Annex B: The Mixed Logit Model (ML)

In accordance with random utility theory (McFadden, 1973, McFadden, 1974), we assume that the utility of individual n of choosing alternative j in choice situation t can be represented as:

$$U_{njt} = \boldsymbol{\beta}'_{n} X_{njt} + \varepsilon_{njt} \tag{1}$$

where X_{njt} is a vector of K observed attributes related to the alternative j of the choice situation t; β'_n is a vector of preference parameters which explain choices; ε_{njt} is the unobserved error term.

The preference parameters β_k are distributed in the population according to continuous random distributions $f(\beta)$ to be chosen by the analyst (Train, 2009). For the full vector of K random coefficients in the model, we may write the full set of random parameters as:

$$\boldsymbol{\beta}_n = \boldsymbol{\beta} + \boldsymbol{\Gamma}.\,\boldsymbol{\nu}_n \tag{2}$$

where Γ is a lower-triangular matrix that takes care of the possible correlations among coefficients¹, and ν_n correspond to the individual specific heterogeneity. If at least one of the elements below the diagonal of Γ shows statistical significance, this is supportive of dependence across tastes (Scarpa and Del Giudice, 2004). As individuals were confronted to several choice situations (panel data), we have to consider a sequence of *S* observed choices (s₁, s₂, ..., s_s) by the same individual. The probability of observing a sequence *s* conditional on β_n is:

$$L_{ns}(\beta_n) = \prod_{s=s_1}^{s_s} \left[\frac{exp(\beta_n'.X_{njs})}{\sum_{q=1}^{J} exp(\beta_n'.X_{nqs})} \right]$$
(3)

However, the researcher does not know β_n and therefore cannot condition the probability of choosing one alternative on β . The unconditional choice probability is therefore the integral of $L_{ns}(\beta_n)$ over all possible values of β_n is $P_{ns} = \int L_{ns}(\beta) \cdot f(\beta) \cdot d\beta$. Because the integral in P_{ns} equation does not have a closed form solution, the parameters of the model are estimated by simulated maximum likelihood estimation techniques (Train, 2009).

¹ The matrix Γ corresponds to the Cholesky decomposition of the covariance matrix: Γ '. Γ =COV