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In this paper we prove the global in time solvability
of the continuous growth–fragmentation–coagulation
equation with unbounded coagulation kernels, in
spaces of functions having finite moments of sufficiently
high order. The main tool is the recently established
result on moment regularization of the linear growth–
fragmentation semigroup that allows us to consider
coagulation kernels whose growth for large clusters
is controlled by how good the regularization is, in
a similar manner to the case when the semigroup is
analytic.

1. Introduction
Coagulation and fragmentation play a fundamental role
in a number of diverse phenomena arising both in
natural science and in industrial processes. Specific
examples can be found in ecology, human biology,
polymer and aerosol sciences, astrophysics and the
powder production industry; see [14] for further details
and references. A feature shared by these examples is that
each involves an identifiable population of inanimate
or animate objects that are capable of forming larger
or smaller objects through, respectively, coalescence or
breakup. The earliest mathematical investigation into
processes governed by coagulation or fragmentation was
carried out by Smoluchowski in two papers [26,27],
published in 1916 and 1917. Smoluchowski introduced,
and investigated, a coagulation model in the form of an
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infinite set of ordinary differential equations that describes the time-evolution of a system of
particle clusters that, as a result of Brownian motion, become sufficiently close to enable binary
coagulation of clusters to occur. In this discrete-size model, it is assumed that the clusters are
comprised of a finite number of identical fundamental particles, and so a discrete (positive
integer) variable can be used to distinguish between cluster sizes. Over the past one hundred
years, the pioneering work of Smoluchowski has been extended considerably, and various
models, both deterministic and stochastic, and incorporating both coagulation and fragmentation,
have been produced and studied.

In certain applications, such as droplet growth in clouds and fogs [23,24], where it is more
realistic to have a continuous particle size variable which can take any positive real value, the
standard deterministic coagulation-fragmentation (C-F) model is given by

∂tf(x, t) = Ff(x, t) + Kf(x, t) , (x, t)∈R2
+; f(0, x) = f̊(x) , x∈R+ , (1.1)

where R+ := (0,∞), and

Ff(x, t) = −a(x)f(x, t) +

∫∞
x
a(y)b(x, y)f(y, t) dy , (1.2)

Kf(x, t) =
1

2

∫x
0
k(x− y, y)f(x− y, t)f(y, t) dy − f(x, t)

∫∞
0
k(x, y)f(y, t) dy (1.3)

model fragmentation and coagulation respectively; see [28]. Here, it is assumed that only a single
size variable, such as particle mass, is required to differentiate between the reacting particles, with
f(x, t) denoting the density of particles of size x∈R+ at time t≥ 0. The coagulation kernel k(x, y)

gives the rate at which particles of size x coalesce with particles of size y, and a(x) represents
the overall rate of fragmentation of an x-sized particle. The coefficient b(x, y), often called the
fragmentation kernel or daughter distribution function, can be interpreted as giving the number
of size x particles produced by the fragmentation of a size y particle; more precisely, it is the
distribution function of the sizes of the daughter particles. In most investigations into (1.1), b is
assumed to be nonnegative and measurable, with b(x, y) = 0 for x> y and∫y

0
xb(x, y) dx= y, for each y > 0, (1.4)

but is otherwise arbitrary. Equation (1.4) can be viewed as a local mass conservation property,
as it expresses the fact that, when the size variable is the particle mass, the total mass of all the
daughter particles produced by a fragmentation event is the same as that of the parent particle.

In the case of deterministic models, with either discrete or continuous size, two main
approaches have been used extensively in their analysis, with one involving weak compactness
arguments and the other utilising the theory of operator semigroups. Comprehensive treatments
of each are given in [14], and there is also an excellent account in [16, Chapter 36] of the semigroup
approach to the discrete fragmentation equation. We focus here on the application of semigroup
techniques to continuous C-F models, where the strategy is to express the pointwise initial-value
problem (1.1) as a semilinear abstract Cauchy problem (ACP) of the form

d

dt
f(t) = Ff(t) +Kf(t), t∈R+; f(0) = f̊ , (1.5)

posed in a physically relevant Banach space X . In (1.5), F and K are operator realisations in X of
the formal expressions F and K defined, respectively, in (1.2) and (1.3).

Initially, only the linear fragmentation part of (1.5) is examined, and a representation F is
sought such thatF generates a strongly continuous semigroup (SF (t))t≥0 onX . If this is possible,
then the full abstract C-F problem is recast as the fixed point equation

f(t) = SF (t)f̊ +

∫ t
0
SF (t− s)Kf(s) ds, t∈R+, (1.6)
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to which standard results can be applied to yield the existence and uniqueness of mild and
classical solutions f : [0, τmax)→X . The identification [f(t)](x) = f(x, t) then leads, after some
further analysis, to a solution of the pointwise problem (1.1).

Historically, the semigroup approach to C-F problems originated in 1979 with the publication
of a seminal paper by Aizenman and Bak [2] for the specific case where the coagulation kernel
k is constant, and the fragmentation rate and the fragmentation kernel are given by a(x) = x

and b(x, y) = 2/y. The work presented in [2] was later extended in 1997 to bounded coagulation
kernels and more general fragmentation rates and kernels [19,20]. Common to these early
semigroup investigations is the use of more tractable, truncated versions of the fragmentation
problem to generate a sequence of semigroups that converge, in an appropriate manner, to the
semigroup for the original problem; for example, see [20, Sections 3 & 4]. In contrast, the year
2000 saw the introduction, in [3], of a novel approach to the fragmentation problem that relies on
the theory of substochastic semigroups. In recent years, this substochastic semigroup approach
has been developed further and used to prove many important properties of the fragmentation
semigroup such as its analyticity and, in the discrete case, compactness, [11,12]. These properties
have made it possible to extend earlier semigroup derived results on the well-posedness of C-F
equations to the case where the coagulation kernel may be unbounded; see [6,11,13]. Moreover,
it is shown in [6,8] that whenever the semigroup and weak compactness approaches are both
applicable to a C-F problem, they both lead to the same solutions.

With regard to the choice of an appropriate space X , the early semigroup (and also weak
compactness) analyses of (1.1) used the spaces X0 :=L1(R+,dx), X1 :=L1(R+, xdx) and also
X0,1 :=L1(R+, (1 + x)dx) where, for a nonnegative solution f of (1.5), the respective norms
in X0 and X1 give the total number of particles in the system and its mass. However, in later
investigations it was found that improved results could be obtained by imposing some additional
control on the evolution of large particles. A convenient way of introducing such a control is to
consider the C-F problem in the more general weighted L1 spaces Xm :=L1(R+, x

mdx) and
X0,m :=L1(R+, (1 + xm)dx). The norms on these spaces are defined by

‖f‖[m] :=

∫∞
0
|f(x)|xmdx; ‖f‖[0,m] :=

∫∞
0
|f(x)|wm(x)dx, where wm(x) := 1 + xm. (1.7)

We shall also use the notation

Mm(t) :=

∫∞
0
f(x, t)xm dx; M0,m(t) :=

∫∞
0
f(x, t)wm(x)dx, (1.8)

when discussing the norms of nonnegative solutions to (1.1). Clearly, Mm(t) and M0.m(t) are
finite provided f(·, t)∈Xm and f(·, t)∈X0,m.

For ease of exposition, we have restricted our attention in the above discussion to situations
involving only the opposing processes of fragmentation and coagulation, and in which the total
mass in the system of particles should be a conserved quantity. In many cases, however, these
two processes may be complemented by other events which can change the total mass in the
system. For example, mass loss can arise due to oxidation, melting, sublimation and dissolution
of matter on the exposed particle surfaces. The reverse process of mass gain can also occur due
to the precipitation of matter from the environment. Continuous coagulation and fragmentation
processes, combined with a mass transport term that leads to either mass loss or mass gain, have
also been studied using functional analytic and, in particular, semigroup methods; for example,
see [5,7,10] and [14, Section 5.2], or [15,17,22] where, however, the focus is on the long-term
behaviour of the linear growth-fragmentation processes. The discrete version of such models have
been comprehensively analysed in [8,9]. In the case when the growth rate of a particle of mass x
is r(x), the appropriate modified version of (1.1) is

∂tf(x, t) =−∂x[r(x)f(x, t)] + Ff(x, t) + Kf(x, t) , (x, t)∈R2
+ ; f(0, x) = f̊(x) , x∈R+ . (1.9)

The main goal of the paper is to prove global classical solvability of (1.9) in the spaces X0,m

for sufficiently large m, when the coagulation rate k is unbounded (though controlled by the
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fragmentation rate). In this way we extend the results of [5], where only bounded coagulation
operators are considered. As with (1.5), we re-write (1.9) as (1.6) but with the kernel given by
the linear growth–fragmentation semigroup. The main tool is the moment improving property
of this semigroup, proven in [15], that makes it a little like an analytic semigroup and allows
for an approach similar to that used in [6,11] for pure fragmentation–coagulation problems,
where the fragmentation semigroup is indeed analytic. In other words, the growth–fragmentation
semigroup retains the moment regularization property of the fragmentation semigroup but it is
not regularizing with respect to the differentiation operator, and hence it is not analytic. Thus,
while the well-posedness proof for (1.9) follows standard steps, particular estimates must be
tailor made for this specific case to yield the desired result. More precisely, while the existence
of the mild solution is obtained by a typical fixed point argument, the involved integral operator
is weakly singular, in contrast to the standard theory where it is assumed to be continuous, see
e.g. [21, Theorem 6.1.2]. Similarly, the proof that the mild solution is a classical solution cannot be
obtained, as in other cases where unbounded nonlinearities occur, by using the differentiability of
the semigroup, since the growth–fragmentation semigroup is not analytic. Instead, the approach
we adopt is to follow [21, Theorem 6.1.5], where a regularity result is established for the case
of a continuous nonlinearity, but again we have to show that the result can be extended to an
appropriately restricted singular nonlinearity.

The paper is organized as follows. Section 2 deals with the linear growth–fragmentation
equation. In particular, we use the Miyadera perturbation theorem to show that the growth–
fragmentation operator is the generator of a positive semigroup on X0,m without imposing
any restriction on the behaviour of the growth rate r at x= 0. In this way we improve the
corresponding results of [5,15]. Section 3 is devoted to the full equation (1.9). The existence of local
mild and classical solutions is proved under quite general conditions, while the global solvability,
done along the lines of [6], requires some additional assumptions to control the growth term.

2. Fragmentation with growth
Adopting the semigroup based strategy described in the Introduction, we begin our analysis of
equation (1.9) by considering only its linear part. For technical reasons, which will become clear
later, we introduce an additional absorption term, −a1f . This results in the linear equation

∂tf(x, t) =−∂x[r(x)f(x, t)]− q(x)f(x, t) +

∫∞
x
a(y)b(x, y)f(y, t) dy, (x, t)∈R2

+,

f(0, x) = f̊(x), x∈R+,

(2.1)

where q(x) = a(x) + a1(x). The aim is to express (2.1) as an ACP of the form

d

dt
f(t) = T0,mf(t) +B0,mf(t), t > 0; f(0) = f̊ , (2.2)

where T0,m and B0,m, respectively, are operator realisations in X0,m of the formal expressions

(Tf)(x) :=−∂x[r(x)f(x)]− q(x)f(x); (Bf)(x) :=

∫∞
x
a(y)b(x, y)f(y) dy. (2.3)

The ACP (2.2) will be well posed in X0,m provided the operator G0,m := T0,m +B0,m generates
a C0-semigroup, (SG0,m

(t))t≥0, on X0,m. To show this, we first use the Hille-Yosida theorem to
establish that T0,m, when defined appropriately, generates a C0- semigroup, (ST0,m

(t))t≥0 (the
absorption semigroup), onX0,m. The operatorB0,m is then shown to be a Miyadera perturbation
of T0,m, leading immediately to the existence of (SG0,m

(t))t≥0.
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(a) The absorption semigroup
The transport part of the problem is given by

∂tf(x, t) =−∂x[r(x)f(x, t)]− q(x)f(x, t), (x, t)∈R+; f(0, x) = f̊(x), x∈R+, (2.4)

where, as stated above, q= a+ a1. Throughout we assume

0≤ a∈L∞,loc([0,∞)); (2.5)

1/r ∈L1,loc(R+) and 0< r(x)≤ r0 + r1x≤ r̃(1 + x) on R+, (2.6)

for some nonnegative constants r0, r1 and r̃= max{r0, r1}. Further,

0≤ a1 ∈L∞,loc([0,∞)) and a1(x)/a(x) remains bounded as x→∞. (2.7)

On defining operators A0,mf :=−af and A
(1)
0,mf :=−a1f on their maximal domains in X0,m,

respectively, D(A0,m) := {f ∈X0,m : af ∈X0,m} and D(A
(1)
0,m) := {f ∈X0,m : a1f ∈X0,m}, we

see that D(A0,m)⊆D(A
(1)
0,m).

In the following treatment of (2.4) we have to distinguish between two distinct cases that may
arise due the behaviour of r(x) close to x= 0. If we use the symbol

∫
0+ to denote an integral in

some right neighbourhood of 0, then we may have either∫
0+

dx

r(x)
= +∞, (2.8)

or ∫
0+

dx

r(x)
<+∞. (2.9)

When (2.8) is satisfied, the characteristics associated with the transport equation do not reach
x= 0 and therefore the problem does not require a boundary condition to be specified. This case
has been thoroughly researched in [5,14], and, as in op. cit., we define T0,m by

T0,mf := Tf ; D(T0,m) :=

{
f ∈X0,m : rf ∈AC(R+) and

d

dx
(rf), qf ∈X0,m

}
, (2.10)

where AC(R+) denotes the class of functions that are absolutely continuous on all compact
subintervals of R+. On the other hand, when (2.9) holds, the characteristics do reach x= 0 and
therefore a boundary condition is required. Here, following [15], we impose the condition

lim
x→0+

r(x)f(x, t) = 0 (2.11)

but note that more general cases can also be considered, [10]. Then D(T0,m) is given by

D(T0,m) :=

{
f ∈X0,m : rf ∈AC(R+),

d

dx
(rf), qf ∈X0,m and r(x)f(x)→ 0 as x→ 0+

}
.

(2.12)
To make the Hille-Yosida theorem applicable, we must determine the resolvent operator,
R(λ, T0,m). Following [14, Section 5.2], we begin by solving

λf(x) +
d

dx
(r(x)f(x)) + q(x)f(x) = g(x), x∈R+, (2.13)

where g ∈X0,m. On introducing antiderivatives of 1/r and q/r respectively, defined on R+, by

R(x) :=

∫x
1

1

r(s)
ds, Q(x) :=

∫x
1

q(s)

r(s)
ds, (2.14)

we can proceed formally to obtain the general solution of (2.13) in the form

f(x) = vλ(x)

∫x
0
eλR(y)+Q(y)g(y)dy + C vλ(x), with vλ(x) =

e−λR(x)−Q(x)

r(x)
, x∈R+, (2.15)
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where C is an arbitrary constant. An immediate consequence of (2.6) and (2.14) is thatR is strictly
increasing (and hence invertible) on R+, and Q is nondecreasing on R+. In the sequel, we need
the following result that is a slight modification of [10, Lemma 2.1] and [14, Corollary 5.2.9].

Lemma 2.1. Let m≥ 1 be fixed and define ωr,m := 2mr̃, where r̃ is the positive constant in (2.6). Then,
for any λ>ωr,m and 0<α<β ≤∞,

I0,m(α, β) :=

∫β
α

e−λR(s)

r(s)
wm(s)ds ≤ e−λR(α)

λ− ωr,m
wm(α) , (2.16)

J0,m(α, β) :=

∫β
α

(λ+ q(s))e−λR(s)−Q(s)

r(s)
wm(s)ds ≤ λe−λR(α)−Q(α)

λ− ωr,m
wm(α), (2.17)

where, as in (1.7), wm(x) = 1 + xm.

Proof. Using (2.6) and e−λR(s)

r(s)
=− d

dse
−λR(s), integration by parts gives

I0,m(α, β) =
1

λ
e−λR(α)wm(α)− 1

λ
e−λR(β)wm(β) +

m

λ

∫β
α
e−λR(s)sm−1ds

≤ 1

λ
e−λR(α)wm(α) +

mr̃

λ

∫β
α

e−λR(s)

r(s)
(1 + s)sm−1ds.

The inequality (1 + s)sm−1 ≤ 2(1 + sm), which holds for all s > 0 and each fixed m≥ 1, yields

I0,m(α, β)≤ 1

λ
e−λR(α)wm(α) +

2mr̃

λ
I0,m(α, β), (2.18)

and (2.16) follows.
Inequality (2.17) follows then from (2.16) as in [14, Corollary 5.2.9].

Lemma 2.2. Let λ> 0 and let vλ be as defined in (2.15).
(a) If (2.9) holds, then vλ does not satisfy (2.11).
(b) If (2.8) holds, then vλ /∈X0,m for any m≥ 1.

Proof. (a) For 0<x< 1 we have r(x)vλ(x) = e
∫1
x
λ+q(s)
r(s)

ds
, and so r(x)vλ(x) does not converge to

0 as x→ 0+.

(b) Let (2.8) be satisfied. Then, for each λ> 0,

lim
x→0+

e−λR(x) = lim
x→0+

e
∫1
x

λ
r(s)

ds
=∞. (2.19)

Consequently, since e−Q(x) ≥ 1 for x∈ [0, 1], and R(1) = 0, we obtain∫∞
0
vλ(x)wm(x)dx≥

∫1
0

e−λR(x)

r(x)
dx=−λ

∫1
0

d

dx
e−λR(x)dx= λ( lim

x→0+
e−λR(x) − 1),

and, from (2.19), it follows that vλ /∈X0,m.
Motivated by (2.15) and Lemma 2.2, we are led, as in [14, Section 5.2.2], to

[R(λ)g](x) :=
e−λR(x)−Q(x)

r(x)

∫x
0
eλR(y)+Q(y)g(y)dy (2.20)

as a natural candidate for the resolvent, R(λ, T0,m), of T0,m. Then the proof of the following
theorem follows exactly as the proof of [14, Theorem 5.2.11].
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Theorem 2.1. Let (2.5), (2.6) and (2.7) be satisfied. Then, for each m≥ 1 and λ>ωr,m, the resolvent of
(T0,m, D(T0,m)) (in both cases (2.10) and (2.12)) is given by R(λ, T0,m) = R(λ). Moreover,

‖R(λ, T0,m)g‖[0,m] ≤
1

λ− ωr,m
‖g‖[0,m], for all g ∈X0,m. (2.21)

Hence (T0,m, D(T0,m)) is the generator of a positive C0-semigroup, (ST0,m
(t))t≥0, on X0,m satisfying

‖ST0,m
(t)f‖[0,m] ≤ e

ωr,mt‖f‖[0,m] , for all f ∈X0,m.

(b) The growth-fragmentation semigroup
We now consider the growth–fragmentation equation (2.1). In addition to the restrictions (2.5),
(2.6) and (2.7) imposed on a, r and a1 respectively, we assume that the fragmentation kernel, b,
satisfies (1.4) and further, for each m≥ 0, we define

nm(y) =

∫y
0
b(x, y)xmdx, Nm(y) = ym − nm(y). (2.22)

The local mass conservation condition in (1.4) then leads to

n0(y)> 1; Nm(y)> 0, m> 1; N1(y) = 0; Nm(y)< 0, 0≤m< 1; (2.23)

see [14, Eqns. (2.2.53) & (2.3.16)]. The function n0 is also assumed to satisfy

n0(y)≤ b0(1 + yl) , y ∈R+ , (2.24)

for constants b0 > 0 and l≥ 0. A crucial role in the analysis is played by the further assumption
that there exists m0 > 1 such that

lim inf
y→∞

Nm0(y)

ym0
> 0. (2.25)

It follows, [6, Theorem 2.2], that for any fixed y > 0, (1,∞)3m 7→ Nm(y)
ym is an increasing and

concave function. Hence, if (2.25) holds for some m0 > 1, then

lim inf
y→∞

Nm(y)

ym
> 0, (2.26)

for all m> 1. For a given m> 0, (2.26) yields the existence of ym > 0 and cm < 1 such that

nm(y)≤ cmym, y≥ ym. (2.27)

We note that (2.26) is satisfied for a large class of kernels b, including the homogeneous ones used
in [15]; there are, however, cases when it does not hold, [14, Example 5.1.51].

Henceforth, we assume that
m>max{1, l}, (2.28)

and for each m we define an operator realisation, B0,m, of the formal expression B in (2.3) by

(B0,mf)(x) :=

∫∞
x
a(y)b(x, y)f(y, t)dy, x∈R+; D(B0,m) := {f ∈X0,m :B0,mf ∈X0,m}. (2.29)

Theorem 2.2. Let (2.24), (2.26), (2.28) and the assumptions of Theorem 2.1 be satisfied. Then
(G0,m, D(T0,m)) = (T0,m +B0,m, D(T0,m)) generates a positive C0-semigroup, (SG0,m

(t))t≥0, on
X0,m.

Proof. We use a version, [7, Lemma 5.12], of a theorem due to Desch that is applicable to positive
operators in L1 spaces. Thus, we must prove that ‖B0,mR(λ, T0,m)‖< 1 for some λ>ωr,m. Since
B0,mR(λ, T0,m) is positive, we need only establish that ‖B0,mR(λ, T0,m)f‖[0,m] < ‖f‖[0,m] for
all f in the positive cone, X0,m,+, and some λ>ωr,m; see [7, Proposition 2.67]. Let f ∈X0,m,+

and λ>ωr,m. Then, using the Fubini–Tonelli theorem and (2.22), we get

‖B0,mR(λ, T0,m)f‖[0,m] =

∫∞
0
a(y)[R(λ, T0,m)f ](y)(n0(y) + nm(y))dy.
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On setting aρ = esssup
x∈[0,ρ]

a(x) for each fixed ρ > 0, we obtain, by (2.24), (2.23) and (2.21),

∫ρ
0
a(y)[R(λ, T0,m)f ](y)(n0(y) + nm(y))dy≤ aρ

∫∞
0

[R(λ, T0,m)f ](y)(b0wl(y) + ym)dy

≤Cmaρ
∫∞
0

[R(λ, T0,m)f ](y)wm(y)dy≤ Cmaρ
λ− ωr,m

‖f‖[0,m],

where Cm := sup
0≤y<∞

b0
wl(y)
wm(y)

+ ym

wm(y)
≤ 2b0 + 1. To obtain a suitable estimate on the integral

over [ρ,∞), we now use (2.27). Since ρ > ym can be chosen sufficiently large for b0
wl(y)
wm(y)

< δ for
all y≥ ρ, where cm + δ < 1, we can argue as in Lemma 2.1 to obtain∫∞

ρ
a(y)[R(λ, T0,m)f ](y)(n0(y) + nm(y))dy≤ (δ + cm)

∫∞
0
a(y)[R(λ, T0,m)f ](y)wm(y)dy

= (δ + cm)

∫∞
0

(
eλR(x)+Q(x)

∫∞
x

wm(y)a(y)e−λR(y)−Q(y)

r(y)
dy

)
f(x)dx

≤ (δ + cm)

∫∞
0
eλR(x)+Q(x)J0,m(x,∞)f(x)dx≤ λ(δ + cm)

λ− ωr,m
‖f‖[0,m].

Hence

‖B0,mR(λ, T0,m)f‖[0,m] ≤
(

Cmaρ
λ− ωr,m

+
λ

λ− ωr,m
(δ + cm)

)
‖f‖[0,m].

Since λ
λ−ωr,m (δ + cm)→ δ + cm < 1 and Cmaρ

λ−ωr,m → 0 as λ→∞, there is λ0 such that

Cmaρ
λ− ωr,m

+
λ

λ− ωr,m
(δ + cm)< 1

for λ> λ0 . Therefore B0,m is a Miyadera perturbation of T0,m, and the stated result follows.

Under the conditions of Theorem 2.2, it follows that constants C(m) and θ(m) exist such that

‖SG0,m
(t)f‖[0,m] ≤C(m)eθ(m)t‖f‖[0,m], for all f ∈X0,m and t≥ 0. (2.30)

Moreover, an alternative, but equivalent, representation of the generator G0,m is

G0,m := T 0
0,m +A

(1)
0,m +A0,m +B0,m = T 0

0,m +A
(1)
0,m + F0,m, (2.31)

where A(1)
0,m , A0,m were defined in subsection (a) and

[T 0
0,mf ](x) :=−∂x[r(x)f(x)] ; D(T 0

0,m) :=

{
f ∈X0,m : rf ∈AC(R+) and

d

dx
(rf)∈X0,m

}
.

As with the operator T0,m, the homogeneous boundary condition must also be incorporated in
the above definition of D(T 0

0,m) when (2.9) holds.
Next we show that the regularising property of the growth-fragmentation semigroup,

established in [15, Lemma 2.7] for growth rates satisfying (2.9) and homogeneous fragmentation
kernels, holds also in the current setting. The presented proof, while using the better
characterization of the generator obtained in Theorem 2.2, essentially follows the lines of op.cit.
We shall need the adjoint semigroup,

(
S∗G0,m

(t)
)
t≥0

, defined on the dual space X∗0,m, where the

latter can be identified, via the duality pairing

〈f, g〉 :=
∫∞
0
f(x)g(x)dx, f ∈X∗0,m, g ∈X0,m,

with the space of measurable functions f such that fw−1m is essentially bounded on R+.
Since wm ∈X∗0,m, we can define

Ψm(x, t) := [S∗G0,m
(t)wm](x), (x, t)∈R2

+. (2.32)
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Theorem 2.3. In addition to the conditions required for Theorem 2.2 to hold, assume that positive
constants a0 , γ0 and x0 exist such that

a(x)≥ a0xγ0 , for all x≥ x0. (2.33)

Then, for any n, p andm satisfying max{1, l}<n< p<m, there are constants C =C(m,n, p)> 0 and
θ= θ(m,n)> 0 such that

‖SG0,p
(t)f̊‖[0,m] ≤Ce

θtt
n−m
γ0 ‖f‖[0,p], for all f ∈X0,p. (2.34)

Proof. First we note that X0,m ↪→X0,p ↪→X0,n, where ↪→ denotes a continuous embedding.
Moreover, for each j = n, p,m, the operatorG0,j generates a positiveC0-semigroup (SG0,j

(t))t≥0
on X0,j . Assume initially that f̊ ∈D(T0,m)+ =D(G0,m)+. Then, for all t≥ 0,

f(·, t) := [SG0,m
(t)f̊ ](·) = [SG0,p

(t)f̊ ](·)∈D(G0,m) =D(T 0
0,m) ∩D(A0,m).

Consequently, we can multiply (2.1) by wm(x) = 1 + xm, integrate term by term and use a1 ≥ 0

to obtain, as in [14, Lemma 5.2.17],

d

dt
M0,m(t)≤

∫∞
0

(
mr(x)xm−1 − (N0(x) +Nm(x))a(x)

)
f(x, t)dx=:

∫∞
0
Φm(x)f(x, t)dx.

(2.35)

Recalling from (2.27) that nm(y)≤ cmym for all y≥ ym, where 0< cm < 1, we choose a positive
constant Rm >max{1, x0, ym} such that

(b0(1 + xl)− 1)− (1− cm)xm ≤ 0, for all x≥Rm. (2.36)

It then follows from (2.6), (2.24), (2.27) and (2.33) that, for any R≥Rm and for all x≥R, we have

Φm(x)≤mr̃(1 + x)xm−1 + (b0(1 + xl)− 1)− (1− cm)xm)a0R
γ0

≤ (2mr̃ − (1− cm)a0R
γ0)wm(x) + (b0wl(x)− cm)a0R

γ0 .

If we now impose the further restriction that Rm is also chosen so that 2mr̃ − (1− cm)a0R
γ0 ≤

−dmRγ0 for each R≥Rm, where dm > 0, then, for any x and R satisfying x≥R≥Rm, we have

Φm(x)≤−dmRγ0wm(x) + b0a0R
γ0wn(x). (2.37)

Turning to the case when x≤R, from (2.23) we have Nm(x)≥ 0 for all x, and we know also
that (2.36) holds for x∈ [Rm, R]. Consequently, on setting aRm = ess sup

x∈[0,Rm]
a(x), we obtain, for

0<x≤R,

Φm(x)≤ 2mr̃wm(x) + (b0(1 +Rlm)− 1)aRm

≤−dmRγ0wm(x) +

(
(dmR

γ0 + 2mr̃)(1 +Rm−n) +
(b0(1 +Rlm)− 1)aRm

wn(x)

)
wn(x),

where we have used the inequality wm(x)/wn(x)≤ 1 + xm−n, x > 0. Combining the above
inequality with (2.37), for any fixed R≥Rm, there exist positive constants dm and Dm such that

Φm(x)≤−dmRγ0wm(x) +DmR
γ0+m−nwn(x), for all x∈R+,

and therefore, from (2.35),

d

dt
M0,m(t)≤−dmRγ0M0,m(t) +DmR

γ0+m−nM0,n(t). (2.38)

Since Theorem 2.2 ensures that M0,n(t)≤C(n)eθ(n)t‖f̊‖[0,n] =: σn(t)‖f̊‖[0,n], (2.38) leads to

d

dt
(edmR

γ0 tM0,m(t))≤DmC(n)Rγ0+m−ne(dmR
γ0+θ(n))t‖f̊‖[0,n].

Page 10 of 44

http://mc.manuscriptcentral.com/issue-ptrsa

Submitted to Phil. Trans. R. Soc. A - Issue



10

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

Integrating, using the definitions of
(
S∗G0,m

(t)
)
t≥0

and Ψm, see (2.32), we get for someD′m,n > 0,∫∞
0
Ψm(x, t)f̊(x)dx=M0,m(t)≤ e−dmR

γ0 t‖f̊‖[0,m] +D′m,nR
m−nσn(t)‖f̊‖[0,n]

≤
∫∞
0

(e−dmR
γ0 twm(x) +D′m,nR

m−nσn(t)wn(x))f̊(x)dx.

(2.39)

Since all positive C∞0 (R+) functions are in D(G0,m)+, this leads to

Ψm(x, t)≤ e−dmR
γ0 twm(x) +D′mR

m−nσn(t)wn(x), (2.40)

for almost any x> 0 and each R≥Rm. Since t, x and R are independent, for fixed t and x, with

x≥ e
dmR

γ0
m t

m−n , we can define R :=
(
m−n
dm

log x
t

)1/γ0
. It then follows from (2.40) that

Ψm(x, t)≤ xn−mwm(x) +D′m

(
m− n
dm

)1/γ0

t
n−m
γ0 log

n−m
γ0 xσn(t)wn(x)≤Dm,n,p σ̂n(t)t

n−m
γ0 wp(x),

where p is any number bigger than n, the function σ̂n(t) is bounded as t→ 0+ and exponentially

bounded as t→∞, and Dm,n,p is a constant depending on m,n, p. For x< e
dmR

γ0
m t

m−n , we take
R=Rm and use the fact that wm(x) and wn(x) are increasing functions to obtain from (2.40)

Ψm(x, t)≤ e−dmR
γ0
m twm

(
e
dmR

γ0
m t

m−n

)
+D′mR

m−n
m σn(t)wn

(
e
dmR

γ0
m t

m−n

)
≤Dm,nσ̃n(t)e

mdmR
γ0
m t

m−n wp(x).

Thus, there are constants C =C(m,n, p) and θ= θ(m,n) such that, for almost all x> 0 and t > 0,

Ψm(x, t)≤Ceθtt
n−m
γ0 wp(x)

and hence, using (2.39), for f̊ ∈X0,m,+,

‖SG0,p
(t)f̊‖[0,m] ≤Ce

θtt
n−m
γ0

∫∞
0
f̊(x)wp(x)dx.

The inequality can be extended to f̊ ∈X0,p by linearity and density.

Corollary 2.1. Under the assumptions of Theorem 2.3, SG0,p
(t) :D(G0,p)→D(G0,m) for all t > 0 .

Proof. Let m,n and p be as in Theorem 2.3. Since f and G0,pf belong to X0,p, both SG0,p
(t)f and

SG0,p
(t)G0,pf are in X0,m for t > 0, and therefore we can evaluate

SG0,m
(h)− I
h

SG0,p
(t)f =

SG0,p
(h)− I
h

SG0,p
(t)f = SG0,p

(t)
SG0,p

(h)− I
h

f.

It then follows from Theorem 2.3 that∥∥∥∥SG0,m
(h)− I
h

SG0,p
(t)f − SG0,p

(t)G0,pf

∥∥∥∥
[0,m]

=

∥∥∥∥SG0,p
(t)

(
SG0,p

(h)− I
h

f −G0,pf

)∥∥∥∥
[0,m]

≤Ceθtt−
m−n
γ0

∥∥∥∥SG0,p
(h)− I
h

f −G0,pf

∥∥∥∥
[0,p]

→ 0, (2.41)

as h→ 0+, which establishes that SG0,p
(t)f ∈D(G0,m) for all t > 0.

Corollary 2.2. Assume that (2.6), (2.24), (2.26), (2.28) and (2.33) are all satisfied, and let p >max{1, l}.
Then, for each f̊ ∈X0,m ∩D(G0,p), problem (2.1) has a classical solution in X0,m.

Proof. Let f(t) = SG0,m
(t)f̊ . We can assume that p <m, as otherwise f̊ ∈D(G0,m). Then, for all

t > 0, SG0,p
(t)f̊ = SG0,m

(t)f̊ and, by Corollary 2.1, SG0,p
(t)f̊ ∈D(G0,m) so that, as in (2.41),

lim
h→0+

f(t+ h)− f(t)

h
= lim
h→0

SG0,p
(h)− I
h

SG0,p
(t)f̊ =G0,pSG0,p

(t)f̊ =G0,mSG0,m
(t)f̊

in X0,m, where the last equality follows from Corollary 2.1.
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3. Coagulation-fragmentation with growth
The results obtained in the previous section can now be exploited to establish the well-posedness
of the initial value problem (IVP) (1.9). The restrictions placed on r, a and b for Theorem 2.3 to
hold continue to be assumed, but now we specify that a1(x) := β(1 + xα), where β is a constant
that will be determined later, and 0<α< γ0, with γ0 defined in (2.33), so that a1(x)/a(x) remains
bounded as x→∞.

The coagulation kernel is required to satisfy

k(x, y)≤ k0(1 + xα)(1 + yα), (3.1)

for some positive constant k0. It is convenient to express (1.9) in the form

∂tf(x, t) =−∂x[r(x)f(x, t)]− a1(x)f(x, t) + Ff(x, t) + Kβf(x, t) , (x, t)∈R2
+, (3.2)

f(0, x) = f̊(x) , x∈R+ , (3.3)

where Kβf(x, t) := a1(x)f(x, t) + Kf(x, t), and F, K are given by (1.2) and (1.3) respectively.

Denoting the generator of the growth-fragmentation semigroup in this case by G
(β)
0,m, the

corresponding abstract formulation of the IVP (3.2) - (3.3) can be written as

d

dt
f(t) =G

(β)
0,mf(t) +K

(β)
0,mf(t), t > 0; f(0) = f̊ , (3.4)

where the operator K(β)
0,m is the realisation of Kβ on X0,m.

The following inequalities will often be used. For x≥ 0

(1 + xδ)≤ 2(1 + xη), 0≤ δ≤ η, and (1 + xδ)(1 + xη)≤ 4(1 + xδ+η), 0≤ δ≤ η. (3.5)

(a) Local Existence
We begin by proving the local (in time) existence and uniqueness of a mild solution to (3.4).

Theorem 3.1. Let r, a, b be such that Theorem 2.3 holds, k satisfy (3.1) and, in addition, let m>α+

max{1, l}. Then, for each f̊ ∈X0,m,+, the semilinear ACP (3.4) has a unique nonnegative mild solution
f ∈C([0, τmax), X0,m) defined on its maximal interval of existence [0, τmax), where τmax = τmax(f̊). If
τmax <∞, then ‖f(t)‖[0,m] is unbounded as t→ τ−max.

Proof. Let p be defined by

p :=m− α, (3.6)

and, noting that (m− n)/γ0 = (p− n)/γ0 + α/γ0 , we are then able to choose n< p such that
(m− n)/γ0 < 1 and n>max{1, l}, so that m,n, p satisfy assumptions of Theorem 2.3. We begin
by showing that the bilinear form K

(β)
0,m, defined by

[K
(β)
0,m(f, g)](x) := β(1 + xα)f(x)− f(x)

∫∞
0
k(x, y)g(y)dy +

1

2

∫x
0
k(x− y, y)f(x− y)g(y)dy, (3.7)

is continuous from X0,m ×X0,m into X0,p. From (3.1), (3.5) and (3.6), we obtain, for f, g ∈X0,m,

β

∫∞
0

(1 + xα)|f(x)|wp(x)dx≤ 4β‖f‖[0,m], (3.8)∫∞
0
|f(x)|

(∫∞
0
k(x, y)|g(y)|dy

)
wp(x)dx≤ 4k0‖f‖[0,m]‖g‖[0,m], (3.9)

1

2

∫∞
0

(∫x
0
k(x− y, y)|f(y)||g(x− y)|dy

)
wp(x)dx≤ 2p+3k0‖f‖[0,m]‖g‖[0,m]. (3.10)
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Hence,

‖K(β)
0,m(f, g)‖[0,p] ≤

(
4β + (4 + 2p+3)k0‖g‖[0,m]

)
‖f‖[0,m], for all f, g ∈X0,m. (3.11)

Since K(β)
0,mf = K

(β)
0,m(f, f), it follows that K(β)

0,m is a continuous mapping from X0,m into X0,p.
Consequently, the integral equation that arises as the mild formulation of (3.4) can be written as

f(t) = S
G

(β)
0,m

(t)f̊ +

∫ t
0
S
G

(β)
0,p

(t− s)K(β)
0,mf(s)ds. (3.12)

Next consider the set
U := {f ∈X0,m,+ : ‖f‖[0,m] ≤ 1 + b}, (3.13)

for an arbitrary b > 0. For each f ∈U, we can use (3.1), (3.5) and the fact that α<m, to obtain∫∞
0
k(x, y)f(y)dy≤ 2k0(1 + xα)‖f‖[0,m] ≤ β(1 + xα), for all x> 0,

where we now define β := 2k0(1 + b) and therefore, with this choice of β,

(K
(β)
0,mf)(x)≥ 1

2

∫x
0
k(x− y, y)f(x− y)f(y)dy≥ 0. (3.14)

Also, from (3.11), we have, for all f, g ∈U,

‖K(β)
0,mf‖[0,p] ≤K(U), and ‖K(β)

0,mf −K
(β)
0,mg‖[0,p] ≤L(U)‖f − g‖[0,m], (3.15)

where K(U) = β2

k0
(2 + (1 + 2p+1)) and, by the definition of β, L(U) = 8β(1 + 2p).

Then, for f̊ ∈X0,m,+ satisfying ‖f̊‖0,m ≤ b, we define the operator

Tf(t) = S
G

(β)
0,m

(t)f̊ +

∫ t
0
S
G

(β)
0,p

(t− s)K(β)
0,mf(s)ds (3.16)

in Ym :=C([0, τ ],U), with U defined by (3.13) and τ to be determined so that T is a contraction
on Ym, when Ym is equipped with the metric induced by the norm from C([0, τ ], X0,m). First,
observe that Tf ∈C([0, τ ], X0,m,+) for all f ∈ Ym. Indeed, for any t≥ 0 and h> 0, with t+ h≤ τ ,

‖Tf(t+ h)− Tf(t)‖[0,m] ≤
∫ t+h
t

∥∥∥∥SG(β)
0,p

(t+ h− s)K(β)
0,mf(s)

∥∥∥∥
[0,m]

ds

+

∫ t
0

∥∥∥∥SG(β)
0,p

(t− s)(S
G

(β)
0,p

(h)− I)K
(β)
0,mf(s)

∥∥∥∥
[0,m]

ds=: I1(h) + I2(h).

Now, by (2.34) and (3.15),

‖S
G

(β)
0,p

(t+ h− s)K(β)
0,mf(s)‖[0,m] ≤C(m,n, p)eθ(m,n)(t+h−s)(t+ h− s)

n−m
γ0 K(U).

Since (n−m)/γ0 >−1, it follows that∫ t+h
t

(t+ h− s)
n−m
γ0 ds=

∫h
0
σ
n−m
γ0 dσ→ 0 as h→ 0+,

and therefore limh→0+ I1(h) = 0. Similarly,

‖S
G

(β)
0,p

(t− s)(S
G

(β)
0,p

(h)− I)K
(β)
0,mf(s)‖[0,m]

≤ C(m,n, p)eθ(m,n)(t−s)(t− s)
n−m
γ0 ‖(S

G
(β)
0,p

(h)− I)K
(β)
0,mf(s)‖[0,p]

≤ C(m,n, p, τ)(t− s)
n−m
γ0 , (3.17)

where C(m,n, p, τ) is a constant that is independent of h. Thus, from the first inequality we
see that the integrand in I2(h) converges to zero as h→ 0+ for each 0≤ s < t and the second
ascertains that this convergence is dominated by an integrable function. Hence, an application
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of the Lebesgue dominated convergence theorem shows that Tf is right continuous at t for all
t∈ [0, τ). Similarly, when 0<h< t≤ τ and t− h≥ 0 , we have

‖Tf(t− h)− Tf(t)‖[0,m] ≤
∫ t
t−h

∥∥∥∥SG(β)
0,p

(t− s)K(β)
0,mf(s)

∥∥∥∥
[0,m]

ds

+

∫ t−h
0

∥∥∥∥SG(β)
0,p

(t− h− s)(I − S
G

(β)
0,p

(h))K
(β)
0,mf(s)

∥∥∥∥
[0,m]

ds=: I ′1(h) + I ′2(h).

Arguing as before, we obtain limh→0+ I
′
1(h) = 0. As for I ′2(h), we rewrite it as

I ′2(h) =

∫ t
0
χ[h,t]

∥∥∥∥SG(β)
0,p

(t− σ)(I − S
G

(β)
0,p

(h))K
(β)
0,mf(σ − h)

∥∥∥∥
[0,m]

dσ, (3.18)

where χΩ is the characteristic function of Ω. Since t→K
(β)
0,mf(t) is a continuous function in

X0,p, lim
h→0+

K
(β)
0,mf(σ − h) =K

(β)
0,mf(σ) for each σ > 0. Then, on account of the local uniform

boundedness of (S
G

(β)
0,p

(t))t≥0, a corollary of the Banach-Steinhaus theorem ensures that

lim
h→0+

(I − S
G

(β)
0,p

(h))K
(β)
0,mf(σ − h) = 0 for any fixed σ > 0 and we see that the integrand in (3.18)

converges to zero on [0, t]. Moreover, from (3.17),

‖S
G

(β)
0,p

(t− σ)(I − S
G

(β)
0,p

)(h))K
(β)
0,mf(σ − h)‖[0,m] ≤C(m,n, p, τ)(t− σ)

n−m
γ0

for all σ ∈ [h, t], where, by (3.15), K(β)
0,mf(σ − h) is estimated by the Ym norm of f , and this is

independent of h. Consequently, by the Lebesgue dominated convergence theorem, we obtain
limh→0+ I

′
2(h) = 0. Further, thanks to (3.14), Tf(t)≥ 0 since f(s)≥ 0 for all s∈ [0, τ ].

As in the proof of [14, Theorem 8.1.2], we establish the existence of τ = τ(U) such that
‖Tf(t)‖[0,m] ≤ 1 + b for 0≤ t≤ τ and moreover T is a contractive mapping on Ym. Hence, in the
usual way, we can extend the solution to the maximal interval [0, τmax). The last statement of the
theorem follows since τ is uniform on bounded subsets of X0,m.

The next objective is to prove that the mild solution of the previous theorem is a classical
solution of (3.4) under an additional restriction on f̊ . We require the following three lemmas.

Lemma 3.1. K(β)
0,m :X0,m→X0,p is continuously Fréchet differentiable.

Proof. Recall that K(β)
0,mf = K

(β)
0,m(f, f), see (3.7). Using (3.9) and (3.10), we see that K(β)

0,m is
Fréchet differentiable at each f ∈X0,m, with Fréchet derivative given by

[∂K
(β)
0,mf ]h := βwαh+ K

(0)
0,m(f, h) + K

(0)
0,m(h, f) , h∈X0,m.

Moreover, again by (3.9) and (3.10), for any f, g, h∈X0,m,

‖[∂K(β)
0,mf ]h− [∂K

(β)
0,mg]h‖[0,p] ≤ 8β(1 + 2p)‖h‖[0,m] ‖f − g‖[0,m]→ 0

as ‖f − g‖[0,m]→ 0, uniformly in ‖h‖[0,m] ≤ 1. Hence, the Fréchet derivative is continuous.

Lemma 3.2. Assume that 1< p<m and T ∈R+. Let (S(t))t≥0 be a C0-semigroup on X0,p and
{P (t)}t∈[0,T ] be bounded linear operators from X0,m to X0,p such that, for all u∈X0,p and f ∈X0,m,

‖S(t)u‖[0,m] ≤M(t)t−κ‖u‖[0,p] , ‖P (t)f‖[0,p] ≤L(t)‖f‖[0,m],

where M,L∈L∞([0, T ]) and 0<κ< 1. Moreover, let g ∈C((0, T ], X0,m) be such that ‖g(t)‖[0,m] ≤
G(t)t−δ , where G∈L∞([0, T ]) and 0< δ < 1. Then the integral equation

f(t) = g(t) +

∫ t
0
S(t− s)P (s)f(s)ds (3.19)

has a unique solution f ∈C((0, T ], X0,m) that satisfies ‖f(t)‖[0,m] ≤ F (t)t−δ for someF ∈L∞([0, T ]).
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Proof. We use some ideas from [8, Lemma 3.2]. Denoting Laplace convolution by ∗ and defining
θr(t) := t−r , a simple argument shows that θδ ∗ θκ exists for any choice of δ < 1 and κ< 1, with

(θδ ∗ θκ)(t) =B(1− δ, 1− κ) t1−δ−κ =B(1− δ, 1− κ) θδ+κ−1(t), (3.20)

where B is the Beta function. Let us denote by MT , LT and GT the suprema of the respective
functions M,L and G on [0, T ]. Then, defining for all t∈ (0, T ],

g1(t) =

∫ t
0
S(t− s)P (s)g(s)ds, gn(t) =

∫ t
0
S(t− s)P (s)gn−1(s)ds, n≥ 1

we have, by induction,

‖gn(t)‖[0,m] ≤ (MTLT )nGT

n∏
i=1

B(1− κ, i− (i− 1)κ− δ)t−(nκ−n+δ),

for all n∈N. Since n− nκ− δ= n(1− κ− δ/n), there exists n0 ∈N such that n− nκ− δ > 0 for
all n≥ n0. Then, denoting g(t) = g0(t), we can re-write (3.19) as

f(t)−
n0−1∑
i=0

gi(t) = gn0(t) +

∫ t
0
S(t− s)

(
f(s)−

n0−1∑
i=0

gi(s)

)
ds (3.21)

where we have gn0 ∈C([0, T ], X0,m). Consider now an operator on C([0, T ], X0,m) given by

Qu(t) = gn0(t) +

∫ t
0
S(t− s)P (s)u(s)ds.

The argument used in Theorem 3.1 to prove the continuity of the operator T can be applied again
to establish the continuity of Q. Then, for u, v ∈C([0, T ], X0,m) we obtain

‖Qu(t)−Qv(t)‖[0,m] ≤MTLT sup
s∈[0,T ]

‖u(s)− v(s)‖[0,m]B(1− κ, 1)t1−κ

and, again by induction,

‖Qku(t)−Qkv(t)‖[0,m] ≤M
k
TL

k
T sup
s∈[0,T ]

‖u(s)− v(s)‖[0,m]

k−1∏
i=0

B(1− κ, i+ 1− iκ)t−i(κ−1).

Now, using the fact that B(x, y) =
Γ (x)Γ (y)
Γ (x+y)

and Γ (y)
Γ (x+y)

≤ cyy−x, x > 0, y→∞,, [1, Inequality
6.1.47], we see, on account of i+ 1− iκ= i(1− κ) + 1≥ 1 for i≥ 0, that

k−1∏
i=0

B(1− κ, i+ 1− iκ)≤ Γ k(1− κ)ck1−κ

(
1

1− κ

)k(1−κ)(
1

(k − 1)!

)1−κ
.

Hence, for some constant CT ,

sup
t∈[0,T ]

‖Qku(t)−Qkv(t)‖[0,m] ≤

 C
k

1−κ
T

(k − 1)!

1−κ

sup
s∈[0,T ]

‖u(s)− v(s)‖[0,m]

and therefore there exists k such that Qk is a contraction. Thus, the equation u=Qu has a unique
solution u∈C([0, T ], X0,m) (the uniqueness follows from the Gronwall-Henry inequality, see [8,
Lemma 3.2])

f(t) = u(t) +

n0−1∑
i=0

gi(t)

is a unique solution to (3.19) satisfying the stipulated growth condition at t= 0.

We now give the following lemma which seems to belong to mathematical folklore.
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Lemma 3.3. Let X,Y be Banach spaces, K be a continuously Fréchet differentiable operator from X to Y
with the derivative ∂K ∈C(X,L(X,Y )) and let the remainder ω :X ×X 7→ Y be defined by

K(x+ h)−K(x)− ∂K(x)h= ω(h, x), x, h∈X.

Then the function ω0(h, x) :=
ω(h,x)
‖h‖X if h 6= 0 and ω0(0, x) := 0 otherwise, is continuous.

In the next theorem we address the issue of differentiability of the mild solution constructed
in Theorem 3.1 and it being a classical solution to (3.4). The result is similar to that for analytic
semigroups in that the mild solution in a smaller space (here X0,m) is a classical solution in a
bigger space (here X0,p), see [18, Definitions 7.0.1 & 7.0.2] or [25, Section 4.7.1].

Theorem 3.2. Let the assumptions of Theorem 3.1 hold and assume also that f̊ ∈X0,m ∩D(G
(β)
0,p ), where

p=m− α. Then the mild solution f , defined on its maximal interval of existence [0, τmax), satisfies
f ∈C([0, τmax), X0,m) ∩ C1((0, τmax), X0,m) ∩ C((0, τmax), D(G

(β)
0,p )) and is a classical solution to

(3.4) in X0,p.

Proof. The proof follows the lines of [21, Theorem 6.1.5] but additional steps are required due to
the unboundedness of the nonlinear term. First we observe that it suffices to prove the regularity
on (0, τ) of the local solution constructed in Theorem 3.1 as the proof can then be repeated for
each local solution until we reach τmax.

As in the proof of Theorem 3.1, we choose n so that κ := m−n
γ0
∈ (0, 1). Since f̊ ∈D(G

(β)
0,p ), the

mild solution f satisfies the integral equation

f(t) = S
G

(β)
0,m

(t)f̊ +

∫ t
0
S
G

(β)
0,p

(t− s)K(β)
0,mf(s)ds= S

G
(β)
0,p

(t)f̊ +

∫ t
0
S
G

(β)
0,p

(s)K
(β)
0,mf(t− s)ds.

(3.22)
We first consider the Lipschitz continuity of f . Let t > 0 and h> 0. We have

f(t+ h)− f(t)

h
=

1

h

(
S
G

(β)
0,m

(h)− I
)
S
G

(β)
0,m

(t)f̊ +
1

h

∫h
0
S
G

(β)
0,p

(t+ h− s)K(β)
0,mf(s)ds

+
1

h

∫ t
0
S
G

(β)
0,p

(t− s)(K(β)
0,mf(s+ h)−K(β)

0,mf(s))ds=: I1(h) + I2(h) + I3(h).

Arguing as in Corollary 2.1, we have∥∥∥∥ 1

h

(
S
G

(β)
0,m

(h)− I
)
S
G

(β)
0,m

(t)f̊

∥∥∥∥
[0,m]

≤C1(τ)t−κ‖G(β)
0,p f̊‖[0,p],

where C1(τ) =Ceθτ max
0≤t≤τ

‖S
G

(β)
0,p

(t)‖[0,p], see (2.34). Next, using (3.15),

1

h

∫h
0
‖S
G

(β)
0,p

(t+ h− s)K(β)
0,mf(s)‖[0,m]ds≤C(τ)K(U)

1

h

∫h
0

(t+ h− s)−κds≤C(τ)K(U)t−κ.

Finally, using the second inequality in (3.15),

1

h

∫ t
0
‖S
G

(β)
0,p

(t− s)(K(β)
0,mf(s+ h)−K(β)

0,mf(s))‖[0,m]ds

≤ M(τ)L(U)

∫ t
0
(t−s)−κ

‖f(s+ h)−f(s)‖[0,m]

h
ds.
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Thus, for some constants C1, C2,

‖f(t+ h)− f(t)‖[0,m]

h
≤ C1

tκ
+ C2

∫ t
0
(t− s)−κ

‖f(s+ h)− f(s)‖[0,m]

h
ds

and, by the Gronwall–Henry inequality [14, Lemma 7.1], for some constant C3,

‖f(t+ h)− f(t)‖[0,m]

h
≤C3t

−κ. (3.23)

In the estimates above, we can use the same bounds for f(t) and f(t+ h) as the function t 7→
f(t+ h) can be treated as the solution for the initial value f(h) which is in U for h small enough.

For the differentiability of f , first we observe that formally differentiating (3.22) gives, for
0< t< τ,

∂tf(t) = S
G

(β)
0,p

(t)G
(β)
0,p f̊ + S

G
(β)
0,p

(t)K
(β)
0,mf̊ +

∫ t
0
S
G

(β)
0,p

(t− s)∂K(β)
0,mf(s)∂sf(s)ds. (3.24)

On defining g(t) :=G
(β)
0,pSG(β)

0,p

(t)f̊ + S
G

(β)
0,p

(t)K
(β)
0,mf̊ and P (s) = ∂K

(β)
0,mf(s), we see that the

derivative of f , if it exists, satisfies the linear integral equation

w(t) = g(t) +

∫ t
0
S
G

(β)
0,m

(t− s)P (s)w(s)ds. (3.25)

Now, for t > 0, h > 0,

‖g(t+ h)− g(t)‖[0,m] ≤C(τ)t−κ‖(S
G

(β)
0,p

(h)− I)(G
(β)
0,p f̊ +K

(β)
0,mf̊)‖[0,p]

and, analogously, for left-hand limits. Hence the function t 7→ g(t) is in C((0, τ), X0,m) and is
O(t−κ) close to t= 0. Next, by Lemma 3.1, s 7→ P (s) is a continuous function that takes values in
L(X0,m, X0,p). Hence, Lemma 3.2 yields the existence of a solution w ∈C((0, T ], X0,m) to (3.25)
for any 0<T < τ , with ‖w(t)‖[0,m] =O(t−κ) as t→ 0+.

Next, we prove that f is differentiable in X0,m for 0< t< τ . From (3.12), we obtain

f(t+ h)− f(t)

h
− w(t) = J1(h) + J2(h) + J3(h),

where

J1(h) :=
1

h

(
S
G

(β)
0,p

− I
)
S
G

(β)
0,p

(t)f̊ − S
G

(β)
0,p

(t)G
(β)
0,p f̊ ,

J2(h) :=
1

h

∫h
0

(
S
G

(β)
0,p

(t+ h− s)K(β)
0,mf(s)− S

G
(β)
0,p

(t)K
(β)
0,mf̊

)
ds,

J3(h) :=
1

h

∫ t
0
S
G

(β)
0,p

(t− s)(K(β)
0,mf(s+ h)−K(β)

0,mf(s))ds−
∫ t
0
S
G

(β)
0,p

(t− s)P (s)w(s)ds.

Clearly limh→0+ J1(h) = 0 by (2.41). For J2(h), we take t > 0 and 0≤ s≤ h≤ t/2. Then

‖S
G

(β)
0,p

(t+ h− s)K(β)
0,mf(s)− S

G
(β)
0,p

(t)K
(β)
0,mf̊‖[0,m]

≤ ‖S
G

(β)
0,p

(t− s)(S
G

(β)
0,p

(h)− I)K
(β)
0,mf(s)‖[0,m] + ‖S

G
(β)
0,p

(t− s)(K(β)
0,mf(s)−K(β)

0,mf̊)‖[0,m]

+ ‖(S
G

(β)
0,p

(t− s)− S
G

(β)
0,p

(t))K
(β)
0,mf̊‖[0,m] =: J1(s, h) + J2(s) + J3(s).

Now

J1(s, h)≤Ceθ(t−s)(t− s)−κ‖(S
G

(β)
0,p

(h)− I)K
(β)
0,mf(s)‖[0,p].

Since t 7→ S
G

(β)
0,p

(t) is strongly continuous in X0,p, it is uniformly continuous on compact sets of

X0,p. Moreover, as the function s 7→K
(β)
0,mf(s)∈C([0, τ), X0,p) for any f ∈C([0, τ), X0,m) and
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the continuous image of the compact interval
[
0, t2

]
is compact, we see that for any ε > 0 there is

h0 <
t
2 such that for all 0<h≤ h0 we have J1(s, h)≤ ε, uniformly in s∈ [0, h0].

Similarly, by (2.34) and (3.15),

J2(s)≤Ceθ(t−s)(t− s)−κL(U)‖f(s)− f̊‖[0,m]

and for any ε there is 0<h0 <
t
2 such that for any 0≤ s≤ h≤ h0 we have J2(s)≤ ε. Finally, as

with J1,

J3(s)≤ ‖S
G

(β)
0,p

(t− s)(S
G

(β)
0,p

(s)− I)K
(β)
0,mf̊‖[0,m] =Ceθ(t−s)(t− s)−κ‖(SGp(s)− I)K

(β)
0,mf̊‖[0,p]

and hence J3 is a continuous function at 0 and therefore lim
h→0+

1
h

∫h
0 J3(s)ds= 0. Summarizing,

lim
h→0+

J2(h) = lim
h→0+

1

h

∫h
0
S
G

(β)
0,p

(t+ h− s)K(β)
0,mf(s)ds− S

G
(β)
0,p

(t)K
(β)
0,mf̊ = 0.

Finally, by Lemma 3.1, and with ω defined as in Lemma 3.3,

K
(β)
0,mf(s+ h)−K(β)

0,mf(s)− P (s)(f(s+ h)− f(s)) = ω(f(s+ h)− f(s), f(s)). (3.26)

Now

‖ω(f(s+ h)− f(s))‖[0,p]
h

=
‖ω(f(s+ h)− f(s), f(s))‖[0,p]
‖f(s+ h)− f(s)‖[0,m]

‖f(s+ h)− f(s)‖[0,m]

h
.

By Lemma 3.3, the function (h, s) 7→ ‖ω(f(s+h)−f(s),f(s))‖[0,p]‖f(s+h)−f(s)‖[0,m]
is continuous on [0, h0]× [0, s′] for

any s′ < s and hence it is uniformly continuous. Thus, for any ε > 0 there is h0 such that for any
0<h<h1 ≤ h0, s∈ [0, s′]

‖ω(f(s+ h)− f(s), f(s))‖[0,p]
‖f(s+ h)− f(s)‖[0,m]

≤ ε.

Hence, by (3.23), (3.20) and (3.26),∥∥∥∥ 1

h

∫ t
0
S
G

(β)
0,p

(t− s)(K(β)
0,mf(s+ h)−K(β)

0,mf(s))ds−
∫ t
0
S
G

(β)
0,p

(t− s)P (s)w(s)ds

∥∥∥∥
[0,m]

≤C1

∫ t
0
(t− s)−κ

∥∥∥∥ω(f(s+ h)− f(s), f(s))

h

∥∥∥∥
[0,p]

ds

+ C2

∫ t
0
(t− s)−κ

∥∥∥∥f(s+ h)− f(s)

h
− w(s)

∥∥∥∥
[0,m]

ds

≤C1C3B(1− κ, 1− κ)εt1−2κ + C2

∫ t
0
(t− s)−κ

∥∥∥∥f(s+ h)− f(s)

h
− w(s)

∥∥∥∥
[0,m]

ds.

Since for small t we have t1−2κ ≤ t−κ, it follows that, on any time interval (0, s′) where s′ < s,
and for any ε > 0, there is h0 such that for any 0<h<h0∥∥∥∥f(t+ h)− f(t)

h
− w(t)

∥∥∥∥
[0,m]

≤ εt−κC5 + C2

∫ t
0
(t− s)−κ

∥∥∥∥f(s+ h)− f(s)

h
− w(s)

∥∥∥∥
[0,m]

ds

and thus, by [8, Lemma 3.2],∥∥∥∥f(t+ h)− f(t)

h
− w(t)

∥∥∥∥
[0,m]

≤ εt−κC6.

Hence the right-hand derivative of f exists on (0, τ), and satisfies (3.24). As in the proof of
Theorem 3.1, the right-hand side of (3.24) is continuous on (0, s) and thus the left-hand derivative
also exists. Hence f ∈C1((0, τ), X0,m).
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To show that f(t)∈D(G
(β)
0,p ) for t > 0, we evaluate

1

h
(S
G

(β)
0,p

(h)− I)f(t) =
1

h
S
G

(β)
0,p

(t)(S
G

(β)
0,p

(h)− I)f̊ +
1

h

∫h
0
S
G

(β)
0,p

(t− s)K(β)
0,mf(s)ds

− 1

h

∫ t
t−h

S
G

(β)
0,p

(t− s)K(β)
0,mf(s+ h)ds+

1

h

∫ t
0
S
G

(β)
0,p

(t− s)(K(β)
0,mf(s+ h)−K(β)

0,mf(s))ds

=:L1(h) + L2(h) + L3(h) + L4(h).

Using again (2.41), L1(h)→ S
G

(β)
0,p

(t)G
(β)
0,p f̊ in X0,m for t > 0. Also, as above,

lim
h→0+

L2(h) = S
G

(β)
0,m

(t)K
(β)
0,mf̊ , lim

h→0+
L4(h) =

∫ t
0
S
G

(β)
0,p

(t− s)∂K(β)
0,mf(s)∂sf(s)ds.

While the above limits hold in X0,m thanks to the regularizing effect of (S
G

(β)
0,p

(t))t≥0 for t > 0, in

L3 we must use the continuity of the integrand at t= 0 so we are only able to pass to the limit in
X0,p. Then, in the same way as for L2, we have

lim
h→0+

L3(h) =−K(β)
0,mf(t),

in X0,p. Hence f(t)∈D(G
(β)
0,p ) for t > 0 and

G
(β)
0,pf(t) = S

G
(β)
0,p

(t)G
(β)
0,p f̊ + S

G
(β)
0,p

(t)K
(β)
0,mf̊ −K

(β)
0,mf(t) +

∫ t
0
S
G

(β)
0,p

(t− s)∂K(β)
0,mf(s)∂sf(s)ds

=−K(β)
0,mf(t) +

d

dt
f(t). (3.27)

(b) Global solvability
To establish the existence of global (in time) solutions to the growth C-F equation we must impose
the more restrictive condition

k(x, y)≤ k0(1 + xα + yα) (3.28)

on the coagulation kernel. As in (3.1), k0 is a positive constant and 0<α< γ0, where γ0 is given
in (2.33). Also, the inclusion of the term a1(x) = β(1 + xα) being required only to prove the
nonnegativity of mild solutions in Theorem 3.1, we now set β = 0, in which case, from (2.31)
and Theorem 3.2, there exists a unique solution f to

d

dt
f(t) = T 0

0,pf(t) +A0,pf(t) +B0,pf(t) +K0,mf(t), f(0) = f̊ ∈X0,m ∩D(G0,p), (3.29)

in C([0, τmax), X0,m) ∩ C1((0, τmax), X0,m) ∩ C((0, τmax), D(G0,p)), where K0,m :=K
(0)
0,m and

G0,p :=G
(0)
0,p. We emphasize that, once α is given, we can use an arbitrary p >max{1, l} and then

take m= p+ α.

Theorem 3.3. Let the assumptions of Theorem 3.1 be satisfied with (3.1) replaced by (3.28). If either
a) there are constants m0 and m1 such that for all x≥ 0 (n0(x)− 1)a(x)≤m0 +m1x , or
b) r0 = 0; that is, r(x)≤ r̃x,
then the solutions of Theorem 3.1 are global in time.

Proof. The proof follows the lines of the proof of [6, Theorem 5.1] but the technicalities are slightly
different. Using the classical identities and estimates, [14, Eqn. (8.1.22) & Lemma 7.4.2] and (3.28),∫∞

0
xiKf(x)dx≤Ki(‖f‖[1]‖f‖[i−1] + ‖f‖[1]‖f‖[α+i−1] + ‖f‖[α+1]‖f‖[i−1]), i≥ 1, (3.30)
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for some constants Ki. For the fragmentation terms, let us first recall a0, γ0 and x0, defined in
(2.33). From [6, Theorem 2.2] we have that if Nm0(x)/xm0 ≥ δ′m0

holds for some m0 > 1, δ′m0
and

x≥ x0, then for any i > 1 there is δ′i > 0 such that Ni(x)/xi ≥ δ′i > 0 for any x≥ x0. Hence,∫∞
0
Ni(x)a(x)f(x)dx=

∫x0

0
a(x)Ni(x)f(x)dx+

∫∞
x0

a(x)f(x)xi
Ni(x)

xi
dx≥ δi‖f‖[i+γ0] − νi‖f‖[i],

(3.31)

where δi = δ′ia0 and νi = δiess sup0≤x≤x0
a(x). If we take f̊ to be a C∞(R+) function with

bounded support, then f̊ ∈D(G0,i) for any i and, if additionally i >max{1, l}, then, by Theorem
3.2, the corresponding solution (0, τmax)3 t 7→ f(t) = f(t, f̊) is differentiable in any suchXi. First,
let us consider an integer i≥ 2. Then, from (2.35), and using (3.30) and (3.31),

d

dt
M0(t)≤

∫∞
0

(n0(x)− 1)a(x)f(x, t)dx, (3.32)

d

dt
M1(t) =

∫∞
0
r(x)f(x, t)dx≤ r̃M0(t) + r̃M1(t), (3.33)

d

dt
Mi(t)≤ r̃Mi−1(t) + (νi + r̃)Mi(t)− δiMi+γ0(t)

+Ki(M1(t)Mi−1(t) +M1(t)Mα+i−1(t) +Mα+1(t)Mi−1(t)), i > 1. (3.34)

To simplify (3.34), we use the following auxiliary inequalities. For i≥ 2 and 1≤ r≤ i− 1, we
apply Hölder’s inequality with p= γ0/α and q= γ0/(γ0 − α) to obtain, as in [14, Eqn (8.1.59)],

‖f‖[r+α] ≤ cα‖f‖[1] + ‖f‖
γ0−α
γ0

[i−1] ‖f‖
γ0
α

[i+γ0]
, (3.35)

for some constant cα. Then Young’s inequality gives

‖f‖[i+α−1]‖f‖[1] ≤ cα‖f‖
2
[1] + ‖f‖[1]

(
γ0 − α
γ0

ε
γ0

α−γ0 ‖f‖[i−1] +
α

γ0
ε
γ0
α ‖f‖[i+γ0]

)
(3.36)

and

‖f‖[i−1]‖f‖[1+α] ≤ cα‖f‖[1]‖f‖[i−1] +

(
γ0 − α
γ0

ε
γ0

α−γ0 ‖f‖
2γ0−α
γ0−α
[i−1] +

α

γ0
ε
γ0
α ‖f‖[i+γ0]

)
. (3.37)

We now apply these inequalities to the solution t 7→ f(t), transforming (3.34) into

d

dt
Mi(t)≤ r0Mi−1(t) + (νi + r1)Mi(t)− δiMi+γ0(t)

+Ki

(
M1(t)Mi−1(t) + cαM

2
1 (t) +M1(t)

(
γ0 − α
γ0

ε
γ0

α−γ0 Mi−1(t) +
α

γ0
ε
γ0
α Mi+γ0(t)

)
+ cαM1(t)Mi−1(t) +

(
γ0 − α
γ0

ε
γ0

α−γ0 M
2γ0−α
γ0−α
i−1 (t) +

α

γ0
ε
γ0
α Mi+γ0(t)

))
. (3.38)

The problem is that the estimates derived above require some control of M1(t). It is standard
in pure coagulation-fragmentation models, as then M1 = ‖f̊‖[1] is constant on [0, τmax). Here,
however, the second inequality of (3.34) shows that M1(t) is coupled with M0(t) and the latter
in general depends on higher order moments. There are two easy ways to remedy this situation,
related to assumptions a) and b), respectively. If a) is satisfied, then

d

dt
M0(t)≤

∫∞
0

(n0(x)− 1)a(x)f(x, t)dx≤m0M0(t) +m1M1(t),

which, together with (3.33), yield M0(t)≤ M̊0e
µt and M1(t)≤ M̊1e

µt for some constant µ. Thus
neither moment blows up in finite time. If b) is satisfied, then M1(t)≤ M̊1e

r̃t and the inequalities
for the moments of order greater than one become decoupled from M0. In both cases M1(t)≤
M1,τmax on [0, τmax) and, by choosing ε so that α

γ0
ε
γ0
α Ki(M1,τmax + 1)≤ δi, we see that there are
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positive constants D0,i, D1,i, D2,i, D3,i such that (3.38) can be written as

d

dt
Mi(t)≤D0,i +D1,iMi(t) +D2,iMi−1(t) +D3,iM

2γ0−α
γ0−α
i−1 (t), t∈ [0, τmax). (3.39)

In particular, we immediately see that t 7→M2(t) is bounded on [0, τ(max)). Then we can use
(3.39) to proceed inductively to establish the boundedness of t 7→Mi(t) for any integer i (for the
chosen initial condition) and, for noninteger i > 1 we use the estimate ‖f‖[i] ≤ ‖f‖[1] + ‖f‖[bic+1].

It remains to prove that t 7→M0(t) is bounded on [0, τmax) (in case b)). Let us fix an integer
i >max{1, l}. Using the fact that

∫∞
0 Kf(x, t)dx≤ 0 and, by (2.24),∫∞

0
Ff(x, t)dx≤ 2b0

∫∞
0
a(y)f(y, t)wi(y)dy≤ ã

∫x0

0
f(y, t)dy + 2b0R(t), (3.40)

on [0, τmax), where ã= 2b0ess supy∈[0,x0] a(y)wi(y), for the zeroth moment we have

d

dt
M0(t)≤ a1M0(t) + 2b0R(t),

where we denoted R(t) =
∫∞
x0
a(x)f(x, t)wi(x)dx. Hence

M0(t)≤ eãt
(
‖f̊‖[0] + 2b0

∫ t
0
R(s)ds

)
. (3.41)

We have the estimate∫ t
0
R(s)ds=

∫ t
0

∫∞
x0

a(x)f(x, s)wi(x)dxds≤ (1 + x−i0 )

∫ t
0

∫∞
x0

a(x)f(x, s)xidxds. (3.42)

Now, similarly to (3.31), we can write,∫∞
0

[Ff ](x)xidx≤−δ
′
i

2

∫∞
x0

a(x)f(x)xidx− δ′i
2

∫∞
0
a(x)f(x)xidx+

δ′i
2

∫x0

0
a(x)xif(x)dx

≤−δ
′
i

2

∫∞
x0

a(x)f(x)xidx− δi
2
‖f‖[i+γ0] + νi‖f‖[i], (3.43)

where δi and νi were defined previously. Now, by selecting ε so that α
γ0
ε
γ0
α Ki(M1,τmax + 1)≤ δi

2

and knowing that all lower order moments are finite on [0, τmax), we can write (3.39) as

d

dt
Mi(t)≤−

δ′i
2

∫∞
x0

a(x)f(x, t)xidx+D0,i +D1,iMi(t) +Θ(t), (3.44)

where Θ is bounded on t∈ [0, τmax). This can be re-written as

d

dt
Φ(t)≤D0,i +D1,iΦ(t) +Θ(t),

where Φ(t) =Mi(t) +
δ′i
2

∫t
0

∫∞
x0
a(x)f(x, s)xidxds. Integrating,

Φ(t)≤ eD1,it
(
Φ(0) +

D0,i

D1,i
(1− e−D1,it) +

∫ t
0
Θ(s)e−D1,isds

)
and we see that neither Φ, nor t 7→

∫t
0

∫∞
x0
a(x)f(x, s)xidxds can blow up at t= τmax. Hence, by

(3.42) and (3.41), neither can t 7→M0(t).
This shows that solutions emanating from compactly supported differentiable initial

conditions are global in time. Consider now f̊ ∈X0,m,+ and a sequence of such regular initial
conditions (f̊k)k≥1 approximating f̊ and assume that the corresponding solution t→ f(t, f̊) has
a finite time blow up at τmax. By the moment estimates above, the bounds of ‖f(t, f̊k)‖0,m over
any finite time interval depend continuously on f̊k and thus are uniform in k on [0, τmax]. On
the other hand, there is a sequence (tn)n≥1 such that tn→ τmax, n→∞ and ‖f(tn, f̊)‖[0,m] is
unbounded; that is, the distance between f(tn, f̊) and all f(tn, f̊k) becomes arbitrarily large. This
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contradicts the continuous dependence of solutions on the initial conditions following, on each
[0, tn], from the Gronwall–Henry inequality, [8, Lemma 3.2]), see also [14, Theorem 8.1.1].

Remark 3.1. The additional restrictions in Theorem 3.3 are due to the fact that, in the general case,
we cannot control the production of particles; that is, the zeroth moment. In principle, there is a positive
feedback loop in which M0 contributes to M1 which, in turn, amplifies, in a nonlinear way, higher order
moments that determine the rate of growth of M0. The adopted assumptions, which postulate that either
M0 is controlled by M1, or that the evolution of mass is not influenced by other mechanisms (r0 6= 0

implies that there is a production of mass independent of the existing one), although technical, seem to be
the simplest ones that break this cycle. We do not claim that these assumptions are optimal but at present we
do not have any examples of a finite time blow up of solutions in this setting. It is, however, worthwhile to
note that there are known cases of a finite time blow up of solutions to growth–fragmentation–coagulation
equations even with bounded coagulation kernels but with the renewal boundary condition, [4].

4. Conclusion
In this paper we have applied results from the theory of C0-semigroups to prove the global in
time classical solvability of the growth-fragmentation-coagulation equation with an unbounded
coagulation kernel.
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