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Abstract
For vector lattices E and F, where F is Dedekind complete and supplied with a 
locally solid topology, we introduce the corresponding locally solid absolute strong 
operator topology on the order bounded operators Lob(E,F) from E into F. Using 
this, it follows that Lob(E,F) admits a Hausdorff uo-Lebesgue topology whenever 
F does. For each of order convergence, unbounded order convergence, and—when 
applicable—convergence in the Hausdorff uo-Lebesgue topology, there are both a 
uniform and a strong convergence structure on Lob(E,F) . Of the six conceivable 
inclusions within these three pairs, only one is generally valid. On the orthomor-
phisms of a Dedekind complete vector lattice, however, five are generally valid, and 
the sixth is valid for order bounded nets. The latter condition is redundant in the 
case of sequences of orthomorphisms, as a consequence of a uniform order bound-
edness principle for orthomorphisms that we establish. We furthermore show that, 
in contrast to general order bounded operators, orthomorphisms preserve not only 
order convergence of nets, but unbounded order convergence and—when applica-
ble—convergence in the Hausdorff uo-Lebesgue topology as well.

Keywords  Vector lattice · Banach lattice · Order convergence · Unbounded order 
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1 � Introduction and overview

Let X be a non-empty set. A convergence structure on X is a non-empty collection 
C  of pairs ((x�)�∈A, x) , where (x�)�∈A is a net in X and x ∈ X , such that: 

1.	 when ((x�)�∈A, x)∈C  , then also ((x�)�∈B, x)∈C  for every subnet (x�)�∈B of 
(x�)�∈A;

2.	 when a net (x�)�∈A in X is constant with value x, then ((x�)�∈A, x) ∈ C .

One can easily vary on this definition. For example, one can allow only 
sequences. There does not appear to be a consensus in the literature about the 
notion of a convergence structure; [4] uses filters, for example. Ours is sufficient 
for our merely descriptive purposes, and close in spirit to what may be the first 
occurrence of such a definition in [12] for sequences. Although we shall not pur-
sue this in the present paper, let us still mention that the inclusion of the subnet 
criterion in the definition makes it possible to introduce an associated topology 
on X in a natural way. Indeed, define a subset of S of X to be C -closed when 
x ∈ S for all pairs ((x�)�∈A, x) ∈ C  such that (x𝛼)𝛼∈A ⊆ S . Then the collection of 
the complements of the C -closed subsets of X is a topology on X.

The convergent nets in a topological space, together with their limits, are the 
archetypical example of a convergence structure. For a given convergence struc-
ture C  on a non-empty set X, however, it is not always possible to find a (obvi-
ously unique) topology � on X such that the �-convergent nets in X, together with 
their limits, are precisely the elements of C  . Such non-topological convergence 
structures arise naturally in the context of vector lattices. For example, the order 
convergent nets in a vector lattice, together with their order limits, form a con-
vergence structure, but this convergence structure is topological if and only if the 
vector lattice is finite dimensional; see [8, Theorem  1] or [23, Theorem  8.36]. 
Likewise, the unbounded order convergent nets in a vector lattice, together with 
their unbounded order limits, form a convergence structure, but this convergence 
structure is topological if and only if the vector lattice is atomic; see [23, Theo-
rem 6.54]. Topological or not, the order and unbounded order convergence struc-
tures, together with the (topological) structure for convergence in the Hausdorff 
uo-Lebesgue topology, when this exists, yield three natural and related conver-
gence structures on a vector lattice to consider.

Suppose that E and F are vector lattices, where F is Dedekind complete. The 
above then yields three convergence structures on the vector lattice Lob(E,F) 
of order bounded operators from E into F. On the other hand, there are also 
three convergence structures on Lob(E,F) that are naturally derived from the 
three convergence structures on the vector lattice F. For example, one can con-
sider all pairs ((T�)�∈A, T) , where (T�)�∈A is a net in Lob(E,F) and T ∈ Lob(E) , 
such that (T�x)�∈A is order convergent to Tx in F for all x ∈ E . These pairs also 
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form a convergence structure on Lob(E,F) . Likewise, the pointwise unbounded 
order convergence in F and—when applicable—the pointwise convergence in 
the Hausdorff uo-Lebesgue topology on F both yield a convergence structure on 
Lob(E,F) . Motivated by the terminology for operators between Banach spaces, 
we shall speak of uniform and strong convergence structures on Lob(E)—with the 
obvious meanings.

The present paper is primarily concerned with the possible inclusions between the 
uniform and strong convergence structure for each of order convergence, unbounded 
order convergence, and—when applicable—convergence in the Hausdorff uo-Leb-
esgue topology. Is it true that a uniformly order convergent net of order bounded 
operators is also strongly order convergent? Is the converse true? How is this for 
unbounded order convergence and, when applicable, convergence in the Hausdorff 
uo-Lebesgue topology? We consider these implications, six in all, for Lob(E,F) , but 
also for the orthomorphisms Orth (E) on a Dedekind complete vector lattice.1 This 
special interest in Orth (E) stems from representation theory. When a group acts as 
order automorphisms on a Dedekind complete vector lattice E, then the Boolean 
lattice of all invariant bands in E can be retrieved from the commutant of the group 
action in Orth (E) . This commutant, therefore, plays the role of the von Neumann 
algebra which is the commutant of a unitary action of a group on a Hilbert space. It 
has been known long since that more than one topology on a von Neumann algebra 
is needed to understand it and its role in representation theory on Hilbert spaces, and 
the same holds true for the convergence structures as related to these commutants in 
an ordered context. Using these convergence structures, it is, for example, possible 
to obtain ordered versions of von Neumann’s bicommutant theorem. We shall report 
separately on this. Apart from its intrinsic interest, the material on Orth (E) in the 
present paper is an ingredient for these next steps.

This paper is organised as follows.
Section 2 contains the basic notations, definitions, conventions, and references to 

earlier results.
In Sect. 3, we show how, given a vector lattice E, a Dedekind complete vector 

lattice F, and a (not necessarily Hausdorff) locally solid linear topology �F on F, 
a locally solid linear topology can be introduced on Lob(E,F) that deserves to be 
called the absolute strong operator topology that is generated by �F . This is a prepa-
ration for Sect. 4, where we show that regular vector sublattices of Lob(E,F) admit a 
Hausdorff uo-Lebesgue topology when F admits one.

For each of order convergence, unbounded order convergence, and—when appli-
cable—convergence in the Hausdorff uo-Lebesgue topology, there are two conceiva-
ble implications between uniform and strong convergence of a net of order bounded 
operators. In Sect. 5, we show that only one of these six is generally valid. Section 9 

1  With six convergence structures under consideration, one can actually consider thirty non-trivial pos-
sible inclusions between them. With some more effort, one can determine for all of these whether they 
are generally valid for the order bounded operators and for the orthomorphisms on a Dedekind complete 
vector lattice; see [10, Tables 3.1 and 3.2].
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will make it clear that the five failures are, perhaps, not as ‘only to be expected’ as 
one might think at first sight.

In Sect.  6, we review some material concerning orthomorphism and establish 
a few auxiliary result for use in the present paper and in future ones. It is shown 
here that a Dedekind complete vector lattice and its orthomorphisms have the same 
universal completion. Furthermore, a uniform order boundedness principle is estab-
lished for sets of orthomorphisms.

Section 7 briefly digresses from the main line of the paper. It is shown that ortho-
morphisms preserve not only the order convergence of nets, but also the unbounded 
order convergence and—when applicable—the convergence in the Hausdorff uo-
Lebesgue topology. None of this is true for arbitrary order bounded operators.

In Sect. 8, we return to the main line, and we specialise the results in Sects. 3 
and 4 to the orthomorphisms. When restricted to Orth (E) , the absolute strong opera-
tor topologies from Sect. 3 are simply strong operator topologies.

Section  9 on orthomorphisms is the companion of Sect.  5, but the results are 
quite in contrast. For each of order convergence, unbounded order convergence, 
and—when applicable—convergence in the Hausdorff uo-Lebesgue topology, both 
implications between uniform and strong convergence of a net of orthomorphisms 
are valid, with an order boundedness condition on the net being necessary only for 
order convergence. For sequences of orthomorphisms, this order boundedness con-
dition is even redundant as a consequence of the uniform order boundedness princi-
ple for orthomorphisms from Sect. 6.

2 � Preliminaries

In this section, we collect a number of definitions, notations, conventions and earlier 
results.

All vector spaces are over the real numbers; all vector lattices are supposed to 
be Archimedean. We write E+ for the positive cone of a vector lattice E. For a non-
empty subset S of E, we let IS and BS denote the ideal of E and the band in E, respec-
tively, that are generated by S; we write S∨ for {s1 ∨⋯ ∨ sn ∶ s1,… , sn ∈ S, n ≥ 1 }.

Let E be a vector lattice, and let x ∈ E . We say that a net (x�)�∈A in E is order 
convergent to x ∈ E (denoted by x�

o
�����→ x ) when there exists a net (y�)�∈B in E such 

that y� ↓ 0 and with the property that, for every �0 ∈ B , there exists an �0 ∈ A such 
that |x − x�| ≤ y�0 whenever � in A is such that � ≥ �0 . We explicitly include this 
definition to make clear that the index sets A and B need not be equal.

Let (x�)�∈A be a net in a vector lattice E, and let x ∈ E . We say that (x�) is 
unbounded order convergent to x in E (denoted by x�

uo
���������→ x ) when |x� − x| ∧ y

o
�����→ 0 

in E for all y ∈ E+ . Order convergence implies unbounded order convergence to the 
same limit. For order bounded nets, the two notions coincide.

Let E and F be vector lattices. The order bounded operators from E into F will 
be denoted by Lob(E,F) . We write E∼ for Lob(E,ℝ) . A linear operator T ∶ E → F 
between two vector lattices E and F is order continuous when, for every net (x�)�∈A 
in E, the fact that x�

o
�����→ 0 in E implies that Tx�

o
�����→ 0 in F. An order continuous lin-

ear operator between two vector lattices is automatically order bounded; see [3, 
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Lemma 1.54], for example. The order continuous linear operators from E into F will 
be denoted by Loc(E,F) . We write E∼

oc
 for Loc(E,ℝ).

Let F be a vector sublattice of a vector lattice E. Then F is a regular vector 
sublattice of E when the inclusion map from F into E is order continuous. Ideals 
are regular vector sublattices. For a net in a regular vector sublattice F of E, its 
uo-convergence in F and in E are equivalent; see [14, Theorem 3.2].

When E is a vector space, a linear topology on E is a (not necessarily Haus-
dorff) topology that provides E with the structure of a topological vector space. 
When E is a vector lattice, a locally solid linear topology on E is a linear topology 
on E such that there exists a base of (not necessarily open) neighbourhoods of 0 
that are solid subsets of E. For the general theory of locally solid linear topolo-
gies on vector lattices we refer to [2]. When E is a vector lattice, a locally solid 
additive topology on E is a topology that provides the additive group E with the 
structure of a (not necessarily Hausdorff) topological group, such that there exists 
a base of (not necessarily open) neighbourhoods of 0 that are solid subsets of E.

A topology � on a vector lattice E is an o-Lebesgue topology when it is a (not 
necessarily Hausdorff) locally solid linear topology on E such that, for a net 
(x�)�∈A in E, the fact that x�

o
�����→ 0 in E implies that x�

�
�����→ 0 . A vector lattice need 

not admit a Hausdorff o-Lebesgue topology. A topology � on a vector lattice E 
is a uo-Lebesgue topology when it is a (not necessarily Hausdorff) locally solid 
linear topology on E such that, for a net (x�)�∈A in E, the fact that x�

uo
���������→ 0 in 

E implies that x�
�
�����→ 0 . Since order convergence implies unbounded order con-

vergence, a uo-Lebesgue topology is an o-Lebesgue topology. A vector lattice 
E need not admit a Hausdorff uo-Lebesgue topology, but when it does, then this 
topology is unique (see [6, Propositions 3.2, 3.4, and 6.2] or [24, Theorems 5.5 
and 5.9]) and we denote it by �̂E.

Let E be a vector lattice, let F be an ideal of E, and suppose that �F is a (not nec-
essarily Hausdorff) locally solid linear topology on F. Take a non-empty subset S of 
F. Then there exists a unique (possibly non-Hausdorff) locally solid linear topology 
uS�F on E such that, for a net (x�)�∈A in E, x�

uS�F
����������������→ 0 if and only if |x�| ∧ |s|

�F
���������→ 0 for 

all s ∈ S ; see [11, Theorem 3.1] for this, which extends earlier results in this vein in, 
e.g., [6, 24]. This topology uS�F is called the unbounded topology on E that is gener-
ated by �F via S. Suppose that E admits a Hausdorff uo-Lebesgue topology �̂E . The 
uniqueness of such a topology then implies that uE �̂E = �̂E . In the sequel, we shall 
use this result from [6, 24] a few times.

Finally, the characteristic function of a set S will be denoted by �S , and the iden-
tity operator on a vector space will be denoted by I.

3 � Absolute strong operator topologies on Lob(E, F)

Let E and F be vector lattices, where F is Dedekind complete. In this section, 
we start by showing how topologies can be introduced on vector sublattices of 
Lob(E,F) that can be regarded as absolute strong operator topologies; see Theo-
rem 3.5 and Remark 3.7, below. Once this is known to be possible, it is easy to relate 
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this to o-Lebesgue topologies and uo-Lebesgue topologies on regular vector sublat-
tices of Lob(E,F) . In particular, we shall see that every regular vector sublattice of 
Lob(E,F) admits a (necessarily unique) Hausdorff uo-Lebesgue topology when F 
admits a Hausdorff o-Lebesgue topology; see Corollary 4.5, below.

When restricted to the orthomorphisms on a Dedekind complete vector lattice, 
the picture simplifies; see Sect. 8. In particular, the restrictions of absolute strong 
operator topologies are then simply strong operator topologies.

The construction in the proof of the following result is an adaptation of that in 
the proof of [11, Theorem 3.1]. The latter construction is carried out under mini-
mal hypotheses and uses neighbourhood bases at zero as in [24, proof of Theo-
rem 2.3] rather than Riesz pseudo-norms. Such an approach enables one to also 
understand various ‘pathologies’ in the literature from one central result; see [11, 
Example 3.10]. It is for this reason of maximum flexibility that we also choose 
such a neighbourhood approach here.

Theorem 3.1  Let E and F be vector lattices, where F is Dedekind complete, and let 
�F be a (not necessarily Hausdorff) locally solid additive topology on F. Take a non-
empty subset S of E. There exists a unique (possibly non-Hausdorff) additive topol-
ogy ASOTS�F on Lob(E,F) such that, for a net (T�)�∈A in Lob(E,F), T�

ASOTS�F
��������������������������������→ 0 if 

and only if |T�||s|
�F
���������→ 0 for all s ∈ S.

Let IS be the ideal of E that is generated by S. For a net (T�)�∈A in Lob(E,F), 

T�
ASOTS�F
��������������������������������→ 0 if and only if |T�||x|

�F
���������→ 0 for all x ∈ IS; and also if and only if 

|T�|x
�F
���������→ 0 for all x ∈ IS.

Furthermore: 

1.	 for every x ∈ IS, the map T ↦ Tx is an ASOTS�F − �F continuous map from 
Lob(E,F) into F; 

2.	 the topology ASOTS�F on Lob(E,F) is a locally solid additive topology;
3.	 when �F is a Hausdorff topology on F,  the following are equivalent for an additive 

subgroup G  of Lob(E,F)∶

(a)	 the restriction ASOTS�F|G  of ASOTS�F to G  is a Hausdorff topology on G;
(b)	 IS separates the points of G .

4.	 the following are equivalent for a linear subspace V  of Lob(E,F)∶

(a)	 for all T ∈ V  and s ∈ S, |�T||s|
�F
���������→ 0 as � → 0 in ℝ;

(b)	 the restriction ASOTS�F|V  of ASOTS�F to V  is a (possibly non-Hausdorff) 
linear topology on V .

Proof  Suppose that �F is a (not necessarily Hausdorff) locally solid additive topol-
ogy on F.

It is clear from the required translation invariance of ASOTS�F that it is unique, 
since the nets that are ASOTS�F-convergent to zero are prescribed.
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For its existence, we take a �F-neighbourhood base {U�}�∈Λ of zero in F that con-
sists of solid subsets of F. For x ∈ IS and � ∈ Λ , we set 

The V�,x ’s are solid subsets of Lob(E,F) since the U� are solid subsets of F.
Set

We shall now verify that N0 satisfies the necessary and sufficient conditions in [17, 
Theorem 3 on p. 46] to be a base of neighbourhoods of zero for an additive topology 
on Lob(E,F).

Take V�1,x1
,V�2,x2

∈ N0 . There exists a �3 ∈ Λ such that U𝜆3
⊆ U𝜆1

∩ U𝜆2
 , and it is 

easy to verify that then V𝜆3,|x1|∨|x2| ⊆ V𝜆1,x1
∩ V𝜆2,x2

 . Hence N0 is a filter base.
It is clear that V�,x = −V�,x.
Take V�,x ∈ N0 . There exists a � ∈ Λ such that U𝜇 + U𝜇 ⊆ U𝜆 , and it is easy to 

see that then V𝜇,x + V𝜇,x ⊆ V𝜆,x.
An appeal to [17, Theorem 3 on p. 46] now yields that N0 is a base of neigh-

bourhoods of zero for an additive topology on Lob(E,F) that we shall denote by 
ASOTS�F . It is a direct consequence of its definition that, for a net (T�)�∈A in 
Lob(E,F) , T�

ASOTS�F
��������������������������������→ 0 if and only if |T�||x|

�F
���������→ 0 for all x ∈ IS . Using the fact that 

�F is a locally solid additive topology on F, it is routine to verify that the latter con-
dition is equivalent to the condition that |T|x

�F
���������→ 0 for all x ∈ IS , as well as to the 

condition that |T�||s|
�F
���������→ 0 for all s ∈ S.

We turn to the statements in the parts (1)–(4).
For part  (1), suppose that (T�)�∈A is a net in Lob(E,F) such that T�

ASOTS�F
��������������������������������→ 0 . 

Then |T�||x|
�F
���������→ 0 for all x ∈ IS . Since |T�x| ≤ |T�||x| , the fact that �F is locally solid 

implies that then also T�x
�F
���������→ 0 for all x ∈ IS.

Since the topology ASOTS�F is a locally solid additive topology on Lob(E,F) by 
construction, part (2) is clear.

For part (3), we recall from [17, p. 48, Theorem 4] that an additive topology on a 
group is Hausdorff if and only if the intersection of the elements of a neighbourhood 
base of zero is trivial. Using this for F in the second step, and invoking [11, Proposi-
tion 2.1] in the third, we see that

Another appeal to [17, p. 48, Theorem 4] then completes the proof of part (3).
We prove that part  (a) implies part  (b). It is clear that ASOTS�F|V  is an addi-

tive topology on V  . From what we have already established, we know that the 

V�,x ∶= {T ∈ Lob(E,F) ∶ |T||x| ∈ U�}.

N0∶={V�,x ∶ � ∈ Λ, x ∈ IS}.

⋂

�∈Λ,x∈IS

(
V�,x ∩ G

)
=

{
T ∈ Lob(E,F) ∶ |T||x| ∈

⋂

�∈Λ

U� for all x ∈ IS

}
∩ G

= {T ∈ Lob(E,F) ∶ |T||x| = 0 for all x ∈ IS} ∩ G.

= {T ∈ Lob(E,F) ∶ Tx = 0 for all x ∈ IS} ∩ G

= {T ∈ G ∶ Tx = 0 for all x ∈ IS}.
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assumption implies that also |�T||x|
�F
���������→ 0 as � → 0 in ℝ for all T ∈ V  and x ∈ IS . 

Fix � ∈ Λ and x ∈ IS , and take T ∈ V  . Since |�T||x|
�F
���������→ 0 as � → 0 in ℝ , there exists 

a 𝛿 > 0 such that |�T||x| ∈ U� whenever |𝜀| < 𝛿 . That is, �T ∈ V�,x ∩ V  whenever 
|𝜀| < 𝛿 . Hence, V�,x ∩ V  is an absorbing subset of V  . Furthermore, since V�,x is a 
solid subset of Lob(E,F) , it is clear that �T ∈ V�,x ∩ V  whenever T ∈ V�,x ∩ V  and 
� ∈ [−1, 1] . We conclude from [1, Theorem 5.6] that ASOTS�F|V  is a linear topol-
ogy on V .

We prove that part  (b) implies part  (a). Take T ∈ V  . Then �T
ASOTS�F|V
��������������������������������������→ 0 as 

� → 0 in ℝ . By construction, this implies that (and is, in fact, equivalent to) the fact 
that |�T||s|

�F
���������→ 0 for all s ∈ S . 	�  ◻

Remark 3.2  It is clear from the convergence criteria for nets that the topologies 
ASOTS1

�F and ASOTS2
�F are equal when IS1 = IS2 . One could, therefore, work with 

ideals from the very start, but it seems worthwhile to keep track of a smaller set of 
presumably more manageable ‘test vectors’. See also the comments preceding Theo-
rem 4.3, below.

Remark 3.3  Suppose that (T�)�∈A is a net in Lob(E,F) such that T�
ASOTS�F
��������������������������������→ 0 . It is 

easy to see that then |T�|x
�F
���������→ 0 uniformly on every order bounded subset of IS , so 

that then also T�x
�F
���������→ 0 uniformly on every order bounded subset of IS.

Definition 3.4  The topology ASOTS�F in Theorem 3.1 is called the absolute strong 
operator topology that is generated by �F via S. We shall comment on this nomen-
clature in Remark 3.7, below.

The following result, which can also be obtained using Riesz pseudo-norms, is 
clear from Theorem 3.1.

Corollary 3.5  Let E and F be vector lattices, where F is Dedekind complete, and let 
�F be a (not necessarily Hausdorff) locally solid linear topology on F. Take a vector 
sublattice E  of Lob(E,F) and a non-empty subset S of E.

There exists a unique additive topology ASOTS�F on E  such that, for a net 
(T�)�∈A in E, T�

ASOTS�F
��������������������������������→ 0 if and only if |T�||s|

�F
���������→ 0 for all s ∈ S.

Let IS be the ideal of E that is generated by S. For a net (T�)�∈A in E, T�
ASOTS�F
��������������������������������→ 0 

if and only if |T�||x|
�F
���������→ 0 for all x ∈ IS; and also if and only if |T�|x

�F
���������→ 0 for all 

x ∈ IS.
Furthermore: 

1.	 for every x ∈ IS, the map T ↦ Tx is an ASOTS�F − �F continuous map from E  
into F; 

2.	 the additive topology ASOTS�F on the group E  is, in fact, a locally solid linear 
topology on the vector lattice E  . When �F is a Hausdorff topology on F,  then 
ASOTS�F is a Hausdorff topology on E  if and only if IS separates the points of E .
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Remark 3.6  Although in the sequel of this paper we shall mainly be interested in 
the nets that are convergent in a given topology, let us still remark that is possible 
to describe an explicit ASOTS�F-neighbourhood base of zero in E  . Take a �F-neigh-
bourhood base {U�}�∈Λ of zero in F that consists of solid subsets of F. For � ∈ Λ 
and x ∈ IS , set

Then {V�,x ∶ � ∈ Λ, x ∈ IS} is an ASOTS�F-neighbourhood base of zero in E .

Remark 3.7  It is not difficult to see that ASOTS�F is the weakest locally solid linear 
topology �E  on E  such that, for every x ∈ IS , the map T → Tx is a �E − �F continuous 
map from E  into F. It is also the weakest linear topology �′

E
 on E  such that, for every 

x ∈ IS , the map T → |T|x is a ��
E
− �F continuous map from E  into F. The latter 

characterisation is our motivation for the name ‘absolute strong operator topology’.
Take F = ℝ and S = E . Then ASOTE�ℝ is what is commonly known as the abso-

lute weak∗-topology on E∼ . There is an unfortunate clash of ‘weak’ and ‘strong’ 
here that appears to be unavoidable.

Remark 3.8  For comparison with Remark  3.7, and to make clear the role of the 
local solidness of the topologies in the present section, we mention the following, 
which is an easy consequence of [1, Theorem  5.6], for example. Let E and F be 
vector spaces, where F is supplied with a (not necessarily) Hausdorff linear topol-
ogy �F . Take a linear subspace E  of the vector space of all linear maps from E 
into F, and take a non-empty subset S of E. Then there exists a unique (not nec-
essarily Hausdorff) linear topology SOTS�F on E  such that, for a net (T�)�∈A in 
E  , T�

SOTS�F
��������������������������→ 0 if and only if T�s

�F
���������→ 0 for all s ∈ S . The subsets of E  of the form 

⋂n

i=1
{T ∈ E ∶ Tsi ∈ V�i

} , where the si run over S and the V�i
 run over a balanced �F

-neighbourhood base {V� ∶ � ∈ Λ} of zero in F, are an SOTS�F-neighbourhood base 
of zero in E  . When �F is Hausdorff, then SOTS�F is Hausdorff if and only if S sepa-
rates the points of E  . This strong operator topology SOTS�F on E  that is generated 
by �F via S, is the weakest linear topology �E  on E  such that, for every s ∈ S , the 
map T ↦ Tx is �E − �F-continuous.

4 � o‑Lebesgue topologies and uo‑Lebesgue topologies on vector 
lattices of operators

To arrive at results concerning o-Lebesgue topologies and uo-Lebesgue topologies 
on regular vector sublattices of operators, we need a preparatory result for which we 
are not aware of a reference. Given its elementary nature, we refrain from any claim 
to originality. It will re-appear at several places in the sequel.

V�,x∶={T ∈ E ∶ |T||x| ∈ U�}.
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Lemma 4.1  Let E and F be vector lattices, where F is Dedekind complete, and let 
E  be a regular vector sublattice of Lob(E,F) . Suppose that (T�)�∈A is net in E  such 
that T�

o
�����→ 0 in E  . Then T�x

o
�����→ 0 for all x ∈ E.

Proof  By the regularity of E  , we also have that T�
o
�����→ 0 in Lob(E,F) . Hence there 

exists a net (S�)�∈B in Lob(E,F) such that S� ↓ 0 in Lob(E,F) and with the prop-
erty that, for every �0 ∈ B , there exists an �0 ∈ A such that |T�| ≤ S�0 for all � ∈ A 
such that � ≥ �0 . We know from [3, Theorem 1.18], for example, that S�x ↓ 0 for all 
x ∈ E+ . Since |T�x| ≤ |T�|x for x ∈ E+ , it then follows easily that T�x

o
�����→ 0 for all 

x ∈ E+ . Hence T�x
o
�����→ 0 for all x ∈ E . 	�  ◻

We can now show that the o-Lebesgue property of a locally solid linear topol-
ogy on the Dedekind complete codomain is inherited by the associated absolute 
strong operator topology on a regular vector sublattice of operators.

Proposition 4.2  Let E and F be vector lattices, where F is Dedekind complete. 
Suppose that F admits an o-Lebesgue topology �F . Take a regular vector sublattice 
E  of Lob(E,F) and a non-empty subset S of E. Then ASOTS�F is an o-Lebesgue 
topology on E  . When �F is a Hausdorff topology on F,   then ASOTS�F is a Haus-
dorff topology on E  if and only if IS separates the points of E .

Proof  In view of Corollary 3.5, we merely need to show that, for a net (T�)�∈A in E  , 
the fact that T�

o
�����→ 0 in E  implies that T�

ASOTS�F
��������������������������������→ 0 . Take s ∈ S . Since also |T�|

o
�����→ 0 

in E  , Lemma 4.1 implies that |T�||s|
o
�����→ 0 in F. Using that �F is an o-Lebesgue topol-

ogy on F, we find that |T�||s|
�F
���������→ 0 . Since this holds for all s ∈ S , Corollary  3.5 

shows that T�
ASOTS�F
��������������������������������→ 0 in E  . 	�  ◻

We conclude by showing that every regular vector sublattice of Lob(E,F) admits 
a (necessarily unique) Hausdorff uo-Lebesgue topology when the Dedekind com-
plete codomain F admits a Hausdorff o-Lebesgue topology. It is the unbounded 
topology that is associated with the members of a family of absolute strong opera-
tor topologies on the vector sublattice, with all members yielding the same result. 
Our most precise result in this direction is the following. The convergence criterion 
in part 2 is a ‘minimal one’ that is convenient when one wants to show that a net 
is convergent, whereas the criterion in part 3 maximally exploit the known conver-
gence of a net.

Theorem 4.3  Let E and F be vector lattices, where F is Dedekind complete. Sup-
pose that F admits an o-Lebesgue topology �F . Take a regular vector sublattice E  of 
Lob(E,F), a non-empty subset S  of E, and a non-empty subset S of E.

Then uSASOTS�F is a uo-Lebesgue topology on E .
We let IS denote the ideal of E that is generated by S,  and IS  the ideal of E  that is 

generated by S  . For a net (T�)�∈A in E, the following are equivalent: 
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1.	 T�
uSASOTS�F
�����������������������������������������→ 0;

2.	 (|T�| ∧ |T|)|s|
�F
���������→ 0 for all T ∈ S  and s ∈ S;

3.	 (|T�| ∧ |T|)x
�F
���������→ 0 for all T ∈ IS  and x ∈ IS.

Suppose that �F is actually a Hausdorff o-Lebesgue topology on F. Then the fol-
lowing are equivalent: 

	 (i)	 uSASOTS�F is a (necessarily unique) Hausdorff uo-Lebesgue topology on E;
	 (ii)	 IS separates the points of E  and IS  is order dense in E .

In that case, the Hausdorff uo-Lebesgue topology uSASOTS�F on E  is the restric-
tion of the (necessarily unique) Hausdorff uo-Lebesgue topology on Lob(E,F), i.e., 
of uLob(E,F)

ASOTE�F, and the criteria in 1, 2, and 3 are also equivalent to: 

4.	 (|T�| ∧ |T|)x
�F
���������→ 0 for all T ∈ Lob(E,F) and x ∈ E.

Proof  It is clear from Proposition 4.2 and [11, Proposition 4.1] that uSASOTS�F is 
a uo-Lebesgue topology on E  . The two convergence criteria for nets follow from the 
combination of those in [11, Theorem 3.1] and in Corollary 3.5.

According to [11, Proposition 4.1], uSASOTS�F is a Hausdorff topology on E  if 
and only if ASOTS�F is a Hausdorff topology on E  and IS  is order dense in E  . An 
appeal to Proposition 4.2 then completes the proof of the necessary and sufficient 
conditions for uSASOTS�F to be Hausdorff.

Suppose that �F is actually also Hausdorff, that IS separates the points of E  , and 
that IS  is order dense in E  . From what we have already established, it is clear that 
uLob(E,F)

ASOTE�F is a (necessarily unique) Hausdorff uo-Lebesgue topology on 
Lob(E,F) . Since the restriction of a Hausdorff uo-Lebesgue topology on a vector 
lattice to a regular vector sublattice is a (necessarily unique) Hausdorff uo-Lebesgue 
topology on the vector sublattice (see [24, Proposition 5.12]), the criterion in part 4 
follows from that in part 3 applied to uLob(E,F)

ASOTE�F . 	�  ◻

Remark 4.4  Take a �F-neighbourhood base {U�}�∈Λ of zero in F that consists of 
solid subsets of F. For � ∈ Λ , T̃ ∈ IS  , and x ∈ IS , set

As a consequence of the constructions of unbounded and absolute strong operator 
topologies, {V�,T̃ ,x ∶ � ∈ Λ, T ∈ IS, x ∈ IS} is then a uSASOTS�F-neighbourhood 
base of zero in E .

The following consequence of Theorem 4.3 will be sufficient in many situations.

V�,T̃ ,x∶={T ∈ E ∶ (|T| ∧ |T̃|)|x| ∈ U�}.
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Corollary 4.5  Let E and F be vector lattices, where F is Dedekind complete. Sup-
pose that F admits a Hausdorff o-Lebesgue topology �F.

Take a regular vector sublattice E  of Lob(E,F) . Then E  admits a (necessarily 
unique) Hausdorff uo-Lebesgue topology �̂E  . This topology equals uEASOTE�F, 
and is also equal to the restriction to E  of the Hausdorff uo-Lebesgue topology 
uLob(E,F)

ASOTE�F on Lob(E,F).
For a net (T�)�∈A in E, the following are equivalent: 

1.	 T�
�̂E
��������→ 0;

2.	 (|T�| ∧ |T|)x
�F
���������→ 0 for all T ∈ E  and x ∈ E;

3.	 (|T�| ∧ |T|)x
�F
���������→ 0 for all T ∈ Lob(E,F) and x ∈ E.

Remark 4.6  There can, sometimes, be other ways to see that a given regular vector 
sublattice of Lob(E,F) admits a Hausdorff uo-Lebesgue topology. For example, sup-
pose that F∼

oc
 separates the points of F. For x ∈ E and � ∈ F∼

oc
 , the map T ↦ �(Tx) 

defines an order continuous linear functional on Loc(E,F) , and it is then clear that 
the order continuous dual of Loc(E,F) separates the points of Loc(E,F) . Hence, 
Loc(E,F) can also be supplied with a Hausdorff uo-Lebesgue topology as in [11, 
Theorem 5.2] which, in view of its uniqueness, coincides with the one as supplied 
by Corollary 4.5.

5 � Comparing uniform and strong convergence structures 
on Lob(E, F)

Suppose that E and F are vector lattices, where F is Dedekind complete. As 
explained in Sect.  1, there exist a uniform and a strong convergence structure on 
Lob(E,F) for each of order convergence, unbounded order convergence, and—when 
applicable—convergence in the Hausdorff uo-Lebesgue topology. In this section, we 
investigate what the inclusion relations are between the members of each of these 
three pairs. For example, is it true that the uniform (resp. strong) order convergence 
of a net of order bounded operators implies its strong (resp. uniform) order conver-
gence to the same limit? We shall show that only one of the six conceivable impli-
cations is valid in general, and that the others are not even generally valid for uni-
formly bounded sequences of order continuous operators on Banach lattices. Whilst 
the failures of such general implications may, perhaps, not come as too big a sur-
prise, the positive results for orthomorphisms (see Theorems 9.4, 9.5, 9.7 and 9.10, 
below) may serve to indicate that they are less evident than one would think at first 
sight.

For monotone nets in Lob(E,F) , however, the following result shows that then 
even all four (or six) notions of convergence in Lob(E,F) coincide.

Proposition 5.1  Let E and F be vector lattices, where F is Dedekind complete, and 
let (T�)�∈A be a monotone net in Lob(E,F) . The following are equivalent: 
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1.	 T�
o
�����→ 0 in Lob(E,F);

2.	 T�
uo
���������→ 0 in Lob(E,F);

3.	 T�x
o
�����→ 0 in F for all x ∈ E;

4.	 T�x
uo
���������→ 0 in F for all x ∈ E.

Suppose that, in addition, F admits a (necessarily unique) Hausdorff uo-Lebesgue 
topology �̂F, so that Lob(E,F) also admits a (necessarily unique) Hausdorff uo-Leb-
esgue topology �̂Lob(E,F)

 by Corollary 4.5. Then 1–4 are also equivalent to: 

5.	 T�

�̂Lob (E,F)

����������������������������→ 0;

6.	 T�x
�̂F
���������→ 0 for all x ∈ E.

Proof  We may suppose that T� ↓ and that x ∈ E+ . For order bounded nets in a vector 
lattice, order convergence and unbounded order convergence are equivalent. Passing 
to an order bounded tail of (T�)�∈A , we, thus, see that the parts 1 and 2 are equiva-
lent. Similarly, the parts 3 and 4 are equivalent. The equivalence of the parts 1 and 3 
is well known; see [2, Theorem 1.67], for example.

Suppose that F admits a Hausdorff uo-Lebesgue topology �̂F . In that case, it follows 
from [11, Lemma 7.2] that the parts 2 and 5 are equivalent, as are the parts 4 and 6. 	� ◻

When (T�)�∈A is a not necessarily monotone net in Lob(E,F) such that T�
o
�����→ 0 , 

then Lemma  4.1 shows that T�x
o
�����→ 0 in F for all x ∈ E . We shall now give five 

examples to show that each of the remaining five conceivable implications between 
a corresponding uniform and strong convergence structures on Lob(E,F) is not gen-
erally valid. In each of these examples, we can even take E = F to be a Banach lat-
tice, and for the net (T�)�∈A we can even take a uniformly bounded sequence (Tn)∞n=1 
of order continuous operators on E.

Example 5.2  We give an example of a uniformly bounded sequence (Tn)∞n=1 of posi-
tive order continuous operators on a Dedekind complete Banach lattice E with a 
strong order unit, such that Tnx

o
�����→ 0 in E for all x ∈ E but Tn �

o
0 in Lob(E) because 

the sequence is not even order bounded in Lob(E).
We choose �∞(ℕ) for E = F . For n ≥ 1 , we set Tn∶=Sn , where S is the right shift 

operator on E. The Tn are evidently positive and of norm one. A moment’s thought 
shows that they are order continuous. Furthermore, it is easy to see that Tnx

o
�����→ 0 in E 

for all x ∈ E . We shall now show that {Tn ∶ n ≥ 1} is not order bounded in Lob(E) . 
For this, we start by establishing that the Tn are mutually disjoint. Let (ei)∞i=1 be the 
standard sequence of unit vectors in E. Take m ≠ n and i ≥ 1 . Since ei is an atom, the 
Riesz–Kantorovich formula for the infimum of two operators shows that

Hence, (Tm ∧ Tn) vanishes on the span of the ei . Since this span is order dense in E, 
and since Tn ∧ Tm ∈ Loc(E) , it follows that Tn ∧ Tm = 0.

0 ≤ (Tm ∧ Tn)ei = inf{tem+i + (1 − t)en+i ∶ 0 ≤ t ≤ 1} ≤ inf{em+i, en+i} = 0.
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We can now show that (Tn)∞n=1 is not order bounded in Lob(E) . Indeed, suppose 
that T ∈ Lob(E) is a upper bound for all Tn . Set e∶=

⋁∞

i=1
ei . Then, for all N ≥ 1,

This shows that Te cannot be an element of �∞ . We conclude from this contradiction 
that (Tn)∞n=1 is not order bounded in Lob(E).

Example 5.3  We give an example of a uniformly bounded sequence (Tn)∞n=1 of posi-
tive order continuous operators on a Dedekind complete Banach lattice E with a 
strong order unit, such that Tn

uo
���������→ 0 in Lob(E) but Tnx�

uo
0 for some x ∈ E.

We choose �∞(ℤ) for E = F . For n ≥ 1 , we set Tn∶=Sn , where S is the right shift 
operator on E. Just as in Example 5.2, the Tn are positive order continuous operators 
on E of norm one that are mutually disjoint. Since disjoint sequences in vector lattices 
are unbounded order convergent to zero (see [14, Corollary 3.6]), we have Tn

uo
���������→ 0 in 

Lob(E) . On the other hand, if we let e be the two-sided sequence that is constant 1, then 
Tne = e for all n ≥ 1 . Hence (Tne)∞n=1 is not unbounded order convergent to zero in E.

For our next example, we require a preparatory lemma.

Lemma 5.4  Let � be the Lebesgue measure on the Borel �-algebra B of [0,  1],   
and let 1 ≤ p ≤ ∞ . Take a Borel subset S of [0, 1],  and define the positive operator 
TS ∶ Lp([0, 1],B,�) → Lp([0, 1],B,�) by setting

for f ∈ Lp([0, 1],B,�) . Then TS ∧ I = 0.

Proof  Take an n ≥ 1 , and choose disjoint a partition [0, 1] =
⋃n

i=1
Ai of [0, 1] into 

Borel sets Ai of measure 1/n. Let e denote the constant function 1. Then

Te ≥
(

N⋁

n=1

Tn

)
e =

(
N∑

n=1

Tn

)
e ≥ NeN+1.

TS(f )∶=∫S

f d� ⋅ �S

(TS ∧ I)e =

n∑

i=1

(TS ∧ I)�Ai

≤
n∑

i=1

(TS�Ai
) ∧ �Ai

≤
n∑

i=1

(�(Ai)�S) ∧ �Ai

≤
n∑

i=1

�(Ai)�Ai

=
1

n
e.
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Since n is arbitrary, we see that (TS ∧ I)e = 0 . Because 0 ≤ TS ∧ I ≤ I , TS ∧ I is 
order continuous. From the fact that the positive order continuous operator TS ∧ I 
vanishes on the weak order unit e of Lp([0, 1],B,�) , we conclude that TS ∧ I = 0 . 	
� ◻

Example 5.5  We give an example of a uniformly bounded sequence (Tn)∞n=1 of order 
continuous operators on a separable reflexive Banach lattice E with a weak order 
unit, such that Tnx

uo
���������→ 0 in E for all x ∈ E but Tn �

uo
0 in Lob(E) because even 

Tn
�Lob (E)

0 in Lob(E).
Let � be the Lebesgue measure on the Borel �-algebra B of [0,  1], and let 

1 ≤ p ≤ ∞ . For E we choose Lp([0, 1],B,�) , so that E is reflexive for 1 < p < ∞ . 
For n ≥ 1 , we let Bn be the sub-�-algebra of B that is generated by the intervals 
Sn,i∶=[(i − 1)∕2n, i∕2n] for i = 1,… , 2n , and we let �n ∶ E → E be the correspond-
ing conditional expectation. By [5, Theorem 10.1.5], �n is a positive norm one pro-
jection. A moment’s thought shows that every open subset of [0, 1] is the union of 
the countably infinitely many Sn,i that are contained in it, so that it follows from 
[5, Theorem 10.2.3] that �nf → f  almost everywhere as n → ∞ . By [14, Proposi-
tion 3.1], we can now conclude that �nf

uo
���������→ f  for all f ∈ E.

On the other hand, it is not true that �n

�̂Lob (E)

�����������������������→ I . To see this, we note that, by [5, 
Example  10.1.2], every �n is a linear combination of operators as in Lemma  5.4. 
Hence, �n ⟂ I for all n. Since �̂Lob(E)

 is a locally solid linear topology, a possible 
�̂Lob(E)

-limit of the �n is also disjoint from I, hence cannot be I itself.
On setting Tn∶=�n − I for n ≥ 1 , we have obtained a sequence of operators as 

desired.

Example 5.6  We give an example of a uniformly bounded sequence (Tn)∞n=1 of 
positive order continuous operators on a Dedekind complete Banach lattice E 
with a strong order unit that admits a Hausdorff uo-Lebesgue topology, such that 

Tn

�̂Lob (E)

�����������������������→ 0 in Lob(E) but Tnx
E
0

��  in E for some x ∈ E.
We choose E, the Tn ∈ Lob(E) , and e ∈ E as in Example 5.3. There are several 

ways to see that E admits a Hausdorff uo-Lebesgue topology. This follows most eas-
ily from the fact that E is atomic (see [24, Lemma 7.4]) and also from [11, The-
orem  6.3] in the context of measure spaces. By Corollary  4.5, Lob(E) then also 
admits such a topology. Since we already know from Example 5.3 that Tn

uo
���������→ 0 , we 

also have that Tn
�̂Lob (E)

�����������������������→ 0 . On the other hand, the fact that Tne = e for n ≥ 1 evi-
dently shows that (Tne)∞n=1 is not �̂E-convergent to zero in E.

Example 5.7  We note that Example  5.5 also gives an example of a uniformly 
bounded sequence (Tn)∞n=1 of order continuous operators on a separable reflexive 
Banach lattice E with a weak order unit that admits a Hausdorff uo-Lebesgue topol-

ogy, such that Tnx
�̂E
���������→ 0 in E for all x ∈ E but Tn

�Lob (E)

0 in Lob(E).
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6 � Orthomorphisms

In this section, we review some material concerning orthomorphism and establish a 
few auxiliary result for use in the present paper and in future ones.

Let E be a vector lattice. We recall from [3, Definition 2.41] that an operator on 
E is called an orthomorphism when it is a band preserving order bounded operator. 
An orthomorphism is evidently disjointness preserving, it is order continuous (see 
[3, Theorem 2.44]), and its kernel is a band (see [3, Theorem 2.48]). We denote by 
Orth (E) the collection of all orthomorphism on E. Even when E is not Dedekind 
complete, the supremum and infimum of two orthomorphisms S and T in E always 
exists in Lob(E) . In fact, we have

for x ∈ E+ and

for x ∈ E ; see [3, Theorems 2.43 and 2.40]. Consequently, Orth (E) is a unital vector 
lattice algebra for every vector lattice E. Even more is true: according to [3, Theo-
rem 2.59], Orth (E) is an (obviously Archimedean) f-algebra for every vector lattice 
E, so it is commutative by [3, Theorem 2.56]. Furthermore, for every vector lattice 
E, when T ∈ Orth (E) and T ∶ E → E is injective and surjective, then the linear map 
T−1 ∶ E → E is again an orthomorphism. We refer to [21, Theorem  3.1.10] for a 
proof of this result of Huijsmans’ and de Pagter’s.

It follows easily from (6.1) that, for every vector lattice E, the identity operator is 
a weak order unit of Orth (E) . When E is Dedekind complete, Orth (E) is the band in 
Lob(E) that is generated by the identity operator on E; see [3, Theorem 2.45].

Let E be a vector lattice, let T ∈ Lob(E) , and let � ≥ 0 . Using [3, Theorem 2.40], 
it is not difficult to see that the following are equivalent: 

1.	 −�I ≤ T ≤ �I;
2.	 |T| exists in Lob(E) , and |T| ≤ �I;
3.	 |Tx| ≤ �|x| for all x ∈ E.

The set of all such T is a unital subalgebra Z(E) of Orth (E) consisting of ideal pre-
serving order bounded operators on E. It is called the ideal centre of E.

Let E be a vector lattice, and define the stabiliser of E, denoted by S(E) , as the 
set of linear operators on E that are ideal preserving. It is not required that these 
operators be order bounded, but this is nevertheless always the case. In fact, S(E) is 
a unital subalgebra of Orth (E) for every vector lattice E (see [25, Proposition 2.6]), 
so that we have the chain

of unital algebras for every vector lattice E. For every Banach lattice E, we have

(6.1)
[S ∨ T](x) = S(x) ∨ T(x)

[S ∧ T](x) = S(x) ∧ T(x)

(6.2)|Tx| = |T||x| = |T(|x|)|

Z(E) ⊆ S(E) ⊆ Orth (E)
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see [25, Corollary 4.2], so that the identity operator on E is then even an order unit 
of Orth (E).

For every Banach lattice E, Orth (E) is a unital Banach subalgebra of the bounded 
linear operators on E in the operator norm. This follows easily from the facts that 
bands are closed and that a band preserving operator on a Banach lattice is automati-
cally order bounded; see [3, Theorem 4.76].

Let E be a Banach lattice. Since the identity operator is an order unit of Orth (E) , 
we can introduce the order unit norm ‖ ⋅ ‖I with respect to I on Orth (E) by setting

for T ∈ Orth (E) . Then ‖T‖ = ‖T‖I for all T ∈ Orth (E) ; see [25, Proposition 4.1]. 
Since we already know that Orth (E) is complete in the operator norm, it follows 
that Orth (E) , when supplied with ‖ ⋅ ‖ = ‖ ⋅ ‖I , is a unital Banach lattice algebra 
that is also an AM-space. When E is a Dedekind complete Banach lattice, then evi-
dently ‖T‖ = ‖T‖I = ‖�T�‖I = ‖ �T� ‖ = ‖T‖r for T ∈ Orth (E) . Hence, Orth (E) is 
then also a unital Banach lattice subalgebra of the Banach lattice algebra of all order 
bounded operators on E in the regular norm.

Let E be Banach lattice. It is clear from the above that 
(Orth (E), ‖ ⋅ ‖) = (Orth (E), ‖ ⋅ ‖I) is a unital Banach f-algebra in which its iden-
tity element is also a (positive) order unit. The following result is, therefore, appli-
cable with A = Orth (E) and e = I . It shows, in particular, that Orth (E) is isometri-
cally Banach lattice algebra isomorphic to a C(K)-space. Both its statement and its 
proof improve on the ones in [9, Proposition 2.6], [22, Proposition 1.4], and [16].

Theorem 6.1  Let A  be a unital f-algebra such that its identity element e is also 
a (positive) order unit, and such that it is complete in the submultiplicative order 
unit norm ‖ ⋅ ‖e on A  . Let B be a (not necessarily unital) associative subalgebra 

of A  . Then B
‖ ⋅ ‖e is a Banach f-subalgebra of A  . When e ∈ B

‖ ⋅ ‖e
, then there exist 

a compact Hausdorff space K,  uniquely determined up to homeomorphism, and an 
isometric surjective Banach lattice algebra isomorphism � ∶ B

‖ ⋅ ‖e
→ C(K).

Proof  Since (A, ‖ ⋅ ‖I) is an AM-space with order unit e, there exist a compact Haus-
dorff space K′ and an isometric surjective lattice homomorphism � � ∶ A → C(K�) 
such that � �(e) = 1 ; see [21, Theorem 2.1.3] for this result of Kakutani’s, for exam-
ple. Via this isomorphism, the f-algebra multiplication on C(K�) provides the vector 
lattice A  with a multiplication that makes A  into an f-algebra with e as its posi-
tive multiplicative identity element. Such a multiplication is, however, unique; see 
[3, Theorem  2.58]. Hence � ′ also preserves multiplication, and we conclude that 
� � ∶ A → C(K�) is an isometric surjective Banach lattice algebra isomorphism.

We now turn to B . It is clear that B
‖ ⋅ ‖e is Banach subalgebra of A  . After moving 

to the C(K�)-model for A  that we have obtained, [13, Lemma 4.48] shows that B
‖ ⋅ ‖e 

is also a vector sublattice of A  . Hence B
‖ ⋅ ‖e is a Banach f-subalgebra of A  . When 

Z(E) = S(E) = Orth (E);

‖T‖I∶= inf{� ≥ 0 ∶ �T� ≤ �I}
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e ∈ B
‖ ⋅ ‖e , we can then apply the first part of the proof to B

‖ ⋅ ‖e , and obtain a com-
pact Hausdorff space K and an isometric surjective Banach lattice algebra isomor-
phism � ∶ B

‖ ⋅ ‖e
→ C(K) . The Banach–Stone theorem (see [7, Theorem VI.2.1], for 

example) implies that K is uniquely determined up to homeomorphism. 	� ◻

We now proceed to show that E and Orth (E) have isomorphic universal comple-
tions. We start with a preparatory lemma.

Proposition 6.2  Let E be a Dedekind complete vector lattice, and let x ∈ E . Let Ix 
be the principal ideal of E that is generated by x,  let Bx be the principal band in E 
that is generated by x,  let Px ∶ E → Bx be the corresponding order projection, and 
let IPx

 be the principal ideal of Lob(E) that is generated by Px . For T ∈ IPx
, set 

�x(T)∶=T|x| . Then �x(T) ∈ Ix, and: 

1.	 the map �x ∶ IPx
→ Ix is a surjective vector lattice isomorphism such that 

�x(Px) = |x|;
2.	 IPx

= PxZ(E).

Proof  Take T ∈ IPx
 . There exists a � ≥ 0 such that |T| ≤ �Px , and this implies that 

|Ty| ≤ �Px|y| for all y ∈ E . This shows that T|x| ∈ Ix , so that �x maps IPx
 into Ix ; it 

also shows that T(Bd
x
) = {0} . Suppose that T|x| = 0 . Since the kernel of T is a band 

in E, this implies that T vanishes on Bx . We already know that it vanishes on Bd
x
 . 

Hence T = 0 , and we conclude that �x is injective. We show that �x is surjective. Let 
y ∈ Ix . Take a 𝜆 > 0 such that 0 ≤ |y∕�| ≤ |x| . An inspection of the proof of [3, The-
orem 2.49] shows that there exists a T ∈ Z(E) with T|x| = y∕� . Since �TPx ∈ IPx

 
and (�TPx)|x| = y , we see that �x is surjective. Finally, it is clear from (6.1) that �x 
is a vector lattice homomorphism. This completes the proof of part 1.

We turn to part  2. It is clear that IPx
⊇ PxZ(E) . Take T ∈ IPx

⊆ Z(E) . Then 
also PxT ∈ IPx

 . Since �x(T) = �x(PxT) , the injectivity of �x on IPx
 implies that 

T = PxT ∈ PxZ(E) . 	�  ◻

The first part of Proposition 6.2 is used in the proof of our next result.

Proposition 6.3  Let E be a Dedekind complete vector lattice. Then there exist an 
order dense ideal I of E and an order dense ideal I  of Orth (E) such that I and I  
are isomorphic vector lattices.

Proof  Choose a maximal disjoint system {x� ∶ � ∈ A} in E. For each � ∈ A , let Ix� , 
Bx�

 , Px�
∶ E → Bx�

 , IPx�
 , and the vector lattice isomorphism �x�

∶ IPx�
→ Ix� be as 

in Proposition 6.2.
Since the x� ’s are mutually disjoint, it is clear that the ideal 

∑
�∈A Ix� of E is, in 

fact, an internal direct sum 
⨁

�∈A Ix� . Since the disjoint system is maximal, 
⨁

�∈A Ix� 
is an order dense ideal of E.

It follows easily from (6.1) that the Px�
 are also mutually disjoint. They even form 

a maximal disjoint system in Orth (E) . To see this, suppose that T ∈ Orth (E) is such 
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that |T| ∧ Px�
= 0 for all � ∈ A . Then (|T|x�) ∧ x� = (|T| ∧ Px�

)x� = 0 for all � ∈ A . 
Since |T| is band preserving, this implies that |T|x� = 0 for all � ∈ A . The fact that 
the kernel of |T| is a band in E then yields that |T| = 0 . Just as for E, we now con-
clude that the ideal 

∑
�∈A IPx�

 of Orth (E) is an internal direct sum 
⨁

�∈A IPx�
 that 

is order dense in Orth (E).
Since 

⨁
�∈A �x�

∶
⨁

�∈A IPx�
→

⨁
�∈A Ix� is a vector lattice isomorphism by 

Proposition 6.2, the proof is complete. 	�  ◻

It is generally true that a vector lattice and an order dense vector sublattice 
of it have isomorphic universal completions; see [2, Theorems  7.21 and  7.23]. 
Proposition 6.3 therefore implies the following.

Corollary 6.4  Let E be a Dedekind complete vector lattice. Then the universal com-
pletions of E and of Orth (E) are isomorphic vector lattices.

The previous result enables us to relate the countable sup property of E to that 
of Orth (E) . We recall that vector lattice E has the countable sup property when, 
for every non-empty subset S of E that has a supremum in E, there exists an at 
most countable subset of S that has the same supremum in E as S. In parts of the 
literature, such as in [20, 26], E is then said to be order separable. We also recall 
that a subset of a vector lattice is said to be an order basis when the band that it 
generates is the whole vector lattice.

Proposition 6.5  Let E be a Dedekind complete vector lattice. The following are 
equivalent: 

1.	 Orth (E) has the countable sup property;
2.	 E has the countable sup property and an at most countably infinite order basis.

Proof  It is proved in [18, Theorem 6.2] that, for an arbitrary vector lattice F, Fu has 
the countable sup property if and only if F has the countable sup property as well 
as an at most countably infinite order basis. Since Orth (E) has a weak order unit I , 
we see that Orth (E)u has the countable sup property if and only if Orth (E) has the 
countable sup property. On the other hand, since Orth (E)u and Eu are isomorphic 
by Corollary 6.4, an application of this same result to E shows that Orth (E)u has 
the countable sup property if and only if E has the countable sup property and an at 
most countably infinite order basis. 	� ◻

We shall now establish a uniform order boundedness principle for orthomor-
phisms. It will be needed in the proof of Theorem 9.5, below.

Proposition 6.6  Let E be a Dedekind complete vector lattice, and let {T� ∶ � ∈ A} 
be a non-empty subset of Orth (E) . The following are equivalent: 
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1.	 {T� ∶ � ∈ A} is an order bounded subset of Lob(E);

2.	 for each x ∈ E, {T�x ∶ � ∈ A} is an order bounded subset of E.

Before proceeding with the proof, we remark that, since Orth (E) is a projection 
band in Lob(E) , the order boundedness of the net could equivalently have been 
required in Orth (E).

Proof  It is trivial that part  1 implies part  2. We now show the converse. Take an 
x ∈ E+ . The hypothesis in part 2, together with (6.2), shows that {|T�|x ∶ � ∈ A} is 
an order bounded subset of E. Hence the same is true for {|T�|x ∶ � ∈ A}∨ which, 
in view of (6.1), equals {Sx ∶ S ∈ {|T�| ∶ � ∈ A}∨} . Using [3, Theorem 1.19], we 
conclude that {S ∶ S ∈ {|T�| ∶ � ∈ A}∨} is bounded above in Lob(E) . Then the 
same is true for {|T�| ∶ � ∈ A} , as desired. 	�  ◻

Proposition 6.6 fails for nets of general order bounded operators. It can, in fact, 
already fail for a sequence of order continuous operators on a Banach lattice, as is 
shown by the following example.

Example 6.7  Let E∶=�∞(ℕ) , and let (ei)∞i=1 be the standard unit vectors in E. Let 
S ∈ Loc(E) be the right shift, and set Tn∶=Sn for n ≥ 1 . It is easy to see that (Tnx)∞n=1 
is order bounded in E for all x ∈ E . We shall show, however, that (Tn)∞n=1 is not order 
bounded in Lob(E) . To see this, we first note that Tm ⟂ Tn for m, n ≥ 1 with m ≠ n . 
Indeed, for all i ≥ 1 , we have 0 ≤ (Tm ∧ Tm)ei ≤ Tm(ei) ∧ Tn(ei) = em+i ∧ en+i = 0 . 
Hence (Tm ∧ Tn)x = 0 for all x ∈ I , where I is the ideal of E that is spanned 
by {ei ∶ i ≥ 1} . Since I is order dense in E and Tn ∧ Tm ∈ Loc(E) , it follows that 
Tn ∧ Tm = 0 for all m, n ≥ 1 with m ≠ n . Suppose that T is an upper bounded of 
(Tn)

∞
n=1

 in Lob(E) . Set e∶=
⋁∞

i=1
ei . Using the disjointness of the Tn , we have

for all n ≥ 1 , which is impossible. So (Tn)∞n=1 is not order bounded in Lob(E).

As a side result, we note the following consequence of Proposition 6.6. It is an 
ordered analogue of the familiar result for a sequence of bounded operators on a 
Banach space.

Corollary 6.8  Let E be a Dedekind complete vector lattice, and let (Tn)∞n=1 be a 
sequence in Orth (E) . Suppose that the sequence (Tnx)∞n=1 is order convergent in E 
for all x ∈ E . Then {Tn ∶ n ≥ 1} is an order bounded subset of Lob(E) . For x ∈ E, 
define T ∶ E → E by setting

Then T ∈ Orth (E).

Te ≥
(

n⋁

i=1

Ti

)
e =

(
n∑

i=1

Ti

)
e ≥ nen+1

Tx∶=o – lim
n→∞

Tnx.
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Proof  Using Proposition 6.6, it is clear that T is a linear and order bounded opera-
tor on E. Since each of the Tn is a band preserving operator, the same is true for T. 
Hence, T is an orthomorphism on E. 	�  ◻

We conclude by giving some estimates for orthomorphisms that will be 
used in the sequel. As a preparation, we need the following extension of [3, 
Exercise 1.3.7].

Lemma 6.9  Let E be a vector lattice with the principal projection property. Take 
x, y ∈ E . For � ∈ ℝ, let P� denote the order projection in E onto the band generated 
by (x − �y)+ . Then �P�y ≤ P�x . When x, y ∈ E+ and � ≥ 0, then x ≤ �y + P�x.

Proof  The first inequality follows from the fact that

For the second inequality, we note that x − �y ≤ (x − �y)+ = P�(x − �y)+ for all x, y, 
and � . When x, y ∈ E+ and � ≥ 0 , then (x − �y)+ ≤ x+ = x , so that

	�  ◻

Proposition 6.10  Let E be a Dedekind complete vector lattice, and let 
T∈ Orth (E)+ . For 𝜆 > 0 , let P� be the order projection in Orth (E) onto the band 
generated by (T − �I)+ in Orth (E) . There exists a unique order projection P� in E 
such that P�(S) = P�S for all S ∈ Orth (E) . Furthermore: 

1.	 �P� ≤ P�T ≤ T;

2.	 T ≤ �I + P�T;

3.	 (P�Tx) ∧ y ≤ 1

�
Ty for all x, y ∈ E+.

Proof  Since 0 ≤ P� ≤ IOrth (E) , it follows from [3, Theorem 2.62] that there exists a 
unique P� ∈ Orth (E) with 0 ≤ P� ≤ I such that P�(S) = P�S for all S ∈ Orth (E) . 
The fact that P� is idempotent implies that P� is also idempotent. Hence, P� is an 
order projection.

The inequalities in the parts  1 and  2 are then a consequence of those in 
Lemma 6.9. For part 3, we note that (P�Tx) ∧ y is in the image of the projection P� . 
Since order projections are vector lattice homomorphisms, we have, using part 1 in 
the final step, that

	�  ◻

0 ≤ P�(x − �y)+ = P�(x − �y) = P�x − �P�y.

x ≤ �y + P�(x − �y)+ ≤ �y + P�x.

(P�Tx) ∧ y = P�((P�Tx) ∧ y) = (P2
�
Tx) ∧ P�y ≤ P�y ≤ 1

�
Ty.
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We shall have use for the following corollary, which has some appeal of its 
own.

Corollary 6.11  Let E be a Dedekind complete vector lattice, and let T ∈ Orth (E)+ . 
Then

for all x, y ∈ E+ and 𝜆 > 0.

Proof  For 𝜆 > 0 , we let P� be the order projection in Orth (E) onto the band gener-
ated by (T − �I)+ in Orth (E) . According to Proposition 6.10, there exists a unique 
order projection P� in E such that P�(S) = P�S for all S ∈ Orth (E) . By applying 
part 2 of Proposition 6.10 in the first step and its part 3 in the third, we have, for 
x, y ∈ E+,

	�  ◻

7 � Continuity properties of orthomorphisms

Orthomorphisms preserve order convergence of nets. In this short section, we 
show that they also preserve unbounded order convergence and—when applica-
ble—convergence in the Hausdorff uo-Lebesgue topology.

Before doing so, let us note that this is in contrast to the case of general order 
bounded operators. Surely, there exist order bounded operators that are not order 
continuous. For the remaining two convergence structures, we consider �1 with its 
standard basis (en)∞n=1 . It follows from [14, Corollary 3.6] that en

uo
���������→ 0 . There are 

several ways to see that �1 admits a (necessarily unique) Hausdorff uo-Lebesgue 
topology �̂

�1
 . This follows from the fact that its norm is order continuous (see [24, 

p. 993]), from the fact that it is atomic (see [24, Lemma 7.4]), and from a result 
in the context of measure spaces (see [11, Theorem 6.3]). The latter two results 
also show that �̂

�1
 is the topology of coordinatewise convergence. In particular, 

en

�̂
�1

������������→ 0 which is, of course, also a consequence of the fact that en
uo
���������→ 0 . Define 

T ∶ �1 → �1 by setting Tx∶=
�∑∞

n=1
xn
�
e1 for x =

∑∞

n=1
xnen ∈ �1 . Since Ten = e1 for 

all n ≥ 1 , the order continuous positive operator T on �1 preserves neither uo-
convergence nor �̂

�1
-convergence of sequences in �1.

Proposition 7.1  Let E be a Dedekind complete vector lattice, and let T ∈ Orth (E) . 
Suppose that (x�)�∈A is a net in E such that x�

uo
���������→ 0 in E. Then Tx�

uo
���������→ 0 in E.

(Tx) ∧ y ≤ �(x ∧ y) +
1

�
Ty

(Tx) ∧ y ≤ (�x + P�Tx) ∧ y

≤ �(x ∧ y) + P�Tx ∧ y

≤ �(x ∧ y) +
1

�
Ty.
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Proof  Using (6.2), one easily sees that we may suppose that T and the x� ’s are posi-
tive. Let BT(E) denote the band in E that is generated by T(E). Take a y ∈ T(E)+ . 
Since a positive orthomorphism is a lattice homomorphism, there exists an x ∈ E+ 
such that y = Tx . Using the fact that x�

uo
���������→ 0 in E, the order continuity of T then 

implies that

in E. Then [14, Corollary 2.12] shows that also Tx� ∧ y
o
�����→ 0 in the regular vector sub-

lattice BT(E) of E. Since BT(E) also equals the band in BT(E) that is generated by T(E), 
an appeal to [19, Lemma  2.2] yields that Tx�

uo
���������→ 0 in BT(E) . Hence Tx� ∧ |y|

o
�����→ 0 

in BT(E) for all y ∈ BT(E) , and then also Tx� ∧ |y|
o
�����→ 0 in E for all y ∈ BT(E) . Since 

E = BT(E) ⊕
(
BT(E)

)d , it is now clear that Tx� ∧ |y|
o
�����→ 0 in E for all y ∈ E . 	�  ◻

For the case of a Hausdorff uo-Lebesgue topology, we need the following prepar-
atory result that has some independent interest. Lemma 9.9 is of the same flavour.

Proposition 7.2  Let E be a Dedekind complete vector lattice that admits a (not 
necessarily Hausdorff) locally solid linear topology �E, and let T ∈ Orth (E) . Sup-
pose that (x�)�∈A is a net in E such that x�

�E
���������→ 0 in E. Then Tx�

uE�E
����������������→ 0 in E.

Proof  As in the proof of Proposition 7.1, we may suppose that T and the x� are posi-
tive. For n ≥ 1 , we let Pn be the order projection in Orth (E) onto the band generated 
by (T − nI)+ in Orth (E) again, so that again there exists a unique order projection Pn 
in E such that Pn(S) = PnS for all S ∈ Orth (E) . Fix e ∈ E+ . Take a solid �E-neigh-
bourhood U of 0 in E, and choose a �E-neighbourhood V of 0 such that V + V ⊆ U . 
Take an n0 ≥ 1 such that Te∕n0 ∈ V  . As x�

�E
���������→ 0 , there exists an �0 ∈ A such that 

n0x� ∈ V  for all � ≥ �0 . By applying Corollary 6.11 in the first step, we have, for all 
� ≥ �0,

The solidness of V then implies that (Tx�) ∧ e ∈ U for all � ≥ �0 . Since U and e 
were arbitrary, we conclude that T�x

uE�E
����������������→ 0 . 	�  ◻

Since the unbounded topology uE �̂E that is generated by a Hausdorff uo-Lebesgue 
topology �̂E equals �̂E again, the following is now clear.

Tx� ∧ y = Tx� ∧ Tx = T(x� ∧ x)
o
�����→ 0

(7.1)

(Tx𝛼) ∧ e ≤ n0(x𝛼 ∧ e) +
1

n0
Te

≤ n0x𝛼 +
1

n0
Te

∈ V + V ⊆ U
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Corollary 7.3  Let E be a Dedekind complete vector lattice that admits a (necessar-
ily unique) Hausdorff uo-Lebesgue topology �̂E , and let T ∈ Orth (E) . Suppose that 
(x�)�∈A is a net in E such that x�

�̂E
���������→ 0 in E. Then Tx�

�̂E
���������→ 0 in E.

8 � Topologies on Orth (E)

Let E be a Dedekind complete vector lattice, and suppose that �E is a (not neces-
sarily Hausdorff) locally solid additive topology on E. Take a non-empty subset S 
of E. According to Theorem 3.1, there exists a unique additive topology ASOTS�E 
on Lob(E) such that, for a net (T�)�∈A in Lob(E) , T�

ASOTS�E
��������������������������������→ 0 if and only if 

|T�||s|
�E
���������→ 0 for all s ∈ S . When (T𝛼)𝛼∈A ⊆ Orth (E) , (6.2) and the local solidness of 

�E imply that this convergence criterion is also equivalent to the one that T�s
�E
���������→ 0 

for all s ∈ S . Hence on subsets of Orth (E) , an absolute strong operator topology 
that is generated by a locally solid additive topology on E coincides with the cor-
responding strong operator topology. In order to remind ourselves of the connec-
tion with the topology on the enveloping vector lattice Lob(E) of Orth (E) , we shall 
keep writing ASOTS�F when considering the restriction of this topology to subsets 
of Orth (E) , rather than switch to, e.g., SOTS�F.

The above observation can be used in several results in Sect. 3. For the ease of 
reference, we include the following consequence of Corollary 3.5.

Corollary 8.1  Let E be a Dedekind complete vector lattice, and let �E be a (not nec-
essarily Hausdorff) locally solid linear topology on E. Take a vector sublattice E  of 
Orth (E) and a non-empty subset S of E.

There exists a unique locally solid linear topology ASOTS�E on E  such that, for a 
net (T�)�∈A in E, T�

ASOTS�E
��������������������������������→ 0 if and only if T�s

�E
���������→ 0 for all s ∈ S.

Let IS be the ideal of E that is generated by S. For a net (T�)�∈A in E, T�
ASOTS�E
��������������������������������→ 0 

if and only if T�x
�E
���������→ 0 for all x ∈ IS.

When �E is a Hausdorff topology on E,  then ASOTS�E is a Hausdorff topology on 
E  if and only if IS separates the points of E .

According to the next result, there is an intimate relation between the existence of 
Hausdorff o-Lebesgue topologies and uo-Lebesgue topologies on E and on Orth (E).

Proposition 8.2  Let E be a Dedekind complete vector lattice. The following are 
equivalent: 

1.	 E admits a Hausdorff o-Lebesgue topology;
2.	 Orth (E) admits a Hausdorff o-Lebesgue topology;
3.	 E admits a (necessarily unique) Hausdorff uo-Lebesgue topology;
4.	 Orth (E) admits a (necessarily unique) Hausdorff uo-Lebesgue topology.
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Proof  As E and Orth (E) are Dedekind complete, they are not just order dense vector 
sublattices of their universal completions but even order dense ideals; see [3, p.126–
127]. Since these universal completions are isomorphic vector lattices by Corol-
lary 6.4, the proposition follows from a double application of [11, Theorem 4.9.(3)]. 	
� ◻

For a Dedekind complete vector lattice E, Orth (E) , being a band in Lob(E) , 
is a regular vector sublattice of Lob(E) . A regular vector sublattice E  of Orth (E) 
is, therefore, also a regular vector sublattice of Lob(E) , and Proposition  4.2 then 
shows how o-Lebesgue topologies on E  can be obtained from an o-Lebesgue topol-
ogy on E as (absolute) strong operator topologies. In particular, this makes the fact 
that part 1 of Proposition 8.2 implies its part 2 more concrete. The fact that part 1 
implies part 2 is made more concrete as a special case of the following consequence 
of Theorem 4.3.

Theorem 8.3  Let E be a Dedekind complete vector lattice. Suppose that E admits 
an o-Lebesgue topology �E . Take a regular vector sublattice E  of Orth (E), a non-
empty subset S  of E, and a non-empty subset S of E.

Then uSASOTS�E is a uo-Lebesgue topology on E .
We let IS denote the ideal of E that is generated by S,  and IS  the ideal of E  that is 

generated by S  . For a net (T�)�∈A in E, the following are equivalent: 

1.	 T�
uSASOTS�E
�����������������������������������������→ 0;

2.	 |T�s| ∧ |Ts|
�E
���������→ 0 for all T ∈ S  and s ∈ S;

3.	 |T�x| ∧ |Tx|
�E
���������→ 0 for all T ∈ IS  and x ∈ IS.

Suppose that �E is actually a Hausdorff o-Lebesgue topology on E. Then the follow-
ing are equivalent: 

(a)	 uSASOTS�E is a (necessarily unique) Hausdorff uo-Lebesgue topology on E;
(b)	 IS separates the points of E  and IS  is order dense in E .

In that case, the Hausdorff uo-Lebesgue topology uSASOTS�E on E  is the restric-
tion of the (necessarily unique) Hausdorff uo-Lebesgue topology on Lob(E,F), i.e., 
of uLob(E,F)

ASOTE�E, and the criteria in 1, 2, and 3 are also equivalent to: 

4.	 (|T�| ∧ |T|)x
�̂E
���������→ 0 for all T ∈ Lob(E) and x ∈ E.

9 � Comparing uniform and strong convergence structures on Orth (E)

Let E and F be vector lattices, where F is Dedekind complete, and let (T�)�∈A be 
a net in Lob(E,F) . In Sect. 5, we studied the relation between uniform and strong 
convergence of (T�)�∈A for order convergence, unbounded order convergence, 
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and—when applicable—convergence in the Hausdorff uo-Lebesgue topology. In 
the present section, we consider the case where (T�)�∈A is actually contained in 
Orth (E) . As we shall see, the relation between uniform and strong convergence is 
now much more symmetrical than in the general case of Sect. 5; see Theorems 9.4 
(and Theorem 9.5), 9.7, and 9.10, below.

These positive results might, perhaps, lead one to wonder whether some of the 
three uniform convergence structures under consideration might actually even be 
identical for the orthomorphisms. This, however, is not the case. There even exist 
sequences of positive orthomorphisms on separable reflexive Banach lattices with 
weak order units showing that the two ‘reverse’ implications in question are not 
generally valid. For this, we consider E∶=Lp([0, 1]) for 1 < p < ∞ . In that case, 
Orth (E) can canonically be identified with L∞([0, 1]) as an f-algebra; see [3, 
Example  2.67], for example. The uo-convergence of a net in the regular vector 
sublattice L∞([0, 1]) of L0([0, 1]) coincides with that in L0([0, 1]) which, according 
to [14, Proposition 3.1], is simply convergence almost everywhere in the case of 
sequences. According to [11, Theorem 6.3], the convergence of a net in the Haus-
dorff uo-Lebesgue topology of L∞([0, 1]) is equal to the convergence in meas-
ure. For n ≥ 1 , set fn∶=n�[0,1∕n] . Then fn

uo
���������→ 0 in L∞([0, 1]) , but it is not true that 

fn
o
�����→ 0 in L∞([0, 1]) since the fn are not even order bounded in L∞([0, 1]) . Using 

�[(k−1)2−n,k2−n] for n ≥ 1 and k = 1,… , 2n , one easily finds a sequence that is conver-
gent to zero in measure, but that is not convergent in any point of [0, 1].

We now start with uniform and strong order convergence for nets of orthomor-
phisms. For this, we need a few preparatory results. The first one is on general 
order continuous operators.

Lemma 9.1  Let E be a Dedekind complete vector lattice, let (T�)�∈A be a decreas-
ing net in Loc(E)

+, and let F be an order dense vector sublattice of E. The following 
are equivalent: 

1.	 T�x
o
�����→ 0 in E for all x ∈ F;

2.	 T�x
o
�����→ 0 in E for all x ∈ E.

Proof  We need to show only that part 1 implies part 2. Let T ∈ Lob(E) be such that 
T� ↓ T  in Lob(E) . Then T ∈ Loc(E)

+ . The hypothesis under part  1 and [3, Theo-
rem  1.18] imply that Tx = 0 for all x ∈ F+ . Since F is order dense in E and T is 
order continuous, it now follows from [3, Theorem 1.34] that T = 0 . Using [3, Theo-
rem 1.18] once more, we conclude that T�x ↓ 0 in E for all x ∈ E+ , and the statement 
in part 2 follows. 	� ◻

Proposition 9.2  Let E be a Dedekind complete vector lattice, let (T�)�∈A be a 
decreasing net in Orth (E)+, and let S be a non-empty subset of E. The following are 
equivalent: 

1.	 T�s
o
�����→ 0 in E for all s ∈ S;
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2.	 T�x
o
�����→ 0 in E for all x ∈ BS.

In particular, if E has a positive weak order unit e,   then T�x
o
�����→ 0 in E for all 

x ∈ E if and only if T�e ↓ 0 in E.

Proof  We need to show only that part  1 implies part  2. Take y ∈ I+
S
 . There 

exist s1,… , sn ∈ S and �1,… , �n ≥ 0 such that 0 ≤ y ≤ ∑n

i=1
�i�si� . Hence 

0 ≤ T�y ≤ ∑n

i=1
�iT��si� =

∑n

i=1
�i�T�si� for � ∈ A , and the assumption then implies 

that T�y ↓ 0 in E. Since orthomorphisms preserve bands, we have T�y ∈ BS for all 
� ∈ A , and the fact that BS is an ideal of E now shows that T�y ↓ 0 in BS . It follows 
that T�y

o
�����→ 0 in BS for all y ∈ IS . Since the restriction of each T� to the regular vec-

tor sublattice BS of E is again order continuous, and since IS is an order dense vec-
tor sublattice of the vector lattice BS , Lemma 9.1 implies that T�y

o
�����→ 0 in BS for all 

y ∈ BS . The fact that BS is a regular vector sublattice of E then yields that T�y
o
�����→ 0 in 

E for all y ∈ BS . 	�  ◻

Lemma 9.3  Let E be a Dedekind complete vector lattice, and let S  be a subset of 
Orth (E) that is bounded above in Lob(E) . Then, for x ∈ E+,

Proof  Using [2, Theorem 1.67.(b)] in the second step, we see that, for x ∈ E+,

By (6.1), this equals

	�  ◻

We can now establish our main result regarding uniform and strong order conver-
gence for nets of orthomorphisms.

Theorem 9.4  Let E be a Dedekind complete vector lattice, and let (T�)�∈A be a net 
in Orth (E) that is order bounded in Lob(E) . Let S be a non-empty subset of E with 
BS = E . The following are equivalent: 

1.	 T�
o
�����→ 0 in Orth (E);

2.	 T�
o
�����→ 0 in Lob(E);

3.	 T�s
o
�����→ 0 in E for all s ∈ S;

4.	 T�x
o
�����→ 0 in E for all x ∈ E.

(
⋁

T∈S

T

)
x =

⋁

T∈S

Tx

(
⋁

T∈S

T

)
x =

(
⋁

T∨∈S∨

T∨

)
x =

⋁

T∨∈S∨

T∨x.

⋁

y∨∈(Sx)∨

y∨ =
⋁

y∈Sx

y =
⋁

T∈S

Tx.
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In particular, when E has a weak order unit e, then T�
o
�����→ 0 in Lob(E) if and only if 

T�e
o
�����→ 0 in E.

As for Proposition 6.6, the order boundedness of the net could equivalently have 
been required in Orth (E).

Proof  Since (T�)�∈A is supposed to be order bounded in the regular vector sublat-
tice Orth (E) , the equivalence of the parts 1 and 2 follows from [14, Corollary 2.12]. 
Lemma  4.1 shows that part  2 implies part  4, and evidently part  4 implies part  3. 
The proof will be completed by showing that part  3 implies part  1. Suppose that 
T�s

o
�����→ 0 in E for all s ∈ S or, equivalently, that |T�||s| = |T�s|

o
�����→ 0 in E for all 

s ∈ S . For � ∈ A , set T̃�∶=
⋁

�≥� �T�� in Lob(E) . Since Lemma  9.3 shows that 
T̃��s� =

⋁
�≥� �T���s� for � ∈ A and s ∈ S , we see that T̃�|s| ↓ 0 in E for all s ∈ S . 

Proposition  9.2 then yields that T̃�x
o
�����→ 0 for all x ∈ B|S| = E . Using that T̃� ↓ , it 

follows that T̃� ↓ 0 in Lob(E) . Since |T�| ≤ T̃� for � ∈ A , we see that |T�|
o
�����→ 0 in 

Lob(E) , as required. 	�  ◻

In view of Lemma  4.1, the most substantial part of Theorem  9.4 is the fact 
that the parts  3 and  4 imply the parts  1 and  2. For this to hold in general, the 
assumption that (T�)�∈A be order bounded is actually necessary. To see this, let 
Γ be an uncountable set that is supplied with the counting measure, and consider 
E∶=�p(Γ) for 1 ≤ p < ∞ . Set

and, for (n1, S1), (n2, S2) ∈ A , say that (n1, S2) ≤ (n2, S2) when n1 ≤ n2 and S1 ⊆ S2 . 
For (n, S) ∈ A , define T(n,S) ∈ Z(E) = Orth (E) by setting

for all x ∶ Γ → ℝ in E. Take an x ∈ E . Then the net (T(n,S)x)(n,S)∈A has a tail 
(T(n,S)x)(n,S)≥(1,supp x) that is identically zero. Hence T(n,S)x

o
�����→ 0 in E for all x ∈ E . We 

claim that (T(n,S))(n,S)∈A is not order convergent in Orth (E) , and not even in Lob(E) . 
For this, it is sufficient to show that it does not have any tail that is order bounded 
in Lob(E) . Suppose, to the contrary, that there exist an n0 ≥ 1 , an at most count-
ably infinite subset S0 of Γ , and a T ∈ Lob(E) such that T(n,A) ≤ T  for all (n,A) ∈ A 
with n ≥ n0 and A ⊇ A0 . As Γ is uncountable, we can choose an x0 ∈ Γ ⧵ A0 ; we let 
ex0 denote the corresponding atom in E. Then, in particular, T(n,A0)

ex0 ≤ Tex0 for all 
n ≥ n0 . Hence, Tex0 ≥ nex0 for all n ≥ n0 , which is impossible.

Using Theorem 9.4 and Corollary 6.8, the following is easily established. In 
contrast to Theorem 9.4, there is no order boundedness in the hypotheses because 
this is taken care of by Corollary 6.8.

Theorem  9.5  Let E be a Dedekind complete vector lattice, and let (Tn)∞n=1 be a 
sequence in Orth (E) . Let S be a non-empty subset of E such that IS = E . The follow-
ing are equivalent: 

A∶={(n, S) ∶ n ≥ 1, S ⊂ Γ is at most countably infinite}

T(n,S)x∶=n�Γ⧵Sx
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1.	 Tn
o
�����→ 0 in Orth (E);

2.	 Tn
o
�����→ 0 in Lob(E);

3.	 Tns
o
�����→ 0 in E for all s ∈ S;

4.	 Tnx
o
�����→ 0 in E for all x ∈ E.

In particular, when E has a strong order unit e,   then Tn
o
�����→ 0 in Orth (E) if and 

only if Tne
o
�����→ 0 in E.

Remark 9.6  Even for Banach lattices with order continuous norms, the condition 
that IS = E in Theorem 9.5, cannot be relaxed to BS = E as in Theorem 9.4. To see 
this, we choose E∶=c0 and set e∶=

⋁
n≥1 ei∕i2 , where (ei)∞i=1 is the standard unit basis 

of E. It is clear that Be = E . For n ≥ 1 , there exists a unique Tn ∈ Orth (E) such that, 
for i ≥ 1 , Tnei = nei when i = n , and Tnei = 0 when i ≠ n . It is clear that Tne

o
�����→ 0 in 

E. However, a consideration of Tn
�⋁

i≥1 ei∕i
�
 for n ≥ 1 shows that (Tn)∞n=1 fails to be 

order bounded in Orth (E) , hence cannot be order convergent in Orth (E).

We continue our comparison of uniform and strong convergence structures on 
the orthomorphisms by considering unbounded order convergence. In that case, 
the result is as follows.

Theorem 9.7  Let E be a Dedekind complete vector lattice, and let (T�)�∈A be a net 
in Orth (E) . Let S be a non-empty subset of E such that BS = E . The following are 
equivalent: 

1.	 T�
uo
���������→ 0 in OrthE;

2.	 T�
uo
���������→ 0 in Lob(E);

3.	 T�s
uo
���������→ 0 in E for all s ∈ S;

4.	 T�x
uo
���������→ 0 in E for all x ∈ E.

In particular, when E has a weak order unit e,   then T�
uo
���������→ 0 in Orth (E) if and 

only if T�e
uo
���������→ 0 in E.

Proof  Since Orth (E) is a regular vector sublattice of Lob(E) , the equivalence of the 
parts 1 and 2 is clear from [14, Theorem 3.2]

We prove that part 2 implies part 4. Suppose that T�
uo
���������→ 0 in Lob(E) , so that, in 

particular, |T�| ∧ I
o
�����→ 0 in Lob(E) . Take x ∈ E . Using (6.1) in the second step, and 

Lemma 4.1 in the third, we have

Since the net (|T�||x|)�∈A is contained in the band B|x| , it now follows from [11, 
Proposition  7.4] that |T�||x|

uo
���������→ 0 in E. As |T�||x| = |T�x| , we conclude that 

T�x
uo
���������→ 0 in E.

It is clear that part 4 implies part 3.

(|T�||x|) ∧ |x| = (|T�||x|) ∧ (I|x|) = (|T�| ∧ I)|x|
o
�����→ 0.
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We prove that part 3 implies part 2. Suppose that T�s
uo
���������→ 0 in E for all s ∈ S , so 

that also |T�||s| = |T�s|
uo
���������→ 0 in E for s ∈ S . Using (6.1) again, we have

in E for all x ∈ S . In view of the order boundedness of (|T�| ∧ I)�∈A , Theorem 9.4 
then yields that |T�| ∧ I

o
�����→ 0 in Lob(E) . As I is a weak order unit of Orth (E) , [15, 

Lemma 3.2] (or the more general [11, Proposition  7.4]) shows that T�
uo
���������→ 0 in 

Lob(E) . 	� ◻

We now consider uniform and strong convergence of nets of orthomorphisms 
for the Hausdorff uo-Lebesgue topology. Let E be a Dedekind complete vector 
lattice. Suppose that E admits a (necessarily unique) Hausdorff uo-Lebesgue 
topology �̂E . We recall from Theorem 8.3 that Orth (E) then also admits a (nec-
essarily unique) Hausdorff uo-Lebesgue topology �̂Orth (E) , and that this topology 
equals uOrth (E)ASOTE �̂E . Furthermore, for a net (T�)�∈A in Orth (E) , we have that 
T�

�̂Orth (E)
������������������������→ 0 if and only if |T�x| ∧ |Tx|

�̂E
���������→ 0 for all T ∈ Orth (E) and x ∈ E.

We need two preparatory results.

Lemma 9.8  Let E be a vector lattice that admits a (necessarily unique) Hausdorff 
uo-Lebesgue topology �̂E . Suppose that E has a positive weak order unit e. Let 
(x�)�∈A be a net in E. Then x�

�̂E
���������→ 0 in E if and only if |x�| ∧ e

�̂E
���������→ 0 in E.

Proof  We need to show only the “if”-part. Suppose that |x�| ∧ e
�̂E
���������→ 0 in E. For each 

x ∈ E , there exists a net (y�)�∈B in Ie such that y�
o
�����→ x , and then certainly y�

�̂E
���������→ x . 

Hence Ie
�̂E

= E . An appeal to [24, Proposition 9.8] then shows that x�
uE �̂E
����������������→ 0 . Since 

uE �̂E = �̂E , we are done. 	�  ◻

Our second preparatory result is in the same vein as Proposition 7.2.

Lemma 9.9  Let E be a vector lattice with the principal projection property that 
admits a (not necessarily Hausdorff) o-Lebesgue topology �E, and let (T�)�∈A be a 
net in Orth (E) . Let S be a non-empty subset of E such that BS = E . Suppose that 
T�s

�E
���������→ 0 for all s ∈ S . Then T�x

uE�E
����������������→ 0 for all x ∈ E.

Proof  Using (6.2), it follows easily that T�x
�E
���������→ 0 for all x ∈ IS . Take an x ∈ E , and 

let U be a solid �E-neighbourhood U of 0. Choose a �E-neighbourhood V of 0 such 
that V + V ⊆ U . There exists a net (x�)�∈B in IS such that x�

o
�����→ x in E, and then we 

can choose a �0 ∈ B such that |x − x�0 | ∈ V  . As |T�||x�0 | = |T�x�0 |
�E
���������→ 0 , there exists 

an �0 ∈ A such that |T�||x�0 | ∈ V  for all � ≥ �0 . For all � ≥ �0 , we then have

(|T�| ∧ I)|s| = (|T�||s|) ∧ |s|
o
�����→ 0
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As U is solid, we see that (|T�x|) ∧ |x| ∈ U for � ≥ �0 , and we conclude that 
(|T�x|) ∧ |x|

�E
���������→ 0 . Since |T�x| ∈ B|x| for � ∈ A , it then follows from [24, Proposi-

tion 9.8] that |T�x| ∧ |y|
�E
���������→ 0 in E for all y ∈ B|x| . As B|x| is a projection band in E, 

this holds, in fact, for all y ∈ E . 	�  ◻

Theorem 9.10  Let E be a Dedekind complete vector lattice. Suppose that E admits 
a (necessarily unique) Hausdorff uo-Lebesgue topology �̂E, so that Orth (E) and 
Lob(E) also admit (necessarily unique) Hausdorff uo-Lebesgue topologies �̂Orth (E) 
and �̂Lob(E)

, respectively. Let (T�)�∈A be a net in Orth (E) . Let S be a non-empty sub-
set S of E such that BS = E . The following are equivalent: 

1.	 T�

�̂Orth (E)
������������������������→ 0 in Orth (E);

2.	 T�

�̂Lob (E)

�����������������������→ 0 in Lob(E);

3.	 T�s
�̂E
���������→ 0 in E for all s ∈ S;

4.	 T�x
�̂E
���������→ 0 in E for all x ∈ E.

In particular, when E has a weak order unit e,  then T�
�̂Orth (E)
������������������������→ 0 in Orth (E) if and 

only if T�e
�̂E
���������→ 0 in E.

Proof  The equivalence of the parts (1) and  (2) follows from the final part of 
Theorem 4.3.

We prove that part  (1) implies part  (4). Suppose that T�
�̂Orth (E)
������������������������→ 0 in Orth (E) . 

Take an x ∈ E . Then certainly |T�x| ∧ |x| = |T�x| ∧ |Ix|
�̂E
���������→ 0 . The net (T�x)�∈A is 

contained in the band B|x| . Since, by [24, Proposition 5.12], the regular vector sub-
lattice B|x| of E also admits a (necessarily unique) Hausdorff uo-Lebesgue topology 
(namely, the restriction of �̂E to B|x| ), it then follows from Lemma 9.8 that T�x

�̂E
���������→ 0 

in E.
We prove that part  (4) implies part  (1). Suppose that T�x

�̂E
���������→ 0 for all x ∈ E . 

Since �̂E is locally solid, we then also have |T�x| ∧ |Tx|
�̂E
���������→ 0 for all T ∈ Orth (E) 

and x ∈ E . Hence T�
�̂Orth (E)
������������������������→ 0 in Orth (E).

It is clear that part (4) implies part (3).
Since uE �̂E = �̂E , Lemma 9.9 shows that part (3) implies part (4). 	�  ◻

0 ≤ (|T𝛼x|) ∧ |x|
= (|T𝛼| ∧ I)|x|
≤ (|T𝛼| ∧ I)|x𝛽0 | + (|T𝛼| ∧ I)|x − x𝛽0 |
≤ |T𝛼||x𝛽0 | + |x − x𝛽0 |
∈ V + V ⊆ U.
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