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Abstract. A quasivariety K of algebras has the joint embedding prop-
erty (JEP) iff it is generated by a single algebra A. It is structurally
complete iff the free ℵ0-generated algebra in K can serve as A. A conse-
quence of this demand, called ‘passive structural completeness’ (PSC), is
that the nontrivial members of K all satisfy the same existential positive
sentences. We prove that if K is PSC then it still has the JEP, and if it
has the JEP and its nontrivial members lack trivial subalgebras, then its
relatively simple members all belong to the universal class generated by
one of them. Under these conditions, if K is relatively semisimple then it
is generated by one K-simple algebra. We also prove that a quasivariety
of finite type, with a finite nontrivial member, is PSC iff its nontrivial
members have a common retract. The theory is then applied to the
variety of De Morgan monoids, where we isolate the sub(quasi)varieties
that are PSC and those that have the JEP, while throwing fresh light
on those that are structurally complete. The results illuminate the ex-
tension lattices of intuitionistic and relevance logics.

1. Introduction

Familiar logics often have an algebraic counterpart that is a quasivariety
K of algebras; in many cases it is a variety. In this situation, the derivable
inference rules of the logic may or may not be determined by a single set
of ‘truth tables’, i.e., by the operation tables of a single algebra A ∈ K.
If some member of K determines the finite rules of the logic, then another
member determines all of the rules (see Remark 5.13), so what is needed is
only that K be generated by a single algebra. Even when K is a variety, it
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must be generated as a quasivariety by one of its members, if the generator
is to determine rules (as opposed to theorems only).

Obviously, classical propositional logic has this property: its algebraic
counterpart—the variety of Boolean algebras—is generated as a quasivariety
by its unique two-element member. More surprisingly, the same holds for
intuitionistic propositional logic (though not with a finite algebra), and for
the relevance logic R [70], but not for its conservative expansion Rt (with
the so-called Ackermann constants of [1]). In the intuitionistic case, the
algebra determining the (possibly infinite) rules cannot be countable [72].

Maltsev [43] proved that a quasivariety K is generated by a single algebra
iff it has the joint embedding property (JEP), i.e., any two nontrivial mem-
bers of K can both be embedded into some third member. By [20, Thm. 3],
the JEP amounts to a syntactic ‘relevance principle’ (Definition 5.11 below),
which stems from a result of  Loś and Suszko [39].

Various strengthenings of the JEP have received attention in the litera-
ture. Their names reflect logical origins, but we choose maximally trans-
parent characterizations here as definitions. One such strengthening, called
structural completeness, asks (in effect) that a quasivariety be generated by
its free ℵ0-generated member. A weaker variant, now called passive struc-
tural completeness (PSC), amounts to the demand that any two nontrivial
members of K have the same existential positive theory. This hereditary
property still implies the JEP (Theorem 4.3).

Our original goal was to investigate these properties for classes of De
Morgan monoids (i.e., the models of Rt). It became clear, however, that
in many of our results, large parts of the proofs had a general universal
algebraic (or even model-theoretic) character, so the first half of this paper
concerns such generalities. We call K a Kollár quasivariety (after [36]) if
its nontrivial members lack trivial subalgebras. We prove that if such a
quasivariety has the JEP, then its relatively simple members all belong to
the universal class generated by one of them (Theorem 5.6). If, in addition,
K is relatively semisimple, then it is generated (as a quasivariety) by one
K-simple algebra. We prove that a quasivariety of finite type with a finite
nontrivial member is PSC iff its nontrivial members have a common retract
(Theorem 7.6).

The second half of the paper deals with (quasi)varieties of De Morgan
monoids, and some closely related residuated structures. Among other re-
sults, we describe completely the varieties of De Morgan monoids that are
PSC (Theorem 8.7), and characterize those with the JEP (Theorem 8.8).
The structurally complete varieties of De Morgan monoids fall into two
classes—a denumerable family that is fully transparent and a more opaque
collection of subvarieties of a certain PSC variety M. We prove that this M
also has uncountably many structurally incomplete subvarieties, by exhibit-
ing 2ℵ0 structurally incomplete varieties of Brouwerian algebras (of depth
3) and applying a ‘reflection’ construction (Theorems 9.6 and 10.8).
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2. Preliminaries

We deal with structures A = 〈A;F ;R〉, where F [resp. R] is a set of
finitary operations [resp. relations] on the non-empty set A. Constants, i.e.,
distinguished elements of A, are treated as nullary basic operations. We call
A finite [resp. trivial ] if its universe A is finite [resp. |A| = 1 and R consists
of non-empty relations]. Of course, structures model first-order signatures,
a.k.a. types. An infinite set Var of variables is fixed for the entire discussion.
Formulas of any kind are assumed to involve only variables from Var . Recall
that a first-order formula with no free variable is called a sentence. For a
set Σ of first-order formulas, the notation K |= Σ means that the universal
closure ∀x̄Φ of each Φ ∈ Σ is true in every structure belonging to K.

An atomic formula of a first-order signature is a formal equation α ≈ β
between terms or an expression r(α1, . . . , αm), where r is a basic relation
symbol and each αj a term. A basic Horn formula has the form

(& i<n Φi) =⇒ Φn, (1)

where n ∈ ω and Φ0, . . . ,Φn are atomic formulas. We call (1) a quasi-
equation if Φ0, . . . ,Φn are equations. A variety [resp. quasivariety ] is the
model class of a set of atomic [resp. basic Horn] formulas. It is said to be
algebraic if it consists of algebras A = 〈A;F 〉, i.e., of structures with no
indicated relation.

The class operator symbols I, H, S, E, P, Ps, Pu and Ru stand for closure
under isomorphic and homomorphic (surjective) images, substructures, ex-
tensions (i.e., superstructures), direct and subdirect products, ultraproducts
and ultraroots, respectively. Homomorphisms between similar structures are
assumed to preserve basic relations (as well as operations), but they need not
reflect the relations. An isomorphism is a bijective homomorphism whose
inverse function is also a homomorphism. An embedding of a structure A
into a structure B is an isomorphism from A onto a substructure of B. In
a given signature, the direct product of the empty family is interpreted as a
trivial structure. For each class operator O, we abbreviate O({A1, . . . ,An})
as O(A1, . . . ,An).

Let K be a class of similar structures. We say that K is elementary [resp.
universal ] if it is the model class of a set of first-order [resp. universal first-
order] sentences. This amounts to the demand that K be closed under Ru

[resp. S], I and Pu. The smallest universal class containing K is ISPu(K). The
smallest variety [resp. quasivariety] containing K is V(K) := HSP(K) [resp.
Q(K) := ISPPu(K)]. The origins of these claims are discussed in [27, Ch. 2]
and [8, Sec. V.2], where proofs can also be found. Recall that Pu(K) ⊆ I(K)
if K is a finite set of finite structures.

Let K be a quasivariety, with A ∈ K. We say that A is [finitely ] K-
subdirectly irreducible if the following is true for every [finite non-empty] set
I and every family {Ai : i ∈ I} of members of K : whenever an embedding
h : A −→

∏
I Ai is subdirect (i.e., πjh[A] = Aj for each of the projections
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πj :
∏

I Ai −→ Aj), then πi ◦h : A ∼= Ai for some i ∈ I. We say that A is K-
simple if it is nontrivial and every homomorphism from A onto a nontrivial
member of K is an isomorphism. The prefix ‘K-’ is often replaced by the
word ‘relatively’ when K is understood; it is redundant when K is a variety.
We denote by KRSI [resp. KRFSI ; KRS ] the class of K-subdirectly irreducible
[resp. finitely K-subdirectly irreducible; K-simple] members of K. Thus,
KRS ⊆ KRSI ⊆ KRFSI , and KRSI includes no trivial structure. The analogue
of Birkhoff’s subdirect decomposition theorem holds, i.e., K = IPs(KRSI ) [27,
Thm. 3.1.1]. If every K-subdirectly irreducible member of K is K-simple, then
K is said to be relatively semisimple.

Because the image of a homomorphism is always a substructure of the
co-domain, these definitions have the following consequence.

Fact 2.1. If h : A −→ B is a homomorphism between members of a quasi-
variety, where A is relatively simple and B has no trivial substructure, then
h is an embedding.

3. Existential Positive Sentences

Recall that, up to logical equivalence, an existential positive sentence is
a first-order sentence of the form ∃x1 . . . ∃xn Φ, where Φ is a (quantifier-
free) disjunction of conjunctions of atomic formulas. Such sentences have a
central place in the model theory of ‘positive logic’ (see [58], for instance).
For present purposes, their main significance derives from Theorems 3.1 and
4.3 below. They may be variable-free (and hence quantifier-free).

Given a structure A = 〈A;F ;R〉, with S ⊆ A, let AS = 〈A;F ∪ S0;R〉,
where S0 consists of the elements of S, treated as new nullary operations on
A. Let Th(A) [resp. Diag(A)] denote the set of all [resp. all atomic] first-
order sentences that are true in AA. A substructure B of A is called an ele-
mentary substructure (and A an elementary extension of B) if AB |= Th(B).
In this case A and B are elementarily equivalent, i.e., they satisfy the same
first-order sentences. An embedding is elementary if its image is an ele-
mentary substructure of its co-domain. Every structure is elementarily em-
beddable into each of its ultrapowers.

The next result appears to be folklore. It can be inferred from [28,
Thm. 1.2] (also see [27, Thm. 2.3.11] and [68, Thm. 3.7]), but we provide
a direct proof below.

Theorem 3.1. Let A and B be similar structures. Then B satisfies every
existential positive sentence that is true in A iff there is a homomorphism
from A into an ultrapower of B.

Proof. (⇒) Let Σ be a finite subset of Diag(A). By assumption, Σ∪Th(B)
has a model that is an expansion of BB by suitable interpretations inB of the
elements of A occurring (as constant symbols) in Σ. By the Compactness
Theorem, therefore, Diag(A) ∪ Th(B) has a model, C, say. Let C− be
the reduct of C in the signature of A,B. Now C− is isomorphic to an
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elementary extension of B, because C is a model of Th(B). (In particular,
the negated atomic sentences in Th(B) separate the elements of B.) As C−

and B have the same universal theory, C− embeds into an ultrapower U of
B. Also, there is a homomorphism from A into C−, because C is a model
of Diag(A), so there is a homomorphism from A into U .

(⇐) Clearly, existential positive sentences persist in homomorphic im-
ages, in extensions and in ultraroots. �

Corollary 3.2. The model class of the set of existential positive sentences
satisfied by a structure A is RuEH(A).

Corollary 3.3. The following demands on a quasivariety K are equivalent.

(i) The nontrivial members of K all satisfy the same existential positive
sentences.

(ii) For any two nontrivial members of K, each can be mapped homo-
morphically into an ultrapower of the other.

Definition 3.4. A quasivariety is said to be passively structurally complete
(PSC) if it satisfies the equivalent conditions of Corollary 3.3. (The termi-
nology will be justified in Sections 6 and 7.)

4. The Joint Embedding Property

Definition 4.1. A class K of similar structures is said to have the joint
embedding property (JEP) if, for any two nontrivial structures A,B ∈ K,
there exists C ∈ K such that A and B can both be embedded into C.

For quasivarieties, the characterization of the JEP given below was proved
in [43, Thm. 4] (also see [45, p. 288] or [27, Prop. 2.1.19]).

Theorem 4.2. (Maltsev) A quasivariety K has the JEP iff it is generated
by a single structure (i.e., there exists A ∈ K such that K = Q(A)).

Additional characterizations of the JEP for a quasivariety K can be found
in [20, Thm. 3] and implicitly in [31, Thm. 1.2]. They include the following.1

(i) For each set S of nontrivial members of K, there exists a member of
K into which every member of S embeds.

(ii) Whenever Φ and Ψ are universal sentences whose disjunction ΦtΨ
is true in all nontrivial members of K, then there exists Ξ ∈ {Φ,Ψ}
such that Ξ is true in every nontrivial member of K.

(iii) Whenever Φ and Ψ are existential sentences, each of which is true in
some nontrivial member of K, then their conjunction Φ & Ψ is true
in some nontrivial member of K.

1 In [31], the JEP is formulated for arbitrary first-order theories, without the restriction
to nontrivial models, and its equivalence with each of (i)–(iv) (likewise unrestricted) is
inferred from a result proved in [75].
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(iv) Whenever Σ is a set of existential sentences, each of which is true
in at least one nontrivial member of K, then there is a nontrivial
member of K in which all sentences from Σ are true.

Easily, (ii) and (iii) follow from the JEP, and (iv) from (i). To prove (i),
we apply the Compactness Theorem to Σ ∪ {Diag(A) : A ∈ S}, where Σ is
a set of sentences axiomatizing K and each Diag(A) is the set of atomic or
negated atomic sentences that are true in AA. (We arrange first that the
members of S are disjoint.) 2

Because the JEP need not persist in subvarieties (see Example 8.11), the
following result is of interest.

Theorem 4.3. If a quasivariety is PSC (see Definition 3.4), then it has the
JEP, and so do all of its subquasivarieties.

Proof. Let A,B be nontrivial members of a PSC quasivariety K. Then there
are homomorphisms f : A −→ Bu and g : B −→ Au, for suitable ultrapowers
Au and Bu of A and B, respectively. Recall that there are (elementary)
embeddings eA : A −→ Au and eB : B −→ Bu. Consider the maps

〈eA, f〉 : A −→ Au ×Bu and 〈g, eB〉 : B −→ Au ×Bu

defined by the following rules: for every a ∈ A and b ∈ B,

〈eA, f〉(a) = 〈eA(a), f(a)〉 and 〈g, eB〉(b) = 〈g(b), eB(b)〉.

Clearly, 〈eA, f〉 and 〈g, eB〉 are embeddings, so A,B ∈ IS(Au × Bu), and
Au×Bu ∈ Q(A,B) ⊆ K. Thus, K has the JEP, as do its subquasivarieties,
in view of the argument—or by heredity of the PSC condition. �

The next result allows us to restrict attention to relatively subdirectly
irreducible structures when testing a quasivariety for the JEP.

Proposition 4.4. Let K be a quasivariety, and suppose that, whenever
A,B ∈ KRSI , then there exists C ∈ K such that A and B can both be
embedded into C. Then K has the JEP.

Proof. Let A,B ∈ K be nontrivial. Then

A ∈ IPs{Ai : i ∈ I} and B ∈ IPs{Bj : j ∈ J}

for suitable Ai,Bj ∈ KRSI , where I and J are non-empty sets. We may
assume that I ⊆ J . Fixing ` ∈ I and defining Aj = A` for all j ∈ J\I, we
find that A ∈ IPs{Aj : j ∈ J}. By assumption, for each j ∈ J , there exists
Cj ∈ K such that Aj ,Bj ∈ IS(Cj). Then

∏
J Aj and

∏
J Bj both embed

into C :=
∏

J Cj ∈ K, so A,B ∈ IS(C). �

2 In fact, the JEP implies that the K-free product of the members of any set S ⊆ K
exists in K, so it can serve as the common extension in (i); see [20, Thm. 3] and [43, Cor. 3].
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A quasivariety is said to be finitely generated if it has the form Q(K) for
some finite set K of finite structures. In this case, as Q = IPsSPu, we have
Q(K)RSI ⊆ IS(K), where S(K) is again a finite set of finite structures. There-
fore, it follows from Proposition 4.4 that the JEP is a decidable property for
finitely generated quasivarieties of finite type.

A structure is said to be n-generated (where n is a cardinal) if its algebra
reduct has a generating subset with at most n elements. In this context,
‘finitely generated ’ means ‘n-generated for some n ∈ ω’.

Remark 4.5. Let m be the maximum of ℵ0 and the cardinalities of the
respective sets of operation and relation symbols of a quasivariety K with
the JEP. Then K = Q(A) for some structure A for which |A| ≤ m. To see
this, let V be a denumerable subset of Var , and let Σ be the set of all basic
Horn formulas over V that are not satisfied by K, so |Σ| ≤ m. For each
Φ ∈ Σ, we can choose AΦ ∈ K such that AΦ is finitely generated (whence
|AΦ| ≤ m) and AΦ 6|= Φ. As K has the JEP, {AΦ : Φ ∈ Σ} ⊆ IS(A) for
some A ∈ K, by item (i) after Theorem 4.2. Clearly, we may choose A to be
generated by the union of the images of the structures AΦ, whence |A| ≤ m.
Now A refutes every formula from Σ, whence K = Q(A).

5. Algebraic Quasivarieties and the JEP

From now on, we confine our attention to algebraic quasivarieties.

Given an algebraic quasivariety K and an algebra A of the same type,
the K-congruences (a.k.a. relative congruences) of A are the congruences θ
such that A/θ ∈ K. They form an algebraic lattice ConKA, ordered by
inclusion, in which meets are intersections and the compact elements are
just the finitely generated K-congruences. We denote by ΘA

K Y the least
K-congruence of A containing a subset Y of A2. When Y = {〈a, b〉}, we
write ΘA

K (a, b) for the principal K-congruence ΘA
K Y . An algebra A ∈ K

belongs to the class KRSI [resp. KRFSI ; KRS ] iff, in ConKA, the identity
relation idA := {〈a, a〉 : a ∈ A} is completely meet-irreducible [resp. meet-
irreducible; a co-atom]. When K is a variety and A ∈ K, the congruences and
K-congruences of A coincide, so the prefixes and subscripts can be dropped.

An algebraic quasivariety is said to be nontrivial if it has a nontrivial
member. In that case, it has a relatively simple member [27, Thm. 3.1.8];
for algebraic varieties, this was proved earlier by Magari [40]. On the other
hand, a finitely generated algebra need not have a simple homomorphic
image [33, p. 154]. Conditions that guarantee relatively simple homomor-
phic images are given in the next lemma, which adapts [33, pp. 153–4] to
quasivarieties.

Lemma 5.1. Let A be a nontrivial member of an algebraic quasivariety K.

(i) If the total relation A2 is compact in ConKA, then A has a rela-
tively simple homomorphic image in K.
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(ii) If A is finitely generated and of finite type, then A2 is compact in
ConKA, so A has a relatively simple homomorphic image in K.

Proof. (i) If ⊥ is the least element of an algebraic lattice L and y ∈ L\{⊥}
and y is compact in L, then {x ∈ L : y 
 x} has a maximal element, by
Zorn’s Lemma. Setting L = ConKA and y = A2, we conclude that, under
the given assumptions, A has a maximal proper K-congruence θ, whence
A/θ ∈ K is K-simple.

(ii) Suppose A is generated by a finite subset X of A. Let Y be the
union of X and the set of all f(a1, . . . , an) such that n ∈ ω, f is a basic n-
ary operation of A and a1, . . . , an ∈ X. Then A2 = ΘA(Y 2) ⊆ ΘA

K (Y 2). If

A has finite type, then Y 2 is finite, so A2 = ΘA
K (Y 2) is compact in ConKA,

and the last assertion follows from (i). �

Definition 5.2. An algebraic quasivariety will be called a Kollár quasi-
variety if each of its nontrivial members has no trivial subalgebra.

Clearly, an algebraic quasivariety K is a Kollár quasivariety if its signature
includes two constant symbols that take distinct values in every nontrivial
member of K. This situation is common in algebraic logic, e.g., every quasi-
variety of Heyting algebras is a Kollár quasivariety. The result below was
proved first for varieties by Kollár [36], hence our nomenclature. Further
characterizations of Kollár quasivarieties have been given by Campercholi
and Vaggione [10, Prop. 2.3].

Theorem 5.3. (Gorbunov [26], [27, Thm. 2.3.16]) An algebraic quasivariety
K is a Kollár quasivariety iff A2 is compact in ConKA for every A ∈ K.

Corollary 5.4. Every nontrivial member of a Kollár quasivariety has a
relatively simple homomorphic image.

Proof. This follows from Theorem 5.3 and Lemma 5.1(i). �

Note that an algebra is 0-generated iff it has a distinguished element
and no proper subalgebra. An algebra with a distinguished element has
a unique 0-generated subalgebra, which is its smallest subalgebra. These
assertions and the first and last items of the next result are not always true
for structures.3

Proposition 5.5. Let K be an algebraic quasivariety with the JEP.

(i) ([38]) Any two nontrivial 0-generated members of K are isomorphic.
(ii) If K has a constant symbol, then K is a Kollár quasivariety or every

member of K has a trivial subalgebra.
(iii) Every nontrivial 0-generated member of K is relatively simple.

3 Theorem 5.3 is generalized in [27] to structures having only finitely many basic rela-
tions, using an analogue of (relative) congruences that will not be discussed here.
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Proof. (i) Let A,B ∈ K be nontrivial and 0-generated. By the JEP, there
exist C ∈ K and embeddings g : A −→ C and h : B −→ C. As g[A] and h[B]
are 0-generated substructures of C, they coincide, so h−1|h[B] ◦ g : A ∼= B.

(ii) Let c be a constant symbol of K. If A ∈ K has no trivial subal-
gebra, then for some basic operation symbol f of A, the atomic sentence
f(c, c, . . . , c) ≈ c (briefly, Φ) is false in A. In that case, if B ∈ K has a
proper trivial subalgebra, then Φ is true in B, so A and B have no common
extension, contradicting the JEP.

(iii) Let A ∈ K be nontrivial and 0-generated. Then K has a constant
symbol and A has no trivial subalgebra, so K is a Kollár quasivariety, by
(ii). Therefore, A has a homomorphic image B ∈ KRS , by Corollary 5.4.
Since B is also 0-generated and nontrivial, it is isomorphic to A, by (i), so
A is relatively simple. �

The assumption that K has a constant symbol cannot be dropped from (ii),
even when K is an algebraic variety (see Example 8.11).

Theorem 5.6. Let K be a nontrivial Kollár quasivariety with the JEP.
Then there is a relatively simple algebra A ∈ K such that ISPu(A) includes
every relatively simple member of K.

Consequently, Q(KRS ) = Q(A), so Q(KRS ) also has the JEP.

Proof. For any algebra B, let EPS(B) denote the set of existential positive
sentences that are true in B. As K has the JEP, Theorem 4.2 shows that
K = Q(C) for some C ∈ K. Since K is nontrivial, so is C. By Corollary 5.4,
C has a homomorphic image A ∈ KRS . Observe that

A |= EPS(C), (2)

as A ∈ H(C). We claim, moreover, that

C |= EPS(B), for every B ∈ KRS . (3)

Indeed, because K = Q(C) = IPsSPu(C), we have KRS ⊆ KRSI ⊆ ISPu(C),
so C ∈ RuEH(B) for all B ∈ KRS . Thus, (3) follows from Corollary 3.2.

Now let B ∈ KRS . Then A |= EPS(B), by (2) and (3), so there is a
homomorphism h : B −→ U for some ultrapower U of A, by Theorem 3.1.
Since A is nontrivial, so is U . Then h is an embedding, by Fact 2.1, as K is
a Kollár quasivariety. Thus, B ∈ ISPu(A), as claimed.

This shows thatQ(KRS ) = Q(A), which has the JEP, by Theorem 4.2. �

Corollary 5.7. Let K be a nontrivial relatively semisimple Kollár quasi-
variety with the JEP. Then K = Q(A) for some relatively simple A ∈ K.

Proof. This follows from Theorem 5.6, as K = Q(KRSI ) and KRSI = KRS . �

Corollary 5.8. Let K be a nontrivial Kollár quasivariety with the JEP. If
the class of all relatively simple members of K is elementary, then it too has
the JEP.
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Proof. Let A,B ∈ KRS . By Theorem 5.6, there exist C ∈ KRS and embed-
dings A −→ U and B −→ V , where U ,V ∈ Pu(C). Because U and V are
elementarily equivalent, some ultrapower W of U is isomorphic to an ultra-
power of V , by the Keisler-Shelah Isomorphism Theorem [11, Thm. 6.1.15],
and of course W ∈ K. Then A and B both embed into W . Moreover, as W
is elementarily equivalent to C, and as KRS is elementary, W ∈ KRS . �

In view of Theorem 4.2 and Corollary 5.7, it is natural to ask whether a
quasivariety with the JEP must be generated by a relatively finitely subdi-
rectly irreducible structure. Even for algebraic PSC varieties, this is not the
case, as the next example shows (also see Example 9.7). Here, we require
Jónsson’s Theorem [32, 34], which asserts that V(C)FSI ⊆ HSPu(C) for any
subclass C of a congruence distributive algebraic variety. Recall that every
algebra with a lattice reduct generates a congruence distributive variety.

Example 5.9. Let K = V(A,B), where A and B are the only two non-iso-
morphic subdirectly irreducible five-element Heyting algebras. Like every
variety of Heyting algebras, K is PSC and therefore has the JEP (see Ex-
amples 7.9 below). Suppose K = Q(C), where C is finitely subdirectly
irreducible. By Jónsson’s Theorem, C ∈ HSPu(A,B) = HS(A,B) (as A
and B are finite), whence |C| ≤ 5. Now A and B are subdirectly irreducible
members of Q(C) = IPsSPu(C), so A,B ∈ ISPu(C) = IS(C) (as C is fi-
nite). Since |C| ≤ |A| , |B|, this forces A ∼= C ∼= B, a contradiction. Thus,
no finitely subdirectly irreducible algebra generates K as a quasivariety. �

An algebraic variety K is said to have equationally definable principal
congruences (EDPC) if there is a finite set Σ of pairs of 4-ary terms in its
signature such that, whenever A ∈ K and a, b, c, d ∈ A, then

〈c, d〉 ∈ ΘA(a, b) iff
(
ϕA(a, b, c, d) = ψA(a, b, c, d) for all 〈ϕ,ψ〉 ∈ Σ

)
.

In this case, K is congruence distributive and has the congruence extension
property (CEP), and its class of simple members is closed under ultraprod-
ucts [6].

Theorem 5.10. Let K be an algebraic variety with EDPC. Then the variety
V(A) has the JEP, for every simple algebra A ∈ K.

Proof. As K has EDPC, its class of simple members is closed both under Pu
and (by the CEP) under nontrivial subalgebras. So, when A ∈ K is simple,
the nontrivial members of HSPu(A) belong to ISPu(A). In this case, by
Jónsson’s Theorem, V(A) = Q(A), which has the JEP, by Theorem 4.2. �

The JEP has a syntactic meaning in algebraic logic, which we recount
below in the context of algebraic quasivarieties. For a set Γ of formal equa-
tions, we denote by Var(Γ) the set of all variables x such that x occurs in
at least one member of Γ.

Definition 5.11. An algebraic quasivariety K is said to respect the relevance
principle if the following is true whenever Γ ∪∆ ∪ {ϕ ≈ ψ} is a finite set of
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equations, with Var(∆) ∩ Var(Γ ∪ {ϕ ≈ ψ}) = ∅, and ∆ is consistent over
K (i.e., there exist terms α, β such that K 6|= (&∆) =⇒ α ≈ β):

if K |= (& (Γ ∪∆)) =⇒ ϕ ≈ ψ, then K |= (&Γ) =⇒ ϕ ≈ ψ.

The next result is an algebraic analogue of the  Loś-Suszko Theorem ([39,
p. 182], corrected in [71]) which concerns sentential deductive systems, i.e.,
substitution-invariant finitary consequence relations over terms in an alge-
braic signature. (Variants of the  Loś-Suszko Theorem for special families of
deductive systems are discussed in [2, 24, 35, 41, 42, 70].)

Theorem 5.12. ([20]) An algebraic quasivariety has the JEP iff it respects
the relevance principle.

Proof. (⇒) This follows from item (ii) after Theorem 4.2, because quasi-
equations are essentially disjunctions, and because the sentences ∀x̄ (Φ tΨ)
and (∀x̄Φ)t (∀x̄Ψ) are logically equivalent when Φ and Ψ involve different
variables and are quantifier-free.

(⇐) If A,B are disjoint nontrivial members of an algebraic quasivariety
K, then the respective identity functions on A and B extend to surjective
homomorphisms πA : FK(A) −→ A and πB : FK(B) −→ B (where FK(X) de-
notes a member of K that is K-free over X). In F := FK(A∪B), let θ be the
K-congruence generated by the union of the kernels of πA and πB, and let
C = F /θ, so C ∈ K. The map a 7→ a/θ [resp. b 7→ b/θ] is a homomorphism
from A [resp. B] into C. Its injectivity follows from the relevance principle
for K, using the algebraicity of the lattice ConKF . �

Remark 5.13. For a class K of similar algebras, let U(K) be the class of all
algebras B such that every |Var |-generated subalgebra of B belongs to K.
In general, UISP(K) ⊆ Q(K), and the two need not be equal. Now suppose
K is a quasivariety with the JEP. Then K = UISP(A) for some A ∈ K,
by item (i) after Theorem 4.2, because the |Var |-generated members of K
form a set, up to isomorphism. Thus, if we allowed quasi-equations (over
Var) to have infinitely many premises, their validity in A would still entail
their validity throughout K. In fact, if we generalized Definition 5.11 to such
formulas, then Theorem 5.12 would remain true. For the case |Var | = ℵ0,
this point is made in [20, Thm. 3(vi)]. Even then, when we represent the
variety of Heyting algebras as Q(C) = UISP(D), the algebra C can be
chosen countable (by Remark 4.5), but D cannot (see [72]).

6. Structural Completeness

In a given algebraic signature, a substitution is an endomorphism of the
absolutely free algebra (a.k.a. the term algebra) generated by Var . For
an algebraic quasivariety K and a cardinal m, recall that the K-free m-
generated algebra FK(m) ∈ K exists iffm > 0 or K has a constant symbol. Of
course, every algebraic variety K is generated as such by its free denumerably
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generated algebra, i.e., K = V(FK(ℵ0)), but K need not coincide with the
quasivariety Q(FK(ℵ0)) (which has the JEP, by Theorem 4.2).

Theorem 6.1. ([3, Prop. 2.3]) The following conditions on an algebraic
quasivariety K are equivalent.

(i) K = Q(FK(ℵ0)).
(ii) Whenever K′ is a proper subquasivariety of K, then K′ and K gen-

erate distinct varieties, i.e., H(K′) ( H(K).
(iii) For each quasi-equation (ϕ1 ≈ ψ1 & · · · & ϕn ≈ ψn) =⇒ ϕ ≈ ψ that

is invalid in (some member of) K, there exists a substitution h such
that K |= h(ϕi) ≈ h(ψi) for i = 1, . . . , n, but K 6|= h(ϕ) ≈ h(ψ).

Definition 6.2. An algebraic quasivariety K is said to be structurally com-
plete (SC) if it satisfies the equivalent conditions of Theorem 6.1. It is
hereditarily structurally complete (HSC) if, in addition, its subquasivarieties
are all SC.

In particular, an algebraic variety K is SC iff each of its proper subquasi-
varieties generates a proper subvariety of K; it is HSC iff its subquasivarieties
are all varieties. These notions have logical origins: the algebraic counter-
part of an algebraizable deductive system ` (in the sense of [7]) is SC iff
every proper extension of ` has some new theorem—as opposed to having
nothing but new rules of derivation; it is HSC iff every extension of ` is
axiomatic (see for instance [55, 57, 61]). The terminology originates in [56].

7. Passive Structural Completeness

Every SC algebraic quasivariety K is PSC in the sense of Definition 3.4.
Indeed, if A,B ∈ K are nontrivial, then A has a homomorphic image
C ∈ KRSI , while B is an extension of a 1-generated homomorphic image of
FK(ℵ0), so it suffices to show that FK(ℵ0) satisfies the existential positive
sentences that are true in C. This is indeed the case, by Theorem 3.1, as
C ∈ ISPu(FK(ℵ0)) (because K = IPsSPu(FK(ℵ0)), by Theorem 6.1(i)). Alter-
natively, condition (iii) of Theorem 6.1 clearly entails the characterization
of passive structural completeness in Theorem 7.2 below.

The above argument and Theorem 4.3 establish the implications

HSC =⇒ SC =⇒ PSC =⇒ JEP,

none of which is reversible. A variety of lattices that is SC but not HSC
is exhibited in [3, Ex. 2.14.4]. It is well known (and follows, for instance,
from [50]) that the variety of Heyting algebras is not SC, but it is PSC (see
Examples 7.9). An algebraic variety with the JEP that is not PSC will be
pointed out in Example 8.11.

Definition 7.1. A set Γ of equations in the signature of an algebraic quasi-
variety K is said to be unifiable over K if there is a substitution h such that
K |= h(ϕ) ≈ h(ψ) for every equation ϕ ≈ ψ from Γ. A quasi-equation

(ϕ1 ≈ ψ1 & · · · & ϕn ≈ ψn) =⇒ ϕ ≈ ψ
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in the same signature is said to be active [resp. passive] over K if its set of
premises {ϕi ≈ ψi : i = 1, . . . , n} is [resp. is not] unifiable over K.

The next result amplifies the logical meaning of passive structural com-
pleteness. (It strengthens an earlier finding of Bergman [3, Thm. 2.7].)

Theorem 7.2. (Wroński [74, Fact 2, p. 68]) An algebraic quasivariety K is
PSC iff every quasi-equation that is passive over K is valid in (all members
of) K.

Theorem 7.2 motivates the ‘passive’ terminology used above, which is
adapted from [12]. A complementary demand, now called ‘active structural
completeness’ (ASC) and analysed in [9, 18], asks that condition (iii) of
Theorem 6.1 should hold for all active quasi-equations; also see [64]. Com-
putational aspects of these notions are explored in [17, 46, 69]. 4

Evidently, a quasi-equation is passive over an algebraic quasivariety K
iff it is passive over the variety V(K). It may happen that K is PSC for
the vacuous reason that no quasi-equation is passive over K (as applies, for
instance, to every quasivariety of lattices). The next theorem and its corol-
lary decode this case in model-theoretic terms. The conditions mentioned
in these results persist, of course, under varietal generation, unlike passive
structural completeness itself.

Theorem 7.3. Let K be an algebraic quasivariety. Then the following con-
ditions are equivalent.

(i) No quasi-equation is passive over K (i.e., every finite set of equations
in the signature of K is unifiable over K).

(ii) K is PSC and is either trivial or not a Kollár quasivariety.
(iii) Every member of K has an ultrapower with a trivial subalgebra.
(iv) FK(1) has an ultrapower with a trivial subalgebra.

Proof. (i)⇒ (ii): Certainly, K is PSC, by (i) and Theorem 7.2. If FK(1) is
trivial, then every member of K has a trivial subalgebra, so we may assume
that FK(1) is nontrivial.

Let Σ be the set of all existential positive sentences in the first-order sig-
nature of K, and let {f1, . . . , fn} be any finite set of basic operation symbols
of K. By (i), the equations fi(x, . . . , x) ≈ x (i = 1, . . . , n) are unifiable,
i.e., there is a term ϕ such that K |= fi(ϕ, . . . , ϕ) ≈ ϕ for i = 1, . . . , n.
Identifying variables, we see that ϕ may be chosen unary, whence

FK(1) |= ∃x (x ≈ f1(x, . . . , x) ≈ · · · ≈ fn(x, . . . , x)).

As {f1, . . . , fn} was arbitrary, this implies that FK(1) |= Σ. Let C ∈ K
be trivial. Of course, Σ is the set of all existential positive sentences that
hold in C, so by Theorem 3.1, C can be mapped homomorphically into an

4 Obviously, an ASC quasivariety is SC iff it is PSC. As Corollary 3.3 and Theorems 7.3
and 7.13 (below) do not assume active structural completeness, they cast a more general
light on items 3.2–3.4 and 4.1–4.3 of [9].



14 T. MORASCHINI, J.G. RAFTERY, AND J.J. WANNENBURG

ultrapower U of FK(1), i.e., U has a trivial subalgebra. Now U is nontrivial
(because FK(1) ∈ IS(U)), so K is not a Kollár quasivariety.

(ii)⇒ (iii): Let A ∈ K. We may assume that K is nontrivial (otherwise,
(iii) is immediate). Then, by (ii), some nontrivial B ∈ K has a trivial
subalgebra C, and K is PSC, so there is a homomorphism h : B −→ U for
some U ∈ Pu(A) (see Corollary 3.3). Now h[C] is a trivial subalgebra of U .

(iii)⇒ (iv) is immediate, since FK(1) ∈ K.

(iv)⇒ (i): Let U ∈ Pu(FK(1)), where U has a trivial subalgebra. Then,
for any finite set Γ of equations in the signature of K, the sentence ∃x (&Γ)
is true in U , so it is true in FK(1). Therefore, Γ is unifiable over K. �

Corollary 7.4. Let K be an algebraic quasivariety, either of finite type or
whose free 1-generated algebra is finite. Then no quasi-equation is passive
over K iff every member of K has a trivial subalgebra.

Proof. Sufficiency follows from Theorem 7.3. Conversely, suppose that no
quasi-equation is passive over K. Then some ultrapower A of FK(1) has a
trivial subalgebra, again by Theorem 7.3. It clearly suffices to show that
FK(1) has a trivial subalgebra. If FK(1) is finite, then it is isomorphic to
A, and we are done. If the signature of K is finite then, for its models, the
property of having a trivial subalgebra is expressed by an existential positive
sentence (which persists, of course, in ultraroots). In that case, FK(1) has a
trivial subalgebra, because A does. �

In general, however, the ultrapowers in Theorem 7.3 cannot be eliminated,
because of the next example.

Example 7.5. For n ∈ N = {1, 2, 3, . . . }, let fn : N −→ N be the function
such that fn(m) = m + n for m = 1, . . . , n and fn(m) = m whenever
n < m ∈ N. Let A be the algebra with universe N, whose set of basic
operations is {fn : n ∈ N}, and let K = V(A). In this signature, every
term that is not a variable has the form fi1 . . . fik(x) for some i1, . . . , ik ∈ N.
Therefore, since A generates K, every finite set of equations can be unified
over K by substituting fr(x) for every variable, where r is sufficiently large.
Thus, no quasi-equation is passive over K, but A is a nontrivial member of K
that has no trivial subalgebra. (For each non-principal ultrafilter U over N,
the ultrapower AN/U has a trivial subuniverse, viz. {〈1, 2, 3, . . . 〉/U}.) �

Recall that an algebra A is said to be a retract of an algebra B if there are
homomorphisms g : A −→ B and h : B −→ A such that h ◦ g is the identity
function idA on A. This forces g to be injective and h surjective.

The next result identifies the PSC quasivarieties of finite type containing
at least one finite nontrivial algebra.

Theorem 7.6. Let K be an algebraic quasivariety of finite type, with a finite
nontrivial member. Then the following conditions are equivalent.

(i) K is PSC.
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(ii) The nontrivial members of K have a common retract.
(iii) Each nontrivial member of K can be mapped homomorphically into

every member of K.

In this case, the nontrivial members of K have a finite common retract that
has no nontrivial proper subalgebra and is either trivial or relatively simple.

Moreover, when K is PSC, its nontrivial members have at most one non-
trivial common retract, and they have at most one 0-generated common
retract (up to isomorphism).

Proof. By assumption, K has a finite nontrivial member, and that algebra
has a relatively simple (finite nontrivial) homomorphic image A ∈ K.

(i)⇒ (ii): Possession of a trivial subalgebra is expressible, over K, by an
existential positive sentence, because K has finite type. Therefore, since K is
PSC, if some nontrivial member of K has a trivial subalgebra, then so does
every member of K. In that case, every member of K has a trivial retract.

We may therefore assume that K is a Kollár quasivariety. In particular,
A has no trivial subalgebra. To complete the proof of (ii), we shall show
that A is a retract of every nontrivial member of K.

Accordingly, let B ∈ K be nontrivial, so B has no trivial subalgebra.
Since A is finite and of finite type, there is an existential positive sentence Φ
such that an algebra in the signature of K satisfies Φ iff it has a subalgebra
that is a homomorphic image of A. As Φ is true in A, it is true in B,
because K is PSC (and since A and B are nontrivial). Therefore, there is a
homomorphism g : A −→ B. As A is relatively simple and B has no trivial
subalgebra, g is an embedding, by Fact 2.1. Moreover, since K is PSC, there
is a homomorphism h from B into an ultrapower of A, but A is finite, so
h : B −→ A. Thus, h ◦ g is an endomorphism of A.

Because A has no trivial subalgebra, the argument for the injectivity of
g applies equally to h ◦ g. Then, since h ◦ g is an injection from the finite
set A to itself, it is surjective, i.e., h ◦ g is an automorphism of A.

As the automorphism group of A is finite, (h ◦ g)n+1 = idA for some
n ∈ ω. Then, for the homomorphism k := g ◦ (h ◦ g)n : A −→ B, we have
h ◦ k = (h ◦ g)n+1 = idA. Thus, A is a retract of B, as claimed.

We have shown that a finite common retract A′ of the nontrivial mem-
bers of K exists and can be chosen relatively simple or trivial. Being finite,
A′ cannot be a retract of a proper subalgebra of itself, so it has no such
nontrivial subalgebra. In particular, if A′ is nontrivial, then it is isomor-
phic to any other nontrivial common retract of the nontrivial members of
K. Consequently, if A′ is 0-generated, then it is isomorphic to any other
common retract of the nontrivial members of K, because it is either trivial
or has no trivial subalgebra.

(ii)⇒ (iii): Let C,D ∈ K, where C is nontrivial. We may assume that D
is nontrivial, so there is a common retract A of C,D, by (ii). Then there
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exist a surjective homomorphism C −→ A and an embedding A −→ D,
whose composition is a homomorphism C −→D.

(iii)⇒ (i): Let C,D ∈ K be nontrivial. By (iii), C can be mapped
homomorphically into (an ultrapower of) D, so K is PSC. �

Note 7.7. In Theorem 7.6, the finiteness of the signature and the presence of
a finite nontrivial algebra in K are needed only for the implication (i)⇒ (ii).

It follows easily from Theorem 7.6(iii) that passive structural complete-
ness is a decidable property for finitely generated algebraic quasivarieties
of finite type. Also, 7.6(iii) amounts to the demand that each nontrivial
member of K is a retract of its direct product with any member of K.

Corollary 7.8. Let K be a PSC Kollár quasivariety of finite type, with a
finite nontrivial member. Then K has a unique relatively simple member (up
to isomorphism), and that algebra is a finite common retract of the nontrivial
members of K.

Proof. This follows from Theorem 7.6, because a relatively simple member
of a Kollár quasivariety is isomorphic to each of its retracts (by Fact 2.1). �

Examples 7.9. It follows from Theorem 7.6 that every variety consisting
of groups or of Heyting algebras is PSC (and therefore has the JEP, by
Theorem 4.3). Indeed, every nontrivial group has both a trivial retract
and a subgroup with a finite nontrivial homomorphic image, while the two-
element Boolean algebra is a retract of every nontrivial Heyting algebra. The
class of all distributive lattices is a PSC variety whose nontrivial members
have both a trivial and a nontrivial common retract, the latter being the
two-element lattice. In Corollary 7.8, we cannot drop the demand that K
be a Kollár quasivariety, as the variety of abelian groups satisfies the other
hypotheses, but includes all the simple groups Zp (p a positive prime). �

Remark 7.10. A 0-generated algebra A is a retract of an algebra B if
there exist homomorphisms g : A −→ B and h : B −→ A. For in this case,
every element of A has the form αA(c1, . . . , cn) for some term α and some
distinguished elements ci ∈ A, whence h ◦ g = idA, because homomorphisms
preserve distinguished elements (and respect terms).

Notation. For an algebraic quasivariety K, with A ∈ K, we define

Ret(K,A) = {B ∈ K : B is trivial or A is a retract of B}.
Theorem 7.11. Let K be an algebraic quasivariety of finite type, and A ∈ K
a finite 0-generated algebra.

(i) Ret(K,A) is a PSC quasivariety.
(ii) If A is nontrivial or K is not a Kollár quasivariety, then Ret(K,A)

is a maximal PSC subquasivariety of K.
(iii) If K′ is a maximal PSC subquasivariety of K, and if B′ ∈ K′ is finite

and nontrivial, then K′ = Ret(K,A′), where A′ is the 0-generated
subalgebra of B′.
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(iv) Every PSC subquasivariety of K that has a finite nontrivial member
is contained in just one maximal PSC subquasivariety of K.

Proof. Let L = Ret(K,A).

(i) It suffices, by Note 7.7, to show that L is a quasivariety. As L is iso-
morphically closed, we must show that it is closed under S, P and Pu, bearing
Remark 7.10 in mind. If C ∈ S(B) and h : B −→ A is a homomorphism,
then so is h|C : C −→ A, while any embedding A −→ B maps into C, as A
is 0-generated. Thus, L is closed under S. Let {Bi : i ∈ I} be a subfamily
of L, where, without loss of generality, I 6= ∅. For any j ∈ I, the projection∏

i∈I Bi −→ Bj can be composed with a homomorphism Bj −→ A, while A
embeds diagonally into

∏
i∈I Bi, so

∏
i∈I Bi ∈ L. As A is finite, it is isomor-

phic to each of its ultrapowers, so because PuH(L′) ⊆ HPu(L′) for any class
L′ of similar algebras, it follows that every ultraproduct of {Bi : i ∈ I} can
be mapped homomorphically to A. Also, as A is finite and of finite type,
the attribute of having a subalgebra isomorphic to A is first order-definable
and therefore persists in ultraproducts. Thus, L is closed under P and Pu.

(ii) Suppose L ⊆ K′ ⊆ K, where K′ is a PSC quasivariety. Then A ∈ K′.
If A is nontrivial, then Theorem 7.6 applies to K′ (because A is finite) and it
shows that, for every nontrivial C ∈ K′, there are homomorphisms A −→ C
and C −→ A (as K′ is PSC). In this case K′ ⊆ L, by Remark 7.10 (as A is
0-generated). We may therefore assume that A is trivial. Now suppose K
is not a Kollár quasivariety. Then A embeds into some nontrivial B ∈ K,
whence B ∈ L, and so B ∈ K′. Thus, K′ is not a Kollár quasivariety. Then
K′ ⊆ L, by Proposition 5.5(ii) and Theorem 4.3.

(iii) Let K′,B′,A′ be as described. By (i), it is enough to show that
K′ ⊆ Ret(K,A′). This will be true if every member of K′ has a trivial sub-
algebra (in which case A′ is trivial). We may therefore assume, by Proposi-
tion 5.5(ii) and Theorem 4.3, that K′ is a Kollár quasivariety (as K′ is PSC).
Then A′ is nontrivial, so it is K′-simple, by Proposition 5.5(iii). Thus,
K′ ⊆ Ret(K,A′), by Corollary 7.8.

(iv) follows from Theorem 7.6, together with (i)–(iii). �

A quasivariety is said to be minimal if it is nontrivial and has no non-
trivial proper subquasivariety. If we say that a variety is minimal (without
further qualification), we mean that it is nontrivial and has no nontrivial
proper subvariety. When we mean instead that it is minimal as a quasi-
variety, we shall say so explicitly, thereby avoiding ambiguity. Obviously,
any minimal algebraic quasivariety is HSC, and hence (P)SC. Recall that if
a (quasi)variety is finitely generated then it is locally finite, i.e., its finitely
generated members are finite [8, Thm. II.10.16].

Theorem 7.12. ([4]) Every locally finite congruence modular minimal al-
gebraic variety is also minimal as a quasivariety (and therefore HSC).

Theorem 7.13. A relatively semisimple algebraic quasivariety K is PSC iff
it is a minimal quasivariety or has no passive quasi-equation.
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Proof. Sufficiency is obvious. Conversely, let K be PSC and suppose that
some quasi-equation is passive over K. Then K is a nontrivial Kollár qua-
sivariety, by Theorem 7.3. Let A ∈ K be nontrivial. As K is relatively
semisimple, its minimality will follow if we can show that KRS ⊆ Q(A), so
let B ∈ KRS . Since B is nontrivial and K is PSC, there is a homomorphism
h from B into an ultrapower C of A. Of course, C is also nontrivial, so
h is an embedding, by Fact 2.1, because K is a Kollár quasivariety. Thus,
B ∈ IS(C) ⊆ ISPu(A) ⊆ Q(A), as required. �

The proof of Theorem 7.13 yields the following.

Corollary 7.14. If a relatively semisimple algebraic quasivariety with a
passive quasi-equation is PSC, then it is both a Kollár quasivariety and a
minimal quasivariety (and is therefore HSC).

Heyting and Brouwerian algebras model intuitionistic propositional logic
and its positive fragment, respectively (see Definition 10.1). We have noted
that all varieties of Heyting algebras are PSC; the same applies to Brouw-
erian algebras, as they have trivial retracts. Citkin has determined the
HSC varieties of Heyting algebras [14] and of Brouwerian algebras [15] (also
see Theorem 10.8 below). An analogous result for modal K4-algebras was
proved by Rybakov [63, 64]. Certain fragments of intuitionistic logic are
modeled by HSC varieties [49, 59, 60, 73] (also see [13]); for the case of rele-
vance logic, see [67] and [55, Sec. 6,9]. The next two sections of the present
paper focus on the algebras of relevance logic (in its full signature), and
their completeness properties.

8. De Morgan Monoids: A Case Study

De Morgan monoids were introduced by Dunn [16, 48]. In the terminology
of [7], they constitute the equivalent algebraic semantics for the principal
relevance logic Rt of [1], and the quasivarieties of De Morgan monoids al-
gebraize the extensions of Rt by new axioms and/or inference rules. There
is a transparent lattice anti-isomorphism from the subquasivarieties to the
extensions, with subvarieties corresponding to purely axiomatic extensions.
Accordingly, in [51, 52] we undertook an investigation of the lattice of vari-
eties of De Morgan monoids.

Even when we prioritize axiomatic extensions (as relevance logicians have
tended to), the completeness conditions in Theorems 4.2 and 6.1(ii),(iii)
arise naturally and call for a consideration of subquasivarieties as well. The
remainder of this paper therefore attempts to identify the (quasi)varieties
of De Morgan monoids that have such properties. We describe completely
the varieties that are PSC, and those that have the JEP, and we supply
some new information concerning structural completeness. In so doing, we
are led to consider two neighbouring families of residuated structures, viz.
Dunn monoids and Brouwerian algebras.
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Definition 8.1. A De Morgan monoid is an algebra A = 〈A; ·,∧,∨,¬, e〉
comprising a distributive lattice 〈A;∧,∨〉, a commutative monoid 〈A; ·, e〉
that is square-increasing (i.e., A satisfies x 6 x2 := x · x), and a function
¬ : A −→ A, called an involution, such that A satisfies ¬¬x ≈ x and

x · y 6 z ⇐⇒ x · ¬z 6 ¬y.
Here, α 6 β abbreviates α ≈ α ∧ β. We refer to · as fusion, and we define
f = ¬e. We denote by DMM the class of all De Morgan monoids (which is
a variety, by [24, Thm. 2.7]).

For A as in Definition 8.1, fusion distributes over ∨, while ¬ is an anti-
automorphism of 〈A;∧,∨〉, so De Morgan’s laws hold. The following facts
about any De Morgan monoid A are known (see [51] for sourcing).

(I) A is nontrivial iff its neutral element e is not its least element.
(II) A is simple iff e has just one strict lower bound in A.

(III) A is finitely subdirectly irreducible iff e is join-irreducible (or equiv-
alently, join-prime) in A.

(IV) A is subdirectly irreducible iff e is completely join-irreducible in A.
(V) If A has a least element ⊥, then a ·⊥ = ⊥ for all a ∈ A.

(VI) If A is finitely subdirectly irreducible and a ∈ A, then e 6 a or
a 6 f .

(VII) A satisfies f 6 e iff it is idempotent (i.e., a2 = a for all a ∈ A). In
this case A is called a Sugihara monoid. The odd Sugihara monoids
are the ones in which f = e.

(VIII) A satisfies x 6 f2 iff it is anti-idempotent, in the sense that the
variety V(A) has no nontrivial idempotent member.

(IX) A satisfies x 6 e iff it is a Boolean algebra (in which · duplicates ∧).
(X) In A, we have f3 = f2.

The variety OSM of all odd Sugihara monoids coincides with V(S) for
the algebra S whose universe is the set Z of all integers, whose lattice order
is the usual total order, whose involution ¬ is additive inversion, and whose
fusion is defined by

a · b =

{
the element of {a, b} with greater absolute value, if |a| 6= |b|;
a ∧ b if |a| = |b|.

For each n ∈ ω, let S2n+1 denote the subalgebra of S with universe

{−n, . . . ,−1, 0, 1, . . . , n}.
Up to isomorphism, the algebras S2n+1 (0 < n ∈ ω) are just the finitely
generated subdirectly irreducible odd Sugihara monoids (cf. [1, Sec. 29.4]).
Thus, every simple odd Sugihara monoid is isomorphic to S3, and the sub-
variety lattice of OSM is the chain

V(S1) ( V(S3) ( V(S5) ( . . . ( V(S2n+1) ( . . . ( V(S).

Theorem 8.2. ([54, 25]) Every quasivariety of odd Sugihara monoids is a
variety, i.e., the variety OSM is HSC.
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Infinite 1-generated De Morgan monoids exist, but 0-generated De Mor-
gan monoids are finite. Indeed, Slaney [65] proved that the free 0-generated
De Morgan monoid has exactly 3088 elements. Its congruence lattice has
just 68 elements, no two of which produce isomorphic factor algebras [52,
Cor. 3.6]. Let A1, . . . ,A68 denote the factor algebras, where A1 is trivial.
By the Homomorphism Theorem, these are all of the 0-generated De Mor-
gan monoids, up to isomorphism. The minimal quasivarieties of De Morgan
monoids are just V(S3) and Q(Ai), i = 2, . . . , 68 [52, Thm. 3.4]. As pas-
sive structural completeness persists in subquasivarieties, the next result is
a characterization of the PSC quasivarieties of De Morgan monoids.

Theorem 8.3. The maximal PSC subquasivarieties of DMM are just the
distinct classes Ret(DMM,Ai), i = 1, . . . , 68, and every nontrivial PSC
quasivariety of De Morgan monoids is contained in just one of these.

Moreover, Ret(DMM,A1) is the variety of odd Sugihara monoids. For
i > 1, each relatively simple member of Ret(DMM,Ai) is isomorphic to Ai.

Proof. A De Morgan monoid has a trivial subalgebra iff it is an odd Sugi-
hara monoid, so Ret(DMM,A1) = OSM, and DMM is not a Kollár variety.
Therefore, Ret(DMM,Ai) is a maximal PSC subquasivariety of DMM, for
i = 1, . . . , 68, by Theorem 7.11(i), (ii). Every maximal PSC subquasivariety
K′ of DMM, other than OSM, has a finite nontrivial member (viz. the 0-
generated subalgebra of any member of K′\OSM), so K′ = Ret(DMM,Ai)
for some i ∈ {2, . . . , 68}, by Theorem 7.11(iii), and every nontrivial PSC
subquasivariety of DMM is contained in Ret(DMM,Ai) for exactly one
i ∈ {1, . . . , 68}, by Theorem 7.11(iv). For i > 1, the common retract Ai

of Ret(DMM,Ai) is unique (up to isomorphism) and relatively simple, by
Theorem 7.6, since it is 0-generated and nontrivial. �

The PSC subvarieties of DMM are more limited. We depict below the
two-element Boolean algebra 2, the three-element Sugihara monoid S3, and
two four-element De Morgan monoids, C4 and D4. In each case, the labeled
Hasse diagram determines the structure. Recall that V(2) is the class of all
Boolean algebras.

s
se
f

2 : ss
s
e = fS3 :

ss
ssf2f
e

¬(f2)

C4 : s�� s
@@

s��s
@@

f2

e f

¬(f2)

D4 :

The second item of the next result is due to Slaney [66, Thm. 1]. The first
item is implicit in [66]; also see [51, Sec. 5]. The third follows from (VII)
and Theorem 8.2.

Theorem 8.4.

(i) A De Morgan monoid is simple and 0–generated iff it is isomorphic
to 2 or to C4 or to D4.
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(ii) Let h : A −→ B be a homomorphism, where A is a finitely subdirectly
irreducible De Morgan monoid, and B is 0–generated and nontrivial.
Then h is an isomorphism or B ∼= C4.

(iii) A quasivariety of De Morgan monoids is a Kollár quasivariety iff it
excludes S3.

Every finitely generated subdirectly irreducible Sugihara monoid that is
not a Boolean algebra can be mapped homomorphically onto S3. (This is
well known; see for instance [51, Sec. 5].) Consequently, every nontrivial
variety of Sugihara monoids contains 2 or S3. Moreover, a variety of De
Morgan monoids consists of Sugihara monoids iff it omits both C4 and D4

[51, Thm. 5.21], whence

V(2), V(S3), V(C4) and V(D4)

are precisely the minimal varieties of De Morgan monoids [51, Thm. 6.1].
(They are distinct, by Jónsson’s Theorem.) Theorem 8.4(ii) suggests that
C4 has more interesting homomorphic pre-images than the other simple
0-generated De Morgan monoids. We therefore make the abbreviation

N := Ret(DMM,C4) = {A ∈ DMM : |A| = 1 or C4 is a retract of A}.
The quasivariety N is not a variety [52, Sec. 4]. It is therefore not obvious
that N possesses a largest subvariety, but in fact it does.

Definition 8.5. We denote by M the variety of De Morgan monoids satis-
fying e 6 f and x 6 f2 and

f2 · ¬((f · x) ∧ (f · ¬x)) ≈ f2. (4)

Theorem 8.6. ([52, Thms. 4.13, 6.8]) M is the largest subvariety of N, and
M has 2ℵ0 distinct subvarieties.

We can now isolate the PSC varieties of De Morgan monoids.

Theorem 8.7. Let K be a variety of De Morgan monoids. Then K is PSC
iff one of the following four (mutually exclusive) conditions holds:

(i) K is the variety V(2) of all Boolean algebras;
(ii) K = V(D4);
(iii) K consists of odd Sugihara monoids;
(iv) K is a nontrivial subvariety of M.

Proof. By Theorem 8.3, a nontrivial variety of De Morgan monoids is PSC
iff it lies within Ret(DMM,Ai) for some i ∈ {1, . . . , 68} (in which case i is
unique). This includes all the varieties mentioned in the present theorem,
because 2, C4, D4 and the trivial De Morgan monoid are 0-generated and
finite. Conversely, consider a nontrivial PSC variety K ⊆ Ret(DMM,Ai).
As Ret(DMM,A1) = OSM, we may assume that i > 1. Theorem 8.3 also
asserts that Ai is relatively simple in the quasivariety Ret(DMM,Ai), so it is
a simple member of K. Therefore, Ai ∈ I(2,C4,D4), by Theorem 8.4(i). If
Ai
∼= C4 then K ⊆ M, by Theorem 8.6, so suppose Ai

∼= 2 [resp. Ai
∼= D4].
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Let B ∈ K be subdirectly irreducible. As Ai ∈ H(B), Theorem 8.4(ii) shows
that B ∼= Ai. Consequently, K is V(2) [resp. V(D4)]. �

Because the four minimal varieties of De Morgan monoids are locally
finite and congruence distributive, they are minimal as quasivarieties, by
Theorem 7.12. In particular, V(2) and V(D4) are HSC, and so is OSM (as
we saw in Theorem 8.2).

By Theorem 8.7, every remaining SC variety of De Morgan monoids must
be a subvariety of M. By Theorem 9.6 below, M and the quasivariety N
are not HSC. (We conjecture that M and N are not SC.) In the lattice of
subvarieties of M, the unique atom V(C4) has just six covers, identified in
[52, Thm. 8.10]. The varietal join of those six covers is HSC [52, Thm. 8.13].

The next result characterizes the JEP for subvarieties of DMM.

Theorem 8.8. Let K be a variety of De Morgan monoids. Then K has the
JEP iff one of the following (mutually exclusive) conditions is met.

(i) K is PSC.
(ii) K = V(A) for some simple De Morgan monoid A such that D4 is

a proper subalgebra of A.
(iii) There exist A,B such that K = Q(B), A is a simple subalgebra of

B, and C4 is a proper subalgebra of A.

In (iii), ‘K = Q(B)’ can be paraphrased as ‘K = V(B) and every finitely
generated subdirectly irreducible member of HPu(B) belongs to ISPu(B)’.

Proof. Sufficiency follows from Theorems 4.2, 4.3 and 5.10, since DMM has
EDPC (by [24, Thm. 3.55]).

Conversely, suppose that K has the JEP but is not PSC. Then K is non-
trivial and, by Theorem 8.7, K does not consist solely of Boolean algebras,
nor solely of odd Sugihara monoids. In particular, not every member of
K has a trivial subalgebra. Therefore, K is a Kollár variety, by Proposi-
tion 5.5(ii), so S3 /∈ K. As every finitely generated subdirectly irreducible
Sugihara monoid that is not a Boolean algebra maps homomorphically onto
S3, no such algebra belongs to K, whence every idempotent member of K
is Boolean. Consequently, if K has an idempotent nontrivial member, then
the 0-generated subalgebras of its nontrivial members are all isomorphic to
2, by Proposition 5.5(i). In that case, K consists of idempotent algebras, by
(VII), and so coincides with V(2), a contradiction. This shows that K has
no nontrivial idempotent member.

Being nontrivial, K therefore includes C4 or D4, so I(C4) or I(D4) is the
class of all 0-generated nontrivial members of K, by Proposition 5.5(i). Also,
by (VIII), K satisfies x 6 f2 (and hence ¬(f2) 6 x as well). On the other
hand, K 6⊆ M and K 6= V(D4), by Theorem 8.7, as K is not PSC.

By Theorem 5.6, there is a simple De Morgan monoid A ∈ K such that

every simple member of K belongs to ISPu(A). (5)
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By Theorem 4.2, there exists E ∈ K such that K = Q(E) = IPsSPu(E),
whence A ∈ ISPu(E) (as A is simple). Choose B ∈ IPu(E) with A ∈ S(B).
As E ∈ IS(B), we have K = Q(B).

Suppose first that I(C4) is the class of 0-generated nontrivial members of
K. As K is a Kollár variety, the 0-generated subalgebra of A is nontrivial,
so it can be identified with C4. If A = C4, then every simple member of K
is isomorphic to C4, by (5), so C4 is a retract of every nontrivial member
of K (by Corollary 5.4 and Remark 7.10), i.e., K ⊆ M, a contradiction. This
shows that C4 is a proper subalgebra of A, so (iii) holds.

We may now assume that I(D4) is the class of 0-generated nontrivial
members of K. Let G be any subdirectly irreducible member of K. Again,
since K is a Kollár variety, the 0-generated subalgebras of A,G are nontriv-
ial, so we may assume that D4 ∈ S(A) ∩ S(G). Therefore, as D4 satisfies
e ∧ f ≈ ¬(f2), so does G. Consequently, as ¬(f2) is the least element of
G, it follows from (VI) that ¬(f2) is the sole strict lower bound of e in G,
whence G is simple, by (II). This shows that K is a semisimple variety, so
K = Q(A), by (5). Since K 6= V(D4) = Q(D4), we must have A 6= D4, and
so (ii) holds.

Note that (i) precludes both (ii) and (iii), by Theorem 7.6, because each
of C4,D4 has no retract other than its isomorphic images, and cannot be
a retract of a strictly larger simple algebra. Also, (ii) precludes (iii), by
Proposition 5.5(i), as C4 and D4 are both 0-generated and nontrivial.

Since every variety is generated as such by its finitely generated subdi-
rectly irreducible members, the paraphrase in the last claim is justified by
Jónsson’s Theorem and the CEP for De Morgan monoids (which implies
that HS(P ) ⊆ SH(P ) for all P ∈ DMM). �

Corollary 8.9. A variety of Sugihara monoids has the JEP iff it is PSC.

Corollary 8.10. In the lattice of varieties of De Morgan monoids, all but
four of the join-irreducible covers of atoms have the JEP.

Proof. The join-irreducible covers of the four atoms are described in [52,
Thm. 7.2]. With four exceptions, each has the JEP, as it is either a subva-
riety of M or of OSM (and is thus PSC) or has the form V(A) for a simple
algebra A. The exceptions are covers of V(C4) that lack the JEP, by Propo-
sition 5.5(i), because they are the varietal closures of 0-generated algebras
C5, . . . ,C8 (respectively), each of which has more elements than C4. �

In Theorem 8.8(iii), it can happen that K is not generated, even as a
variety, by one finitely subdirectly irreducible algebra. This remains the
case when K = Q(B) for some finite B. These claims will be justified in
Example 9.7.

Example 8.11. A relevant algebra is an e-free subreduct of a De Morgan
monoid (i.e., a subalgebra of the reduct 〈A; ·,∧,∨,¬〉 of some A ∈ DMM).
These algebras form a variety RA, algebraizing the fragment R of Rt that
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lacks the so-called Ackermann constants. A finite equational basis for RA is
given in [23] (also see [19], [29, Cor. 4.11] and [51, Sec. 7]). Boolean algebras
may be regarded as relevant algebras, since they satisfy e ≈ x ∨ ¬x.

The variety RA respects the relevance principle of Definition 5.11, by [41,
Thm. 6] (since every finite set of equations in its signature is consistent over
RA, as follows from a consideration of the locally finite e-free reduct of the
odd Sugihara monoid S). Therefore, RA has the JEP, by Theorem 5.12. In
other words (by Theorem 4.2), RA = Q(A) for some A (cf. [70, Thm. 5]).
Here, A is not FRA(ℵ0), as RA is not (even passively) structurally complete.
In fact, RA has no nontrivial PSC subvariety, other than V(2) [62, Thm. 6].

This contrasts with the fact that DMM lacks the JEP (by Proposition 5.5(i),
as it has non-isomorphic 0-generated nontrivial members). Because 2 has no
trivial subalgebra, while the e-free reduct of S3 has a trivial subalgebra (and
so belongs to no Kollár quasivariety), RA would violate Proposition 5.5(ii)
if we dropped the demand there for a constant symbol in the signature.

In the variety K generated by the (simple) relevant algebra reducts of C4

and D4, these reducts and 2 are the only subdirectly irreducible algebras,
by Jónsson’s Theorem. Thus, K is a Kollár variety that lacks the JEP, by
Theorem 5.6. This confirms that the JEP is not a hereditary property. �

We have seen that M is PSC and contains all the SC subvarieties of DMM
not explicitly identified in Theorem 8.7. We shall show, however, that M
has 2ℵ0 structurally incomplete subvarieties. For this we need to consider
algebras called Dunn monoids, and a construction known as reflection.

9. Dunn Monoids and Reflections

With respect to the derived operation x → y := ¬(x · ¬y), every De
Morgan monoid satisfies ¬x ≈ x→ f and

x · y 6 z ⇐⇒ y 6 x→ z (the law of residuation). (6)

Definition 9.1. An algebra A = 〈A; ·,→,∧,∨, e〉 is called a Dunn monoid
if 〈A;∧,∨〉 is a distributive lattice, 〈A; ·, e〉 is a square-increasing commuta-
tive monoid and → is a binary operation—called residuation—such that A
satisfies (6).

Dunn monoids form a variety, again by [24, Thm. 2.7]. This variety is
PSC, because {e} constitutes a subalgebra of any Dunn monoid. Clearly,
up to term equivalence, every De Morgan monoid has a reduct that is a
Dunn monoid. Conversely, as recounted below, each Dunn monoid can be
embedded into (the ·,→,∧,∨, e reduct of) a De Morgan monoid. Properties
(I)–(V) of De Morgan monoids remain true for Dunn monoids.

Definition 9.2. (cf. Meyer [47]) Given a Dunn monoid A and a disjoint
copy A′ = {a′ : a ∈ A} of A, let ⊥,> be distinct non-elements of A∪A′. By
the reflection R(A) of A, we mean the De Morgan monoid with universe
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R(A) = A ∪A′ ∪ {⊥,>} such that A is a subalgebra of the Dunn monoid
reduct of R(A) and, for all a, b ∈ A and x ∈ R(A),

x ·⊥ = ⊥ < a < b′ < > = a′ · b′, and if x 6= ⊥, then x ·> = >;

a · b′ = (a→ b)′;

¬a = a′ and ¬(a′) = a and ¬⊥ = > and ¬> = ⊥.

In Definition 9.2, since f = e′, we have > = f2 and ⊥ = ¬(f2), so
⊥,> belong to every subalgebra of R(A). The subalgebra on {⊥, e, e′,>} is
isomorphic to C4. The De Morgan monoid R(A) satisfies e 6 f and x 6 f2

and (4), so it belongs to M. The construction of R(A) from A preserves
and reflects [finite] subdirect irreducibility—except that R(A) is subdirectly
irreducible when A is trivial. The interaction between reflections and the
operators S,H,Pu is illuminated in the next lemma.

Lemma 9.3. ([52, Lem. 6.5]) Let A be a Dunn monoid.

(i) If B is a subalgebra of A, then B ∪ {b′ : b ∈ B} ∪ {⊥,>} is the
universe of a subalgebra of R(A) that is isomorphic to R(B), and
every subalgebra of R(A) arises in this way from a subalgebra of A.

(ii) If θ is a congruence of A, then

R(θ) := θ ∪ {〈a′, b′〉 : 〈a, b〉 ∈ θ} ∪ {〈⊥,⊥〉, 〈>,>〉}
is a congruence of R(A), and R(A)/R(θ) ∼= R(A/θ). Also, every
proper congruence of R(A) has the form R(θ) for some θ ∈ Con A.

(iii) If {Ai : i ∈ I} is a family of Dunn monoids and U is an ultrafilter
over I, then

∏
i∈I R(Ai)/U ∼= R

(∏
i∈I Ai/U

)
.

Definition 9.4. The reflection of a variety K of Dunn monoids is the sub-
variety R(K) := V{R(A) : A ∈ K} of M.

As a function from the lattice of varieties of Dunn monoids to the sub-
variety lattice of M, the operator R is obviously isotone. It is also order-
reflecting, and therefore injective [52, Lem. 6.7].

Theorem 9.5. Let K be a variety of Dunn monoids. If R(K) is structurally
complete, then so is K (i.e., R preserves structural incompleteness).

Proof. Suppose K is not SC, so K = H(L) for some quasivariety L ( K. Now
L† := I{R(B) : B ∈ L} is closed under S and PU, by Lemma 9.3(i),(iii),
so Q(L†) = IPS(L†) ⊆ R(K). As L ( K, and because all quasivarieties are
closed under subdirect products, there is an algebra A ∈ KSI \L. Then R(A)
belongs to R(K) and is subdirectly irreducible. So, if R(A) ∈ Q(L†), then
R(A) ∼= R(B) for some B ∈ L, whence A ∼= B, contradicting the fact that
A /∈ L. Therefore, R(A) /∈ Q(L†), and so Q(L†) 6= R(K).

We claim that R(K) = V(L†). To see this, let C ∈ R(K)SI . By Jónsson’s
Theorem and Lemma 9.3, C ∼= R(D) for some D ∈ K. As K = H(L), we
may assume that D = E/θ for some E ∈ L and some θ ∈ Con E. Then
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C ∼= R(E/θ) ∼= R(E)/R(θ), by Lemma 9.3(ii), whence C ∈ H(L†) ⊆ V(L†).
This vindicates the claim.

In summary, Q(L†) is a proper subquasivariety of R(K) that fails to gen-
erate a proper subvariety of R(K), so R(K) is not SC. �

A Dunn (or De Morgan) monoid is said to be semilinear if it is isomorphic
to a subdirect product of totally ordered algebras. The semilinear Dunn
monoids form a structurally incomplete variety [55, Thm. 9.4]. Its reflection
is just the variety SLM of semilinear members of M, by Lemma 9.3 and [52,
Cor. 5.8], so SLM is not structurally complete either, by Theorem 9.5. This
confirms that M is not HSC (and likewise N), but we can say more:

Theorem 9.6. The variety M has 2ℵ0 structurally incomplete subvarieties.

Proof. Since the operator R is injective, it suffices, by Theorem 9.5, to ex-
hibit 2ℵ0 structurally incomplete varieties of Dunn monoids. The existence
of such a family will be proved in Theorem 10.8 below. �

We conclude this section with an example illustrating Theorem 8.8(iii).

Example 9.7. The Dunn monoid reduct of a De Morgan monoid A shall
be denoted by A+. We then denote by X(A) the De Morgan monoid that
extends R(A+) by just one element x, where a < x < b′ for all a, b ∈ A,
and x · ¬(f2) = ¬(f2) and x = ¬x = x · c and x · d = f2 whenever
¬(f2) < c 6 x < d 6 f2. (It is easily checked that this X(A) is indeed
a De Morgan monoid, with R(A+) ∈ S(X(A)).)

Let K = V(X(2 × S3)). As K is generated by one finite algebra, its
finitely subdirectly irreducible members are finite and can be computed me-
chanically, by Jónsson’s Theorem. None of them has the property that its
HS-closure contains all the others, but all of them embed into X(2 × S3)
(excepting the trivial algebra). Therefore, K is not generated as a variety by
a single (finitely) subdirectly irreducible algebra, but K = Q(X(2×S3)), so
K has the JEP, by Theorem 4.2. For the trivial De Morgan monoid E, the
five-element simple algebra X(E) belongs to K and has C4 as its smallest
subalgebra. As cases (i) and (iii) of Theorem 8.8 are mutually exclusive, K
is not PSC (in contrast with Example 5.9). �

10. Brouwerian Algebras

Definition 10.1. A Dunn monoid is called a Brouwerian algebra if it sat-
isfies x · y ≈ x∧ y (or equivalently, x 6 e), in which case it is identified with
its →,∧,∨, e reduct.

A Heyting algebra is therefore just a Brouwerian algebra with a distin-
guished least element. A well-known duality exists between Heyting algebras
and ‘Esakia spaces’ [21, 22]. It entails a duality between Brouwerian algebras
and ‘pointed Esakia spaces’ (see [5, Sec. 3], for instance). Here we require
only a topology-free version of the latter duality, explained briefly below.
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In an indicated partially ordered set (‘poset’) X = 〈X;6〉, we define

↑x = {y ∈ X : x 6 y} and ↑U =
⋃

u∈U ↑u,

for U∪{x} ⊆ X, and if U = ↑U , we call U an up-set of X. We define ↓x and
↓U dually. (Where ambiguity is a danger, we write ↑x as ↑Xx, etc.) We
call X a dominated [resp. bounded ] poset if it has a greatest [resp. a greatest
and a least] element. When X is dominated, the set Up(X) of all non-empty
up-sets of X is closed under intersections and if, for U, V ∈ Up(X), we define

U → V := X\↓(U\V ) (=
⋃
{W ∈ Up(X) : W ∩ U ⊆ V })

then X∗ := 〈Up(X);→,∩,∪, X〉 is a Brouwerian algebra. Note that X∗ is
subdirectly irreducible iff X is bounded and not a singleton.

A function g : X −→ Y between dominated posets is called a p-morphism
if it is isotone and

whenever g(x) 6 y ∈ Y , then y = g(z) for some z ∈ ↑x. (7)

In this case, ↑ g(x) = g[ ↑x] for all x ∈ X (whence g[X] ∈ Up(Y )), g pre-
serves top elements, and there is a homomorphism g∗ : Y ∗ −→ X∗, defined
by V 7→ g−1[V ] := {x ∈ X : g(x) ∈ V } (V ∈ Up(Y )). In particular, each
U ∈ Up(X) is the universe of a dominated subposet U of X, and since the
inclusion map i : U −→ X is a p-morphism, the function i∗ : V 7→ U ∩ V
(V ∈ Up(X)) is a homomorphism X∗ −→ U∗. As it is obviously surjective,
U∗ ∈ H(X∗) for all U ∈ Up(X).

For a Brouwerian algebra A, we denote by Pr(A) the set of all prime
filters of the lattice 〈A;∧,∨〉, including A itself. Thus, Pr(A) consists of the
non-empty up-sets P of the poset reduct 〈A;6〉 of A such that P is closed
under ∧ and A\P is closed under ∨. The dominated poset 〈Pr(A);⊆〉 is
abbreviated as A∗. It is bounded iff A is finitely subdirectly irreducible. If
h : A −→ B is a homomorphism between Brouwerian algebras, then there is
a p-morphism h∗ : B∗ −→ A∗, defined by Q 7→ h−1[Q] (Q ∈ Pr(B)).

For each Brouwerian algebra A, there is an embedding A −→ A∗
∗, defined

by a 7→ {P ∈ Pr(A) : a ∈ P}; it is an isomorphism if A is finite. For each
dominated poset X, there is an injective p-morphism X −→ X∗∗ , defined
by x 7→ {U ∈ Up(X) : x ∈ U}; it is bijective when X is finite, in which case
its inverse is also a p-morphism.

The functor A 7→ A∗ ; h 7→ h∗ defines a duality from the category FBA
of finite Brouwerian algebras (and their homomorphisms) to the category
FDP of finite dominated posets (and their p-morphisms), i.e., it defines a
category equivalence from FBA to the opposite category of FDP. A reverse
functor is given by X 7→X∗ ; g 7→ g∗.

In particular, every finite dominated poset is isomorphic to A∗ for some
finite Brouwerian algebra A, and if A,B are finite Brouwerian algebras,
then the rule h 7→ h∗ defines a bijection from the set of all homomorphisms
A −→ B to the set of all p-morphisms B∗ −→ A∗.

One feature of the above duality is the following (cf. [5, Lem. 3.4(ii)]).
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Lemma 10.2. A homomorphism h between finite Brouwerian algebras is
surjective iff h∗ is injective. Also, h is injective iff h∗ is surjective.

Consequently, a p-morphism g between finite dominated posets is surjec-
tive [resp. injective] iff g∗ is injective [resp. surjective].

Definition 10.3. In a dominated poset X, the depth of an element x is
the largest non-negative integer n (if it exists) such that the subposet ↑x
contains a chain of cardinality n + 1. Thus, the greatest element of X has
depth 0. If n is minimal such that all elements of X have depth at most n,
then X itself is said to have depth n. A variety K of Brouwerian algebras is
said to have depth n if A∗ has depth at most n for every A ∈ K.

By (7), for any p-morphism g : X −→ Y between dominated posets,

if x ∈ X has depth n ∈ ω, then g(x) has depth at most n. (8)

Each dominated poset X is an up-set of a dominated poset X̂, which
differs from X only as follows: whenever a, b are distinct elements of depth

2 in X, then X̂ has a (new) element eab that has no strict lower bound; the
strict upper bounds of eab are just the elements of ↑X{a, b}. (Note: eab and
eba are the same element.)

Observe that if X has depth n, then so does X̂, unless n = 2 (in which

case X̂ has depth 3). Also, since X ∈ Up(X̂), we always have X∗ ∈ H(X̂∗).

The hat construction is illustrated below for a poset P6 that will play a
role in subsequent arguments.
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For each positive integer n, in the n-th direct power of the two-element
chain, let Kn be the subposet consisting of the least element, the greatest
element, the n atoms and the n co-atoms. Note that Kn is bounded and
has depth 3. Each atom of Kn is dominated by just n − 1 co-atoms, and
each co-atom dominates just n− 1 atoms. Let

K := the power set of {Kn : 3 ≤ n ∈ N},
so |K| = 2ℵ0 . Kuznetsov [37] proved that there are 2ℵ0 distinct varieties of
Brouwerian algebras of depth 3, by establishing the following:

for any C,D ∈ K, if C 6= D, then V(C∗) 6= V(D∗), (9)

where C∗ abbreviates {X∗ : X ∈ C}. (Ostensibly, [37] deals with Heyting
algebras, but its argument applies equally to Brouwerian algebras.)
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Lemma 10.4. Let Y ,Z,W ∈ {P6} ∪ {Kn : n ≥ 3}, where Y /∈ {P6,Z}.
Then Y ∗ /∈ SH(Ẑ∗) and W ∗ /∈ IS(Ẑ∗).

Proof. Suppose Y ∗ ∈ SH(Ẑ∗). Dualizing the injective/surjective homo-

morphisms, we infer from Lemma 10.2 that there exist U ∈ Up(Ẑ) and a

surjective p-morphism g : U −→ Y . Now Y and Ẑ have depth 3, and Y has
a unique element of depth 3, viz. its least element, w say. As g is surjective,
w = g(u) for some u ∈ U . Then u has depth 3, by (8). As g is a p-morphism
and w has at least three distinct covers, each of depth 2, the same is true of
u, by (7) and (8). This prevents u from having the form exy, so u belongs to
Z. As the least element of Z is its sole element of depth 3, it is u. Therefore,

Z ⊆ U , as U ∈ Up(Ẑ). Moreover, ↑w = ↑ g(u) = g
[
↑Ẑ u

]
, i.e., Y = g[Z].

Then Z 6= P6, because Y has at least eight elements, while P6 has only
six. Thus, Y ,Z are distinct elements of {Kn : n ≥ 3}. As g|Z is a surjective
p-morphism Z −→ Y , the homomorphism (g|Z)∗ : Y ∗ −→ Z∗ is injective, by
Lemma 10.2, so Y ∗ ∈ IS(Z∗), whence V(Y ∗,Z∗) = V(Z∗). This contradicts

(9), because Y 6= Z, so Y ∗ /∈ SH(Ẑ∗).

Now suppose W ∗ ∈ IS(Ẑ∗). Then the situation in the first paragraph

of the present proof obtains, but with U = Ẑ and Y = W . Let p, q, r be
distinct covers of w in W . As we saw above, u has distinct covers p′, q′, r′ (of
depth 2) that are mapped by g to p, q, r, respectively. As g is isotone, g(ep′q′)
is a common lower bound of the set {g(p′), g(q′)} = {p, q}, so g(ep′q′) = w.
Then, because w has three distinct covers (of depth 2) in W , it follows from

(7) and (8) that ep′q′ has three distinct covers (of depth 2) in Ẑ, but this

contradicts the definitions of ep′q′ and Ẑ. Thus, W ∗ /∈ IS(Ẑ∗). �

Lemma 10.5. Let C = {P̂6}∪{Ẑ : Z ∈ E}, where E ∈ K. Then the variety
V(C∗) is structurally incomplete.

Proof. Let D be the direct product of the members of C∗. Then V(C∗) =

V(D), so it suffices to show that V(C∗) 6= Q(D). As P6
∗ ∈ H(P̂ ∗6 ) ⊆ V(C∗),

it is enough to prove that P6
∗ /∈ Q(D). Observe that

P6
∗ ∈ Q(D) iff P6

∗ ∈ ISPu(D) iff P6
∗ ∈ IS(D).

The first equivalence obtains because Q = IPsSPu and P6
∗ is subdirectly

irreducible; the second because P6
∗ is finite and of finite type. We must

therefore show that P6
∗ /∈ IS(D).

Suppose P6
∗ ∈ IS(D). Then P6

∗ ∈ ISP(C∗). As SP = PsS, it follows

(again from the subdirect irreducibility of P6
∗) that P6

∗ embeds into Ẑ∗ for
some Z ∈ {P6} ∪ E. This contradicts Lemma 10.4, so P6

∗ /∈ IS(D). �

Every variety of Dunn monoids (e.g., Brouwerian algebras) has EDPC,
by [24, Thm. 3.55]. We shall require the following general result.

Theorem 10.6. ([6], [34, Thm. 6.6]) Let K be a variety of finite type, with
EDPC, and let A ∈ K be finite and subdirectly irreducible. Then there is a
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largest subvariety of K that excludes A. It consists of all B ∈ K such that
A /∈ SH(B).

Lemma 10.7. The set {V(C∗) : C = {P̂6} ∪ {Ẑ : Z ∈ E} for some E ∈ K}
is a continuum of varieties of Brouwerian algebras of depth 3.

Proof. Suppose E ∪ {Y } ∈ K, where Y /∈ {P6} ∪ E. It suffices to show that

Ŷ ∗ /∈ V({P̂ ∗6 } ∪ {Ẑ∗ : Z ∈ E}). As Y ∗ ∈ H(Ŷ ∗), it is enough to prove that

Y ∗ /∈ V({P̂ ∗6 } ∪ {Ẑ∗ : Z ∈ E}).
Let G be the class of all Brouwerian algebras B such that Y ∗ /∈ SH(B).

Since Y ∗ is finite and subdirectly irreducible, Theorem 10.6 shows that,
for any variety K of Brouwerian algebras, we have Y ∗ /∈ K iff K ⊆ G.

Therefore, it remains only to confirm that {P̂ ∗6 } ∪ {Ẑ∗ : Z ∈ E} ⊆ G, i.e.,

that Y ∗ /∈ SH(P̂ ∗6 ) and Y ∗ /∈ SH(Ẑ∗) for all Z ∈ E. This is indeed the case,
by Lemma 10.4, because Y /∈ {P6} ∪ E. �

Theorem 10.8. The variety of Brouwerian algebras has 2ℵ0 structurally
incomplete subvarieties (of depth 3).

Proof. Use Lemmas 10.5 and 10.7. �

In the variety BRA of all Brouwerian algebras, the HSC subvarieties con-
stitute a denumerable set [15], but as far as we know, the number of SC
subvarieties of BRA has not been established. In particular, Theorem 10.8
appears to be new, and it completes the proof of Theorem 9.6. Moreover,
the varieties in Theorem 9.6 can be chosen locally finite, because every sub-
variety of BRA of finite depth is locally finite [5, Thm. 4.6], and because the
operator R preserves local finiteness [53, Thm. 18(iii)].

When we switch from Brouwerian to Heyting algebras, the duality theory
undergoes slight definitional changes (see [5, Sec. 4], for instance). The proof
of Theorem 10.8 adapts easily, however, and the result remains true when
we replace ‘Brouwerian’ by ‘Heyting’ in its statement.

In a quasivariety K, a quasi-equation

(ϕ1 ≈ ψ1 & · · · & ϕn ≈ ψn) =⇒ ϕ ≈ ψ

is said to be admissible provided that, for every substitution h,

if K |= h(ϕi) ≈ h(ψi) for i = 1, . . . , n, then K |= h(ϕ) ≈ h(ψ).

By Theorem 6.1, K is SC iff it satisfies its own admissible quasi-equations.

Mints [50] showed (in effect) that BRA is not SC, by proving that the
following quasi-equation (not satisfied by BRA) is admissible in BRA:

x→ y 6 x ∨ z =⇒ ((x→ y)→ x) ∨ ((x→ y)→ z) ≈ e. (10)

For each term ϕ over BRA, we define a term ϕ� in the following recursive
manner: e� = e ; x� = x ∧ e (x ∈ Var); (α ∗ β)� = α� ∗ β� (∗ ∈ {∧,∨});
(α → β)� = (α� → β�) ∧ e. In this signature, the amendment Φ� of a
quasi-equation Φ results from replacing each term ϕ occurring in Φ with the
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term ϕ�. Using ideas of Iemhoff [30], one can prove that if a quasi-equation
Φ is admissible in BRA, then Φ� is admissible in the variety DM of all Dunn
monoids; moreover, if BRA 6|= Φ, then DM 6|= Φ�. This implies, of course,
that DM is not SC.

It is tempting to try to extend the argument from DM to the variety M of
Definition 8.5, using reflections. Unfortunately, however, it turns out that
the amendment of (10) is not admissible in M.
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[46] G. Metcalfe, C. Röthlisberger, Admissibility in finitely generated quasivarieties, Log.
Methods Comput. Sci. 9 (2013), 1–19.

[47] R.K. Meyer, On conserving positive logics, Notre Dame J. Form. Log. 14 (1973),
224–236.

[48] R.K. Meyer, J.M. Dunn, H. Leblanc, Completeness of relevant quantification theories,
Notre Dame J. Form. Log. 15 (1974), 97–121.
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