the lung virome of cystic fibrosis (CF) patients as 

well as in the gastro-intestinal tract virome and the oral virome) [40, 41, 79-84]. These 

bacteriophages i.e. Siphoviridae and Myoviridae may act as reservoirs for antibiotic resistance 
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genes (contain antibiotic resistance genes in their genomes), mobile genetic elements and may 

contain virulence genes and other genes that affect bacterial metabolic pathways [35, 85]. 

 

A high abundance of Poxviridae was observed in this study, particularly the BeAn 58085 virus 

(BAV). Poxviridae is a family of complex, double-stranded DNA (dsDNA) viruses that are 

often zoonotic [86]. The most well-known virus from this family is the causative agent of 

smallpox (which has been eradicated), Variola virus and the clinical presentation of most 

human infections of this family is skin lesions [86]. Only two other virome studies, one that 

studied ascetic fluid in the human body (conducted in Spain) and one that studied ocular adnexa 

(conducted in Denmark on samples collected between 2005 and 2014) detected the BeAn 58058 

virus in humans [87, 88]. This virus (BeAn 58058) was originally isolated from rodents 

(Oryzomys sp.) in Brazil in 1963 [89]. According to the viral-host database, the only known 

host for the BeAn 58058 virus is the Oryzomys sp., however, other Poxviridae have been known 

to infect a wide variety of hosts including humans [50]. The BeAn 58085 virus is considered a 

variant of the Vaccinia virus [90, 91]. The Vaccinia virus is a close relative of the smallpox 

virus that was used as a vaccine vector for smallpox until 1970 [90, 91]. There are three possible 

explanations for the high abundance of BeAn 58058 virus detected in this study. The first theory 

is that the BeAn 58058 virus is an ancient virus that over time has incorporated as part of the 

human genome; the theory is supported by i) a study by Mollerup et al. (2019) conducted on 

the virome of the ocular adnexa, which showed that viral reads (i.e. the BeAn 58058 virus) 

identified had high sequence homology to sequences of human origin, ii) a study that was 

conducted on the human genome (studying structural variants) identified the BeAn 58058 virus 

as part of the genome and iii) Poxviridae are dsDNA viruses and can easily integrate into the 

double-stranded human genome [92]. The second theory is that BeAn 58058 is a DNA artefact 

of the smallpox vaccine (which was a live attenuated vaccine) received years earlier; evidence 

supporting this theory includes the following: i) the study population in this study were all over 

the age of 50 years and would have received the smallpox vaccine before the vaccination 

programme for the smallpox virus was terminated in South Africa (in 1970) and ii) the Vaccinia 

virus, which was used for the smallpox vaccine showed high homology with the BeAn 58058 

virus [90, 91, 93]. The third theory is that the participants in this study encountered an 

environmental exposure from which the virus was contracted, e.g. rats and its similarity to the 

Cotia virus, which can infect human cells [94]. The fourth theory is that the BeAn 58058 is a 

contaminant (i.e. a sequence not truly in the sample) from the extraction kit, from animal cells, 

reagents used or even from a previous sequencing run [95, 96]. Further analysis of the lung 
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virome, as well as the human genome of healthy individuals (i.e. not suffering from any lung 

disease) across different geographical regions and age groups, should provide insight into this 

in the future. 

 

Although this study had a small population size, did not include healthy controls and did not 

have paired samples for the different disease states, this study provided a good pilot overview 

of the sputum microbiome and the sputum virome of the COPD lung in a South African setting. 

Additionally there was a skewed representation of the different disease states that could have 

impact the results resulting in either inflated or decreased relative abundance of the phyla and 

genera when comparing the disease states. Different respiratory samples can be used to study 

the lung microbiome, each with their own limitations. A sputum specimen was the specimen 

chosen for this study (instead of BAL, which has been used by most studies on the COPD 

microbiome) as it is the most patient-friendly method, i.e. is non-invasive [97]. The different 

specimens target different regions of the respiratory system with the sputum having a mixture 

of the microbiomes from both the upper respiratory tract and the lower respiratory tract [97-

99]. Additionally, sputum specimens have higher bacterial loads (unlike BAL which has low 

bacterial loads and therefore less likely to magnify any contaminants) and are better for 

longitudinal studies (as these specimens are non-invasive) [98]. A limitation of this study was 

that a longitudinal study could not be completed due to time constraints (a longitudinal study 

was not possible within the three-year period of the PhD and is costly). The choice of specimen 

affects the diversity within a specimen and can result in distinct microbiomes [100, 101]. As 

only a single HIV participant could be recruited into this study, no comparison between HIV-

positive individuals and HIV-negative individuals could be performed for the sputum 

microbiome in COPD patients; this requires further research. A diverse microbiome was 

observed in this study in both states of disease; with a predominated Proteobacteria population 

in the exacerbation state of disease. Conversely, the virome was dominated by a single virus, 

the BeAn 58058 virus. However, the origins of this virus and its possible clinical relevance is 

unknown. Future studies into the virome would require further investigation into this virus by 

studying the lung virome in healthy individuals and other lung diseases in the South African 

and international context. 
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4.5 Conclusions 

This study is among the first to report lung microbiome composition in COPD patients from 

Africa. No statistically significant differences in the microbiome of COPD patients during the 

different states of disease were observed in this study. However, this study did note differences 

in the frequencies of key phyla and genera when compared to other studies from Europe and 

the USA. However, the reason for this differing microbial profile is unknown and warrants 

further research. In the virome, a high frequency of the BeAn 58058 virus was observed in the 

six samples; the explanation for this observation is unclear. To conclude, the sputum 

microbiome in South African COPD patients is diverse, regardless of the disease state, while 

the sputum virome warrants further research. 
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CHAPTER 5 

Comparison of targeted metagenomics and the IS-Pro method for analysing the lung 

microbiome 

 

The editorial style of the Microbiome Journal was followed in this chapter 

 

Abstract 

Background 

Targeted metagenomics and the IS-Pro (intergenic spacer profiling) method are two of the many 

methods that have been used to study the microbiome. Targeted metagenomics targets the 

hypervariable regions of the 16S rRNA gene and the IS-Pro method targets the intergenic spacer 

regions between the 16S rRNA and 23S rRNA gene regions. The aim of this study was to 

compare targeted metagenomics and IS-Pro methods for the ability to discern the microbial 

composition of the lung microbiome of COPD patients.  

 

Methods 

Spontaneously expectorated sputum specimens were collected from COPD patients in the 

Tshwane Health District, South Africa. Bacterial DNA was extracted from the specimens using 

Isolate II Genomic DNA kit and aliquoted. One aliquot was used for targeted metagenomics 

using V1-V3 primers of the 16S rRNA gene on the MiSeq platform and a second aliquot for 

the IS-Pro method according to the manufacturer’s instructions. The analysis was performed 

using the QIIME2 bioinformatics pipeline and the commercial IS-Pro software for targeted 

metagenomics and the IS-Pro method, respectively. Additionally, a laboratory cost per isolate 

and time analysis was performed for each method. 

 

Results  

Statistically significant differences were observed in alpha diversity when targeted 

metagenomics and IS-Pro methods’ data were compared using the Shannon diversity measure 

[median values of 2.732 and 2.183, interquartile range (IQR) values of 0.09 and 0.44, p-

value=0.0006] but not with the Simpson diversity measure (median values of 0.866 and 0.851, 

IQR values of 0.13 and 0.06, p-value=0.84). Distinct clusters with no overlap between the two 

technologies were observed using PCoA plots and the Jaccard diversity measure for beta 

diversity. At a phylum level targeted metagenomics had a lower relative abundance of the 
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Proteobacteria (16% vs 38%), Bacteroidetes (10.27% vs 12.4%) and Fusobacteria (2.3% vs 

6.6%) and higher relative abundance of Actinobacteria (12.3% vs 2.45%) and Firmicutes (57% 

vs 40.5%) when compared to the IS-Pro method. At a genus level, Haemophilus, Prevotella 

and Streptococcus were the most prevalent and were observed in similar abundances for both 

methods. Targeted metagenomics was only able to classify 23% (144/631) of all OTUs to a 

species level, compared to the IS-Pro method, which was able to classify 86% (55/64) of all 

OTUs to a species level. However, the unclassified OTUs accounted for a higher relative 

abundance when using the IS-Pro method (35%) compared to targeted metagenomics (5%). 

These unclassified OTUs from the IS-Pro method could be classified at the phylum level, with 

Proteobacteria (20%) accounting for the most unclassified sequences. The two methods 

performed comparably in terms of time; however, the IS-Pro method was more user-friendly. 

 

Conclusions  

It is essential to understand the value of different methods for characterisation of the 

microbiome. Targeted metagenomics and IS-Pro methods showed differences in their abilities 

to identify and characterise OTUs, in the diversity and microbial composition of the lung 

microbiome. The IS-Pro method might miss relevant species and could inflate the abundance 

of members of the Proteobacteria. However, the IS-Pro kit was able to identify most of the 

important lung pathogens, such as Burkholderia and Pseudomonas and may work well in a 

more diagnostics-orientated setting. Both methods were comparable in terms of cost and time; 

however, the IS-Pro method was easier to use. 
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 5.1 Background 

Microorganisms occur as communities and can play an important role in host metabolism [1-

3]. This collective of microorganisms within a community (ecosystem) and their genetic 

material is referred to as a microbiome [4, 5]. Previously, culture-dependent techniques were 

used to study the microbiome, however, researchers have found that less than 1% of all bacteria 

can be cultured and that the microbiome is often more diverse than culture methods suggest [4, 

6]. Culture-independent methods, such as denaturing gradient gel electrophoresis, fluorescence 

in situ hybridisation, microarrays, quantitative polymerase chain reaction and terminal length 

polymorphisms have since been used to study the microbiome [7-11]. However, the most 

popular approach to study the microbiome is sequencing analysis, either using Sanger or next-

generation sequencing (NGS) technologies using a targeted approach [8-10, 12]. 

 

The most popular target of these sequencing methods is the 16S rRNA gene region [13, 14]. 

The 16S rRNA gene is useful for identifying bacteria and determining phylogenetics as this 

gene is present in all prokaryotes, i.e. it is universal, is easily isolated and is highly conserved 

(i.e. the sequences and the length of the genes change very little with time) [9, 15, 16]. 

Additionally, this 16S rRNA gene codes for part of the ribosome; in bacteria (and archaea) the 

70S ribosome, is divided into two components: the 30S subunit and the 50S subunit [17]. The 

30S subunit includes the 16S rRNA sequence (the Shine-Dalgarno sequence, required for 

protein translation, is complementary to 3’ end of 16S rRNA) and proteins, whereas the 50S 

subunit includes the 23S rRNA and 5S rRNA [17-19]. The 16S ribosomal subunit consists of 

both hypervariable and conserved regions, with the sequencing primers that are commonly used 

targeting the conserved regions between the hypervariable regions [18, 20]. There are nine 

hypervariable (V1-V9) regions and nine conserved regions (which alternate) [20, 21]. Among 

the most common primers used for 16S rRNA gene are the 27F and 518R primers that cover 

the V1 to V3 hypervariable regions [22, 23]. This region, i.e. V1-V3 region of the 16S rRNA 

was shown to have the highest similarity with full-length sequences of the 16S rRNA gene [24]. 

 

The IS-Pro (intergenic spacer profiling) method, a targeted metagenomics method that targets 

the intergenic spacer (IS) region between the 16S rRNA and 23S rRNA was developed by 

Budding and colleagues in 2010 to identify all bacteria present in the sample, i.e. a clinical 

specimen. The intergenic spacer region was chosen due to its variability; this region is more 

variable than the hypervariable regions of the 16S rRNA [25, 26]. The IS region has species-

specific differences in length and sequence polymorphisms, which are used to identify bacteria 
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and can be termed a profiling method [25, 26]. This method has been used to study the vaginal 

microbiome, the gastrointestinal tract microbiome and has been tested in a clinical setting 

(clinical microbiology laboratory) for the identification of bacteria from “sterile” body 

sites/fluids [25-44].  

 

Studies that have investigated the lung microbiome have mostly used targeted metagenomics. 

To our knowledge, no studies have used the IS-Pro method to study the lung microbiome. The 

aim of this study was to compare the IS-Pro method to 16S rRNA sequencing in its ability to 

discern the microbial composition of the lung microbiome of COPD patients.  

 

5.2 Methods 

5.2.1 Study design and study participants 

Patients suffering from COPD that were admitted or were attending a clinic at one of three 

hospitals (one academic, one district and one private) in the Tshwane Health District were 

invited to participate in the study. If the inclusion and exclusion criteria were met and written 

informed consent was obtained, participants were included in the study (Table 4.1). Ethical 

approval was granted from The Research Ethics committee, Faculty of Health Sciences, 

University of Pretoria (REC no: 237/2017). All aspects of the research were conducted by the 

candidate unless otherwise stated. 

 

5.2.2 Sputum specimen processing and bacterial DNA extraction 

Spontaneously expectorated sputum specimens were collected from all participants at a single 

time point. The specimens were transported on ice without any preservation media and stored 

at -80°C (Innova U535 Upright, Eppendorf, Germany) until batch processing could occur. Each 

sputum specimen was thawed (after all specimens were collected) and treated with an equal 

volume of 0.1% dithiothreitol (DTT) (Roche. Switzerland) (to reduce sputum viscosity) and 

were homogenised for 30 seconds (sec) (Vortex-Genie®2; Scientific Industries Inc., USA) [45-

48]. An aliquot of the homogenised sputum (250 µL) was transferred to a new 2 mL 

microcentrifuge tube (Axygen, Corning, Germany) and centrifuged at 4 000 x g (Spectrafuge™ 

24D, Labnet International Inc., USA) for 30 min before extraction. The pellet was used for 

extraction and bacterial DNA extraction was performed using the Isolate II Genomic DNA Kit 

(Bioline, UK). The manufacturer’s instructions were followed with the addition of 10 mg/mL 

lysozyme (Sigma-Aldrich, USA), 3 U/µL lysostaphin (Sigma-Aldrich, USA) and 6.75 µL of 

10 U/µL mutanolysin (Sigma-Aldrich, USA) to the hard-to-lyse buffer [20 mM Tris (Sigma-
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Aldrich, USA) pH 8.0; 1% Triton X-100 (Amresco, USA); 2 mM EDTA(Sigma-Aldrich, 

USA)]. The extracted DNA was separated into three aliquots [in two new 2 mL microcentrifuge 

tubes (Axygen, Corning, Germany)] and stored at -20°C (Samsung, South Korea) until further 

usage. Aliquot 1 was used for targeted metagenomics and aliquot 2 was used for the IS-Pro 

method. The DNA concentration and purity were measured using the Genova Nano 

spectrophotometer (Jenway, UK). 

 

5.2.3 Targeted metagenomics  

Aliquot 1 of the extracted bacterial DNA (section 5.2.2) was sent to Inqaba Biotechnical 

Industries (Pretoria, South Africa), a commercial NGS service provider, for sequencing. 

Briefly, bacterial DNA was amplified using a PCR targeting the V1-V3 region of the 16S rRNA 

gene using the 27F and 518R primers [49]. The amplicons generated from the PCR assay were 

gel purified, end-repaired (removal of 3’ overhangs) and the Illumina-specific adapter 

sequences were ligated to each amplicon using the NEBNext® Ultra™ II DNA library prep kit 

for Illumina® (New England Biolabs, USA) according to the manufacturer’s instructions. After 

ligation (and quantification) the samples were indexed using the NEBNext® Multiplex Oligos 

for Illumina® (Index Primers Set 1) (New England Biolabs, USA), followed by purification 

with AMPure XP beads (Beckman Coulter, USA). The purified amplicons were sequenced 

using the MiSeq v3 platform (Illumina, USA) for 600 cycles. Each sample generated 300 bp 

paired-end reads. The resulting fastq files underwent quality control (QC) and were analysed 

using QIIME2 and the Greengenes database (13.8) [50].  

 

5.2.4 The IS-Pro method to determine the microbiome 

The IS-Pro kit (InBiome, the Netherlands) was used to amplify the previously extracted 

bacterial DNA (section 5.2.2; aliquot 2), according to the manufacturer’s instructions and was 

performed at Synexa Life Sciences, Cape Town, South Africa. The kit components included 

two master mixes (PROTEO and FIRBAC), two control vials (one for Proteobacteria and one 

for Firmicutes/Bacteroidetes) and eMix (reference marker). The PROTEO master mix targets 

only the Proteobacteria, whereas the FIRBAC master mix targets the Actinobacteria, 

Bacteroidetes, Firmicutes, Fusobacteria and Verrucomicrobia phyla [26]. In a microtiter plate, 

for each sample (n=24), the positive control (included in the kit), the negative control [nuclease-

free water, (Qiagen, Germany)] and the following was added: 12 µL of PROTEO master mix 

(supplied with kit) in a well and 12 µL of FIRBAC master mix (supplied with kit) to a separate 

well. To each well, 8 µL of extracted bacterial DNA was added. The PCR amplification 
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(Applied Biosystems GeneAmp PCR 9700, ThermoFisher Scientific, USA) conditions were as 

follows: 35 cycles of 94°C for 30 s, 56°C for 45 s, and 72°C for 1 min, followed by a final 

extension step at 72°C for 10 min. After amplification, 16 µL of the eMix was added to each 

well (for the number of samples and controls) in a new microtiter plate and 4 µL of each 

amplicon was added to a well, followed by denaturation at 94°C for 3 min. The samples were 

analysed on the Applied Biosystems 3730xL genetic analyser (ThermoFisher Scientific, USA) 

at the Central Analytical Facility (CAF) at Stellenbosch University, Cape Town, South Africa. 

 

Data were analysed using the IS-Pro software suite (InBiome, The Netherlands), which 

generates microbial profiles. The colour of the peak generated is obtained from the labelled 

primers and provides information of which phyla had been amplified, whereas the length of the 

fragment obtained is used to identify the bacteria to lower taxonomic levels (genus, species or 

subspecies). Each peak within a profile is considered an operational taxonomic unit (OTU) and 

its intensity determined the abundance.  

 

5.2.5 Statistical analysis and data visualisation  

The program used for 16S rRNA analysis, QIIME2, generated the taxonomy table and OTU 

table in .qza format. The .qza files were converted into the correct format for phyloseq using 

the R package, QIIME2R. The IS-Pro data were converted to the required format for phyloseq 

manually (in Excel). Phyloseq requires two files to process and analyse data: i) a file containing 

the taxonomic information (of the microorganisms) and ii) a file containing the read/OTU 

counts present in each sample. The IS-Pro output was a single file that contained both 

taxonomic and OTU counts and therefore needed to be separated; as such the taxonomic data 

and the OTU counts were moved into two different files, which were used as the taxonomy 

table and OTU table respectively. The data were analysed in R using the following packages: 

i) phyloseq [alpha diversity, beta diversity, statistical tests, principal coordinate analysis 

(PCoA), and relative abundance of the taxa], ii) ggplot2 (for the plotting of all graphs) and iii) 

DESeq2 (to determine if there was a log2fold difference).  

 

5.2.6 Cost per isolate and time analysis  

Targeted metagenomics was compared to the IS-Pro method in terms of cost, time to analysis 

and user-friendliness. The cost calculated included estimates based on the procurement of 

resources in our laboratory at the Department of Medical Microbiology of the University of 

Pretoria, the cost for sample processing, DNA extraction, reagents for PCR assays and PCR 
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clean-up, consumables and the complete cost of sequencing (based on the quote generated by 

the company that performed sequencing and includes both labour cost and the benchtop cost). 

Time to analysis was calculated from the date of sequencing results were received up until the 

analyses were completed (including statistical analysis). The user-friendliness was determined 

based on the authors’ experience with QIIME2 and the IS-Pro proprietary software. 

 

5.3 Results  

5.3.1 Patient demographics 

A total of 80 participants were planned to be included in the study, however due to the strict 

inclusion and exclusion criteria as well as the limited number of patients attending the clinic or 

being admitted to the hospital, this number could not be realised. A total of 24 participants were 

enrolled in the study; 18 males and six females aged from 50 years old to 82 years old (median= 

60 years old with a standard deviation of 7.34). Only one of the participants was HIV-positive. 

Participants were distributed across the three hospitals as follows: i) Hospital A (Tertiary 

Academic Hospital): 16 participants, ii) Hospital B (District Hospital): one participant and 

Hospital C (Private Hospital): seven participants. Eighteen of the participants were in the stable 

state of disease at the time of sampling and six of the participants were in the exacerbation state 

of disease at the time of sampling. Four of the participants had never smoked, nine of the 

participants were current smokers and 11 participants had stopped smoking. 

 

5.3.2 Alpha and beta diversity analysis 

One of the 24 samples was excluded from subsequent analysis as the sample did not meet the 

quality control requirements with the IS-Pro method; the concentration of the internal size 

marker was too low. This sample had generated data using targeted metagenomics. When alpha 

diversity was compared between targeted metagenomics and IS-Pro methods (Figure 5.1), a 

significant difference was observed using the Shannon diversity measure (using Wilcoxon sum 

rank test, p-value=0.0006, median values of 2.732 and 2.183); targeted metagenomics showed 

a higher alpha diversity than the IS-Pro method. No difference was observed with the Simpson 

diversity measure when comparing targeted metagenomics and IS-Pro methods (using 

Wilcoxon sum rank test, p-value=0.84, median values of 0.866 and 0.851). 
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Figure 5.1: The alpha diversity boxplot of the sputum microbiome of COPD participants 

comparing the targeted metagenomics and IS-Pro methods (n=23) for 

Shannon and Simpson diversity measures. Each dot on the graph represents 

a sample. The boxes represent the interquartile range (IQR) and the 

horizontal line represents the median. The median values for the Shannon 

diversity measure were as follows: i) targeted metagenomics=2.732 and ii) IS-

Pro method=2.183. The median values for the Simpson diversity measures 

were as follows: i) targeted metagenomics=0.866 and ii) IS-Pro 

method=0.851. The IQR values for the Shannon diversity measure were as 

follows: i) targeted metagenomics =0.09 and ii) IS-Pro method =0.44. The 

IQR values for the Simpson diversity measure were as follows: i) targeted 

metagenomics =0.13 and ii) IS-Pro method =0.06. 
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Beta diversity analysis (PCoA analysis) of the two methods (between the targeted 

metagenomics and IS-Pro methods) showed the isolates clustering according to the method 

(Figure 5.2). Both the Jaccard diversity and the Morisita Horn (not shown) measures showed 

the two methods forming distinct clusters with no overlap between the two methods. The 

targeted metagenomics isolates clustered further apart than the IS-Pro method isolates.  

 

Figure 5.2: Principal coordinate analysis (PCoA) plot derived using the Jaccard 

diversity measure of the sputum microbiome of COPD participants. The 

PCoA plot compares the targeted metagenomics and IS-Pro methods; with 

the dots representing each sample.  

 

5.3.3 Difference in relative abundance between targeted metagenomics and IS-Pro 

methods 

The most prevalent phyla according to both methods were Firmicutes (57.1% for the targeted 

metagenomics and 40.5% for the IS-Pro method), Proteobacteria (16% for the targeted 

metagenomics and 38% for the IS-Pro method), Bacteroidetes (10.3% for the targeted 

metagenomics and 12.4% for the IS-Pro method), Actinobacteria (12.3% for the targeted 
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metagenomics and 2.5% for the IS-Pro method) and Fusobacteria (2.3% for the targeted 

metagenomics and 6.6% for the IS-Pro method) (Figure 5.3). The IS-Pro method, however, 

showed a higher relative abundance of the Proteobacteria, Bacteroidetes and Fusobacteria and 

lower relative abundance of Actinobacteria, and Firmicutes. At a sample level (with sample 

29), the trend observed was similar except Bacteroidetes had a lower relative abundance and 

Firmicutes had a higher relative for the IS-Pro method (Figure 5.4). 

 

 

 

Figure 5.3: Relative abundance of specific phyla in the sputum microbiome of COPD 

participants as detected by the targeted metagenomics and IS-Pro methods 

(n=23). The dots represent the different abundances of each sample, 

according to the different phyla. Phyla that are depicted with a single line on 

the y-axis were not present in any samples for that method. The relative 

abundance is shown as a proportion of total abundance for the different 

methods. 
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Figure 5.4: Relative abundance of specific phyla (depicted as pie graphs) in sample 29 as 

detected by the targeted metagenomics and IS-Pro methods.  

 

 
 
 



164 

 

 

Figure 5.5: Bar plots showing the relative abundance of genera in the sputum 

microbiome of COPD participants as characterised by the targeted 

metagenomics and IS-Pro methods (n=23). The operational taxonomic units 

that could not be classified at a genus level are indicated as NA on the graph. 

The relative abundance is shown as a proportion of total abundance for the 

different methods. 
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Figure 5.6: Graph of the DESeq2 analysis showing the log2fold differential abundance of 

the different genera between the targeted metagenomics and IS-Pro methods 

(n=23) in the sputum microbiome of COPD participants. Log2fold changes 

greater than zero indicated an increase in the relevant genera, whereas 

log2fold changes less than zero indicated a decrease in the relevant genera. 

All genera with dots above the zero line (indicated in black) had an increased 

relative abundance with the IS-Pro method when compared to the targeted 

metagenomics. 

 

A comparison of the relative abundance of the targeted metagenomics and IS-Pro methods at 

genus level showed that the IS-Pro method had an increased abundance of 28 genera including 

Burkholderia (from 0.00% with targeted metagenomics to 0.82% with IS-Pro method), 

Fusobacterium (from 0.29% to 6.49%), Lactobacillus (from 0.10% to 2.64%), Pseudomonas 

(from 0.03% to 0.692%) and Peptostreptococcus (from 0.04% to 1.69%) (Figure 5.5) The IS-

Pro method had a decreased abundance of 40 genera including Streptococcus (from 45.06% 

with targeted metagenomics to 29.39% with IS-Pro method), Actinomyces (from 5.72% to 

0.74%), Veillonella (from 4.99% to 0.00%), Prevotella (from 8.77% to 4.89%), Granulicatella 

(from 3.59% to 0.00%), and Leptotrichia (from 2.44% to 0.00%). Further analysis showed that 

the IS-Pro method did not detect any Veillonella, Granulicatella or Leptotrichia. Using DESeq2 

(Figure 5.6) to compare targeted metagenomics and IS-Pro methods showed a log2fold 
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difference in several genera; with thirteen genera observed in higher abundance with the IS-Pro 

method and five genera observed in lower abundance with the IS-Pro method. Approximately 

50% (7/13) of the genera that were observed in higher abundances with the IS-Pro method 

belonged to the Proteobacteria phylum and included Neisseria, Proteus, Escherichia, 

Burkholderia, Eikenella. Serratia and Pseudomonas. Most of the genera that were observed in 

lower abundances with the IS-Pro method belonged to the Firmicutes phylum and included 

Veillonella and Granulicatella. 

 

The IS-Pro method was able to classify more OTUs [86% (55/64)] to a species level than 

targeted metagenomics, which could classify only 23% (144/631) of the OTUs to a species 

level. However, the unclassified OTUs accounted for a higher relative abundance of the IS-Pro 

method (35%) than targeted metagenomics (5%) (Figure 5.5). The distribution of the 

unclassified phyla (at class level) for the IS-Pro method was as follows: 16% for Firmicutes, 

23% for Bacteroidetes and 61% for Proteobacteria (Figure 5.7). Although not all the OTUs 

could be resolved at the genus level for targeted metagenomics, all could be classified at class 

level (Figure 5.7). 
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Figure 5.7: The distribution of the unclassified operational taxonomic units (OTUs) at a 

class level of the sputum microbiome of COPD participants for the targeted 

metagenomics and IS-Pro methods by phyla. At a class level, all the OTUs 

from targeted metagenomics could be classified.  

 

5.3.4 Comparison of targeted metagenomics and IS-Pro methods in terms of cost-

effectiveness, sample preparation and data analysis 

The cost per isolate and time required for each technology is shown below (Table 5.1). The two 

technologies were compared in terms of cost, time and user-friendliness of data analysis 

software. 
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Table 5.1: Comparison of targeted metagenomics and IS-Pro methods in terms of cost, 

time and ease of use in our setting 

Description Targeted metagenomics IS-Pro method 

Laboratory cost per 

isolate* 

$87.57(R 1 441.28) $117.73 (R 1 937.85) 

Turnaround time 

(from DNA extraction 

till statistical analysis) 

9 days (user-dependent and 

platform-dependent) 

7 days 

Hands-on time (labour 

cost) 

Laboratory: 5 days (1 day for 

DNA extraction, 4 days for 

sequencing and clean-up) 

Analysis: 4 days (3 days for 

analysis using QIIME and 1 day 

for statistical analysis) 

Laboratory: 5 days (1 day for 

DNA extraction, 1 day for the IS-

Pro PCR and 1 day for clean-up 

and 2 days for sequencing) 

Analysis: 2 days (1 day for 

analysis using IS-Pro proprietary 

software and 1 day for statistical 

analysis)  

Steps involved Bacterial DNA extraction 

PCR amplification of the target 

region 

Library preparation (and pooling 

of samples) 

Sequencing run 

Quality control analysis and 

generation of an OTU table using 

a program, such as QIIME2 

Statistical analysis using a 

program, such as R 

Bacterial DNA extraction 

PCR amplification using the IS-

Pro kit 

Fragment analysis using a 

genetic analyser (uses capillary 

electrophoresis) 

Analysis of data and generation 

of an OTU table using IS-Pro 

proprietary software 

Statistical analysis using a 

program, such as R 

Ease of use Requires familiarity with Linux 

system 

 Easy to use (requires no prior 

knowledge of the IS-Pro 

propriety software) 

*The cost is the cost at the time the study was conducted, is depicted in South African Rand and is dependent on international exchange rates 

(the cost of the dollar was based on the exchange rate on 04/10/2020) 

 

Targeted metagenomics and IS-Pro methods are similar in one aspect: i) both require bacterial 

DNA extraction and PCR amplification before sequencing. However, analysis for targeted 

metagenomics is more complicated and the IS-Pro method is more expensive. The targeted 

metagenomics analysis requires QC analysis followed by clustering of sequences into OTUs 

and assigning taxonomy to the OTUs. This analysis requires the use of software, such as 

QIIME2 that is Linux-dependent and requires training to use correctly. The IS-Pro method uses 

proprietary software that only requires the upload of the sequencing data and the program 

performs the analysis, thereby requiring no prior knowledge or training. 

 

5.4 Discussion 

This study compared the targeted metagenomics and IS-Pro methods for their ability to 

determine the microbial composition of the lung microbiome in COPD patients. A single 

bacterial DNA extraction was performed for targeted metagenomics and IS-Pro methods to 

reduce bias. A comparison of targeted metagenomics and IS-Pro methods showed an increased 
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relative abundance of Proteobacteria for the IS-Pro method and a difference in alpha diversity 

and beta diversity between the two methods. This increased abundance could be attributed to 

bacteria, such as Burkholderia. Additionally, there was a log2fold difference between targeted 

metagenomics and IS-Pro methods in the abundance of several Firmicutes including 

Veillonella, which may indicate that the IS-Pro method is not optimised to detect Firmicutes. 

 

A comparison of the alpha diversity analysis between the two technologies showed a 

statistically significant difference with the Shannon diversity measure, however, no statistically 

significant differences were detected using the Simpson diversity measure. The Shannon 

diversity measure is more sensitive to the number of species i.e. OTUs (richness) than the 

Simpson diversity measure [51]. The IS-Pro method had fewer OTUs than targeted 

metagenomics in this study and as such, this difference in alpha diversity between the Shannon 

(was statistically significant) and Simpson diversity (was not statistically significant) measures 

is not unexpected. In this study, the targeted metagenomics method had more OTUs than the 

IS-Pro method (the Shannon diversity was therefore statistically significant) whereas the 

relative abundance (evenness) with the two methods was similar (the Simpson index was 

therefore not statistically significant). In this study, the beta diversity analysis using PCoA plots 

showed two distinct clusters (of the same samples) that were associated with the two different 

technologies. With beta diversity analysis and particularly, cluster-based methods, such as 

PCoA, the more similar isolates are to each other the closer these isolates will cluster [52]. The 

results of this study can thus be interpreted as follows: i) the bacterial community structures in 

targeted metagenomics and IS-Pro methods are distinct i.e. using the same sample, the two 

methods showed differences between the microbiomes and ii) with the IS-Pro method, the 

community structure of samples were more similar to each other (in contrast, targeted 

metagenomics method showed samples that were more divergent from each other), i.e. targeted 

metagenomics showed a more diverse microbiome than the IS-Pro method. The alpha diversity 

and beta diversity results could not be compared to the literature at the time of publication, since 

there were limited microbiome studies that had performed a direct comparison between the 

targeted metagenomics and IS-Pro methods and none of these studies have reported diversity 

metrics; to determine if there is a difference in the alpha diversity and beta diversity, direct 

comparisons are needed [31, 53].  

 

When the relative abundance profiles of the two technologies were compared, the IS-Pro 

method showed an increased abundance of the phylum Proteobacteria (16.1% for targeted 
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metagenomics and 38% for the IS-Pro method). There was only one other published study [by 

de Meij et al. (2016)] that used both targeted metagenomics and the IS-Pro method; however, 

this study did not observe an increase in Proteobacteria. However, this study was conducted 

using faecal samples of healthy children (n=61) and a different sequencing platform (454 

sequencing) [31]. The phylum Proteobacteria is more commonly associated with disease and 

inflammation [32, 54]. The increased abundance of the Proteobacteria according to the IS-Pro 

method in this study could be attributed to the use of a master mix that contains primers that 

select specifically for members of the Proteobacteria phylum (PROTEO master mix; part of 

the IS-Pro kit), which may provide a selective advantage to this phylum [25]. This selective 

advantage of the master mix was observed for Fusobacteria as well (3% increase using the IS-

Pro method). This observation was further highlight at a sample level; sample 29 (Figure 5.4) 

showed a higher relative abundance of Proteobacteria and Fusobacteria with the IS-Pro 

method. 

 

At a genus level, the IS-Pro method showed a lower relative abundance for several genera, 

including Streptococcus (15% decrease), Actinomyces (5% decrease) and Veillonella (5% 

decrease) and an increased relative abundance of Fusobacterium (6% increase) and 

Lactobacillus (2.5% increase). Most of the genera that showed an increased relative abundance 

belonged to the Proteobacteria phylum, whereas the genera that showed a decreased relative 

abundance belonged mostly to the Firmicutes and Actinobacteria phyla. Members of the 

Proteobacteria phylum, which had log2fold increased abundance included Burkholderia, 

Pseudomonas and Serratia. These bacteria are known lung pathogens, although Burkholderia 

is more commonly found in cystic fibrosis (CF) patients than COPD patients [55-60]. Of the 

genera that showed a decreased relative abundance, three phyla were not detected by the IS-Pro 

method including Granulicatella (Firmicutes), Leptotrichia (Fusobacteria) and Veillonella 

(Firmicutes). Analysis of the current literature on targeted metagenomics and IS-Pro methods 

showed that for the same disease (such as irritable bowel disease), targeted metagenomics 

consistently detected Veillonella while the IS-Pro method only detected Veillonella in low 

numbers (or not at all) [26, 28-34, 37, 38, 40, 41, 43, 44, 61-69]. This limited detection of 

Veillonella with the IS-Pro method in these studies was surprising as most of the studies were 

conducted on faecal samples (i.e. the gastrointestinal tract) and this genus is a known coloniser 

of the gastrointestinal tract (as well as the lungs and oral cavity) and has been known to act as 

an opportunistic pathogen [70, 71]. Based on this analysis, it appears that the IS-Pro method 

has difficulty in detecting Veillonella, which may be due to primer design, the DNA target 
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region or analysis pipeline. A study by Mukherjee et al. (2018) provided a possible explanation 

for this by suggesting that Veillonella have multiple different intergenic spacer regions (these 

bacteria have different ribosomal operons that have different intergenic spacer regions), which 

may not be easily identifiable by the IS-Pro method analysis software and could be missed [72]. 

 

The IS-Pro method was able to identify more OTUs to a species level than targeted 

metagenomics, however, it showed a higher relative abundance (35%) of unclassified genera 

(i.e. OTUs that could not be assigned to a genus) than targeted metagenomics (5%). Most of 

the unclassified genera generated by targeted metagenomics could be classified to either a 

family or order level, however, the unclassified OTUs generated by the IS-Pro method could 

only be classified to a phylum level. As the current analysis strategy for the IS-Pro method does 

not include any QC steps, these unclassified OTUs may be low quality (short) sequences, 

chimeras or PCR artefacts [73]. It has been shown that the choice of the polymerase, the region 

sequenced, the number of PCR rounds, the platform used and even data analysis can affect the 

error rates with sequencing, however, these factors may affect the IS-Pro method as well even 

though the IS-Pro method uses capillary electrophoresis [73, 74]. The more errors introduced, 

the poorer the quality of the data is which affects the downstream analysis and could influence 

the bacteria identified [75]. A more detailed comparison between these two methods could not 

be achieved due to the nature of the outputs from the two methods and the proprietary nature 

of the IS-Pro method. 

 

When comparing the time and ease of use of the two technologies, the IS-Pro method performed 

better than targeted metagenomics; the IS-Pro method was much easier to use (did not require 

the user to be familiar with Linux, i.e. requires a higher level of expertise) and had a faster 

turnaround time (7 days compared to 9 days for targeted metagenomics) (see Table 5.2). 

Essentially, targeted metagenomics needs a trained microbiologist or bioinformatician to 

analyse the data, whereas with the IS-Pro method any person can perform the analysis. The 

only disadvantage of the IS-Pro method was the operational cost was slightly more expensive 

than targeted metagenomics [$117.73 (R 1 937.85) compared to $87.57 (R 1 441.28) per 

sample].  

 

Although this study had a small sample size and only studied a single disease, it provided a 

detailed comparison of targeted metagenomics and IS-Pro methods. Additionally, this was the 

first study to perform a direct comparison between targeted metagenomics and IS-Pro methods 
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on sputum specimens. The targeted metagenomics was able to detect more OTUs than the IS-

Pro method and as a result, showed a more diverse microbiome population; however, these 

results could not be compared with other literature as there have been no studies that have 

performed a direct comparison between targeted metagenomics and IS-Pro methods. The 

targeted metagenomics and IS-Pro methods showed distinct communities for the same sample. 

Additionally, the IS-Pro method showed an overabundance of phyla, such as Proteobacteria 

and an underabundance of phyla, such as Actinobacteria and missed several genera that were 

identified using targeted metagenomics. These differing abundances were postulated to be the 

result of the IS-Pro kit design (primers that offered a selective advantage) and analysis software 

(lack of QC). However, while targeted metagenomics performed better than the IS-Pro method 

for the identification of the lung microbiome in this study [and gastrointestinal microbiome in 

other studies (based on indirect comparisons)] and was less costly, the IS-Pro method was easy 

to perform and analyse (using the propriety software) without any extensive training and had a 

shorter turnaround time. Based on the fact the IS-Pro method can miss relevant species, such 

as Veillonella and had more OTUs that could not be classified at a family level, a new IS-Pro 

kit with additional primers (for the amplification of Veillonella) and updated analysis software 

(with QC steps included), could result in an improved kit. The authors suggest that targeted 

metagenomics be used for research (as it had less bias towards certain phyla and genera) and 

the IS-Pro method be used as a diagnostic tool in clinical laboratories as it was able to identify 

most of the important clinical pathogens (especially those found in the lung), such as 

Pseudomonas and is easy to perform (the test can be conducted by any technician/technologist). 

However, due to the current pricing, the authors suggest the kit only be used in complicated 

cases or a reference laboratory. Future studies that compare targeted metagenomics and IS-Pro 

methods should include: i) different microbiomes, e.g. oral microbiome and skin microbiome, 

ii) different primer sets for the amplification of the 16S rRNA gene (to compare targeted 

metagenomics to the IS-Pro method), e.g. use primers that target the V4 region and iii) include 

a larger study population, preferably including different diseases. 

 

5.5 Conclusions 

The targeted metagenomics and the IS-Pro methods showed differences in their abilities to 

identify and characterise OTUs as well as in the diversity and microbial composition of the lung 

microbiome. The IS-Pro method might miss relevant species and could over-inflate the 

abundance of members of the Proteobacteria., However, the IS-Pro kit was able to identify 

most of the important lung pathogens, such as Burkholderia and Pseudomonas and may work 
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well in a more diagnostics-oriented setting. Both methods were comparable in terms of time; 

however, the IS-Pro method was easier to use. 
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CHAPTER 6 

CONCLUDING REMARKS 

 

6.1 Conclusions 

Chronic obstructive pulmonary disease (COPD) is a lung disease characterised by airflow 

limitations and persistent respiratory symptoms (Global Initiative for Chronic Obstructive Lung 

Disease, 2020). This disease is one of the leading causes of morbidity and mortality worldwide 

(ranked fourth) and was estimated to be the world’s third leading cause of death by 2020 

(Abdool-Gaffar et al., 2019). Factors that may contribute to COPD include smoking, exposure 

to biomass fumes (indoor air pollution), exposure to occupational dust (e.g. working in a mine), 

genetic factors and Mycobacterium tuberculosis infection (TB) (Doring et al., 2011; van 

Gemert et al., 2011; Salvi, 2015; Lalloo et al., 2016; Abdool-Gaffar et al., 2019). Human 

immunodeficiency virus (HIV) infection has been implicated as a risk factor for COPD as well 

(Lalloo et al., 2016; Bigna et al., 2018). A key feature of COPD is the inflammation of the 

airways, which results in an impaired response, allowing the lung to be colonised by 

microorganisms, such as bacteria and viruses (Molyneaux et al., 2013; Cullen and McClean, 

2015; Fan et al., 2016). As COPD progresses, patients will experience states of worsened 

symptoms (both respiratory and non-respiratory) that are referred to as exacerbations 

(Miravitlles and Anzueto, 2015; Pavord et al., 2016). Most of these exacerbations have been 

linked to infection by either bacterial (50%) or viral (30%) agents (Shimizu et al., 2015). 

However, bacteria and viruses have been detected during the stable state of disease and their 

role in COPD is unclear (Doring et al., 2011; D'Anna et al., 2016).  

 

A study conducted in Cameroon in 2012 and 2013 showed no difference in the prevalence of 

COPD in HIV-positive and HIV-negative individuals (Pefura-Yone et al., 2015; Ho et al., 

2019). A study conducted on a HIV-positive population in South Africa, suggests that the lung 

function decline (in HIV-positive individuals) is more likely associated with TB infection than 

COPD (Varkila et al., 2019). A study conducted in Uganda that sought to determine if there 

were associations between HIV, TB and COPD, could not draw any clear conclusions (North 

et al., 2017). While a study conducted on older patients (over 50 years of age) admitted to a 

hospital in the North West Province, South Africa, showed a lower prevalence of COPD in the 

HIV-positive population (Naidoo et al., 2020). These studies suggest that even though HIV has 
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been implicated as a risk factor for COPD, in South Africa, there appears to be no clear 

association between HIV and COPD.  

 

Based on the above data the prevalence of COPD in the HIV-positive population and the general 

population should be similar, however, in this study we were only able to recruit one HIV-

positive participant with COPD. Recruitment occurred at three different study sites including a 

tertiary academic hospital and a private hospital in an urban setting. The population attending 

these study sites may be younger (the national HIV prevalence in the 50 years and older 

category is 12.5%) or that these populations have a low viral load as most of the population is 

on antiretroviral therapy (ARTs); Bigna et al. (2018) observed an association between viral 

load and COPD in a meta-analysis that include over 30 studies that suggests higher HIV viral 

loads are associated with COPD. 

 

As only one HIV participant could be recruited, this study could not compare the effects of HIV 

infection on the COPD lung microbiome. As previous studies, such as the study by Twigg et 

al. (2017), showed that HIV infection affected the healthy lung microbiome, further studies into 

the COPD lung microbiome with more HIV-positive individuals are still needed. The different 

states in COPD of the bacterial microbiome could be compared using next-generation 

sequencing. This study used the V1-V3 region of the 16S rRNA gene (i.e. targeted 

metagenomics) and the MiSeq platform to determine the lung microbiome in both disease 

states. A total of 24 participants (including one HIV-positive participant) were recruited in this 

study. At the time of collection, 18 participants were in the stable state of disease and six 

participants were in the exacerbation state. Chapter 4 discussed the methodology and results of 

the bacterial microbiome and virome of sputum specimens of stable and exacerbation COPD in 

detail. While individual samples showed variation in the alpha diversity and beta diversity, no 

specific differences were noted between the stable and exacerbation states of COPD in the 

current study. However, the relative abundance of the key phyla, i.e. Firmicutes, Bacteroidetes, 

Fusobacteria, Proteobacteria and Actinobacteria differed between the disease states; 

Firmicutes had a higher relative abundance during the exacerbation state and the other phyla 

had a lower relative abundance. This higher relative abundance of Firmicutes has been observed 

in previous studies in Europe and the USA, however, the implications of this are unclear but 

maybe be due to increased oxidative stress in the lungs caused during COPD progression 

(McGuinness and Sapey, 2017; Hufnagl et al., 2020). The higher prevalence of Firmicutes 

could not be attributed to a single genus in this study; however, previous studies could attribute 
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these changes in the prevalence of Firmicutes to a single genus, such as Lactobacillus and other 

members of the Lactobacillales order, such as Streptococcus (Pragman et al., 2012; Sze et al., 

2012; Kim et al., 2017; Jubinville et al., 2018; Leiten et al., 2020). In this study, two Firmicutes 

genera showed a higher prevalence, Granulicatella (Lactobacillales) and Veillonella 

(Veillonellales). The difference in abundance between the previous studies and this study could 

be attributed to the gastrointestinal tract and lung cross-talk (due to the movement of various 

bacteria from the gastrointestinal tract to the lung) and the diet of the different populations 

(Tennert et al., 2020). Additionally, these bacteria have been associated with gastrointestinal 

reflux disease (GERD) and may act as indicators of COPD exacerbations and could be indicated 

as a potential treatment point, i.e. treatment of GERD may improve COPD exacerbations (Lee 

and Goldstein, 2015; Park et al., 2020; Sanchez et al., 2020). This observation showed that 

differences in the abundances of Firmicutes at genera level could have an impact on the 

treatment program and clinical outcomes of COPD patients. 

 

In order to reduce the potential for bias between the results of targeted metagenomics and IS-

Pro methods, a single bacterial DNA extraction was performed. The extracted DNA for each 

sample was aliquoted for the two analyses, one for targeted metagenomics and one for the IS-

Pro method. Analysis of the microbiome using the IS-Pro method showed similar results to 

targeted metagenomics. Both methods showed diverse bacterial communities in the lung (based 

on the alpha diversity analysis); however, the two communities were distinct (based on the beta 

diversity analysis). This clear distinction, between the two microbial communities detected, 

highlights the impact that the different region of the ribosomal RNA (the hypervariable regions 

of the 16S rRNA gene with targeted metagenomics and the intergenic spacer region between 

the 16S rRNA and 23S rRNA genes for IS-Pro method) and analysis methodology can have on 

the microbiome of the same sample as shown in Chapter 5. To summarise, the IS-Pro method 

detected higher relative abundances of Proteobacteria and Fusobacteria and lower relative 

abundance of Actinobacteria. These differences in relative abundance could be attributed to the 

design of the assay (i.e. the IS-Pro method), particularly the primer design and the composition 

of the master mixes. One key genus that was not detected with the IS-Pro method was 

Veillonella which could be attributed to either primer design of the IS-Pro method (which may 

have had a selective advantage for other genera) or to the intergenic spacer (IS) region (since 

this genus contains multiple copies of the IS region that may be polymorphic). Additionally, 

while the IS-Pro method identified more OTUs to a species level, it showed a higher frequency 

of unclassified genera than targeted metagenomics. These sequences could be only 
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characterised at a phylum level; the IS-Pro method does not detect OTUs but directly detects 

the abundance of the different bacteria at a species level. As a result, all bacteria that could not 

be classified at a certain taxonomic level are grouped, i.e. the abundance of unclassified 

sequences are not attributable to a single OTU but could belong to multiple OTUs. These OTUs 

could be false OTUs (due to the lack of classification), that were generated during the PCR 

process of the IS-Pro method and occurred due to a lack of quality control measures (in the IS-

Pro method analysis) to remove chimeras and PCR artefacts (Caporaso et al., 2011; Auer et al., 

2017; Sze and Schloss, 2019). The IS-Pro kit could be improved by reducing the number of 

PCR cycles, by using an improved algorithm to detect sequences that are shorter than the 

average and by constantly updating the database of the IS-Pro database to include rare and novel 

species. When comparing targeted metagenomics and IS-Pro methods, the following 

conclusions could be made: i) the IS-Pro method needs to be improved before it can be used as 

a research tool for investigating the lung microbiome as this method shows an overabundance 

of the Proteobacteria phylum, may miss genera and had several OTUs that could not be 

resolved at a family level and ii) the IS-Pro method could work well in a diagnostic-orientated 

setting for the determination of causative bacteria in polymicrobial infections as this method 

can detect clinically relevant bacteria, such as Fusobacterium (that was present in 21/23 

samples and showed a higher prevalence with the IS-Pro method). 

 

Next-generation sequencing to determine the virome (using shotgun metagenomics) was 

conducted on a subset of six samples (three stable and three exacerbation samples). Due to the 

small sample size, the virome of the different disease states (stable and exacerbation states of 

COPD) could not be compared. The results showed that the virome of COPD participants was 

dominated by i) the Poxviridae family (present in the highest frequencies) and ii) 

bacteriophages families, such as Siphoviridae. The high Poxviridae frequency was attributed to 

being due to the detection of the BeAn 58058 virus. The details of this virus are discussed in 

section 4.4. The source of this virus is unknown, it could be from the environment (and may 

have been introduced as laboratory contamination) or it could be present in the human genome. 

Based on the analysis of the virome in this study (with only selected samples) and previous 

literature on the COPD lung virome, most of the viruses found in the COPD lung have no 

known pathogenicity (Garcia-Nunez et al., 2018; van Rijn et al., 2019). These findings suggest 

that the virome does not have a direct impact on the pathogenesis in the COPD lung and as such 

future studies should only focus on the virome to determine the effect of specific viral 

pathogens, e.g. of influenza or respiratory syncytial viruses. 
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At the beginning of this study there were several gaps in the knowledge of the microbiome of 

COPD patients including i) no studies had been conducted comparing the microbiome between 

HIV-positive and HIV-negative individuals with COPD, ii) limited studies had been conducted 

on the virome of COPD patients and iii) none of the studies had been conducted in Africa. This 

study was one of the first studies conducted in Africa and one of the first studies to observe the 

virome of COPD patients. However, due to challenges in patient recruitment, this study was 

unable to compare HIV-positive and HIV-negative individuals and had a limited study 

population size. This study highlighted that the microbiome of COPD patients in Africa is 

similar to the microbiome of COPD patients in Europe and America, with minor differences in 

the frequencies of key phyla and genera and provided an overview of the virome in COPD 

patients. Additionally, the study identified several new findings, such as i) the bacteria that were 

detected in higher abundance during exacerbation have been previously associated with GERD; 

these bacteria could potentially be used as predictors of diseases and may have identified a 

potential treatment area for COPD patients and ii) the high prevalence of the BeAn 58058 virus 

that was found in all six samples. This study would have been further strengthened if paired 

samples could have been obtained for the stable and exacerbation states of disease and if a 

longitudinal study had been conducted. Additionally, this study highlighted several key areas 

for future research including studying the COPD microbiome in conjunction with its 

comorbidities and further studies of the BeAn 58058 virus and its clinical relevance. This study 

also highlighted the need to study the virome in chronic respiratory diseases as most studies to 

have focused on cystic fibrosis, with other diseases, such as asthma and sarcoidosis have been 

neglected. Seasonal variation with viruses, such as Influenza A (at its potential impact on the 

microbiome and virome) as well as the effects on the global pandemic caused by SARS-CoV-

2 on chronic respiratory disease needs to be evaluated. 

 

6.2 Future Research 

The microbiome of the lung has been extensively studied in COPD, cystic fibrosis and other 

disease as well as in the healthy lung (Fabbrizzi et al., 2019). However, while the microbiome 

i.e. microbial composition of the lung has been well characterised, most of these studies have 

only been conducted using targeted metagenomics (Fabbrizzi et al., 2019). The use of targeted 

metagenomics is limited as it only provides the bacterial composition and it does not provide 

information of the role of these bacteria in health and disease (Charalampous et al., 2019; 

Fabbrizzi et al., 2019). Shotgun metagenomics can provide information about the functional 
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capacity of these bacteria and other microorganism, such as viruses (Fabbrizzi et al., 2019; Sun 

et al., 2020). However, shotgun metagenomics is mostly performed on DNA, as a result, live 

and dead cells cannot be differentiated; RNA viruses cannot be detected and all data generated 

is conjecture only (Emerson et al., 2017; Quince et al., 2017). Metatranscriptomics can use 

RNA and can differentiate between living and dead microorganisms (Emerson et al., 2017). 

Additionally, metatranscriptomics or rather RNA-seq (RNA sequencing) can detect RNA 

viruses (Shi et al., 2018; Noell and Kolls, 2019). Metabolomics provides information about 

microbial-derived metabolites or host-derived metabolites that have been modified by 

microorganisms (Ditz et al., 2020). Previous studies have used this method to differentiate 

between different COPD types and to differentiate lung cancer from COPD (Deja et al., 2014; 

Nobakht et al., 2015). However, more metabolomic, metatranscriptomic and shotgun 

metagenomic studies are needed to study COPD (Millares et al., 2015; Lee et al., 2016). 

 

One of the aspects of COPD research that warrants further study is a comparison of the different 

COPD phenotypes; shotgun metagenomics, metabolomics or metatranscriptomics studies 

would provide more information on these phenotypes and identify potential biomarkers and 

areas for therapy. Chronic obstructive pulmonary disease is a complex disease that has been 

grouped together based on characteristic airflow limitations (Sin, 2018). It has been postulated 

that the different phenotypes of COPD have different microbial influences; by using shotgun 

metagenomics combined with metatranscriptomics the genes that are more active in each 

phenotype could be determined, whereas metabolomics could provide us with biomarkers 

indicative of the different phenotypes which would have a beneficial effect on patient treatment 

and outcome. Another area of research would be to compare different lung diseases, such as 

asthma with COPD; by using metabolomics, specific biomarkers could be identified that 

differentiate between the different disease and may improve patient outcome. Additionally, by 

testing the “healthy” smoker population as well as an ageing population over a long period 

using either metabolomics or metatranscriptomics, biomarkers for the determination of COPD 

onset may be determined. These methods could be used to evaluate the effectiveness of 

antibiotics and other treatments over long periods. 

 

However, before these studies can be conducted standardisation of the methods used to study 

the lung microbiome is needed. Both biological (e.g. diet, disease and body site) and 

methodological factors (e.g. sequencing platform and bioinformatics analysis) can affect the 

microbiome and can make comparisons between studies difficult (Faner et al., 2017; Rogers, 
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2017; Ditz et al., 2020). In lung microbiome studies, sampling (and the choice of body site) is 

one of the factors that has the greatest impact on the microbiome, specifically the type of 

specimen used. Lung microbiome studies have previously used bronchial alveolar lavage 

(BAL), exhaled breath condensate, bronchoscopy, lung tissue biopsies or explants, 

oropharyngeal swabs or sputum specimens (Faner et al., 2017; Moffatt and Cookson, 2017; 

Ditz et al., 2020). However, studies have shown that these specimens have distinct microbiomes 

(Hogan et al., 2016; Chang et al., 2020). The choice of specimen is affected by factors, such as 

how representative is the sample of the lower airways and on the invasiveness of the collection 

of the specimen (Carney et al., 2020; Ditz et al., 2020; Sulaiman et al., 2020). Most of the 

specimens that are representative of the lower airways are invasive e.g. BAL, however, sputum 

specimen is non-invasive and has a component of the lower airways (even though it contains 

components of the upper airways) (Carney et al., 2020; Ditz et al., 2020; Sulaiman et al., 2020). 

Sampling, processing and approach to bioinformatical analysis can each impact the microbiome 

generated and therefore standardised protocols for each of these steps is important (Faner et al., 

2017; Rogers, 2017; Ditz et al., 2020). 

 

Furthermore, it is important to characterise the microbiome (and other “omics”) in different 

geographical regions (The Lancet Respiratory, 2019). In the African continent, few microbiome 

studies have been conducted (Ameur et al., 2014; Segal et al., 2017; Kaambo et al., 2018; 

Masekela et al., 2018; Roodt et al., 2018). Most of these studies have focused on HIV and there 

are no studies on the healthy microbiome. It is important to study the microbiome of healthy 

individuals in different geographic regions, to determine the impact the microbial composition 

may have on disease, i.e. if the shift in a particular phylum is attributed to factors, such as diet 

or disease (Rinninella et al., 2019). 

 

However, as highlighted by Cox et al. (2019), one of the challenges of studying the microbiome 

is that the microbiome is not only composed of bacteria but also fungi and viruses. There have 

been several studies conducted on the lung virome, however, the fungal microbiome i.e. the 

mycobiome remains widely unstudied (Cui et al., 2015; Su et al., 2015; Tipton et al., 2017; Ali 

et al., 2019; Weaver et al., 2019; Ditz et al., 2020). One of the biggest challenges of mycobiome 

research is DNA extraction, to break the cell walls of fungi, mechanical methods are often 

required which will also release human DNA and will shear the DNA (Tipton et al., 2017). If 

enzymatic methods are used instead, there may be a bias towards yeasts (Weaver et al., 2019). 
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While, the lung microbiome has been extensively studied in COPD, in other disease states and 

the healthy individuals, comparative longitudinal studies are still lacking in certain areas. Some 

of the key areas of research that could benefit from longitudinal studies (in larger cohorts over 

extended periods of time e.g. 10 years or greater) are: i) the effect of smoking on the respiratory 

microbiome in healthy individuals, ii) the effect of ageing on the respiratory microbiome in 

healthy individuals, iii) the effect of treatment (including antimicrobials and corticosteroids) on 

the respiratory microbiome in COPD patients, iv) the effect on TB infection on the respiratory 

microbiome in HIV-positive individuals, COPD patients and on its own and v) the effect of 

HIV infection on the microbiome of individuals with COPD and without COPD, with and 

without TB infection, etc. (Faner et al., 2017; Sulaiman et al., 2020). Additionally, functional 

studies (using RNA-seq and/or metagenomics) need to be conducted to determine the 

antimicrobial resistance and virulence genes in the microbiome. 

 

Although progress has been made in the understanding of the microbiome of the human lung 

in disease states, such as COPD, further research is still required.The addition of methods, such 

as metabolomics and transcriptomics, to studies, would allow the role of these microorganisms 

to be more fully elucidated and may improve our understanding of some of the disease 

mechanisms and microbial interactions in the future.  
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APPENDIX A 

REAGENTS, BUFFERS AND GELS USED IN EXPERIMENTAL PROCEDURES 

 

1. 0.1% Dithiothreitol (DTT) 

DTT powder (Roche, Switzerland;10197777001)    270 mg 

Phosphate buffered saline (PBS) (pH 7.4) (ThermoFisher, USA)  270 mL 

Dissolve 10 mg DTT in 10 mL PBS. Sterilise using 0.45 µM filter and syringe. 

 

2. Ethylene diamine tetra-acetate (EDTA) (0.5 M; pH 8.0) (Green and Sambrook, 2012) 

EDTA, disodium salt (Sigma-Aldrich, USA)    93.05 g 

Ultrapure water        400  mL 

Sodium hydroxide (NaOH) pellets (Merckmillipore, USA) 

Dissolve 93.05 g EDTA in 400 mL ultrapure water, adding the NaOH pellets until the 

solution becomes clear. Bring the volume to 500 mL and autoclave at 121°C for 15 min. 

 

3. Tris (1 M; pH 8.0) ("Tris-HCl", 2006) 

Tris-base (Sigma-Aldrich, USA)      60.55 g 

Hydrochloric acid (HCl) (Merckmillipore, USA)   21  mL 

Ultrapure water        400 mL 

Dissolve 60.55 g Tris-base in ultrapure water. Add the 21 mL of HCl and mix the solution. 

Bring the volume to 500 mL and autoclave at 121°C for 15 min. 

 

4. TE buffer (10 mM Tris: 1 mM EDTA; pH 8.0) ("Tris-EDTA buffer", 2009) 

1 M Tris (pH 8.0)        1 mL 

0.5 M EDTA        0.2 mL 

Ultrapure water        0.8 mL 

Dissolve 1 mL of Tris and 0.2 mL of EDTA in 0.8 mL of ultrapure water. Adjust the pH 

and bring the volume to 100 mL. Autoclave at 121°C for 15 min. 
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5. Lysostaphin (3 U/µL) 

Lysostaphin (Sigma-Aldrich, USA; L9043)    5 mg 

Nuclease-free water       5 mL 

Dissolve 5 mg lysostaphin in 5 mL nuclease-free water on ice. Once completely dissolved, 

aliquot into working solution and freeze at -20°C. 

 

6. Lysozyme (10 mg/mL stock solution) 

Lysozyme (Sigma-Aldrich, USA; L6876-5g)    10 mg 

Nuclease-free water       1 mL 

Dissolve 10 mg lysozyme in 1 mL nuclease-free water on ice. Once completely dissolved, 

aliquot into working solution and freeze at -20°C. 

 

7. Mutanolysin (10 U/µL) 

Mutanolysin (Sigma-Aldrich, USA; M9901-1KU)   1000 U 

Nuclease-free water       100 µL 

Add 100 µL nuclease-free water to mutanolysin (1000 U) on ice. Once completely 

dissolved, aliquot into working solution and freeze at -20°C. 

 

8. Tris-boric EDTA (TBE) buffer, 1X (Green and Sambrook, 2012) 

10X Tris-boric EDTA (TBE) buffer (Thermofisher, USA)  100 mL 

Ultrapure water        900 mL 

Add 900 mL ultrapure water to 100 mL of 10X TBE. 

 

9. Hard-to-lyse buffer (20 mM Tris, 2 mM EDTA, 1% Triton X-100) 

1M Tris (pH 8.0)        1  mL 

Triton X-100 (Amresco, USA)      0.5  mL 

0.5M EDTA (pH 8.0)       0.2  mL 

Add 0.2 mL Triton X-100 and 0.2 mL EDTA to 1 mL Tris. Make up solution to 50 mL. 

Autoclave at 121°C for 15 min. 

 

10. Agarose gel (1.5%) 

SeaKem LE agarose powder (Lonza, USA)    1.5 g 

1X TBE buffer        100 mL 

Ethidium bromide [10 mg/ml (Sigma-Aldrich, USA)]   5 µL 
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Add 1.5 g of SeaKem LE agarose powder to 100 mL 1X TBE buffer. Microwave the 

solution on medium heat for 2 to 3 min, stopping to swirl the solution at intervals. Allow to 

cool down to 50°C and add 5 µL ethidium bromide. Pour into clean casting tray, add a 

comb, and allow to set for 30 min. 
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APPENDIX B 

EXPERIMENTAL PROCEDURES 

 

1. Pre-processing of sputum specimens 

1. Add an equal volume of 0.1% dithiothreitol (DTT) (Roche, Switzerland) to the sputum 

sample i.e. the volume of DTT should be the same as the volume of the sputum sample 

(Hamid et al., 2002; Allen et al., 2016; Park et al., 2018; Terranova et al., 2018). 

2. Vortex (Vortex-Genie® 2, Scientific Industries Inc., USA) the samples for 30 seconds 

(sec) and leave at room temperature (+/- 25°C) for 15 min. 

3. Divide the samples into aliquots for bacterial DNA extraction, viral DNA extraction and 

RNA extraction. 

 

2. Bacterial deoxyribonucleic acid (DNA) extraction 

1. Centrifuge (Spectrafuge™ 24D, Labnet International Inc., USA) at 4 000 x g for 30 min 

(Bioline II Genomic DNA Manual; section 9.2 sample preparation). Discard the 

supernatant. 

2. Resuspend in 193.95 µL hard to lyse buffer (20 mM Tris (Sigma-Aldrich, USA) pH 8.0; 

1% Triton X-100 (Amresco, USA); 2 mM EDTA(Sigma-Aldrich, USA)). 

3. Add 22.5 µL lysozyme (10 mg/ml, Sigma-Aldrich), 6.75 µL mutanolysin (25 KU/ml, 

Sigma-Aldrich), and 1.8 µL lysostaphin (4000 U/mL, Sigma-Aldrich) to a 500 µL 

aliquot of the cell suspension (Yuan et al., 2012). 

4. Vortex (Vortex-Genie® 2, Scientific Industries Inc., USA) briefly and incubate for 

1 hour at 37°C (AccuBlock™ Digital Dry Bath, Labnet International Inc., USA). 

5. Add 25 µL Proteinase K (included in the kit), vortex (Vortex-Genie® 2, Scientific 

Industries Inc., USA) briefly and incubate at 56°C (AccuBlock™ Digital Dry Bath, 

Labnet International Inc., USA) for 2 hours. 

6. Vortex (Vortex-Genie® 2, Scientific Industries Inc., USA) each sample briefly (30 sec) 

and add 200 µL of Lysis buffer G3. 

7. Vortex (Vortex-Genie® 2; Scientific Industries Inc., USA) and incubate (AccuBlock™ 

Digital Dry Bath, Labnet International Inc., USA) at 70°C for 10 min. 

8. Vortex (Vortex-Genie® 2, Scientific Industries Inc., USA) and add 210 µL ethanol (96-

100%). Vortex (Vortex-Genie® 2, Scientific Industries Inc., USA) again. 

9. Place Spin column in a collection tube. 
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10. Add all sample to the column and centrifuge (Spectrafuge™ 24D, Labnet International 

Inc., USA) at 11 000 x g for 1 min. 

11. Discard flow-through (but keep collection tube). 

12. Add 500 µL Wash buffer GW1. 

13. Centrifuge (Spectrafuge™ 24D, Labnet International Inc., USA) at 11 000 x g for 1 

min. 

14. Discard flow-through (but keep collection tube). 

15. Add 600 µL Wash buffer GW2. 

16. Centrifuge (Spectrafuge™ 24D, Labnet International Inc., USA) at 11 000 x g for 1 

min. 

17. Discard flow-through (but keep collection tube). 

18. Centrifuge (Spectrafuge™ 24D, Labnet International Inc., USA) at 11 000 x g for 1 

min. 

19. Place Spin column in a microcentrifuge tube (Axygen, Corning, Germany). 

20. Add 100 µL Elution buffer G (70°C) directly onto silica membrane. 

21. Incubate at room temperature (+/- 25°C) for 1 min. 

22. Centrifuge (Spectrafuge™ 24D, Labnet International Inc., USA) at 11 000 x g for 1 

min. 

 

3. Viral deoxyribonucleic acid (DNA) extraction 

1. Treat the viral DNA aliquot with 10 U/mL TURBO™ DNase (Ambion, USA) at 37°C 

for 30 min (AccuBlock™ Digital Dry Bath, Labnet International Inc., USA). 

2. Inactive the DNase with 15 mM ethylenediaminetetraacetic acid (EDTA) (Sigma-

Aldrich, USA) at 75°C for 10 min (AccuBlock™ Digital Dry Bath, Labnet International 

Inc., USA) according to manufacturer’s instructions (de la Cruz Pena et al., 2018). 

3. Centrifuge (Spectrafuge™ 24D, Labnet International Inc., USA) at 4 000 x g for 30 min 

(Bioline II Genomic DNA Manual; section 9.13 sample preparation). Discard the 

supernatant. 

4. Transfer 200 µL to a new microcentrifuge tube (Axygen, Corning, Germany). 

5. Add 180 µL of lysis buffer GL and 25 µL of Proteinase K (provided in the kit) to the 

solution, vortex (Vortex-Genie® 2, Scientific Industries Inc., USA) briefly and incubate 

at 56°C (AccuBlock™ Digital Dry Bath, Labnet International Inc., USA) for 2 hours. 

6. Vortex (Vortex-Genie® 2, Scientific Industries Inc., USA) each sample briefly (30 sec) 

and add 200 µL Lysis buffer G3. 
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7. Vortex (Vortex-Genie® 2, Scientific Industries Inc., USA) and incubate (AccuBlock™ 

Digital Dry Bath, Labnet International Inc., USA) at 70°C for 10 min. 

8. Vortex (Vortex-Genie® 2, Scientific Industries Inc., USA) and add 210 µL ethanol (96-

100%). Vortex (Vortex-Genie® 2, Scientific Industries Inc., USA) again. 

9. Place Spin column in a collection tube. 

10. Add all sample to the column and centrifuge (Spectrafuge™ 24D, Labnet International 

Inc., USA) at 11 000 x g for 1 min. 

11. Discard flow-through (but keep collection tube). 

12. Add 500 µL Wash buffer GW1. 

13. Centrifuge (Spectrafuge™ 24D, Labnet International Inc., USA) at 11 000 x g for 1 

min. 

14. Discard flow-through (but keep collection tube). 

15. Add 600 µL Wash buffer GW2. 

16. Centrifuge (Spectrafuge™ 24D, Labnet International Inc., USA) at 11 000 x g for 1 

min. 

17. Discard flow-through (but keep collection tube). 

18. Centrifuge (Spectrafuge™ 24D, Labnet International Inc., USA) at 11 000 x g for 1 

min. 

19. Place Spin column in a microcentrifuge tube (Axygen, Corning, Germany). 

20. Add 100 µL Elution buffer G (70°C) directly onto silica membrane. 

21. Incubate at room temperature (+/- 25°C) for 1 min. 

22. Centrifuge (Spectrafuge™ 24D, Labnet International Inc., USA) at 11 000 x g for 1 

min. 

 

4. Viral ribonucleic acid (RNA) extraction 

1. The viral RNA aliquot was treated with 10 U/mL TURBO™ DNase (Ambion, USA) at 

37°C for 30 min (AccuBlock™ Digital Dry Bath, Labnet International Inc., USA). 

2. This was followed by inactivation with 15 mM ethylenediaminetetraacetic acid (EDTA) 

(Sigma-Aldrich, USA) at 75°C for 10 min (AccuBlock™ Digital Dry Bath, Labnet 

International Inc., USA) according to manufacturer’s instructions (de la Cruz Pena et 

al., 2018).  

3. Add 560 µL Buffer AVL (containing carrier RNA) to 1.5 mL microcentrifuge tube. 

4. Add 140 µL of sample to the tube and vortex (Vortex-Genie® 2, Scientific Industries 

Inc., USA) for 15 sec. 
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5. Incubate at room temperature (+/- 25°C) for 10 min. 

6. Centrifuge (Spectrafuge™ 24D, Labnet International Inc., USA) the tube at 4 000 x g 

for 30 sec. 

7. Add 560 µL of ethanol (96% to100%) and vortex (Vortex-Genie® 2, Scientific 

Industries Inc., USA) for 15 sec. 

8. Centrifuge (Spectrafuge™ 24D, Labnet International Inc., USA) the tube at 4 000 x g 

for 30 sec. 

9. Add 630 µL of the solution to the column (in a collection tube). Do not wet the rim. 

10. Centrifuge (Spectrafuge™ 24D, Labnet International Inc., USA) at 6 000 x g for 1 min. 

11. Place column in a new collection tube and add 500 µL Buffer AW1. 

12. Centrifuge (Spectrafuge™ 24D, Labnet International Inc., USA) at 6 000 x g for 1 min. 

13. Place column in a new collection tube and add 500 µL Buffer AW2. 

14. Centrifuge (Spectrafuge™ 24D, Labnet International Inc., USA) at 16 000 x g (full 

speed) for 3 min. 

15. Place column in a new microcentrifuge tube (Axygen, Corning, Germany) and add 60 

µL of Buffer AVE [at room temperature(+/- 25°C)]. 

16. Incubate at room temperature (+/- 25°C) for 1 min. 

17. Centrifuge (Spectrafuge™ 24D, Labnet International Inc., USA) at 6 000 x g for 1 min.  

 

5. cDNA synthesis 

1. For each reaction (i.e. each sample): 

Component X1 

dNTPs (10 mM mix) 1 µL 

random hexamers primers (50 ng/ µL) 1 µL 

nuclease-free water 2 µL 

RNA 6 µL 

 

2. Incubate (Bio-rad T100™ Thermal cycle, Bio-rad Laboratories Inc., USA) at 65°C for 

5 min. 

3. Incubate on ice for 1 min. 

4. In a different (new) tube, add the following components: 

Component X1 

10X RT buffer 2 µL 

25 mM magnesium chloride (MgCl2), 4 µL 

0.1 M DTT 2 µL 

RNaseOUT™ (40 U/µL) 1 µL 
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5. Add 9 µL to this mixture to each RNA/primer mix from step 3 and incubate at room 

temperature (+/- 25°C) for 2 min. 

6. Add 1 µL of SuperScript™ II RT to each tube (except for the RT control; to the RT 

control, add 1 µL nuclease-free water) and incubate at room temperature (+/- 25°C) for 

10 min. 

7. Incubate (Bio-rad T100™ Thermal cycle, Bio-rad Laboratories Inc., USA) at 42°C for 

50 min. 

8. Terminate the reaction at 70°C (Bio-rad T100™ Thermal cycle, Bio-rad Laboratories 

Inc., USA) for 15 min. Chill on ice. 

9. Add 1 µL of RNase H to each tube and incubate at 37°C (Bio-rad T100™ Thermal 

cycle, Bio-rad Laboratories Inc., USA) for 20 min. 

10.  For second strand synthesis: in a different (new) tube, add the following components 

(Kufner et al., 2019; Wu et al., 2019): 

Component X1 

Klenow fragment (5 U) 1 µL 

cDNA 20 µL 

Buffer 4 µL 

 

11. Add to each sample and incubate at 37°C (Bio-rad T100™ Thermal cycle, Bio-rad 

Laboratories Inc., USA) for 1 hour. Incubate at 72°C for 10 min. 

 

6. Amplification of cDNA and ssDNA 

1. Combine the following components in a tube: 

Component X1 

KAPA HiFi 12.5 µL 

DNA/cDNA 2.5 µL 

FR20RV primer (40 pmol) 1 µL 

Nuclease-free water 9 µ 

 

2. Run PCR amplification (Bio-rad T100™ Thermal cycle, Bio-rad Laboratories Inc., 

USA) as follows: initial denaturation at 95°C for 5 min, 40 cycles of 98°C for 1 min, 

65°C for 1 min, and 72°C for 2 min, followed by a final extension step at 72°C for 1 

min.  

 

7. Polymerase chain reaction (PCR) for the IS-Pro method 

1. Add 12 µL of PROTEO master mix in a well (in a microtiter plate) for each sample as 

well as for the positive and negative controls. 
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2. Add 12 µL of FIRBAC master mix in separate wells (in a microtiter plate) for each 

sample as well as for the positive and negative controls. 

3. Add 8 µL of extracted bacterial DNA to each PROTEO and each FIRBAC well. 

4. Run PCR amplification (AB GeneAmp PCR 9700, Thermofisher, USA) as follows: 35 

cycles of 94°C for 30 s, 56°C for 45 s, and 72°C for 1 min, followed by a final extension 

step at 72°C for 10 min.  

5. After amplification, add 16 µL of the eMix to each well (for the number of samples and 

controls) in a new microtiter plate and add 4 µL of each amplicon to a well, followed 

by denaturation at 94°C for 3 min.  

6. Analyse the samples on the 3730xL genetic analyser (Thermofisher, USA) at the central 

analytical facility (CAF) at Stellenbosch University, Cape Town, South Africa. 
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APPENDIX C 

JOURNAL GUIDELINES AND REQUIREMENTS 

 

1. MICROBIOME JOURNAL (BMC JOURNAL; PART OF SPRINGER NATURE GROUP) 

 

A. Criteria 
AVAILABILITY OF DATA, METADATA AND ANALYTICAL SCRIPTS 
At Microbiome we are striving to make reproducibility a priority. Data availability at time of submission is a key 

aspect to this process as it allows reviewers to fully evaluate your work. 

Microbiome follows a strict data release policy (Research Data Policy Type 4). We require that all datasets on 

which the conclusions of the paper rely should be available to the reviewers and readers. We ask that authors make 

sure their datasets are either deposited in publicly available repositories (where available and appropriate) or 

presented in the main manuscript or additional supporting files whenever possible. Accompanying metadata must 

be available in the repository or as supporting files to the manuscript. Metadata should be formatted according to 

the MixS (Minimum Information about any (x) Sequence) standards developed by the Genome Standards 

Consortium (GSC). Template can be found here: http://gensc.org/mixs/). The sample identifiers in the repository 

must refer to the same sample identifiers used in the manuscript. Please see Springer Nature’s information 

on recommended repositories. 

We are also requiring that authors make the code/scripts used for their analysis available as knitr files, iPython 

Notebooks, or any other formats they might find suitable. Again, this effort encourages transparency and complete 

reproducibility of your study. A good example is a paper published in Microbiome by Meadow et al. 

Please include the live accession number, or similar, in a section entitled “Availability of data and materials”. 

 

USE OF EXPERIMENTAL CONTROLS 
As with reproducibility, at Microbiome we are striving to publish high quality study, and we believe that the use 

of experimental controls is critical to guarantee quality and credibility. We expect that studies include controls, 

especially when analyzing samples believed to carry a very low bacterial/fungal/viral biomass. Materials and 

reagent, experimental sampling and processing can introduce contamination (DNA or cells) that if not controlled 

would jeopardize the integrity and quality of a study. Thus, we expect that studies submitted 

to Microbiome include sampling controls, extraction controls, PCR amplification controls as negative controls, but 

also positive controls (mock communities or others). These controls should be sequenced, and the sequence data 

reported in the paper and made available along with the sample sequence data in a public repository. 

 

NOMENCLATURE OF ORGANISMS 
Bacterial names should be written according to the guidelines of the American Society for Microbiology and 

the Journal of Bacteriology. Essentially, the names of all microbial taxa (kingdom, phyla, class, order, family, 

genus, species, and subspecies) should be italicized in the manuscript and the figures. Do not italicize strain 

designations or numbers. 

 

TERMINOLOGY TO DESCRIBE MICROBIOME STUDIES 
At Microbiome we have decided to follow the recommendations of Marchesi et al. with regards to vocabulary used 

to describe different aspects of microbial communities and their environments. 

A common example is the use of the term 16S,16S rDNA, 16S rDNA gene, 16S gene which are not appropriate. 

These should be replaced with 16S rRNA gene. 

Please make sure that you comply with all these criteria. 

 

Preparing your Manuscript 
The information below details the section headings that you should include in your manuscript and what 

information should be within each section. 

Please note that your manuscript must include a 'Declarations' section including all of the subheadings (please see 

below for more information).  

 

Title page 
The title page should: 

• present a title that includes, if appropriate, the study design 

• list the full names, institutional addresses and email addresses for all authors 
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o if a collaboration group should be listed as an author, please list the Group name as an author. If 

you would like the names of the individual members of the Group to be searchable through their individual 

PubMed records, please include this information in the “Acknowledgements” section in accordance with the 

instructions below 

• indicate the corresponding author 

 

Abstract 
The Abstract should not exceed 350 words. Please minimize the use of abbreviations and do not cite references in 

the abstract. The abstract must include the following separate sections: 

• Background: the context and purpose of the study 

• Results: the main findings 

• Conclusions: a brief summary and potential implications 

 

Keywords 
Three to ten keywords representing the main content of the article. 

 

Background 
The Background section should explain the background to the study, its aims, a summary of the existing literature 

and why this study was necessary. 

 

Methods  
The methods section should include: 

• the aim, design and setting of the study 

• the characteristics of participants or description of materials 

• a clear description of all processes, interventions and comparisons. Generic names should generally be 

used. When proprietary brands are used in research, include the brand names in parentheses 

• the type of statistical analysis used, including a power calculation if appropriate 

 

Results 
This should include the findings of the study including, if appropriate, results of statistical analysis which must be 

included either in the text or as tables and figures. 

 

Discussion 
For research articles this section should discuss the implications of the findings in context of existing research and 

highlight limitations of the study. For study protocols and methodology manuscripts this section should include a 

discussion of any practical or operational issues involved in performing the study and any issues not covered in 

other sections. 

 

Conclusions 
This should state clearly the main conclusions and provide an explanation of the importance and relevance of the 

study to the field. 

 

List of abbreviations 
If abbreviations are used in the text they should be defined in the text at first use, and a list of abbreviations can 

be provided. 

 

Declarations 
All manuscripts must contain the following sections under the heading 'Declarations': 

• Ethics approval and consent to participate 

• Consent for publication 

• Availability of data and material 

• Competing interests 

• Funding 

• Authors' contributions 

• Acknowledgements 

• Authors' information (optional) 

Please see below for details on the information to be included in these sections. 
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If any of the sections are not relevant to your manuscript, please include the heading and write 'Not applicable' for 

that section.  

 

Ethics approval and consent to participate 
Manuscripts reporting studies involving human participants, human data or human tissue must: 

• include a statement on ethics approval and consent (even where the need for approval was waived) 

• include the name of the ethics committee that approved the study and the committee’s reference number 

if appropriate 

Studies involving animals must include a statement on ethics approval. 

See our editorial policies for more information. 

If your manuscript does not report on or involve the use of any animal or human data or tissue, please state “Not 

applicable” in this section. 

 

Consent for publication 
If your manuscript contains any individual person’s data in any form (including any individual details, images or 

videos), consent for publication must be obtained from that person, or in the case of children, their parent or legal 

guardian. All presentations of case reports must have consent for publication. 

You can use your institutional consent form or our consent form if you prefer. You should not send the form to us 

on submission, but we may request to see a copy at any stage (including after publication). 

See our editorial policies for more information on consent for publication. 

If your manuscript does not contain data from any individual person, please state “Not applicable” in this section. 

 

Availability of data and materials 
All manuscripts must include an ‘Availability of data and materials’ statement. Data availability statements should 

include information on where data supporting the results reported in the article can be found including, where 

applicable, hyperlinks to publicly archived datasets analysed or generated during the study. By data we mean the 

minimal dataset that would be necessary to interpret, replicate and build upon the findings reported in the article. 

We recognise it is not always possible to share research data publicly, for instance when individual privacy could 

be compromised, and in such instances data availability should still be stated in the manuscript along with any 

conditions for access. 

Data availability statements can take one of the following forms (or a combination of more than one if required 

for multiple datasets): 

• The datasets generated and/or analysed during the current study are available in the [NAME] repository, 

[PERSISTENT WEB LINK TO DATASETS] 

• All data generated or analysed during this study are included in this published article [and its 

supplementary information files]. 

• Data sharing is not applicable to this article as no datasets were generated or analysed during the current 

study. 

• Not applicable. If your manuscript does not contain any data, please state 'Not applicable' in this section. 

More examples of template data availability statements, which include examples of openly available and restricted 

access datasets, are available here. 

BioMed Central also requires that authors cite any publicly available data on which the conclusions of the paper 

rely in the manuscript. Data citations should include a persistent identifier (such as a DOI) and should ideally be 

included in the reference list. Citations of datasets, when they appear in the reference list, should include the 

minimum information recommended by DataCite and follow journal style. Dataset identifiers including DOIs 

should be expressed as full URLs. For example: 

 

Hao Z, AghaKouchak A, Nakhjiri N, Farahmand A. Global integrated drought monitoring and prediction system 

(GIDMaPS) data sets. figshare. 2014. http://dx.doi.org/10.6084/m9.figshare.853801 

With the corresponding text in the Availability of data and materials statement: 

The datasets generated during and/or analysed during the current study are available in the [NAME] repository, 

[PERSISTENT WEB LINK TO DATASETS].[Reference number]  

 

Competing interests 
All financial and non-financial competing interests must be declared in this section. 

See our editorial policies for a full explanation of competing interests. If you are unsure whether you or any of 

your co-authors have a competing interest please contact the editorial office. 

Please use the authors initials to refer to each authors' competing interests int his section. 
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If you do not have any competing interests, please state "The authors declare that they have no competing interests" 

in this section. 
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All sources of funding for the research reported should be declared. The role of the funding body in the design of 

the study and collection, analysis, and interpretation of data and in writing the manuscript should be declared. 

 

Authors' contributions 
The individual contributions of authors to the manuscript should be specified in this section. Guidance and criteria 

for authorship can be found in our editorial policies. 
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APPENDIX D 

SCRIPTS AND TOOLS USED FOR BIOINFORMATICS ANALYSIS 

 

1. Scripts used in QIIME 2 (microbiome) 

a. Importing data 

• qiime tools import --type 'SampleData[PairedEndSequencesWithQuality]' --input-path 

/home/qiime2/Documents/COPD_Microbiome/wetransfer-d046bb --input-format 

CasavaOneEightSingleLanePerSampleDirFmt --output-path demux-paired-end.qza 

• qiime demux summarize --i-data demux-paired-end.qza --o-visualization demux.qzv 

b. Sequence quality control and feature table construction 

• qiime quality-filter q-score --i-demux demux-paired-end.qza --o-filtered-sequences demux-

filtered.qza --o-filter-stats demux-filter-stats.qza 

• qiime deblur denoise-16S --i-demultiplexed-seqs demux-filtered.qza --p-trim-length 240 --o-

representative-sequences rep-seq-deblur.qza --o-table table.deblur.qza --p-sample-stats --o-stats 

deblur-ststs.qza 

• qiime feature-table summarize --i-table table.deblur.qza --o-visualization table.qzv --m-sample-

metadata-file sample-metadata.tsv 

• qiime feature-table tabulate-seqs --i-data rep-seq-deblur.qza --o-visualization rep.seq.qzv 

c. Obtaining and importing reference data sets 

• qiime tools import --type 'FeatureData[Sequence]' --input-path 99_otus.fasta --output-path 

99_otus.qza 

• qiime tools import --type 'FeatureData[Taxonomy] --input-format 

HeaderlessTSVTaxonomyFormat --input-path 99_otu_taxonomy.txt --ouput-path ref-

taxonomy.qza 

d. Extract reference reads 

• qiime feature-classifier extract-reads --i-sequences 99_otus.qza --p-f-primer 

AGAGTTTGATCMTGGCTCAG --p-r-primer GTATTACCGCGGCTGCTGG --o-reads ref-

seqs_1.qza 

e. Train classifier 

• qiime feature-classifier fit-classifier-naive-bayes --i-reference-reads ref-seqs_1.qza --i-reference-

taxonomy ref-taxonomy.qza --o-classifier classifier_1.qza 

f. Test the classifier 

• qiime feature-classifier classify-sklearn –i-classifier classifier.qza --i-reads Tut-rep-seqs.qza --o-

classification tut-taxonomy_1.qza 

• qiime metadata tabulate --m-input-file tut-taxonomy_1.qza --o-visualization tut-taxonomy_1.qzv 

g. Taxonomic analysis 

• qiime feature-classifier classify-sklearn --i-classifier classifier_1.qza –i-reads rep-seq-deblur.qza --

o-classification taxonomy_1.qza 

• qiime metadata tabulate --m-input-file taxonomy.qza --o-visualization taxonomy_1.qzv 

• qiime taxa barplot --i-table table.deblur.qza --i-taxonomy taxonomy_1.qza --m-metadata-file 

sample-metadata.tsv --o-visualization taxa-bar-plots_1.qzv 
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2. Tools used for Kraken 2 in Galaxy 

a. Upload data 

b. Use FASTQ joiner to join paired-end reads 

c. Remove Human DNA using Bowtie2 (Reference genome: Homo sapiens hg38 Full) 

d. Run Kraken 2 

• Single or paired reads: Single 

• Input sequences: FASTQ joiner file 

• Print Scientific names instead of just taxids: No 

• Confidence: 0.0 

• Minimum Base Quality: 0 

• Enable quick operation: No 

• Split classified and unclassified outputs: No 

• Create report: 

o Print a report with aggregate counts/clade to file: No 

o Format report output like Kraken 1's kraken-mpa-report: No 

o Report counts for ALL taxa, even if counts are zero: No 

• Select a Kraken2 database: Standard or Viral genomes 

 

3. Converting Kraken 2 files (virome) to .biom files (Must be done in a Linux 

environment) 

kraken-biom s8.txt -o S8.biom 

 

4. Importing QIIME2 files (microbiome) into phyloseq (in R) 

library("phyloseq") 

library("qiime2R") 

Physeq=qza_to_phyloseq(features="C:/Users/Tanweer/Documents/FilesForR/table-deblur.qza", taxonomy 

="C:/Users/Tanweer/Documents/FilesForR/taxonomy_1.qza" , metadata 

='C:/Users/Tanweer/Documents/FilesForR/sample-metadata.tsv') 

 

5. Importing .biom files (virome) files into phyloseq (in R) 

library("phyloseq") 

virseq=import_biom("F:/Virtual Machines/Shared/Kraken_Viraldb_Reports/virome_all.biom", parseFunction = 

parse_taxonomy_greengenes) 

S25=import_biom("F:/Virtual Machines/Shared/Kraken_Viraldb_Reports/S25.biom", parseFunction = 

parse_taxonomy_greengenes) 

sample_names(S25)="S25" 

Virseq2=merge_phyloseq(virseq, S25) 

 

6. Importing IS-Pro files into phyloseq (in R) 

library("phyloseq") 

OTU1=read.csv(file ="C:/Users/Tanweer/Documents/FilesForR/IS-Pro_OTUtable_6.csv" , header = TRUE, sep 

= ";", row.names =1) 

OTU2=as.matrix(OTU1) 

OTU3=otu_table(OTU2, taxa_are_rows = TRUE) 

TAX1=read.csv(file = 'C:/Users/Tanweer/Documents/FilesForR/Tax_table_22June.csv', header = TRUE, sep = 

";", row.names =1) 

TAX2=tax_table(as.matrix(TAX1)) 

ISPhyseq=merge_phyloseq(OTU3, TAX2) 
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7. Merging QIIME2 and IS-Pro files into a single phyloseq object (in R) 

Merge_Physeq=merge_phyloseq(ISPhyseq, Physeq) 

Meta1=read.delim(file ="C:/Users/Tanweer/Documents/FilesForR/Metadata_forComp_3.txt" , header = TRUE, 

sep = "\t", row.names = 1) 

Meta2=sample_data(Meta1) 

Merge_Physeq2=merge_phyloseq(Merge_Physeq, Meta2) 

Merge_physeq3=subset_samples(Merge_Physeq2, sample_names(Merge_Physeq2)!="TG-M25_QIIME2") 

Merge_Physeq4=subset_taxa(Merge_physeq3, Kingdom!="Archaea" & Family!="mitochondria" & 

Class!="Chloroplast") 

 

8. Calculating alpha diversity (in R) 

a. On QIIME2 data 

i. Calculate Richness 

richness=estimate_richness(physeq2) 

write.table(richness, "C:/Users/Tanweer/Documents/FilesForR/AlphaDiveristy.txt", sep = "\t") 

ii. Statistical analysis (done using Kruskal Wallis test) 

alpha_stats=cbind(richness, sample_data(physeq2)) 

kt1=kruskal.test(Simpson~DiseaseState, data=alpha_stats) 

kruskal.test(Chao1~DiseaseState, data=alpha_stats) 

b. On IS-Pro data 

i. Calculate Richness (all diversity measures) 

richness=estimate_richness(Merge_Physeq2) 

write.table(richness, "C:/Users/Tanweer/Documents/FilesForR/AlphaDiveristy_IS-Pro_2.txt", sep = 

"\t") 

ii. Statistical analysis (done using Mann-Whitney test) 

pairwise.wilcox.test(richness$Simpson, sample_data(Merge_Physeq2)$Method) 

pairwise.wilcox.test(richness$Shannon, sample_data(Merge_Physeq2)$Method) 

c. Creating alpha diversity box plot 

library("ggplot2") 

physeq2=subset_taxa(physeq, Kingdom!="Archaea" & Family!="mitochondria" & Class!="Chloroplast") 

plot_richness(physeq2, x= "DiseaseState", color = "DiseaseState", measures = c("Chao1", "Simpson")) + 

geom_boxplot() 

 

9. Calculating beta diversity (in R) 

a. Using beta diversity measures 

physeq.distUF=distance(physeq2, method="uunifrac") 

physeq.distWUF=distance(physeq2, method="wunifrac") 

physeq.distJac=distance(physeq2, method="jaccard", binary=TRUE) 

physeq.distMH=distance(physeq2, method="horn") 

b. PCoA analysis 

physeq.distUF.ord=ordinate(physeq2, method = "PCoA", distance = physeq.distUF) 

c. NMDS analysis 

physeq.distUF.ord_2=ordinate(physeq2, method = "NMDS", distance = physeq.distUF) 

d. Generate ordination plot 

library("ggplot2") 

plot_ordination(physeq2, physeq.distUF.ord, color="DiseaseState") + geom_point() + stat_ellipse() 

e. Dendrogram/Hierarchical clustering 

physeq.hclust.distUF=hclust(physeq.distUF, method="average") 

plot(as.phylo(physeq.hclust.distUF) 

 

10. Creating abundance plots (in R) 

a. Calculate relative abundance 

physeq_RA=transform_sample_counts(physeq2, function(x) x/sum(x)) 
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b. Generate plot 

library("ggplot2") 

plot_bar(physeq_RA, fill = "Phylum")+ geom_bar(aes(color=Phylum, fill=Phylum), stat = "identity", position 

= "stack") 

 

11. Analysis using DESeq2 (in R) 

a. Analyse using DESeq2 

library("DESeq2") 

Di_des=phyloseq_to_deseq2(physeq, ~DiseaseState) 

Di_des_1=DESeq(Di_des) 

resultsNames(Di_des_1) 

resdf=as.data.frame(DESeq2::results(Di_des_1, format = "DataFrame", 

name="DiseaseState_Stable_vs_Exacerbation")) 

resdf_2=results(Di_des_1, contrast = c("DiseaseState", "Stable", "Exacerbation")) 

res=results(Di_des_1, cooksCutoff = FALSE) 

alpha=0.1 

sigtab=res[which(res$padj <0.01), ] 

sigtab_2=cbind(as(sigtab, "data.frame"), as(tax_table(physeq)[rownames(sigtab), ], "matrix")) 

head(sigtab_2) 

dim(sigtab_2) 

head(sigtab [order(sigtab$log2FoldChange ), ] ) 

 

b. Generate plot 

library("ggplot2") 

theme_set(theme_bw()) 

scale_fill_discrete <- function(palname= "Set1", ...) {scale_fill_brewer(palette = palname, ...)} 

x=tapply(sigtab_2$log2FoldChange, sigtab_2$Phylum, function(x) max(x)) 

x=sort(x, TRUE) 

x=tapply(sigtab_2$log2FoldChange, sigtab_2$Genus, function(x) max(x)) 

x=sort(x, TRUE) 

sigtab_2$Genus=factor(as.character(sigtab_2$Genus), levels=names(x)) 

ggplot(sigtab_2, aes(x=Genus, y=log2FoldChange, color=Phylum)) +geom_point(size=6)+ theme(axis.text.x 

= element_text(angle = -90, hjust = 0, vjust = 0.5)) 
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APPENDIX E 

METADATA 

 

Table 1: Metadata table 
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1 S 59 F 2017 Oct Spring - A Yes 23 Yes Yes Yes Often Yes No No No Bronkhorstspruit 

2 S 60 M 2017 Oct Spring - A Yes 38 NA Yes Yes Often Yes No Yes No Pretoria 

3 S 59 M 2017 Nov Spring - A Yes 42 Yes Yes Yes Never No No Yes Yes Boksburg 

4 S 67 M 2018 Jan Summer - A Stopped 30 Yes Yes No Often Yes No No No Doornpoort 

7 E 70 F 2018 May Autumn - A Yes 45 Yes Yes Yes Often No No Yes No 

Wonderboom 

South 

8 S 55 M 2018 May Autumn - A Yes 15 Yes Yes Yes Sometimes No Yes No Yes Mamelodi 

9 S 57 M 2018 May Autumn - A No NA Yes No Yes Often Yes No No Yes Nelspruit 

10 S 74 F 2018 June Winter - A Yes 30 No Yes Yes Often No No No No Jan Niemand Park 

11 E 62 F 2018 June Winter - A No NA Maybe No No Sometimes No No No No Hammanskraal 

13 E 74 F 2018 June Winter - A Stopped 20 Maybe Yes No Never No No No No Eersterust 

14 E 56 M 2018 June Winter - B Yes 20 Yes Yes Maybe Often No No No No Pretoria Central 

15 S 62 M 2018 July Winter - A Stopped 25 Yes Maybe Maybe Sometimes No No No No Pretoria North 

16 S 60 F 2018 July Winter - A No NA Yes No No Often No No Yes No Kammeldrift East 

17 S 58 M 2018 July Winter - A Stopped 33 Yes Maybe Maybe Sometimes No No No No Hatfield 

18 S 70 F 2018 July Winter - A Stopped 20 Yes Yes Yes Often No No No No Rietfontein 

20 S 50 M 2018 July Winter + C Stopped 32 No Yes No Sometimes No Yes No No Soshanguve 

22 S 60 F 2018 Aug Winter - A Stopped 20 Yes Maybe Yes Often No No No No Bronkhorstspruit 
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Table 1: Metadata table (continued) 
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23 S 60 M 2018 Aug Winter - C Yes 40 No Yes Yes Never No No No No Hammanskraal 

24 E 60 M 2018 Oct Spring - C Stopped 20 Yes Yes Yes Often No Yes No No Centurion 

25 E 68 F 2018 Oct Spring - A Stopped 40 No No No Often No No Yes Yes Doornpoort 

26 S 82 M 2018 Oct Spring - C Stopped 10 Yes Yes Yes Often Yes No No No Mamelodi 

27 S 56 M 2018 Nov Spring - C No NA Yes Yes Yes Never No No No Yes Mamelodi 

28 S 54 M 2018 Nov Spring - C Yes 40 Yes Yes Yes Often No No No No Pretoria West 

29 S 59 M 2019 Feb Summer - C Stopped 13 No Yes Yes Sometimes No No Yes No Nellmapius 
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Table 2: Weight of sputum specimens (frozen) and the volume of 0.1% DTT added 

Sample Date of collection Date of processing Weight (g) 

Amount of 

DTT added 

(mL) 

COPD 1  16/05/2019 0.63 0.63 

COPD 2  
16/05/2019 3.76 3.76 

COPD 3  
16/05/2019 0.81 0.81 

COPD 4  
16/05/2019 1.76 1.76 

COPD 5 NO specimen    

COPD 6 NO specimen    

COPD 7  
16/05/2019 0.2 0.2 

COPD 8  
16/05/2019 1.24 1.24 

COPD 9  
16/05/2019 13.6 13.6 

COPD 10  
16/05/2019 1.12 1.12 

COPD 11  
16/05/2019 0.68 0.68 

COPD 12 NO specimen    

COPD 13  
16/05/2019 1.78 1.78 

COPD 14  
16/05/2019 1.03 1.03 

COPD 15  
16/05/2019 3.34 3.34 

COPD 16  
16/05/2019 0.9 0.9 

COPD 17  
16/05/2019 0.73 0.73 

COPD 18  
16/05/2019 0.68 0.68 

COPD 19 NO specimen    

COPD 20  16/05/2019 1.48 1.48 

COPD 21 NO specimen    

COPD 22  
16/05/2019 2.45 2.45 

COPD 23  
16/05/2019 0.66 0.66 

COPD 24  
16/05/2019 2.43 2.43 

COPD 25  
16/05/2019 1.19 1.19 

COPD 26  
16/05/2019 13.52 13.52 

COPD 27  
16/05/2019 1.77 1.77 

COPD 28  
16/05/2019 1.58 1.58 

COPD 29  
16/05/2019 4.2 4.2 
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Table 3: DNA quality and quantity (Absorbance of DNA) 

 Bacterial DNA extraction Viral DNA extraction 

Sample 260/280 ratio ng/µL 260/280 ratio ng/µL 

COPD 1 1.72 80.06 1.66 36.63 

COPD 2 1.45 9.96 1.52 4.59 

COPD 3 1.62 12.72 0.62 0.136 

COPD 4 1.76 227.95 1.14 10.38 

COPD 7 1.75 235.3 17.71 94.2 

COPD 8 1.71 150.89 1.76 21.27 

COPD 9 1.69 25.77 1.74 132.28 

COPD 10 1.63 30.73 1.65 18.72 

COPD 11 1.77 135.94 1.02 2.161 

COPD 13 1.71 54.89 1.15 4.56 

COPD 14 1.71 150.48 1.69 116.16 

COPD 15 1.68 48.4 1.52 21.68 

COPD 16 1.68 29.28 1.62 11.25 

COPD 17 1.14 3.085 1.39 8.127 

COPD 18 1.5 5.46  No value <0 

COPD 20 1.7 32.2 1.71 61.28 

COPD 22 1.6 9.599 No value  <0 

COPD 23 1.69 11.78 0.688 0.31 

COPD 24 1.76 79.36  No value <0 

COPD 25 1.7 363.05 1.6 18.76 

COPD 26 1.73 55.83  No value <0 

COPD 27 1.68 37.24 1.66 27.68 

COPD 28 1.71 92.19 1.37 10.95 

COPD 29 1.67 150.89  No value <0 

 

Table 4: RNA quality and quantity (Absorbance of RNA) 

 Viral RNA extraction 

Sample Absorbance ng/µL 

COPD 1 0.019 15.05 

COPD 2 0.021 16.44 

COPD 3 0.069 55.22 

COPD 4 0.101 80.97 

COPD 7 0.034 27.59 

COPD 8 0.189 150.9 

COPD 9 0.839 671.5 

COPD 10 0.041 32.77 

COPD 11 0.195 155.9 

COPD 13 0.067 53.99 

COPD 14 0.771 616.9 

COPD 15 0.052 41.93 

COPD 16 0.062 49.34 

COPD 17 0.132 105.3 

COPD 18 0.068 54.33 

COPD 20 0.059 46.97 

COPD 22 0.070 55.72 

COPD 23 0.048 30.22 

COPD 24 0.103 82.77 

COPD 25 0.184 147.1 

COPD 26 0.089 71.33 

COPD 27 0.030 24.12 

COPD 28 0.041 32.58 

COPD 29 0.124 99.21 
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APPENDIX F 

APPROVAL DOCUMENTS 
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