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Abstract

The real estate and valuation discipline has embraced the recent developments in

spatial data analysis as a way of remediating obvious limitations of the ordinary least

squares (OLS) approach in handling spatial effects. However, despite the development,

the South African property market has yet to embrace spatial analysis when estimating

property prices. The objective of this study is to understand the rationale behind the

use of spatial hedonic modeling on the Cape Town property market by first testing

the data against the existence of spatial effects and using the appropriate techniques

to correct the glitches. A spatial error autocorrelation model and geographically

weighted regression (GWR) were employed to correct spatial dependence

(autocorrelation) and spatial heterogeneity on 3,232 observations. The relative

performance of the two spatial modeling techniques as revealed by their goodness-

of-fit are quite impressive but the spatial error model marginally outperforms the

GWR. Thus, it is recommended that any of these techniques can be used in modeling

property prices in the Cape Town market.
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The hedonic price models (HPMs) based on ordinary least squares (OLS) have been

used for more than five decades to solve several problems. Court (1939) has been

credited with inventing this paradigm that has become famous in property valuation

and other related assessments. Drawing from the idea premiered in Court (1939) are

studies that provide a simplistic framework for real estate price analysis (Lancaster,

1966; Rosen, 1974). The OLS method has a wide range of applications including to

estimate the implicit prices of natural disasters like floods and wildfires (Chivers and

Flores, 2002; Mueller and Loomis, 2008), demand for environmental quality, wind

power facilities and natural space attractiveness (Brasington and Hite, 2005;

Heintzelman and Tuttle, 2012; Daams, Sitjsma, and van der Vlist, 2016), and

construction of property price index, portfolio management, and mortgage

underwriting (Bourassa, Cantoni, and Hoesli, 2010, 2016).

In particular is the widespread use of OLS in the construction of property prices for

taxation purposes in many jurisdictions. Accordingly, McCluskey et al. (1997) provide
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a list of government departments in Australia, Canada, Hong Kong, Malaysia, New
Zealand, Singapore, Sweden, Tasmania, United Kingdom, and United States that use
the OLS and other price modeling techniques to assess the market price or value of
properties. The usefulness of the OLS in pricing several properties, particularly, in
mortgage underwriting and taxation, gave credence to its introduction into the
valuation industry of several other property markets in the developed countries.
However, in the emerging markets, especially Sub-Saharan Africa, the lack of
adequate property data for a value-based assessment remains a challenge for effective
implementation of the OLS (Ahmed and Yacim, 2018). Thus, the inefficient market,
coupled with a sordid database of property transactions, necessitated the use of a net
annual value of properties for academic assessment of OLS in a country like Nigeria
(e.g., Megbolugbe, 1988; Ahmed and Yacim, 2018) as manual assessment of
properties for tax and related purposes still dominate the market.

In contrast, South Africa has a nation-wide database for all property transactions with
detailed attributes required for a computer-assisted mass appraisal (CAMA) (Ward,
2001). Although manual assessment still exists in some jurisdictions, the OLS is
probably the most widely used technique in many municipalities (KPMG, 2015). In
particular is the use of OLS in the Cape Town property market by the city valuation
office (CVO) for property tax assessment and re-assessment. For more than a decade,
the CVO has been conducting an assessment of the market value of properties every
three years to guard against large variations in property values between valuations
subject to review and adjustment by professional valuers. However, cases of objections
and appeals from dissatisfied property tax payers relative to the published valuation
rolls are concerns that valuation offices in South Africa contend with annually
(KPMG, 2015; LexisNexis, 2018). Since most assessments are OLS based, there is a
need to revisit the use of this estimator, assess the magnitude of its limitations on
Cape Town data, and popularize the use of spatial methods in the South African
property market.

Previous studies on the use of spatial methods to control spatial dependence and
spatial heterogeneity in property pricing are ubiquitous for developed countries (e.g.,
Pace and Gilley, 1997; Basu and Thibodeau, 1998; Bowen, Mikelbank, and
Prestegaard, 2001; Wilhelmsson, 2002; McCluskey et al., 2013). The dearth of
literature on property pricing with these methods in an emerging market such as South
Africa is a compelling reason for this study. This will enable policymakers to make
appropriate decisions on the suitability of a method(s) relative to the local market.
Moreover, Bourassa, Cantoni, and Hoesli (2010) and Zurada, Levitan, and Guan
(2011) observe that it is difficult to implement the results of previous studies because
of differences in data, thus generating data-driven results. Since results are data-driven,
a test must of necessity be performed on a method(s) before its introduction into the
local market. Additionally, it is argued that market efficiency is reflected in the quality
of data and must be allowed to define the choice of method(s). In this study, we utilize
data from the local market of Cape Town, South Africa to comparatively examine the
relative performance of spatial methods relative to the widely used OLS estimator.

The explorations in this study have tremendous implications to the CVO for Cape
Town and other municipal areas where mass appraisal is being contemplated in South
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Africa or other Sub-Saharan African countries. First, the assessment discloses a model
that predicts estimates closer to the assessed values, and secondly, the nature of the
South African property data discloses the best spatial models applicable to the local
market. The remaining aspects of this study are organized as follows. We review the
related literature, discuss the underlying philosophies of the various methods and data
we use, present the results and discussion, and present concluding remarks.

LITERATURE REVIEW

REVIEW OF PREVIOUS OLS PRICING OF PROPERTY STUDIES

The OLS has been used to estimate property prices by incorporating among others
the location indicator variables to account for its influence on price. Incorporating a
location dummy into the OLS has the advantage of enhancing the fit and parameter
estimates of the model (Pace, Barry, Clapp, and Rodriquez, 1998). The geo-
coordinates of a property reflecting its parcel location in space can also be used
directly in the OLS model as an expansion series to enhance model performance (e.g.,
Bitter, Mulligan, and Dall’erba, 2007). However, the OLS has many drawbacks that
inhibit its successes in price estimation including functional specification and
nonlinearity among variables. Relative to the specification of functional form, there
is no specific form the relation between the response and covariates must take. This
is the reason why Crooper, Deck, and McConnel (1988) report that several scholars
emphasize the outcome of the goodness-of-fit benchmark that Rosen (1974) and
Goodman (1978) suggest to identify the right functional form suitable for a data.
Additionally, scholars extensively use the Box-Cox transformation, linear, semi-log,
and log-log functional forms in property and related analyses (Mok, Chan, and Cho,
1995).

Accordingly, the Box-Cox transformation and linear form are used in Crooper, Deck,
and McConnell (1988). The authors note that when all the attributes are fitted into
the model, the linear and quadratic Box-Cox transformation provides better results,
but when only selected variables are included or substituted by proxy, the linear model
performs better than the quadratic Box-Cox function. Similarly, Goodman (1978) finds
the most extensively used linear model to be too restrictive and thus supports the use
of the Box-Cox transformation. Crooper, Deck, and McConnell (1988) specify six
models including the linear, semi-log, log-log, quadratic, linear Box-Cox, and
quadratic Box-Cox transformed variables in the property market of Baltimore,
Maryland. They examine a sample of 200 observations sold from 1977 to 1978 and
their results show a preference towards the linear Box-Cox as the best model.

Mok, Chan, and Cho (1995) explore the effects of location, structural, and
neighborhood attributes with the OLS on 1,027 properties to estimate prices in Hong
Kong. The authors use a control measure to avoid bias by utilizing properties that are
within a five-minute walking distance to the 13 mass transit railway stations and
transactions executed within a one-month (August 1990) period. They utilize the
linear, log-linear, and Box-Cox transformation on the dependent variable and
transformation on both the dependent and independent variables and find the Box-
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Cox to be the most preferred. Tse and Love (2000) use hedonic regression to examine
139 properties in four large residential estates in the Tsing Yi district, Hong Kong.
The sales transactions took place between January 1, 1999 and March 31, 1999. The
log-log form of the hedonic OLS regression is used on both the dependent and
independent variables. Because property may be cheaper on account of age, they
include a squared log (age) variable in their model. Furthermore, they employ the
OLS with different specifications and two weighted least squares (WLS) techniques
with weights assigned to the dependent variable and two independent variables namely
log (age) and log (area) to account for heteroscedasticity. The authors conclude that
the OLS with location variables provides a better fit than a specification without
location, although the results of the WLS give a more robust fit as the effect of
heteroscedasticity is taken into account.

Yang (2001) uses OLS to estimate the prices of 226 apartments sold in July and
August, 1998 in Beijing, China. The author uses a Box-Cox transformation for the
dependent variable, as well as the linear and log-linear specifications. The results
reveal a similarity between the log-linear model (adjusted R2 of 66.8%) and the Box-
Cox transformation (adjusted R2 of 66.5%), relative to the linear model adjusted R2

of 64.4%. Stevenson (2004) uses OLS on 6,441 observations from 1995 to 2000 in
Boston, Massachusetts. The model uses structural, locational, and time variables to
estimate prices while also controlling for heteroscedasticity. The semi-log form of the
OLS is used in all analyses. The results reveal that if the age variable is converted
and added to the model in form of cubic and squared, a marginal decline of the
influence of heteroscedasticity is achieved and the model provides a better fit (adjusted
R2 of 63%). The marginal improvement in the OLS (from an adjusted R2 of 62.7%
to 63%) in this study shows the need to use a more advanced method that can
completely ameliorate the problem of heteroscedasticity.

Shimizu (2014) uses the semi-log OLS on a dataset containing 13,822 single-family
dwellings to estimate property prices in 23 wards of Tokyo, Japan. The transactions
span a period from January 2000 to December 2000. In all, three models are estimated
using structural, land, location, railway/subway, and time variables. However, in
specifying the three models, model 1 does not contain neighborhood effects or
neighborhood effects by GIS, model 2 contains the neighborhood effect attributes but
no neighborhood effect by GIS, and model 3 contains both neighborhood effects. The
relative importance of these effects is seen in the goodness-of-fit as model 3 provides
a better fit (adjusted R2 of 66%) than the other two models. Schulz, Wersing, and
Werwatz (2014) examine 18,444 single-family property observations sold from 2000
to 2011 in Berlin, Germany. The data are stratified in the development step (i.e., the
period of sales from 2000 to 2005; 8,429 sales) and the validation step (i.e., the period
from 2006 to 2011; 10,015 sales). The price and log-prices are used as the response
variables, while the covariates are left in their linear format. Their model is designed
in such a way that it permits a finite set of nonlinear Box-Cox transformations for
continuous regressors. The results show that the semi-log model provides a better fit
in all scenarios.

McCluskey (2016) examines 40,138 apartment sales from January 2011 to July 2014
in Astana, Kazakhstan. The linear and semi-log form of the OLS is used in the
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analysis. The initial result is affected by outliers, but after the removal of outliers, the
linear model performed better as revealed in the adjusted R2 of 67%. The semi-log
model, however, did not provide a better fit even after outliers were removed from
the data.

For comparison of the different functional form specifications, all the studies reviewed
provide no evidence of which functional form consistently works better than the
others. The behavior of the models, however, reveals that different samples from
different countries give varying results. Sirmans, Macpherson, and Zietz (2005)
provide an example of why the variation can occur and report that a variable such as
a bedroom may be measured in one study as the number of the bedrooms while in
another, a binary dummy variable is used. In general, most of the studies find that the
semi-log form provides optimal performance over other functional forms. This is
because it tends to handle the nonlinearity among variables that reduce bias arising
from unusual observations. This might be the reason why despite its failings the
method is still used to price several properties. Although it is theoretically and
conceptually sound, the OLS faces some other problems including spatial dependence
and spatial heterogeneity, which are tackled in spatial hedonic regressions.

REVIEW OF PROPERTY PRICING STUDIES THAT INCORPORATE SPATIAL

EFFECTS

Several methods have been developed in the econometric and geostatistical fields to
deal with the OLS glitches. These include geographically-weighted regression (GWR)
(Brunsdon, Fotheringham, and Charlton, 1996); spatial simultaneous autoregressive
(SAR), such as the spatial error, spatial lag and spatial mix models (Anselin, 1988),
spatial expansion method (SEM) (Cassetti, 1972, 1997); local kriging and co-kriging
(Haas, 1995, 1996) among others are used to correct spatial influences. Consequently,
several studies have been undertaken to correct spatial dependence and or spatial
heterogeneity in the property data.

Accordingly, Pace and Gilley (1997) used 506 housing data-points from Boston
SMSA to correct spatial dependence. The data was previously used in the well-known
article by Harrison and Rubinfeld (1978), but Pace and Gilley (1997) correct some of
the obvious limitations in the data to accommodate spatial analysis and interaction of
geo-coordinates (quadratic expression). The quadratic expression is used to reflect
location as suggested in Belsley, Kuh, and Weisch (1980), which enhances model
performance from an R2 of 81.1% to 81.4%. However, when the spatial autoregressive
model is used, the maximum likelihood estimator resulted in an increase in R2 from
81.4% to almost 90%, thus performing better in comparison to the OLS. Similarly,
Dubin, Pace, and Thibodeau (1999) use 10 observations to compare the performance
of OLS and spatial approaches including SAR, conditional autoregressive (CAR),
mixed regressive spatially autoregressive, and Gaussian correlogram. The authors find
that only the results of the mixed regressive spatially autoregressive model are
different, as all other spatial models give estimates that are closer to the OLS.

Bowen, Mikelbank, and Prestegaard (2001) estimate four models, namely linear, semi-
log OLS, and autoregressive spatial lag models, to correct spatial dependence or
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autocorrelation on the other. The data comprise residential sales in Cuyahoga County,
Ohio stratified along the Cuyahoga River with 1,387 observations on the east-side and
1,054 observations on the west-side. The diagnostic test on the two samples suggests
‘‘no discernible spatial dependence in the west-side’’ data and thus is not used for
modeling spatial dependence. The spatial lag model (in a linear and semi-log form)
is used in modeling spatial considerations on the east-side sample. The authors
conclude that the OLS estimates for the west-side of Cuyahoga sample are plausible,
suggesting a lack of need for spatial processes; the results of the east-side sample
suggest the autoregressive model outperforms OLS in price estimation. The study
reveals the significance of testing data against the possibility of spatial effects so that
the appropriate method of control can be determined for a market. Wilhelmsson (2002)
examines 1,377 single-family sales in Stockholm, Sweden during the period from
January 2000 and May 2001. Submarket area dummies are used to reflect the location
in the OLS, while the spatial lag (SLM) and spatial error models utilize the geo-
coordinates to measure the distances between observations. The result reveals the SLM
and spatial error models provide better fits (R2 of 69% and 68%, respectively) in
comparison to OLS (R2 of 66.4%).

Thériault, Des Rosier, Villeneuve, and Kestens (2003) use the SEM to control for
spatial heterogeneity in property prices in Quebec, Canada. The authors believe that
the influence of property characteristics on price is pushed by the spatial variability
of demand that is associated with heterogeneity in the distribution of household types
and services within a geographical area. They examine 4,040 observations of sold
properties in Quebec City, from January 1990 to December 1991, stratified into 3,633
observations for model building and 407 observations as hold out samples. In their
study, various attributes are expanded spatially using the indicators derived from
census data, such as property buyers’ economic base, status, family cycle, and
accessibility to services. A spatial drift occurs in some of the attributes including lot
size, age, linkage to the sewer system, inferior ceiling, kitchen cabinet, and number
of bathrooms. They find that although interaction does not completely remove
autocorrelation, it can nonetheless reduce spatial autocorrelation among the OLS
residuals.

Militino, Ugarte, and Garcia-Reinaldos (2004) use 293 sale transactions to test the
performance of the OLS, SAR, CAR, and geostatistical models in Pamplona, Spain
sold in 2000. They find that SAR and CAR provide adequate correction for spatial
dependence as shown in their inferences relative to other spatial methods. However,
despite the high performance of the autoregressive models in remediating the problem
of spatial dependence among observations in a local market, Bourassa, Cantoni, and
Hoesli (2007) find a less persuasive result. Using 4,880 property sales from Auckland,
New Zealand, they conclude that the autoregressive models (SAR and CAR) do not
give more accurate predictions than the global OLS and geostatistical models.

Kestens, Thériault, and Des Rosier (2006) examine 761 single-family properties sold
from 1993 to 2001 in Quebec City, Canada. The study was undertaken to address the
problem of spatial heterogeneity in the data. They employ two methods, namely the
SEM and GWR. The results suggest that both methods are appropriate for the pricing
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of properties in Quebec City. However, the spatial expansion captured both the spatial
and non-spatial heterogeneity of the parameter estimates and identifies the causes of
parameter drift among variables. The GWR gives detailed information through local
regression and identifies the causes of non-stationarity, thereby aiding the
differentiation of the complex relation that affects property values.

Farber and Yeates (2006) use 19,007 property sales in Toronto, Canada to compare
the relative performance of the OLS, GWR, SLM, and the moving window regression.
The observation took place from July 2000 to June 2001. Several variables are used
to search for an unbiased and stable global OLS but there is little multicollinearity in
the best global OLS, which consists of five property structural characteristics, two
neighborhood characteristics, and two accessibility characteristics. Although the R2 of
the OLS is a good fit (83%) and the residual errors normally distributed, there is
spatial autocorrelation in the data as shown by the Moran I coefficient (0.24). To
reduce the problem, a spatial autoregressive term is added to OLS, which increased
the model fit from an R2 of 83% to R2 of 88% and reduced the spatial bias. The
problem of the non-stationary regression coefficient is also addressed within the GWR
and yields an impressive model fit of R2

5 90%. However, due to the statistical
limitation of the evaluation criteria, the authors could not support the application of
GWR in the Toronto property market.

Bitter, Mulligan, and Dall’erba (2007) use the OLS (without x, y coordinates), OLS
(with x, y coordinates to control for location), SEM, spatial expansion with a lagged
variable, and GWR to control for spatial heterogeneity in the property data of Tucson,
Arizona. They examine 11,732 single-family properties sold in 2000. The model with
location control in the form of third-order polynomial expansion provides a better fit
(adjusted R2 of 88%) and a reduction in standard error than the OLS without location
control. The inclusion of the lagged term in the expansion yields a higher model fit
(adjusted R2 of 91%) more than the spatial expansion techniques (adjusted R2 of 89%).
The spatial lag term captures the effect of externality, suggesting the presence of
spatial heterogeneity in the data. Thus the GWR is used to vary parameter estimates
of the regression model and yields an adjusted R2 of 92%. The hold out sample (1,163)
they use to test the predictive accuracy of all models in the study reveals the GWR
as the most preferred method. However, both the spatial expansion and GWR methods
yield better results than those of the stationary coefficient OLS method, and the GWR
outperforms the expansion method in terms of predictive and explanatory powers.

Páez, Long, and Farber (2008) use an estimation sample of 30,145 observations and
a validation sample of 3,349 observations in the city of Toronto, Canada to test the
predictive power of OLS, moving windows regression (MVR), GWR, kriging, and
moving windows kriging. The sales transactions take place between January 2001 and
December 2003. The property characteristics include the lot size in square feet,
effective frontage in feet, age, date of sale, characteristics of the immediate
surroundings, and social environment, among others. The neighborhood attributes
influence the fit of the global OLS model, but the problem of censoring, particularly
variables set to zero, in the sparsely populated area affects the performance of the
model. If omitted, this might be a problem but if included, the effect may not be
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profound. Their results, however, show that in terms of predictive power, the GWR
performs marginally better than the MVR but substantially outperforms the other
models.

Borst and McCluskey (2008) and McCluskey and Borst (2011) use the GWR to
identify market segments and model large-scale variations in property value relative
to the global OLS method. Property sales data from three counties in the U.S.:
Catawba County, North Carolina, Sarasota County, Florida, and Fairfax County,
Virginia. They conclude that the resultant segments tend to enhance predictive
precision and reduce spatial autocorrelation in the residual errors. McCluskey et al.
(2013) use a sample of 2,694 residential properties sold between 2002 and 2004 in
Northern Ireland to detect spatial dependence and spatial heterogeneity. Several
approaches including the OLS, artificial neural networks (ANNs), GWR, and SAR
are used. The GWR, however, performs better than other models relative to cost
efficiency, ease of use, and prediction accuracy. This is one study that utilizes several
methods to conclude which technique performed optimally and can be used within
the mass appraisal environment. As noted earlier, all related studies reviewed above
are undertaken in mature property markets in developed countries. Thus far, the only
known study in South Africa and indeed the whole of Sub-Saharan Africa that controls
for spatial effects is Yacim and Boshoff (2019). They utilize GWR to control for
spatial heterogeneity in the Cape Town property data. In this study, we extend the
literature by incorporating a control for spatial dependence, as suggested in de Graaff,
Florax, Nijkamp, and Reggiani (2001) for an emerging market. This allows us to
make appropriate decisions relative to the Cape Town property market.

However, while it is acceptable to deal with spatial dependence separately, dealing
with both spatial dependence and heterogeneity is an essential condition to
permanently remove the glitches in the data used for property pricing. This is because
the property markets are vulnerable to the occurrence of both effects (Bitter, Mulligan,
and Dall’erba, 2007). Again as suggested in de Graaff, Florax, Nijkamp, and Reggiani
(2001), several reasons are adduced for considering spatial dependence and spatial
heterogeneity together including: (1) there may be no difference between
autocorrelation (dependence) and non-stationarity (heterogeneity) in an observation
because specific clustering of low or high property prices may be the result of
dependence among properties (see Anselin, 2000); (2) the specification of spatial
dependence in the models may lead to a particular form of heteroskedasticity (see
also Kelejian and Robinson, 2000); and (3) because the tests may exhibit inappropriate
results. It is therefore difficult to differentiate or separate between the two spatial
effects.

METHODS

In this section, we describe the data and different techniques we use to price properties
in the Cape Town property market. We begin with the traditional HPMs based on the
OLS estimation paradigm. We then describe the advance techniques used to control
spatial dependence and spatial heterogeneity. We use SAR and GWR modeling to
control for spatial effects. Lastly, we discuss the data we use to test all the models.
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THE HEDONIC PRICE MODELS

The OLS estimator measures the contribution of individual characteristics (structural,
temporal, and neighborhoods) of a property to the total price. To determine the price
of a property, the structural (e.g., the number of bedrooms, size of the property,
swimming pool, etc.), time of sale (e.g., reverse month of sale and dummy
representing quarter/semi-annual indicator), and neighborhoods (e.g., environmental
amenities, location of properties, etc.) are regressed against price. The general
formulation of the OLS is given as:

g 5 Xb 1 « (1)

or

K

g 5 b 1 X b 1 «,O0 k k
k51

where « represents an independent and normally distributed (iid) error term; g denotes
a 1 3 n vector of property price; and b denotes a parameter vector corresponding to
structural, temporal, and neighborhood attributes (Xk). The major limitation of using
these models lies in their inability to fully capture all location features, making them
susceptible to autocorrelation among the residuals. Militino, Ugarte, and Garcia-
Reinados (2004) report that the results of autocorrelation in the residuals makes the
OLS provide inefficient parameter estimates, which although is unbiased gives a
biased variance estimate that causes an unreliable inference. The OLS that largely
ignore spatial effects has over the years being relegated by models that are designed
to capture all effects. In the spatial models, we use the Bayesian estimation, general-
method-of-moments (GMM), and the maximum likelihood (ML) approaches for
estimating prices. The most widely employed estimator to date in spatial hedonic
analysis is the ML technique.

SPATIAL MODELING TECHNIQUES

Simultaneous Autoregressive. The autoregressive process can occur in three different
areas including at the response or dependent variable, at both the response and
predictor variables, and in the error term. Consequently, different types of
simultaneous autoregressive models are used to control for such effects including the
spatial lag model (SLM), the spatial mix model (SMM), and the spatial error model.
However, we use the SLM and spatial error model to control for spatial dependence
among observations in the property market. The SLM is used to control effects when
there is dependence between the response variable of property at observation i and
the response variable of property at observation j. Can (1992) uses adjacency effects
to give a more full explanation of the dependency among observations in which the
prices of nearby properties are partly explained by shared neighborhood externalities,
as well as the property’s physical quality and uses. When these adjacency effects
shared by properties in the neighborhoods are capitalized into their prices, a spatial
dependence will occur in the process. Thus, the ‘‘adjacency effects’’ influence the
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decision of real estate agents/valuers in determining the prices of properties in the
local market.

The spatial dependence that occurs between observations in the property market makes
it necessary to include the functional interdependence among the prices of neighboring
properties in the OLS (Can, 1992). The resultant model is the SLM represented in
equation (2):

g 5 rWg 1 Xb 1 «, (2)

where r is the parameter coefficient, W is the weight matrix, and Wg is the spatial
lag variable introduced into the OLS. The spatial error or spatially correlated error
exists if the error term in the OLS displays spatial autocorrelation as a result of the
omission of variable bias relative to the location of a property parcel (Mueller and
Loomis, 2008). If the property location is not properly captured in the OLS,
measurement error is likely to occur in the process. To tackle this problem, Anselin
and Bera (1998) suggest that a spatial process should be properly specified for the
disturbance term. Accordingly, the usual specification is to have a spatial
autoregressive process calibrated in the error terms as follows:

g 5 Xb 1 « (3)

« 5 lW« 1 m, (4)

where l is a spatial autoregressive coefficient for error lag W« and m is an uncorrelated
and homoscedastic error term.

To establish and correct spatial dependence requires a priori specification of a spatial
weights matrix. Two weighting regimes namely border contiguity (rook and queen
contiguity) or distance-based matrices are typically used. However, in property-related
analysis, the distance-based weights specification is the most commonly used regime
because sales of adjacent properties are unlikely to take place in the same period and
information about parcel borders is not always provided in the sales data (Mueller
and Loomis, 2010). Since the Cape Town data we use does not contain information
on parcel borders and sizes, we use the distance-based weights specification with a
threshold value of 300 meters. According to Mueller and Loomis (2008), the weights
matrix (W) captures similarities between properties in a given jurisdiction or
neighborhood, which is likely to be ignored in non-weighted OLS estimation
techniques.

The spatial weight is an N 3 N (positive and symmetric W) matrix that models the
relationship of neighbors for every observation within the sample as nonzero elements.
Therefore, if property i and property j are neighbors, then Wij 5 1; conversely, if
property i and property j are not neighbors, then Wij 5 0. More so, since property
cannot be a neighbor to itself, the diagonal elements of the weights matrix element
are conventionally set to zero, i.e., Wii 5 0 or Wjj 5 0. The weights matrix is usually
row standardized for simplicity of comparison and interpretation so that each row will
have weights that sum to 1. Accordingly, the presence of spatial dependence or
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autocorrelation in the data can be investigated using the Moran’s I statistics. The
Moran’s I test suggests the existence of spatial autocorrelation in the OLS residuals,
0.3730 (mi/df), and 47.4742 (value). The conclusion, therefore, is that the null
hypothesis of no spatial effects in the data is hereby rejected. Consequently, the
Lagrange Multiplier (LM) and robust LM tests reveal a preference for the spatial error
model as the proper model specification for controlling spatial dependence in the Cape
Town data.

Geographically-Weighted Regression. Some property data contain geostatistical elements
resulting in a biased estimation when modeling with the OLS. In such a case, GWR
or other geostatistical techniques are essentially used to model relationships among
property variables. According to Wheeler (2007), the variables are used at fixed points
that have spatial coordinates and the variable values are usually mean measures of
aggregate data. The GWR fits a model at each of the point locations and permits the
parameter estimates to vary locally across space. The model is designed to utilize a
specification that is flexible in which an undefined function of location in space
(u, v) provides the regression parameters (b). The GWR for each location is given
as:

K

g 5 b (u, v) 1 X b (u, v) 1 «. (5)O0 k k
k51

Weighted least squares are used to weight and estimate the regression coefficients for
each location, thus assigning greater weights on observations that are located nearer
to the calibrated location in geographic space and lesser weights to observations that
are located further away. The weights are specified by:

T 21 Tb̂(u, v) 5 [X W(u, v)X] X W(u, v)g, (6)

where W(u, v) 5 diagonal[W1(u, v), . . . , Wn(u, v)] is a diagonal weights matrix, which
changes (increases or decreases) relative to distances of each location i in the
geographical space. is the vector of regression coefficients at each locationb̂(u, v)
and the superscript T is the matrix transpose. The X vector is as defined previously—
the matrix of property attributes. There are two acceptable and widely-used weighting
specifications in GWR: Gaussian function and bi-square function. However, in this
study, the Gaussian function given in equation (7) is used.

2
2dij

w (u, v) 5 exp , (7)S Dj h

where the Euclidian distance specified as dij separates the location of observation at
the property i and the property at location j, and h denotes a scalar quantity, generally
known as the bandwidth. The bandwidth (h) can be defined by a user (bandwidth
parameter), estimated using the cross-validation (CV) or corrected Akaike Information
Criteria (AICc), which allows a user to employ an automatic method that finds the
best bandwidth with the optimal predictions. In this study, the AICc is preferred,
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Exhibit 1

Descriptive Statistics of Variables

Variable Mean Median Std. Dev. Skewness

Assessed value 4483474 3600000 3117754 3.282

Log of assessed value 15.154 15.1 0.54 0.535

Number of bedrooms 3.558 3.00 0.99 0.804

Property quality 2.496 2.00 0.61 0.914

Property condition 2.509 2.00 0.62 0.408

Sales month 14.885 15.0 8.17 0.010

Property view 2.628 3.00 0.85 0.440

Property style 2.035 2.00 0.43 5.251

Number of floors 1.518 1.00 0.55 0.423

Size of living area 177.48 168 79.0 0.992

Swimming pool 13.97 0.00 18.4 1.533

although there is not much difference between the two since both methods allow the
GWR tool to select an optimal bandwidth (Charlton, Fotheringham, and Brundson,
2005). The technique is primarily designed to explore the spatial non-stationarity of
the parameter estimates; nonetheless, it is also useful in prediction processes (Leung,
Mei, and Zhang, 2000).

DATA

The CVO supplied our cross-sectional data involving 3,526 single-family residences
sold at arms-length between January 2012 and May 2014 in the city of Cape Town,
South Africa. The CVO is the body charged with the responsibility of preparing the
valuation rolls in the city of Cape Town. The sample contains incomplete, negative,
extreme, and unrealistic transactions that were discarded from the original data to
avoid potential bias. We recoded some of the attributes from non-numeric to numeric
values making them suitable for multivariate analysis. The selection of 11 property
variables is based on a series of preliminary regression assessments that reveal them
as value significant. This approach is consistent with Bitter, Mulligan, and Dall’erba
(2007), who utilize regressions to select the 13 property attributes they use in their
study. Additionally, previous multivariate analysis of this nature reveals a preference
for these and other variables depending on their availability in the data.

The characteristics of the property sample are displayed in Exhibit 1. The Exhibit
reports varied statistics of the variables for the Cape Town data. The median sale of
R3,600,000 (250,632 USD), is quite high (a South African rand exchange for 0.070
USD), depicting that some of the areas in the sample are high priced. Accordingly,
the prices of properties in the sample range between R824,000 (57,367 USD) and
R38,000,000 (2,645,558 USD), with a standard deviation of R3,117,754 (217,058
USD), suggesting a wide dispersion of property prices. This is expected because
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neighborhoods such as Bantry Bay, Bishops Court, Camps Bay, Bakoven, and Clifton
are characterized by high-priced properties, while lower-priced properties in
neighborhoods including Blougerg, Blaauwbergstran, and Claremont among others are
included in the sample (see Map of Cape Town in Exhibit 2 and spatial distribution
of sales in Exhibit 3). The property prices are highly skewed (3.282). Pavlov (2000)
reports that although an uncommonly high transaction price is an important element
in an example data, it can partly be remediated through the log transformation of
the property prices (dependent variable). The average bedroom in the sample is
approximately 4 while a typical property has an average size of 177 square meters.
The variables are left in their categorical and continuous state when modeling property
prices with the GWR, while the binary format is used in modeling prices with the
autoregressive and OLS models. Following Liu (2013), we aggregate some variables
(that are in the categorical state but converted into binary format) due to an infrequent
number of occurrences. This approach is also used by Guan, Zurada, and Levitan
(2008) to avoid dimensionality problems that could impede the performance of the
regression technique.

Three functional form specifications including linear, semi-log, and log-log are
common but we utilize the semi-logarithmic form in which the assessed value is log-
transformed and all covariates are left in their linear form. The distances between
properties in the spatial models are calculated through the use of latitude and longitude
information provided in the sample. As previously mentioned, the latitude and
longitude characteristics of the properties are used to control for spatial effects in
autoregressive and geostatistical techniques. The submarkets/market segments defined
by the city of Cape Town Tax Assessors based on the neighborhood structure and
similarity of selling prices are used in the OLS to explain the influence of location
on property prices. In the HPMs literature, time of sale is treated in several ways
including incorporating a time variable in the regression, reverse month of sale, and
creating dummy variables to reflect the time (year, semi-annual, quarter, and month)
the sales or assessment took place. We use the effect of time as reflected in the form
of semi-annual dummies in the OLS and autoregressive models while the reverse
month of sale is used in the local model (GWR). The use of dummies to reflect an
input variable in the models is not without a correction such that all frequently
occurring variables are excluded from the analysis to avoid the ‘‘dummy variable
trap’’ described in Greene (2003) and Borst (2007).

RESULTS AND DISCUSSION

In this section, we discuss the empirical tests of all models. We begin with an analysis
of the stationary coefficients OLS techniques with a naı̈ve specification (without
location elements) and specifying the location indicator elements (submarkets) to
observe the influence of variables on prices. This is closely followed by an analysis
of the spatial error model that reveals its influence in tackling spatial dependence in
the data. The next analysis is GWR, which reveals the influence of non-stationarity
and varying parameters in the local market. We conclude with a detailed comparison
of model performance using acceptable statistics provided in the software (GeoDa
and GWR4).
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ExhibitExhibit 2

Map of Cape Town Neighborhoods

Exhibit 3

Spatial Distribution of Sales (x, y coordinates)

Source of Map: https: / /www.roomsforafrica.com/dest /south-africa /western-cape/cape-town.jsp?tab53.

https://www.roomsforafrica.com/dest/south-africa/western-cape/cape-town.jsp?tab=3


THE HEDONIC MODELING OF PROPERTY PRICES 259

RESULTS OF SPATIAL AND NON-SPATIAL HEDONIC MODELING

Exhibit 2 shows the results for three model specifications. The OLS specification
without and with control for spatial effects is reported in OLS1* and OLS2**. The
estimates are a priori expected with appropriate signs. The parameter estimates in
OLS1 without control for location are generally larger than OLS2 with control for
location and the autoregressive models that utilize geo-coordinates as its measure of
location. The bigger estimates in OLS1 can be attributable to bias caused by the
absence of location indicators defined by covariate submarket dummies and the x, y

coordinates. The inclusion of submarkets dummies to control for location in OLS2
enhances the predictive power as revealed by the adjusted R2, which increases from
42% to 69% and the decrease in standard error from 0.412 to 0.302.

Additionally, we find that all location dummies (segments or submarket) have a
significant intercept-shifting influence on the assessed values. The negative sign in
86% of the location dummies implies the positive effects of location on the assessed
values decline relative to other locations. This variation is best captured in the GWR
model due to its moving window ability (Páez, Long, and Farber, 2008) and localized
comprehension of the distinct contributions of specific variables (McCord et al., 2012).
Generally, the results suggest the OLS2 as the baseline model for the Cape Town
data, thus further explanation is relative to the global OLS2 model. However, the
global Moran’s I test on the residuals of the OLS2 (estimation data) finds it to be
spatially dependent (0.3624), suggesting the presence of spatial autocorrelation. The
likelihood ratio test results further confirm the existence of spatial autocorrelation in
the data and thus rejects the null hypothesis of no spatial effects. Again the results
supports earlier findings that neighborhoods/submarkets indicator variables we use to
control for location do not completely remove spatial effects (see Páez, Uchida, and
Miyamoto, 2001; Wilhelmsson, 2002; Bitter, Mulligan, and Dall’erba, 2007).

The spatial error model we use to correct the spatial dependence in the OLS increases
the R2 from 69% to 80%, as shown in the last two columns of Exhibit 4. This result
reveals that spatially correlated error exists in the OLS model for the Cape Town
property market. The parameter estimates of the property variables in the spatial error
model generally drop in comparison to the baseline OLS2 model. Interestingly, the
number of significant variables increases relative to the OLS2 model. The key variable
in this assessment, namely the size of a living area (dwelling), is significant in all the
three model specifications. The estimate on size, interpreted as the elasticity of
assessed values relative to changes in dwelling size, is positive, showing that larger
properties have higher assessed values in the study area. This implies that for a 1%
increase in the size of the dwelling, assessed values increase by 0.0024%, 0.0019%,
and 0.0018%, for the OLS1, OLS2, and spatial error model, respectively. Again, as
expected the parameter estimate of the swimming pool is positive and significant for
the three models, revealing that a bigger swimming pool adds more to the assessed
value of a property. The coefficient estimate on poor property condition is also as
expected, negative and not significant, revealing that poor property condition does not
contribute to property assessed values in the OLS1 and OLS2 models. In the spatial
error model, poor property condition although negative is a significant indication that
it has a positive effect on assessed value but the effect declines as the condition
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Exhibit 4

Regression Coefficients of Global OLS and Autoregressive Model (N 5 3,232)

OLS 1a OLS 2b Spatial Error Model

Variable Estimate P-value Estimate P-value Estimate P-value

Constant 14.3575 0.0000 14.7202 0.0000 14.6258 0.0000

Bedroom1 0.0491 0.5744 20.0914 0.1521 20.1169 0.0188

Bedroom2 0.0567 0.0424 20.0353 0.0850 20.0681 0.0002

Bedroom4 0.0919 0.0000 0.0396 0.0025 0.0663 0.0000

Bedroom5 0.1335 0.0000 0.0712 0.0004 0.1249 0.0000

Bedroom6 0.1755 0.0001 0.0931 0.0053 0.0879 0.0007

Bedroom7 0.1062 0.2785 0.1194 0.0949 0.1726 0.0020

Bedroom8 0.3968 0.0028 0.4046 0.0000 0.3302 0.0000

Poor property quality 20.0116 0.8902 0.0027 0.9652 0.0079 0.8669

Good property quality 0.1245 0.0000 0.0905 0.0000 0.0768 0.0000

V/Good property quality 0.2845 0.0002 0.2676 0.0000 0.2234 0.0000

Excel. property quality 0.4921 0.0000 0.3523 0.0000 0.1713 0.0000

Poor property condition 20.0224 0.7388 20.0141 0.7740 20.0944 0.0136

Good property condition 0.0312 0.1737 0.0484 0.0043 0.0634 0.0000

Excel property condition 20.1758 0.0000 20.0669 0.0241 0.0155 0.5210

2 floors 0.1612 0.0000 0.1468 0.0000 0.1547 0.0000

3 floors 0.4456 0.0000 0.3428 0.0000 0.2477 0.0000

Unconventional style 0.3116 0.0000 0.1658 0.0000 0.0965 0.0008

Georgian victor style 0.1011 0.1243 0.1181 0.0141 0.0415 0.3040

Cape Dutch style 20.1594 0.1683 20.0751 0.3736 20.0179 0.7863

Maisonette style 20.1349 0.0380 0.0233 0.6265 20.0476 0.2323

Below average view 0.1679 0.0000 0.0859 0.0005 0.0737 0.0003

Above average view 0.1627 0.0000 0.1155 0.0000 0.0415 0.0000

Panoramic view 0.3471 0.0000 0.2425 0.0000 0.1641 0.0000

Excellent view 0.4982 0.0000 0.2871 0.0000 0.2429 0.0000

Semi-annual 1 20.0086 0.7006 20.0154 0.3506 0.0093 0.4718

Semi-annual 2 20.0310 0.1563 20.0341 0.0330 20.0094 0.4537

Semi-annual 3 20.0292 0.1880 20.0207 0.2013 20.0155 0.2202

Semi-annual 5 0.0074 0.7436 0.0042 0.8011 0.0272 0.0368

Size of living area 0.0024 0.0000 0.0019 0.0000 0.0018 0.0000

Swimming pool 0.0035 0.0000 0.0015 0.0000 0.0013 0.0000

Lambda — — — — 0.8448 0.0000

R2 0.419 0.693 0.795

Adj. R2 0.413 0.689 —

Log-likelihood 21715 2682 2291

Standard Error 0.413 0.301 0.244

Note:
a Without locational dummies
b With locational dummies
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Exhibit 5

GWR (local) Coefficients

Variable Minimum Lower Quartile Median Upper Quartile Maximum

Intercept 12.0585 13.3346 13.6587 14.0384 15.5524

Bedroom 20.1646 0.0223 0.0454 0.0702 0.1722

Property quality 20.1235 0.0783 0.1291 0.1703 0.3354

Property condition 20.3339 20.0129 0.0503 0.0985 0.3522

Number of floors 20.2539 0.1337 0.1905 0.2421 0.3675

Building style 20.5192 20.1238 20.0363 0.0067 0.2788

Property view 20.0142 0.0517 0.0848 0.1178 0.4428

Month of sale 20.0067 20.0011 0.0015 0.0035 0.0070

Size of living area 0.0003 0.0021 0.0024 0.0030 0.0054

Swimming pool 20.0033 0.0004 0.0021 0.0035 0.0279

R2 0.7846

Adj. R2 0.7482

22 Log likelihood 221.1825

Standard Error 0.2504

deteriorates further. Thus, for any 1% increase in poor property condition, assessed
values fall by 0.11%.

Exhibit 5 illustrates the results of the GWR model that capture spatial variation in
property prices in Cape Town. Again, like the autoregressive model, the local model
performs better than the global stationary coefficient OLS model as evidenced in the
adjusted R2 of 78% and reduction in the standard error from 0.302 to 0.250. The
decrease in the standard error of estimates in the spatial error model and GWR relative
to OLS indicate they give a better fit for the data. However, relative to the results of
the spatial error model, GWR produces an R2 of 78%, which implies similarity in
their explanation of variance in assessed property values in the study area. Thus, the
performance of GWR in this study reveals that there exist significant localized spatial
effects in the Cape Town property market. This is demonstrated by the spatial variation
in their parameter estimates across the geographic location. The minimum, lower
quartile, median, upper quartile, and maximum coefficients in Exhibit 5 show a non-
stationarity and variation of property prices relative to different locations. Though not
identical, the parameter estimates of the size and swimming pool variables in the OLS
and spatial error models are similar to the median estimates in GWR (Borst, 2007).
Again, due to different model specifications, explanations of coefficient estimates
could simultaneously not be done, but the specification of the variables ‘‘dwelling
size’’ and ‘‘swimming pool’’ applies to global and local models.

In the GWR model, the coefficient estimates for dwelling size range from a minimum
of 0.0003 to a maximum of 0.0054, while the median value is 0.0024. The local
model has varied coefficients, whereas the global OLS and spatial error model have
very similar parameter estimates (0.0019 and 0.0018, respectively) for size (i.e., the
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Exhibit 6

Summary of Predicted Results of Different Hedonic Models (N 5 3,232)

Model Log-Likelihood Standard Error AIC BIC R2 Rank

OLS1 21715.2 0.4134 3492.4 3680.9 42% 4

OLS2 2681.7 0.3008 1453.5 1727.1 69% 3

Spatial error model 2291.2 0.2443 644.4 832.9 80% 1

GWR 2221.2 0.2503 940 3129 78% 2

average dwelling size of all observations within the geographic region). Accordingly,
all else being equal, a 1% increase in dwelling size would increase the assessed value
or property selling price by as little as 0.0003% in one regression point (location) and
0.005% more at another location of the property market. Similarly, the parameter
estimates for swimming pool range from a minimum of 20.0033 to a maximum of
0.0279, which suggests that a property with a swimming pool sells for 0.003% less
in one location and 0.03% more in another precinct of Cape Town. The negative
values in all but one of the coefficients of the independent variables indicate counter-
intuition, implying a scenario where a property with inadequate buyer or user
requirements can sell for a higher amount or have a higher assessed value in one
location than those with a more modern or better buyer or user requirements in other
locations. This scenario sometimes occurs because of buyers’ preference for a location
and thus they trade-off other requirements for location.

COMPARATIVE ANALYSIS OF PREDICTIVE ACCURACY OF MODELS

There are several indices (statistics) for comparing the predictive accuracy of models,
but we use R2, log-likelihood, standard error, AIC, and BIC. These are used to appraise
the predictive accuracy of the four models (OLS1, OLS2, spatial error model, and
GWR). The results are summarized in Exhibit 6.

The results reveal that the spatial error model outperforms all other models in
correcting spatial effects in the property market. In comparison to GWR, the spatial
error model marginally outperforms the non-stationarity coefficients model. This
shows that the inclusion of advances in spatial statistics in the hedonic regression
modeling significantly strengthens property price estimation. Bowen, Mikelbank, and
Prestegaard (2001) report that capturing spatial effects in the HPMs would enhance
the accuracy of the models. However, as noted earlier, assumption could not be made
without testing the example data against available methods. In this study, the relevance
of Moran’s I, LM, and robust LM tests reveal the presence of autocorrelation and the
need to correct. Although, the OLS2 provides acceptable results relative to spatial
models, the reasoning is weakened by our diagnostic tests. Since diagnostic tests
suggest the necessity of controlling spatial effects, relegating this would result in
implementing results with biased coefficients in the local market.

Thus the performance of the two spatial models we use to control spatial dependence
and spatial heterogeneity is quite impressive but the spatial error model has more
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strength in capturing spatial dependence than GWR in capturing spatial heterogeneity.
Like Páez et al. (2008) despite the absence of location characteristics (submarkets) in
the spatial models, prediction of prices was more accurate than the OLS in this study.
To further assert their relevance, it thus follows that location-related attributes
(submarkets) are not indispensable to hedonic price modeling in price estimation with
non-stationarity and autoregressive methods. This is because their contribution to price
is marginal (Basu and Thibodeau, 1998; Páez, Long, and Farber, 2008) as also
supported in this analysis.

CONCLUSION

The consensus that the location of a property influences price is not novel. However,
capitalizing the influence of location into a hedonic property price framework has
been a herculean task despite the use of indicator dummy variables. The uncertainty
surrounding the effective measurement of spatial dimensions in the property data has
given rise to advances in spatial analysis. Thus, if spatial variables are omitted in the
models, the dependency problem leading to bias and inefficient parameter estimates
will ensue. Moreover, the existence of spatial heterogeneity cannot be completely
removed from property data. This study demonstrates the use of hedonic modeling in
property price estimation with an example of data from Cape Town and takes into
account advances in spatial analysis. The diagnostic tests reveal the presence of spatial
dependence and spatial heterogeneity that require correction. This is consistent with
Wilhelmsson (2002), who observes that despite the inclusion of location indicator
variables in the data, the null hypothesis of no spatial autocorrelation is rejected.

These concerns impel our use of spatial models namely the spatial error model and
GWR relative to the OLS techniques in this study. We adopt the spatial error model
because the LM and robust LM tests on the Cape Town data suggest it is suitable for
controlling spatial error autocorrelation. The GWR is a technique designed to control
spatial heterogeneity in the property data. The performance of spatial models in
property price prediction is compared among themselves and with the OLS1 and
OLS2 specifications. Apart from the detailed results shown in the differing
contributions of variables to price, the goodness-of-fit criteria are used to assess model
performance. The results reveal that the spatial models (spatial error model and GWR)
constantly performed better than the OLS with and without location indicator
variables. This is an indication that the spatial error model and GWR did a good job
in tackling the problems of spatial dependence and spatial heterogeneity in the data.
However, the spatial error model marginally outperforms the GWR, suggesting that
the model did better in correcting spatial error autocorrelation in the Cape Town
property market. These two models are therefore recommended for use in the pricing
of properties in the Cape Town market.

An area of limitation in this study that provides an opportunity for further research
is in the treatment of data we use for modeling prices. We utilize a different
specification for the GWR relative to the global models. For instance, in the calibration
of variables, a categorical and continuous format is used in the local model, while the
binary and continuous formats are used in the global models. It is hoped that in a
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future study, the same model specification should be used in all models to observe
their relative performance. Additionally, a similar study could be undertaken in other
property markets within South Africa and or other Sub-Saharan African countries to
generalized findings.

Our results provide a platform for the CVO to begin the practical application of spatial
modeling in the local market. The GWR and spatial error model as this study reveals
to be best suited can be applied in practice with readily available software packages.
There are open source and commercial license software packages that the CVO should
make concerted efforts to acquire for use within the local market. Additionally, the
CVO must liaise with jurisdictions in the United States and the United Kingdom,
which are using spatial analysis for pricing properties for taxation purposes, to give
basic training on these methodological approaches.
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Páez, A., F. Long, and S. Farber. Moving Windows Approach for Hedonic Price Estimation:
An Empirical Comparison of Moving Techniques. Urban Studies, 2008, 45:8, 1565–81.
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