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This supplementary material is organized as follows. In Section 1, we explain the
intuition behind the notion of memory loss or the echo state property with respect
to an input. In Section 2, we present essentially the same definitions used in the
accompanying main paper [1] along with an additional explanation/figure. In Sec-
tion 3 and Section 4 we present the same theorems presented in [1, Section 3] with
an additional example or explanation that concern some mathematical aspects of the
results. In Section 5, we present some additional details of the computations used in
the computer simulations in [1, Section 2]. Lastly, in Section 6, we present additional
numerical results that complement the results in [1, Section 2] that concern finding
the input-specific echo state property threshold.

1 Memory-loss or Echo State Property

Consider a thought experiment whose set-up comprises a collection of containers,
each containing an identical substance in mass and composition determined by a
parameter α. Suppose X is an interval of real numbers, and for each value x in X,
there is a container with a substance at temperature x. Say all of the containers
have full thermal conductivity and are supplied heat simultaneously and equally by
a source of heat. Suppose a quantum of heat u that feeds the containers updates a
temperature (of the substance) x to g(α, u, x) in one “time-unit” through a function
g. If we let heat to be varying in time, i.e., if we let uk be the heat supplied to each
of the containers at the kth time-unit, then the temperature at the k+1-th time unit
is xk+1 = g(α, uk, xk). Since uk fluctuates with time k, so would the temperatures of
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the substance in the containers, and hence there is no single equilibrium temperature
that the substance in the containers approach.

Also, say that during this time-varying heating process, the container cools at the
interfaces with the surrounding air when its temperature is not within a certain range.
Now, suppose this experiment had been set-up “infinitely” long ago, and let the entire
infinitely long history of the heat input be represented by ū = (. . . , u−1, u0, u1, . . .).
Let Xn(α, ū) be the collection or set of all temperature values of the substance in
all the containers at time n. If Xn(α, ū) is a single-value that is the temperature of
the substance in all the containers evolve in unison, then there is memory-loss of all
“initial” temperatures of the substances in the containers. Such forgetting may be
intuitively attributed to the fact that the substance cannot be excited by the heat
to raise its temperature beyond a certain value due to the dissipation of heat – this
dissipation of heat out of a container may have reset its temperature and effectively
have it forget its initial temperature. On the other hand, if the set Xn(α, ū) would
contain more than one value, then there is at least one container that contains a
substance that has not forgotten its initial temperature. In the case where Xn(α, ū)
has a single value, where substances change temperatures in unison, we expect the
temporal input heat to be the sole factor in dictating the future evolution of the set
Xn(α, ū). In contrast, in the case Xn(α, ū) has multiple values, the input heat pattern
does not fully guide the evolution of temperatures since the substance in at least one
of the containers is retaining the effect of its initial temperature. This intuitive
idea of memory-loss or the lack of it can be extended to the dynamical systems
theory, where, in addition, the input can be both amplified and attenuated. In such
a setting, the consequences of such memory-loss are exciting that is demonstrated
mathematically in this article. In particular, the evolution of the set Xn(α, ū) as a
function of ū with and without memory-loss is surprisingly contrasting.

In dynamical systems theory, memory-loss appears in the context of two diametrically
opposite reasons. When systems have sensitive dependence on initial conditions
like in chaotic systems, small errors multiply within a short time gap, so that it is
unfeasible to track a specific trajectory (e.g., [2, 3]). On the other hand, the diameter
of the state space could asymptotically decrease to zero so that the trajectories tend
to coalesce into a single trajectory. In this paper, we consider the latter case of
memory-loss in which a dynamical system is driven exogenously.

A feature of memory-loss in driven systems is that a single bounded trajectory
emerges to be a representative of the drive/input. To illustrate this idea, we con-
sider a continuous-time driven system, in particular a scalar differential equation,
ẋ(t) = u(t) − x(t), where u(t) = 2 cos t. The solution of the differential equation
with an initial condition x(t0) = x0 can be shown to be x(t, t0, x0) = (x0 − sin t0 −
cos t0)e−(t−t0) + ρ(t), where ρ(t) = sin t+ cos t. For a given t, limt0→−∞ x(t, t0, x0) =
ρ(t) regardless of x0. Hence, in this case, or in cases similar to this (for a schematic
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see Fig. S1), for a fixed initial choice x0, setting the starting time t0 further back
in time would get x(t, t0, x0) closer to ρ(t) for a given t. It follows that different
solutions asymptotically forget or lose the memory of their initial condition, and a
single bounded attractive solution ρ(t) emerges as a “proxy” for the drive u(t) (in the
state space). This is the essence of memory-loss w.r.t. to the input u(t) = 2 cos(t).
In general, such memory-loss is not observed in all driven systems, and neither is
it observed generically. Moreover, such a memory-loss phenomenon usually depends
on the exogenous input u(t) and also the equations governing the system. In cases,
where there is no memory-loss w.r.t. to input, not a single trajectory like ρ(t), but a
set-valued function comprising multiple or a bunch of trajectories (solutions) would
attract nearby solutions.

Figure S1: Schematic figure to explain memory-loss in continuous-time.

The idea of relating memory-loss to the presence of a single proxy corresponding to
an input can be extended to the case of a discrete-time dynamical driven system
(representative work is in [4]). The most prevalent exponent of memory-loss was in
the field of reservoir computing (RC) (e.g., [5, 6, 7]). In most of the reservoir com-
puting (RC) literature, the idea of memory-loss or fading memory popularly called
the echo state property (ESP) is treated as a stability property of the system valid
for all inputs. In such a case, the ESP guarantees that the entire past history of the
input determines the state of the system precisely, i.e., there is no possibility of two
or more reachable states at any given point in time [5] if the entire past values of the
input have influenced the dynamics. The formal definition linking ESP intrinsically
to an input is available in [4]. Here, we extend the results made in [4] and consider a
general setup to analyze the effect of both an input and a design parameter. A design
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parameter (not necessarily a scalar and includes the case of a vector or a matrix) α,
an input value u, a state-variable x in a compact state space X and a continuous
function g(α, u, x) that takes values in X would constitute a parametric driven sys-
tem (we denote this system by g throughout, and other entities tacitly understood;
for a formal definition see Section 2). The dynamics of a parametric driven system
g is rendered through a temporal input ū = (. . . , u−1, u0, u1, . . .) via the equation
xn+1 = g(α, un, xn). Given an ū and α, any sequence x̄ = (. . . , x−1, x0, x1, . . .) in the
state space that satisfies the equation xn+1 = g(α, un, xn) for all integers n is an
“image” of ū in the space X (and also called a solution of g). Having fixed α and ū

suppose we collect the nth component of all images x̄, and denote it by Xn(α, ū), then
we have a collection of sets {Xn(α, ū)} which we call the representation of ū. It turns
out the components of this representation satisfy Xn+1(α, ū) = g(α, un, Xn(α, ū))
(see [4, Proposition 2] and [8] for details). Following [4] , we say that the driven
system g has echo-state property (ESP) with respect to ( w.r.t. ) an input ū at
α if it has exactly one solution or one image x̄ in the space X or (equivalently) if
for each n, Xn(α, ū) is single-valued, i.e., a singleton subset of X. The emergence
of a single image or a proxy, in general, does not necessarily mean it captures the
“information” content of the input. For instance, consider the discrete-time system,
g(α, u, x) = ux, where U = [0, 1) and X = [0, 1] with g(α, u, x) = ux. It may be ver-
ified that for every input ū, the map g(α, uk, ·) is a contraction on X for each k ∈ Z,
and it easily follows that there is exactly one solution in X (by applying Lemma 2
in [4]). However, every solution {xn} in X converges monotonically to 0 as n→∞.
The aforementioned convergence means that any image of ū would not reflect upon
the temporal complexity of ū, and nor would there be any good separability of the
representation of the inputs in the space X. Such a driven system is not useful for
applications. On that account, in RC, one employs driven dynamical systems with
a higher dimensional state space.

2 Preliminaries

A parametric driven system would comprise a parameter space Λ, an input metric
space U and a compact metric space X and a continuous map g : Λ× U ×X → X.
For brevity, we would often refer g to be the driven system with the other components
silently understood. The reader may note henceforth, all additional hypotheses on
a parametric driven system we assume are satisfied by the recurrent neural network
g(α, u, x) = tanh(Au+αBx) cited frequently in [1].Throughout, A ⊂ B stands for A
is a subset of B and does not preclude the case that A = B. In our analysis, wherever
a cartesian product of spaces is considered, the cartesian products are endowed with
the most commonly used topology on it called the product topology (e.g., [9]). This
implies that a sequence converges in an infinite cartesian product space if and only
if the individual coordinate projections of the sequence also converges.
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This section aims to create a set-valued function (called the encoding map) that
represents all “attainable” states of the system if a left-infinite input was fed to the
system at some scaling parameter, and then to describe the continuity notions of
set-valued functions. In what is to follow, we describe the convergence of a sequence
of sets through the Hausdorff metric, which we recall next.

Figure S2: Schematic figure to explain the images of X under the map φ0,ū. The
square X at time −2 is transformed to a triangle at time −1 and then into an oval at
time 0, while the square at X at time −1 is transformed into another smaller square
at time 0.

Hausdorff distance or Hausdorff metric: When X is a metric space with metric d, we
denote by HX the collection of all nonempty closed subsets of X. On this space we
employ the Hausdorff metric defined by dH(A,B) := max(dist(A,B), dist(B,A)) :=
inf{ε : A ⊂ Bε(B) & B ⊂ Bε(A)}, where Bε(A) := {x ∈ X : d(x,A) < ε} is the open
ε-neighborhood of A. It is well known that whenever X is a compact metric space,
HX is also a compact metric space.

For the analysis to follow, we would adopt a composition-operator (called a process
in [4, 10]). Given a parametric driven system g, we denote gα,u(x) := g(α, u, x)
and {un} ⊂ U by ū. Suppose a parametric driven system g has been fed input
values um, um+1, . . . , un−1 starting at time m. Then the map g transports a state-
value x ∈ X at time m to give a state-value gα,un−1 ◦ · · · ◦ gα,um(x) at time n.
Formally, for every choice of α, ū and g, we define for all m ≤ n, the function that
‘transports’ a system state at x at time m through the inputs um, um+1, . . . un−1 to
the state at time n given by an composition-operator φα,ū : Z2

≥ × X → X, where
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Z2
≥ := {(n,m) : n ≥ m,n,m ∈ Z} and

φα,ū(n,m, x) :=

{
x if n = m,

gα,un−1 ◦ · · · ◦ gα,um(x) if m < n.

Thus, if the inputs um, um+1, . . . , un−1 are fed in that order to every x ∈ X, the
system would have evolved at time n to one of the states in φα,ū(n,m,X). For a
choice (n,m) = (0,−1) and (n,m) = (−1,−2), the action of a map φα,ū is illustrated
schematically in Fig. S2. A simple observation is that the set inclusion φα,ū(m +
2,m,X) ⊂ φα,ū(m+1,m,X) holds for all m ∈ Z since gα,um+1 ◦gα,um(X) ⊂ gα,um(X).
Based on this observation, it follows that if the entire left-infinite input {um}m<n
would have been fed to every x ∈ X, then φα,ū(n,m,X) is a decreasing sequence of
sets, i.e., φα,ū(n,m−1, X) ⊂ φα,ū(n,m,X) for an m. Hence, if the entire left-infinite
input {um}m<n had influenced the dynamics of the parametric driven system g, the
system would have evolved at time n to an intersection of a decreasing sequence of
sets:

Xn(α, ū) :=
⋂
m<n

φα,ū(n,m,X). (1)

When X is compact, each set φα,ū(n,m,X) is a closed subset of X and hence Xn(α, ū)
is a nonempty closed subset of X (a proof is available in [4, Lemma 2.1]). Note that
Xn(α, ū) is an element of the space HX . Since HX is a compact metric space, every
sequence of sets has a convergent subsequence. Whenever a sequence {An} converges
in HX , it means that dH(An, A) → 0 and we denote it by dH - limn→∞An = A. It
may be verified that (see for e.g., [11]) when {An} is a sequence of decreasing sets,
i.e., An+1 ⊂ An, then A =

⋂∞
n=1An if and only if dH - limn→∞An = A, i.e., the limit

in the compact space HX always exists for a decreasing sequence of sets and is equal
to the nested intersection of the sequence of sets. Hence an alternate definition of
(1) would be

Xn(α, ū) := dH - lim
m→∞

φα,ū(n,−m,X). (2)

When the input originates from an invertible dynamical system, one could treat the
function φα,ū(n,−m,x) to be just dependent on a single value u in U since u then
would have determined its unique past. In such a special case the notion of the
composition-operator above coincides with that of the echo state mappings defined
in [12].

Given an input ū, a solution (called an entire-solution in [4, 10]) of g is a bi-infinite
sequence {xn} that satisfies xn+1 = g(α, un, xn) for all n ∈ Z. One can easily show
that “a sequence {xn} is a solution of g obtained through an input ū if and only if xk
belongs to Xk(α, ū) for all k ∈ Z” (see [4, Lemma 2.1] for a proof). We remark that
Xn(α, ū) was defined initially through a solution in [1] and it is of no consequence
since the definitions are equivalent. We say that a parametric driven system g has
the ESP w.r.t. to ū at the parameter α if there is exactly one single solution of g
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(when the input is ū, and the scaling parameter is α). We leave out the phrase “at
the parameter α” whenever it is obvious. Putting all these together, it follows that
a parametric driven system g has the ESP w.r.t. to its input {un} at the parameter
α if and only if Xn(α, ū) is a singleton subset of X for each n.

We say a parametric driven system g to be an open-parametric driven system if X is
connected and the mapping g(u, α, ·) does not map any uncountable set contained in
X to a single value in X. Given a driven system g, a parameter α and input ū, if X
is connected, then it follows that Xn(α, ū) is connected for all n since Xn(α, ū) is a
nested intersection of connected sets. A nonempty connected set is either a singleton
or uncountably infinite subset of X, when X is a metric space. Suppose Xn−1(α, ū)
is uncountable then Xn(α, ū) cannot be a singleton subset of X if g were to be an
open parametric system since Xn(α, ū) = g(α, un, Xn−1(α, ū)). It follows that when
Xn(α, ū) is a singleton subset of X, Xn+k(α, ū) for any integer k is forced to be a
singleton subset of X as well when g is a open-parametric driven system. Thus, an
open-parametric driven system g has the ESP w.r.t. ~u at α if and only if E(α, ~u) is
a singleton subset of X.

In particular, we know that an open-parametric driven system g has the ESP w.r.t.
to an input ū if and only if E(α, ~u) := X0(α, ū) is a singleton subset of X. Note
that E(α, ~u) = dH - limn→∞ φα,ū(0,−n,X). Next, we define the encoding family to
be {En(α, ~u)}n≥1 ⊂ HX , where En(α, ~u) := φα,ū(0,−n,X). Hence, we also have
E(α, ~u) = dH - limn→∞ En(α, ~u).

An example of an open-parametric driven system is a recurrent neural network(RNN)
of the form g(α, u, x) = tanh(Au+αBx), where tanh(∗) is (the nonlinear activation)
tanh performed component-wise on ∗, α, a real-valued parameter would correspond
to the scaling of the reservoir (invertible) matrix B of dimension N and A is a
matrix with input connections and X = [−1, 1]N (the cartesian product of N copies
of [−1, 1]). We observe that whenever α 6= 0 and B is invertible, g(α, u, ·) is always
invertible since tanh is invertible and hence g is an open-parametric driven system
when α = 0 is not in the parameter space Λ.

Given a parametric driven system g we define the following set-valued maps associ-
ated with the encoding map:

1. For every given α ∈ Λ, the map E(α, ·) : ~u 7→ E(α, ~u) is said to be an input-
encoding map.

2. For every left-infinite input ~u, the map E(·, ~u) : α 7→ E(α, ~u) is said to be a
parameter-encoding map.

3. For every given α ∈ Λ, the collection of mappings {En(α, ·)}n≥1 where En(α, ?) :=
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φα,?̄(0,−n,X) is called the input-encoding family. Similarly, for a given ~u, the
collection of mappings {En(·, ~u)}n≥1 where En(?, ~u) := φ?,ū(0,−n,X) is called
the parameter-encoding family.

For set-valued maps, different notions of continuity exist. These notions are schemat-
ically illustrated in Fig. S3. Intuitively, the notion of upper semicontinuity permits
sudden explosions (Fig. S3 (b) & (e)) while the notion of lower semicontinuity per-
mits sudden implosions (Fig. S3 (c) & (f)), and the notion of continuity does not
permit both explosions and implosions. Formally, let X be a topological space and
YX be a subspace of the power set of X, and let Z be another topological space. A
map f : Z → YX is said to be upper semicontinuous at z if for every open set V
in X containing f(z) there exists an open neighborhood U containing z such that
f(U) ⊂ V . A map f : Z → YX is said to be lower semicontinuous at z if for every
open set V in X such that f(z) ∩ V 6= ∅, then {z : f(z) ∩ V 6= ∅} is an open neigh-
borhood of x. A map f that is upper-semicontinuous for all z ∈ Z, then it is called
upper semicontinuous (u.s.c). A map f that is lower-semicontinuous for all z ∈ Z,
then it is called lower semicontinuous (l.s.c). A map is upper semicontinuous only
(usc-only) if it is u.s.c and not l.s.c at some point z ∈ Z. A map is lower semicon-
tinuous only (lsc-only) if it is l.s.c and u.s.c at some point z ∈ Z. A map that is
both upper semicontinuous and lower semicontinuous at a point z ∈ Z is said to be
continuous at z. We use the fact that if a map is u.s.c at z and is single-valued, i.e.,
f(z) is single-valued, i.e., a singleton subset of X, then f is continuous at z.

In addition to the cases illustrated in Fig. S3, the “graphs” of set-valued maps could
behave wildly with explosions. For instance, the input-encoding map for a class of
driven systems is not l.s.c when there is no ESP Theorem 2. It is not possible to
explicitly describe such maps where the arguments are infinite-dimensional.

The continuity of the function (α, ū) 7→ Xn(α, ū) can be also be defined by con-
sidering the topology induced on HX by the Hausdorff metric dH . Such continuity
defined using the Hausdorff metric is equivalent [11] to the continuity of Xn(α, ū)
when Xn(α, ū) is treated as a set-valued function of the variable (α, ū). We make
use of this equivalence without further remarks.
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Figure S3: Schematic of graphs of set-valued maps to explain the notions of upper
semicontinuity (u.s.c) and lower semicontinuity (l.s.c). The lighter grey values indi-
cate the interior, while the darker values indicate the boundaries of the set-valued
function’s graph, and the comb-like outward projections refer to the explosions due
to the absence of l.s.c; S(r0) is a singleton subset in (a) and (c), while it is multi-
valued (subset of X with multiple elements) in all other figures. For an open set V
containing S(r0) there is a neighborhood of S0 that maps into V in (b) but not in
(c). Also note that there is an explosion of S at r0 in (b) while there is an implosion
in (c). S is upper semicontinuous only (usc-only) if it is u.s.c and not l.s.c at some
point z ∈ Z. S is lower semicontinuous only (lsc-only) if it is l.s.c and u.s.c at some
point z ∈ Z.

3 Continuity of the Input-Encoding Map and the

ESP

Given a parametric dynamical system g, for every given α ∈ Λ, we call the set-valued
mapping ū 7→ {Xn(α, ū)}n∈Z to be the input-representation map. The main purpose
of the analysis in this section is to establish the fundamental connection between the
echo state property and continuity of the input-representation map in Theorem 1.

First, we adopt a terminology to ensure the driven system has an input that causes
a contraction in a subdomain of X. Given an open-parametric driven system g and
an α, if there exists a ~v such that g has the ESP w.r.t. ~v at α, then we say g is
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Figure S4: Schematic to show slightly different inputs ū and v̄ in the input space
could lead to mostly similar responses {Xn(α, ū)} and {Xn(α, v̄)} in the state space
that are measured by a metric dR (see Remark 1).

contractible at α. For example, the RNNs that we consider are always contractible
except in the case of the input weight matrix A having a row with all zeroes. It is
a result in [4, (ii) of Theorem 4.1] that for an RNN with an input-weight matrix A
having non-zero rows and any norm of the reservoir matrix B, there always exists an
input ~v so that it has the ESP w.r.t. ~v, and hence such systems are contractible. The
idea behind contractibility is that if the input ~v is such that if the entity (Avn+αBxn)
is thrown into the saturation region of the activation function σ sufficiently often,
one can always witness ESP w.r.t. ~v. Given any ~u, an ~v is readily obtained by scaling
~u to have a sufficiently large amplitude.

Theorem 1 establishes that for an open-parametric driven system that is contractible,
slightly different inputs lead to mostly similar responses if and only if the ESP is
satisfied (see Fig. S4).

Theorem 1. (Continuity of the input-representation map and the input-
encoding map) An open-parametric driven system g that is contractible at α
has the ESP w.r.t. ū at α ⇐⇒ the input-representation map ū 7→ {Xn(α, ū)} is
continuous at ū ⇐⇒ the input-encoding map ū 7→ E(α, ~u) is continuous at ū.

The proof of Theorem 1 would be presented after establishing the relationship of the
ESP w.r.t. ū and the input-encoding map as stated in Lemma 1. The pedantic reader
may note that Theorem 1 would not be true without the contractiblility condition.
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For example, if X = [0, 1] and g(α, u, x) = x, for all n, Xn(α, ū) = X regardless of
the input ū and hence the input-representation map ū 7→ {Xn(α, ū)} is continuous
(i.e., both usc and lsc), but there is no ESP to all inputs since Xn(α, ū) is not a
singleton subset of X for every n.

Lemma 1. (Continuity of the input-encoding map) An open-parametric-driven
system g that is contractible at α has the ESP w.r.t. ~u at α if and only if the input-
encoding map E(α, ·) is continuous at ~u.

Proof. (=⇒) The open-parametric driven system g has the ESP w.r.t. ~u at α is
equivalent to saying that E(α, ~u) is a singleton subset of X. By (ii) of Lemma 2,
E(α, ·) is u.s.c at ~u. We use the fact that a map that is u.s.c and is a singleton subset
of the space X is continuous to conclude E(α, ·) is a continuous at ~u.

(⇐=) Let E(α, ·) be continuous at ~u and suppose that g does not have the ESP w.r.t.
~u at α. This means E(α, ~u) contains a subset of X that has at least two elements of
X. Hence the encoding map evaluated at (α, ~u) is bounded away from all singleton
subsets of X, i.e., r := inf{x}∈X dH(E(α, ~u), {x}) > 0.

Since g is contractible at α, let ~v be an input for which E(α, ~v) is a singleton
subset of X. We define the sequence of left-infinite sequences { ~wn}n>1 by ~wn :=
(. . . , v−2, v−1, u−n, . . . , u−2, u−1). Since, the first n elements of ~wn are identical to
that of ~u, it follows that the sequence ~wn → ~u in the product topology on U (−∞,−1),
where U (−∞,−1) is the infinite cartesian product space

∏∞
i=−1 Ui with Ui = U .

Since E(α, ~v) is a singleton subset of X, we find that E(α, ~wn) is a singleton subset
of X since

E(α, ~wn) =
⋂
j>0

φα,∗n(0,−j,X) =
⋂
j>0

φα,†(0,−j,X) = E(α, ~v),

where ∗n = ~wn and † = ~v (notations to avoid obscurity in the subscripts). Since
E(α, ~wn) is a singleton subset of X, it follows that dH(E(α, ~u), E(α, ~wn)) ≥ r > 0 for
all n. This implies En(α, ~wn) does not converge to E(α, ~u) although we had ~wn → ~u.
This contradicts our assumption that E(α, ~u) is continuous at ~u. �.

Corollary 1. If an open-parametric-driven system g that is not necessarily con-
tractible at α has the ESP w.r.t. ~u at α then the input-encoding map E(α, ·) is con-
tinuous at ~u.

Proof of Corollary 1. The first paragraph of the proof of Lemma 1.

Proof of Theorem 1. From Lemma 1, we have: an open-parametric driven
system g that is contractible at α has the ESP w.r.t. ū at α if and only if the
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input-encoding map ū 7→ E(α, ~u) is continuous at ū. It remains to be proven that
the input-encoding map ū 7→ E(α, ~u) is continuous at ū if and only if the input-
representation map ū 7→ {Xn(α, ū)} is continuous at ū. Equip the representation
space R :=

∏∞
i=−∞ Yi, where Yi = HX for all i ∈ Z with the product topology. Let

~vn := (. . . , un−2, un−1). Clearly, Xn(α, ū) = E(α, ~vn) and the mapping ū 7→ Xn(α, ū)
is identical to ~vn → E(α, ~vn). The following equivalent statements (i)–(vi) lead
to the proof: (i) ū 7→ {Xn(α, ū)} is continuous if and only if (iff) the coordinate
mappings ū 7→ Xn(α, ū) is continuous for all n ∈ Z (by definition of convergence in
product topology) (ii). ū 7→ Xn(α, ū) is continuous for all n ∈ Z iff ~vn 7→ E(α, ~vn)
is continuous for all n ∈ Z (by definition of ~vn). (iii). ~vn 7→ E(α, ~vn) is continuous
for all n ∈ Z iff g has the ESP w.r.t. ~vn for all n ∈ Z (by Lemma 1). (iv). g has the
ESP w.r.t. ~vn for all n ∈ Z iff g has the ESP w.r.t. ~v0 (since g is open-parametric
driven system) (v). g has the ESP w.r.t. ~v0 iff g has the ESP w.r.t. ~u (by definition
of ~vn). (vi.) g has the ESP w.r.t. ~u iff the encoding map ~u 7→ E(α, ~u) is continuous
(by Lemma 1). �

Remark 1. We remark that the topology on representation space R can be obtained
through a metric dR [9]. An example is dR(A,B) :=

∑∞
i=−∞ dH(A,B)/2|i|. An

analogously defined metric dU can be used as a metric for the input sequence space
U (−∞,+∞).

Lemma 2. Let g be a driven dynamical system. Then

(i). The parameter-encoding map E(·, ~u) is u.s.c for a given input ~u.

(ii). The input-encoding map E(α, ·) is u.s.c for a given α.

(iii). Every function in the input-encoding family {En(·, ~u)} or in the parameter-
encoding family {En(·, ~u)} is continuous.

Proof. Fix a left-infinite ~u, and fix a choice of bi-infinite input ū whose elements
{. . . , u−2, u−1} is identical to ~u. Note that by definition, the encoding map E(α, ~u) :=
X0(α, ū). Given an (α, ū), let X0(α, ū) ⊂ V where V is open in X. We know
X0(α, ū) = dH- limj→∞ φα,ū(0,−j,X). Hence by the definition of the limit, there
exists an n such that φα,ū(0,−n,X) ⊂ V . Fix such an n. Since by letting n → ∞
in φα,ū(0,−n,X) we get a decreasing sequence in X, to prove (i), it is sufficient to
show that there exists a neigbhorhood W1 of α such that φr,ū(0,−n,X) ⊂ V for all
r ∈ W1. In a similar vein, to prove (ii) it is sufficient to show that there exists a
neighborhood W of ū so that φα,v̄(0,−n,X) ⊂ V for all v̄ ∈ W .

Proof of (i). We will verify the definition of u.s.c of the parameter-encoding map
at each α. The set inclusion φα,ū(0,−n,X) ⊂ V means that φα,ū(0,−n, x) ∈ V for all
x ∈ X. Denote U (−n,−1) to be the product space

∏−n
i=−1 Zi, where Zi is the input space
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U . Since φα,ū(0,−n, x) actually depends only on u(−1,−n) := {u−1, u−2, . . . , u−n}
and g depends on u continuously, and the composition of continuous functions is
continuous, it follows that there is a continuous function

h : Λ× U (−n,−1) ×X → X so that h(α, u(−1,−n), x) = φα,ū(0,−n, x) (3)

for all α ∈ Λ, u(−1,−n) ∈ U (−n,−1) and x ∈ X. Since h is continuous and X is compact
it follows that there exists a basis element W1×W2 of the product space Λ×U (−n,−1)

containing (α, u(−1,−n)) so that h(W1,W2, X) ⊂ V which implies h(r, u(−1,−n), X) ⊂
V for r ∈ W1 or equivalently, φr,ū(0,−n,X) ⊂ V for all r ∈ W1.

Proof of (ii). Let h : Λ × U (−n,1) × X → X be as in (3), and W1 and W2

be the basis element as in the Proof of (i). Hence h(W1,W2, X) ⊂ V implies that
h(α, v(−1,−n), X) ⊂ V for v(−1,−n) ∈ W2. Define a basis element W in the space

U (−∞,+∞) :=
∏∞

i=−∞ Zi, where Zi for i = −1,−2, . . . ,−n satisfies
∏−n

i=−1 Zi = W
and Zi = U for all other i ∈ Z. Clearly by definition of a basis element in the infinite
product space U (−∞,+∞), W is a neighborhood of ū in the space U (−∞,+∞). Now
h(α, v(−1,−n), X) ⊂ V for v(−1,−n) ∈ W2 implies φα,v̄(0,−n,X) ⊂ V for all v̄ ∈ W
where v̄ is such that v(−1,−n) ∈ W2.

Proof of (iii). The statements follow the fact that for a fixed n, the function h is
continuous in all its arguments. �

4 The Parameter-Encoding map and the ESP

Theorem 2. (Continuity of the parameter-encoding and the parameter-
representation map) Fix an ū and hence ~u. If an open-parametric driven
system g has the ESP w.r.t. ~u at α then the parameter-encoding map E(·, ~u)
is continuous at α. More generally, if g has the ESP w.r.t. ū at α then the
parameter-representation map α 7→ {Xn(α, ū)} is continuous at α.

Proof. Fix an ū and hence the corresponding ~u. We note that from (i) of Lemma 2,
a parameter-encoding map is u.s.c. Further, whenever it is single-valued it is contin-
uous. Hence E(·, ~u) is continuous at α.

Note that {Xn(α, ū)} ∈ R :=
∏∞

i=−∞ Yi, where Yi = HX for all i and (the representa-
tion space) R is equipped with the product topology. We know that α 7→ {Xn(α, ū)}
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is continuous if and only if the coordinate mappings α 7→ Xn(α, ū) is continuous for
all n ∈ Z. Let ~vn := (. . . , un−2, un−1). Clearly, Xn(α, ū) = E(α, ~vn) and the map-
ping α 7→ Xn(α, ū) is identical to the parameter-encoding map α→ E(α, ~vn). From
Lemma 2, a parameter-encoding map is always u.s.c, and when it is single-valued it is
continuous. Since, g is an open-parametric dynamical system, E(α, ~vn) is a singleton
subset of X for all n if and only if E(α, ~u) is a singleton subset of X. When g has
the ESP w.r.t. ~u at α it follows that α 7→ {Xn(α, ū)} is continuous. �

The bifurcation in which an attractive solution (like a stable equilibrium solution)
loses “stability” and gives rise to attractive nonautonomous sets that comprise multi-
ple solutions is called a shovel bifurcation in the nonautonomous dynamical systems
literature, e.g., [10]. In [10], asymptotically constant inputs are used to study the
shovel bifurcation. However, here through the definitions of soft-ESP and hard-ESP
thresholds, we can obtain results for any general input (see Theorem 3) by relating
a bifurcation to the equicontinuity of the parameter-encoding family {En(·, ~u)}.

First, we consider very elementary examples. To understand the transition across
a soft-ESP threshold, consider the driven system family described by g(α, u, x) =
u tanh(αx), where X = [−1, 1]. Further, consider the input ~u that is identically equal
to 1, i.e., the entire left infinite sequence has elements equal to 1 and α ∈ (0,∞).
For all α ∈ [0, 1], the set g(α, u, ·) is a contraction and from it, it follows that E(α, ~u)
is {0}. When α > 1, it may be easily verified that there are two attractive fixed
points pα > 0 and −pα < 0 for the map tanh(αx) in addition to the fixed point
at 0. From the fact tanh(αx) < x for x > pα and tanh(αx) > x for x < −pα, it
follows that E(α, ~u) = [−pα, pα]. Also, since pα moves continuously away from 0 as
α is varied beyond 1, it follows that the set E(α, ~u) as a set varies continuously (in
the space HX) as α is varied beyond 1. Thus there is a “jump-less” transition of the
set X0(α, ~u) from being single-valued for to be multivalued, i.e., to be a subset of X
with multiple elements as α crosses 1. Such a transition is continuous and falls into
the case of a transition in Fig. S3 (a).

To understand the transition across a hard-ESP threshold, consider the example
g(α, u, x) = uα x where X = [−1, 1]. Again, consider the input ~u that is identically
equal to 1 with α ∈ (0,∞). For all α < 1, it can be easily verified that g(α, u, ·) is
a contraction on X and hence E(α, ~u) is {0}. When α = 1, E(α, ~u) is [−1, 1] since
g(1, 1, ·) is the identity map on X. Thus unlike a jump-less transition of E(α, ~u) past
αt in the preceding example, there is a discontinuous transition of the set X0(α, ~u)
from being single-valued to be multivalued at α = 1 (falls into the case of Fig. S3
(b)). We would have a similar discontinuous change in E(α, ~u), when instead ~u is a
left-infinite sequence that has 1’s except for finitely many non-zero elements between
0 and !1. In such a case, at the bifurcation value αt, the input ~u would be such that
infinite number of elements u in ~u render the maps g(αt, u, ·) to be non-contracting
on some subset of X and finitely many elements u in ~u render the maps g(αt, u, ·) to
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be contracting, and the result is a hard-ESP threshold at αt.

We conjecture that for inputs ~u that are not asymptotically periodic or that does not
converge to a limit, αt would only be a hard-ESP threshold and that in an interval
[αt, b], the set-valued function E(·, ~u) would be not l.s.c and hence discontinuous.

Theorem 3 distinguishes the two ESP thresholds defined in [1] and, more generally,
the continuous or discontinuous points of the parameter-encoding map through the
notion of equicontinuity of the parameter-encoding family. Intuitively, equicontinu-
ity is meant to deal with continuity of the entire set of functions at once. Formally,
a family of functions {fi}i∈I defined between two metric spaces X and Y is equicon-
tinuous at x ∈ X if for every ε > 0, there exists a δ > 0 such that dX(x, y) < δ would
imply dY (fi(x), fi(y)) < ε for all i ∈ I. The family {fi}i∈I is said to be equicontin-
uous on a set A ⊂ X if it is equicontinuous at every point x ∈ A. A very simple
example, is family of functions defined by fn(x) = xn, n = 1, 2, . . . on [0, 1] is not
equicontinuous at 1 since for instance when ε = 1/2, for every δ > 0, there is an n
large enough so that |fn(y)− fn(y)| = |1− yn| > ε while y ∈ (1− δ, 1). The family of
functions is equicontinuous for x ∈ [0, 1) though. Similar to this behavior, we witness
a discontinuity in the parameter-encoding map when the parametric encoding family
{En(·, ~u)} fails to be equicontinuous as Theorem 3 asserts.

Theorem 3. Consider an open-parametric-driven system g and an input ~u. The
parameter-encoding map E(·, ~u) is continuous at β if and only if {En(·, ~u)} is
equicontinuous at β. In particular, when α is a real-parameter in the interval
[a, b] and αt is the ESP threshold, then αt is a soft-ESP threshold when {En(·, ~u)}
is equicontinuous at β and a hard-threshold otherwise.

Proof. We first show that {En(·, ~u)} is equicontinuous at β implies E(·, ~u) is
continuous at β. To prove this it is sufficient to show that given a sequence, αk → β
we have E(αk, ~u) → E(β, ~u). Fix a sequence αk → β. We know by definition of the
sets En(α, ~u), En(α, ~u)→ E(α, ~u) for every α. Hence for a given ε > 0, we can define
N(α) to be an integer such that dH(E(α, ~u), En(α, ~u)) < ε/3 for all n > N(α). Thus
for every k ∈ N, we deduce

dH(E(αk, ~u), E(β, ~u)) ≤ dH(E(αk, ~u), En(αk, ~u)) + dH(En(αk, ~u), En(β, ~u)) +

dH(En(β, ~u), E(β, ~u))

≤ ε/3 + dH(En(αk, ~u), En(β, ~u)) + ε/3,

whenever n > max(N(αk), N(β)). Since {En(·, ~u)} is equicontinuous at β, there
exists an integer K such that for k > K, dH(En(αk, ~u), En(β, ~u)) ≤ ε/3. Hence,
E(αk, ~u)→ E(β, ~u).
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Next, to show E(·, ~u) is continuous at β implies {En(·, ~u)} is equicontinuous at β, we
prove its contrapositive. Let {En(·, ~u)} be not equicontinuous at some fixed β. Then,
there exists an ε > 0, a sequence αk → β and a sequence of integers nk → ∞ such
that dH(Enk

(αk, ~u), Enk
(β, ~u)) > 3ε0 > 0. Hence, by triangle inequality,

3ε0 < dH(Enk
(αk, ~u), Enk

(β, ~u)) ≤ dH(Enk
(αk, ~u), E(αk, ~u)) + (4)

dH(E(αk, ~u), E(β, ~u)) + dH(E(β, ~u), Enk
(β, ~u)).

Since En(β, ~u) → E(β, ~u), given ε0 > 0, we can find an integer M such that the
inequality dH(EM(β, ~u), E(β, ~u)) < ε0 holds. Note EM(·, ~u) is continuous for any finite
M by (iii) of Lemma 2. Assume E(·, ~u)) is continuous at β. Hence, by continuity
the set Vβ := {α ∈ Λ : dH(EM(α, ~u), E(α, ~u)) < ε0} contains a neighborhood of β in
the space Λ. Since En(β, ~u) is monotonically decreasing, dH(En(β, ~u), E(β, ~u)) → 0
monotonically. Hence Vβ := {α ∈ Λ : dH(En(α, ~u), E(α, ~u)) < ε0 ∀ n ≥ M}. There
exists an integer K1 so that for all k ≥ K, we have αk ∈ Vβ and nk ≥ M . Hence
the term dH(Enk

(αk, ~u), E(αk, ~u)) in (4) can be made less than ε0 whenever k ≥ K1.
Thus, for k ≥ K1 we can rewrite (4) as

3ε0 < dH(Enk
(αk, ~u), Enk

(β, ~u)) ≤ ε0 +

dH(E(αk, ~u), E(β, ~u)) + dH(E(β, ~u), Enk
(β, ~u)).

Now, by the assumption of continuity of E(·, ~u) at β, there exists an integer K2 so
that dH(E(αk, ~u), E(β, ~u)) < ε0. Also since Enk

(β, ~u)) → E(β, ~u), there exists an
integer K3 so that dH(E(β, ~u), Enk

(β, ~u)) < ε0. For k ≥ max(K1, K2, K3), we have
3ε0 < ε0 + ε0 + ε0 which is absurd. Hence our assumption E(·, ~u)) is continuous at
β is incorrect. When Λ = [a, b] and αt is the ESP threshold, setting β = αt in the
above proof, we obtain αt to be the soft-ESP threshold and the hard-ESP threshold
when {En(·, ~u)} is equicontinuous and not-equicontinuous respectively at αt. �

5 Data used in the Figures of [1, Section 2]

We furnish details used in the computations involved in the figures in [1]. All figures
referred here are from [1].

Details used in Fig. 2. The dynamics of a RNN using a sinusuoidal input of
length 5000 with a maximum amplitude of 1 is used to obtain two sequences xn+1 =
tanh(Au + αBx) by setting α = 1.02 and α = 1.05 in two separate computations;
here A and B (with unit spectral radius) and the initial condition x0 are all chosen
randomly, and they are identical in both the computations.
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Details used in Fig. 3. We consider g(α, u, x) = tanh(Au + αBx), where A is
randomly generated while the matrix B with unit spectral radius is chosen to be

B =


0 2.0425 3.4566 1.6340
0 −0.4923 −1.4455 1.3617
0 0 0 2.0425

0.2409 0.7018 −1.1836 0

.

Details used in Fig. 4. We consider g(α, u, x) = tanh(Au+ αBx) with 2 neurons
and with 250 neurons (in two separate computations), a randomly generated input
of length 500, a input matrix A and a reservoir matrix B (chosen randomly, but with
unit spectral radius). For the plot on the left in Fig. 4, we use 1000 initial conditions
Y0 chosen on the boundary of X = [−1, 1]2 (to exploit the fact that when viewed as
g(α, u, ·) : Rn → Rn is an open mapping [9] and hence maps the boundary of a set to
its boundary). For the plot on the right, there were only 50 randomly chosen samples
in the space X = [−1, 1]250. Clearly, in both plots of Fig. 4, the clustering towards a
single-point for values of α is obvious. Hence, one does not need to be worried about
simulating the parameter-encoding map accurately if one’s task is only to identify if
E(·, ~u) has a single point-cluster or not. On the other hand, if one’s task is to identify
instabilities due to the parameter while there is no ESP, one needs to analyze the
parameter-encoding map further, as in Fig. 5.

Details used in Fig. 5. We use the parameter-stability plot to find the hard-ESP
threshold of an RNN. We employ the same RNN used in the plot on the right in Fig. 4
(the reservoir matrix B has a unit spectra radius) to obtain the parameter-stability
plot shown in (a) of Fig. 5. The smallest αk for which this plot turns conspicu-
ously positive can be identified as the hard-ESP threshold. Further, wherever the
parameter-encoding map is discontinuous, it fails to be lower-semicontinuous in view
of [8, Lemma 2], and hence it has wildly behaving explosions. Thus, the parameter-
stability plot in (a) of Fig. 5 is wiggly in addition to being positive for α > αt.
We remark that the scenario at a point of discontinuity of the parameter-encoding
map would be similar to the behavior at a point of discontinuity of the example
in Equation (4) in [1]). We note during the simulations, a very accurate approxi-
mation of E(αk, ~u) turns out to be not essential in determining the continuity and
discontinuity points of the parameter-encoding map. Even with few (here, 50) initial
conditions, we can identify the discontinuous points in the parameter-stability plot.
All numerical simulations are computationally inexpensive and quick (< 3 minutes).
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6 Cross-checking the inferences from the parameter-

stability plot in [1, Fig. 4]

.

We reproduce a plot from [1, Fig. 4 (a)] in Fig. S5. Several cross-checks can be made
to ensure that the idea of determining the ESP threshold via the parameter-stability
plot in Fig. S5 is robust in the sense that the finite approximations of the underlying
parameter-encoding map have not obscured the real value of αt. Firstly, for the RNN
employed in obtaining Fig. S5, we set two other additional step sizes |αk − αk−1|,
and observe similar behavior in the parameter-stability plot (see Fig. S6).

Figure S5: Parameter-Stability plot: γn(αk) = dH(En(αk, ~u), En(αk−1, ~u)) plotted
against αk with |αk − αk−1| = 0.005. The smallest value of αk where the plot
turns positive is the edge-of-criticality or the hard-ESP threshold αt in the interval
[0.7, 1.5].

Secondly, in Fig. S7, we verify the ESP threshold evaluated in Fig. S5 is nearly
synchronized with E(αk, ~u) turning from being single-valued in X to being multi-
valued. Towards, this end, we plot one coordinate of E(αk, ~u) against αk in the top
panel of Fig. S7. We reproduce Fig. S5 in the middle panel of Fig. S7. In the last
panel of Fig. S7, we place a plot of a heuristic measure of the deviation from a single
point-cluster C(αk, ~u) of E(αk, ~u) against αk. Since E(α, ~u) comprises elements of

18



X, one can define their centroid when X is a subset of RN . If E(α, ~u) is single-
valued in X then it is identical to its centroid C(α, ~u) evaluated in X, and when it is
multivalued, there is an element of X that is different from the centroid of E(α, ~u),
and hence the cosine of the angle between such an element and the centroid falls
away from 1. With this idea, we define the clustering coefficient Cn(α, ~u) of the set
En(α, ~u) (that takes a value closer to 1 while it is close to single point-cluster and
decreases as it moves away from being a point-cluster) by

Cn(α, ~u) := min

(
Mα · y
||Mα||||y||

: y belongs to En(α, ~u)

)
, (5)

where Mα is the centroid of the set En(α, ~u) and Mα · y represents the dot product
of the two vectors Mα and y. We observe the collated plots corroborate with the
estimate αt.

Thirdly, we observe the effect of scaling the input on the ESP threshold αt obtained
in Fig. S5 or Fig. S7. The RNN we consider is contractible at any α > 0 since when
the input’s amplitude is sufficiently large, the dynamics of the RNN is driven to
a subdomain of the state-space where there is contraction. This phenomenon also
means that for an RNN, increasing the amplitude of the input should increase the
ESP threshold (for a precise result, see [4, (ii) of Theorem 2]). We scale the input
~u used in the computations in Fig. S7 by a factor of 1.5, and then as expected, we

observe in Fig. S8 that the hard-ESP threshold increases as well.

Figure S6: Parameter-stability plot in all three panels; Top panel: |αk − αk−1| =
0.01, Middle Panel: |αk − αk−1| = 0.005 (parameter-stability plot – Fig. S5 that is
reproduced), Bottom Panel: |αk − αk−1| = 0.001.
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Figure S7: Complementary plots. Top Panel: Single coordinate of the parameter-
encoding map (or states in a single neuron) against αk. Middle Panel : parameter-
stability plot – Fig. S5 that is reproduced. Bottom Panel: Clustering coefficient
defined in (5) against αk.
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