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Abstract

Quantification of the stationary points and the associated basins of attraction of

neural network loss surfaces is an important step towards a better understanding

of neural network loss surfaces at large. This work proposes a novel method to

visualise basins of attraction together with the associated stationary points via

gradient-based stochastic sampling. The proposed technique is used to perform

an empirical study of the loss surfaces generated by two different error met-

rics: quadratic loss and entropic loss. The empirical observations confirm the

theoretical hypothesis regarding the nature of neural network attraction basins.

Entropic loss is shown to exhibit stronger gradients and fewer stationary points

than quadratic loss, indicating that entropic loss has a more searchable land-

scape. Quadratic loss is shown to be more resilient to overfitting than entropic

loss. Both losses are shown to exhibit local minima, but the number of local

minima is shown to decrease with an increase in dimensionality. Thus, the pro-

posed visualisation technique successfully captures the local minima properties

exhibited by the neural network loss surfaces, and can be used for the purpose

of fitness landscape analysis of neural networks.
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1. Introduction

In the wake of the deep learning research explosion in the artificial neural

network (NN) research community [1, 2], it becomes increasingly important to

develop a better general understanding of NN training as a non-convex optimi-

sation problem. Lack of understanding causes practitioners to make arbitrary5

choices for various hyperparameters, yielding potentially subpar performance.

Failure or success of a particular combination of NN architecture and training al-

gorithm parameters is hard to predict. Specifically, the nature of the error land-

scapes associated with the NN loss functions is still poorly understood [3, 4, 5].

There are on-going debates and theories regarding the presence or absence of10

local minima in NN error landscapes, as well as the properties of stationary

points and the associated basins of attraction in the search space [6, 7, 8]. Such

lack of understanding hinders the development of new training algorithms that

would take the discovered properties of the search space into consideration.

One of the main reasons for this lack of insight is the high dimensionality15

inherent to NN problems. High-dimensional spaces are not intuitively visualis-

able, thus other means of analysis have to be employed. Theoretical analysis,

however, often relies on unrealistic assumptions, sometimes causing erroneous

conclusions. For example, papers were published claiming that XOR has no lo-

cal minima [9], to be subsequently followed by other publications that explicitly20

listed all local minima of the XOR problem [10]. Sprinkhuizen et al. [10] have

also stated that the listed local minima are in fact saddle points [10]. More

recent studies confirm that local optima are indeed present in the NN error

landscapes [11], although saddle points are likely to become more prevalent as

the dimensionality of the problem increases [6, 12]. Similarly to local minima,25

the properties of the NN basins of attraction are being actively studied and

questioned [8, 13].

The number of local minima, as well as the properties of local minima, were

theoretically shown to depend on the chosen error metric [14], among other
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parameters. Solla et al. [14] analysed two common NN loss functions, quadratic30

loss and entropic loss, and came to the conclusion that quadratic loss exhibits a

higher density of local minima, and entropic loss has steeper gradients, which is

likely to benefit gradient-based training. Entropic loss has gained popularity in

the deep learning community due to speeding up gradient descent convergence,

and providing more robust results than squared loss [15, 16]. However, studies35

were published advocating the hybrid use of both entropic and squared loss, as

squared loss was shown to be able to refine the solution discovered with entropic

loss [16].

This study aims to explore the properties of the stationary points and the

associated basins of attraction exhibited by the NN loss functions by means of40

proposing a low-dimensional visualisation. The stationary points of the NN error

surfaces are visualised using sampling-based techniques developed for fitness

landscape analysis (FLA). Hessian matrix analysis is further employed to classify

the discovered stationary points into minima, maxima, and saddles.

The novel contributions of this paper are summarised as follows:45

• A 2-dimensional visualisation of the NN stationary points is proposed.

• A simple numerical metric to quantify the number and extent of the basins

of attraction is proposed.

• An empirical comparison of the basins of attraction associated with squared

loss and entropic loss is carried out using the proposed techniques.50

The rest of the paper is structured as follows: Section 2 reviews the pre-

viously published literature on local minima, stationary points, and attraction

basins in the NN error landscapes. Section 3 discusses the two loss functions

considered in this study. Section 4 describes FLA in the context of NN train-

ing problems, discusses the sampling technique used, and proposes: (1) a novel55

method to visualise stationary points and the associated basins of attraction

of NN loss surfaces in 2-dimensional space, and (2) two metrics to numerically

quantify the discovered basins of attraction. Section 5 details the experimen-
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tal procedure. Section 6 presents a visual and numerical analysis of stationary

points and basins of attraction of the quadratic and the entropic error land-60

scapes. Finally, Section 7 concludes the paper and proposes some topics for

future research.

2. Local Minima and Basins of Attraction in Neural Networks

Many studies of local minima in NNs were carried out on the XOR (exclusive-

or) problem. XOR is a simple, but linearly non-separable problem that can65

be solved by a feedforward NN with at least two hidden neurons. As such,

XOR is often used to analyse the basic properties of NNs. Studies of the XOR

error landscape are especially interesting, because researchers have arrived at

somewhat contradictory conclusions. Hamey [9] claimed that the NN error

surface associated with XOR has no local minima. A year later, Sprinkhuizen-70

Kuyper et al. [10, 17] showed that stationary points are present in the XOR NN

search space, but that the stationary points are in fact saddle points. A more

recent study of the XOR error surface was published by Mehta et al. [18], where

techniques developed for potential energy landscapes were used to quantify local

minima of the XOR problem under a varied number of hidden neurons and75

regularisation coefficient values. Mehta et al. [18] showed that the XOR problem

exhibits local minima, and that the number of local minima grows with an

increase in the size of the hidden layer.

Further theoretical analysis performed for more complex problems than XOR

highlighted the fact that saddle points are more prevalent in high-dimensional80

spaces than local minima, and that the number of local minima decreases with

an increase in dimensionality [6, 12]. Counterexamples have also been published,

artificially constructing problems with difficult local minima that can potentially

trap the training algorithm [11]. Current understanding of the stationary points

in NN error surfaces remains incomplete, partially due to the lack of empirical85

evidence and intuitive visualisations.

The discovery of the prevalence of saddle points in NN error landscapes has
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led researchers to question the nature of the basins of attraction associated with

the stationary points [8]. It has been observed that NN error landscapes are

comprised of wide and narrow valleys, and that the solutions discovered at the90

bottom of such valleys may have different generalisation behaviour [19, 20, 21].

It has also been observed that it may be possible to find a path of non-increasing

error value that connects any two valleys, thus indicating that the valleys may

all be part of a single manifold, or attraction basin [22]. This study estimates the

properties of the basins of attraction associated with two different loss functions,95

namely quadratic and entropic, discussed in the next section.

3. Loss Functions

The modality of an NN search space, i.e., the number of local minima, as

well as the properties of local minima and the associated basins of attraction,

were theoretically shown to depend on the chosen error metric [14], among100

other parameters. The two most widely used error metrics are the quadratic

loss function and the entropic loss function, discussed in this section.

Quadratic loss, also referred to as the sum squared error (SSE), simply cal-

culates the sum of squared errors produced by the NN:

Esse =

P∑
p=1

K∑
k=1

(tk,p − ok,p)2 (1)

where P is the number of data points, K is the number of outputs, tk,p is the105

k’th target value for data point p, and ok,p is the k’th output obtained for data

point p. Minimisation of the SSE minimises the overall error produced by the

NN.

If the outputs of the NN can be interpreted as probabilities, then the cross-

entropy between two distributions can be calculated, i.e., the distribution of the110

desired outputs (targets), and the distribution of the actual outputs. Entropic

loss, also referred to as log loss, or as the cross-entropy (CE) error, is formulated

as follows:

Ece = −
P∑

p=1

K∑
k=1

tk,p log ok,p. (2)
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Minimisation of the cross-entropy leads to convergence of the two distributions,

i.e., the actual output distribution resembles the target distribution more and115

more, thus minimising the NN error.

Solla et al. [14] analysed quadratic loss and entropic loss theoretically, and

came to the conclusion that quadratic loss exhibits a higher density of local

minima. Solla et al. [14] further showed that entropic loss must generate a

“steeper” landscape with stronger gradients, which may be the reason for the120

observed faster convergence of gradient descent on CE compared to SSE. Faster

convergence of entropic loss has led to entropic loss becoming more popular than

quadratic loss in the deep learning community [15, 16]. In addition to faster

convergence, entropic loss was shown to exhibit better statistical properties, such

as more precise estimation of the true posterior probability on average [23].125

From a theoretical standpoint, however, the global minima of both SSE and

CE will correspond to the true posterior probability derived from the given

dataset [24]. Thus, if a global minimum is found on either of the error land-

scapes, the quality of either minimum will be equally good. A study by Golik et

al. [16] showed that, although squared loss may cause the training algorithm to130

converge to a poor minimum, this behaviour is only exhibited if the algorithm

was initialised poorly. Golik et al. [16] demonstrated the benefit of applying

gradient descent to the error landscape generated by entropic loss at first, and

then “switching” to quadratic loss to further refine the solution discovered on

the entropic loss surface. Such a training scheme may be successful due to the135

fact that entropic loss is known to turn flat around the global minimum [25].

This paper aims to study the difference between the loss landscapes of the

quadratic loss and the entropic loss by applying fitness landscape analysis tech-

niques, discussed in the next section.

4. Fitness Landscape Analysis140

The concept of fitness landscape analysis (FLA) comes from the evolutionary

context, where quantitative metrics have been developed to study the landscapes
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of combinatorial problems [26, 27]. FLA was successfully adapted to continuous

fitness landscapes at a later stage [28, 29, 30, 31]. Various fitness landscape

properties, such as ruggedness, neutrality, modality, and searchability, can be145

estimated by taking multiple samples of the search space, calculating the objec-

tive function value for every point in each sample, and analysing the relationship

between the spatial and the qualitative characteristics of the sampled points. If

the samples cover the search space in a meaningful way, the characteristics of the

fitness landscape captured by the sampling will apply to the fitness landscape150

at large.

The NN search space is defined as all possible real-valued weight combina-

tions. Thus, samples of the weight space can be taken and analysed to ap-

proximate the search space properties. Several studies were conducted showing

FLA to be a useful tool for analysis and visualisation of the NN error sur-155

faces [32, 33, 34, 35]. However, none of the previous FLA studies have at-

tempted to quantify the modality of the NN error landscapes, i.e., the presence

and characteristics of local minima.

This study uses NN error landscape samples to quantify the loss surface

modality. The progressive gradient walk algorithm used to obtain the sam-160

ples is discussed in Section 4.1. Further, this study proposes two novel FLA

techniques to visualise and quantify the stationary points and the associated

basins of attraction exhibited by NN loss surfaces. Section 4.2 introduces the

loss-gradient clouds, which offer a 2-dimensional visualisation of the stationary

points discovered by the gradient walks. Section 4.3 proposes two metrics to165

quantify the properties of the basins of attraction encountered by the progressive

gradient walks.

4.1. Progressive Gradient Walk

One of the simplest FLA approaches to estimate the presence of local minima

is to take a uniform random sample of the search space, and then to calculate170

the proportion of local minima within the sample [36]. To identify minima,

stationary points need to be identified first. Since the loss functions are differ-
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entiable, the gradient can be calculated for each point in the sample. Points

with a gradient of zero are stationary points. Stationary points can be further

categorised into local minima, local maxima, and saddle points by calculating175

the eigenvalues of the corresponding Hessian matrix. A positive-definite Hessian

is indicative of a local minimum [37].

However, an earlier study by Bosman et al. [38] demonstrated that random

samples capture very few points of high fitness even for such a simple problem

as XOR, and thus are unlikely to discover local or global minima. Additionally,180

random samples do not capture the neighbourhood relationship between indi-

vidual sample points, which is crucial to the analysis of the basins of attraction.

Besides simply identifying the presence or absence of local minima, the possibil-

ity of escaping the minima, as well as the structure of the minima, should also

be quantified.185

An alternative to a uniform random sample is a sample generated by a ran-

dom walk. To perform a random walk, a random point is chosen within range,

and consecutive steps in randomised directions are taken to generate the sam-

ple. This way, the sampled points will be related to each other topographically.

However, a random walk faces the same problem as the uniform random sample,190

in that random traversal of the search space provides no guarantee of locating

areas of good fitness [38].

Instead of analysing random walks, the trajectory of a training algorithm

can be analysed. However, such an approach will bias the observations to-

wards the performance of the specific algorithm under specific hyperparameter195

settings. Convergent behaviour typical of training algorithms will also prevent

sufficient exploration of the attraction basins. To address this problem, Bosman

et al. [38] proposed a sampling method called a progressive gradient walk. This

approach is an adaptation of the progressive random walk, proposed by Malan

and Engelbrecht [39], where random persistent direction bias was first applied200

to a random walk. A progressive gradient walk uses the numeric gradient of

the loss function to determine the direction of each step. The size of the step is

randomised per dimension within predefined bounds. The progressive gradient
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walk algorithm is summarised as follows:

1. At each iteration, gradient vector ~gl is calculated for a point ~xl, where205

l ∈ {1, . . . , L}, and L is the length of the walk.

2. A binary direction mask ~bl is extracted from ~gl as follows:

blj =

0 if glj < 0,

1 otherwise,

where j ∈ {1, . . . ,m} for the m-dimensional vector ~gl.

3. The progressive random walk algorithm, proposed by Malan and Engel-

brecht [39], is used to generate the next step ~xl+1. A single step of a

progressive random walk can be defined as randomly generating an m-

dimensional step vector ∆~xl, such that ∆xlj ∈ [0, ε] ∀j ∈ {1, . . . ,m}, and

setting the sign of each ∆xlj according to the corresponding blj :

∆xlj :=

−∆xlj if blj = 0,

∆xlj otherwise.

To generate the next step, ~xl+1, the current step ~xl is modified by adding

∆~xl:

~xl+1 = ~xl + ∆~xl.

The progressive gradient walk algorithm requires one parameter to be set: the

maximum dimension-wise step size, ε. The main advantage of this sampling

approach is that gradient information is combined with stochasticity, preventing210

convergence, yet guiding the walk towards areas of higher fitness.

The next section proposes a visual way to study the NN loss surface samples

obtained by the progressive gradient walk.

4.2. Loss-Gradient Clouds

Stationary points in the search space are identified by the absence of gradi-215

ent, i.e., gradient of zero. Therefore, for each sampled point, the magnitude of

the gradient vector can be calculated in order to determine whether the point
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is stationary. Further, stationary points of non-zero loss can be either local

minima, local maxima, or saddle points. To determine if a particular stationary

point is a local minimum, local maximum, or a saddle point, local curvature220

information can be derived from the eigenvalues of the corresponding Hessian

matrix [37]. If the eigenvalues of the Hessian are positive, the point is a maxi-

mum. If the eigenvalues are negative, the point is a minimum. If the eigenvalues

are positive as well as negative, the point is a saddle. If any of the eigenvalues

are zero, i.e., if the Hessian is indefinite, the test is considered inconclusive.225

Thus, three metrics need to be calculated to identify local minima and other

stationary points: (1) gradient magnitude, (2) loss value, and (3) local curvature.

To study the properties of the attraction basins that surround the discovered

stationary points, the same metrics can be calculated for the points sampled in

the vicinity of the stationary points. To avoid making assumptions regarding230

the size and shape of the attraction basins, the three metrics can be calculated

for all sampled points.

Thus, high-dimensional NN search spaces can be projected onto three di-

mensions: gradient magnitude, loss value, and local curvature. To study the

interactions between the gradient magnitude and the loss value, a 2-dimensional235

scatterplot [40] projection is proposed, referred to as the loss-gradient cloud, or

l-g cloud. Further, curvature can be represented on the same plot by assigning

a unique colour to convex, concave, saddle, and indefinite curvatures. A scat-

terplot is a common statistical tool designed to visualise the relations between

two variables measured on the same observational units [40]. Scatterplots can240

be generated for any given multivariate data using statistical visualisation tools

such as ggplot [41]. To the best of authors’ knowledge, this study is the first to

use scatterplots for visualisation of the NN loss landscape modality.

An example l-g cloud is shown in Figure 1. The loss value is shown on the

x-axis, and the gradient magnitude is shown on the y-axis. The sampled points245

are split into four panes according to the four curvature types. Figure 1 shows

that convex stationary points of non-zero loss were sampled. Therefore, the

sampled search space exhibited local minima.
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Figure 1: Example l-g cloud generated for the XOR problem.

The main benefit of l-g clouds is the 2-dimensional, interpretable represen-

tation of the high-dimensional search space which is otherwise very hard to250

study. Studying the discovered stationary points in 2-dimensional space allows

the identification of the total number of attractors, both local and global, corre-

sponding to unique loss values. The gradient behaviour of the attractors is also

visualised by the l-g clouds, and can provide useful insights into the structure of

the attraction basins, such as the steepness of the basins, and the connectedness255

of the basins, i.e., the ability of a sampling algorithm to make a transition from

a local attractor to the global attractor. L-g clouds allow for empirical studies

of the loss surface modality properties, and enable comparisons between the loss

landscapes yielded by different NN configurations. Since the distance between

sampled points is not represented in the l-g clouds, the actual number of distinct260

local minima and other attractors cannot be estimated using this technique.

L-g clouds provide information about the total number of stationary attrac-

tors of non-zero loss. Next section proposes two additional metrics to quantify

the corresponding basins of attraction.

4.3. Quantifying Basins of Attraction265

A progressive gradient walk samples the search space by taking stochastic

steps of consistent magnitude in the general direction of the steepest gradient

descent. If a step taken in the direction of the negative gradient is too large, the

step may miss an area of low error, and result in an area of higher error. Thus,
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a progressive gradient walk will not necessarily produce a sequence of points270

with strictly non-increasing error values. In fact, any gradient-based sample or

algorithm trajectory is likely to exhibit oscillatory behaviour if the gradient in

some dimensions is significantly steeper than in others [42].

Even though the gradient step sequence will not necessarily be strictly de-

creasing in error, the sample is nonetheless expected to travel in the general275

direction of the global minimum. The areas of the landscape where a gradient-

based walk oscillates or otherwise fails to reduce the error for a number of steps

are the stationary areas of the search space that may hinder the optimisation

process. Quantification of the number and extent of such areas will provide an

indication of the “difficulty” of the search space, as well as an empirical estimate280

of the landscape modality. Thus, an important error landscape property to es-

timate is the number of times that the sampling algorithm will become “stuck”

along the way.

To smooth out the potential oscillations of the sample, an exponential mov-

ing average of the sample can be calculated. An exponentially weighted moving285

average (EWMA) [43] is a smoothing filter commonly used for time series pre-

diction. EWMA calculates the moving average for each step in the time series

by taking all previous steps into account, and assigning exponentially decaying

weights to the previous steps, such that the weight for each older step in the se-

ries decreases exponentially, never reaching zero. Given a sequence T = {Ti}Zi=1290

of length Z, the EWMA-smoothed sequence T ′ is given by:

T ′i =

Ti if i = 1,

α · Ti + (1− α) · T ′i−1 if i > 1.

(3)

The decay coefficient α ∈ [0, 1] determines the degree of smoothing, where larger

values of α facilitate faster decay and weaker smoothing, and smaller values of

α facilitate slower decay and thus stronger smoothing.

To identify the sections of the sample where the behaviour is stagnant, the295

standard deviation of the smoothed sample is calculated first. Then, a sliding

window approach is used to generate a sequence of the moving standard de-
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viations of the sample. If the standard deviation of the values in the current

window is less than the standard deviation of the entire sample for a number

of steps, then these steps can be said to form a stagnant sequence. The aver-300

age number of stagnant regions encountered per sample, nstag, and the average

length of the stagnant regions, lstag, can be used to quantify the number and

size of the basins of attraction present in the search space.

The proposed approach is illustrated in Figure 2. The simulated walk oscil-

lates around three different error values. The moving standard deviation line305

dips below the all-sample standard deviation threshold three times, which cor-

responds to the three simulated stagnant areas.

Figure 2 illustrates that the window size has a significant effect on the attrac-

tion basin estimates: too little smoothing (Figure 2a) may cause fluctuations

to be perceived as stationary regions. Excessive smoothing, on the other hand310

(Figure 2d), may fail to detect all stationary regions. Therefore, the window

size has to be optimised per sample. If the sequence contains oscillations, then

too little smoothing will cause multiple “spikes” in the walk to be regarded as

areas of stagnation. These short bursts of “stagnation” will yield a small aver-

age basin length, lstag. If the sequence is smoothed excessively, the sample will315

start to resemble a wave more and more, perceiving flat areas as areas with an

incline, which will once again cause the lstag to decrease. Thus, too little as well

as too much smoothing will shrink the lstag. Therefore, the window size w can

be optimised by maximising the lstag value. Table 1 lists lstag values obtained

on the simulated walk shown in Figure 2 under various values of w. Table 1320

shows that lstag reaches its maximum for w = 8, and decreases for smaller, as

well as larger, values of w.

Table 1: Effect of window size w on lstag

w 6 8 10 12 14 16 18 20

lstag 18.75 22.0 20.67 18.0 16.33 14.33 14.0 12.0

The window size w can therefore be automatically optimised by calculat-
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Figure 2: Illustration of the proposed technique to estimate the number and extent of the

basins of attraction. Figures 2a to 2d show the effect of window size on the sample smoothing.

The EWMA-smoothed sample is shown in green (Exp moving avg).

ing lstag over a range of w values, and picking the value of w that yields

the highest lstag value. In this study, w is optimised by successively applying325

w ∈ {6, 8, . . . , 18, 20}. Given a window of size w, the EWMA value of α is cal-

culated as α = 2/(w + 1). The w value yielding the largest lstag is subsequently

used for the final lstag and nstag estimates.

Thus, two estimates to quantify the basins of attraction are proposed:

1. The average number of times that stagnation was observed, nstag.330

2. The average length of the stagnant sequence, lstag.

A pseudocode to calculate nstag and lstag is provided in Appendix A.

14



It is important to note that nstag and lstag are approximations, and may pro-

duce misleading results in some scenarios. Specifically, if the observed sequence

is chaotic, i.e., does not exhibit convergence or stagnant areas, the estimates335

provided by nstag and lstag are likely to be overly optimistic. In order to max-

imise lstag, the algorithm will apply excessive smoothing to the chaotic sequence,

potentially interpreting chaotic fluctuations as multiple stagnation regions. In

general, because the algorithm is designed to maximise the stagnation length of

the estimate, erroneous results are expected for sequences that do not exhibit340

any form of stagnation.

Experiments conducted to empirically test the proposed modality visualisa-

tion and quantification techniques are discussed in the next section.

5. Experimental Procedure

The aim of the study was to visually and numerically investigate the lo-345

cal minima and basins of attraction exhibited by quadratic and entropic loss

functions. This section discusses the experimental set-up of the study, and is

structured as follows: Section 5.1 lists the benchmark problems used and the NN

hyperparameters employed in the experiments; Section 5.2 outlines the sampling

algorithm parameters, and the data recorded for each sampled point.350

5.1. Benchmark problems

A selection of well-known classification problems of varied dimensionality

were used in this study. Table 2 summarises the NN architecture parameters

used for each dataset, as well as the total dimensionality of the resulting weight

space. The specified sources point to publications from which each dataset355

and/or NN architectures were adopted.

The properties of each dataset are briefly discussed below:

1. XOR: exclusive-or (XOR) is a simple, but linearly non-separable problem

that can be solved by a feedforward NN with at least two hidden neurons.

As such, XOR is often used to analyse basic properties of artificial neural360

networks. The dataset consists of 4 binary patterns.
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Table 2: Benchmark Problems

Problem Input Hidden Output Dimension Source

XOR 2 2 1 9 [9]

Iris 4 4 3 35 [44]

Diabetes 8 8 1 81 [45]

Glass 9 9 6 150 [45]

Cancer 30 10 1 321 [45]

Heart 32 10 1 341 [45]

MNIST 784 10 10 7960 [46]

2. Iris: The famous Iris flower data set [44] contains 50 specimens from each

of the three species of iris flowers, i.e., Iris Setosa, Iris Versicolor, and Iris

Virginica. There are 150 patterns in the dataset.

3. Diabetes: The diabetes dataset [45] captures personal data of 768 Pima365

Indian patients, classified as diabetes positive or diabetes negative.

4. Glass: The glass dataset [45] captures chemical components of glass

shards. Each glass shard belongs to one of six classes: float processed or

non-float processed building windows, vehicle windows, containers, table-

ware, or head lamps. There are 214 patterns in the dataset.370

5. Cancer: The breast cancer Wisconsin (diagnostic) dataset [45] consists

of 699 patterns, each containing tumor descriptors, and a binary classifi-

cation into benign or malignant.

6. Heart: The heart disease prediction dataset [45] contains 920 patterns,

each describing various patient descriptors.375

7. MNIST: The MNIST dataset of handwritten digits [46] contains 70,000

examples of grey scale handwritten digits from 0 to 9. For the purpose of

this study, the 2-dimensional input is treated as a 1-dimensional vector.

Input values for all problems except XOR were standardised by subtracting the

mean per input dimension, and scaling every input variable to unit variance. All380

outputs were binary encoded for problems with two output classes, and one-hot
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binary encoded for problems with more than two output classes.

All experiments employed feed-forward NNs with a single hidden layer. The

sigmoid activation function was used in the experiments, given by fNN (net) =

1/(1 + e−net), where net is the sum of weighted inputs. While the choice of385

activation function has an effect on the resulting error landscape, the aim of

this study was to investigate the difference between quadratic and entropic loss.

5.2. Sampling parameters

For the purpose of sampling the areas of low error, a progressive gradient

walk, discussed in Section 4, was used as the sampling mechanism. To allow for390

adequate coverage of the search space, the number of independent walks was

set to be one order of magnitude higher than the dimensionality of the problem,

i.e., for a problem of d dimensions, 10 × d independent progressive gradient

walks were performed. The walks were not restricted by search space bounds,

however, two different initialisation ranges were considered, namely [−1, 1] and395

[−10, 10]. The smaller range is typically used for NN weight initialisation. The

larger range is likely to contain high fitness solutions [33]. Since the granularity

of the walk, i.e., the average step size, has a bearing on the resulting FLA

metrics [28], two granularity settings were used throughout the experiments:

micro, where the maximum step size was set to 1% of the initialisation range,400

and macro, where the maximum step size was set to 10% of the initialisation

range. Micro walks performed 1000 steps each, and macro walks performed 100

steps each.

For all problems except the XOR problem, the dataset was split into 80%

training and 20% test subsets. The training set was used to calculate the direc-405

tion of the gradient, as well as the error of the current point on the walk. The

test set was used to evaluate the generalisation ability of each point in the walk.

To calculate the training and the generalisation errors, the entire train/test sub-

sets were used for all problems except MNIST. For MNIST, random batches of

100 patterns were sampled from the respective training and test sets.410

In order to identify stationary points discovered by the gradient walks, the

17



magnitude of the gradient vector was recorded for each step together with the

loss value. Additionally, the eigenvalues of the Hessian matrix were calculated

for each step, and used to classify each step as convex, concave, saddle, or

singular.415

6. Empirical Results

This section presents the analysis of observed local minima and the corre-

sponding basins of attraction as captured by the progressive gradient walks. For

each problem, l-g clouds were generated and analysed. Then, nstag and lstag

values were studied. The results obtained for each problem are discussed below.420

6.1. XOR

Figure 3 shows the l-g clouds obtained for the XOR problem for gradient

walks initialised in the [−1, 1] range, separated into panes according to the cur-

vature. The first observation that can immediately be made from Figure 3 is

that both SSE and CE yielded exactly four unique stationary attractors. Fur-425

thermore, these four attractors were classified as convex according to the Hessian

eigenvalues, indicating that the points can be classified as local minima rather

than saddle points. A transition from saddle curvature to convex curvature was

observed for both SSE and CE. Points further away from a global optimum were

classified as exhibiting saddle curvature. Points in the two stationary attractors430

furthest away from the global attractor were sometimes classified as saddles, in-

dicating that both saddles and local minima of equal loss value were discovered.

Under the macro setting (larger steps), a few singular points were sampled in

the same apparent basin, indicating that the area was flat (no curvature) in

some dimensions. However, the global minima discovered by the gradient walks435

initialised in the [−1, 1] range appeared perfectly convex. The area surround-

ing the global minima, as well as the two adjacent local minima, also exhibited

convexity. Thus, the XOR problem definitely exhibits convex local minima.

Another interesting observation can be made by observing the trajectories

connecting the apparent local minima: It is evident from Figure 3 that most440
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(a) SSE, micro steps, [−1, 1] (b) CE, micro steps, [−1, 1]

(c) SSE, macro steps, [−1, 1] (d) CE, macro steps, [−1, 1]

Figure 3: L-g clouds for the gradient walks initialised in the [−1, 1] range for the XOR problem.

Micro (maximum 1% of the initialisation range) and macro (maximum 10% of the initialisation

range) steps were considered.

high loss, high gradient points first descended to the local minimum furthest

away from the global minimum, and from thereon proceeded to one of the

three better minima. The three convex minima, however, were not connected

by trajectories. In other words, once the gradient walk descended into one of

the basins, escape from the basin became unlikely, given the limited step size.445

To further support this claim, nstag and lstag values calculated for the various

XOR gradient walks are reported in Table 3. According to Table 3, the average

number of basins visited by the [−1, 1] micro-step walks was 1.88889 for SSE,

and 2.04444 for CE. Thus, the walks visited two or fewer basins. The nstag

values are even smaller for macro-step walks initialised in the same range, i.e.,450

1.33333 for SSE, and 1.35556 for CE. Figures 3c and 3d illustrate that larger

step sizes allowed some of the walk trajectories to skip the poor loss area, while

the smaller steps consistently became stuck, and proceeded directly to one of

the better minima. Small nstag values indicate that transition between adjacent

minima was still unlikely for the given step size.455

CE and SSE thus exhibited very similar properties when sampled with [−1, 1]

19



Table 3: Basin of attraction estimates calculated for the XOR problem. Standard deviation

shown in parenthesis.

SSE CE

nstag lstag nstag lstag

[−1, 1], micro 1.88889 367.04444 2.04444 313.32130

(0.31427) (134.84453) (0.44500) (148.75671)

[−1, 1], macro 1.33333 37.14815 1.35556 30.35000

(0.49441) (16.68220) (0.50136) (13.32863)

[−10, 10], micro 1.63333 684.77778 1.16667 870.87222

(0.72188) (263.72374) (0.37268) (180.17149)

[−10, 10], macro 1.10000 57.98889 1.03333 74.79444

(0.39581) (24.91864) (0.23333) (20.49253)

gradient walks. The same number of local minima was observed, and the basins

of attraction exhibited similar behaviour in terms of basin-to-basin transitions.

According to Figure 3, CE exhibited stronger gradients. This corresponds to

the theoretical predictions made in [14]. A comparison of Figures 3c and 3d460

shows that SSE exhibited more non-convex behaviour around the apparent local

minima, which indicates that SSE would be harder to search for an optimisation

algorithm than CE.

Figure 4 shows the l-g clouds obtained for gradient walks initialised in the

[−10, 10] range. Figures 4a and 4c indicate that initialisation in a wider range465

caused the gradient walks to discover more stationary points on the SSE loss

surface: Instead of four attractors of zero gradient, six can be seen in the figures.

Out of these six, only four exhibited convexity. Even the points that exhibited

convexity were surrounded by points with saddle curvature or no curvature.

Such overlap between convex and non-convex structure indicates that the surface470

around the minima was not smooth. Overlap of convexity and non-convexity

can also indicate that multiple minima of the same loss value exist that exhibit
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(a) SSE, micro steps, [−10, 10] (b) CE, micro steps, [−10, 10]

(c) SSE, macro steps, [−10, 10] (d) CE, macro steps, [−10, 10]

Figure 4: L-g clouds for the gradient walks initialised in the [−10, 10] range for the XOR

problem. Micro (maximum 1% of the initialisation range) and macro (maximum 10% of the

initialisation range) steps were considered.

different landscape curvature properties.

Figures 4b and 4d show that the loss surface of CE exhibited noticeably

different properties when probed in a larger range. The horizontal axis is shown475

in square root scale for clarity. While non-convex curvature remained prevalent,

CE, as opposed to SSE, did not exhibit additional stationary attractors. Instead,

points of high loss exhibited high gradient, leading the gradient walks towards

the same basins as discovered with the [−1, 1] walks. Four stationary attractors

can be observed, only three of which exhibited convexity. Thus, CE exhibited480

fewer local minima than SSE. This observation corresponds with the theoretical

predictions made in [14].

Once again, the convex minima observed in Figure 4 were disconnected from

one another. No convex trajectory has been captured that visited all the sta-

tionary points present. Figure 4c shows that the only transition between the485

global optima and the adjacent local optima corresponded to the indefinite Hes-

sians. Thus, to make a transition from one convex minimum to another one, the

algorithm had to traverse a flat area with little to no convexity. With reference
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to Table 3, the nstag values were smaller for the [−10, 10] initialisation range,

and the lstag values were larger than those yielded by the [−1, 1] walks. Thus,490

the walks were more likely to stagnate once, and to remain in the stagnated

state for the entire walk.

A comparison of Figures 4a and 4b shows that CE demonstrated a smoother,

more consistent relationship between the gradient and the loss values than SSE.

Together with evidently fewer stationary points, this property makes CE an495

easier loss surface to minimise.

Figures 4c and 4d indicate that gradient walks with a macro step size, ini-

tialised in a larger area, still managed to find the global optima for both SSE

and CE, but on fewer occasions than the micro walks. A large portion of the

points yielded indefinite Hessians, indicating flatness. This is to be expected,500

as the loss surfaces of NNs with sigmoidal activation functions are known to ex-

hibit increasing hidden neuron saturation with an increased distance from the

origin [35].

6.2. Iris

The Iris classification problem is one of the most trivial and most commonly505

used real-world classification datasets. The benefit of studying the Iris problem

compared to the XOR problem is that the Iris dataset is large enough to be

split into the training and testing subsets. The training subset can then be

used to sample the loss surface, and the testing set can be used to evaluate the

discovered minima and stationary points for their ability to generalise. For the510

rest of the paper, the training set loss values are referred to as Et, and the test

set loss values are referred to as Eg.

Figure 5 shows the l-g clouds obtained for the Iris problem using the [−1, 1]

initialisation interval. According to Figure 5, only one attractor with zero gra-

dient has been discovered on both the SSE and CE loss surfaces by gradient515

walks initialised in the [−1, 1] range. Two more attractors of non-zero gradient

can also be observed, however, these attractors do not constitute local minima.

Transition from non-convex space to convex space was still present, but was less
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distinct than for XOR. Points around the global minima exhibited convex as

well as saddle behaviour, and saddle behaviour was prevalent. Both the SSE520

and CE surfaces exhibited flatness (indicated by the singular Hessians) around

the global optima. This corresponds to theoretical claims that the loss surface

around the global minima is flat [25]. However, the flatness was not prevalent.

A comparison of the micro and macro steps in Figure 5 indicates that the

macro steps discovered the same landscape characteristics as the micro steps.525

In the macro setting, a wider range of gradient values around the global minima

was discovered. This is explained by the fact that NN loss surfaces are known to

contain ravines and valleys [19], and optima are typically found at the bottom

of such structures. The macro step size caused the gradient walks to oscillate

and to sample points on the sides of the valley where the global minima were530

discovered.

To further analyse the landscape properties sampled by the gradient walks,

the nstag and lstag values were calculated for the Et values sampled by the

gradient walks, as well as for the corresponding Eg values. Table 4 lists the

Et and Eg values obtained. According to Table 4, both SSE and CE yielded535

(a) SSE, micro, [−1, 1] (b) CE, micro, [−1, 1]

(c) SSE, macro, [−1, 1] (d) CE, macro, [−1, 1]

Figure 5: L-g clouds for the gradient walks initialised in the [−1, 1] range for the Iris problem.
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an average nstag very close or equal to 1 for all gradient walks initialised in

the [−1, 1] range. Thus, a single basin of attraction was discovered by each

individual walk. This correlates well with the results shown in Figure 5. For

the macro setting in the [−1, 1] range, both SSE and CE produced an nstag

average of 1, with a standard deviation of zero. This observation indicates540

that the macro steps in the [−1, 1] range were sufficient to prevent stagnation

in suboptimal areas, yet convergence in an attraction basin still took place.

The generalisation error exhibited similar behaviour, as shown in Table 4. The

presence of a single global attractor makes the loss surface associated with the

Iris problem trivial to search using a gradient-based method.545

Figure 6 shows the l-g clouds obtained for the gradient walks initialised in the

[−10, 10] interval. According to Figures 6a and 6c, multiple stationary points

were discovered on the SSE loss surface. Two of the discovered stationary

points, including the global minima, exhibited convexity. Thus, there is at

least one local minimum attractor on the SSE loss surface associated with the550

Iris problem. Additionally, the discovered stationary points were disjoint in

the convex and singular (flat) space. The saddle space was more connected;

however, the nstag values presented in Table 4 indicate that the gradient walks

did not generally become stuck more than twice. Thus, the multiple stationary

points discovered were not trivial to escape from.555

CE, on the other hand, exhibited only one attractor at the global minimum,

as illustrated in Figure 6. Even though all points belong to the same global

attraction basin, two distinct clusters can be observed in Figure 6b: points that

lie in the low error region, and exhibit higher gradients, and points that lie in

the higher error region, and exhibit lower gradients. The same tendency can be560

observed in Figure 6d. These observations indicate that the gradient walks have

explored wide (higher error, lower gradient) as well as narrow (higher gradient,

lower error) valleys, which the NN error landscapes are known to exhibit [21].

Thus, the CE loss surface again exhibited fewer local minima than SSE.

The quality of the discovered minima can also be evaluated in terms of the565

generalisation capabilities. Figure 7 shows the l-g clouds colourised according
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Table 4: Basin of attraction estimates calculated for the Iris problem on the Et and Eg walks.

Standard deviation shown in parenthesis.

SSE CE

Et nstag lstag nstag lstag

[−1, 1], 1.00857 848.82048 1.00571 820.20429

micro (0.11922) (52.82897) (0.07538) (54.28522)

[−1, 1], 1.00000 76.46571 1.00000 73.40857

macro (0.00000) (4.03382) (0.00000) (4.72216)

[−10, 10], 1.28571 796.07000 1.00000 953.26286

micro (0.48234) (212.33922) (0.00000) (10.64382)

[−10, 10], 1.02571 73.77000 1.00571 84.55857

macro (0.15828) (13.50309) (0.07538) (6.27217)

Eg nstag lstag nstag lstag

[−1, 1], 1.10571 820.07167 1.02286 818.33905

micro (0.38206) (143.30209) (0.18375) (77.64190)

[−1, 1], 1.00000 74.69429 1.00286 67.71143

macro (0.00000) (4.52494) (0.05338) (7.26987)

[−10, 10], 1.36000 770.39048 1.12286 917.17541

micro (0.57231) (229.39260) (0.75160) (138.19499)

[−10, 10], 1.03143 75.41714 1.01429 83.85857

macro (0.17447) (13.86152) (0.11867) (8.78615)

to the corresponding Eg values. It is evident from Figure 7 that CE yielded

poor generalisation performance in the area of the global minima: all Eg values

reported were an order of magnitude larger than the corresponding Et values.

This observation is to be expected: achieving 100% accuracy on the training can570

lead to overfitting. SSE also exhibited overfitting at the global minima, but not

as strongly as CE. CE exhibited stronger gradients around the global optima,
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(a) SSE, micro, [−10, 10] (b) CE, micro, [−10, 10]

(c) SSE, macro, [−10, 10] (d) CE, macro, [−10, 10]

Figure 6: L-g clouds for the gradient walks initialised in the [−10, 10] range for the Iris

problem.

(a) SSE, micro, [−1, 1], Et < 0.05 (b) CE, micro, [−1, 1], Et < 0.05

(c) SSE, micro, [−10, 10], Et < 0.05 (d) CE, micro, [−10, 10], Et < 0.05

Figure 7: L-g clouds colourised according to the corresponding Eg values for the Iris problem.

which can promote overfitting when using gradient-based methods.
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Appendix B lists all classification errors obtained by the gradient walks on

the various problems. Table B.10 indicates for the Iris problem that SSE has575

indeed yielded better generalisation in most scenarios.

Thus, CE exhibited better global structure than SSE on the Iris problem, and

was more searchable from the gradient descent perspective. However, stronger

gradients around the global optima indicate that CE exhibited sharper minima,

causing stronger overfitting on the CE loss surface.580

6.3. Diabetes

Figure 8 shows the l-g clouds obtained for the Diabetes problem using the

[−1, 1] initialisation range. According to Figure 8, both SSE and CE exhibited a

single attractor of near-zero gradient, and that attractor constituted a wide area

of low gradients around the loss of zero. Both SSE and CE exhibited convexity585

around zero loss, especially when sampled with micro steps. The majority of

the sampled points, however, were once again classified as saddles according to

their Hessians. This corresponds well with the observations made by Dauphin

et al. [6], where the prevalence of saddle points in non-convex optimisation was

studied.590

An arch-like curve can be observed in Figures 8a and 8c, indicating that

higher errors were associated with weaker gradients on the SSE loss surface.

A transition to the area of higher fitness was associated with a gradient signal

that became stronger for some time, and then began to weaken again as a global

optimum was approached. The CE l-g clouds in Figure 8 indicate that the CE595

loss surface did not have the tendency to exhibit weaker gradients for higher

errors, which makes CE favourable from the gradient descent perspective. This

corresponds well with the theoretical properties of both loss functions, which

indicate that SSE is expected to exhibit weaker gradients for higher errors, as

opposed to CE [16].600

Figure 9 shows the l-g clouds obtained for the points sampled by the gradient

walks initialised in the [−10, 10] interval. SSE loss once again exhibited multiple

near-zero gradient attractors (three), and CE loss exhibited only one attractor.
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(a) SSE, micro, [−1, 1] (b) CE, micro, [−1, 1]

(c) SSE, macro, [−1, 1] (d) CE, macro, [−1, 1]

Figure 8: L-g clouds for the gradient walks initialised in the [−1, 1] range for the Diabetes

problem.

The majority of the points sampled by larger steps in a larger area had a saddle

curvature. The convex attractors sampled by the [−10, 10] walks exhibited more605

variation in gradient than the corresponding attractors discovered by the [−1, 1]

walks. This observation can be attributed to the valley structure of the optima:

Larger steps induced oscillations around the walls of the valley.

The nstag and lstag values reported in Table 5 indicate that most walks

discovered a single attractor only, which correlates well with Figures 8 and 9,610

and also indicates that the two suboptimal attractors discovered on the SSE loss

surface were not easy to escape from. Table 5 also shows that the generalisation

performance of the points discovered on the SSE loss surface was somewhat

volatile when sampled using micro walks. Micro walks took smaller steps, and

thus were more likely to exploit a particular attractor, causing overfitting.615

Figure 10 shows a close-up depiction of the convex attractors, colourised

according to their generalisation performance. Both SSE and CE exhibited

deteriorating generalisation performance as the walks sampled points closer to

the zero loss, which is to be expected. For micro [−1, 1] walks, both SSE and

28



(a) SSE, micro, [−10, 10] (b) CE, micro, [−10, 10]

(c) SSE, macro, [−10, 10] (d) CE, macro, [−10, 10]

Figure 9: L-g clouds for the gradient walks initialised in the [−1, 1] range for the Diabetes

problem.

CE exhibited a sudden drop in gradient magnitudes, and the points of low620

gradient with the highest error exhibited the best generalisation performance.

As previously noted by Choromanska et al. [12], finding the global minimum

may be unnecessary, as the global minimum is likely to overfit the problem.

Figures 10c and 10d indicate for the [−10, 10] walks that points around the

global minima have exhibited various degrees of generalisation performance,625

with a significant overlap between good and poor generalisation. This indicates

that the discovered minima had the same training error values, but different test

error values. The Diabetes problem is known to contain noisy data, and noise is

a common cause of overfitting. Table B.11 lists the classification errors obtained

for the Diabetes problem, and shows that CE loss yielded better generalisation630

when sampled with the [−1, 1] walks, and SSE generalised better when larger

step sizes were used.

6.4. Glass

Figure 11 shows the l-g clouds obtained for the Glass problem. According to

Figure 11, convexity was found around the global minima only, and only by the635
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Table 5: Basin of attraction estimates calculated for the Diabetes problem on the Et and Eg

walks. Standard deviation shown in parenthesis.

SSE CE

Et nstag lstag nstag lstag

[−1, 1], 1.00123 938.66728 1.00000 935.27160

micro (0.03511) (22.51936) (0.00000) (12.49791)

[−1, 1], 1.00000 85.19012 1.00000 84.84691

macro (0.00000) (1.54389) (0.00000) (1.97922)

[−10, 10], 1.09259 905.05504 1.00000 962.31235

micro (0.37525) (138.96827) (0.00000) (5.28613)

[−10, 10], 1.03580 77.06975 1.02716 78.23086

macro (0.18580) (13.75685) (0.18393) (16.45928)

Eg nstag lstag nstag lstag

[−1, 1], 1.51852 794.78363 1.04938 925.83735

micro (1.21727) (270.89365) (0.31822) (100.01013)

[−1, 1], 1.00494 85.80988 1.00123 85.16543

macro (0.07010) (4.91134) (0.03511) (2.61851)

[−10, 10], 2.76420 703.52152 1.00617 958.96852

micro (3.96060) (343.41982) (0.07832) (39.60395)

[−10, 10], 1.08148 53.88477 1.08272 70.88848

macro (0.52189) (33.59152) (0.35041) (24.84558)

micro walks. Macro walks discovered exclusively saddle curvature points. This

observation once again confirms that the search space for both SSE and CE is

dominated by saddle curvature points. Convexity could only be discovered by

the smallest steps tested, indicating that the convex area was sharp, and could

easily be “overstepped” by a larger step size.640

From Figure 11, the attractor dynamics exhibited by CE and SSE were
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(a) SSE, micro, [−1, 1], Et < 0.2 (b) CE, micro, [−1, 1], Et < 0.5

(c) SSE, micro, [−10, 10], Et < 0.2 (d) CE, micro, [−10, 10], Et < 1

Figure 10: L-g clouds colourised according to the corresponding Eg values for the Diabetes

problem.

(a) SSE, micro (b) CE, micro

(c) SSE, macro (d) CE, macro

Figure 11: L-g clouds for the gradient walks initialised in the [−1, 1] range for the Glass

problem.
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quite similar: both losses yielded a general near-linear decline in gradient asso-

ciated with a decline in error. Once the error became low enough, the gradients

flattened, and a further decrease in error towards zero was performed with near-

zero gradients. Both CE and SSE exhibited a single major attractor around the645

global minima, indicating that all near-stationary points discovered by the walks

had a similar error value. The macro steps discovered higher gradients around

zero error than the micro steps, but the separation into flat and non-flat areas

was still evident. This behaviour is likely to be caused by the gradient walks

descending to the bottom of a valley first, and then travelling down the bottom650

of the valley towards a global minimum.

Table 6 reports the nstag and lstag values obtained by the various walks on

the glass problem. All walks consistently discovered only one attractor. The

lstag values indicate that the attractor was found within the first 10% to 20%

of the steps, and from thereon the walks proceeded to explore the discovered655

attractor. Thus, all walks quickly descended into a valley, and then travelled at

the bottom of the valley for the majority of the steps. It was clearly quite easy

to find a valley, and the error values at the bottom of all discovered valleys were

rather similar. No inter-valley transition was observed.

The corresponding nstag and lstag values obtained for Eg indicate that Eg660

also yielded a single attractor per walk. Standard deviations of nstag and lstag

are higher for Eg than for Et, indicating that a steady decrease in Et was not

always associated with a steady decrease in Eg.

Figure 12 shows the l-g clouds obtained by the micro and macro walks ini-

tialised in the [−10, 10] range. According to Figure 12, a larger initialisation665

range yielded indefinite Hessians, indicating that points of little to no curvature

were discovered. A larger initialisation range is more likely to yield exploration

of areas further away from the origin. Since the NNs in this study employed

the sigmoid activation, the observed flatness is attributed to the saturation of

the activation signals. Multiple flat attractors were observed for SSE, while CE670

exhibited a single major attractor. While this single attractor was at the global

minima, the sampled points clustered around two “paths”: lower errors associ-
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Table 6: Basin of attraction estimates calculated for the Glass problem. Standard deviation

shown in parenthesis.

SSE CE

Et nstag lstag nstag lstag

[−1, 1], 1.00000 947.12067 1.00000 939.70667

micro (0.00000) (7.81525) (0.00000) (7.50773)

[−1, 1], 1.00000 86.13867 1.00000 85.04333

macro (0.00000) (0.77595) (0.00000) (1.03672)

[−10, 10], 1.04133 927.42956 1.00000 961.23867

micro (0.20238) (96.74308) (0.00000) (5.18617)

[−10, 10], 1.00400 85.29156 1.00133 87.17956

macro (0.08155) (4.99437) (0.05162) (2.28182)

Eg nstag lstag nstag lstag

[−1, 1], 1.00000 951.66867 1.00800 941.96300

micro (0.00000) (8.18235) (0.10925) (42.59343)

[−1, 1], 1.00000 86.67000 1.00000 86.01267

macro (0.00000) (0.57715) (0.00000) (0.71683)

[−10, 10], 1.11400 902.05250 1.02733 950.75153

micro (0.44084) (148.80139) (0.26568) (73.87091)

[−10, 10], 1.00533 85.01433 1.00400 86.62400

macro (0.07283) (6.10341) (0.06312) (4.83090)

ated with higher gradients, and higher errors associated with lower gradients.

This indicates the presence of two structures: narrow as well as wide valleys.

It was previously observed that wide valleys are likely to yield better gen-675

eralisation performance [13, 21]. There was also a counter-argument presented,

where a sharp minimum with good generalisation properties was artificially cre-

ated [47]. To study the generalisation performance of the sampled points, the
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(a) SSE, micro, [−10, 10] (b) CE, micro, [−10, 10]

(c) SSE, macro, [−10, 10] (d) CE, macro, [−10, 10]

Figure 12: L-g clouds for the gradient walks initialised in the [−10, 10] range for the Glass

problem.

l-g clouds obtained for the [−10, 10] micro walks, colourised according to the Eg

values, are presented in Figures 13a and 13b. Figure 13b confirms that points680

of large gradient and low error generalised poorly for CE, while points of higher

error and lower gradient generalised better. Thus, points of low error exhib-

ited overfitting for CE loss on the glass problem, and the wide valleys exhibited

better generalisation properties. Interestingly, the same did not hold for SSE

loss: according to Figure 13a, the smallest Eg was observed for the points of685

the lowest Et. Thus, SSE loss was less prone to overfitting when sampled at

the given resolution. Therefore, despite exhibiting more low gradient attractors,

SSE exhibits better generalisation properties in some scenarios. The classifica-

tion error values reported in Table B.12 indicate that SSE and CE have in fact

performed very similarly, and have both generalised poorly. The glass dataset690

is rather small, and small datasets lead to overfitting.

6.5. Cancer

Figure 14 shows the l-g clouds obtained for the Cancer problem. According

to Figure 14, all points sampled by micro and macro walks initialised in the
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(a) SSE, micro, [−10, 10], Et < 0.2 (b) CE, micro, [−10, 10], Et < 1

Figure 13: L-g clouds colourised according to the corresponding Eg values for the Glass

problem.

(a) SSE, micro (b) SSE, macro (c) CE, micro (d) CE, macro

Figure 14: L-g clouds for the gradient walks initialised in the [−1, 1] range on the Cancer

problem.

[−1, 1] range exhibited saddle curvature. Total dimensionality of the cancer695

problem is 321, which is noticeably higher than that of the previous problems

considered. Saddle curvature is expected to become more and more prevalent

as the dimensionality increases [6].

According to Figure 14, both SSE and CE exhibited a single attractor at the

global minimum. In addition to the global attractor, SSE exhibited two more700

attractors of low, but non-zero gradient. Trajectories can be observed leading to

the global attractor from either of the two high error attractors. However, there

is no trajectory connecting the attractors to one another. The nstag and lstag

values reported in Table 7 confirm that all walks discovered a single attractor

only, thus no transition between the attractors took place.705

CE, as shown in Figure 14, exhibited almost linear correlation between the
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Table 7: Basin of attraction estimates calculated for the Cancer problem. Standard deviation

shown in parenthesis.

SSE CE

Et nstag lstag nstag lstag

[−1, 1], 1.00000 962.09844 1.00000 953.89307

micro (0.00000) (5.39294) (0.00000) (5.37201)

[−1, 1], 1.00000 87.77788 1.00000 87.18816

macro (0.00000) (0.44464) (0.00000) (0.51044)

[−10, 10], 1.00000 972.77778 1.00000 975.43836

micro (0.00000) (7.45025) (0.00000) (3.01133)

[−10, 10], 1.00000 87.44517 1.00000 87.80498

macro (0.00000) (0.89423) (0.00000) (1.12240)

Eg nstag lstag nstag lstag

[−1, 1], 1.00000 959.38629 1.00725 953.80766

micro (0.00000) (5.62718) (0.09002) (41.40420)

[−1, 1], 1.00000 87.81838 1.00000 87.25514

macro (0.00000) (0.41360) (0.00000) (0.54000)

[−10, 10], 1.11111 932.44444 4.13699 541.93665

micro (0.45812) (154.23691) (4.50666) (384.89318)

[−10, 10], 1.00125 87.16246 1.00903 86.55711

macro (0.03528) (2.95538) (0.09786) (7.86466)

gradient and the error. Such simple correlation implies that the CE loss surface

is likely to be more searchable than the SSE loss surface from the perspective

of a gradient-based optimisation algorithm. The cancer problem is known to be

an easy classification problem, which must have contributed to the simplicity of710

the observed attractor.

Figure 15 shows the l-g clouds for the micro and macro walks initialised in
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(a) SSE, micro, [−10, 10] (b) CE, micro, [−10, 10]

(c) SSE, macro, [−10, 10] (d) CE, macro, [−10, 10]

Figure 15: L-g clouds for the gradient walks initialised in the [−1, 1] range on the Cancer

problem.

the [−10, 10] range. The larger initialisation range once again exposed points

with indefinite Hessians for both SSE and CE, i.e., points with little to no

curvature. For CE, the points of no curvature aligned with the global minimum715

attractor. For SSE, the global minimum, as well as the other two attractors,

exhibited flatness. The majority of the points exhibited saddle curvature. Two

zero-gradient local minimum attractors were observed for the SSE loss surface.

The CE loss surface did not exhibit multiple attractors. However, multiple

points of high gradient close to the global minimum were sampled. This once720

again indicates that CE is more prone to sharp minima (narrow valleys) than

SSE.

The nstag and lstag values yielded by Eg (Table 7) are inconsistent with

the corresponding nstag and lstag values obtained for Et. To further study this

inconsistency, Figure 16 presents the l-g clouds colourised according to the Eg725

values for the points around the global attractor. Due to high disparity in the Eg

values obtained for CE, the CE l-g clouds were colourised on logarithmic scale.

Similar to the previous problems considered, the generalisation performance at
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(a) SSE, micro, [−1, 1], Et < 0.05 (b) CE, micro, [−1, 1], Et < 0.05

(c) SSE, micro, [−10, 10], Et < 0.05 (d) CE, micro, [−10, 10], Et < 0.1

Figure 16: L-g clouds colourised according to the corresponding Eg values for the Cancer

problem.

the global optimum was poor for both SSE and CE. However, it is evident

from Figures 16c and 16d that low error, high gradient points around the global730

attractor generalised well for SSE, and poorly for CE. SSE in general produced

weaker gradients than CE, indicating that SSE was less prone to sharp minima.

Figure 16 also shows that SSE exhibited points of zero gradient for non-zero

error, while CE did not. However, the observed local minima, as well as the

global optimum of SSE, can yield better generalisation performance than the735

global minimum exhibited by CE.

6.6. Heart

Figures 17 shows the l-g clouds obtained for the Heart problem. Similar to

the cancer problem, all points sampled by the [−1, 1] walks were classified as

saddle points. The total dimensionality of the heart problem is 341, which is740

similar to the dimensionality of the Cancer problem. Figure 17 illustrates that

both SSE and CE had a single flat attractor in the general area of the global
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(a) SSE, micro (b) SSE, macro (c) CE, micro (d) CE, macro

Figure 17: L-g clouds for the gradient walks initialised in the [−1, 1] range on the Heart

problem.

minima. In addition to this attractor, SSE exhibited two more attractors of

much higher error. However, the [−1, 1] walks did not sample any zero-gradient

(stationary) points around the high error attractors.745

Larger steps and a larger initialisation range, however, allowed gradient

walks to discover the stationary points of high error on the SSE loss surface, as

illustrated in Figure 18. The CE loss surface sampled by the same walks did

not reveal any additional attractors, but was again visibly split into two clus-

ters leading towards the global minima: points of high gradient and low error,750

and points of lower gradient and higher error. This is once again indicative of

narrow and wide valleys, which appears to be a common characteristic of the

CE loss surface.

The nstag and lstag values reported in Table 8 confirm that the walks gen-

erally did not make transitions between the discovered attractors. The nstag755

and lstag values calculated over the Eg values were again less stable than the

corresponding Et values, indicating that exploiting an Et attractor does not

necessarily coincide with exploiting a corresponding Eg attractor. Figure 19

illustrates the generalisation behaviour of the flat attractor discovered on both

the SSE and CE loss surfaces by the micro [−1, 1] walks: the smallest Eg val-760

ues were observed on the rightmost side of the attractor, closest to the points

of higher error and higher gradient. Exploitation around the global minima

yielded superior Et values, but inferior Eg values. This again illustrates that

discovering the global optimum may be unnecessary. The success of techniques
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(a) SSE, micro (b) SSE, macro

(c) CE, micro (d) CE, macro

Figure 18: L-g clouds for the gradient walks initialised in the [−1, 1] range on the Heart

problem.

(a) SSE, micro, [−1, 1], Et < 0.2 (b) CE, micro, [−1, 1], Et < 0.5

Figure 19: L-g clouds colourised according to the corresponding Eg values for the Heart

problem.

such as early stopping [48] comes precisely from preventing the algorithm from765

exploiting a global minimum unnecessarily.

6.7. MNIST

Figures 20 and 21 show the l-g clouds for the MNIST problem. Due to the

prohibitively expensive memory requirements, the Hessian matrices were not

computed for the MNIST dataset. Thus, the curvature of the loss functions for770
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Table 8: Basin of attraction estimates calculated for the Heart problem. Standard deviation

shown in parenthesis.

SSE CE

Et nstag lstag nstag lstag

[−1, 1], 1.00000 952.36276 1.00000 947.81432

micro (0.00000) (6.49124) (0.00000) (7.04222)

[−1, 1], 1.00000 86.70645 1.00000 86.40587

macro (0.00000) (0.66921) (0.00000) (0.97088)

[−10, 10], 1.02493 937.01486 1.00000 966.72036

micro (0.15962) (76.63092) (0.00000) (3.70200)

[−10, 10], 1.00176 84.85293 1.00411 84.43886

macro (0.04191) (3.68841) (0.06394) (7.00978)

Eg nstag lstag nstag lstag

[−1, 1], 1.00733 957.87269 2.14920 710.77930

micro (0.10669) (40.88520) (2.07157) (342.24282)

[−1, 1], 1.00000 87.70880 1.00088 87.54971

macro (0.00000) (0.60395) (0.02965) (1.97717)

[−10, 10], 1.54927 821.66135 1.00298 965.68084

micro (1.78543) (251.33524) (0.05453) (27.96970)

[−10, 10], 1.00440 84.55381 1.04956 79.23624

macro (0.06618) (5.61240) (0.24735) (17.04847)

the MNIST dataset is not reported in this study. The reader is referred to the

previous studies of the MNIST Hessians [8] for a discussion of curvature char-

acteristics, where it was shown that the gradient descent algorithm discovered

points of saddle and singular curvature only.

Figure 20 shows that both SSE and CE exhibited one attractor around the775

global minimum. Additionally, SSE exhibited two more attractors of non-zero
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(a) SSE, micro, [−1, 1] (b) CE, micro, [−1, 1]

(c) SSE, macro, [−1, 1] (d) CE, macro, [−1, 1]

Figure 20: L-g clouds for the gradient walks initialised in the [−1, 1] range on the MNIST

problem.

gradient. Thus, the error landscape of CE was more searchable than the error

landscape of SSE. The nstag and lstag results reported in Table 9 indicate that

most walks have discovered a single attractor only, which corresponds to the

results in Figures 20 and 21.780

A cluster of values of high gradient and low error can be observed for both

SSE and CE, indicating that both exhibited sharp minima. SSE, however, ex-

hibited lower gradients overall. Figure 20 illustrates that the generalisation

performance improved as the error approached zero. Figure 22 shows the gen-

eralisation performance of the points sampled around the global minima. SSE785

once again exhibited a better generalisation performance around the global min-

ima than CE, confirming the earlier made hypothesis that SSE is less prone to

overfitting due to weaker gradients. The classification error results reported in

Table B.15, however, indicate that, although SSE yielded a smaller disparity

between the Et and Eg values, both loss functions performed similarly in terms790
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Table 9: Basin of attraction estimates calculated for the MNIST problem. Standard deviation

shown in parenthesis.

SSE CE

Et nstag lstag nstag lstag

[−1, 1], 1.00003 948.96269 1.00020 943.65445

micro (0.00557) (7.73257) (0.01418) (10.31210)

[−1, 1], 1.00000 89.59761 1.00000 88.94583

macro (0.00000) (0.62686) (0.00000) (0.79698)

[−10, 10], 1.00338 944.23606 1.00020 955.48716

micro (0.06420) (29.25325) (0.01418) (9.14026)

[−10, 10], 1.00004 90.19884 1.00001 90.24536

macro (0.00614) (1.02171) (0.00354) (1.09101)

Eg nstag lstag nstag lstag

[−1, 1], 1.00028 944.25561 2.84430 570.85913

micro (0.01762) (10.01749) (2.71734) (334.02547)

[−1, 1], 1.00000 90.04197 1.01201 85.19988

macro (0.00000) (0.63536) (0.11234) (7.54223)

[−10, 10], 1.00408 943.53542 1.26670 878.55561

micro (0.11775) (29.40333) (1.10976) (191.85100)

[−10, 10], 1.00005 90.31260 1.00881 88.80587

macro (0.00709) (1.00828) (0.10216) (6.14361)

of final classification.

Figure 21 shows that SSE exhibited a much weaker correlation between the

gradient and the error when sampled by gradient walks initialised in the [−10, 10]

interval. For CE, the positive correlation was still clearly manifested. Thus, CE

exhibited a more searchable landscape when sampled by the [−10, 10] walks.795

The landscape properties exhibited by the MNIST problem were thus very
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(a) SSE, micro, [−10, 10] (b) CE, micro, [−10, 10]

(c) SSE, macro, [−10, 10] (d) CE, macro, [−10, 10]

Figure 21: L-g clouds for the gradient walks initialised in the [−10, 10] range on the MNIST

problem.

(a) SSE, macro, [−10, 10], Et < 0.2 (b) CE, macro, [−10, 10], Et < 0.25

Figure 22: L-g clouds colourised according to the corresponding Eg values for the MNIST

problem.

similar to the landscape properties exhibited by the problems of lower dimen-

sionality. The CE loss surface was more searchable for all problems considered,

and exhibited fewer non-global attractors. SSE, however, exhibited somewhat

better generalisation capabilities under some of the considered scenarios. Per-800

haps the two loss functions should be combined to construct an error landscape
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that is both searchable and robust to overfitting.

7. Conclusions

This study presented a visual and numerical analysis of local minima and the

associated basins of attraction for two common NN loss functions, i.e., quadratic805

loss and entropic loss. The study was performed by analysing the samples ob-

tained by a number of progressive gradient walks proportionate to the dimen-

sionality of the problems. The gradient walks were not restricted to any specific

search space bounds, but were initialised in two distinct intervals, i.e., [−1, 1]

and [−10, 10]. Additionally, two granularity settings were considered for the810

gradient walks, namely micro and macro.

This study proposed an intuitive visualisation of the local minima and the

associated basins of attraction, namely the loss-gradient clouds. By plotting

the sampled loss values against the corresponding gradient vector magnitudes,

stationary points could be easily identified. To classify the identified stationary815

points as minima, maxima, or saddles, Hessian matrix information was used to

identify the curvature of each sampled point.

Additionally, this study proposed two simple metrics to quantify the number

and extent of attraction basins as sampled by the walks. Calculation of statis-

tical metrics over a number of walks provides an idea of the connectedness of820

the various basins, as well as the likelihood of escaping from the basins.

Both loss functions exhibited convex local minima for the XOR problem.

The amount of observed convexity decreased with the increase in problem di-

mensionality. Saddle curvature was the most prevalent curvature observed, and

some higher-dimensional problems considered exhibited only saddle curvature825

for all sampled points.

SSE consistently exhibited more local stationary points and associated at-

tractors than CE. Analysis of the individual walks further revealed that tran-

sition between different attractors was unlikely, and that the paths connecting

different attractors exhibited singular Hessian matrices, indicative of flatness.830
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Thus, CE exhibited a more consistent and searchable structure across the se-

lection of problems considered in this study.

With an increase in problem dimensionality, the number of zero or low gra-

dient attractors decreased. The majority of the problems exhibited a single

main attractor around the global optimum. For CE, the gradient was for the835

most part positively correlated to the error value, indicating that the CE loss

surface is highly searchable from the perspective of gradient-based methods.

This study did not attempt to quantify the number of optima, but the results

obtained clearly indicated that the majority of the optima exhibited similar loss

values.840

The results confirmed previously made observations of the presence of valley-

shaped optima in NN error landscapes. For the majority of the problems, de-

scending into a valley was easily accomplished by the walks. Travelling down

the bottom of the valley towards the global minimum yielded a decrease in gen-

eralisation performance for both SSE and CE. CE exhibited stronger gradients845

than SSE in all experiments conducted, which promoted overfitting in CE. For

some of the problems, SSE exhibited a better generalisation performance. It can

be speculated that the CE loss surface is more prone to sharp minima (narrow

valleys) than SSE; thus, CE is more easily overfitted. The experiments revealed

the tendency for the points sampled on CE to fall into two major clusters: points850

of low error and high gradients, and points of higher error and low gradients.

These are hypothesised to represent narrow and wide valleys, respectively. The

results of this study confirmed that superior generalisation performance was

exhibited by the points in the wide valleys.

An analysis of the progressive gradient samples thus illustrated a number of855

current theories regarding the shape of NN error surfaces, and highlighted the

differences between SSE and CE loss surfaces, confirming that FLA is a viable

method for visualisation and analysis of NN error landscapes. Future research

will apply FLA to analyse the influence of various activation functions, as well

as NN architectures, on the resulting stationary points and attraction basins.860

The observation that the SSE landscape may have superior generalisation
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properties suggests that a hybrid of SSE and CE may produce a landscape that

combines the searchability of CE with the robustness of SSE. Additionally, the

presence of a single attractor in the majority of the problems considered sug-

gests that an exploitative rather than an exploratory approach should be taken865

for the purpose of NN training. This observation has strong implications for

population-based training algorithms, which so far failed to be effectively ap-

plied to high-dimensioal NN training problems. A population-based approach

designed with exploitation rather than exploration in mind may perform com-

petitively, especially if gradient information is used as one of the guides for the870

population. This hypothesis is further supported by a recent study of particle

swarm optimisation in high-dimensional spaces [49], where the efficacy of ex-

ploitation over exploration in high-dimensional spaces was observed. Investiga-

tion of exploitative population-based techniques applied to NNs is an interesting

topic for future research.875

Another interesting observation is the impressive ability of a randomised al-

gorithm to find the global optima, when guided by nothing besides the direction

of the gradient. As Appendix B indicates, the average classification error calcu-

lated at the last step of the gradient walks approached 100% accuracy on most

problems under at least one of the granularity settings. Perhaps gradient-guided880

stochastic training algorithms should be considered for deeper, more complex

problems.
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Appendix A. Pseudocode for basin of attraction estimates

Two estimates to quantify the basins of attraction are proposed in this study:1030

1. The average number of times stagnation observed, nstag.

2. The average length of the stagnant sequence, lstag.

The pseudocode given in Algorithms 1 and 2 summarises the proposed method

to obtain both metrics.

Appendix B. Classification errors1035

The average classification errors arrived at by the gradient walks are reported in

this appendix. Averages are calculated across the error values as observed at the

last step of each walk. The classification error of the training set is referred to as

Ct, and the classification error of the test set is referred to as Cg. Tables B.10,

B.11, B.12, B.13, B.14, and B.15 list the average Ct and Cg values obtained for1040

the iris, diabetes, glass, cancer, and MNIST problems, respectively. Standard

deviation is shown in parenthesis.
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Table B.10: Iris, classification errors.

micro macro

SSE CE SSE CE

Ct Cg Ct Cg Ct Cg Ct Cg

[−1, 1] 1.00000 0.91819 0.98352 0.93333 0.96638 1.00000 0.97557 0.96667

(0.00000) (0.01660) (0.00125) (0.00000) (0.00881) (0.00000) (0.00646) (0.00000)

[−10, 10] 0.97252 0.97105 0.99245 0.90581 0.92155 0.92829 0.92857 0.92457

(0.07622) (0.08790) (0.00734) (0.05097) (0.09578) (0.10521) (0.05844) (0.05806)

Table B.11: Diabetes, classification errors.

micro macro

SSE CE SSE CE

Ct Cg Ct Cg Ct Cg Ct Cg

[−1, 1] 0.91094 0.66913 0.85453 0.73725 0.81141 0.73586 0.81187 0.74165

(0.01002) (0.02400) (0.00991) (0.02684) (0.00959) (0.01712) (0.01017) (0.02307)

[−10, 10] 0.85434 0.74521 0.83494 0.69911 0.79669 0.68657 0.71915 0.66424

(0.01441) (0.02648) (0.01480) (0.03019) (0.02970) (0.03580) (0.06485) (0.05338)

Table B.12: Glass, classification errors.

micro macro

SSE CE SSE CE

Ct Cg Ct Cg Ct Cg Ct Cg

[−1, 1] 0.94400 0.55738 0.93769 0.62740 0.79600 0.68398 0.79793 0.67744

(0.01636) (0.04912) (0.01551) (0.04766) (0.02738) (0.04128) (0.02285) (0.05012)

[−10, 10] 0.79578 0.60513 0.90388 0.62657 0.71373 0.58626 0.69585 0.55828

(0.08762) (0.08170) (0.02785) (0.05711) (0.06541) (0.06897) (0.07784) (0.08112)
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Table B.13: Cancer, classification errors.

micro macro

SSE CE SSE CE

Ct Cg Ct Cg Ct Cg Ct Cg

[−1, 1] 0.99944 0.97298 1.00000 0.97322 0.99451 0.97656 0.99633 0.97487

(0.00096) (0.00788) (0.00000) (0.00861) (0.00227) (0.00759) (0.00275) (0.00887)

[−10, 10] 0.99813 0.96206 1.00000 0.96408 0.99539 0.96574 0.99357 0.97335

(0.00150) (0.01170) (0.00000) (0.00685) (0.00279) (0.01006) (0.00612) (0.00961)

Table B.14: Heart, classification errors.

micro macro

SSE CE SSE CE

Ct Cg Ct Cg Ct Cg Ct Cg

[−1, 1] 0.97447 0.78274 0.97918 0.77466 0.91038 0.83086 0.90601 0.82772

(0.00477) (0.02250) (0.00648) (0.02138) ( 0.00925) (0.01538) (0.00915) (0.01743)

[−10, 10] 0.95409 0.76148 0.93496 0.80585 0.85821 0.83363 0.80135 0.74857

(0.00910) (0.02149) (0.01096) (0.02425) (0.01829) (0.02063) (0.05700) (0.05340)

Table B.15: MNIST, classification errors.

micro macro

SSE CE SSE CE

Ct Cg Ct Cg Ct Cg Ct Cg

[−1, 1] 0.98922 0.56534 0.99846 0.57332 0.96611 0.60834 0.98404 0.61831

(0.01097) (0.04874) (0.00395) (0.04828) (0.01829) (0.04600) (0.01334) (0.04547)

[−10, 10] 0.87408 0.49537 0.95444 0.52401 0.74988 0.46981 0.70077 0.44259

(0.05040) (0.05590) (0.02668) (0.05063) (0.06487) (0.06232) (0.07736) (0.06666)
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Algorithm 1 Basins of attraction estimates

Initialise nstag, average number of basins, to 0;

Initialise lstag, average basin size, to 0;

Initialise nw to the number of walks to perform;

Initialise walk, the sample, to ∅;

for ∀i ∈ {1, ..., nw} do

walk ← sample the input problem using a progressive gradient walk [38];

Normalise the sample fitness range in walk to [0, 1];

Initialise nstag,i and lstag,i to 0 for walk i;

for ∀j ∈ {6, 8, ..., 18, 20} do

walk ← calculate the EWMA of walk using Equation (3), α = 2/(j + 1)

ς ← calculate the standard deviation of walk

σ ← calculate the sequence of moving standard deviations of walk

Get a list of stagnant regions, list, using Algorithm 2 with inputs σ, ς.

if average length of regions in list > lstag,i then

lstag,i ← average(list)

nstag,i ← number of regions in l

end if

end for

nstag ← nstag + nstag,i

lstag ← lstag + lstag,i

end for

return nstag/nw, lstag/nw
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Algorithm 2 Basins of attraction identification

Inputs: σ, ς;

Initialise lstag, average basin size, to 0;

Initialise stuck to false

Initialise len, length of a stagnant region, to 0;

Initialise list, the list of stagnant regions, to ∅;

for each step si in σ do

if stuck then

if si < ς then

len← len+ 1

else

stuck ←false

list← add len to list

len← 0

end if

else

if si < ς then

len← len+ 1

stuck ←true

end if

end if

end for

if len > 0 then

list← add len to list

end if

return list
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