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Summary

The existence and occurrence, especially by a backward bifurcation, of endemic
equilibria is of utmost importance in determining the spread and persistence of a
disease. In many epidemiological models, the equation for the endemic equilibria is
quadratic, with the coefficients determined by the parameters of the model. Despite
its apparent simplicity, such an equation can describe an amazing number of dynam-
ical behaviours. In this paper, we shall provide a comprehensive survey of possible
bifurcation patterns, deriving explicit conditions on the equation’s parameters for the
occurrence of each of them, and discuss illustrative examples.
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1 INTRODUCTION

One of the most important parameters in the analysis of the long term behaviour of compartmental models in epidemiology
is the basic reproduction number, typically denoted by R0, that is defined as the number of infections caused in a completely
susceptible population by one infective during the whole period of its infectiveness. It seems obvious that if R0 < 1, then
the disease should die out, while it should persist and expand if R0 > 1. Typically this is the case locally; that is, for small
perturbations of the disease free equilibrium (DFE)1. In other words, the DFE is locally stable if R0 < 1 and looses its stability,
when R0 moves through R0 = 1 to the region where R0 > 1, where typically a new stable equilibrium, called the endemic
equilibrium (EE), appears. This phenomenon is typically called the supercritical, transcritical, or forward, bifurcation2. In many
cases, however, the system undergoes another type of bifurcation, called the subcritical, or backward, bifurcation, where a stable
endemic equilibrium exists forR0 < 1. It has an important implication for the control of the disease, as in such a case the classical
requirement, that for eradication of the disease it is enough to bring R0 below unity, no longer suffices (even though it is still
necessary). The occurrence of such a bifurcation has been studied in a number of disease transmission models by many authors.
For instance, in malaria models we can mention papers3,4,5,6,7,8, for TB papers9,10,11,12,13, for the bovine TB14, for HIV15,16, for
the dengue fever17, and for Chlamydia18. A common reason for the occurrence of the backward bifurcation is using an imperfect
vaccination12,19,20. Certainly, backward bifurcations appear in other mathematical models2; some particular cases were studied
in21,22. We also refer to papers23,22 for a discussion of the conditions that make some models exhibit the backward bifurcation
behaviour.
Due to the reasons mentioned above it is important to develop tools that allow for a quick detection of backward bifurcations

in particular models. One of the most effective techniques, based on the centre manifold theorem, was derived in24. It provides
explicit conditions that ensure the existence of a local branch of "small" equilibrium points emerging from the disease free
equilibrium to the left of R0 = 1. However, for many models, numerical evidence suggests that for a certain range of R0 < 1
this subcritical branch often coexists with another branch of "larger" stable endemic equilibrium points. For an effective disease
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control, it is essential to know how many other (stable) branches of equilibria exist alongside the bifurcating one, and the ranges
of parameters for which these branches coexist. It is thus important to emphasize here that the method of24 provides only a
local result; that is, the existence of a bifurcating branch in a small neighborhood of the disease free equilibrium for values
of R0 close to one. Hence, it is unable to determine the number of branches of endemic equilibria or inform on the ranges of
parameters for which they exist. Nonetheless, its relevance lies in that it provides the set of parameters for which the (local)
backward bifurcation occurs and thus sets the foundation on which further analytical and numerical investigations of the global
picture of endemic equilibria can be carried out.
There are some models for which the equation for the endemic equilibria is algebraic and thus the existence of a backward

bifurcation can be explicitly established by a direct analysis of the set of its roots that occur for R0 < 1. If feasible, this method
can provide the exact number of endemic equilibria along with their maximal ranges of the parameters ensuring their existence.
However, due to the number of parameters in the original model and their interplay, the calculations can be tedious, if not
impossible, even in the simplest cases. In this paper we shall focus on the case, when the endemic equilibria are positive solutions
of the quadratic equation

�2 + B� + C = 0, (1)
where the variable � represents the value of the endemic equilibrium, or the model’s force of infection at such an equilibrium that
is directly related to its value. The parameters B and C are combinations of the parameters of the model. While one could think
that the analysis of a roots of a quadratic equation hardly is a topic of a research paper and, indeed, the mathematical complexity
of the analysis does not go beyond an undergraduate algebra, the aim of this work is to show that even such a simple case can
generate a plethora of different, often unexpected, epidemiological scenarios and to provide a comprehensive survey of them.
We begin by noting that (1) has appeared in a number of epidemiological models, see e.g.25,26,27, that will be discussed later,

and various approaches have been proposed to analyze the dependence of its solutions on the parameters B and C instead ofR0.
In this paper, we provide explicit conditions that ensure that (1) has none, one or two positive roots. To emphasize the importance
ofR0 in the analysis, we express B and C in terms of0 (where0 equalsR0 orR20, as could be the case for some vector-borne
disease models). As we shall see in the examples, it is convenient to rewrite B and C as B = b

(

K −0
)

and C = c(1 −0),
to get

�2 + b(K −0)� + c
(

1 −0
)

= 0. (2)
For a wide variety of epidemiological models, the calculation of equilibrium points entails solving equation (2) where b > 0
and c > 0. However, for some models, which we will present later, these conditions are not always satisfied, hence the need for
a systematic approach to deal with all possible cases. We note here that the conditions c > 0 ensures that the model has a unique
endemic equilibrium point for R0 > 1.
As mentioned above, the aim of this paper is to provide explicit conditions on b, c and 0 that ensure the existence of

zero, one or two positive solutions for equation (2). We will further discuss the biological/epidemiological implications of such
occurrences and present two models that present a "nonstandard" backward bifurcation behaviour:

(i) a model for the interactions between HIV and the immune system,

(ii) a malaria model with counterfeit antimalarial drugs.

The mathematics of the paper, though tedious and not always obvious, is rather elementary. We believe, however, that it is useful
to theoretically explore all possible bifurcation scenarios allowed by (2), derive explicit conditions that lead to them and com-
prehensively and graphically summarize the findings in a way that can be directly applied to a wide variety of epidemiological
models.

2 MATHEMATICAL ANALYSIS

For convenience, we use the following notations:

1. Δ(0) = b2(K −0)2 − 4c(1 −0). This is the discriminant of (2).

2. b =
Kb2−2c−2

√

b2c(1−K)+c2

2b2
.

3. c =
Kb2−2c+2

√

b2c(1−K)+c2

2b2
. When they exist,b andc are the real roots of Δ(0) = 0.
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2.1 Case 1: c > 0
We can easily see that when 0 > 1, equation (2) has one positive root. We focus the remainder of this section on the case
0 ≤ 1. We will proceed by discussing the cases b > 0 and b < 0. We observe that Δ(0) = b2K2 − 4c < 0 if and only if
−
√

4c
b2
< K <

√

4c
b2
.

2.1.1 Sub-case 1: b > 0
Proposition 1. 1. If K ≥ 1, then equation (2) exhibits a forward bifurcation; that is, equation (2) has:

(a) no positive roots if 0 ∈ [0, 1],

(b) a unique positive root if 0 ∈ (1,+∞).

2. If −
√

4c
b2
< K < 1, then 0 < c < 1 and equation (2) exhibits backward bifurcation; that is equation (2) has:

(a) no positive roots if 0 ∈ [0,c),

(b) one double positive root if 0 = c ,

(c) two positive real roots if 0 ∈
(

c , 1
)

,

(d) a unique positive root if 0 ∈ [1,+∞).

3. If K = −
√

4c
b2
, thenc = 0 and equation (2) exhibits an almost full backward bifurcation; that is equation (2) has:

(a) If 0 = 0, then equation (2) has a double positive root,
(b) If 0 ∈ (0, 1), then equation (2) has two positive roots,
(c) a unique positive root if 0 ∈ [1,+∞).

4. If K < −
√

4c
b2
, thenc < 0 and equation (2) exhibits a full backward bifurcation; that is equation (2) has:

(a) two positive roots if 0 ∈ [0, 1),

(b) a unique positive root if 0 ∈ [1,+∞).

Proof. 1. If K ≥ 1, then for all0 ≤ 1, we have c
(

1 −0
)

≥ 0 and b(K −0) ≥ 0 implying that (2) has no positive roots.

2. If −
√

4c
b2
< K < 1, we discuss the following cases:

(a) If
√

4c
b2

≥ 1, then −
√

4c
b2
< K <

√

4c
b2

implying that Δ(0) = b2K2 − 4c < 0. Since Δ(K) = −4c(1 − K) <
0,Δ(−∞) > 0 andΔ(1) > 0, thenmax(0, K) < c < 1 andb < min(0, K). This implies thatΔ(0) < 0 on [0,c)
and Δ(0) > 0 on (c , 1). This implies that equation (2) has no real roots on [0,c), a double root at 0 = c
and two real roots on (c , 1). Since b(K −0) < 0 and c(1 −0) > 0 for 0 ∈ (c , 1), then equation (2) has no
positive real roots on [0,c), a double positive root at0 = c and two positive real roots on (c , 1).

(b) If
√

4c
b2
< 1, then we have the following cases:

i. If −
√

4c
b2
< K <

√

4c
b2

then Δ(0) ∶= b2K2 − 4c < 0 which leads to the same results as above.

ii. If
√

4c
b2
< K < 1 then Δ(0) = b2K2 − 4c > 0. Since Δ(K) = −4c(1 − K) < 0 and Δ(1) > 0, then

0 < b < K < c < 1. In this case Δ(0) < 0 on (b,c) and Δ(0) > 0 on (0,b) ∪ (c , 1). This
implies that equation (2) has no real roots on (b,c), a double root at 0 = b or c and two real roots
on (0,b) ∪ (c , 1). Since for 0 ∈ [0, 1) we have c(1 − 0) > 0, b(K − 0) < 0 for 0 ∈ (c , 1) and
b(K −0) > 0 for0 ∈ (0,b), the two roots of equation (2) in (0,b) are negative while those in (c , 1) are
positive.

3. If K = −
√

4c
b2
, then Δ(0) = b22

0 + 4
(

c − b
√

c
)

0. Then Δ(0) = 0 if0 = 0 and Δ(0) > 0 if 0 ∈ (0, 1). Thus,
results on the roots of (2) follow in the same way as in the previous case.
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4. IfK < −
√

4c
b2
, thenK2b2−4c > 0 implying thatΔ(0) = b22

0+
(

4c − 2Kb2
)

0+
(

K2b2 − 4c
)

> 0 for all0 ∈ [0, 1).
We deduce the results on the roots of (2) in the same way as in the previous cases. We note that in this case, we have
c < 0.

TABLE 1 Number of positive roots for equation (2) when b > 0 and c > 0.

Assumptions Number of positive roots Bifurcation diagram

K ≥ 1
{

0, if0 ∈ [0, 1],
1, if0 ∈ (1,+∞).

−
√

4c
b2
< K < 1

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if0 ∈ [0,c),
1 double, if0 = c ,
2, if0 ∈ (c , 1),
1, if0 ∈ [1,+∞).

K = −
√

4c
b2

⎧

⎪

⎨

⎪

⎩

1 double, if0 = 0,
2, if0 ∈ (0, 1),
1, if0 ∈ [1,+∞).

K < −
√

4c
b2

{

2, if0 ∈ [0, 1),
1, if0 ∈ [1,+∞).

2.1.2 Sub-case 2: b < 0
First we note that in this case b(K −0) < 0 and c(1 −0) > 0 for0 ∈ [0, 1). This implies that both roots of equation (2) for
0 ∈ [0, 1) are positive whenever Δ(0) > 0. Furthermore, from Δ′(0) = 2b2

(

0 −K
)

+ 4c, we deduce that Δ′(0) = 0 if
and only if

0 = ∗
0 ∶= K − 2c

b2
with minΔ(0) = Δ(∗

0) = 4c
(

K − 1 − c
b2
)

. (3)
We have the following result:

Proposition 2. If K > 1 + c
b2
, then equation (2) exhibits a full backward bifurcation; that is, it has

1. two positive roots if 0 ∈ [0, 1),

2. a unique positive root if 0 ∈ [1,+∞).

Proof. Since K > 1 + c
b2
, Δ

(

∗
0

)

> 0 implying that Δ(0) > 0 for all 0 and hence, in particular, equation (2) has real roots
on [0, 1] , which are both positive on [0, 1).
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Next we consider the case
1 ≤ K ≤ 1 + c

b2
. (4)

We observe an important inequality

1 + c
b2

≥
√

4c
b2
, (5)

with equality occurring only if c
b2
= 1, that follows from re-writing the above as

(

1 −
√

c
b2

)2
≥ 0.Moreover, Δ(∗

0) ≤ 0 and

1 − 2c
b2

≤ ∗
0 ≤ 1 −

c
b2
< 1. (6)

In the sequel we discuss the following cases: 4c
b2
< 1, c

b2
< 1 ≤ 4c

b2
and 1 ≤ c

b2
.

Proposition 3. Let 4c
b2
< 1. Then

1. If K = 1, then 0 < b < c = 1 and equation (2) has:

(a) two positive roots if 0 ∈ [0,b),
(b) no positive roots if 0 ∈

(

b, 1
]

,

(c) a double positive root if 0 = b ,
(d) a unique positive root if 0 ∈ (1,+∞).

2. For 1 < K < 1 + c
b2
, we have 0 < b < c < 1 and equation (2) has:

(a) two positive roots if 0 ∈ [0,b) ∪
(

c , 1
)

,

(b) no positive roots if 0 ∈
(

b,c
)

,

(c) a double positive root if 0 = b or0 = c ,

(d) a unique positive root if 0 ∈ [1,+∞).

3. If K = 1 + c
b2
, then 0 < b = c < 1 and equation (2) has:

(a) two positive roots if 0 ≠ c ,

(b) a double positive root if 0 = c ,

(c) a unique positive root if 0 ∈ [1,+∞).

Proof. If 4c
b2
< 1, then 2c

b2
< 1

2
< 1, implying that 0 < ∗

0 < 1.

1. If K = 1, then Δ(0) > 0, Δ(1) = 0 and Δ(∗
0) < 0. Thus 0 < b < ∗

0 < 1. The statement for0 = 1 follows since then
(2) becomes �2 = 0 with no positive roots.

2. Since K > 1, Δ(0) = K2b2 − 4c > 0, Δ(1) > 0 and, by K < 1 + c
b2
, Δ(∗

0) < 0. Hence 0 < b < c < 1. Thus

(a) Δ(0) > 0 for0 ∈
(

0,b
)

∪
(

c , 1
)

,

(b) Δ(0) < 0 for0 ∈
(

b,c
)

,

(c) Δ(0) = 0 for0 = b or0 = c .

and the proposition follows by the comments preceding the proposition.

3. If K = 1 + c
b2
, then Δ(∗

0) = 0 and thus 0 < b = c = ∗
0 < 1 and the statement follows as above.

Since for all 0 ∈ (0, 1), we have c(1 − 0) > 0 and b(K − 0) < 0, then whenever a root of (2) exists it is positive. This
completes the proof.

Proposition 4. If c
b2
< 1 ≤ 4c

b2
, then 2c

b2
<
√

4c
b2
< 1 + c

b2
and we have

1. If K = 1, thenb ≤ 0 < c = 1 and equation (2) has:
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(a) no positive roots if 0 ∈ [0, 1],

(b) a unique positive root if 0 ∈ (1,+∞).

2. If 1 < K ≤
√

4c
b2
, thenc ∈ (0, 1) and equation (2) has:

(a) no positive roots if 0 ∈ [0,c),

(b) a double positive root if 0 = c ,

(c) two positive roots if 0 ∈
(

c , 1
)

,

(d) a unique positive root if 0 ∈ [1,+∞).

3. If
√

4c
b2
< K < 1 + c

b2
, then 0 < b < c < 1 and equation (2) has:

(a) two positive roots if 0 ∈ [0,b) ∪
(

c , 1
)

,

(b) no positive roots if 0 ∈
(

b,c
)

,

(c) a double positive root if 0 = b or0 = c ,

(d) a unique positive root if 0 ∈ [1,+∞).

4. If K = 1 + c
b2
, then 0 < b = c < 1 and equation (2) has:

(a) two positive roots if 0 ≠ c ,

(b) a double positive root if 0 = c ,

(c) a unique positive root if 0 ∈ [1,+∞).

Proof. Since c
b2
< 1, then 1 + c

b2
>
√

4c
b2

(due to c
b2
< 1 and (5)). Moreover, for the same reason, 2c

b2
<
√

4c
b2
. Therefore,

1. if K = 1 ≤
√

4c
b2
, then Δ(0) ≤ 0 and Δ(1) = 0, so b ≤ 0 and c = 1 with 0 < ∗

0 < 1 and the statements follow as in
Proposition 3, item 1;

2. 1 < K ≤
√

4c
b2

implies Δ(0) = K2b2 − 4c ≤ 0 and Δ(0) = 0 for K =
√

4c
b2
> 2c

b2
, with corresponding 0 < ∗

0 < 1 (see
(6)), where Δ(∗

0) < 0. Also Δ(1) > 0. Hence

(a) Δ(0) < 0 for0 ∈ [0,c),

(b) Δ(0) = 0 for0 = c ,

(c) Δ(0) > 0 for0 ∈
(

c , 1
)

.

3. If
√

4c
b2
< K < 1 + c

b2
, then Δ(0) = K2b2 − 4c > 0 and again 0 < ∗

0 < 1 with Δ(∗
0) < 0. Since Δ(1) > 0, then

0 < b < c < 1 and

(a) Δ(0) > 0 for0 ∈ [0,b) ∪
(

c , 1
)

,

(b) Δ(0) < 0 for0 ∈
(

b,c
)

,

(c) Δ(0) = 0 for0 = b or0 = c .

4. If K = 1 + c
b2
, then Δ(0) =

(

1 + c
b2

)2
b2 − 4c > 0 and 0 < ∗

0 ∶= K − 2c
b2
< 1. Since Δ(1) > 0 and Δ(∗

0) = 0,
0 < b = c = ∗

0 < 1 < K and

(a) Δ(0) > 0 for0 ≠ c ,

(b) Δ(0) = 0 for0 = c .

Since for all 0 ∈ [0, 1], we have b(K −0) < 0 (due to K >
√

4c
b2
> 1) and c(1 −0) > 0, then the statements follow

as in Proposition 3, item 3.
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Proposition 5. If 1 ≤ c
b2
, then 1 <

√

4c
b2

≤ 1 + c
b2

≤ 2b
c2
, and we have the following results:

1. If K = 1, thenb ≤ 0 < c = 1 and equation (2) has:

(a) no positive roots if 0 ∈ [0, 1],

(b) a unique positive root if 0 ∈ (1,+∞).

2. If 1 ≤ K <
√

4c
b2
, thenc ∈ (0, 1) and equation (2) has:

(a) no positive roots if 0 ∈ [0,c),

(b) a double positive root if 0 = c ,

(c) two positive roots if 0 ∈
(

c , 1
)

,

(d) a unique positive root if 0 ∈ [1,+∞).

3. If
√

4c
b2

≤ K ≤ 1 + c
b2
, then (2) has:

(a) two positive roots for 0 ∈ [0, 1) ,

(b) a unique positive root if 0 ∈ [1,+∞).

Proof. Since 1 ≤ c
b2
, then

√

4c
b2

≤ 2c
b2
.Moreover,

1. if 1 = K <
√

4c
b2

≤ 2c
b2
, then Δ(0) = b2 − 4c < 0,∗

0 ∶= K − 2c
b2
= 1 − 2c

b2
< 0 and Δ(∗

0) ∶= 4c(K − 1 − c
b2
) = −4c2

b2
< 0.

Thus b < ∗
0 < 0. Furthermore, we have Δ(1) = 0 which implies that Δ(R0) < 0 on (0, 1). At R0 = 1, equation (2), as

before, has a double zero root;

2. if 1 < K <
√

4c
b2
, then Δ(0) = K2b2 −4c < 0.Moreover, since we also have K < 2c

b2
,∗

0 < 0. Hence, by Δ(−∞) > 0 and
Δ(1) = b2(K − 1)2 > 0, we have 0 < c < 1 and

(a) Δ(0) < 0 for0 ∈ [0,c),

(b) Δ(0) = 0 for0 = c ,

(c) Δ(0) > 0 for0 ∈
(

c , 1
)

;

3. if
√

4c
b2

≤ K ≤ 1 + c
b2

≤ 2c
b2
, then∗

0 ≤ 0 and Δ(0) = K
2b2 − 4c ≥ 0. Hence Δ(0) ≥ 0 for 0 ∈ [0, 1) .

The statements follow from b(K −0) < 0 and c(1 −0) > 0 on [0, 1].

For 0 < K < 1, we discuss two cases, 1 <
√

4c
b2

and
√

4c
b2

≤ 1.

Proposition 6. 1. if 1 <
√

4c
b2
, then for 0 < K < 1, equation (2) has

(a) no positive root if 0 ∈ [0, 1],

(b) a unique positive root if 0 ∈ (1,+∞);

2. If
√

4c
b2

≤ 1, then

(a) if
√

4c
b2
< K < 1, then 0 < b < 1 and equation (2) has:

i. two positive roots for 0 ∈
[

0,b
)

,
ii. a double positive root for 0 = b,
iii. no positive roots for 0 ∈

(

b, 1
]

,
iv. a unique positive root if 0 ∈ (1,+∞);

(b) if
√

4c
b2
= K , thenb = 0 and equation (2) has:
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i. a double positive root for 0 = 0,
ii. no positive roots for 0 ∈ (0, 1] ,
iii. a unique positive root if 0 ∈ (1,+∞);

(c) if 0 < K <
√

4c
b2
, thenc ∈ (K, 1) and equation (2) has:

i. no positive root if 0 ∈ [0, 1],
ii. a unique positive root if 0 ∈ (1,+∞).

Proof. 1. If 1 <
√

4c
b2

then, for 0 < K < 1, we have −
√

4c
b2
< K <

√

4c
b2

which implies that Δ(0) = b2K2 − 4c < 0. Since
Δ(K) = −4c(1 −K) < 0, Δ(−∞) > 0 and Δ(1) = b2(K − 1)2) > 0,c ∈ (K, 1). Hence

(a) if 0 ∈ [0,c), then Δ(0) < 0 implying that equation (2) has no real roots,

(b) if0 = c , then Δ(0) = 0 implying that equation (2) has a double root which is negative because b(K −c) > 0
and c(1 −c) > 0,

(c) if0 ∈ (c , 1], thenΔ(0) > 0 implying that equation (2) has two roots which are negative if0 ∈ (c , 1) because
b(K −0) > 0 and c(1 −0) > 0, and are negative and zero if0 = 1 as then b(K − 1) > 0 and c(1 − 1) = 0 .

2. If
√

4c
b2

≤ 1, then we discuss the following cases:

(a) If
√

4c
b2
< K, then Δ(0) = b2K2 − 4c > 0. Since Δ(K) = −4c(1 − K) < 0 and Δ(1) = b2(K − 1)2) > 0, then

0 < b < K < c < 1. Hence

i. if 0 ∈
[

0,b
)

, then Δ(0) > 0 implying that equation (2) has two roots which are positive because b(K −
0) < 0 and c(1 −0) > 0,

ii. if0 = b, thenΔ(0) = 0 implying that equation (2) has a double root which is positive because b(K−b) <
0 and c(1 −b) > 0.

iii. if 0 ∈
(

b,c
)

, then Δ(0) < 0 implying that equation (2) has no real roots,
iv. if0 = c , thenΔ(0) = 0 implying that equation (2) has a double root which is negative because b(K−c) >

0 and c(1 −c) > 0.
v. if 0 ∈

(

c , 1
]

, then Δ(0) > 0 implying that equation (2) has two roots which are non-positive, as in item
1.c above.

(b) If 0 < K =
√

4c
b2
, then Δ(0) = 0, Δ(K) = −4c(1 − K) < 0, Δ(1) = b2(K − 1)2) > 0, and hence b = 0. Then for

R0 = 0 equation (2) has double positive root � =
√

c. The remaining cases are the same as in item (a).

(c) If 0 < K <
√

4c
b2
, then−

√

4c
b2
< K <

√

4c
b2
which implies thatΔ(0) = b2K2−4c < 0. SinceΔ(K) = −4c(1−K) < 0,

Δ(−∞) > 0 and Δ(1) = b2(K − 1)2) > 0, b < 0, c ∈ (K, 1). The remaining part of the proof is similar to the
first case in this proposition.

Proposition 7. If K ≤ 0, then equation (2) has:

1. no positive roots if 0 ∈ [0, 1],

2. a unique positive root if 0 ∈ (1,+∞).

Proof. If K ≤ 0, then for all 0 ∈ [0, 1], we have b(K − 0) > 0 and c(1 − 0) ≥ 0. This implies that, on the interval
0 ∈ [0, 1], equation (2) either has no real roots, or two nonpositive ones.

In this section we considered the case c > 0 which ensured that the model has a unique endemic equilibrium point when
R0 > 1. However, for some models the bifurcation equation (2) comes with c < 0 (see for instance27), therefore in the next
section we will discuss the implication of this on the number of positive roots for the equation.
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TABLE 2 Number of positive roots for equation (2) when b < 0 and c > 0.

Assumptions Number of positive roots Bifurcation diagram

{

K > 1 + c
b2
or

1 ≤ c
b2
&
√

4c
b2

≤ K < 1 + c
b2

{

2, if0 ∈ [0, 1),
1, if0 ∈ [1,+∞).

{ 4c
b2
< 1 & 1 < K < 1 + c

b2
or

c
b2
< 1 ≤ 4c

b2
&
√

4c
b2
< K < 1 + c

b2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2, if0 ∈ [0,b) ∪ (c , 1),
0, if0 ∈ (b,c),
1 double, if 0 = b orc ,
1, if0 ∈ [1,+∞).

⎧

⎪

⎨

⎪

⎩

c
b2
< 1 ≤ 4c

b2
& 1 < K ≤

√

4c
b2

or

1 ≤ c
b2
& 1 ≤ K <

√

4c
b2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if0 ∈ (0,c),
1 double, if0 = c ,
2, if0 ∈ (c , 1),
1, if0 ∈ [1,+∞).

⎧

⎪

⎪

⎨

⎪

⎪

⎩

K ≤ 0 or
1 ≤ 4c

b2
& K = 1 or

1 <
√

4c
b2

& 0 < K < 1, or
√

4c
b2

≤ 1 & 0 < K <
√

4c
b2

{

0, if0 ∈ [0, 1],
1, if0 ∈ (1,+∞).

⎧

⎪

⎪

⎨

⎪

⎪

⎩

4c
b2
< 1&K = 1

√

4c
b2

≤ 1&
√

4c
b2
< K < 1or

√

4c
b2

≤ 1&
√

4c
b2
< K < 1

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2, if0 ∈ [0,b),
1 double, if 0 = b,
0, if0 ∈ (b, 1],
1, if0 ∈ (1,+∞).

c
b2
< 1&K = 1 + c

b2

⎧

⎪

⎨

⎪

⎩

2, if0 ≠ c ,
1 double, if0 = c ,
1, if0 ∈ [1,+∞).

√

4c
b2

≤ 1&K =
√

4c
b2

⎧

⎪

⎨

⎪

⎩

1 double, if0 = 0,
0, if0 ∈ (0, 1],
2, if0 ∈ (1,+∞).

2.2 Case 2: c < 0
First, we observe that if c < 0, then equation (2) has one positive root when 0 < 1. Hence, in the sequel we focus on the case
0 ≥ 1. Again, we will discuss the cases b > 0 and b < 0 each with the sub-cases K > 1, 1 + c

b2
< K ≤ 1 and K ≤ 1 + c

b2
.
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2.2.1 Sub-case 1: b > 0
Proposition 8. 1. If K ≥ 1, thenc > K and equation (2) has:

(a) a unique positive root if 0 ∈ [0, 1),

(b) no positive roots if 0 ∈ [1,c),

(c) a double positive root if 0 = c ,

(d) two positive roots if0 ∈ (c ,+∞). In this case, as0 becomes large, the lower root tends to zero while the larger
root tends to infinity in some linear fashion.

2. If 1 + c
b2
< K < 1, then 1 < b < c and equation (2) has:

(a) a unique positive root if 0 ∈ [0, 1),

(b) no positive roots if 0 ∈ (b,c),

(c) a double positive root if 0 = b or0 = c

(d) two positive roots if0 ∈ (1,b) ∪ (c ,+∞), In this case, as0 becomes large, the lower root tends to zero while
the larger root tends to infinity in some linear fashion.

3. If K ≤ 1 + c
b2
, then equation (2) has:

(a) a unique positive root if 0 ∈ [0, 1],

(b) two positive roots for all 0 ∈ (1,+∞).

Proof. We first note that when K < 1, we have b(K − 0) < 0 for all 0 > 1 with c(1 − 0) > 0 for all 0 > 1 and
c(1 −0) = 0 if 0 = 1. This implies implying that whenever the roots of (2) are real, they must be positive if 0 > 1, and
one root is positive while the other 0 if0 = 1.

1. If K ≥ 1, then we have the following cases:

(a) If K > 1, then Δ(K) = 4c (K − 1) < 0, since Δ(1) = b2 (K − 1)2 > 0 and Δ(+∞) > 0, then 1 < b < K < c
and we have Δ(b) = 0, Δ(c) = 0, Δ(0) > 0 for 1 < 0 < b, Δ(0) < 0 for b < 0 < c and Δ(0) > 0
forc < 0. In this case, we have the following:

i. if 1 ≤ 0 < b equation (2) has two roots which, since b(K − 0) > 0 and c(1 − 0) ≥ 0, are either both
negative, or negative and 0 (if R0 = 1),

ii. if 0 = b, then equation (2) a double positive root which is negative since b(K −b) > 0,
iii. if b < 0 < c , then equation (2) has no roots,
iv. if 0 = c , then equation (2) has a double root which is positive as b(K −c) < 0,
v. if c < 0, equation (2) has two real roots which are positive since b(K −0) < 0 and c(1 −0) > 0.

(b) The case K = 1 is similar to the previous one. We have again Δ(∗
0) < 0 and Δ(0) > 0. Furthermore, K = 1

implies ∗
0 = 1 −

2c
b2
> 1. Therefore, by Δ(∗) < 0, Δ(1) = 0, we have 1 = b < ∗

0 < c . Thus Δ(0) > 0 for
0 ∈ [0, 1) ∪ (c ,+∞) and Δ(0) < 0 for 0 ∈ (1,c). Since b(1 −0) = 0 and c(1 −0) = 0 for 0 = 1 and
b(K −0) < 0 and c(1 −0) > 0 for0 ∈ (1,+∞), the proof of items (b)-(d) is concluded.

(c) If K ≤ 1 + c
b2
, then Δ(∗

0) = 4c
(

K − 1 − c
b2

)

≥ 0 implying that Δ(0) ≥ 0 for all 0 ≥ 1. In this case, (2) has
two positive roots for all 0 > 1 which coalesce into a double positive root if K = 1 + c

b2
. For 0 = 1 one root is

0, while the other positive.

2. If 1 + c
b2
< K < 1, then Δ(∗

0) < 0, see (3). Moreover, due to c < 0, Δ(0) = b2K2 − 4c > 0. Furthermore, the condition
1+ c

b2
< K ≤ 1 implies that 1− c

b2
< ∗

0 = K−
2c
b2
. Since c < 0, 1 < ∗

0.Therefore, byΔ(
∗) < 0,Δ(1) = b2 (K − 1)2 ≥ 0

and Δ(+∞) > 0, we have 1 ≤ b < ∗
0 < c and Δ(0) > 0 for 0 ∈ [0,b) ∪ (c ,+∞) and Δ(0) < 0 for

0 ∈ (b,c). This, along with b(K −0) < 0 and c(1 −0) > 0 on (1,+∞), completes the proof of items (b)-(d).



R. Ouifki and J. Banasiak 11

2.2.2 Sub-case 2: b < 0
In this case we have the following result:

Proposition 9. 1. If K ≤ 1, then equation (2) has:

(a) a unique positive root if 0 ∈ [0, 1),
(b) no positive roots if ∈ [1,+∞).

2. If K > 1, thenb ∈ (1, K) and equation (2) has:

(a) a unique positive root if 0 ∈ [0, 1],
(b) two positive roots if 0 ∈ (1,b),
(c) a double positive root if 0 = b,
(d) no positive roots if b < 0.

Proof. 1. If K ≤ 1, then, for all 0 ≥ 1 we have b
(

K −0
)

> 0 and c(1 − 0) ≥ 0, implying that equation (2) has no
positive roots.

2. Since K > 1, then Δ(K) = 4c (K − 1) < 0 which, by Δ(1) = b2 (K − 1)2 > 0 and Δ(+∞) > 0, imply that 1 < b <
K < c and we have Δ(0) > 0 for 1 < 0 < b, Δ(0) < 0 for b < 0 < c and Δ(0) > 0 for c < 0. In this
case, we have:

(a) if 0 = 1, then equation (2) has one positive and one 0 root,
(b) if 0 ∈ (1,b), then equation (2) has two roots which are positive because b(K −0) < 0 and c(1 −0) > 0 on

(1, K),
(c) if 0 = b, then equation (2) has a double root which is positive because b(K −b) < 0 and c

(

1 −b
)

> 0,
(d) if 0 ∈ (b,c), then equation (2) has no real roots,
(e) if 0 = c , then equation (2) has a double root which is negative because b(K −c) > 0 and c

(

1 −c
)

> 0,
(f) if0 ∈ (c ,∞), then equation (2) has two roots which are negative because b(K −0) > 0 and c(1 −0) > 0 on

(c ,+∞),

which, combined, give (a)–(d) of item 2. of the theorem.

3 EXAMPLE 1: A BASIC MODEL FOR THE INTERACTIONS BETWEEN HIV AND THE
IMMUNE SYSTEM

The basic model (see e.g. Perelson25 and Nowak26) considers a population of T-cells, T , which are produced at a constant rate
s and die at a rate d per cell. Through interactions with the virus population, V , T-cells become infected at a constant rate �
and move to the infected class I . Infected cells are assumed to lyse at constant rate � per cell and produce new virus particles
at a constant rate p which are assumed to be cleared at a constant rate � per virus. The infection of T-cells triggers an immune
response mediated by CD8 lymphocytes, Z, which are produced at a constant rate � and reduced through either contact with
infected cells at a rate � or death at a rate �. The model describing the basic model of viral dynamics is as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

dT
dt

= s − �TV − dT
dI
dt

= �TV − �IZ − �I
dV
dt

= pI − �V
dZ
dt

= � − �YZ − �Z

(7)
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TABLE 3 Number of positive roots for equation (2) when b > 0 and c < 0.

Assumptions Number of positive roots Bifurcation diagram

K ≤ 1 + c
b2

{

1, if0 ∈ [0, 1),
2, if0 ∈ [1,+∞).

1 + c
b2
< K < 1

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if0 ∈ [0, 1),
0, if0 ∈ (b,c),
1 double, if0 = b orc ,
2, if0 ∈ (1,b) ∪ (c ,+∞).

K ≥ 1

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if0 ∈ [0, 1),
0, if0 ∈ [1,c),
1 double, if0 = c ,
2, if0 ∈ (c ,+∞).

TABLE 4 Number of positive roots for equation (2) when b < 0 and c < 0.

Assumptions Number of roots Graphical illustration

K ≤ 1
{

1, if0 ∈ [0, 1),
0, for0 ∈ [1,+∞).

K > 1

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if0 ∈ [0, 1),
2, if0 ∈ (1,b),
1 double, if0 = b,
0, if0 ∈ (b,+∞).

The model’s virus-free equilibrium is given by E0 =
(

s
d
, 0, �

�
, 0
)

and the basic reproductive number is given by

R0 =
ps��

d� (�� + ��)
.

Using Maple, we find that the bifurcation equation of this model is given by:

�2 + b
(

K − R0
)

� + c
(

1 − R0
)

= 0, (8)
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where
⎧

⎪

⎪

⎨

⎪

⎪

⎩

b =
d � (�� − s�)
s� (�� +  �)

c =
pd� �2�2

�� (�� + ��) (�� +  �)
K =

s� (�� +  �)
 � (s� − ��)

In this example, we see that c > 0while b andK can take negative values. We note that the parameter� appears in the expression
of b and K and not in R0.We therefore use it for our bifurcation discussion. We have the following cases:

1. If � < ��
s
, then b > 0 and K < 0.

2. If � ≥ ��
s
, then b < 0 and K > 1.

An illustration of the various bifurcation behaviours exhibited by this model is presented in tables 5 and 6 .

TABLE 5 Number of positive roots for equation (8) when � < ��
s
, (i.e. b > 0 and K < 0).

Assumptions Number of positive roots Bifurcation diagram

−
√

4c
b2
< K < 0

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if0 ∈ [0,c),
1 double, if0 = c ,
2, if0 ∈ (c , 1),
1, if0 ∈ [1,+∞).

K = −
√

4c
b2

⎧

⎪

⎨

⎪

⎩

1 double, if0 = 0,
2, if0 ∈ (0, 1),
1, if0 ∈ [1,+∞).

K < −
√

4c
b2

{

2, if0 ∈ [0, 1),
1, if0 ∈ [1,+∞).

4 EXAMPLE 2: A MALARIA MODEL FOR HUMANS WITH EFFECTIVE AND
INEFFECTIVE TREATMENT

This model was recently developed in27 to study the effects of the use of ineffective drugs on malaria control in Ghana. In this
model, the total population of humans is divided into five classes: susceptible humans (Sℎ), exposed humans

(

Eℎ
)

, infectious
humans

(

Iℎ
)

, partially recovered humans
(

Rℎ
)

and fully recovered humans
(

Tℎ
)

. The population of mosquitoes is divided into



14 R. Ouifki and J. Banasiak

TABLE 6 Number of positive roots for equation (8) when � ≥ ��
s
, (i.e. b < 0 and K > 1).

Assumptions Number of positive roots Bifurcation diagram

{

K > 1 + c
b2
or

1 ≤ c
b2
&
√

4c
b2

≤ K < 1 + c
b2

{

2, if0 ∈ [0, 1),
1, if0 ∈ [1,+∞).

{ 4c
b2
< 1 & 1 < K < 1 + c

b2
or

c
b2
< 1 ≤ 4c

b2
&
√

4c
b2
< K < 1 + c

b2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2, if0 ∈ [0,b) ∪ (c , 1),
0, if0 ∈ (b,c),
1 double, if 0 = b orc ,
1, if0 ∈ [1,+∞).

⎧

⎪

⎨

⎪

⎩

c
b2
< 1 ≤ 4c

b2
& 1 < K ≤

√

4c
b2

or

1 ≤ c
b2
& 1 ≤ K <

√

4c
b2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if0 ∈ (0,c),
1 double, if 0 = c ,
2, if0 ∈ (c , 1),
1, if0 ∈ [1,+∞).

c
b2
< 1&K = 1 + c

b2

⎧

⎪

⎨

⎪

⎩

2, if0 ≠ c ,
1 double, if 0 = c ,
1, if0 ∈ [1,+∞).

three classes: susceptible mosquitoes
(

Sm
)

, exposed mosquitoes
(

Em
)

and infectious mosquitoes
(

Im
)

. The model proposed
in27 to describe the dynamics of disease transmission and recovery reads as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

dSℎ
dt
= �ℎ + �Tℎ + �Rℎ −

(

�ℎ + �ℎ
)

Sℎ
dEℎ
dt
= �ℎSℎ −

(

�ℎ + �ℎ
)

Eℎ
dIℎ
dt
= �ℎEℎ + �Rℎ −

(

� + 
 + �ℎ + �ℎ
)

Iℎ
dRℎ
dt
= �Iℎ −

(

� + � + �ℎ
)

Rℎ
dTℎ
dt
= 
Iℎ −

(

� + �ℎ
)

Tℎ
dSm
dt
= �mSm −

(

�m + �m1 + �m2Nm
)

Sm
dEm
dt
= �mSm −

(

�m1 + �m2Nm
)

Em
dIm
dt
= �mEm −

(

�m1 + �m2Nm
)

Im

where �ℎ =
a�ℎIm
Nℎ

and �m =
a�m(Iℎ+�Rℎ)

Nℎ
. The model’s basic reproductive number as calculated by the authors is given by

R0 =

√

√

√

√

a2�ℎ�m�ℎ�m
(

�33 + ��
)

rm
�m��11�44Kℎ�m2

,

where �11 = �ℎ + �ℎ, �33 = � + � + �ℎ, �44 = �m + �m and � =
(


 + � + �ℎ
) (

� + �ℎ
)

+ �
(


 + �ℎ
)

.
In their investigation of the model’s endemic equilibrium points, the authors obtained a bifurcation equation which we rewrite
as follows:

I∗2ℎ + b
(

K − R20
)

I∗ℎ + c
(

1 − R20
)

= 0 (9)
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where
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

b =
�2m�ℎ�11�33�44Kℎ�

(

� + �ℎ
)

B2
�2m�ℎ�11�33�44�

(

� + �ℎ
) (

�∗ − �ℎ
) ,

c =
�2m�ℎ�ℎ�11�33�44Kℎ�

(

� + �ℎ
)

�2m�ℎ�11�33�44�
(

� + �ℎ
) (

�ℎ − �∗
) ,

K =
2�ℎ − �∗

B2
,

�∗ =
a�m�ℎ

(

�33 + ��
)

�m�33
,

B2 =
�11�
�ℎ�33

−
�


� + �ℎ
> 0.

This is an interesting example whereby b and c can be positive or negative and K can take any positive or negative value (at
least theoretically). We first note that the results of the approach described above depend on the sign of �∗ − �ℎ. Second, the
investigation of all possible cases of b, c, K and R0 discussed in the next sections is possible because there are parameters that
appear in b, c and K and do not appear in R0 (such as �) and there are also parameters that appear in R0 and do not appear in
b, c and K (such as rm or �m2). In fact, we have the following properties:

1. b > 0 if and only if �ℎ < �∗ in this case we also have c < 0

2. K > 0 if and only if �∗ < 2�ℎ

3. K > 1 if and only if �∗ < 2�ℎ − B2

4. 2�ℎ − B2 < �ℎ if and only if �ℎ < B2,

This leads us to discuss the cases �ℎ < B2 and �ℎ > B2.

1. If �ℎ < B2, then 2�ℎ − B2 < �ℎ < 2�ℎ. Thus, we have the following cases:

(a) If �∗ < 2�ℎ − B2, then K > 1.Moreover, we have �∗ < �ℎ implying that b < 0 and c > 0.

(b) If 2�ℎ −B2 < �∗ < �ℎ, thenK < 1 and �∗ < 2�ℎ implying thatK > 0.Moreover, the condition �∗ < �ℎ implies that
b < 0 and c > 0.

(c) If �ℎ < �∗, then K < 1, b > 0 and c < 0.

2. If �ℎ > B2, then �ℎ < 2�ℎ − B2 < 2�ℎ.We thus discuss the following cases:

(a) If �∗ < �ℎ, then b < 0 and c > 0. Moreover, we have �∗ < 2�ℎ implying that K > 0 and �∗ + B2 < 2�ℎ implying
that K < 1

(b) If �ℎ < �∗ < 2�ℎ − B2, then b > 0, c < 0 and K > 1.

(c) If 2�ℎ − B2 < �∗, then b > 0, c < 0 and K ≤ 1.

Various bifurcation behaviours exhibited by this model is presented in tables 7 – 10 .
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TABLE 7 Number of positive roots for equation (9) when �ℎ < B2 and �∗ ≤ 2�ℎ − B2, (i.e. b < 0, c > 0 and K > 1).

Assumptions Number of positive roots Bifurcation diagram

{

K > 1 + c
b2
or

1 ≤ c
b2
&
√

4c
b2

≤ K < 1 + c
b2

{

2, if0 ∈ [0, 1),
1, if0 ∈ [1,+∞).

{ 4c
b2
< 1 & 1 < K < 1 + c

b2
or

c
b2
< 1 ≤ 4c

b2
&
√

4c
b2
< K < 1 + c

b2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2, if0 ∈ [0,b) ∪ (c , 1),
0, if0 ∈ (b,c),
1 double, if 0 = b orc ,
1, if0 ∈ [1,+∞).

⎧

⎪

⎨

⎪

⎩

c
b2
< 1 ≤ 4c

b2
& 1 < K ≤

√

4c
b2

or

1 ≤ c
b2
& 1 ≤ K <

√

4c
b2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if0 ∈ (0,c),
1 double, if 0 = c ,
2, if0 ∈ (c , 1),
1, if0 ∈ [1,+∞).

c
b2
< 1&K = 1 + c

b2

⎧

⎪

⎨

⎪

⎩

2, if0 ≠ c ,
1 double, if 0 = c ,
1, if0 ∈ [1,+∞).

5 CONCLUSIONS

In this paper we have provided a comprehensive survey of all the possible bifurcation patterns that can occur in epidemiological
models in which the endemic equilibria satisfy a quadratic equation. Of practical importance are Tables 1-4, where we summa-
rized all the bifurcation cases that may emerge from such models. We note that some of these bifurcation results do not seem to
have obvious epidemiological interpretation, making their occurrence in practice debatable. Nonetheless, in the two presented
examples we managed to show possible interplays of the models’ parameters that lead to such unexpected bifurcation patterns.
Of course, even then one needs to check if the parameter values that drive such a behaviour are realistic.
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TABLE 8 Number of positive roots for equation (9) when {�ℎ < B2 and 2�ℎ − B2 < �∗ < �ℎ} or {�ℎ > B2 and �∗ < �ℎ}, (i.e.
b < 0, c > 0 and 0 < K < 1).

Assumptions Number of positive roots Bifurcation diagram

⎧

⎪

⎪

⎨

⎪

⎪

⎩

K ≤ 0 or
1 ≤ 4c

b2
& K = 1 or

1 <
√

4c
b2

& 0 < K < 1, or
√

4c
b2

≤ 1 & 0 < K <
√

4c
b2

{

0, if0 ∈ [0, 1],
1, if0 ∈ (1,+∞).

⎧

⎪

⎪

⎨

⎪

⎪

⎩

4c
b2
< 1&K = 1

√

4c
b2

≤ 1&
√

4c
b2
< K < 1or

√

4c
b2

≤ 1&
√

4c
b2
< K < 1

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2, if0 ∈ [0,b),
1 double, if0 = b,
0, if0 ∈ (b, 1],
1, if0 ∈ (1,+∞).

c
b2
< 1&K = 1 + c

b2

⎧

⎪

⎨

⎪

⎩

2, if0 ≠ c ,
1 double, if 0 = c ,
1, if0 ∈ [1,+∞).

TABLE 9 Number of positive roots for equation (9) when {�ℎ < B2 and �ℎ < �∗} or {�ℎ > B2 and 2�ℎ − B2 < �∗}, (i.e.
b > 0, c < 0 and K < 1).

Assumptions Number of positive roots Bifurcation diagram

K ≤ 1 + c
b2

{

1, if0 ∈ [0, 1),
2, if0 ∈ [1,+∞).

1 + c
b2
< K < 1

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if0 ∈ [0, 1),
0, if0 ∈ (b,c),
1 double, if0 = b orc ,
2, if0 ∈ (1,b) ∪ (c ,+∞).
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