
applied
sciences

Article

Global Optimisation through Hyper-Heuristics: Unfolding
Population-Based Metaheuristics

Jorge M. Cruz-Duarte 1,† , José C. Ortiz-Bayliss 1,† , Ivan Amaya 1,*,† and Nelishia Pillay 2,†

����������
�������

Citation: Cruz-Duarte, J.M.;

Ortiz-Bayliss, J.C.; Amaya, I.; Pillay,

N. Global Optimisation through

Hyper-Heuristics: Unfolding

Population-Based Metaheuristics.

Appl. Sci. 2021, 11, 5620.

https://doi.org/10.3390/

app11125620

Academic Editor: Peng-Yeng Yin

Received: 12 May 2021

Accepted: 09 June 2021

Published: 18 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur,
Monterrey 64849, NL, Mexico; jorge.cruz@tec.mx (J.M.C.-D.); jcobayliss@tec.mx (J.C.O.-B.)

2 Department of Computer Science, University of Pretoria, Lynnwood Rd, Hatfield, Pretoria 0083, South Africa;
npillay@cs.up.ac.za

* Correspondence: iamaya2@tec.mx; Tel.: +52-(81)-8358-2000
† These authors contributed equally to this work.

Abstract: Optimisation has been with us since before the first humans opened their eyes to natural
phenomena that inspire technological progress. Nowadays, it is quite hard to find a solver from the
overpopulation of metaheuristics that properly deals with a given problem. This is even considered
an additional problem. In this work, we propose a heuristic-based solver model for continuous
optimisation problems by extending the existing concepts present in the literature. We name such
solvers ‘unfolded’ metaheuristics (uMHs) since they comprise a heterogeneous sequence of simple
heuristics obtained from delegating the control operator in the standard metaheuristic scheme to a
high-level strategy. Therefore, we tackle the Metaheuristic Composition Optimisation Problem by
tailoring a particular uMH that deals with a specific application. We prove the feasibility of this model
via a two-fold experiment employing several continuous optimisation problems and a collection of
diverse population-based operators with fixed dimensions from ten well-known metaheuristics in
the literature. As a high-level strategy, we utilised a hyper-heuristic based on Simulated Annealing.
Results demonstrate that our proposed approach represents a very reliable alternative with a low
computational cost for tackling continuous optimisation problems with a tailored metaheuristic using
a set of agents. We also study the implication of several parameters involved in the uMH model and
their influence over the solver performance.

Keywords: metaheuristic; hyper-heuristic; optimisation; algorithm; unfolded metaheuristic

MSC: 65K10; 90C59; 68W50

1. Introduction

Optimisation has been among us since forgotten times in different implicit human
technologies. An umpteen quantity of problems and solutions have appeared chaotically
in the current information age. Literature is so prolific that pretending to cover all existing
approaches in this manuscript is an impossible task. Instead, we shall focus on one approach
that has received a great deal of attention throughout previous years [1]: metaheuristics
(MHs). The term covers a plethora of algorithms. Genetic Algorithms [2] and Simulated
Annealing [3] are a couple of commonly found examples, which have existed for more
than three decades. Others are younger, for example, Reflection-based Optimisation of
the Stochastic Spiral Algorithm [4] and Archimedes Optimisation Algorithm [5]. With
a rapid literature review, one can notice that innovation in MH has somehow stalled or
branched out far from the characteristics that make these methods striking; i.e., hybrids and
over-sophisticated approaches. Concerning the stagnation, we refer to the apparent lack of
actual novel proposals in terms of mathematical or technical procedures [6]. It is customary
for these methods to be accompanied by a corresponding metaphor. This may seem to
differentiate two MHs even if they are mathematically equivalent. Hence, it is hard to assess

Appl. Sci. 2021, 11, 5620. https://doi.org/10.3390/app11125620 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4494-7864
https://orcid.org/0000-0003-3408-2166
https://orcid.org/0000-0002-8821-7137
https://orcid.org/0000-0003-3902-5582
https://doi.org/10.3390/app11125620
https://doi.org/10.3390/app11125620
https://doi.org/10.3390/app11125620
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11125620
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11125620?type=check_update&version=1

Appl. Sci. 2021, 11, 5620 2 of 34

differences between proposals based on different metaphors. This impoverishes the study
of metaheuristics, thus hindering the development of better methods as research efforts
can become sparse. In turn, the field of metaheuristics becomes polluted with redundant
information, all of them claiming novelty, and its evolution slows. Even so, the only way to
detect similar approaches is to run extensive simulations or that, by chance, one researcher
gets to know them really well. Still, with the increasing appearance of proposals, it becomes
exceedingly difficult to notice this issue. In our previous work, we analysed this situation
and proposed a model to formally study metaheuristics pushing away the metaphors
and only concentrating on their operative core [7]. However, we noticed that the standard
metaheuristic model only comprises up to three simple heuristics or search operators, a fact
strongly limiting their exploration and exploitation capabilities and making them highly
susceptible to the No-Free-Lunch (NFL) [8] theorem. Another relevant fact to take into
account is the sensitivity of these methods to their inherent parameters. So, there may exist
a simple alternative to study and propose enhancements in the metaheuristic field.

Concerning the selection of proper hyper-parameters of metaheuristics, it leads to a
varying metaheuristic performance. For example, the Unified Particle Swarm Optimisation
algorithm includes an explicit parameter for controlling the balance between exploration
and exploitation of the search domain [9]. Other strategies include parameters of a cate-
gorical nature, leading to entirely different behaviours from one value to the next, e.g., the
mutation and crossover schemes in Genetic Algorithms [10]. Because of this, some authors
have sought ways for incorporating self-tuning capabilities into metaheuristics [11–14].
The previous comments should suffice to evidence that the parameter setting of a meta-
heuristic affects its performance. This complicates comparisons across different strategies
since experimental conditions may not be the same or because the same experimental
conditions can lead to a different performance level for each process. Despite the success
of self-tuning approaches, the process remains a complex issue. This is mainly because
the set of suitable parameters may change from one problem to another or even across
instances of the same problem. As mentioned above, it leads us too far from the simplicity
that characterises metaheuristics.

Tuning a metaheuristic is not the only way to improve its performance, and the re-
search community has sought other ways for doing so. For example, Genetic Programming
has been used to redefine existing solvers, as evidenced by Miranda et al. in [15]. In their
work, the authors focused on the well-known Particle Swarm Optimisation and obtained
improved results over a dataset of 60 standard continuous problems. Nonetheless, their
approach is not easy to extend to other metaheuristics. Hence, a significant effort would be
required to generalise it. Another path where research has focused is on ways to combine
different solvers. This is known as hybridisation [16,17]. Bear in mind that hybrids may
extend beyond the realm of metaheuristics. Thus, they may also integrate other approaches,
e.g., Nelder–Mead Simplex [18]. Despite this, hybrids fall within the umbrella of meta-
heuristics. For instance, Hassan and Pillay used a Genetic Algorithm for automating the
design of hybrid metaheuristics [19]. There are more examples that tune operators for a
metaheuristic mould [20,21]. However, we do not delve into them for the sake of brevity.
We must mention, nonetheless, that there is another enticing strategy that transcends the
field of metaheuristics. Such an approach is commonly known as Hyper-Heuristics (HHs),
and they strive to provide a higher-level solver [22]. They do this by using the available
heuristics in different ways. Thus, HHs stand as a broad field with different variants [23].
Amongst them reside selection hyper-heuristics, which combine the available heuristics
into a procedure for solving a given optimisation problem. This approach has been tested
on the generation of metaheuristics based on two or more simple heuristics, where authors
have achieved an excellent performance in particular problems [24]. However, the authors
failed to provide a concrete mathematical model so that further systematic research on
metaheuristics could be pursued.

In the previous lines, we have commented about the exacerbation of ‘novel’ meta-
heuristic proposals that lack a proper justification. Sörensen et al. warned about this issue

Appl. Sci. 2021, 11, 5620 3 of 34

and its risks [6]. Still, remember that the NFL theorem reigns supreme, and so the quest
for better solvers cannot halt. As such, a track worth pursuing deals with finding a way
for combining different approaches, and different parameter settings, into a more robust
solver. There are, indeed, some proposals for fusing metaheuristics, as we just mentioned.
However, often times, such approaches are not easy to generalise. Moreover, there is no
common ground regarding terminology and operations of metaheuristics, as most of them
relate to the associated metaphor. Thus, it is essential to establish a standardised model,
e.g., by using a generalised metaheuristic mould. We have taken a preliminary step in
this direction by proposing a modelling scheme that allows merging Search Operators
(SOs) from different metaheuristics [7]. Even so, it may be worthwhile to set up a branched
model with different paths in such a way that different sets of SOs are applied to a given
problem state to provide a more diverse behaviour. It may also be advantageous to ex-
tend the looping scheme so that the sequence of SOs can change throughout the solution
process. This, however, is not a straightforward task with the previously proposed model.
Therefore, in this work we extend upon the model and, thus, this manuscript offers five
major contributions:

1. Provides a broader metaheuristic model that allows for more complex structures,
such as those containing topologies or sub-populations;

2. Presents an overview of the effect of having long sequences of heterogeneous search
operators that can be applied to continuous optimisation problems;

3. Shows the effect of three features (differentiability, separability, and unimodality) over
the performance of the generated metaheuristics;

4. Studies the nature of search operators selected when solving problems with different
characteristics and dimensionalities;

5. Stipulates a hyper-heuristic model for furnishing metaheuristics that can outperform
standard ones in a majority of scenarios.

The remainder of this document is organised as follows. Section 2 presents background
information about the fundamental concepts of our research. Then, Section 3 illustrates our
proposed approach. Section 4 provides an overview of the testing that we carry out, while
Section 5 shows the corresponding data. Finally, Section 6 wraps up the manuscript with the
main insights and the paths for future work. In addition, we provide an appendix section
containing all the detailed information about the search operators utilised in this work.

2. Theoretical Foundations

We begin this section by presenting the key concepts that support our proposed model.
Be aware that although concepts may seem trivial, their meaning varies across disciplines.
Thus, it is critical to have a well-settled background for avoiding misunderstandings and
controversies. For example, the terms ‘heuristic’ and ‘metaheuristic’ could be swapped for
a given problem, but they may have clearly differentiated meanings in other areas.

2.1. Optimisation

Optimisation is a routine procedure for all living beings. It refers to the decisions taken
for reaching the best outcome in a given situation. From this point onward, we assume that
an optimisation problem is such where an objective function must be minimised within a
feasible continuous domain, where such elements can be described as follows.

Definition 1 (Minimisation problem). Let X ⊆ S be a feasible domain, since S is an arbitrary
domain, and let f (~x) be an objective function to be minimised, known as cost function, defined on a
nonempty domain X 6= ∅ such as f (~x) : X 7→ R. Thus, a minimisation problem represented with
the tuple (X, f) is stated as

~x∗ = argmin
~x∈X

{ f (~x)}, (1)

where ~x∗ ∈ X is the optimal vector (or solution) that minimises the objective function within the
feasible domain, i.e., f (~x∗) ≤ f (~x), ∀~x ∈ X.

Appl. Sci. 2021, 11, 5620 4 of 34

Remark 1 (Particular domain). This feasible domain is somehow a general representation of any
domain delimited by simple constraints, which can be extended to a more complex one by considering
constraints of a different nature.

Remark 2 (Maximisation problem). In several applications, the objective function models the
revenue, profit or utility of a process, so this function needs to be maximised. Let f̂ (~x) be the utility
function such that we can state the optimisation problem with (1) by using a simple transformation
such as f (~x) = − f̂ (~x).

We deal with two kinds of problem domains, continuous and combinatorial, at differ-
ent levels of abstraction. For the former, S = RD and D stand for the number of dimensions
that the problem contains. Under some conditions, such as when dealing with engineering
applications, the user has prior knowledge about this domain. Moreover, D is usually fixed
and represents the number of design variables. For the combinatorial problem, we say that
S = Hv with H as the heuristic space and v as the cardinality of the sequence. Further
details about this problem are provided below.

2.2. Heuristics

Heuristics can be used to create, evaluate or modify a ‘solution’ to a problem. It is
customary to create these kinds of solvers based on existing knowledge about the problem,
and they are fairly common in combinatorial optimisation [22], but seldom used in the
continuous one [23]. In addition, the ideas presented by [22,23] can be used to define
three groups of heuristics, depending on their pattern of actions: low-level, mid-level, and
high-level. The first one is rather straightforward, as it contains one fixed action. The next
one refers to an array of such actions. Finally, the last group is reserved to those approaches
that can be reconfigured or that execute a variable number of instructions. In turn, each
group relates to simple heuristics, metaheuristics, and hyper-heuristics, respectively. Some
authors use these terms indistinctly, although correctly. The reason is that based on the
surrounding conditions, such terms overlap. In this sense, one may call a ‘metaheuristic’ a
‘heuristic’, or even conclude that a ‘metaheuristic’ is given by a partial solution of a ‘hyper-
heuristic’. In the long run they are all heuristics that operate with different specifications.
In the subsequent sections, we describe briefly these concepts, which were fully detailed in
our previous manuscript [7]. Furthermore, since the majority of heuristics operate over a
population (i.e., a set of agents), we need to lay some concepts:

Definition 2 (Population). Let X(t) be a finite set of N candidate solutions for an optimisation
problem given by X and f (~x) (cf. Definition 1) at time t in an iterative procedure, i.e., X(t) =
{~x1(t),~x2(t), . . . ,~xN(t)}. Then, ∀ n ∈ {1, . . . , N}, ~xn(t) ∈ X denotes the n-th search agent
position of, let us say, the population X(t) of size N. For a single-agent approach (N = 1),
the nomenclature is preserved and one can write ~x(t) = ~x1(t).

Definition 3 (Best solution). Let Z(t) be an arbitrary set of candidate solutions, which can
be designated as, e.g., the entire population Z(t) is X(t), the n-th neighbourhood Z(t) is Yn(t),
and the historical evolution of the n-th candidate Z(t) is {~xn(0),~xn(1), . . . ,~xn(t)}. Therefore, let
~x∗(t) ∈ Z(t) be the best position from Z(t), i.e., ~x∗(t) = arginf{ f (Z(t))}.

2.2.1. Simple Heuristics

Simple Heuristics (SHs) are the cornerstone of search techniques. They tackle the
problem domain directly and can be of a constructive or perturbative nature. The former
builds a solution from the ground up. The latter alters current ones [25]. Nonetheless, we
also require a SH that validates if the process must continue. In simple words, this new
category analyses the ongoing situation and selects the next SH to use. Perhaps it has no
relevance as a standalone heuristic. Still, in the context of metaheuristics, the finaliser is
the “master strategy” controlling the search procedure that many authors use to define
the metaheuristics [26]. Bearing this in mind, we briefly define the simple heuristics and

Appl. Sci. 2021, 11, 5620 5 of 34

their three categories. Consider that these concepts are applicable to an arbitrary problem
domain S.

Definition 4 (Simple Heuristic). Let H be a set of simple heuristics, or heuristic space, with a
composition operation ◦ : H×H 7→ H. Let Hi,Ho,H f ⊂ H be subsets of heuristics that produces,
modifies, and chooses between two operators, respectively.

Definition 5 (Initialiser). Let hi : S 7→ X ⊆ S be a simple heuristic that generates a candidate
solution ~x ∈ X within the feasible domain from scratch, i.e., ~x = hi{X}.

Definition 6 (Search Operator). Let ho : X 7→ X be a simple heuristic that obtains a new position
~x(t + 1) ∈ X from the current position ~x(t) ∈ X, since t indicates the current iteration, i.e.,
~x(t) = ho{~x}. A search operator mostly comprises two basic operations: perturbation and selection.
Hence, let hp, hs ∈ Ho be also simple heuristics that modify and update the current solution ~x(t),
respectively; then ~y = hp{~x} and ~x(t + 1) = hs{~y}. These are called perturbator and selector.
A perturbator always precedes a selector, so a search operator corresponds to ho = hs ◦ hp. In many
implementations, selectors may require additional information to operate.

Definition 7 (Finaliser). Let h f : X× Z2 7→ H be a simple heuristic that evaluates the current
solution quality and chooses which search operator to apply. To do so, it uses information about the
iterative procedure (e.g., the current solution, its fitness value, the current iteration, the previous
candidate solutions, and other measurements) in a criteria function c f : (Z+,R,X, . . .) 7→ Z2.
Then, h f ∈ H f is called a finaliser and is defined as

h f (h0){~x} ,
{

he{~x}, if c f (t, f , X, . . .) = 1,
h f ◦ h0{~x}, otherwise,

(2)

since h0 and he are two search operators selected according to c f ; he is the identity operator, so
~x = he{~x}.

Remark 3 (Criteria function). This function c f ‘decides’ whether an additional iteration is
required in the searching procedure. Hence, c f checks one or many custom stopping (or convergence)
criteria using information from the iterative process to make such a decision. Several criteria have
been proposed in the literature for numerical methods in general, so their selection primarily depends
on the problem application. The simplest one corresponds to a limited number of iterations tmax,
such as c f (t) , H(t− tmax), where H is the standard Heaviside function. Other complexes include
a measure of computing budget, fitness improvement threshold, restricted stagnation counts, and so
forth. Further information is provided in Appendix A.4.

It is worth noting that a selector and a finaliser are pretty similar in their functioning;
the only difference is that the former deals with the problem domain, whilst the latter deals
with the heuristic space.

2.2.2. Metaheuristics

A metaheuristic (MH) can be defined as a policy for handling a set of heuristics. This
approach has become mainstream throughout the years [27,28]. In the following definitions,
we describe how SHs serve as mathematical “building blocks” that can be merged into a
MH. Do note that this liberates the process from the need of an inspirational metaphor and
that it can describe existing or new metaheuristics.

Definition 8 (Metaheuristic). Let MH : S 7→ X be an iterative procedure called metaheuristic
that renders an optimal solution ~x∗ for a given optimisation problem (X, f), cf. Definition 1.
A metaheuristic can be mathematically defined in terms of three basic components as shown,

MHo , 〈hi, ho, h f 〉 = h f (ho) ◦ hi, (3)

Appl. Sci. 2021, 11, 5620 6 of 34

since hi ∈ Hi is an initialiser, h f ∈ H f is a finaliser, and ho ∈ Ho is a search operator, according to
Definition 4. Regard that ho represents one or more search operators combined under the composition
closure, i.e., ho = h1 ◦ h2 ◦ · · · ◦ hv. These operators can be described in an arrangement such as
~ho = (h1, h2 . . . , hv)ᵀ, where v corresponds to the metaheuristic cardinality, #MHo = #~ho = v.

2.2.3. Hyper-Heuristics

Hyper-Heuristics (HHs) are high-level methods that operate at a higher level of
abstraction than metaheuristics and share several commonalities. Among their differences,
the most distinctive one, at least for this work, is the domain where they operate. While an
MH deals with continuous optimisation problems, an HH tackles a combinatorial problem
domain because it is a “heuristic choosing heuristics” [29]. In the following lines, we define
a hyper-heuristic using the previously described terms.

Definition 9 (Hyper-Heuristic). Let~h ∈ H ⊆ Hv be a heuristic configuration from a feasible
heuristic collection H within the heuristic space H (cf. Definition 4). Let Q(~h|X, f) : H ×X 7→R+

be a metric that measures the performance of ~h when it is applied on (X, f), cf. Definition 1.
Therefore, let the hyper-heuristic (HH) be a technique that solves

~h∗ = argmax
~h∈H

{
Q(~h|X, f)

}
. (4)

In other words, the HH searches for the optimal heuristic configuration~h∗ that best approaches to
the solution of (X, f) with the maximal performance Qmax = Q(~h∗|X, f).

Remark 4 (Heuristic Configuration). When performing a hyper-heuristic process, a heuristic
configuration~h ∈ Hv is a way of referring to a metaheuristic (cf. Definition 8).

Remark 5 (Performance Metric). There is no unique expression for determining the performance
Q(~h|X, f) since it depends on the desired requirements for the heuristic sequence~h. A numerical
and practical way to assess this measurement, due to the stochastic nature of almost all the heuristic
sequences, is to combine different statistics from several independent runs of~h over the same problem
(X, f). For example, the negative sum of median and interquartile range of the last fitness values
f (~x∗,r) achieved in the runs, r = 1, . . . , Nr. More elaborated formulae could include other fitness
statistics, time measurements, stagnation records, and so on.

2.3. Metaheuristic Composition Optimisation Problem

In the previous sections, crucial concepts of optimisation and heuristics (simple heuris-
tics, metaheuristics, and hyper-heuristics) were introduced. Particularly, metaheuristics
essentially comprise an initialiser, search operators (perturbators and selectors), and a
finaliser. These components are usually combined using a manual design by a researcher
or practitioner.

However, Qu et al. presented in [30] a taxonomy for the automated design of search
algorithms. This taxonomy includes three categories: automated algorithm configuration,
automated algorithm selection, and automated algorithm composition. The authors define
the General Combinatorial Optimization Problem (GCOP) to involve optimising the com-
bination of components of search algorithms to solve combinatorial optimisation problems.
The GCOP is illustrated by applying selection perturbative hyper-heuristics to automate the
composition of search algorithms for solving the capacitated vehicle routing and nurse ros-
tering problems. When solving the GCOP, the perturbative heuristics are the components
comprising the search algorithms.

In this work, we focus on the automated algorithm composition of a specific category
of search algorithms, namely, metaheuristics. Hence, we define a version of the GCOP, i.e.,
the Metaheuristic Composition Optimization Problem (MCOP). Furthermore, MCOP ap-
plies to both combinatorial and continuous optimisation domains. The research presented

Appl. Sci. 2021, 11, 5620 7 of 34

in this paper employs a selection perturbative hyper-heuristic (cf. Definition 9) to solve the
MCOP for continuous optimisation. As in [30], the low-level heuristics are the components
of the metaheuristic, and the optimisation aims to produce a solution ~x∗ by exploring a
heuristic space of metaheuristic components instead of the solution space. Details of the
proposed hyper-heuristic are presented in the next section.

3. Proposed Model

In this section, we describe our proposed model. Do keep in mind that we build it upon
the concepts and terminology detailed in the previous section. In addition, we must make
clear that our proposal stems from the idea of ‘unfolding’ a metaheuristic into a heuristic
sequence found by solving the MCOP with a selection perturbative hyper-heuristic. What
does ‘unfolding’ mean? Please take a look at Figure 1 where a metaheuristic is depicted in
terms of simple heuristics (cf. Definition 8). Notice the feedback path (dashed stroke) in
the metaheuristic diagram. The finaliser controls this path (cf. Definition 4). For each step,
it either returns to the search operator (ho) or concludes the procedure, leading to he. The
signal-flow representation of metaheuristics is detailed in [7].

Figure 1. Signal-flow representation of a conventional metaheuristic comprising an initialiser hi,
a search operator ho, and a finaliser h f . he is the identity heuristic.

Now, consider a problem with a limited computational budget, which is common in
real-world applications. In this case, the finaliser only anticipates the loop exit when an
additional condition is met, e.g., a fitness value threshold. Nevertheless, if the finaliser
role is delegated to a superior controller (say, an automated designer), we can unfold the
metaheuristic scheme as a heuristic sequence. The reason: said controller not only decides
when to stop applying a search operator but also which one (from a pool of search operators
or heuristic space) to apply next. Figure 2 illustrates this idea in a simple chronological plot
from top to bottom. This figure also renders the signal-flow diagram of the MH with an
additional axis: the time or number of iterations. We included a dummy z axis for illustrative
purposes; thus, the diagram is presented with a three-dimensional perspective (check the
thumbnail cube with faces coloured according to the curves). Thus, Figure 2 depicts the
unfolding timeline where the signal-flow diagram of a standard metaheuristic (bluish
curves) is transformed into a homogeneous heuristic sequence (greenish curves). Note that
this intermediate step in the timeline corresponds to a sequence of t implementations of the
same search operator (ho) over the population. This can also be considered as a heuristic
sequence, although a trivial one. For that reason, we labelled it as a homogeneous heuristic
sequence to avoid confusion. Subsequently, it is quite natural to think about not using the
same operator over and over, so we can move to a more general sequence of different (non-
exclusive) search operators. This signal-flow diagram at the bottom of Figure 2 displays a
heterogeneous heuristic sequence (orangish box). We called it an unfolded metaheuristic
(uMH). It is worth remarking that shorter sequences are desirable, as long as they preserve
the performance level. Therefore, our proposed unfolded metaheuristic model can be
framed into the MCOP described in Section 2.3. Beware that, in this case, the MCOP is
targeted at solving continuous optimisation problems at the lowest level of abstraction.

Appl. Sci. 2021, 11, 5620 8 of 34

Figure 2. Graphical representation of a metaheuristic and how it becomes an unfolded metaheuristic
(or a heterogeneous heuristic sequence) passing through a homogeneous heuristic sequence, which
is obtained by considering an additional degree of freedom (the iteration axis) when observing the
standard model.

4. Methodology

For this manuscript, we used Python 3.7 and a Dell Inc. PowerEdge R840 Rack Server
with 16 Intel Xeon Gold 5122 CPUs @ 3.60 GHz, 125 GB RAM, and CentOS Linux release
7.6.1810-64 bit system for running our experiments. Moreover, we employed the framework
CUSTOMHyS v1.0 to test the proposed model with ease. This open-access framework
can be found at https://github.com/jcrvz/customhys, accessed on 10 May 2021, and it
is documented in [31]. Thus, we needed to specify two domains at different levels of
abstraction for testing and implementing the idea. Table 1 illustrates these domains, as well
as their level of abstraction and role. The symbols and terminology from this table follow
those from previous sections. Plus, each domain is detailed below.

At the lowest level, we selected a total of 107 benchmark functions as continuous opti-
misation problem domains. We considered a different number of dimensions D such as 2, 5,
10, 20, 30, 40, and 50. Plus, we categorised these problems by using their qualitative charac-
teristics such as differentiability and unimodality in four duads of binary-encoded features,
i.e., DU. With this information, we followed three manners of grouping the functions for
analysing the obtained results. First, we regarded the whole set of functions, i.e., without
discriminating categories, for procuring an overview of the behaviour. Then, we studied the
functions grouped by feature duads: DU equals 11 (Differentiable and Unimodal problems),
10, 01, and 00 (Non-differentiable and Multimodal problems). Third, we performed a simi-
lar procedure as before, but only considering a marginal grouping, i.e., differentiability or
unimodality. For example, we got differentiable and not differentiable problems neglecting
the unimodality feature; a similar case applies for marginalising unimodality.

At the highest level, we utilised the population-based heuristics provided by CUS-
TOMHyS and also included others based on single-agent operations. Both collections be-
long to the heuristic space and are employed from a metaheuristic point of view. Although,
the former is specialised population-based operations over a continuous problem domain
with a fixed dimensionality, say, Population-based Fixed-dimension (PF) heuristics. Other-
wise, the latter set corresponds to the single-agent operations, sometimes called actions,
applied over a domain with variable dimensionality, say, Single-agent Variable-dimension
(SV) heuristics. In this work, this particular domain is discrete, and the dimensionality is
aliased to cardinality. These two sets of operators are closely related to the MCOP that we

https://github.com/jcrvz/customhys

Appl. Sci. 2021, 11, 5620 9 of 34

solved. Table 2 summarises the simple heuristics collected for this work, and further details
are provided in Appendix A. We divided them into three groups: SV perturbation, PF per-
turbation, and selection heuristics as aforementioned. The SV perturbators were designed
conforming several works reported in the literature [32,33]. They were extracted from
ten well-known metaheuristics: Random Search [34], Simulated Annelaing [35], Genetic
Algorithm [36], Cuckoo Search [37], Differential Evolution [38], Particle Swarm Optimi-
sation [39], Firefly Algorithm [40], Stochastic Spiral Optimisaiton Algorithm [41], Central
Force Optimisation [42], and Gravitational Search Algorithm [43]. We also included the
random sample because it is the most straightforward manner of performing a search in an
arbitrary domain. This simple heuristic also serves as the initialiser in all the implemented
heuristic sequences. In this table, we present the name, variation parameters, and tuning
parameters of these simple heuristics. The variation parameters concern those that drasti-
cally alter the nature of the operator. Meanwhile, tuning parameters hone the searching
process. Besides, we also obtained the selectors from the metaheuristics mentioned above.
It is worth mentioning that we also dedicated some words in Appendix A for documenting
the finalisers commonly utilised in MH implementation.

Table 1. Description of the domains utilised in this work according to their level of abstraction and role. PF and SV stand
Population-based Fixed-dimension and Single-agent Variable-dimension heuristics.

Role

Solver Problem

Le
ve

lo
fa

bs
tr

ac
ti

on

High

Search Space: PF Heuristics, HPF ⊆ H3

Individual: Metaheuristic,
MHo , 〈ηi, ηo, η f 〉 ∈ HSV
Procedure: (η f (ηo) ◦ ηi){(HPF, Q)}

Domain: Heuristics, HPF ⊆ Hv

Individual: Sequence,~h = (h1, . . . , hv)ᵀ ∈ HPF

Image: Q(~h|X) : H ×X 7→ R
Objective: Maximisation, max~h Q(~h|X, f)

Low

Search Space: Continuous, X ⊆ RD

Individual: Unfolded metaheuristic,
~h = (h1, . . . , hv)ᵀ ∈ HPF
Procedure: (hv ◦ · · · ◦ h1){(X, f)}

Domain: Continuous, X ⊆ RD

Individual: Position, ~x = (x1, . . . , xD)
ᵀ ∈ X

Image: Cost function, f (~x) : X 7→ R
Objective: Minimisation, min~x f (~x)

Since we have described the problem and solution domains, we can now specify how
they were employed to study the proposed model. Recall that we are studying ‘unfolded’
metaheuristics (uMHs) represented by heterogeneous heuristic sequences (cf. Figure 2).
Thus, the number of iterations tmax is given by the sequence length or cardinality v, i.e.,
tmax = v. In detail, we planned the experiments using a population size (N) of 30 for
each unfolded metaheuristic with two cardinality limits. The first cardinality range is
between 1 and 100, and the second one between 1 and 500. We selected these values to
analyse the influence over the performance of a tight or a loose imposition in the sequence
length. Due to this, we allowed SOs to appear more than once in the sequence. Thus,
for controlling the actions that search over the heuristic space, we implemented the well-
known Simulated Annealing (SA) using the Single-agent SV heuristics documented in
Table 2 and Appendix A.2.1. Particularly, we utilised an initial dimensionless temperature
(Θ0) of 1.0, a minimal dimensionless temperature (Θmin) of 10−6, and a cooling rate (δ) of
10−3. A maximal number of steps (smax) of 200 was set for vmax = 100, and 500 steps were
allowed for vmax = 500. We refer henceforth to these two configurations as Experiments 1
and 2, respectively. Subsequently, to assess the performance of each uMH (say,~h) when
solving a given problem, we ran each candidate Nr = 50 times and recorded the last fitness
values. Then, we estimated its performance using

Q(~h) ≈ − (med + iqr)({∀ ~x∗,r ∈ X∗| f (~x∗,r)}), (5)

Appl. Sci. 2021, 11, 5620 10 of 34

where med and iqr are the median and interquartile range operators, respectively, applied
to the fitness values f (~x∗,r). The symbol ‘≈’ indicates that the estimation depends on the Nr
samples X∗ obtained from a stochastic process. Plus, the minus sign in (5) is because HH
deals with a maximisation problem (cf. Definition 9), but the objective function f (~x), at the
low-level domain, corresponds to a minimisation problem (cf. Definition 1). We chose this
formula mainly because the median and the interquartile range are better descriptors in the
presence of outliers. We also based this selection on several a priori results from previous
works [31,44]. Lastly, and for the sake of clarity, we summarised the procedures performed
for each problem in Pseudocode 1. In this, we refer to the SV heuristics as actions when
they are described along with the PF heuristics to avoid confusion.

Table 2. Ten widespread metaheuristics segregated into their search operators. Parameter data are selected based on
customary values from the literature.

Type Simple Heuristic Variation Parameters * Tuning Parameters

SV
Pe

rt
ur

ba
ti

on

Add – i ∼ U{1, v + 1}
Add Many – ϑ ∼ U{1, vu −v}
Remove – i ∼ U{1, v}
Remove Many – ϑ ∼ U{1, v−vl}
Shift – i ∼ U{1, v}
Shift Locally – ε ∈ R++, D : S×S 7→ R+

Swap – i, j ∼ U{1, v}
Restart – –
Mirror – –
Roll – –
Roll Many – k ∼ U{1, v− 1}

PF
Pe

rt
ur

ba
ti

on

Random Sample (RX) † ~r 3 ri ∼ U (−1, 1) α ∈ [0, 1]
Random Search (RS) ~r 3 ri ∼ U (−1, 1) α ∈ [0, 1]
Local Random Walk (RW) ~r 3 ri ∼ U (0, 1) α ∈ [0, 1], p ∈ [0, 1]
Random Flight (RF) ~r 3 ri ∼ L(1.5) α ∈ [0, 1]
Genetic Crossover (GC) Pairing scheme, ‡

Crossover mechanism §
mp ∈ [0, 1]

Genetic Mutation (GM) ~r 3 ri ∼ U (−1, 1) α ∈ [0, 1], pe ∈ [0, 1], pm ∈ [0, 1]
Differential Mutation (DM) Mutation scheme M ∈ {1, 2, 3}, αm ∈ [0, 3] ∀m ∈ {0, M}
Particle Swarm Dynamic (PS) Velocity approach,

~ri 3 ri,j ∼ U (0, 1) ∀i ∈ {1, 2}
α0 ∈ [0, 1], φ1, φ2 ∈ [0, 4], κ ∈ [0, 1]

Firefly Dynamic (FD) ~r 3 ri ∼ U (−0.5, 0.5) α0, α1 ∈ [0, 1], α2 ∈ [0, 1000]
Spiral Dynamic (SD) – r0 ∈ [0, 1], θ ∈ [0◦, 360◦], σr ∈ [0, 1]
Central Force (CF) – α0, α1 ∈ [0, 0.01], α2 ∈ [1, 2]
Gravitational Search (GS) – α0 ∈ [0, 1], α1 ∈ [0, 0.1]

Se
le

ct
io

n Direct – –
Greedy – –
Probabilistic – ps ∈ [0, 1]
Metropolis – kB ∈ R+, Θ(t) : Z+ 7→ R+

* An alternative distribution function can be implemented instead of the default one, for example, the uniform U (0, 1), normal standard
N (0, 1), and symmetric Lévy stable L(1.5) ones. † This simple heuristic is also used as initialiser. ‡ Available schema: random, rank
weighting, roulette wheel, and tournament pairing. Tournament pairing requires two additional parameters such as MT ∈ {1, 2, 3} and
pT ∈]0, 1]. § Possible mechanisms: single-point, two-points, uniform, blend, and linear crossover. Linear crossover requires two additional
parameters such as β1, β2 ∈ R.

Appl. Sci. 2021, 11, 5620 11 of 34

Pseudocode 1 Hyper-heuristic based on Simulated Annealing (SAHH)

Input: Domain X, objective function f , heuristic collections HPF, HSV ⊂ H (cf. Table 2),
initialiser hi, performance Q(~h|X, f), and population size N. Additional parameters:
Θ0, Θmin, and δ.

Output: Best heuristic sequence~h∗
1: ~h← CHOOSERANDOMLY(HPF, PHPF) . PHPF (h) is the probability distribution of HPF

2: for r = {1, . . . , Nr} do . Repeat the subsequent evaluations Nr times
3: X∗ 3 ~xr,∗ ← EVALUATEMH(~h) . Evaluate and record the candidate sequence
4: end for
5: perf(~h)← Q(~h|X, f) via Equation (5) . Estimate the performance metric
6: ~h∗ ←~h . Initialise the best heuristic sequence
7: s← 0, and Θ← Θ0 . Initialise the step counter and temperature
8: while (Θ > Θmin) and (s ≤ smax) do
9: a← CHOOSEACTION(HSV , a , v) . Choose an action at random from the action set

a ∈ HSV

10: ~hc ← a{~h} . Obtain a neighbour sequence~hc by applying a to~h
11: for r = {1, . . . , Nr} do . Repeat the subsequent evaluations Nr times
12: X∗ 3 ~xr,∗ ← EVALUATESEQUENCE(~hc) . Evaluate and record the candidate

sequence
13: end for
14: perf(~hc)← Q(~hc|X, f) via Equation (5) . Estimate the performance metric
15: if U (0, 1) ≤ exp(−(perf(~hc)− perf(~hc))/Θ) then . Apply Metropolis selection
16: ~h, perf(~h)←~hc, perf(~hc)

17: end if
18: if perf(~hc) < perf(~h∗) then . Apply Greedy selection
19: ~h∗, perf(~h∗)←~hc, perf(~hc), and s← 0
20: else
21: s← s + 1
22: end if
23: Θ← Θ(1− δ) . Decrease the temperature
24: end while

25: procedure EVALUATESEQUENCE(~h) . Apply the composition: (hv ◦ · · · ◦ h1 ◦ hi){X}
26: t← 0
27: X(t) 3 ~xn(t)← hi{X}, ∀ n ∈ {1, . . . , N} . Initialise the population
28: F(t) 3 fn(t)← f (~xn(t)), ∀ n ∈ {1, . . . , N} . Evaluate the population
29: ~x∗(t)← ~xk(t) since k = arginf{F(t)} . Find the best global position by Direct

selection
30: for t = {1, . . . , v} do . tmax = v = #~h
31: hp,t, hs,t ← ht ∈~h . Read the perturbator and selector from the t-th search

operator
32: X(t), F(t)← hp,t{X(t)} . Apply the t-th perturbator
33: ~x∗(t)← hs,t{X(t)} . Update the best global position using the t-th selector
34: end for
35: return ~x∗(t)
36: end procedure

Appl. Sci. 2021, 11, 5620 12 of 34

5. Results and Discussion

After carrying out the experiments described in the previous section, we study all the
results using different approaches to validate our proposal. These approaches are organised
as we now mention. We first discuss some punctual implementations to detail the unfolded
metaheuristics designed by the SAHH approach. Then, we study the number of iterations
from both low- and high-level approaches. They are the metaheuristic cardinality v (or
the number of search operators) and the hyper-heuristic steps s. Later, we discuss the
nature of those operators selected by SAHH to be part of the customised uMHs. Right
after analysing these characteristics, we evaluate the performance of the overall approach
and the individual unfolded metaheuristics. Finally, we focus our attention on the time
complexity of the methodologies that comprise this research.

5.1. Illustrative Selected Problems

First of all, we selected a problem from each category to illustrate the implementation
of the proposed approach. Figure 3 shows how the SAHH procedure improves the heuristic
sequence that it initially picked at random. To enhance the readability of these data, we
plotted fitness order values, which were calculated using logarithm base 10 log f (~x∗),
instead of the bare fitness values. Note that each violin in this figure corresponds to a
heuristic sequence, where light-grey violins stand for the initial candidate sequence. In
contrast, coloured ones correspond to those obtained from each experiment. In all the plots,
the influence of the dimensionality over the problem domain is quite observable. This
is expected, considering the established conditions (same population size and maximal
cardinality). Regarding the maximal cardinality, it is straightforward to infer that unfolded
metaheuristics (uMH) obtained from Experiment 2, which has a loose cardinality range,
generally improve upon the corresponding uMHs from Experiment 1. An exception of
this general improvement, which may not be the only one, can be seen when solving the
problem Type I (Figure 3) with 20 dimensions. However, when the number of dimensions
equals 50 for the same problem, it is easy to notice a remarkable difference between
the two resulting metaheuristics. However, this does not imply that one achieved uMH
is better than the others. Recall that each experiment has different conditions, and the
resulting methodologies have distinctive properties, e.g., the type and the number of search
operators (SOs) composing them. Nevertheless, an objective fact noticed at a glance from
Figure 3 is the relatively compact shape of uMHs from Experiment 2. This is to be expected,
chiefly because they were designed to have more SOs than those from Experiment 1. Thus,
in raw words, they had more opportunities to ‘refine’ their search procedure. It is also
worth remarking that even considering one design specification or the other, employing a
particular approach may not grant a relevant benefit when dealing with some problems
with exceptional ‘hardness’. An example of that can be observed in Figure 3d, where the
uMHs tailored for the non-differentiable and multimodal (DU = 00) Schaffer N3 problem
exhibit similar performances, close to that of the first uMH guessed by SAHH.

(a) (b)

Figure 3. Cont.

Appl. Sci. 2021, 11, 5620 13 of 34

(c) (d)

Figure 3. Fitness order variation obtained at the first (light-gray) and last (coloured) SAHH step for an illustrative problem
for each category (DU) and considering different dimensionalities. This order is calculated by using the logarithm base 10 to
each fitness value achieved per run, log f (~x∗). uMH stands for unfolded metaheuristic. (a) Schwefel (11). (b) Rastrigin (10).
(c) Type I (01). (d) Schaffer N3 (00).

Table 3 complements the results from Figure 3. Concerning the performance value, it is
evident that Experiment 2 promotes reaching better performing unfolded metaheuristics for
most cases. However, this is not a general rule. An exception is observed in the performance
value of the uMH designed for the 20-dimensional Type I problem (Figure 3). This is self-
explained by remembering that SA is just a single-agent metaheuristic implemented as
an HH. We have not run several implementations of the same HH problem as we did
for evaluating the heuristic sequences because it exhibits a high computing cost. For this
work, we employed SAHH as a well-established (stochastic) approach to design uMHs by
solving the MCOP, which is considered ill-posed due to the presence of multiple solutions.
Bear in mind that if there exists a unique solution, the NFL theorem is violated. This is
an interesting discussion that is beyond our scope. Furthermore, it is worth noticing that
there are some cases where quite similar performances can be rendered from dramatically
different heuristic sequences, for example, those achieved for the Schaffer N3 problem with
D ≥ 10. In that case, it is preferable to use the setup from Experiment 1 or to enhance the
HH solver. Plus, we can observe with ease that, on average, Experiment 1 and 2 obtained
92- and 460-cardinality uMHs, in HH procedures with an average of 121 and 283 steps,
respectively. In terms of search operators, both implementations achieve methods close
to the upper limit, but that was not the case of the required hyper-heuristic steps, at least
in this illustrative example. A relevant fact to highlight from these data is the apparent
absence of a cardinality (v) and the increasing trend of heuristic steps (s) related to the
dimensionality. It seems that our approach somehow deals with the dimensionality curse
when solving the MCOP. However, this occurs at the high level, where this parameter can
be considered as a design condition.

Table 3. Illustrative results from the selected problems in Figure 3. Columns correspond to the problem
name, its binary-encoded category (DU), the achieved performance metric value (Perf.), unfolded
metaheuristic cardinality (v), and hyper-heuristic steps (s). Better performances are in bold face.

Problem DU Dim. Experiment 1 Experiment 2
Perf. v s Perf. v s

Schwefel 11

2 0.001 67 129 6.2 × 10−4 494 323
5 0.402 99 189 0.050 226 421
10 11.025 100 187 0.669 483 216
20 38.686 99 158 8.475 498 465
30 74.324 94 180 37.957 499 273
40 89.752 99 164 55.137 498 288
50 137.846 90 99 70.506 499 441

Appl. Sci. 2021, 11, 5620 14 of 34

Table 3. Cont.

Problem DU Dim. Experiment 1 Experiment 2
Perf. v s Perf. v s

Rastrigin 10

2 0.001 82 40 3.9 × 10−9 378 72
5 3.413 96 118 1.405 498 190
10 40.683 100 142 14.999 500 180
20 105.712 92 74 69.849 500 360
30 196.954 89 192 117.694 266 380
40 341.164 100 175 194.557 465 345
50 463.786 94 162 358.056 490 404

Type I 01

2 1.3×10−4 68 24 1.1 × 10−5 311 127
5 0.008 100 45 6.1 × 10−4 500 203
10 0.046 89 164 3.6 × 10−3 499 145
20 0.053 100 187 0.074 473 15
30 0.155 99 15 0.087 499 491
40 0.155 100 170 0.109 497 464
50 0.214 87 20 0.094 497 392

Schaffer N3 00

2 0.004 100 108 1.6 × 10−3 377 44
5 0.657 97 78 0.236 483 247
10 3.005 73 110 2.305 496 318
20 6.989 87 190 6.578 471 455
30 12.253 97 43 11.029 495 310
40 15.862 94 170 15.697 500 202
50 20.992 77 60 20.093 497 158

5.2. Low- and High-Level Iterations

After taking a smooth dive into the results using some punctual examples, we now
analyse them from different perspectives. Figure 4 shows the normalised distribution of
steps and cardinality when grouping this information by using the categories (DU) and the
number of dimensions. It is pretty evident that for both parameters, v and s, the maximal
concurrence is near the upper limit (see the distributions in the margins of the diagonal
plots). In this case, we used all the results obtained from Experiment 1, but one can notice
a somewhat similar pattern from Experiment 2. From Figure 4a, we observe that uMHs
with v of about 30 (followed by 70) were more frequently designed for non-differentiable
problems. At the same time, for the differentiable one, the cardinalities were more scattered
along with the domain. Particularly, it is interesting that our approach found several
‘short’ heuristic sequences with up to 20 search operators for differentiable and multimodal
(DU = 10) domains. This is remarkable because short procedures would be preferred in
many practical implementations. Now, concerning the steps spent finding these uMHs,
the distributions show relatively uniform shapes along with the limits. Using a different
lens, Figure 4b, we encountered some inferences about v and s when grouping the results
by problem dimensionality. In general, it is worth noting the presence of two modes
for the cardinality, near 30 and 70, when the two-dimensional problems are considered.
Increasing dimensionality seems to slightly shift these modes to 20 and 60 when search
domains reach 50 dimensions. This is an unexpected behaviour that can only be attributed
to the capabilities of the proposed approach for dealing with high-dimensional problems.
Plus, some particular facts to mention are as follows: for 5D domains, there are no low
cardinalities; for 10D and 20D, uMHs of about 40 search operators are less frequent; and
for 30D, the v distribution is weighted to its extrema. Lastly, by looking at the steps
required to design these metaheuristics, we can remark an evident transition from s values
loaded about the first half of the studied range (i.e., from 1 to 100) for the 2D problems to a
uniform-like distribution for those with 50D. In addition, it is somewhat understandable
that for lower-dimensional domains, the hyper-heuristic implementation of Simulated

Appl. Sci. 2021, 11, 5620 15 of 34

Annealing required ‘few’ steps for finding an optimal heuristic sequence. In such cases,
we know the problem hardness is mainly related to its inherent characteristics, and the
influence of the dimensionality curse is not so relevant. The following analysis is intended
to attain more information about this discussion.

(a) (b)

Figure 4. Scatter plot and marginal distribution for SAHH Steps and HH Cardinality grouped by Problem Characteristics
(DU) and Dimensionality (Dim). (a) Categories (DU). (b) Dimensionality.

Figure 5 extends the results from Figure 4 by combining the dimensionalities and cate-
gories for distributions of both metaheuristic and hyper-heuristic iterations (i.e., cardinality
and steps, respectively). Figure 5a shows that uMHs with more than 25 search operators
are more prevalent when solving problems with extreme combinations of DU, i.e., 11 and
00. Although, there is an exception for each category. For the differentiable and unimodal
problems, it appears when their dimensionality equals two, which is somewhat expected
due to their inherent ‘simplicity’. For the non-differentiable and multimodal problems,
one can notice low cardinality uMHs can be attributed to the SAHH solving procedure
and other parameters worth studying in future works. Besides, v distributions found
for uMHs solving differentiable and multimodal functions are diverse and range almost
every value for all dimensions. It is crucial to notice that for this category (DU = 10), our
approach managed to find unfolded metaheuristics with up to 50 search operators with a
remarkable frequency. The remaining category, non-differentiable and unimodal problems,
renders quite interesting patterns, most of them showing compact distributions about the
100-cardinality uMHs. We may remark that this behaviour is chiefly led by the fact that
such a characteristic combination is a bit unusual, so there are few problems within this
category (DU = 10). In particular, our collection comprises 26, 45, 8, and 28 problems for
the DU categories 11, 10, 01, and 00. Furthermore, Figure 5b exhibits the steps required
by the hyper-heuristic to find a proper uMH for solving a problem from a given category
and dimensionality. These distributions are, by far, smoother than those for the cardinality,
which is somehow understandable because they belong to a higher level of abstraction
(indirectly related to the problem domain). Except for the two-dimensional case, the steps
required by SAHH to find the uMHs vary from a distribution that is highly concentrated
in the lower limit into one akin to a uniform distribution. Again, we can explain the
particular behaviour for 2D because most of the candidate heuristic sequences during the
HH procedure were worth considering. Using an analogy with the Law of Supply and

Appl. Sci. 2021, 11, 5620 16 of 34

Demand, we could state that there is more supply than demand. For the intermediate
categories (say, 10 and 01), a slight transition from left- to right-hand loaded distributions is
observable. Thus, dimensionality seems to directly influence the number of steps required
for designing a solver that deals with problems from these categorical features. Lastly,
for the non-differentiable and multimodal problems, we notice a reversed pattern with re-
spect to distributions from the differentiable and unimodal problems. It is quite interesting
to see how our approach manages to find uMHs for these functions using few steps with
more frequency.

(a)

(b)

Figure 5. Cardinality and steps distributions varying the DU (differentiability and unimodality) characteristics and
dimensionality for the unfolded metaheuristics designed in Experiment 1. (a) Cardinality. (b) Steps.

5.3. Nature of Search Operators

By this point, we have analysed the influence of categories and dimensionality in the
unfolded metaheuristic cardinality and the required hyper-heuristic steps. Now, we delve
into the nature of the search operators, particularly the perturbators, conforming these
uMHs achieved via Experiment 1. We also disregard a detailed analysis from Experiment
2 due to their similarities with this case. Figure 6 presents bidimensional histograms in-
volving the operator families employed in the metaheuristics for solving problem domains
with different dimensionalities. We believe that Figure 6 is quite illustrative about the
manner we perform this classification (see the thumbnail blocks in the upper centre). In the
first block (upper-left corner), we observe the family distributions for ‘All’ the problems
without considering their categorical features. We split all these results using the categorical
characteristics, unimodality and differentiability, as we did above. The purple and magenta
plots in the first row and column, respectively, correspond to the marginal cases where only
one feature is considered, i.e., only differentiability (right blocks) or unimodality (bottom
blocks). Greenish plots show the results for particular combinations of the differentiability
and unimodality characteristics in a matrix-shape form. In general, we notice that our
approach manages to deal with a given problem with certain conditions (characteristics
and dimensionality) by arranging operators from one family or another to build its solver.
There are some situations where a family is often preferred from others, as we discuss
below. Nevertheless, it does not mean that a particular set of operators is the best for such
a situation. We are just showing the nature of those operators selected for conforming an
unfolded metaheuristic found throughout a hyper-heuristic search.

Appl. Sci. 2021, 11, 5620 17 of 34

Figure 6. Frequency of the operator families used for each case category (differentiability and unimodality) and by varying
the number of dimensions.

Appl. Sci. 2021, 11, 5620 18 of 34

From the histogram for all the functions in Figure 6, it is easy to notice that operators
from the Genetic Crossover (GC) and Random Search (RS) families were more frequently
selected for dealing with two-dimensional problems. This fact is somehow expected
due to the ‘simplicity’ of these problems where, in general, a simple stochastic approach
would be enough to solve them. Obviously, GC is not such a simple approach, but we
believe that its unstructured outcomes with respect to the other operators explain this
behaviour. For greater dimensionalities, perturbators from the Central Force (CF) family
became more relevant, but it seems to be attenuated when augmenting the number of
dimensions. A similar effect is noticed with the GC perturbators and, slightly different,
with the RS ones that show an increase in popularity around five and ten dimensions. On
the contrary, we found that simple heuristics from Gravitational Search (GS) and Particle
Swarm (PS) families seem, in a more notorious way, to be boosted up when dimensionality
rises. One may explain such a fact with the ‘swarm’ interaction of the probes representing
such operators, making them more suitable for higher-dimensional problems. Regarding
the family distribution per dimension, we must remark that this becomes more uniform
when increasing the problem dimensionality. Nevertheless, we note that mutation-based
operators (from Genetic and Differential Mutation families) are oft-chosen to build heuristic
sequences for solving 50-dimensional problems.

In general, the shape observed for the overall case, without categories, is preserved
when grouping the results as mentioned. To better scrutinise these family distributions,
the following lines are dedicated to remark those interesting situations that appear when
grouping the results. For non-differentiable problems, operators based on random walks
(e.g., RS) seem to be invariant in popularity, with a high-density value, concerning the di-
mensionality. This effect can be observed in detail at the blocks corresponding to categories
10 and 00. Likewise, the Gravitational Search (GS) family appears to be invariant to dimen-
sionality and exhibits low-density values. This is also noticed in a reduced proportion for
the Spiral Dynamic (SD) family. We can notice that GS heuristics start as the less popular
ones when dealing with 2D domains for the marginally differentiable problems. Still, they
gradually increase in density to a moderate value when the 50D problems are considered.
This behaviour is also regarded in the block of marginally multimodal problems. It is
crucial to remark that we observe a more uniform density distribution with respect to
dimensions and families for this marginal classification. Nevertheless, it is quite obvious
that this is mostly inherited from the differentiable and multimodal problems (DU = 10).

5.4. Performance Analysis

Once we have boarded the cardinality, required steps, and nature of the resulting
unfolded metaheuristics, which are somehow similar for the two experimental setups,
we proceed to study the most crucial feature of them: performance. Figure 7 presents
the performance values for the resulting uMHs from the two experimental setups, when
solving the problem domains with different characteristics and dimensionalities. In this
figure, rows correspond to the combination of problem categories (differentiability and
unimodality), and columns are the number of dimensions. It is pretty easy to notice that the
conditions of Experiment 2 promote better performing uMHs than those of Experiment 1.
Nevertheless, this is not a general rule. For example, when dealing with multimodal
problem domains (say, DU = 10 and 00), the performance distribution for both experimental
setups is virtually the same in the context of boxplots. One can explain such a fact with the
dimensionality of these problems, making them ‘easy’ to solve. Naturally, if we have to
choose a procedure to find an adequate solver, we would prefer to implement Experiment 1
because it requires fewer resources. In the other cases, it is evident that those additional
requirements render notably better performing metaheuristics. Another point to emphasise
is the precision of these performance values, with Experiment 2 allowing more concentrated
values than the other.

Appl. Sci. 2021, 11, 5620 19 of 34

Figure 7. Performance values achieved by the unfolded metaheuristics when solving optimisation problems, with different
characteristics and dimensionalities, via the proposed approach and using two experimental setups.

For our subsequent discussion, we compare the achieved unfolded metaheuristics
against the collection of basic metaheuristics, which are also provided by the CUSTOMHyS
framework [31], using the same performance metric. These basic methods are those used for
extracting the simple heuristics but implemented with different default hyper-parameters.
This gives us a total of 66 MHs. The first comparison is also the most straightforward:
performance-to-performance. Thus, we calculated the Success Rate (SR) for an achieved
unfolded metaheuristic (uMH) for a given problem domain (X, f) compared against
(M = 66) basic MHs implemented in the same domain, such as,

SR(uMH) ,
1
M

M

∑
i=1

H(Q(uMH|X, f)−Q(MHi|X, f)), (6)

where H : RD → ZD
2 is the Heaviside step function and Q(~h|X, f) is the performance

metric from (5). SR means a weighted counting of how many basic MHs were beaten
(outperformed) by the designed uMH per problem and dimensionality. Although analysing
the individual SR for each problem domain cannot be insightful, we aggregated the SR
values from problems sharing the same category and dimensionality employing the average
operation. Thus, we obtained an Average Success Rate (ASR) measurement that Figure 8
shows. With that in mind, we must notice that our approach, whichever experimental
configuration, surmounts the performance of at least one basic metaheuristic in almost
all problems (i.e., ASR > 0). This is crucial because even for an excellent solver for
a given problem, we must know its limitations and advantages. However, employing
the approach we are proposing in this manuscript, we as practitioners are able to find
automatically a heuristic-based solver for any problem. It may not be the best one, but it
is a good starting point for further enhancements. These words are supported with
the non-zero values of ASR that Figure 8 depicts; it means that the uMH achieved by
SAHH has beaten at least one basic MH. Moreover, we must emphasise that ASRs from

Appl. Sci. 2021, 11, 5620 20 of 34

Experiment 1 were, in general, improved when we implemented the second setup. The
most notorious scenarios where our approach surmounts the basic metaheuristics are
the multimodal (DU = 10 and 00) problems. On the contrary, unimodal problem domains
seem to be difficult rims, paradoxically, due to their ‘easiness’, for tackling these basic
metaheuristics. In other words, the relatively low success rates do not imply that our
approach has trouble solving these problems. It just means that many basic MHs can
achieve good performance values.

Version June 4, 2021 submitted to Appl. Sci. 19 of 34

where H : RD → ZD
2 is the Heaviside step function and Q(~h|X, f) is the performance metric from (5).500

SR means a weighted counting of how many basic MHs were beaten (outperformed) by the designed501

uMH per problem and dimensionality. Although analysing the individual SR for each problem domain502

cannot be insightful, we aggregated the SR values from problems sharing the same category and503

dimensionality employing the average operation. So, we obtained an Average Success Rate (ASR)504

measurement that Figure 8 shows. With that in mind, we must notice that our approach, whichever505

experimental configuration, surmounts the performance of at least one basic metaheuristic in almost506

all problems (i.e., ASR > 0). This is crucial because even for an excellent solver for a given problem,507

we must know its limitations and advantages. However, employing the approach we are proposing508

in this manuscript, we as practitioners are able to find automatically a heuristic-based solver for any509

problem. It may not be the best one, but it is a good starting point for further enhancements. These510

words are supported with the non-zero values of ASR that Figure 8 depicts; it means that the uMH511

achieved by SAHH has beaten at least one basic MH. Moreover, we must emphasise that ASRs from512

Experiment 1 were, in general, improved when we implemented the second setup. The most notorious513

scenarios where our approach surmounts the basic metaheuristics are the multimodal (DU = 10 and514

00) problems. Au contraire, unimodal problem domains seem to be difficult rims, paradoxically, due to515

their ‘easiness’, for tackling these basic metaheuristics. In other words, the relatively low success rates516

do not imply that our approach has trouble solving these problems. It just means that many basic MHs517

can achieve good performance values.518

(a) Experiment 1 (b) Experiment 2

Figure 8. Average Success Rate achieved for the unfolded metaheuristic tailored using the proposed
methodology compared against the basic metaheuristics.

Subsequently, we analyse the results by carrying out multiple comparisons using the pairwise519

(one-sided) Wilcoxon signed-rank test. So, we compute the true statistical significance for multiple520

pairwise comparisons such as p = 1−∏i(1− pi) by following the procedure and conditions given521

in [45,46]. We employed the performance value reached by the metaheuristics, for each problem and522

dimension via (5), as the measure of one run of the algorithm. Thus, we set the unfolded metaheuristic523

generated by SAHH as the control parameter and the basic metaheuristics as the other parameters. We524

look for the statistical significance of uMHs outperforming at least one of the basic MHs in a given525

problem. In doing so, we justify the fact that we do not require prior knowledge of which problems a526

particular MH is an excellent choice. Keeping this in mind, we state the null and alternative hypotheses527

such as:528

H0: The unfolded metaheuristic, generated by the SAHH approach, performs equal to or worse than529

at least one basic metaheuristic with a significance level 0.05.530

H1: The unfolded metaheuristic, generated by the SAHH approach, outperforms at least one basic531

metaheuristic with a significance level of 0.05.532

Version June 4, 2021 submitted to Appl. Sci. 19 of 34

where H : RD → ZD
2 is the Heaviside step function and Q(~h|X, f) is the performance metric from (5).500

SR means a weighted counting of how many basic MHs were beaten (outperformed) by the designed501

uMH per problem and dimensionality. Although analysing the individual SR for each problem domain502

cannot be insightful, we aggregated the SR values from problems sharing the same category and503

dimensionality employing the average operation. So, we obtained an Average Success Rate (ASR)504

measurement that Figure 8 shows. With that in mind, we must notice that our approach, whichever505

experimental configuration, surmounts the performance of at least one basic metaheuristic in almost506

all problems (i.e., ASR > 0). This is crucial because even for an excellent solver for a given problem,507

we must know its limitations and advantages. However, employing the approach we are proposing508

in this manuscript, we as practitioners are able to find automatically a heuristic-based solver for any509

problem. It may not be the best one, but it is a good starting point for further enhancements. These510

words are supported with the non-zero values of ASR that Figure 8 depicts; it means that the uMH511

achieved by SAHH has beaten at least one basic MH. Moreover, we must emphasise that ASRs from512

Experiment 1 were, in general, improved when we implemented the second setup. The most notorious513

scenarios where our approach surmounts the basic metaheuristics are the multimodal (DU = 10 and514

00) problems. Au contraire, unimodal problem domains seem to be difficult rims, paradoxically, due to515

their ‘easiness’, for tackling these basic metaheuristics. In other words, the relatively low success rates516

do not imply that our approach has trouble solving these problems. It just means that many basic MHs517

can achieve good performance values.518

(a) Experiment 1 (b) Experiment 2

Figure 8. Average Success Rate achieved for the unfolded metaheuristic tailored using the proposed
methodology compared against the basic metaheuristics.

Subsequently, we analyse the results by carrying out multiple comparisons using the pairwise519

(one-sided) Wilcoxon signed-rank test. So, we compute the true statistical significance for multiple520

pairwise comparisons such as p = 1−∏i(1− pi) by following the procedure and conditions given521

in [45,46]. We employed the performance value reached by the metaheuristics, for each problem and522

dimension via (5), as the measure of one run of the algorithm. Thus, we set the unfolded metaheuristic523

generated by SAHH as the control parameter and the basic metaheuristics as the other parameters. We524

look for the statistical significance of uMHs outperforming at least one of the basic MHs in a given525

problem. In doing so, we justify the fact that we do not require prior knowledge of which problems a526

particular MH is an excellent choice. Keeping this in mind, we state the null and alternative hypotheses527

such as:528

H0: The unfolded metaheuristic, generated by the SAHH approach, performs equal to or worse than529

at least one basic metaheuristic with a significance level 0.05.530

H1: The unfolded metaheuristic, generated by the SAHH approach, outperforms at least one basic531

metaheuristic with a significance level of 0.05.532

(a) (b)

Figure 8. Average Success Rate achieved for the unfolded metaheuristic tailored using the proposed methodology compared
against the basic metaheuristics. (a) Experiment 1. (b) Experiment 2.

Subsequently, we analyse the results by carrying out multiple comparisons using
the pairwise (one-sided) Wilcoxon signed-rank test. Thus, we compute the true statistical
significance for multiple pairwise comparisons such as p = 1−∏i(1− pi) by following the
procedure and conditions given in [45,46]. We employed the performance value reached by
the metaheuristics, for each problem and dimension via (5), as the measure of one run of
the algorithm. Thus, we set the unfolded metaheuristic generated by SAHH as the control
parameter and the basic metaheuristics as the other parameters. We look for the statistical
significance of uMHs outperforming at least one of the basic MHs in a given problem. In
doing so, we justify the fact that we do not require prior knowledge of which problems a
particular MH is an excellent choice. Keeping this in mind, we state the null and alternative
hypotheses as:

Hypothesis 0. (Null) The unfolded metaheuristic, generated by the SAHH approach, performs
equal to or worse than at least one basic metaheuristic with a significance level 0.05.

Hypothesis 1. (Alternative) The unfolded metaheuristic, generated by the SAHH approach, out-
performs at least one basic metaheuristic with a significance level of 0.05.

Figure 9 shows the p-values from this Wilcoxon’s analysis, and also grouped by
category and dimensionality. At a general glance, we notice that it is possible (p < 0.05) to
reject the null hypothesis H0 for several scenarios in both experimental setups. Particularly,
for those liaised with the multimodal domains, numerous basic metaheuristics are not
suitable for dealing with them. It is also worth mentioning that the number of dimensions
seems to increment the p-values determined for these scenarios. Nevertheless, it does not
mean that SAHH generates poor-performing unfolded metaheuristics. We attribute this
tendency to fail to reject the null hypothesis because these problems become harder to solve
with any technique. It is also valuable to comment that Experiment 2 represents a better
configuration than Experiment 1 for most problems with a dimensionality beyond five. On
the opposite side, we can find those problem domains with a unimodal landscape where it

Appl. Sci. 2021, 11, 5620 21 of 34

is hard to find a method incapable of solving them. Likewise, increasing the dimensionality
has a similar effect as the one we just commented. However, we only fail to reject H0
when regarding the nondifferentiable and unimodal problems in 2D and Experiment 2.
This result is quite understandable because this setup proffers to generate longer heuristic
sequences from longer HH searching procedures. It may also be considered a drawback
of using a memoryless metaheuristic approach to deal with a hyper-heuristic problem.
Naturally, if the practitioner decides to apply our approach for low-dimensional problems,
we highly recommended a configuration similar to Experiment 1. Otherwise, Experiment 2
would suffice as a good starting point for dealing with more than twenty dimensions.

(a) (b)

Figure 9. p-Values obtained from the pairwise (one-sided) Wilcoxon signed-rank test to the fitness values achieved
for each problem of the categories (DU) and by considering different dimensions. Blue dashed stroke stands p = 0.05.
(a) Experiment 1. (b) Experiment 2.

5.5. Time Complexity Analysis

All the terms mentioned below follow the nomenclature described in Sections 2 and 3.
After analysing the nature of the resulting heterogeneous heuristic sequences, we are
interested in studying the computing cost of our proposal. Keep in mind that once a uMH
is designed for any problem, its implementation or further tuning for a relatively similar
problem requires a low computing burden; it could be even lower than that required for a
standard metaheuristic. Thus, we only focus our attention on the hyper-heuristic process
for designing these uMHs. In that sense, SAHH has a time complexity similar to that of a
regular metaheuristic, given by

TSAHH = Tp̃ + T f̃ + Ts̃ + smax ∗ (Tp̃ + T f̃ + Ts̃)

= O
(

smax ∗ sup
{

Tp̃, T f̃ , Ts̃)
})

,
(7)

since Tp̃, T f̃ , and Ts̃ are also the computational costs of evaluating the perturbator, objective
function, and the selector, respectively; and smax is the maximal number of steps carried out
in this high-level search. Plus, SAHH is a single-agent algorithm, so selection, perturbation,
and acceptance are actions considered to have constant time, i.e., Tp̃ = Ts̃ = O(1).
Otherwise, the objective function at this high level stands for the performance metric
described in (5), so its computing cost is given by T f̃ = O(Nr ∗ TuMH), where Nr is the
number of repetitions, and TuMH is the cost of implementing a candidate uMH. Naturally,
the time for calculating the median and interquartile range is disregarded due to its
magnitude. In summary, we can rewrite the SAHH time complexity as

TSAHH = O(Nr ∗ smax ∗ TuMH). (8)

Now, regarding the low level, the time complexity for an unfolded metaheuristic
composed of up to vmax search operators yields

TuMH = O
(
vmax ∗ N ∗ D ∗ Tp

)
, (9)

Appl. Sci. 2021, 11, 5620 22 of 34

since N is the population size, D is the dimensionality, and Tp is the computational cost of
evaluating the perturbator. According to the well-known Big-O definition, this value can
be determined such as Tp = sup{Tp,1, . . . , Tp,v} for the uMH. It is easy to notice that the
initialiser, finaliser, and selectors have an irrelevant complexity contribution. Besides, we
focus on analysing the procedure and not the problem to solve, so we can adopt without
loss of generality that the time complexity of evaluating the fitness is constant. Equation (9)
can be employed to find the theoretical time complexity of any unfolded metaheuristic
for some given conditions, for example, Experiments 1 or 2. In that case, we must use the
worst case for Tp; i.e., Tp = O(N2) for the Genetic Crossover perturbator with Cost-based
Roulette Wheel Pairing [47]. Thus, uMHs have a cubic time complexity with respect to the
population size and a linear one with respect to the dimensionality, which is relatively high
but affordable considering the context of designing solvers.

Keeping this in mind, we can express the time complexity of the overall approach
TSAHH by plugging (9) in (8), as shown,

TSAHH = O
(

Nr ∗ smax ∗vmax ∗ D ∗ N3
)

. (10)

This expression gives us information about which components influence the time
complexity of the overall approach. Notice that we considered the maximal number of
search operators vmax instead of v, which can be different from one uMH to another.
From the above analysis, it is exciting to surmise that the running time scales linearly with
the problem dimensionality and cubically with the population size; which is somehow
manageable. The main reason is the high-level metaheuristic (i.e., SAHH) controlling the
process, which performs one modification per step in a single element of the unfolded
metaheuristic. For the scope of this research, SAHH constitutes a good prospect with a low
computational burden.

Furthermore, we can use (9) to assess the order of operations required by the designed
uMHs to tackle problems with different characteristics and dimensionalities. Thus, instead
of the overall worst case of O(vmax ∗ Tp), we approximated this by accumulating the
number of operations done for each simple heuristic from the uMH achieved in the SAHH
procedure, i.e., O(vmax ∗ Tp) ≈ ∑v

k=1 Tp,k. Figure 10 displays this information as boxplots,
where the effect of the problem dimensionality is evident for both experimental setups.
First, it is interesting to note that Experiment 2 allows for more search steps, promoting
a more refined heuristic sequence that solves a given problem. Such a fact translates
into operation values more concentrated around a specific amount. This has meaningful
implications in providing more confidence to the practitioner when implementing the
approach proposed in this work. Although, it is not a secret that using this setup instead of
the first one would have an additional computing burden. Plus, it is worth mentioning
that the order of operations does not increment too dramatically, as we foresaw with the
brief theoretical analysis. Likewise, as we expected, the difference between Experiments 1
and 2 (Figure 10a,b, respectively) does not constitute an abyss. Indeed, the overall value
is 0.74 ± 0.41 with a mean value of 0.70. This is due to the low computational burden
that SA imposes on the HH approach. The second setup has 300 and 400 units more in
smax and vmax than those for the first setup. In general, we must notice that results for
non-differentiable and unimodal functions represent the most expensive procedure for
both experimental setups. It is also remarkable that many of the outliers from Figure 10 are
mostly situated at data liaised with differentiable (DU = 11 and 10) problems. This is an
unusual combination of characteristics since problems from this category exhibit diverse
behaviours. Such a fact must be a matter to be considered in further works.

Appl. Sci. 2021, 11, 5620 23 of 34

(a) (b)

Figure 10. Order of the numerical operations carried out for designing unfolded metaheuristics when solving problem
domains with different characteristics and dimensionalities. (a) Experiment 1. (b) Experiment 2.

6. Conclusions

This work proposed a new heuristic-based solver model for continuous optimisation
problems. However, our proposal can be easily extended to other domains. Such a
model, which we named ‘unfolded’ metaheuristic (uMH), comprises a heterogeneous
sequence of simple heuristics. This is achieved by delegating the control mechanism in
the standard metaheuristic scheme to a high-level strategy. Hence, this implies solving
the Metaheuristic Composition Optimisation Problem (MCOP) to tailor a particular uMH
that tackles a specific optimisation problem. We carried out a proof-of-concept by utilising
the CUSTOMHyS framework, which is publicly available at https://github.com/jcrvz/
customhys, accessed on 10 May 2021. Through CUSTOMHyS we analyse 107 continuous
optimisation problems and a collection of 12 population-based fixed-dimension heuristics,
extracted from ten well-known metaheuristics in the literature, to search in the problem
domain. Thus, we specified the unfolded metaheuristic model and implemented a Hyper-
Heuristic (HH) based on Simulated Annealing (SA), SAHH in short, to solve the MCOPs.
For the SAHH, we also incorporated 11 single-agent variable-dimension heuristics to
search in the heuristic domain. We considered two main experimental setups. The first
one allowed uMHs of up to 100 search operators, with SAHH performing up to 200 steps.
The second one considered up to 500 operators and steps. In the manuscript, we refer to
the number of search operators in a uMH as its cardinality, v.

From the results, we found that our proposed approach represents a very reliable
alternative, with low computing cost, for designing optimisation population-based meta-
heuristics that solve continuous problems. To complement this claim, we shortly summarise
several insights extracted from the experiments we carried out. First, we noticed that SAHH
manages to find an unfolded metaheuristic, which deals with the optimisation problem, no
matter the imposed design conditions. Naturally, some conditions affect the performance
of the outcoming solvers. For example, the cardinality range does not directly affect the
uMH performance, but when this range is relaxed, the uMH commonly renders more
precise performance values. However, this has the drawback of increasing time complexity
(or the number of operations) as a trade-off for a greater chance of balanced exploration
and exploitation features. Besides, we found some leads indicating that the dimensionality
affects the metaheuristic and hyper-heuristic iterations (i.e., cardinality and steps, respec-
tively) on a scale related to the problem characteristics. The influence of dimensionality
over problem hardness acts like a catalyst that amplifies the inherent difficulty given by its
characteristics. In such cases, we noted that uMHs with greater cardinality only slightly
outperform those with lower v values, so we must recommend using the low-cost ones
in practical implementations. Nevertheless, we have not detected an abysmal difference
between the unfolded metaheuristics obtained from the studied setups in the number of
operations, i.e., about 0.70 of the median value. This is a great feature due to the heuristic
nature of the solvers that our approach generates.

https://github.com/jcrvz/customhys
https://github.com/jcrvz/customhys

Appl. Sci. 2021, 11, 5620 24 of 34

We also studied the nature of the search operators that are automatically selected by
SAHH when building uMHs. We remark that SAHH often chooses operators from the
Genetic Crossover and Random Search families for two-dimensional problems. However,
their frequency seems to be attenuated when increasing the number of dimensions. A
similar case was observed with simple heuristics of the Central Force nature, but starting
with 5D problems and an evident greater dominance. Conversely, we regard operators
from the Gravitational Search and Particle Swarm families correspond to the less frequent
ones at the 2D mark, although they become relevant during the dimensionality increment.
We attribute this effect to the nature of these families, related to multi-probes intelligent
interactions, which performs better on broader search domains. In the end, for the greatest
dimensionality, we observed a pretty uniform distribution from almost all the families of
search operators. Therefore, we infer that operators slightly sophisticated to the random
ones are enough to fulfil the solver requirement for few dimensions. More nature-diverse
operators are needed for many variables.

Lastly, we carried out a similar experiment using the metaheuristics selected for
extracting the search operators used to construct the heuristic space employed by SAHH;
we called them basic MHs. We found that our uMHs surmount the average performance of
at least one basic metaheuristic for the same problem domain. Such a fact has a tremendous
repercussion in the context of the No-Free-Lunch (NFL) theorem, mainly because the
practitioner does not have to know which is the excellent metaheuristic for a given problem.
Instead, s/he only has to use our approach, and it will indeed find a good one with some
particular requirements. Bear in mind that this work does not pretend to violate the NFL
theorem. Instead, we are using it in our favour to propose suitable solvers.

To the best of our knowledge, this unfolded metaheuristic model has not been previ-
ously proposed in the literature. According to our results, it is a model worth considering
in practical implementations because it seems to be a very reliable and low-cost computing
approach for solving optimisation problems. We know that our model is not a panacea.
There are several issues to deal with for further understanding and improvement; some are
now commented. To alleviate the influence of dimensionality and problem characteristics,
we plan to loosen the constraints imposed on the cardinality and steps, and include other
relevant parameters, such as the population size. In the same way, we believe that improv-
ing the hyper-heuristic algorithm (i.e., SAHH) must increase the overall performance of the
resulting uMHs. An alternative and faster approach requires considering a non-heuristic-
based algorithm such as a Machine Learning methodology. Plus, we are going to consider
additional benchmark problems, including those utilised in algorithm competitions, e.g.,
CEC and GECCO. Lastly, we plan to implement this approach in a practical engineering
scenario to test its feasibility to achieve low-budget heuristic sequences. We considered it a
relevant topic for future works.

Author Contributions: Conceptualisation, J.M.C.-D., I.A., J.C.O.-B., and N.P.; methodology and
software, J.M.C.-D., I.A., J.C.O.-B., and N.P.; validation, J.M.C.-D., I.A., J.C.O.-B., and N.P.; formal
analysis and investigation, J.M.C.-D., I.A., J.C.O.-B., and N.P.; resources, J.M.C.-D., I.A., J.C.O.-B.,
and N.P.; data curation, J.M.C.-D., I.A., J.C.O.-B., and N.P.; writing–original draft preparation,
J.M.C.-D., I.A., J.C.O.-B., and N.P.; writing–review and editing, J.M.C.-D., I.A., J.C.O.-B., and N.P.;
visualisation, J.M.C.-D., I.A., J.C.O.-B., and N.P.; supervision, J.M.C.-D., I.A., J.C.O.-B., and N.P.;
project administration, J.M.C.-D., I.A., J.C.O.-B., and N.P.; funding acquisition, I.A. All authors have
read and agreed to the published version of the manuscript.

Funding: The research was supported by the CONACyT Basic Science Project with grant num-
ber 287479.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Appl. Sci. 2021, 11, 5620 25 of 34

Abbreviations
The following abbreviations are used in this manuscript:

CF Central Force
CFO Central Force Optimisation
CS Cuckoo Search
DC Differential Crossover
DE Differential Evolution
DM Differential Mutation
FA Firefly Algorithm
FD Firefly Dynamic
GA Genetic Algorithm
GC Genetic Crossover
GM Genetic Mutation
GS Gravitational Search
GSA Gravitational Search Algorithm
HH Hyper-Heuristic
NFL No-Free-Lunch
MCOP Metaheuristic Composition Optimisaiton Problem
MH Metaheuristic
PS Particle Swarm Dynamic
PSO Particle Swarm Optimisation
RF Random Flight
RS Random Search
RW Local Random Walk
RX Random Sample
SA Simulated Annealing
SAHH Hyper-Heuristic based on Simulated Annealing
SD Spiral Dynamic
SH Simple Heuristic
SO Search Operator
SSOA Stochastic Spiral Optimisation Algorithm
uMH Unfolded Metaheuristic

Appendix A. Simple Heuristics

In this section, we detail the simple heuristics extracted from the following 10 well-
known MHs: Random Search (RS) [48], Simulated Annealing (SA) [3], Genetic Algo-
rithm (GA) [49], Cuckoo Search (CS) [50], Differential Evolution (DE) [38], Particle Swarm
Optimisation (PSO) [39,51], Firefly Algorithm (FA) [52], Stochastic Spiral Optimisation
Algorithm (SSOA) [41], Central Force Optimisation (CFO) [53], and Gravitational Search
Algorithm (GSA) [43]. These heuristics are presented and organised using the same nomen-
clature and terminology of Section 2. Furthermore, they also correspond to those listed in
Table 2.

Appendix A.1. Initialisers

This simple heuristics are pretty simple in their implementation because they are
in charge of drawing the initial solution(s) for a subsequent searching process. In many
practical implementations, the initialisers are just random samplers using a well-defined
feasible domain. In others words, this work is performed by a practitioner with certain
degree of expertise on the problem under solution. Notwithstanding, we shortly describe
the widest utilised initialiser in several (almost all) heuristic-based applications, which
employ either one or multiple search agents, as follows.

Random Sample (RX): An initial solution ~xn(t) is obtained through a random sample
operation such as ~xn(t) =~r, where~r ∈ S is a vector of i.i.d. random numbers with uniform
distribution between the boundaries of the feasible domain. If it is a continuous feasible
domain between −1 and 1, X = [−1, 1]D ⊂ S = RD, then~r 3 ri ∼ U (−1, 1). If it is a

Appl. Sci. 2021, 11, 5620 26 of 34

discrete feasible domain between 1 and m (� 1), X = {∀ yi ∈ ~y,~y ∈ S|1 ≤ yi ≤ m} ⊂ S =
ZD, hence~r 3 ri ∼ U{1, m}. Other feasible domain can also be considered, for example,
the mixed continuous-discrete ones.

Notice that this initialiser, as well as others, can be implemented for either a single-
agent or population-based search procedure.

Appendix A.2. Perturbators

In this section, we describe several perturbators found in the selected metaheuris-
tics described at the beginning of Appendix A. Somewhat similar to initialisers, many
perturbators can be generalised as population-based procedures, but one may encounter
some interesting exceptions. One of these, closely related to this work, are the single-agent
perturbators with variable length or dimension. These are found with ease in several
‘classic’ heuristics dealing with combinatorial problems, where the candidate solution is
represented by a set of elements (say, item, values, weights, and so forth) which can vary
in length while solving the problem. Therefore, we grouped the extracted perturbators into
two main groups: single-agent variable-dimension and population-based fixed-dimension
perturbators. Consider that these perturbators can be implemented in both integer and
continuous domains. Naturally, for the latter, one must take some additional precautions
into account. Other groups from the possible combinations of these characteristics would
be worth investigating, but they are out of our scope.

Appendix A.2.1. Single-Agent Variable-Dimension Perturbators

For these simple heuristics, also named as rules or actions in the literature, we consider
an arbitrary problem domain S. Nevertheless, bear in mind that we use these heuristics
in the context of a combinatorial domain such as the heuristic space, S = H. Recall that
~x(t) and ~y correspond to the current and candidate solutions, respectively, and v is the
cardinality of ~x(t), v = #~x. This cardinality or dimensionality is finite and delimited by a
lower and upper value such as vl ≤ v ≤ vu. In the following lines, we briefly describe
the actions regarded for this work.

Add: It inserts randomly chosen element yi ∈ S at a random l.h.s. position i∼U{1, v+1}
into ~x(t). Thus, the candidate sequence will be ~y = (x1, . . . , xi−1, yi, xi+1, . . . , xv)ᵀ with
#~y = v + 1.

Add Many: It performs the Add operation ϑ times since this value is chosen at random
between 1 and the remainder of v to vu, ϑ ∼ U{1, vu−v}, where vu is the maximal
cardinality. After doing so, the cardinality of the candidate solution will be #~y = v + ϑ.

Remove: It discards an element xi from a random position i ∼ U{1, v} of ~x(t). Thus,
the candidate sequence will be ~y = (x1, . . . , xi−1, xi+1, . . . , xv)ᵀ with #~y = v− 1.

Remove Many: It performs the Remove operation ϑ times since this value is chosen at
random between 1 and the remainder of vl to v, ϑ ∼ U{1, v−vl}, where vl is the minimal
cardinality. After doing so, the cardinality of the candidate solution will be #~y = v− ϑ.

Shift: It selects a random position i ∼ U{1, v} and changes the corresponding element
xi ∈ ~x(t) with another chosen at random from the feasible domain S, say yj ∈ S. Therefore,
the candidate sequence will be ~y = (x1, . . . , xi−1, yj, xi+1, . . . , xv)ᵀ with #~y = v.

Shift Locally: It is similar to the Shift action, but the element yj ∈ S is chosen, also in the
feasible domain S, but around the original one xi ∈ ~x(t), i.e., yj ∈ {∀ yk ∈ S|D(xi, yk)< ε}
where D : S×S 7→ R+ is a closeness metric and ε ∈ R+ is a small value.

Swap: It interchanges elements xi, xj ∈ ~x(t) at two randomly selected locations, i, j ∼
U{1, v}. Hence, the candidate sequence is given by ~y = (x1, . . . , xi−1, xj, . . . , xj−1, xi, . . . ,
xv)ᵀ with #~y = v.

Appl. Sci. 2021, 11, 5620 27 of 34

Restart: It ignores the current sequence ~x(t) and randomly selects a new one ~y with the
same cardinality v = #~x(t) = #~y. This action is a particular case of the Random sample
initialiser, but utilised as a perturbator.

Mirror: It reorganises ~x(t) in reverse order. Thus, the new sequence will be ~y = (xv , xv−1,
. . . , x1)

ᵀ, also preserving the cardinality.

Roll: It moves all the elements in ~x(t) one position back or forward at random (i.e.,
Bernoulli trial with p = 0.5) and with cyclic indexing. Thus, the candidate sequence will be
~y = (x1±1, x2±1, . . . , xv±1)

ᵀ, since x0,xv and xv+1,x1.

Roll Many: It is similar to the Roll action but k ≥ 1 positions are randomly chosen to
displace, i.e., k ∼ U{1, v− 1}.

It is worth mentioning that ~x(t) and~y could be expressed as sets (x and y), but the vec-
tor notation is preferred for notation standardisation. Besides, notice that we use v instead
of D to make the distinction between a heuristic sequence and a position within a continu-
ous problem domain, respectively. This clarification is useful to avoid misunderstandings
in Section 3.

Appendix A.2.2. Population-Based Fixed-Dimension Perturbators

These simple heuristics correspond to those procedures that can deal with multiple
search points but in a problem domain with fixed dimensionality. In our particular interest,
these perturbators are closely liaised to the population-based metaheuristics widely utilised
in continuous optimisation problems. Thus, they are described mostly in terms an arbitrary
domain S, but without loss of generality some expressions are written assuming S = RD,
which is the domain we used for them. We then consider that the feasible domain X is
given by a hyper-cube with boundaries from −1 to 1 per dimension, X = [−1, 1]D. Bearing
this in mind, the collected perturbators are presented for determining the n-th candidate
solution ~yn ∈ X in the problem domain X ∈ S (cf. Section 2.1). Because operators are
expressed in vector form, some of them require the (element-wise) Hadamard–Schur’s
product � and the element-wise Heaviside step function H : RD → ZD

2 with H(0) = 1.
Besides, consider that || · ||2 refers to the `2-norm. Recall that ~xn(t) ∈ X(t) stands as the
current position of the n-th agent in a population X(t) of size N, and ~x∗(t) corresponds to
the best solution found at the current time t. Furthermore, we organised the perturbators
according to their sophistication level in terms of mathematical formulation, which is not
necessarily related to the numerical complexity.

The first four heuristics comprise the simplest ones implemented in the literature.
They use basic ideas such as samples and walks guided by probability distributions. These
operators are widespread with multiple variants and schemes [54]. Many of them are
embedded in more sophisticated algorithms. Subsequently, the next four perturbators obey
those inspired on evolutionary processes, which conform two well-known MHs such as
GA [2] and DE [55]. The ninth and tenth simple heuristics correspond to those inspired
on the idealised social behaviour of many living creatures [56]. We extracted them from
two well-known metaheuristics as PSO [39] and fa [40]. Lastly, the final three perturbators
concern those from MHs that model trajectories and dynamics common in the classical
mechanics, such as SOA [41], CFO [53], and GSA [43].

Random Sample (RX): It neglects the n-th current position ~xn(t) and replaces it with a
candidate solution ~yn obtained via a random sample operation such as ~yn = ~r, where
~r ∈ S is a vector of i.i.d. random numbers with~r 3 ri ∼ U (xl , xu). Likewise the Restart
action but more general, this perturbation is an implementation of the RX initialiser as
a perturbator.

Random Search (RS): It determines the candidate solution ~yn with a random search op-
eration over the current position ~xn(t), such as ~yn = ~xn(t) + α~r, where α ∈]0, 1] is the

Appl. Sci. 2021, 11, 5620 28 of 34

step size factor and~r ∈ S is a vector of i.i.d. random numbers with U (xl , xu) or other
probability distribution.

Random Flight (RF): It calculates the candidate solution ~yn by employing a random flight
operation with respect to the current position ~xn as given

~yn = ~xn(t) + α~r� (~xn(t)−~x∗(t)), (A1)

where α ∈ R+ is the spatial step size,~r ∈ RD
+ is a vector of i.i.d. random numbers with either

uniform U (0, 1), normal standard N (0, 1), and symmetric Lévy stable L(1.5) distributions.

Local Random Walk (RW): It achieves the candidate solution ~yn by implementing a local
random walk on the current position ~xn, such as

~yn = ~xn + α~r� H(p−~q)� (~xz1(t)−~xz2), (A2)

where α, p ∈]0, 1] are the step size factor and the probability of change. ~r and ~q are
both vectors of i.i.d. random variables with U (0, 1) or N (0, 1). ~xz1 and ~xz2 , z1 6= z2, are
individuals selected from the population by following a given scheme. It is common to
randomly choose them from the population, i.e., z1, z2 ∼ U{1, N} and z1 6= z2.

Genetic Crossover (GC): It obtains the candidate solution ~yn with a somehow complex
procedure over the current population X(t). This procedure first determines a ranked ver-
sion of the population X̂(t) with respect to the cost function value i.e., X̂(t) = {~̂x1, . . . , ~̂xN}
with f (~̂x1) < · · · < f (~̂xN). Such preliminary adjustment is known by several authors as
natural selection [49]. Subsequently, ~yn is determined such as

~yn = ~m� ~̂xz1 + (1− ~m)� ~̂xz2 , ∀ z1, z2 ∈ {1, . . . , M}, n ∈ {M + 1, . . . , N}, (A3)

where z1 and z2 are mutually exclusive indices from the population, i.e., z1 6= z2, and ~m ∈
RD
+ is the mask vector. Besides, M = bmpNe is the mating pool size since mp ∈]0, 1] is

the portion of the best ranked agents from the population of size N. These parameters are
detailed as follows.

On the one hand, z1 and z2 refer to the parent indices chosen by using a pairing scheme
from the mating pool [2,49]. The most common pairing schemes are Random, Rank weighting,
Roulette wheel, and Tournament pairing. On the other hand, the mask vector is commonly
assumed in the range [0, 1]D, as we do in this work. However, some researchers incorporate
values beyond such a range. This vector can be determined via diverse crossover mecha-
nisms [49]. The most common ones are Single-point, Two-points, Uniform, Blend, and Linear
crossover. Further information about the expressions corresponding to either pairing and
crossover mechanisms can be found in [7,31].

Genetic Mutation (GM): This operator also works on a ranked version of the population
X̂(t) with respect to the cost function value i.e., X̂(t) = {~̂x1, . . . , ~̂xN} with f (~̂x1) < · · · <
f (~̂xN). Hence, the candidate position ~yn is calculated such as

~yn = ~m�~xn(t) + α(1− ~m)�~r, ∀ n ∈ {dpeNe, . . . , N}, (A4)

where ~m = H(pm −~q) is a mask vector, α ∈ [0, 1] is the spatial step size,~r and~q are vectors
of i.i.d. random numbers with distribution U (xl , xu) and U (0, 1), respectively, pe ∈ [0, 1] is
the elite portion of the population (i.e., the top bpeNc ranked individuals), and pm ∈ [0, 1]
is the mutation probability. Furthermore, most researchers implement different probability
distributions for drawing random disturbances along the problem domain [49].

Appl. Sci. 2021, 11, 5620 29 of 34

Differential Mutation (DM): The candidate position ~yn is determined by using the dif-
ferential mutation operator, which employs current positions of different agents in the
population, as shown

~yn = ~m +
M

∑
m=1

αm
(
~xz2m−1(t)−~xz2m(t)

)
, (A5)

where ~m is the target vector which depends of the mutation scheme expressed such that DE/·/M,
M ∈ {1, 2, 3} stands the number of random differences or perturbations, and αm ∈ [0, 3] is
a constant factor ∀m ∈ {0, . . . , M}. Plus, zi ∀ i ∈ Z+ is an integer with uniform random
distribution between 1 and N, where N is the population size, then zi ∼ U{1, N} with zi /∈⋃

j∈Z+−{i} zj. The most oft utilised schemes are listed as follows [38]:

• rand: ~m = ~xz0(t),
• best : ~m = ~x∗(t),
• current: ~m = ~xn(t),
• current-to-best: ~m = ~xn(t) + α0(~x∗(t)−~xz0(t)),
• rand-to-best: ~m = ~xz0(t) + α0(~x∗(t)−~xzM+1(t)), and
• rand-to-best-and-current: ~m = ~xz0(t) + α0(~x∗(t)−~xn(t)).

Differential Crossover (DC): This procedure always succeeds the DM operation in the
basic DE implementation. Therefore, the candidate position ~yn(t) is determined by ‘bal-
ancing’ (crossover operation) the components of the n-th current position ~xn(t) and its
immediately preceding position ~xn(t− 1), such as

~yn(t) = ~m�~xn(t− 1) + (1− ~m)�~xn(t), (A6)

where ~m ∈ ZD
2 is the crossover mask vector calculated such as ~m = H(pCR −~r) by

employing H : RD → ZD
2 as the element-wise Heaviside step function with H(0) = 1,

and~r ∈ RD is a vector of i.i.d. uniformly random variables in [0, 1],~r 3 ri ∼ U (0, 1). pCR
is the crossover probability that depends of the constant CR ∈ [0, 1] and indicates if an
element mutates. Its formula varies according to the crossover type [57], i.e., Binomial
crossover or Exponential crossover.

It is worth mentioning that DC has shown poor performance when it is utilised apart
from DM. For that reason, we disregarded this perturbator from the selected ones in our
implementation. Notwithstanding, and for comparison purposes, we employed binomial
variant of this heuristic when implementing the basic version of DE.

Particle Swarm Dynamic (PS): The candidate position~yn(t) for the n-th agent is rendered
via the swarm dynamic operation using its current position~xn(t) and velocity~vn(t), such as

~yn = ~xn(t) +~vn(t). (A7)

This velocity can be determined through different approaches from the literature. The most
common and simplest ones, widely implemented in several practical problems, are the
inertial and constrained approaches, which follow the expression

~vn(t) = α0~vn(t− 1) + α1φ1~r1 � (~xn,∗(t)−~xn(t)) + α2φ2~r2 � (~x∗(t)−~xn(t)). (A8)

In this formula, αi ∈ [0, 1] are velocity scale coefficients, ∀ i ∈ {0, 1, 2}, φ1, φ2 ∈ [0, 4],
are known as the self and swarm confidence coefficients, respectively, and ~rj ∈ RD are
i.i.d. random vectors with U (0, 1), ∀ j ∈ {1, 2} [58]. Now, depending of the αi values set,
the velocity is determined using whether the inertial or constrained approach, as detail below.

Appl. Sci. 2021, 11, 5620 30 of 34

• Inertial approach employs α0 ∈ [0, 1], α2 = α3 = 1. In this case, α0 is called inertial
weight and can be used as a fixed value, a time-dependent function, or a random
number [59,60].

• Constrained approach utilises α0 = α1 = α2 = χ, since χ is known as the constriction
factor determined by χ = 2κH(φ− 4)/(φ− 2−

√
φ(φ− 4)) +

√
κ(1− H(φ− 4)),

since φ = φ1 + φ2 and κ ∈ [0, 1] [39,59].

Moreover, ~vn(t− 1) corresponds to the velocity of the n-th agent, whilst ~xn,∗(t) and ~x∗(t)
are the best position found by each individual and by the entire population, respectively.
The main trade-off of this heuristic for its mathematical simplicity is the requirement of
memory to preserve the previous velocity ~vn(t− 1) and the particular best solution ~xn,∗(t)
for each agent n ∈ {1, . . . , N}.

Firefly Dynamic (FD): The candidate solution ~yn(t) obtained via the firefly dynamic opera-
tor, which compares the current agent position ~xn(t) with that of the other agents, such as

~yn = ~xn(t) + α0~r + α1

N

∑
k=1

H(−(Ik − In))(~xk(t)−~xn(t))e−α2||~xk(t)−~xn(t)||22 , (A9)

where α0, α1 ∈ [0, 1] and α2 ∈ [0, 1000] are constant factors,~r is a vector of i.i.d. random
variables with U (−0.5, 0.5) or another distribution, and In = f (~xn), ∀ n ∈ {1, . . . , N}, is
the light intensity of agent n.

Spiral Dynamic (SD): The candidate position ~yn(t) is determined from the logarithmic
spiral trajectory given from the current position ~xn(t) and the the rotation centre ~x∗(t),
such as,

~yn = ~x∗(t)−~r� RD(θ) · (~xn(t)−~x∗(t)), (A10)

where θ ∈ [0◦, 360◦] is the rotation angle, and ~r is a vector of i.i.d. random variables
with U (r0 − σr, r0 + σr), since r0 ∈ [0, 1] is the convergence rate or central radius and
σr ∈ [0, min{r0, 1− r0}]. Plus, RD(θ) ∈ RD×D is the rotation matrix determined as the
product of all the D(D − 1)/2 combinations of two-dimensional rotation matrices in
RD. Consider that this rotation centre is given by the best current position found by
the population.

Central Force (CF): This perturbator determines the candidate position ~yn(t) by using a
Newtonian gravitational attraction approach given by

~yn = ~xn(t) +
1
2
~an(t)∆t2, (A11a)

where ~an(t) ∈ RD is the acceleration vector for the n-th agent and ∆t ∈ R+ is the time
interval between steps, i.e., ∆t = 1. This acceleration component is obtained such as,

~an(t) = α0

N

∑
k=1
k 6=n

H(Mk(t)−Mn(t))(Mk(t)−Mn(t))α1
~xk(t)−~xn(t)
||~xk(t)−~xn(t)||α2

2
, (A11b)

where Mn = f (~xn(t)), ∀ n ∈ {1, . . . , N}, is the mass of agent n, α0 ∈ [0, 0.01] is the
gravitational constant, and α1 ∈ [0, 0.01], α2 ∈ [1, 2] are two positive factors.

Gravitational Search (GS): This operator is founded in kinematic and gravitational inter-
actions. So, the candidate position ~yn(t) is achieved as given

~yn = ~xn(t) +~r0 �~vn(t), (A12a)

Appl. Sci. 2021, 11, 5620 31 of 34

since ~vn(t) is the velocity of the agent n. This parameter is attained as

~vn(t) =~r�~vn(t− 1) +~an(t), (A12b)

where~r0 is a vector of i.i.d. random variables with U (0, 1). Plus,~an(t) is the acceleration
component calculated by

~an(t) = G(t)
N

∑
k=1
k 6=n

Mk(t)~rk �
~xk(t)−~xn(t)

||~xk(t)−~xn(t)||2 + εg
, (A12c)

since G(t) ∈ R+ is the gravitational factor that can be time dependent, Mn(t) is the mass
of agent n,~rk is a vector of i.i.d. random variables with U (0, 1), and εg ∈ R+ is a small
constant. In particular, G(t) and Mn(t) are determined with

G(t) = α0e−α1t and Mn(t) =
f (~x◦(t))− f (~xn(t))

N f (~x◦(t))−∑N
k=1 f (~xk(t))

, (A12d)

where α0 ∈ [0, 1] is the initial gravitational value, α1 ∈ [0, 0.1] is the damping ratio,
and f (~x◦(t)) is the worst fitness value at ~x◦(t), such that ~x◦(t) = argsup

⋃N
n=1{ f (~xn(t))}.

Appendix A.3. Selectors

From the prior mentioned metaheuristics, we chose the four most representative
selection operators, i.e., Direct, Greedy, Probabilistic, and Metropolis selectors. Before
describing them, recall that ~xn(t) ∈ X(t) and ~yn ∈ X are the n-th agent position from the
current population and its candidate position, respectively. In addition, their corresponding
fitness values are f (~xn) and f (~yn), since f : X→ R is the objective function to minimise,
and the difference between them is given by ∆ fn(t) = f (~yn)− f (~xn(t)). Therefore, the new
position ~xn(t + 1) of the n-th agent is assigned by using the previous information and any
of the selectors listed below.

Direct: The new position ~xn(t + 1) of the n-th agent is straightforwardly designated equal
to the candidate one ~yn, i.e., ~xn(t + 1) = ~yn.

Greedy: The new position ~xn(t + 1) for the n-th agent is assigned equal to~yn if it improves
the current position ~xn(t), i.e., ∆ fn ≤ 0), thus

~xn(t + 1) =

{
~yn, if ∆ fn ≤ 0,
~xn(t), otherwise.

(A13)

Probabilistic: The new position ~xn(t + 1) for the n-th agent is set equal to ~yn if it improves
the current position ~xn(t), i.e., ∆ fn ≤ 0). Should it be worsened, ~yn is selected with a given
probability ps ∈ [0, 1], such that

~xn(t + 1) =

{
~yn, if (∆ fn ≤ 0) ∨ (ps < r),
~xn(t), otherwise.

(A14)

Metropolis: The new position ~xn(t + 1) for the n-th agent is set equal to ~yn if it improves
the current position ~xn(t), i.e., ∆ fn ≤ 0. Should it be worsened (∆ fn > 0), ~yn is selected
with a given probability of acceptance, as shown

~xn(t + 1) =

~yn, if (∆ fn ≤ 0) ∨
(

r < e
− ∆ fn(t)

kBΘ(t)

)
,

~xn(t), otherwise,
(A15)

Appl. Sci. 2021, 11, 5620 32 of 34

since kB ∈ R+ is the Boltzmann’s constant and Θ(t) : Z+ → R+ is the temperature
which decreases slowly with each iteration. There are many flavours for the temperature
expression Θ(t) in the literature [35].

Appendix A.4. Finalisers

Finally, but certainly not least important, we present the most common simple heuris-
tics in charge of deciding when the search procedure must end. According to Definition 7,
the differentiating point from one finaliser to another is the criteria function c f , which
maps a set of measurements or features to a Boolean quantity. For that reason, we use the
well-known Heaviside function H : R 7→ Z2 in the criteria evaluation. These criteria can be
found in the literature as stopping conditions [61]. It is worth noticing that these criteria are
not exclusive, so one or more can be employed conjunctively as a finaliser, i.e.,

c f (t, f , X, . . .) ,
∧
∀ i

c f ,i(t, f , X, . . .), (A16)

where c f ,i is a particular criterion that depends of at least one parameter: the current
iteration t, objective function f , agents positions X, so forth. The most common criteria
found in several numerical methods as briefly described below.

Iteration number: In a searching procedure with t as the current iteration and tmax as
the maximal number of iterations allowed, the criteria function is defined as c f ,in(t) ,
H(t− tmax).

Function tolerance: After finding the current best position ~x∗(t) in an iterative procedure,
its fitness is compared against the previous one ~x∗(t− 1), with the objective function f (~x),
employing the following criterion,

c f , f t(t, f , X) , H
(

ε f t −
| f (~x∗(t)− f (~x∗(t− 1))|
| sup{1, f (~x∗(t)}|

)
. (A17)

The function tolerance criterion c f , f t(f) depends of a threshold value ε f t established to
limit the closeness of these two function values.

Domain tolerance: Similar to the Function tolerance finalisation, but this one only com-
pares the positions using a distance metric, e.g., the `2-norm, such as

c f ,dt(t, f , X) , H(εdt − ||~x∗(t)−~x∗(t− 1)||2), (A18)

since εdt is the threshold value to evaluate the closeness of these positions.

In this work, we dismiss the finalisers found from the analysed metaheuristics because
we delegate this function to a superior technique. Further information is provided in
Section 3, where we describe the proposed model as well as its main motivation. Notwith-
standing, we implemented only the Iteration number finaliser in the basic metaheuristics
used for comparison purposes (cf. Section 4).

References
1. Sörensen, K.; Sevaux, M.; Glover, F. A history of metaheuristics. Handb. Heuristics 2018, 2, 791–808. [CrossRef]
2. Goldberg, D.; Holland, J. Genetic algorithms and machine learning. Mach. Learn. 1988, 3, 95–99. [CrossRef]
3. Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. Optimization by Simulated Annealing Optimization by Simulated Annealing. Science

1983, 220, 671–680. [CrossRef] [PubMed]
4. Cruz-Duarte, J.M.; Amaya, I.; Ortíz-Bayliss, J.C.; Correa, R. Solving microelectronic thermal management problems using a

generalized spiral optimization algorithm. Appl. Intell. 2021. [CrossRef]
5. Hashim, F.A.; Hussain, K.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W. Archimedes optimization algorithm: A new

metaheuristic algorithm for solving optimization problems. Appl. Intell. 2021, 51, 1531–1551. [CrossRef]
6. Sörensen, K. Metaheuristics—The metaphor exposed. Int. Trans. Oper. Res. 2015, 22, 3–18. [CrossRef]

http://doi.org/10.1007/978-3-319-07124-4_4
http://dx.doi.org/10.1023/A:1022602019183
http://dx.doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/17813860
http://dx.doi.org/10.1007/s10489-020-02164-7
http://dx.doi.org/10.1007/s10489-020-01893-z
http://dx.doi.org/10.1111/itor.12001

Appl. Sci. 2021, 11, 5620 33 of 34

7. Cruz-Duarte, J.M.; Ortiz-Bayliss, J.C.; Amaya, I.; Shi, Y.; Terashima-Marín, H.; Pillay, N. Towards a Generalised Metaheuristic
Model for Continuous Optimisation Problems. Mathematics 2020, 8, 2046. [CrossRef]

8. Adam, S.P.; Alexandropoulos, S.A.N.; Pardalos, P.M.; Vrahatis, M.N. No Free Lunch Theorem: A Review. In Approximation and
Optimization; Demetriou, I., Pardalos, P., Eds.; Springer: Cham, Swizerland, 2019; pp. 57–82. [CrossRef]

9. Parsopoulos, K.E.; Vrahatis, M.N. UPSO: A unified particle swarm optimization scheme. Lect. Ser. Comput. Comput. Sci. 2004,
1, 868–873.

10. Dao, S.D.; Abhary, K.; Marian, R. A bibliometric analysis of Genetic Algorithms throughout the history. Comput. Ind. Eng. 2017,
110, 395–403. [CrossRef]

11. Huang, C.; Li, Y.; Yao, X. A Survey of Automatic Parameter Tuning Methods for Metaheuristics. IEEE Trans. Evol. Comput. 2020,
24, 201–216. [CrossRef]

12. Durgut, R.; Aydin, M.E. Adaptive binary artificial bee colony algorithm. Appl. Soft Comput. 2021, 101, 107054. [CrossRef]
13. Santos, C.E.d.S.; Sampaio, R.C.; Coelho, L.d.S.; Bestarsd, G.A.; Llanos, C.H. Multi-objective adaptive differential evolution for

SVM/SVR hyperparameters selection. Pattern Recognit. 2021, 110, 107649. [CrossRef]
14. Sevaux, M.; Sörensen, K.; Pillay, N. Adaptive and Multilevel Metaheuristics. In Handbook of Heuristics; Springer International

Publishing: Cham, Swizerland, 2018; pp. 3–21. [CrossRef]
15. Miranda, P.B.; Prudêncio, R.B.; Pappa, G.L. H3AD: A hybrid hyper-heuristic for algorithm design. Inf. Sci. 2017, 414, 340–354.

[CrossRef]
16. Raidl, G.R. A unified view on hybrid metaheuristics. In International Workshop on Hybrid Metaheuristics; Springer:

Berlin/Heidelberg, Germany, 2006; pp. 1–12.
17. Talbi, E.G. A taxonomy of hybrid metaheuristics. J. Heuristics 2002, 8, 541–564. [CrossRef]
18. Barzinpour, F.; Noorossana, R.; Niaki, S.T.A.; Ershadi, M.J. A hybrid Nelder–Mead simplex and PSO approach on economic and

economic-statistical designs of MEWMA control charts. Int. J. Adv. Manuf. Technol. 2012. [CrossRef]
19. Hassan, A.; Pillay, N. Hybrid metaheuristics: An automated approach. Expert Syst. Appl. 2019, 130, 132–144. [CrossRef]
20. Krawiec, K.; Simons, C.; Swan, J.; Woodward, J. Metaheuristic design patterns: New perspectives for larger-scale search

architectures. In Handbook of Research on Emergent Applications of Optimization Algorithms; IGI Global: Hershey, PA, USA, 2018;
pp. 1–36.

21. Stützle, T.; López-Ibáñez, M. Automated design of metaheuristic algorithms. In Handbook of Metaheuristics; Springer: Cham,
Switzerland, 2019; pp. 541–579.

22. Burke, E.K.; Hyde, M.R.; Kendall, G.; Ochoa, G.; Özcan, E.; Woodward, J.R. A classification of hyper-heuristic approaches:
Revisited. In Handbook of Metaheuristics; Springer: Cham, Switzerland, 2019; pp. 453–477.

23. Pillay, N.; Qu, R. Hyper-Heuristics: Theory and Applications; Springer International Publishing: Berlin, Germany, 2018.
24. Del Ser, J.; Osaba, E.; Molina, D.; Yang, X.S.; Salcedo-Sanz, S.; Camacho, D.; Das, S.; Suganthan, P.N.; Coello, C.A.C.; Herrera, F.

Bio-inspired computation: Where we stand and what’s next. Swarm Evol. Comput. 2019, 48, 220–250. [CrossRef]
25. Woumans, G.; De Boeck, L.; Beliën, J.; Creemers, S. A column generation approach for solving the examination-timetabling

problem. Eur. J. Oper. Res. 2016, 253, 178–194. [CrossRef]
26. M. Almufti, S. Historical survey on metaheuristics algorithms. Int. J. Sci. World 2019, 7, 1. [CrossRef]
27. Hussain, K.; Salleh, M.N.M.; Cheng, S.; Shi, Y. Metaheuristic research: A comprehensive survey. Artif. Intell. Rev. 2019,

52, 2191–2233. [CrossRef]
28. Dokeroglu, T.; Sevinc, E.; Kucukyilmaz, T.; Cosar, A. A survey on new generation metaheuristic algorithms. Comput. Ind. Eng.

2019, 137, 106040. [CrossRef]
29. Drake, J.H.; Kheiri, A.; Özcan, E.; Burke, E.K. Recent advances in selection hyper-heuristics. Eur. J. Oper. Res. 2020, 285, 405–428.

[CrossRef]
30. Qu, R.; Kendall, G.; Pillay, N. The General Combinatorial Optimisation Problem: Towards Automated Algorithm Design. IEEE

Comput. Intell. Mag. 2020, 15, 14–23. [CrossRef]
31. Cruz-Duarte, J.M.; Amaya, I.; Ortiz-Bayliss, J.C.; Terashima-Marín, H.; Shi, Y. CUSTOMHyS: Customising Optimisation

Metaheuristics via Hyper-heuristic Search. SoftwareX 2020, 12, 100628. [CrossRef]
32. Sanchez-Diaz, X.F.C.; Ortiz-Bayliss, J.C.; Amaya, I.; Cruz-Duarte, J.M.; Conant-Pablos, S.E.; Terashima-Marin, H. A Preliminary

Study on Feature-independent Hyper-heuristics for the 0/1 Knapsack Problem. In Proceedings of the 2020 IEEE Congress on
Evolutionary Computation (CEC), Glasgow, UK, 19–24 July 2020; pp. 1–8. [CrossRef]

33. Han, L.; Kendall, G. Guided operators for a hyper-heuristic genetic algorithm. In Australasian Joint Conference on Artificial
Intelligence; Springer: Berlin/Heidelberg, Germany, 2003; pp. 807–820.

34. Archetti, F.; Candelieri, A., From Global Optimization to Optimal Learning. In Bayesian Optimization and Data Science; Springer
International Publishing: Cham, Swizerland, 2019; Chapter 2, pp. 19–35. [CrossRef]

35. Franzin, A.; Stützle, T. Revisiting simulated annealing: A component-based analysis. Comput. Oper. Res. 2019, 104, 191–206.
[CrossRef]

36. Dianati, M.; Song, I.; Treiber, M. An introduction to genetic algorithms and evolution strategies. Sadhana 2002, 24, 293–315.
37. Shehab, M.; Khader, A.T.; Al-Betar, M.A. A survey on applications and variants of the cuckoo search algorithm. Appl. Soft Comput.

J. 2017, 61, 1041–1059. [CrossRef]

http://dx.doi.org/10.3390/math8112046
http://dx.doi.org/10.1007/978-3-030-12767-1_5
http://dx.doi.org/10.1016/j.cie.2017.06.009
http://dx.doi.org/10.1109/TEVC.2019.2921598
http://dx.doi.org/10.1016/j.asoc.2020.107054
http://dx.doi.org/10.1016/j.patcog.2020.107649
http://dx.doi.org/10.1007/978-3-319-07124-4_16
http://dx.doi.org/10.1016/j.ins.2017.05.029
http://dx.doi.org/10.1023/A:1016540724870
http://dx.doi.org/10.1007/s00170-012-4260-7
http://dx.doi.org/10.1016/j.eswa.2019.04.027
http://dx.doi.org/10.1016/j.swevo.2019.04.008
http://dx.doi.org/10.1016/j.ejor.2016.01.046
http://dx.doi.org/10.14419/ijsw.v7i1.29497
http://dx.doi.org/10.1007/s10462-017-9605-z
http://dx.doi.org/10.1016/j.cie.2019.106040
http://dx.doi.org/10.1016/j.ejor.2019.07.073
http://dx.doi.org/10.1109/MCI.2020.2976182
http://dx.doi.org/10.1016/j.softx.2020.100628
http://dx.doi.org/10.1109/CEC48606.2020.9185671
http://dx.doi.org/10.1007/978-3-030-24494-1_2
http://dx.doi.org/10.1016/j.cor.2018.12.015
http://dx.doi.org/10.1016/j.asoc.2017.02.034

Appl. Sci. 2021, 11, 5620 34 of 34

38. Das, S.; Mullick, S.S.; Suganthan, P.N. Recent advances in differential evolution-An updated survey. Swarm Evol. Comput. 2016,
27, 1–30. [CrossRef]

39. Clerc, M.; Kennedy, J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. Evol.
Comput. IEEE Trans. 2002, 6, 58–73. [CrossRef]

40. Fister, I.; Yang, X.S.; Brest, J. A comprehensive review of firefly algorithms. Swarm Evol. Comput. 2013, 13, 34–46. [CrossRef]
41. Cruz-Duarte, J.M.; Martin-Diaz, I.; Munoz-Minjares, J.U.; Sanchez-Galindo, L.A.; Avina-Cervantes, J.G.; Garcia-Perez, A.; Correa-

Cely, C.R. Primary study on the stochastic spiral optimization algorithm. In Proceedings of the 2017 IEEE International Autumn
Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 8–10 November 2017; Volume 1, pp. 1–6.

42. Behniya, M.; Ayati, A.H.; Derakhshani, A.; Haghighi, A. Application of the central force optimization (CFO) method to the soil
slope stability analysis. In Proceedings of the International Conference on Progress in Science and Technology, London, UK, 20
November 2016; p. 11.

43. Biswas, A.; Mishra, K.K.; Tiwari, S.; Misra, A.K. Physics-Inspired Optimization Algorithms: A Survey. J. Optim. 2013, 2013, 1–16.
[CrossRef]

44. Cruz-Duarte, J.M.; Amaya, I.; Ortiz-Bayliss, J.C.; Conant-Pablos, S.E.; Terashima-Marín, H. A primary study on hyper-heuristics
to customise metaheuristics for continuous optimisation. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation
(CEC), Glasgow, UK, 19–24 July 2020; pp. 1–8. [CrossRef]

45. Carrasco, J.; García, S.; Rueda, M.; Das, S.; Herrera, F. Recent trends in the use of statistical tests for comparing swarm and
evolutionary computing algorithms: Practical guidelines and a critical review. Swarm Evol. Comput. 2020, 54, 100665. [CrossRef]

46. García, S.; Molina, D.; Lozano, M.; Herrera, F. A study on the use of non-parametric tests for analyzing the evolutionary
algorithms’ behaviour: A case study on the CEC’2005 Special Session on Real Parameter Optimization. J. Heuristics 2009,
15, 617–644. [CrossRef]

47. Goldberg, D.E.; Deb, K. A comparative analysis of selection schemes used in genetic algorithms. In Foundations of Genetic
Algorithms; Morgan Kaufmann Publishers, Inc.: San Mateo, CA, USA, 1991; Volume 1, pp. 69–93.

48. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
49. Ahn, C.W. Practical Genetic Algorithms; Springer, Berlin/Heidelberg, Germany, 2006; Volume 18, pp. 7–22. [CrossRef]
50. Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired

Computing (NaBIC), Coimbatote, India, 9–11 December 2009; pp. 210–214.
51. Kennedy, J.; Eberhart, R. Particle swarm optimization (PSO). In Proceedings of the IEEE International Conference on Neural

Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948.
52. Yang, X.S. Firefly algorithm. In Nature-Inspired Metaheuristic Algorithms; Luniver Press: Cambridge, UK, 2008; Volume 20,

pp. 79–90.
53. Formato, R.A. Central force optimization: A new deterministic gradient-like optimization metaheuristic. Opsearch 2009, 46, 25–51.

[CrossRef]
54. Schumer, M.A.; Steiglitz, K. Adaptive Step Size Random Search. IEEE Trans. Autom. Control. 1968, 13, 270–276. [CrossRef]
55. Price, K.; Storn, R. Differential Evolution—A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Space;

Technical Report; International Computer Science Institute: Berkeley, CA, USA, 1995.
56. Kar, A.K. Bio inspired computing—A review of algorithms and scope of applications. Expert Syst. Appl. 2016, 59, 20–32.

[CrossRef]
57. Zaharie, D. A Comparative Analysis of Crossover Variants in Differential Evolution. In Proceedings of the International

Multiconference on Computer Science and Information Technology, IMCSIT 2007, Wisła, Poland, 15–17 October 2007; pp. 171–181.
58. Bonyadi, M.R.; Michalewicz, Z. Particle swarm optimization for single objective continuous space problems: A review. Evol.

Comput. 2017, 25, 1–54. [CrossRef]
59. Imran, M.; Hashim, R.; Khalid, N.E.A. An overview of particle swarm optimization variants. Procedia Eng. 2013, 53, 491–496.

[CrossRef]
60. Zhang, Y.; Wang, S.; Ji, G. A comprehensive survey on particle swarm optimization algorithm and its applications. Math. Probl.

Eng. 2015, 2015. [CrossRef]
61. Rao, S.S. Engineering Optimization: Theory and Practice; John Wiley & Sons: Hoboken, NJ, USA, 2009.

http://dx.doi.org/10.1016/j.swevo.2016.01.004
http://dx.doi.org/10.1109/4235.985692
http://dx.doi.org/10.1016/j.swevo.2013.06.001
http://dx.doi.org/10.1155/2013/438152
http://dx.doi.org/10.1109/CEC48606.2020.9185591
http://dx.doi.org/10.1016/j.swevo.2020.100665
http://dx.doi.org/10.1007/s10732-008-9080-4
http://dx.doi.org/10.1007/11543138_2.
http://dx.doi.org/10.1007/s12597-009-0003-4
http://dx.doi.org/10.1109/TAC.1968.1098903
http://dx.doi.org/10.1016/j.eswa.2016.04.018
http://dx.doi.org/10.1162/EVCO_r_00180
http://dx.doi.org/10.1016/j.proeng.2013.02.063
http://dx.doi.org/10.1155/2015/931256

	Introduction
	Theoretical Foundations
	Optimisation
	Heuristics
	Simple Heuristics
	Metaheuristics
	Hyper-Heuristics

	Metaheuristic Composition Optimisation Problem

	Proposed Model
	Methodology
	Results and Discussion
	Illustrative Selected Problems
	Low- and High-Level Iterations
	Nature of Search Operators
	Performance Analysis
	Time Complexity Analysis

	Conclusions
	Simple Heuristics
	Initialisers
	Perturbators
	Single-Agent Variable-Dimension Perturbators
	Population-Based Fixed-Dimension Perturbators

	Selectors
	Finalisers

	References

