
1

Reducing ambiguity during enterprise design

Marné de Vries

Room 3-22, Engineering Building II, University of Pretoria

marne.devries@up.ac.za

+27 12 420 2038

ORGID: 0000-0002-1715-0430

Keywords

Enterprise Engineering; Enterprise Design; Enterprise Intentions; Enterprise Requirements; Design Domains.

Acknowledgements

We would like to thank all participants of this study for their active participation and willingness to contribute

towards the development of a method for enterprise intentions concept clarification.

Abstract

Requirements elicitation is one of the most important phases in the design process and applied by many

engineering disciplines. A more recent application of the design process is to design the enterprise as an artefact,

also called enterprise engineering (EE). Even though there are limits to formal enterprise design due to enterprise

complexity, strategic intentions are not realised spontaneously or accidently. Intentional enterprise design is

required, starting with the strategic context, eliciting enterprise intentions. Similar to the ad hoc evolution of

enterprises, EE as a discipline also developed in a fragmented way, with enterprise design knowledge mostly

encapsulated in several enterprise design approaches. A previous study analysed eight different enterprise

design/alignment approaches, inductively developing a common framework to represent and compare these

approaches in terms of four main components. One of the components represent the scope of enterprise

design/alignment in terms of three dimensions: design domains, intentions and constraints, as well as enterprise

scope. Since existing approaches use inconsistent means of defining the first dimension, namely the design

domains, previous work already provide some guidance on demarcating design domains in a more consistent

way. This article focuses on the second dimension, i.e. intentions and constraints, and the need to distinguish

between different intention-related concepts to reduce possible ambiguity. The study applies design science

research to develop a method for enterprise intentions concept clarification (MEICC) as a theoretical

contribution. The study also offers a practical contribution, demonstrating how the MEICC was used to clarify

intention-related concepts that feature within a specific approach, namely Hoogervorst’s approach. A coding

strategy (including coding conditions, a refined codebook and a coding method), developed for Hoogervorst’s

approach via MEICC, is presented as a secondary contribution, since the coding strategy will also be useful to

practitioners that use Hoogervorst’s approach.

1. Introduction

Requirements elicitation, also called requirements gathering, is the process of discovering system problems and

solution requirements for a system by gathering knowledge from stakeholders who have a direct or indirect

influence on the requirements [1,2]. Establishing design requirements, sometimes termed problem definition, is

mailto:marne.devries@up.ac.za

2

one of the most important elements in the design process and applied by many engineering disciplines [3,4]. A

more recent application of the design process, is to design the enterprise as an artefact, also called enterprise

engineering (EE) [5]. Yet, enterprise design is by no means simple, since enterprises rank amongst the highest in

complexity, i.e. level eight on Boulding’s [6] nine-level complexity scale. Even though there may be limits to

formal enterprise design due to enterprise complexity, the realisation of strategic intentions and successfully

addressing areas of concern do not occur spontaneously/incidentally [7]. Enterprises are intentionally created

entities and are created via design when design is defined as: “courses of action aimed at changing existing

situations into preferred ones” [8].

Multiple theorists and practitioners address enterprise complexity by developing structured approaches for

enterprise design [9]. Similar to the ad hoc evolution of enterprises, EE as a discipline also developed in a

fragmented way, with enterprise design knowledge mostly encapsulated in several enterprise design

approaches [10]. De Vries et al. [9] studied eight different enterprise design/alignment approaches, inductively

developing a common framework to represent and compare these approaches. The enterprise evolution

contextualisation framework (EECM) indicates that the analysed approaches can be represented by four main

components:

(1) A belief/paradigm of value-creation that the approach offers.

(2) Three dimensions that represent the extent of enterprise design/alignment scope.

(3) Mechanisms and practices that are used to ensure consistent design/alignment for the intended

design/alignment scope.

(4) Approach classifiers that represent common patterns of design detected in the existing design approaches.

Based on the belief/paradigm of value-creation, a particular approach usually offers various mechanisms and

practices to align a certain part of the enterprise as defined by the dimensions [9]. Even though EECM provides

a common reference framework to compare existing approaches [11], EECM is neither prescriptive in evaluating

the components of an existing approach, nor prescriptive in guiding a theorist/practitioner when s/he develops a

new approach. EECM represents the enterprise design/alignment scope, namely the dimensions. The three

dimensions include:

(1) Design domains that represent abstract sub-systems within the enterprise that should be designed/aligned.

(2) Concerns and constraints as emerging concerns/expectations/intentions of different stakeholders within the

enterprise design process.

(3) Enterprise scope that reflects formal implementation structures that are often used to organise employees

within an enterprise-as-a-legal-entity, e.g. departments, programmes and projects.

De Vries [12] already critiqued existing approaches for their inconsistent means of defining the first dimension,

namely the design domains [12]. Contributing towards the prescriptive knowledge within the EE discipline, this

article focuses on the second dimension, i.e. concerns and constraints. As will become evident in this article, the

research process itself highlighted the problematic nature of the word concerns and its negative connotation;

hence, we have replaced the word concerns with intensions in this article. The study addresses the following

questions:

3

• What methodologies and techniques are currently available to guide elicitation of intentions and constraints?

• What techniques/methods are available to clarify concepts associated with intentions and constraints for an

existing or new enterprise design approach?

• What method should be developed to clarify concepts associated with intentions and constraints for an

existing enterprise design approach?

• How useful is the newly developed method?

Using design science research, we develop a method for enterprise intention concepts clarification (MEICC) as

the main contribution of this article. The MEICC is primarily a practical contribution, since it is useful to clarify

concepts related to intentions and constraints when a new enterprise design approach is designed or when an

existing enterprise design approach provides limited guidance on distinguishing between concepts related to

intentions and constraints. As an example, MEICC should be useful in the following scenario: An existing

approach identifies two different concepts that embody enterprise design intentions, namely areas of concern

and requirements. However, the approach provides limited or ambiguous descriptions and examples of areas of

concern and requirements. MEICC should be used to iteratively refine, clarify and possibly re-phrase the

concepts.

The rest of the paper is structured as follows. Section 2 provides additional background on one of the EECM

dimensions, namely intentions and constraints, elaborating on how existing approaches within the EE discipline

and associated techniques to represent this dimension, the deficiencies of existing techniques and the need to

provide more guidance by developing the MEICC. The section concludes with some background on an existing

EE approach, namely Hoogervorst’s approach, since we use his approach for demonstrating the MEICC.

Section 3 presents the research methodology, i.e. design research that was used for developing the MEICC,

whereas section 4 presents the constructional parts of the MEICC. Section 5 provides a demonstration of the

MEICC when applied to Hoogervorst’s approach, as well as a coding strategy when practitioners use

Hoogervorst’s intention-related concepts. We discuss our findings in section 6, concluding on limitations and

recommendations for future work.

2. Background

Although many disciplines contribute new knowledge about the nature, behaviour and design of the

enterprise [13], EE is an emerging discipline that focuses on the holistic governance and design of the enterprise,

aligning the intended functions/objectives of the enterprise with its construction [14,5]. In general the term

enterprise refers to a business, company, firm, corporation, organisation or institution, i.e. a purposeful social

entity of human endeavour [15].

Numerous theoretical approaches exist to guide enterprise design, each based on a particular conceptualisation

of the enterprise and its parts [9]. As discussed before, existing enterprise design approaches may be represented

by four main components of which three are usually evident [9]:

(1) The author(s) of a theoretical approach usually focus on a particular enterprise design-related phenomenon,

formulating a belief/paradigm of value-creation to address the phenomenon.

(2) Approach author(s) may also be explicit in stating their intended design scope via three explicit dimensions,

i.e. design domains, concerns & constraints, and enterprise scope.

(3) They usually present a number of mechanisms and practices to ensure consistent enterprise design across the

intended dimensions.

4

In terms of the third component, mechanisms and practices, De Vries et al. [9] identified a not-exhaustive list of

nine categories of mechanisms and practices. Yet, a theoretical approach seldom encapsulates all nine

categories. One of the categories, i.e. methodology, often features within an enterprise design approach. A

methodology stipulates a systematic design process for designing/aligning the enterprise as an artefact across the

enterprise dimensions. The methodology should ensure that relevant enterprise intentions and constraints are

addressed within the design domains of the enterprise.

2.1 Existing approaches within related disciplines

Since EE is still an emerging discipline [5], focusing on designing the enterprise as an artefact, it draws on other

existing mature disciplines that also involve the design of artefacts, such as systems engineering [16,17] and

software engineering [13]. Within their design processes, mature disciplines have already developed

methodologies to ensure that the initial design intentions are systematically translated into structural components

of the artefact.

Within the systems engineering discipline three main methodologies exist, namely the V-model, incremental and

hybrid methodologies [17]. Within software engineering, multiple methodologies exist to reduce the semantic

gap between software systems as artefacts and their operational environment, such as ASPIRE, SIKOSA,

TROPOS and i* [18,19].

2.2 Existing methodologies and techniques within related disciplines

Existing methodologies provide guidance on the process for eliciting design intentions, i.e. facilitating various

activities to elicit, model and manage intentions. In terms of modelling, the i* framework, [20] provides a means

to trace design intentions as goals throughout the artefact design process and up to the phase where

constructional alternatives are defined and compared [21,19]. Yet, Horkoff and Yu [19] believe that the

reliability of goal-oriented requirements engineering depend on a number of factors such as various

interpretations of goal model syntax, measurement choices for goal satisfaction, and the level of participation of

the user. Since the initial elicitation of enterprise intentions/concerns is still exploratory in nature, high-level,

abstract and hard-to-measure [22] automated procedures associated with goal modelling analysis is often

difficult. Horkoff and Yu [22,23] suggest an alternative procedure for these initial phases, encouraging

stakeholder involvement and model improvement via iteration. Horkoff and Yu developed a systematic and

interactive analysis procedure for eliciting and evaluating goals during enterprise modelling using i* [23]. Their

procedure involved multiple stakeholders to express their viewpoints, allowing multiple iterations and

discussions to refine the goal models, alternative constructional solutions, also evaluating the alternative

constructs. Although the models intend to represent the intentions/goals for constructing a part of the enterprise-

as-an-artefact, Horkoff and Yu do not demarcate the enterprise into design domains and their methodology does

not focus on the holistic design of the entire enterprise.

Existing methodologies differ in how they classify concepts related to design intentions. The agile systems

engineering methodology classify intentions as functional/stakeholder requirements to specify system functions

and other requirements (e.g. operational, logistics, usability, user interface, maintainability, certification, project

and constraints) [17], whereas CORE (capability oriented requirements engineering), refers to system

capabilities, rather than system functions [24]. Horkoff and Yu [22] acknowledge two types of design intentions,

namely soft goals and goals. Although we should expect that existing methodologies use similar concepts, but

5

with different interpretations, the authors of such methodologies do not always provide sufficient descriptions

and examples to clarify and distinguish between the concepts.

2.3 Existing approaches, methodologies and techniques within enterprise engineering

Within the EE discipline, design team members also clarify their understanding via conceptual models and

design specifications to represent design intentions within design domains [9]. De Vries argued that design

domains should be defined in a more consistent way to reduce ambiguity during design [12]. Similar to other

design-related disciplines, EE researchers also acknowledge the need to address various stakeholder

intentions [25] (see Chapter 21 of TOGAF 9.1) that need be explicit [26,7] and constantly examined and

monitored [27]. The Open Group indicates that multiple documents may be useful for extracting stakeholder

intentions. Zachman [28] indicates that multiple intentions for different stakeholders need to be addressed during

enterprise design. Although the Zachman framework provides some concepts related to intentions, associated

with different stakeholders, such as motivation types, business end, system end, technology-and-tool end [28], it

offers little methodological guidance to translate the concepts into enterprise constructions [29]. Smith [30]

offers a methodology that includes a strategizing phase to state concepts associated with design intentions,

including mission, vision, strategies tactics, goals and objectives, with some guidance on principles (see p 65 of

[31]), but with little guidance on clarifying other intention-related concepts (see p 47 of [32] and p 17 of [31]).

Giachetti [13] provides a generic approach for enterprise systems design. Although he provides some

methodological guidance on eliciting design intentions, advocating traceability of identified design intentions,

there is no indication of how the design intentions should be addressed within certain enterprise design domains

or constructs. He identifies a number of intention-related concepts, indicating that “a distinction is made between

goals, objectives, requirements, and constraints”, also differentiating between functional and non-functional

requirements. Furthermore, he suggests that a number of techniques are used to elicit design intentions, including

data-gathering techniques (documents, interviews, observations, questionnaires and workshops), problem

analyses (using cause and effect analyses and causal loop analyses), stakeholder analyses and requirements

analysis. In clarifying intention-related concepts, Giachetti [13] provides some guidance on how the concepts

vision, goal and objective should form a hierarchy and providing some guidance on how to state an objective. In

terms of the concept functional requirement, Giachetti [13] suggests that the SMART (Specific, Measurable,

Attainable, Realistic, and Time-bound) criteria are used. For the concept non-functional requirement, he

provides a number of examples, such as reliability, performance and sustainability. In terms of constraints,

Giachetti [13] indicates that constraints are “restrictions on other requirements” originating from reasons such as

physical limitations of resources and environmental regulatory rules.

2.4 Need to reduce ambiguity when eliciting enterprise intentions

A key criterion for defining design intentions is that they need to be unambiguous, understandable and

verifiable [17]. Emphasising the need to reduce ambiguity during the process of requirements elicitation,

ambiguity in communication is regarded as a major obstacle [33,1] . Since human beings participate as design

team members, they need to formulate a common understanding of the design domains that need to be

constructed, as well as the design intentions that need to be addressed. Within the EE discipline, we believe that

a consistent representation of design intentions should reduce ambiguity. In section 3 we suggest that a new

method (i.e. the MEICC) is required to distinguish between different kinds of design intentions prior to

extracting and modelling design intentions for an enterprise. Our suggested method incorporates the use of a

6

codebook and applies natural language to clarify intention-related concepts. We reduce ambiguity by avoiding

plurality (see [34]), also preventing lexical, syntactic, semantic, pragmatic ambiguity, and vagueness (see [35]).

In section 3 we suggest that the newly-developed MEICC should be useful to clarify intention-related concepts

for an existing or new enterprise design approach and we motivate our choice to demonstrate its use, using

Hoogervorst’s [7] approach. The next section provides some background on Hoogervorst’s approach.

2.5 Hoogervorst’s iterative approach

Hoogervorst [15,14,7] acknowledges that an enterprise is a morphogenic, dynamic, socio-cultural system that

will only exist/survive if it is capable of reacting to contingencies concerning, for example, consumers,

competitors, weather (especially agricultural enterprises) and economics. The enterprise as a system should have

sufficient variety or regulating ability to address the variety it faces [15,36]. Traditional approaches reduce or

attenuate enterprise variety through rules, regulations and management directives, which create rigidity and the

inability to properly respond to the variety they face [15]. In contrast, Hoogervorst [15] suggests a different

approach to deal with variety, namely to increase the enterprise regulating variety. He presents an iterative

approach that guides and converts design intentions into enterprise constructions within different design

domains.

Hoogervorst’s approach provides a multi-disciplinary inquisitive approach with relevant stakeholders, starting

with the strategic context. As indicated in Fig. 1, strategic contexts have to indicate certain areas of concern

(alternatively defined as performance areas), whereas detail requirements are defined to deal with the areas of

concern. Since requirements and areas of concern need to be addressed in design domains, it is possible to

formulate design principles that will address the areas of concern if enterprise designers apply the design

principles to one or more design domains. Although enterprise design encapsulates elicitation of detailed

requirements, Hoogervorst [7] focuses more on formulating design principles that are primarily used to ensure

unity and integration across the implemented design domains of the enterprise.

Fig. 1 Iterative enterprise design approach, based on Hoogervorst [7]

7

Following Hoogervorst’s guidance to involve multiple team members, Van der Meulen [37] experimented with

the iterative approach, but indicated that additional guidance was required when translating design intentions

into enterprise constructions within design domains. Following Gauss & Weinberg’s advice [38] to clarify words

and concepts, reducing interpretation ambiguity, Van der Meulen [37] argued that a codebook was required to

define and distinguish between concepts associated with Hoogervorst’s iterative approach. As indicated in

Fig. 1, two categories of concepts exist, namely design domains and design intentions. Design domains (e.g.

organisation, ICT, infrastructure and human skills & know-how) are abstract or real areas for which design

activities are required, whereas design intentions (i.e. design principles, areas of concern, requirements and

functions) provide functional or constructional guidance for creating/changing the construction of design

domains.

Van der Meulen [37] experimented with Hoogervorst’s [14] demarcated design domains, but experienced

difficulties during the process of sense-making when his design team applied emerging design principles to the

main design domains. Based on his suggestion to use the basic system design process to re-define design

domains in a more consistent way [37], a subsequent study suggested a new set of design domains [12]. The

newly demarcated design domains are already reflected in Fig. 1. Hoogervorst’s [7] initial framework included

an additional design domain, called the business domain. Yet, since the business domain represent functions of

the enterprise, rather than its construction [12], Fig. 1 presents functions as design intentions.

The study in [12] highlights multiple concurrent design cycles that exist between using systems and object

systems in an enterprise [12]. We provide a short definition for each design domain and typical models or

modelling languages that are used to represent the particular design domain. The interested reader is referred to

[12] for additional elaboration on typical design cycles that are associated with different design domains.

Organisation domain: The organisation domain encapsulates actor roles, implemented by human beings, that

form relationships due to their interactions and communications when they perform production acts [39].

Dietz [39] suggests aspect models that represent the essence of enterprise operation in a coherent,

comprehensive, consistent and concise way.

ICT domain: The ICT domain incorporates software applications, databases and ICT hardware [39]. Different

representations are used to communicate ICT designs, such as unified modelling language (UML) models [40]

and wire-framing models [41].

Infrastructure domain: Infrastructure entails facilities and other non-ICT technologies that support actor roles

and their production acts. Enterprises within different industries may require different representations of

infrastructure, based on the type of production acts that should be supported. The educational industry, for

instance, may apply web-based 3D interactive campus models to visualize learning facilities.

Human skills & know-how: Human skills & know-how constitutes human abilities and skills required when

executing production acts, as well as coordination acts. Skills and know-how are often represented in curricula

vitae.

Although it was necessary to clarify the definition for the main enterprise design domains as distinguished from

design intentions, this article primarily focuses on a method (i.e. MEICC) to clarify concepts that are related to

design intentions.

8

3. Research methodology

The study forms part of an existing project that applies design science research (DSR), where existing concepts

within the EE discipline exist, but require further clarification. DSR is a research methodology that developed

from the design science knowledge area. Whereas design science reflects on design as a topic of investigation to

explore almost any design related subject, DSR uses design as a method for investigation [42], aiming to create

“solutions to specific classes of relevant problems by using a rigorous construction and evaluation process” [43].

Simon [8] differentiates design science from other paradigms as follows: “Whereas natural sciences and social

sciences try to understand reality, design science attempts to create things that serve human purposes”. Hevner et

al. [44] state a key differentiator between routine design and DSR, namely that DSR contributes to the “archival

knowledge base of foundations and methodologies.” The fundamental principle of DSR is that “knowledge and

understanding of a design problem and its solution are acquired in the building and application of an artefact”

[44]. Knowledge and action form a cycle, in which knowledge is used to create works, and works are evaluated

to build knowledge [45]. March & Smith [46] identified four design artefacts that are produced by information

system related DSR, i.e. constructs, models, methods, and instantiations.

When discussing epistemological perspectives of design science research (DSR), i.e. perspectives on producing

“true” knowledge via DSR, Niehaves [47] argues in favour of epistemological diversity and to establish

constructive pluralism within DSR. Although the seven guidelines provided by Hevner et al. [44] on conducting

research and evaluating knowledge within DSR, follow a rather implicit positivist epistemology, Niehaves [47]

mapped the seven principles of Klein & Myers [48] for interpretive field studies to five of the seven guidelines of

Hevner et al. [44] to demonstrate the possibility of an interpretivist stance when conducting DSR. Even thought

the seven guidelines offered some guidance on DSR, Peffers et al. [49] believe that different genres have

developed within the DSR community, characterising genres in terms of their focus, research process, role of

theory, and evaluation. As an example, the IS design theory genre of Gregor and Jones [50] focuses on the

presentation of design theories and their conceptual-oriented evaluation. In contrast, the DSR methodology genre

of Peffers et al. [51] focuses on applicable artefact-development and its evaluation that should be outcome-

oriented and practical.

Following the DSR methodology genre of Peffers et al. [51], this study focuses on the development of an artefact,

i.e. we suggest that a new method (i.e. MEICC) is developed as an artefact. Methods define processes or

guidance on how to solve problems, ranging from mathematical algorithms to informal, textual descriptions of

“best practice” [46]. In accordance with Gregor & Hevner’s [52] knowledge contribution framework, our newly-

developed MEICC can be considered as an improvement study, since a known problem is addressed.

3.1 The design science research design cycle

Referring to the DSR phases of Peffers et al. [51], this article addresses the first four phases of the DSR cycle as

follows:

Identify a problem: EE researchers already acknowledge the need to address various stakeholder intentions [25]

that need be explicit [26,7] and need to be constantly examined and monitored [27]. The Open Group [25]

indicates that multiple documents may be useful for extracting stakeholder intentions and Giachetti [13]

proposes various means of data-gathering to elicit design intentions. We believe that existing EE approaches

need additional rigour in clarifying and classifying the emerging design intentions, prior to the iterative

extraction and translation of intentions into enterprise design specifications.

9

Define objectives of solution: We suggest that a method for enterprise intention concepts clarification (MEICC)

is developed to reduce ambiguity, distinguishing between design intention-related concepts for an existing or

new enterprise design approach.

Design and develop: Prior to designing the MEICC, we considered different techniques that would address

MEICC’s solution objectives. In section 3.2 we elaborate on the different techniques that could be considered in

addressing the solution objectives for MEICC, motivating the use of a codebook. The study applied principles of

reducing ambiguity [34,35] and principles of codebook design [53] to construct the MEICC, a method that uses a

codebook to refine concepts related to design intentions in terms of a code label, condensed definition, full

definition, example, what it is not, how to state and cues for coding.

Demonstrate: Hoogervorst [7] presents an approach that is focused on design, i.e. eliciting intentions, translating

intentions into design principles that would guide future designs within design domains. Similar to other existing

EE approaches, Hoogervorst [7] provides some guidance in further classifying design intentions. Yet, Van der

Meulen [37] experimented with Hoogervorst’s iterative approach, but indicated that additional guidance was

required to clarify the concepts. Although Van der Meulen [37] already used a codebook to distinguish between

intention-related concepts associated with Hoogervorst’s approach, he only involved a single participant to

validate his codebook. We also use Hoogervorst’s approach to demonstrate the newly-developed MEICC, but

involve multiple participants with several iterations of code-refinement.

Although we only discussed the first four phases of the DSR cycle, we elaborate on future work in section 6 of

this article.

3.2 Different techniques for addressing the solution objectives

Different techniques can be considered to address the main solution objectives for the MEICC. This section

elaborates on three possible techniques and the rationale for using two of the techniques during the development

of the MEICC.

3.2.1 Conceptual models and ontologies

Conceptual models were initially used to provide a pictorial representation of several ideas as to increase

understanding and communication of a system or domain among different stakeholders within the information

system discipline [54]. An example of a conceptual model is Fig. 1, used to represent concepts associated with

the iterative enterprise design approach of Hoogervorst. Although conceptual modelling was initially focused on

defining user requirements for information systems on different levels [55,56], conceptual models also provide a

common understanding amongst stakeholders within many different areas, ranging from enterprise strategic

management, service sciences and technology-enhanced learning [57]. Yet, conceptual modelling techniques are

also criticized, since many of the techniques lack adequate specification semantics for the terminology of the

underlying models, leading to inconsistent interpretations and uses of knowledge [58]. Ontologies are useful to

overcome these issues, since ontologies describe a set of things associated with a particular theory or system of

thought [59]. Ontologies can be applied to articulate and reason about the contents of a conceptual model [60],

describing the structure and behaviour of the modelled domain [61]. Even though Verdonck et al.’s [62]

empirical research indicated that ontology-based conceptual modelling (OBCM) increases the quality of the

conceptual models when modelling advanced concepts of a domain, research subjects had to receive training in

OBCM modelling “over a period of several months”. Within the context of this study, we believe that a

conceptual model, such as Fig. 1 provides some understanding of the concepts associated with an existing

10

enterprise design approach. Thus, similar to what Guizzardi et al. [63] did, it is possible remove possible

ambiguity and conceptual overlap of concepts by starting with the existing concepts promulgated in an enterprise

design approach and develop an ontology from the existing concepts that is grounded in the unified foundational

ontology (UFO). Since participants of the ontology development team need to be well-trained in OBCM, we did

not incorporate OBCM when developing the MEICC. In section 6.2 we still acknowledge the value of using

OBCM and suggest future research to experiment with OBCM as a means to clarify design intention-related

concepts associated with an enterprise design approach.

3.2.2 Focus group discussions

Giachetti [13] suggests that requirement workshops are used for requirements elicitation, since “they can be

designed to encourage consensus concerning the requirements for a particular system capability or feature”. He

lists several benefits, including its: (1) Involvement of stakeholders across organizational boundaries;

(2) Interactive, dynamic and cooperative nature; and (3) Ability to provide structure to the capturing and

analysis of requirements. Yet, Giachetti [13] provides limited guidance on structuring a requirements workshop,

indicating that a joint requirements planning (JRP) workshop is often used to elicit requirements for information

system development. Krueger & Casey [64] refer to a more generic form of workshop, namely focus group

discussions that are used to perform data-gathering on a particular topic in a structured way. The format of a

focus group discussion is similar to that of a requirement workshop and we believe the guidelines presented by

Krueger & Casey’s [64] would also be applicable when it is used to distinguish between different design

intention-related concepts in a participative way. In section 4.2, we indicate how we incorporated Krueger &

Casey’s [64] guidelines into the MEICC, partially addressing the main solution objectives for the MEICC, i.e.

reducing ambiguity when systematic and participatory focus group discussions are used to iteratively distinguish

and refine design intention-related concepts of an enterprise design approach.

3.2.3 Using a codebook

Guest et al. [53] believe that the codebook is one of the most critical components of thematic analysis. Similar to

grounded theory, thematic analysis is used to interpret free-flowing text, moving beyond counting explicit words

or phrases and “focus on identifying and describing both implicit and explicit ideas within data”. Since multiple

analysts may be involved when analysing multiple documents, Guest et al. [53] use a codebook to ensure

consistent interpretation of text, monitoring and improving interpretation consistency by assessing the level of

intercoder-agreement. Codebook development is a discrete analysis step within thematic analysis, where the

“observed meaning in the text is systematically sorted into categories, types and relationships of meaning” [53].

The codebook thus assists in clarifying the meaning of an identified theme, defining the identified theme as a

code within a codebook. Based on various different studies in different settings over many years, MacQueen et

al. [65] indicated that a code definition needs to be clarified using: (1) code label; (2) short definition; (3) full

definition; (4) when to use; (5) when not to use; and (6) an example. The rigour of the codebook increases if the

code definitions are refined in an iterative way, resolving interpretation discrepancies, until and acceptable level

of intercoder-agreement is obtained [53]. We believe that a codebook and its iterative refinement could be useful

to incorporate within the MEIC. Partially addressing the main solution objectives for the MEICC, i.e. reducing

ambiguity when distinguishing between different design intention-related concepts, we believe that a codebook

can be used to define, refine and document the design intention-related concepts, removing possible

interpretation discrepancies that may exist amongst different design team participants until intercoder-agreement

is obtained.

11

The next section elaborates on the newly-developed MEICC and how we incorporated focus group discussions

and a codebook within the structural components of the MEICC.

4. Method for enterprise intension clarification

The design of MEICC is based on the principle that ambiguity should be reduced by following a systematic,

iterative and participatory process on refining design intention-related concepts that are associated with an

existing or new enterprise design approach. Using natural language as a means of documenting and

communicating the design intention-related concepts via a codebook, we suggest that the codebook designer

should follow two main iterations of codebook refinement.

Fig. 2 The method of enterprise intention concepts clarification (MEICC)

12

4.1 First iteration

The purpose of the first iteration is to assess whether the existing intention-related concepts, associated with a

selected enterprise design approach, provide sufficient clarity and distinction when concepts are applied during

documental coding.

4.1.1 Before coding

Prior to coding, the codebook designer needs to construct or obtain the following inputs:

• An initial codebook should be constructed by the codebook designer, referring back to the initial definitions

about intention-related concepts that are provided by the author(s) of a chosen enterprise design approach.

The codebook designer should refine intention-related concepts as to avoid plurality [34], preventing

lexical, syntactic, semantic, pragmatic ambiguity, and vagueness [35]. Based on Guest et al.’s [53]

guidance on codebook design, every intention-related concept should be defined in terms of a code label,

condensed definition, full definition, example, what it is not, how to state and cues that may be useful

during coding.

• A narrative that incorporates intention-related concepts should be obtained, such as minutes of a

management meeting for a selected enterprise.

• A sample of participants should be selected for the coding exercise. The participants should have some

knowledge about the industry of the selected enterprise.

4.1.2 During coding

The codebook designer has to start the coding session by introducing a selected enterprise design approach to the

participants. Then, participants need to use the codebook and narrative to perform content coding. The

codebook designer should not over-explain the intention-related concepts. Rather, the participants should

perform coding; using the codebook on face value. Since the codebook designer should gain an understanding

about the reasons for coding deviations, s/he should ensure that:

• Participants are encouraged to request clarification from the codebook designer for fragments in the

narrative that are difficult/problematic to code.

• A participative approach is followed to allow for real-time identification of problems regarding the

codebook. Any adaptations to the codebook should be communicated to all participants while coding

proceeds.

• Field notes are used to track feedback from participants on problematic textual fragments in the narrative,

as well as the changes that were communicated to participants regarding codebook changes.

• Participants submit their coding results to the codebook designer once they have completed the coding

exercise.

4.1.3 After coding

After the participative session, the codebook designer has to analyse the coding results to identify coding

inconsistencies and reflect on possible reasons for inconsistencies. The main deliverable of the first iteration is

an updated codebook, based on the participant feedback and the coding results.

13

4.2 Second iteration

For the second iteration, a focus group should be used to obtain feedback on the updated codebook. As reported

by Krueger & Casey [64], focus groups provide an opportunity to obtain rich data from a small and diverse

group of people familiar with the study. A focus group would be a suitable instrument to perform formative

evaluation of the updated codebook, since the number of participants are limited and differences in coding

results are discussed in more depth.

4.2.1 Before coding

The codebook designer uses the following guidelines of Krueger & Casey [64] to plan for a focus group

discussion:

1. Group size. The group should be conducted with 4 to 12 people, led by a skilled moderator [64]. The group

has to be small enough for everyone to have an opportunity to share insights, but also large enough to

provide diversity of perceptions. If a topic is complicated, 10 to 12 participants are risky and may produce

trivial results. Also, when time is limited (90 minutes), the size of the group should be restricted [64].

2. Time. Focus group sessions are typically two hours long [64].

3. Questioning route. Krueger & Casey [64] present practical guidance regarding the sequence of questions

(e.g. general to specific), phrasing of questions (using open-ended questions, keeping questions simple),

and revising questions if clarification is required.

4. Sampling. Random sampling is of limited value in focus group research, since the intent of a focus group is

to understand and provide insights - not to generalise [64].

5. Analysis. Data can be captured in different forms as the basis for analysis, e.g. transcripts, abbreviated

transcripts, notes, and memory [64]. Note-based analysis relies on field notes and is audio recorded as a

backup to clarify confusing aspects contained in the notes [64].

4.2.2 During Coding

Similar to the first iteration, focus group participants need to use the updated codebook to re-code the same

narrative that was used during the first iteration. The main intent of the second iteration is to obtain feedback

from the participants, adapting the codebook until participants’ coding results become consistent. Thus, multiple

sessions of coding-and-feedback may be required.

4.3 Presenting the coding strategy

The main output of the MEICC is a coding strategy that may be used in combination with the selected

EE approach. Whereas the first two iterations of MEICC experimented with a preliminary codebook, with the

intent to refine the codebook based on the inconsistencies of the coding results, the last part of MEICC presents

a coding strategy that should be useful to an enterprise designer when s/he extract and classify enterprise

intentions for a particular enterprise design scope. We suggest that the coding strategy consists of coding

conditions, a refined codebook and a coding method.

4.3.1 Coding conditions

One of the main conditions for coding is that coders receive training on good coding practices, such as guarding

against over-interpretation of documental text [66]. The enterprise designer should provide guidance in defining

the scope and purpose of coding, since the coding results may differ drastically based on its pre-defined scope

14

and purpose. As an example, one enterprise designer may only be interested in identifying design intentions

related to an enterprise-wide scope, whereas another enterprise designer may be interested in identifying design

intentions that are applicable to a specific department within the enterprise.

4.3.2 Refined codebook

The refined codebook provides formal definitions for concepts of a selected EE design approach. The codebook

needs to provide additional guidance to reduce inter-coder inconsistencies when the codebook is used to code

documental text. The multiple coding iterations (e.g. first iteration discussed in section 4.1 and second iteration

discussed in section 4.2) will indicate that some coding limitations exist, since it may be difficult to identify

certain design intention-related concepts via documental coding alone. The refined codebook has to emphasize

these limitations, highlighting concepts that cannot be identified via documental coding alone, e.g. using the

phrase ╟Not to be used for documental text coding╢.

4.3.3 Coding method

The coding method should provide a method to coders to ensure that the coding process produces consistent

coding results. The multiple coding iterations of MEICC (e.g. first iteration discussed in section 4.1 and second

iteration discussed in section 4.2) may indicate a practical sequence of coding, e.g. some codes may belong to an

aggregate coding family. Thus, it may be easier to identify the code families first and then the sub-codes. The

coding method should include standards for tagging text e.g. using dotted-underline for fragments that comply

with the definition of a particular concept, and using super-script notation to associate a fragment with one

instance of a concept, e.g. qualityI1 and quantity I2.

5. Demonstration

Applying the MEICC to Hoogervorst’s approach, this section presents the coding feedback for the first iteration

in section 5.1, followed by the coding feedback for the second iteration in section 5.2. Section 5.3 concludes

with a coding strategy that may be used by enterprise designers that adopt Hoogervorst’s approach at their

enterprise.

5.1 First iteration and results

5.1.1 Before coding

• For the initial codebook, the codebook designer extracted intention-related concepts presented by

Hoogervorst [7,14], as well as the codebook that was developed by Van Der Meulen [37], clarifying some

of the codes to reduce ambiguity. For each code, the codebook designer also referred to examples from a

fictitious tertiary education institution, rather than re-using the agricultural industry examples provided by

Van Der Meulen [37]. The selected coding participants all graduated from a tertiary education institution;

hence, they would have some knowledge about its primary activities.

• An existing narrative was adapted to represent the minutes of a departmental meeting at a fictitious tertiary

education institution.

• A sample of 36 participants were involved in the coding exercise.

15

5.1.2 During coding

The codebook designer first introduced Hoogervorst’s iterative approach to participants, as presented in Fig. 1,

broadly distinguishing between design domains and design intentions. The codebook designer then applied all

the guidelines presented in section 4.1.2 to facilitate the coding process. Table 1 summarises the clarification that

was required and the subsequent adaptations that were made to the codebook. The adaptations were

communicated immediately to all 36 participants while they were busy with coding.

Table 1 Feedback during participation to adapt the codebook

It 1 Clarification required and adaptations made to the codebook

1 A participant inquired if fragments that indicated “suggested” key actions should be coded, since it is

not mandated.

Another participant raised a similar question on whether the fragment “if possible” should be coded.

Adaptations made to the codebook:

Codebook change to guide further coding: A codebook change was made to guide all analysts as

participants, stating that if it is not clear from the text that the committee has made a firm decision

about an intention, then analysts should not code the fragment as an intention.

Changes to the generic codebook: Since Hoogervorst’s iterative approach highlights the holistic view

of the enterprise; the codebook should state that all principles and requirements are identified during

coding. If the status of a principle or requirement is clear from the documental text, analysts should

also use 3 themes to classify the status as suggested, mandated or implemented.

2 A participant inquired if the word concern should be an indication of an area of concern.

Adaptations made to the codebook:

Codebook change to guide further coding: The codebook was changed to indicate that analysts should

not interpret the word concern as an indication of an area of concern, but rather interpret the intention

of the entire fragment.

Changes to the generic codebook: A similar change was made for the generic codebook.

3 A participant indicated that the documental text showed that a particular area of concern (i.e.

continuity of power supply) has already been addressed. The participant inquired if the fragment

should still be coded as an area of concern.

Adaptations made to the codebook:

Codebook change to guide further coding: The codebook was changed to indicate that analysts should

not code areas of concern that have been resolved.

Changes to the generic codebook: Since a previous/resolved area of concern may still be of concern

for other management units within the enterprise, the generic codebook should indicate that areas of

concern may be further qualified according to their status. Coders should use 3 themes to classify the

status as suggested, mandated or implemented.

4 A participant indicated that a requirement may deal with multiple areas of concern. Furthermore,

cause-and-effect relationships may exist between areas of concern. The coding however does not allow

16

It 1 Clarification required and adaptations made to the codebook

for cause-and-effect analyses.

Adaptations made to the codebook:

Codebook change to guide further coding: The codebook was changed to indicate that analysts should

only identify areas of concern that are directly related to requirements, not identifying indirect cause-

and-effect relationships that may exist between areas of concern.

Changes to the generic codebook: The participant’s inquiry refers to the complexity that exists within

enterprises and their behaviour. Coding merely provides an interpretation of existing documental text.

Coding of documents that encapsulate strategic intent, provides a starting point for identifying design

intentions. Yet, iterative enterprise design requires multiple iterations, inquiry and debate about design

intentions and their cause-and-effect relationships. Since coding should not over-interpret text, the

codebook has to emphasise that analysist should only associate a requirement with specific area(s) of

concern if the associations are evident in the text.

5 A participant inquired about the scope of identifying intentions, i.e. should the coder only highlight

those areas of concern that are relevant for the department or for other parts of the enterprise.

Adaptations made to the codebook:

Codebook change to guide further coding: The codebook was changed to indicate that coders should

only identify areas of concern that are relevant for the fictitious engineering department.

Changes to the generic codebook: The approach suggested by Hoogervorst takes a holistic view on

enterprise design, whereas the case presented to the participants reduced the scope to a particular

engineering department within an educational institution. The participant however raised a valid

question about scope. The approach needs to facilitate identification of design intentions for different

design domains and its embedded constructs. The codebook was updated to emphasise inclusivity,

accommodating different levels of scope, when identifying design intentions.

5.1.3 After coding

Participants had to submit their coding results to the codebook designer for further analysis. The codebook

designer analysed the coding results to determine if participants coded the text in accordance with the intended

code meanings, tabling possible reasons for inappropriate coding in Table 2.

Table 2 Incorrect way-of-coding and codebook adaptations

It 1 Inappropriate coding and codebook adaptations

6 The word need in a sentence is interpreted as a requirement, whereas the phrase itself does not indicate

a future requirement that should be incorporated in future designs.

Codebook adaptation:

Codebook should warn that the word need does not necessarily indicate a requirement.

7 The word requirements is used as a cue for a requirement, even if the requirement is not applicable for

designing the future version of the enterprise.

17

It 1 Inappropriate coding and codebook adaptations

Codebook adaptation:

Codebook should warn that the word requirement does not necessarily indicate a requirement.

8 Coders had to do additional interpretation to assess whether some prescriptive phrases would require

multiple key actions and be classified as principles rather than requirements.

Codebook adaptation:

Although the exercise allowed for clarification, coding was primarily based on documental text.

Practical use Hoogervorst’s iterative approach would require additional discussion, involving domain

experts to classify a prescriptive phrase as a principle or requirement.

9 One phrase about transportation problems and the effect on timeous submission of deliverables have

been phrased as two different areas of concern: (1) accessibility to campus; and (2) timeous

submission of deliverables.

Codebook adaptation:

The identification of cause-and-effect relationships between areas of concern should not be part of

coding. Iterative enterprise design requires multiple iterations, inquiry and debate about design

intentions and their cause-and-effect relationships. Since coding should not over-interpret text, the

codebook has to emphasise that coders should only associate a requirement with a specific area of

concern if the association is evident in the text.

10 Coders vary on classifying a prescriptive statement as a principle or requirement.

Codebook adaptation:

According to the iterative approach, design principles address areas of concern whereas requirements

deal with areas of concern. Key actions should be specified for every design principle and are

qualified as “formal programs or projects, investigations, pilots and projects” [14] Hoogervorst [14]

states that requirements may also be published using a similar four-tier structure than for design

principles (i.e. statement, rationale, implications and key actions). Since requirements and design

principles share common characteristics and qualifiers, their distinction is problematic. One way to

distinguish between the two concepts is to use design scope, since a design principle is applicable to a

broader scope of enterprise design.

The concepts design principle and requirement should be consolidated in the codebook and renamed

as prescriptor. The codebook should also be updated to clarify concepts used to qualify a prescriptor,

i.e. the statement, rationale, implications and key actions. Sub-themes should be defined for these four

concepts.

11 Some phrases state action rules that guide actor roles to perform coordination acts. Yet, the concept of

action rules, as defined by Dietz [39] has not been introduced as part of the codebook. Hence, coders

classified action rule phrases as principles or requirements.

Codebook adaptation:

Knowledge about the construction models of the organisation design domain is necessary to

distinguish between action rules and requirements. The codebook should be adapted to add an action

18

It 1 Inappropriate coding and codebook adaptations

rule example to section What it is NOT of a prescriptor’s definition.

12 Some of the analysts coded fragments that should be interpreted as requirements incorrectly as key

actions associated with the principle department must align with the main objective of EAA.

Codebook adaptation:

The codebook should indicate that the key actions must transform as-is designs into to-be designs. The

key actions should be qualified as a sub-theme in the codebook.

13 Some of the coders coded suggested implementations as requirements.

Codebook adaptation:

Design intentions should guide the future construction or re-construction of design domains. The

codebook is not clear on whether suggested implementation actions may be considered as

constructional requirements. Since requirements could only be confirmed during an iterative and

participative process, the codebook should be changed to indicate the implementation status of the

intention. Analysts should also use 3 themes to classify the status as suggested, mandated or

implemented.

14 Although the codebook stated that all areas of concern had to be stated as a variable that could either

increase or decrease, coders did not always apply the codebook instruction. Some analysts indicated

the desired direction (e.g. increase) of the variable.

Example:

A coder would incorrectly phrase an area of concern as Increasing the number of admissions, which

already indicates the desired direction (i.e. increasing). The correct way of stating the area of concern

would be number of admissions.

Codebook adaptation:

The codebook needs to be adapted to incorporate the concept of desired direction, by adding a sub-

code.

The suggested improvements were incorporated in an updated codebook in preparation for a second iteration of

experimentation and feedback.

5.2 Second iteration and results

For the second iteration, each focus group participant received a handout of the updated codebook (detailed code

definitions for different design intention-related concepts) as well as a narrative that encapsulates the fictitious

minutes of a departmental meeting used for the first iteration.

5.2.1 Before coding

We applied the guidelines stipulated in section 4.2 as follows:

1. Group size. Since multiple focus group discussions were not possible, we invited 11 participants to

participate in the focus group discussion, of which 7 invitees attended the discussion. The diversity of the

group was reflected in gender (male:female, 3:4) race (white:coloured:black:indian, 3:2:1:1) and industry

19

background (public, private, manufacturing and services sectors). The second iteration was divided into two

sessions. At the end of the first session, 3 participants left due to other commitments. The number of

participants for the second session was thus reduced to 4 participants, still representing different genders

(male:female, 1:3) race (white:coloured:indian, 2:1:1) and industry background (public, private,

manufacturing and services sectors).

2. Time. We conducted a two-hour session, divided into two coding-and-feedback sessions with a short break

between sessions.

3. Questioning route. The codebook designer applied the guidelines of Krueger & Casey [64] regarding the

sequence of questions, phrasing of questions, and revising questions if clarification was required. The intent

was to understand the source of inconsistent coding amongst the participants.

4. Sampling. From the initial set of 36 participants, we invited 11 participants that requested clarification on the

codebook during the first iteration of coding. All participants were busy with post-graduate studies.

5. Analysis. Since note-based analysis is sufficient when the purpose of the study is narrowly defined [64], we

applied note-based analysis for the study.

5.2.2 During Coding

For the first session, focus group participants were requested to read the updated codebook and provide feedback

on the clarity of the codebook and the code qualifiers (i.e. condensed definition, full definition, example, what it

is not, how to state, and cues for each code). The feedback from the first session is presented in Table 3, as well

as the adaptations that were made to the codebook prior to the second session.

At the end of the first session, 3 participants left due to other commitments. The number of participants for the

second session was thus reduced to 4 participants and the codebook designer (moderator). The reduction of

participants facilitated coding comparisons and discussions on coding differences.

Results for first coding-and-feedback session

Next, we present the results of the two coding-and-feedback sessions.

Table 3 Feedback during first participation session to adapt the codebook

It 2 Feedback and adaptations made to the codebook

1 One participant indicated that the word concern has a negative association. The effect is that coders

will only identify fragments that are associated with problematic areas. The participant suggested that

area of concern should be replaced by KPI (key performance indicator). Participants also suggested

other alternatives, such as areas to address and areas of interest.

KPI’s are used for control, rather than for design. The phrase areas to address does not integrate well

with other concepts in Fig. 1, especially when relationships between concepts are discussed. The word

interest may also induce ambiguity.

Adaptations to the codebook:

The codebook was adapted by replacing area of concern with performance area.

2 Existing coding definitions should be supplemented with the graphical representation of concepts (such

as depicted in Fig. 1) to visually depict the relationships between concepts. One participant also

20

It 2 Feedback and adaptations made to the codebook

suggested that an entity relationship diagram (ERD) may be useful to indicate cardinalities between

concepts. Yet, the coder should be skilled in using ERD’s.

Adaptations to the codebook:

The graphical representation should be used in combination with the codebook. An ERD will not be

added to the codebook, since it may be intimidating for coders that are not skilled in using ERD’s.

3 For the how to state qualifier of performance area both quantitatively-measured and qualitatively-

measured examples should be provided.

Adaptations to the codebook:

Two examples need to be included:

1. An example for a performance area measured qualitatively: the performance area called quality of

assessment can either increase (improve) or decrease (deteriorate) due to enterprise (re-)design

initiatives/projects.

2. An example for a performance area measured quantitatively: the performance area called cost,

measured in Rand, can either increase (improve) or decrease (deteriorate) due to enterprise

(re-)design initiatives/projects.

4 Coding skills is a prerequisite for using the codebook to code text.

Adaptations to the codebook:

The codebook should indicate that training is a prerequisite for coding.

5 Rationale, stipulated per prescriptor, may be misinterpreted. Additional clarification is needed.

Adaptations to the codebook:

The codebook should provide additional clarification by adding a question: Why should the prescriptor

be added to guide design?

6 Implications, stipulated per prescriptor, may be incorrectly interpreted as consequences. Additional

clarification is needed.

Adaptations to the codebook:

The codebook should provide additional clarification by adding a question: What new constructions or

constructional changes should be made to new/existing design domains or other constructs?

Results for second coding-and-feedback session

For the second session, an incremental coding strategy was applied. The intent was to incrementally refine the

codebook until participants’ coding results were consistent. Thus, the narrative (departmental minutes) was

divided into sections and all participants had to individually code the same section within the document. Once a

section has been coded, each participant had to report on their coding results, i.e. association of textual fragments

with specified codes in the codebook. Coding differences were discussed and the codebook was adapted

accordingly. Four subsequent sections were coded. For the first section that had to be coded, participants

followed a concurrent coding strategy, i.e. identifying both areas of concern, prescriptors and prescriptor sub-

21

codes. For the second coding section, participants followed an iterative coding strategy, i.e. first identifying the

areas of concern in the section and then identified prescriptors and associated sub-codes. Table 4 presents the

results of the different coding strategies, additional feedback and codebook adaptations.

Table 4 Feedback during second participation session to adapt the codebook

It 2 Coding differences and adaptations to the codebook

7 Coding results differed. Participants indicated that more guidance was required regarding the coding

strategy. Since they used a concurrent coding strategy when coding the first section of the documental

text, they experimented with an iterative coding strategy for the second section.

Participants agreed that it is easier to identify the grand performance areas during a first iteration of

coding and prescriptors (and sub-codes, i.e. statement, rationale, implication(s), key action(s)) during a

second iteration of coding.

Adaptations to the codebook:

As suggested by the participants, the coding strategy has to indicate sequence, especially for novice

coders:

1. For the first coding iteration: Identify performance areas.

2. For the second iteration: Identify prescriptors, i.e. fragments that are prescriptive in nature. Also

identify fragments associated with the identified prescriptor that provide a rationale for the

prescriptor.

8 For the first section some fragments were coded as sub-codes (Prescriptor–Rationale and Prescriptor–

Implication) without identifying the Prescriptor–Statement.

Adaptations to the codebook:

The coding strategy should add a condition for identifying sub-codes, i.e. the coder should first identify

a fragment that indicates the existence of a Prescriptor–Statement before identifying fragments for its

rationale, implication(s) or key action(s).

9 For the second section, coding of the fragment “the country requires more engineers” differed, i.e. not

coded at all, coded as a performance area and coded as a Prescriptor-Statement.

The word requires may be misleading. Participants also reasoned that a pre-defined scope (relevance to

the country versus relevance to the enterprise) will affect coding and may be considered to be out of

scope.

Adaptations to the codebook:

The coding strategy should specify the scope and purpose of coding.

10 For the third section, coding was consistent, except for sub-codes associated with the identified

prescriptor.

Participants indicated difficulty in coding fragments that are related to historic implementations, since

historic implementations do not necessarily direct future designs. Some suggested that sub-coding (i.e.

coding fragments as a Prescriptor-Rationale, Prescriptor-Implication and Precriptor-KeyAction)

should not be performed if the documental text refers to historic implementation. Others reasoned that

it may be useful to keep record of historic design guidance.

22

It 2 Coding differences and adaptations to the codebook

Also, differences in coding indicated that the distinction between Prescriptor-Statement, Prescriptor-

Implication and Precriptor-KeyAction is problematic.

The definition of a Prescriptor-Statement and Prescripor-Implication does not facilitate distinction,

since both refer to constructional consequences and are stated in a prescriptive format.

Adaptations to the codebook:

The concepts defined in the codebook are still useful to domain specialists, especially if an iterative

process is used to identify, classify and debate on emerging design intentions. Yet, if institutional

documents are used for identifying design intentions, the coding strategy should only include concepts

that are easily distinguishable.

The Prescriptor-Statement should be further refined by adding a sub-code Prescriptor-Construct to

ensure that coders would easily identify a prescriptor.

Since the Prescriptor-Implication is similar to the definition of Prescriptor-Statement, the Prescriptor-

Implication should refer back to the Prescriptor-Statement for a definition. Furthermore, the

Prescriptor-Statement should be updated to indicate that a prescriptor may have several implications

that are also stated as prescriptors.

11 For the fourth section, all participants identified a single fragment as a performance area, i.e. “students

are not reading articles, case studies and content posted via EMS”. Yet, their way of stating the

performance area differed: (1) Learnability of students; (2) Amount of reading; (3) Student’s

engagement with academic content; and (4) Competence in reading via EMS.

All four statements comply with the codebook instruction for stating a performance area. Yet, some of

the statements provide a different interpretation to the text.

Adaptations to the codebook:

As indicated in Table 3 (It-2, Item 4), coders should receive sufficient training on coding to ensure that

they do not add their own interpretations to the text.

At the end of the coding session, participants had an opportunity to reflect on the coding exercise in general.

Participants agreed that domain specialists had to be involved to improve the quality of coding. One participant

suggested that design intention identification and validation should be done during a collaborative session. The

facilitator of the session should use the distinctions made in the codebook to guide elicitation and refinement of

performance areas and prescriptors.

5.3 Presenting the coding strategy

The results of the two iterations were beneficial in assessing the practical use of existing concepts related to

design intentions. The results indicated that the codebook required additional clarity and refinement to

distinguish between design intentions. In this section, we present the suggested updates in terms of a coding

strategy that consists of three parts: (1) coding conditions, (2) the updated codebook and (3) a coding method.

5.3.1 Coding conditions

The enterprise designer should provide additional background and training on Hoogervorst’s [7] iterative

approach, referring to Fig. 1 to explain the relationships that tacitly exist between concepts.

23

5.3.2 Refined codebook

The refined codebook (see Table 5) provides formal definitions for concepts that are useful when applying the

design approach of Hoogervorst [7]. The refined codebook also provides additional guidance to reduce inter-

coder inconsistencies when the codebook is used to code documental text.

Table 5 The refined codebook

Code label: Intention (I)

Condensed Definition: A design intention is used as an aggregating concept for possible enterprise performance areas,

functions and prescriptors that have not yet been classified as performance areas or prescriptors.

Examples: Refer to the codes for performance areas, functions and prescriptors.

Code label: Construct (C)

Condensed Definition: A construct is an enterprise artefact that needs to be designed/re-designed.

Full Definition: The construct answers the question: What should be designed/re-designed at the enterprise?

Constructs may refer to certain classes or categories of enterprise artefacts, such as management tools, departments,

information systems, curricula or facilities. Constructs may also be more specific, referring to an implementation or

instance of a class, e.g. an instance of a facility is the Mandela training facility. The concept construct enables the speed

of intention-generation when a new solution construct has to be designed, without constraining the initial conversation

with abstract design domains. Refer to De Vries [12] for a classification of main design domains.

Examples: The Mandela training centre on the north campus (C1). The Engineering department (C2). Product item

undergraduate curriculum (C3).

What it is NOT: Constructs of which the enterprise does not have design authority (e.g. a new governmental bill or act),

should not be coded as a design construct, since they do not form part of the enterprise design scope, given the current

definition of enterprise design scope [67].

Cues: Constructs are nouns or proper nouns. Yet, not every noun or proper noun is an enterprise construct.

Code label: Performance Area (A)

Condensed Definition: Generic characteristic of an enterprise that must be addressed via enterprise design.

Full Definition: A performance area answers the question: What generic characteristic must be addressed via

enterprise design in one or more design domains? Conversely, a design domain must operationalise one or more

performance areas. A performance area also needs one or more design principles to guide enterprise design.

• A fragment of text represents a performance area if the fragment represents a generic characteristic that should be

embedded/addressed during enterprise (re-)design.

• Since design domains are abstract concepts, used by enterprise designers to demarcate the enterprise design space,

documental text will seldom relate a performance area to a design domain and it may not be possible to code such a

relationship. Domain specialists need to discuss possible relationships between an identified performance area with

abstract design domains.

• Documental text may represent strategic intentions for a specific enterprise construct. The coder should code all

performance areas that are relevant for an enterprise or its embedded constructs.

• Performance measures are often used as performance areas, e.g. if number of publications exist as a performance

measure at an enterprise, it is also a performance area.

• One way of validating the performance area is to state it in the form of a variable that can either increase or

decrease. As an example, the performance area cost can either increase/improve or decrease/deteriorate. Also,

number of publications can either increase or decrease.

• If the desired direction is evident from the documental text, the coder should indicate the direction using a sub-code,

i.e. desire increase (A-DesireIncr) or desire decrease (A-DesireDecr).

• If the status of the intention is evident from the documental text, the coder should also indicate the status of the

24

performance area using sub-codes, i.e. suggested (A-Sug), mandated (A-Man), implemented (A-Done).

Example: Within the context of tertiary education and a department of engineering, some performance areas may be

quality of assessment (A1), research innovation (A2) and cost (A3).

What it is NOT: A performance area merely defines the desired outcome for an operating enterprise. It is not prescriptive

and does not provide design guidance, whereas a prescriptor (principle or requirement) provides prescriptive design

guidance that guides the construction of an enterprise design domain or its embedded constructs.

How to state a new performance area: State the performance area in terms of a variable that can increase (improve) or

decrease (deteriorate). State the construct for operationalising the performance area, if evident in the documental text. An

example for a performance area measured qualitatively: quality of assessment increase (A1- DesireIncr) An example for a

performance area measured quantitatively: cost, measured in Rand, should decrease (A3-DesireDecr).

Code label: Function (F) ╟Not to be used for documental text coding╢

Condensed Definition: A utility or capability that must be addressed via enterprise design.

Full Definition: A function answers the question: What generic utility or capability should be addressed by an

enterprise, a particular design domain or construct? Conversely, the enterprise, its design domains or constructs must

operationalise one or more functions. A function need multiple requirements whereas functional requirements may address

a particular function.

• A function can only be specified within the context of a user or using system [7]. If the using context is the

environment of an enterprise-as-legal-entity, functions of the enterprise should be specified for supporting certain

customers within the environment by delivering certain products and services to them. If the using context is the

organisation design domain, functions should be specified for the ICT design domain in support of the organisation

domain.

• Every function should be defined as a black box [7], i.e. transforming an input to an output.

• The function may be related to the enterprise, a particular design domain (i.e. F-D) or construct (F-C).

• The function may be related to one or more prescriptors (i.e. F-P).

Example: Within the context of tertiary education institution some functions may include under-graduate education,

transforming admitted undergraduate students into under-graduated students (F1), post-graduate education, transforming

admitted postgraduate students into post-graduated students (F2) and research, transforming undiscovered knowledge into

new knowledge contributions (F3).

What it is NOT: A function defines the desired utilities for a particular enterprise, its design domains or constructs. It is not

prescriptive and does not provide design guidance.

How to state a new performance area: State the function using adjective(s) + noun, also associating the function with the

entire enterprise or a particular design domain or construct, indicating how an input should be transformed into an output,

e.g. under-graduate education, transforming admitted undergraduate students into under-graduated students (F1) or

under-graduate education of the engineering department, transforming admitted undergraduate students into under-

graduated students (F1-C2).

Code label: Prescriptor-Construct (P-C)

Condensed Definition: A prescriptor provides guidance on how design of design domains or their embedded constructs

must proceed. Since it may be difficult to identify how the prescriptor should guide an abstract design domain, the coder

may initially have to specify how the prescriptor should guide design of a construct.

Full Definition: A prescriptor answers the question: How should enterprise design freedom be restricted for design

domains or their embedded constructs to guide realisation? A prescriptor provides normative restriction of design

freedom and could either be classified as a design principle (Pp) or a requirement (Pr). A coherent and consistent set of

design principles guide system design. The reason/rationale for defining a design principle is that it will address one or

more performance areas and applies to one or more design domains, whereas a performance area needs one or more

design principles. Hoogervorst [7] mentions that requirements are sometimes adopted as design principles if design

principles are inadequate.

25

• Since it may be difficult to distinguish between a design principle and requirement, the coder should rather focus on

identifying a prescriptor, i.e. coding fragments that prescribe design/re-design of one or more constructs. Domain

experts should use the coding results to further classify prescriptors as principles or requirements.

• Documental text is not “aware” of the abstract demarcation/definition of design domains. Rather, prescriptive phrases

often prescribe the design/re-design of one or more tangible constructs. By definition, a prescriptor should be

associated with one or more construct(s). Thus, coders should already identify the construct(s) in the documental

text, using a sub-code P-C to associate a prescriptor with one or more constructs. Appropriate coding for associating

one prescriptor with two separate constructs will be P1-C1 and P1-C2.

• If a prescriptive fragment is associated with a performance area, indicating that the presciptor will have an effect on

the performance area, the rationale sub-code and performance area sub-code should be used (P-R-A). See code

labels for Prescriptor-Rationale (P-R) and Performance Area (A). Since documental text may not be explicit on the

relevant performance area, additional participation with domain experts are needed to ensure that every prescriptor is

defined in such a way that it addresses one-and-only-one performance area.

• Some fragments in the text may be misleading, such as “need” and “requirement”. The coder should first consider

whether the fragment represents design guidance for future (re-)design of the enterprise. If not, the fragment should

not be coded as a prescriptor.

• If the status of the intention is clear from the documental text, the coder should also indicate the status of the

principle/requirement using sub-codes, i.e. suggested (P-C-Sug), mandated (P-C-Man), implemented (P-C-Done).

• Although the definition states that reason/rationale for defining a prescriptor (more specifically a design principle) is

that it addresses one or more performance areas, the coder should not attempt to create an association between a

prescriptor and performance area(s) if the association is not evident in the text. Once coding has completed, domain

experts should use the coding results to classify prescriptors as principles or requirements, associating principles

with appropriate performance areas, and classify requirements as functional or non-functional. See code label

Principle-Rationale for associating a prescriptor with a rationale in terms of performance area(s).

Prescriptors (principles or requirements) are usually published according to four descriptors: (1) Statement; (2) Rationale;

(3) Implication(s) stated as Principles; and (4) Key action(s). Since Hoogervorst [14] focuses on the publication of

principles, rather than requirements, we provide sub-codes for the principle statement (Pp), namely rationale (Pp-R);

implied principle (Pp-Pp) and key action (Pp-K).

Example: For a prescriptor that addresses the research innovation performance area, a prescriptor statement would be:

Research-collaboration with international researchers must be encouraged as part of the research process. Thus, the

construct that needs to change is the research process. The skilled enterprise engineer would reason that research

collaboration is a performance area that requires two design principles for the engineering department as the design

domain: (1) Research output must be measured according to research impact and (2) The number of publications may not

be used as a research output performance index.

What it is NOT: A prescriptor is not a description of an existing problem, concern or performance area, but provides

prescriptive guidance on transforming an enterprise construct into a future state. Some prescriptive statements (e.g., late

submissions should not be assessed) guide actors on performing coordination acts [68]. These prescriptive statements

should not be coded as prescriptors, since they do not provide design guidance for a future state design. Rather, they are

action rules that apply during enterprise operation.

How to state: Documental evidence of a prescriptor should be converted into prescriptive form, using the words should,

must or may not. An example of a correct statement: Research output must be measured according to research impact.

Note that the phrase “must be” is useful to indicate that the prescriptor needs to be verifiable, according to [17].

Cues: Documental evidence may exist that elaborates on possible changes to existing constructs. Clauses that may provide

cues for implications include “design of”, “new design”, and “need to change”.

Code label: Principle–Rationale (Pp-R) ╟Not to be used for documental text coding╢

Condensed Definition: Providing justification(s) or motivation(s) for using the principle for enterprise design guidance.

26

Full Definition: Specified per principle. The rationale answers the question: Why should the principle be used to guide

design? The rationale refers back to the performance areas that need to be addressed [14], indicating how a principle

could contribute towards achievement of identified performance area(s). A sub-code (Pp-R-A) should be used to indicate

that the rationale refers to a specific performance area, where the “A” in“Pp-R-A” refers to the code label Performance

Area.

Example: For a principle that addresses the research collaboration performance area with the principle statement research

output must be measured according to research impact the rationale could be: When researchers are measured on

research impact, they will engage in collaborative research that is time-consuming, rather than doing individual research.

The stated principle will thus contribute towards the research collaboration performance area.

What it is NOT: The rationale does not provide additional guidance, but simply justifies the usefulness of the principle in

guiding enterprise design in addressing performance area(s).

Cues: Documental evidence may exist that elaborates or justifies the identified prescriptor in the form of argumentative

clauses, such as “the reason for”, “since”, and “as a result”.

Code label: Principle–Implied Principle (Pp-Pp) ╟Not to be used for documental text coding╢

Condensed Definition: A principle may imply one or more other principles.

Full Definition: Specified per main principle. The implied principle(s) are additional principles that can be associated with

the main principle. The implied principle(s) are defined according to the code label Prescriptor-Statement - refer to the

code label Prescriptor-Statement for a definition of a prescriptor.

Example: For a principle that addresses the research collaboration performance area with the principle statement research

output must be measured according to the research impact, an implied principle is: The number of publications may not be

used as a research output performance index.

What it is NOT: Implied prescriptors do not incorporate design-related actions, such as investigate, study, develop etc.

Last-mentioned actions should be classified as key actions (P-K).

Code label: Principle–Key Action(s) (Pp-K) ╟Not to be used for documental text coding╢

Condensed Definition: Envisioned design actions to realise a principle during enterprise design.

Full Definition: Specified per principle. The key action(s) answer the question: What design actions should be used to

change existing constructions to new/re-designed constructions? Key actions should be specified for every principle

and are often encapsulated in “formal programs or projects, investigations, pilots and projects” [14]. They are design -

related actions, mechanisms and practices used to transform current (as-is) enterprise constructions into future (to-be)

constructions, without specifying the to-be constructions. Key actions precede constructional design and are formulated

without yet knowing the chosen constsruct.

Example: For a principle that addresses the research collaboration performance area with the principle statement research

output must be measured according to research impact, key actions could be:

(a) Investigate different ways of calculating research impact;

(b) Consult with stakeholders for selecting an appropriate calculation formula for research impact.

What it is NOT: Key actions are not activities associated with building/implementation. An inappropriate key action would

be “Update the performance templates on the performance management software”, since such an update already refers to a

constructional solution.

Cues: Documental evidence may exist that elaborates on possible design activities. Clauses that may provide cues for

actions include action verbs, such as “investigate”, “study”, “elicit”, “define”, “evaluate”, “develop”, and design”.

27

5.3.3 Coding method

The following systematic and iterative process should be followed during coding:

1. Since not all intention-related concepts can be clearly distinguished from documental text alone, coders

should use all codes except those ones highlighted for exclusion via the phrase: ╟Not to be used for

documental text coding╢.

2. Read a paragraph of the document and then identify one or more performance area(s). Wave-underline

fragments that comply with the definition of performance area. Tag quotes with the same super-script

identifier if the text refers to the same performance area, e.g. quality of assessmentA1 and the evaluation

qualityA1 Follow additional guidance provided in the codebook on sub-codes for performance area(s).

3. Read the paragraph for a second time and identify prescriptors. Dash-underline fragments that comply with

the definition for prescriptor. Tag quotes with the same super-script identifier if the text refers to the same

prescriptor, e.g. The module engineering design
C1

 should incorporate more formative assessment
P1-C1

 and

Modules
C2

 should include more formative assessment
P1-C2

 Follow additional guidance provided in the

codebook on sub-codes for prescriptor(s).

6. Discussion and future work

Requirements elicitation is one of the most important phases in the design process and applied by many

engineering disciplines. Enterprise Engineering (EE) is an emerging discipline that applies the design process to

design the enterprise as an artefact [5]. Since multiple theorists and practitioners have developed structured

approaches to address enterprise complexity [9], the EE discipline developed in a fragmented way, with

enterprise design knowledge mostly encapsulated in several enterprise design approaches [10]. De Vries et

al. [9] studied eight different enterprise design/alignment approaches, inductively developing a common

framework to represent and compare these approaches in terms of four main components. One of the

components represent the scope of enterprise design/alignment in terms of three dimensions: (1) design domains,

(2) intentions and constraints, and (3) enterprise scope. De Vries [12] criticized existing approaches for their

inconsistent means of defining the first dimension, namely the design domains and already provided guidance on

demarcating design domains in a more consistent way.

Focusing on the second dimension i.e. intentions and constraints, a key criterion for defining design intentions

and constraints is that intentions need to be defined in an unambiguous, understandable and verifiable way [17].

Within the EE discipline, we believe that a consistent representation of design intentions should reduce

ambiguity. The study subsequently suggested a new method (i.e. the MEICC) with the main solution objective of

reducing ambiguity, distinguishing between design intention-related concepts for an existing or new enterprise

design approach.

We evaluated three different techniques for addressing the main solution objective of MEICC: (1) ontology-

based conceptual modelling (OBCM), (2) focus group discussions and (3) using a codebook. Since OBCM

requires extensive training, it was not incorporated during the development of MEICC. Regarding focus group

discussions, we incorporated Krueger & Casey’s [64] guidelines to reduce ambiguity when systematic and

participatory focus group discussions are used to iteratively distinguish and refine design intention-related

concepts of an enterprise design approach. A codebook was incorporated to define, refine and document the

design intention-related concepts, removing possible interpretation discrepancies that may exist amongst

different design team participants until intercoder-agreement is obtained.

28

Since Van der Meulen [37] already used a codebook to distinguish between intention-related concepts associated

with Hoogervorst’s [7] approach, we also demonstrated the MEICC using Hoogervorst’s approach. Whereas Van

der Meulen [37] involved a single participant to validate his codebook, we improved the rigour of the codebook,

following an iterative approach for codebook refinement, whilst involving multiple participants. A coding

strategy (including coding conditions, a refined codebook and a coding method), developed for Hoogervorst’s

approach via MEICC, was delivered as a secondary contribution.

6.1 Limitations of the study

We acknowledge possible epistemological diversity of DSR presented by Niehaves [47]. Following the DSR

methodology genre in this study, as identified by Peffers et al. [49], we argue that this study demonstrates both a

positivist and interpretive stance towards knowledge development and evaluation. This study illustrates our

positivist stance, since the main objective is to produce objective and practical knowledge in the form of a

method artefact, the MEICC, as the main knowledge contribution. Yet, our interpretive stance is reflected in

demonstrating the MEICC. Within our interpretive epistemological position, we believe that the subjects that

participated in the demonstration of the MEICC had an influence on the coding strategy that was developed for

Hoogervorst’s approach. We concur that the participants’ understanding and interpretation of Hoogervorst’s

intention-related concepts also had an influence on the clarification of concepts and the construction of a coding

strategy for Hoogervorst’s approach. If a different group of participants were involved during the demonstration

of the MEICC, a different coding strategy may have resulted.

Peffers et al.’s [49] DSR methodology genre focuses on the development of an applicable artefact, indicating that

its evaluation should be outcome-oriented and practical. Based on inductive analysis of existing design science

process elements from various disciplines, Peffers et al. [51] synthesized six possible phases for DSR:

(1) Problem identification and motivation; (2) Objectives of a solution; (3) Design and development;

(4) Demonstration; (5) Evaluation; and (6) Communication. Although Peffers et al. [51] indicate that the

demonstration phase may be sufficient to evaluate an artefact, a separate evaluation phase may add additional

rigor depending on the nature of the problem. Section 3.1 indicates that this study applied the first four phases

defined by Peffers et al. [51]. In the subsequent paragraphs, we present possible limitations of the study,

especially in terms of phase five, i.e. the evaluation phase.

The positivist may reason that the main limitation of the study is that the artefact’s utility, quality and efficacy

should be evaluated more rigorously (see Hevner et al.’s [44] third guideline on design evaluation). Yet, Hevner

et al. [44] primarily provide guidance on evaluating an IT artefact, indicating the the IT artefact can be evaluated

in terms of “functionality, completeness, consistency, accuracy, performance, reliability, usability, fit within the

organization and other relevant quality attributes”. Some of the stated measures may also be applicable to a non-

IT artefact, such as the MEICC. Evaluating the MEICC in terms of completeness and usability will provide

additional credibility to the practitioner.

The main limitation of the study may also be argued from an interpretive stance, indicating that evaluation of the

artefact need to acknowledge the social setting of the evaluation environment and incorporate more iteration.

Niehaves [47] suggests that two of the seven principles for interpretive field studies (see Klein & Myers [48]),

are useful to guide the demonstration and evaluation phases of DSR. The principle of hermeneutic cycle

indicates that human understanding depends on continuous iteration. Niehaves [47] suggests that additional

completeness criteria need to be specified and used to guide the number of evaluation iterations. The principle of

contextualisation indicates that the evaluation findings need to stipulate the social setting of the research and

29

evaluation environment [47]. In addition, the study needs to indicate whether the findings are in some way

applicable to other situations, also specifying additional criteria for these situations.

6.2 Future work

The limitations of the study indicate that future work is required to further evaluate the MEICC. Applying the

principle of hermeneutic cycle, we suggest at least two additional evaluation iterations.

The first iteration should focus on completeness and usability measures, when the resulting coding strategy of

Hoogervorst’s approach, developed via the MEICC, is evaluated within a real-world context. A study is

underway to apply the coding strategy partially at a real-world enterprise where Hoogervorst’s approach has

been adopted in practice. During enterprise design workshops, the enterprise designer will be applying the

clarified concepts, stipulated in the refined codebook that forms part of the coding strategy. The enterprise

designer will be reflecting on the completeness and usability of the refined codebook. Although we excluded

ontology-based conceptual modelling (OBCM) as a means to clarify design intention-related concepts within

MEICC, the evaluation feedback may indicate that we also experiment with OBCM.

For the second evaluation iteration, we suggest that the MEICC is evaluated for a different enterprise design

approach, such as TOGAF, developed by the Open Group (see [25]). According to the principle of

contextualisation, this iteration will be useful to discover additional criteria for using the MEICC when it is

demonstrated within the TOGAF context.

30

7. References

1. Distanont A, Haapasalo H, Vaananen M, Letho J (2012) The engagement between knowledge transfer and

requirements engineering. International Journal of Knowledge and Learning 1 (2):131-156

2. Bentley LD, Whitten JL (2007) Systems analysis and design for the global enterprise. 7 th edn. McGraw-

Hill/Irwin, New York

3. Dym CL, Little P (2009) Engineering design. 3rd edn. John Wiley & Sons, New York

4. Eggert RJ (2010) Engineering design. 2nd edn. High Peak Press, Idaho

5. Dietz JLG, Hoogervorst JAP, Albani A, Aveiro D et al (2013) The discipline of enterprise engineering.

International Journal of Organisation Design and Engineering 3 (1):86-114

6. Boulding KE (1956) General systems theory: the skeleton of science. Management Science 2:197-207

7. Hoogervorst JAP (2018) Practicing enterprise governance and enterprise engineering - applying the employee-

centric theory of organization. Springer, Berlin Heidelberg

8. Simon HA (1969) The sciences of the artificial. 3rd edn. MIT Press, Cambridge

9. De Vries M, Van der Merwe A, Gerber A (2017) Extending the enterprise evolution contextualisation model.

Enterprise Information Systems 11 (6):787-827

10. Lapalme J (2012) Three schools of thought on enterprise architecture. IT Professional 14 (6):37-43.

doi:10.1109/MITP.2011.109

11. De Vries M (2013) A classification schema for comparing business-IT alignment approaches. International

Journal of Industrial Engineering Theory, Applications and Practice 20 (3-4)

12. De Vries M (2017) Towards consistent demarcation of enterprise design domains. In: De Cesare S, Frank U

(eds) Advances in Conceptual Modeling. Springer, Switzerland, pp 91-100

13. Giachetti RE (2010) Design of enterprise systems. CRC Press, Boca Raton

14. Hoogervorst JAP (2009) Enterprise governance and enterprise engineering. Springer, Diemen

15. Hoogervorst JAP (2017) The imperative of employee-centric organizing and the significance for enterprise

engineering. Journal of Organizational Design and Engineering 1 (1):43-58. doi:10.1007/s41251-016-0003-y

16. Kossiakoff A, Weet WN, Seymour S, Biemer SM (2011) Systems engineering principles and practice. 2nd

edn. John Wiley & Sons, New Jersey

17. Douglas BP (2016) Agile Systems Engineering. Elsevier,

https://app.knovel.com/hotlink/toc/id:kpASE00001/agile-systems-engineering/agile-systems-engineering

18. Djouab R, Abran A, Seffah A (2016) An ASPIRE-based method for quality requirements identification from

business goals. Requirements Engineering 21:87-106

19. Horkoff J, Yu E (2013) Comparison and evaluation of goal-oreinted satisfaction analysis techniques.

Requirements Engineering 18:199-222

20. Guizzardi RSS, Franch X, Guizzardi G, Wieringa RJ (2013) Ontologial distinctions between means-end and

contribution links in the i* framework. In: Ng W, Storey VC, Trujillo J (eds) ER 2013, LNCS 8217. Springer-

Verlag, Berlin Heidelberg, pp 463-470

21. Chung L, Nixon B, Yu E Using non-functional requirements to systematically select among laternatives in

architectural design. In: Proceedings of 1st International Workshop on architectures for Software Systems, 1994.

pp 31-43

22. Horkoff J, Yu E (2016) Interactive goal mode analysis for ealry requirements engineering. Requirements

Engineering 21:29-61

23. Horkoff J, Yu E (2009) Evaluating goal achievement in enterprise modeling - an interactive procedure and

experiences. In: Proceedings of 2nd IFIP WG 8.1 working conference on the practice of enterprise modeling

(PoEm'09), LNBIB, vol 39. pp 145-171

24. Dimitrakopoulos G, Kavakali E, Loucopoulos P, Anagnostopoulos D et al (2019) The capability-oreinted

modelling and simulation approach for autonomous vehicle management. Simulation Modelling Practice and

Theory 91:28-47

https://app.knovel.com/hotlink/toc/id:kpASE00001/agile-systems-engineering/agile-systems-engineering

31

25. The Open Group (2011) TOGAF 9.1. http://pubs.opengroup.org/architecture/togaf9-doc/arch/index.html.

Accessed 15 January 2019

26. Zachman JA (2009) The Zachman Framework for Enterprise ArchitectureTM: A Primer for Enterprise

Engineering and Manufacturing. http://zachmaninternational.com/index.php/home-article/15#maincol. Accessed

19 November 2009

27. Gharajedaghi J (2011) Systems thinking: managing chaos and complexity. 3rd edn. Elsevier, Burlington,

USA

28. Zachman JA (2008) John Zachman's concise defintion of the Zachman Framework.

https://zachman.com/about-the-zachman-framework. Accessed 3 April 2019

29. O'Rourke C, Fishman N, Selkow W (2003) Enterprise architecture using the Zachman Framework. Thomson

Course Technology, Boston

30. Smith KL (2019) The complete pragmatic family of frameworks. http://www.pragmaticea.com/display-

show.asp?ShowName=PragmaticFamily&ModelName=POET.Methods.Overview.Phases.Strategising#entry.

Accessed 3 April 2019

31. Smith KL (2017) Enterprise DEBT: A pragmatic approach to enterprise transformation governance, V1.4.

Pragmatic EA Ltd, Essex, England

32. Smith KL (2019) Conntecting the DOTS: The Death of "The Business & IT", V1.0. Pragmatic EA Lmt,

Essex, England

33. Ferrari A, Spoletini P, Gnesi S (2016) Ambiguity and tacit knowledge in requirements elicitation interviews.

Requirements Engineering 21:333-335

34. Berry DM, Kamsties E (2005) The syntactically dangerous all and plural in specifications. IEEE Software 22

(1):55-57

35. Gleich B, Creighton O, Kof L (2010) Ambiguity detection: towards a tool explaining ambiguity sources.

Requirements engineering: foundation for software quality Lecture notes in computer science 6182:218-232.

doi:http://dx.doi.org/10.1007/978-3-642-14192-8_20

36. Ashby WR (1958) Requisite variety and its implications for the control of complex systems. Cybernetica 1

(2):83-99

37. Van der Meulen T (2017) Towards a useful DEMO-based enterprise engineering methodology, demonstrated

at an agricultural enterprise. Dissertation, University of Pretoria

38. Gause DC, Weinberg GM (1989) Exploring requirements: quality before design. Dorset House Publishing,

New York

39. Dietz JLG (2006) Enterprise ontology. Springer, Berlin

40. Theuerkorn F (2005) Lightweight enterprise architectures. Auerbach Publications, New York

41. Garrett JJ (2011) The elements of user experience: user-centered design for the web and beyond. 2nd edn.

New Riders Press, Berkeley

42. Kuechler W, Vaishnavi V (2008) The emergence of design research in information systems in North

America. Journal of Design Research 7 (1):1-16

43. Winter R (2008) Design science research in Europe. European Journal of Information Systems 17:470–475

44. Hevner AR, March ST, Park J, Ram S (2004) Design science in information systems research. MIS Quarterly

28 (1):75-105

45. Owen C (1997) Design research: building the knowledge base. Journal of the Japanese Society for the

Science of Design 5 (2):36-45

46. March ST, Smith G (1995) Design and natural science research on Information Technology. Decision

Support Systems 15 (4):251-266

47. Niehaves B (2007) On Epistemological Diversity in Design Science - New Vistas for Design-Oriented IS

Research? In: 28th International Conference on Infomration Systems. Montreal,

48. Klein HK, Myers MD (1999) A set of principles for conducting and evaluating interpretive field studies in

information systems. MIS Quarterly 23 (1):67-94

http://pubs.opengroup.org/architecture/togaf9-doc/arch/index.html
http://zachmaninternational.com/index.php/home-article/15#maincol
https://zachman.com/about-the-zachman-framework
http://www.pragmaticea.com/display-show.asp?ShowName=PragmaticFamily&ModelName=POET.Methods.Overview.Phases.Strategising#entry
http://www.pragmaticea.com/display-show.asp?ShowName=PragmaticFamily&ModelName=POET.Methods.Overview.Phases.Strategising#entry
http://dx.doi.org/10.1007/978-3-642-14192-8_20

32

49. Peffers K, Tuunanen T, Niehaves B (2018) Design science research genres: introduction to the special issue

on exemplars and criteria for applicable design science research. European Journal of Information Systems 27

(2):129-139. doi:10.1080/0960085X.2018.1458066

50. Gregor S, Jones D (2007) The anatomy of a design theory. J Assoc Inf Syst 8 (5):312-335

51. Peffers K, Tuunanen T, Rothenberger M, Chatterjee S (2008) A design science research methodology for

information systems research. Journal of MIS 24 (3):45-77

52. Gregor S, Hevner A (2013) Positioning and presenting design science research for maximum impact. MIS

Quarterly 37 (2):337-355

53. Guest G, MacQueen KM, Namey EE (2012) Applied thematic analysis. Sage, Thousand Oaks, California

54. Siau K (2004) Informational and computational equivalence in comparing information modelling methods,

15 (1) (2004) 73–86. Journal of Database Management 15 (1):73-86

55. Sheer A-W, Hars A (1992) Extending data modelling to cover the whole enterprise. Communications of the

ACM 35 (9):166-172

56. Wand Y, Weber RA (2002) Research commentary: information systems and conceptual modelling—a

research agenda. Information Systems Research 13 (4):363-376

57. Karagiannis D, Mayer HC, Mylopoulos J (2016) Domain-specific Conceptual Modleing: Concepts, Methods

and Tools. Springer, Switzerland

58. Grüninger M, Atefi K, Fox MMS Ontologies to support process integration in enterprise engineering.

Computational & Mathematical Organization Theory 6 (4):381-394

59. Honderich T (2006) The Oxford companion to philosophy. Oxford University Press,

60. Corea C, Delfmann P (2017) Detecting compliance with business rules in ontology-based process modeling.

In: Leimeister JM, Brenner W (eds) Proceedings der 13. Internationalen Tagung

Wirtschaftsinformatik (WI 2017). St. Gallen, pp 226-240

61. Wand Y, Weber RA (1993) On the ontological expressiveness of information systems analysis and design

grammars. Information Systems Journal 3 (4):217–237

62. Verdonck M, Gailly F, Pergl R, Guizzardi G et al (2019) Comparing traditional conceptual modeling with

ontology-driven conceptual modeling: An empirical study. Information Systems 81:92-103

63. Guizzardi G, Falbo RA, Guizzardi RSS (2008) Grounding software domain ontologies in the unified

foundational ontology: The case of the ODE software process ontology. In: Proceedings XI Iberoamerican

Workshop on Requirements Engineering and Software Environments, Recife, Brazil. pp 244-251

64. Krueger RA, Casey MA (2015) Focus groups: a practical guide for applied research. 5th edn. SAGE,

Thousand Oaks

65. MacQueen KM, McLellan-Lemal E, Bartholow K, Milstein B (2008) Team-based codebook development:

Structure, process, and agreement. In: Guest G, MacQueen KM (eds) Handbook for team-based qualitative

research. AltaMira, MD: Lanham, pp 119-135

66. Saldana J (2009) The coding manual for qualitative researchers. Sage Publications, London

67. De Vries M, Gerber A, Van der Merwe A (2015) The enterprise engineering domain. In: Aveiro D, Pergl R,

Valenta M (eds) Advances in Enterprise Engineering IX. Springer, Switzerland, pp 47-63

68. Perinforma APC (2015) The essence of organisation. Sapio, www.sapio.nl

file:///C:/my%20docs/PhD/Articles/Requirements%20Engineering/www.sapio.nl

