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Abstract Constructions of science (that slowly change over time) are deemed to be
the basis of the reliability with which scientific knowledge is regarded.
One of the more recent potential paradigm shifts is based on the in-
crease of available data; many researchers deem such big data to have
enough ‘substance’ to capture knowledge without the theories needed
in earlier epochs. The patterns in big data are deemed to be sufficient
to make predictions about the future (and about the past as a form of
understanding). The current chapter uses an argument developed by
Calude and Longo in 2017 to critically examine the belief system of the
proponents of such data-driven knowledge — particularly as it applies
to digital forensic science.

From Ramsey theory it follows that, if data is large enough, ‘knowl-
edge’ is ‘imbued’ on whatever domain is represented by the data purely
based on the size of the data.

The chapter concludes that it is (a) generally impossible to distin-
guish between true knowledge of the domain and (b) knowledge inferred
from spurious patterns that must exist purely as a function of the size
of the data. In addition, what is deemed a significant pattern may be
refuted by a pattern simply not yet found. Hence ‘evidence’ based on
patterns found in big data is tenuous at best. The field of digital foren-
sics should therefore proceed with caution if it wants to embrace big
data and the paradigms that evolved from and around big data.

Keywords: Digital forensic science, artificial intelligence, big data, Ramsey Theory,
epistemology
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1. Introduction

“Today, machine learning programs do a pretty good job most of the
time, but they don’t always work. People don’t understand why they
work or don’t work. If I’m working on a problem and need to under-
stand exactly why an algorithm works, I’m not going to apply machine
learning.” Barbara Liskov, Turing laureate [15]

“Deep learning and current AI, if you are really honest, has a lot of
limitations. We are very very far from human intelligence, and there
are some criticisms that are valid: It can propagate human biases, it’s
not easy to explain, it doesn’t have common sense, it’s more on the level
of pattern matching than robust semantic understanding.”

Jerome Pesenti, VP of artificial intelligence at Facebook [17]

From ancient times, science has operated on the basis of observation
of interesting patterns. Patterns observed in the movement of celes-
tial bodies, interaction between physical objects, and even human be-
haviour simplified prediction and, eventually, culminated in scientific
understanding.

In 1782 John Smeaton, a British engineer, was allowed to offer his
scientific knowledge of sea currents as evidence in a case involving silting-
up of the harbour at Wells-next-the-Sea in Norfolk [27]. Before then
evidence that relied on, say, Newton’s work would have been classified
as hearsay evidence unless Newton was called to confirm it — a challenge
since Newton passed away in 1727. Science and expert witnesses have
since 1782 become entrenched in legal proceedings.

Currently we are at another watershed moment in history. With the
advent of big data, data science and deep learning, patterns are uncov-
ered at an ever increasing rate and used to predict future events. In
forensic science pressure is increasing to use these technologies to ‘pre-
dict’ the past to provide a scientific basis for finding facts that may be
useful in legal proceedings.12

However, from Ramsey theory, it is known that any data set that is
big enough will contain a multitude of regular patterns. The patterns
stem from the size of the data set, rather than anything represented
by the data; the patterns are guaranteed to exist even in random data.
A finding derived from big data may therefore have more to do with
the size of the data than with the case being litigated. Such spurious
patterns may lead to a spurious system of (in)justice.

The current chapter follows the logic of a more generic 2017 argument
of Calude and Longo [10] — based on Ramsey (and Ergodic) theory —
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to reflect on the role that big data (and related) technologies ought to
play in forensic science, with a specific focus on digital forensic science.

The chapter proceeds as follows. Firstly, some aspects of patterns and
repetitions are discussed, with specific reference to inferences based on
such patterns. This is illustrated using court cases where short patterns
played a significant role. The chapter continues by exploring the guar-
anteed presence of patterns (that often are spurious) in large data sets.
Finally it illustrates the inherent dangers if digital forensic findings were
to be based on inferences from patterns in big data.

2. On patterns and repetition

It is all too human to expect chaos in nature, and then to interpret
a pattern in the chaos as something of special significance. Conversely,
many aspects of nature (such as the coming and going of seasons) pro-
duce expectations of a regular pattern, and any deviation from that
pattern is often deemed significant. In games of chance some events,
such as throwing a pair of dice and getting a double is deemed lucky,
and a series of such doubles may be deemed a lucky streak. However,
the streak cannot continue for very long before one begins to doubt the
integrity of the dice. Conversely, one does not expect that the same per-
son will win the lottery on a fairly regular basis — if this were to happen
one would soon doubt the integrity of the lottery system. In such se-
quences of events there are often sequences that would seem ‘normal’
and sequences that would seem like an anomaly.

On purely statistical grounds, if the probability of encountering some
phenomenon is p = 10−6 then one would expect to encountering the
phenomenon, on average, once in a million cases inspected. If it is the
probability of being born with a specific unusual medical condition, then
the usual absence of the condition will in all likelihood be labelled as
normal, and when a child is born with this condition, it may be deemed
to be abnormal or, in the language used below, an anomaly.

In the examples above, the probability of these ‘anomalies’ can be
calculated rather accurately using basic probability theory and encoun-
tering them (on average) once in a given period of time or volume is
expected. A more regular occurrence would, with a very high probabil-
ity, be indicative of some anomaly.

However, as the chapter will explain in more detail below, in a large
dataset data ‘clusters’ (for lack of a better term at this stage) exhibiting
certain traits have to occur, where have to indicates mathematical cer-
tainty. The size and prevalence of such clusters is a function of the size
of the data, and may be totally unrelated to what the data is purported
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to represent. It seems natural to represent the more prevalent clusters
as ‘normal’ and the less prevalent clusters as an anomaly.

Such differentiation between normality and anomalies is often the ba-
sis of intrusion detection in data networks and it is increasingly being
applied in digital forensics. This claim will be substantiated below. How-
ever, note that if the occurrence of ‘normal’ data flow and ‘anomalies’ is
a result of the size of the data, rather than some justifiable theory, the
distinction between normal and anomaly is very tenuous, at best (and
will be wrong in many cases). If this is the case, such differences could
not be the basis of a scientific finding in forensic science.

To make matters more concrete, consider a request to a Web server
containing an extremely long URL. Often this is indicative of an attempt
to exploit a buffer overflow vulnerability in the server. ‘Normal’ requests
are typically relatively short, compared to these ‘anomalous’ requests. In
addition, if the lengthy requests can be linked to some known vulnerabil-
ity in (some versions) of such servers, the odds increase that it is indeed
a malicious request. Another well-known pattern from the intrusion de-
tection literature is a port scan. Various methods exist that attempt to
hide such port scans that are based on interfering with some of the ‘reg-
ular’ features of a typical port scan. A port scan is often an indication
of nefarious intentions (unless the port scan was performed as part of an
official security overview). Correlating such anomalous events (such as
unusual Web requests or port scans) with reported computing incidents
may be useful. However, one should remember that causality may also
work in the other direction, where the incident causes the anomalous
events. A computer system that lost connectivity will typically send an
unusually high number of attempts to re-establish connectivity. More
importantly for the purposes of the current chapter: ‘anomalous’ pat-
terns may be entirely unrelated to incidents they apparently correlate
with, and deriving any significance from the pattern would be incor-
rect. However, making this case convincingly has to be postponed. The
starting point for understanding our belief in patterns start at a much
simpler point: Where a ‘small’ correlation seems just too significant to
ignore.

2.1 Small correlations

Even in small datasets an unexpected pattern is often deemed sig-
nificant. To the best of the author’s knowledge, the interpretation of
patterns in a cyber-related court case has not led to significant scrutiny
of evidence presented. We therefore use a well-known and widely dis-
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cussed matter as a starting point to reflect on the use of patterns as
evidence in court.

An infamous ‘law’ using patterns is Meadow’s (now discredited) law:
“one sudden infant death is a tragedy, two is suspicious and three is
murder, until proved otherwise” [19, p.29]. This ‘law’ formed the basis
of expert evidence in a number of cases. Arguably, the most prominent
of those cases was R v Sally Clark [3]. Ms Clark’s first son, Charles,
died in December 1996, aged 11 weeks. The pathologist found that the
death was due to natural causes. Sally Clark’s second son, Harry, died
in January 1998, aged 8 weeks. The pathologist ruled the death to be
unnatural and revised his finding about Harry, whose death he now also
considered to be unnatural. Sir Samuel Roy Meadow was one of the
expert witnesses in the ensuing murder trial, and evidence was based
on the ‘law’ carrying his name, although the ‘law’ was not mentioned
explicitly during his testimony. Sally Clark was found guilty and sen-
tenced to life imprisonment. Sally Clark was released from jail in 2003,
after a second appeal [4] was successful.

The ‘pattern’ played a major role in her first conviction and in the fail-
ure of her first appeal [3]. The judgement in the second appeal provides
interesting insights into how the ‘pattern’ was mentally constructed by
the prosecution and jurors. This will be discussed in more detail below.

2.2 Patterns and/or knowledge

The previous paragraph illustrates the potentially strong belief that
may be formed — even when considering very short patterns. Court ar-
guments turned on many facets of the Sally Clark case, and the notion of
probability was deemed of minor importance; rather, medical knowledge
was deemed paramount in the original trial and both appeals.

In contrast, machine learning — especially in the context of big data
— in recent years tended to ignore underlying knowledge and rather
focussed on patterns. Langley [18, p.278] describes the development as
follows: “During the 1990s, a number of factors led to decreased interest
in the role of knowledge. One was the growing use of statistical and
pattern-recognition approaches, which improved performance but which
did not produce knowledge in any generally recognized form.”

During earlier periods of artificial intelligence, some underlying knowl-
edge about the problem domain somehow impacted machine; in expert
systems, knowledge representation was at the core of the work; in ma-
chine learning, domain specific heuristics improved the speed of learn-
ing. However, as machine learning developed, the focus shifted to an
“increasing reliance on experimental evaluation that revolved around
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performance metrics [which] meant there was no evolutionary pressure
to study knowledge-generating mechanisms” [18, p.278].

In a similar vein, Anderson [2] published an earlier article in Wired
Magazine with the provocative title (borrowed from an earlier claim by
a George Box): The end of theory: The data deluge makes the scientific
method obsolete. In it he, for example, declares

“Out with every theory of human behavior, from linguistics to sociology.
Forget taxonomy, ontology, and psychology. Who knows why people do
what they do? The point is they do it, and we can track and measure
it with unprecedented fidelity. With enough data, the numbers speak for
themselves.”

2.3 Big data

Big data was a concern in the context of digital forensics since digital
forensics emerged as a recognised academic discipline [5, p.24]. Some
of the earliest concerns included that finding the needle in the haystack
became more challenging as the size of the haystack increased [25]. The
fact is that the typical amount of storage associated with a computer
increased dramatically and this made imaging of such storage harder or
impossible. Emergence of the cloud exacerbated these issues and paper
after paper was published that lamented the growth in data volumes.

However, in parallel with these concerns a new field of study devel-
oped under the big data rubric. The principle that underlies this field
is that the universe (or many aspects of it) behave according to some
pattern. If enough data is available it can be analysed and the patterns
discovered. Once the pattern is known behaviour becomes predictable.
This knowledge of the future can be monetised or other benefits may be
derived from it. The name of the field has changed over time with data
mining, data analytics and data science being some of the prominent
examples. The notion of machine learning or deep [machine] learning is
closely associated with the field. In this chapter the term big data will
be used, unless specific differentiation is required.

Given the popularity of big data it was only natural that researchers
would posit the use of big data methods in the digital forensic realm.

3. What constitutes correlation?

The Sally Clark case is a good illustration of both ‘pattern recognition’
and correlation in a small data set.

In the second appeal [4], the court pointed out that the previous courts
(erroneously) accepted that the deaths of the two children were related
(or correlated) on the following grounds (quoted verbatim):
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i) Christopher and Harry were about the same age at death namely
11 weeks and 8 weeks.

ii) They were both discovered unconscious by Mrs Clark in the bed-
room, allegedly both in a bouncy chair.

iii) Both were found at about 9.30 in the evening, shortly after having
taken a successful feed.

iv) Mrs Clark had been alone with each child when he was discovered
lifeless.

v) In each case Mr Clark was either away or about to go away from
home in connection with his work.

vi) In each case there was evidence consistent with previous abuse.

vii) In each case there was evidence consistent with recently inflicted
deliberate injury.

The appeal ruling considers each of these points systematically and
rejects every point. It should be noted that these points were raised
by the prosecution, rather than the expert witnesses and the court was,
in principle, equipped to deal with such an argument. However, the
incorrect reasoning of both the court of first instance and of the first
appeal case was only rectified by the second appeal case [4].

In contrast, where an expert witness uses such methods, the court is
ill equipped to deal with it, unless it is rebutted by another expert. The
closest that any expert witness came to including anything similar in
expert testimony was Meadow’s testimony on the rarity of two infant
deaths in one family. Meadow cited from a work where the prevalence of
Sudden Infant Death Syndrome (SIDS) was one in 8 543 cases.3. Hence,
with the probability p of a SIDS case estimated to be p = 1

8543 , he
multiplied these probabilities to determine the probability of repeated
cases by the number of cases, as if occurrences of SIDS were independent.
In the Sally Clark case, he concluded that the probability of two such
deaths would be p2 — or about one in 73 million. He continued by
illustrating the unlikelihood of such an event using a comparison from
sports book betting. Though the judge downplayed the importance of
this number in his instructions to the jury, the effect of it arguably stuck.
Of course, two deaths in a family may very well not be independent — it
may be caused by the genetic makeup of children in the family, and hence
squaring the probability (without showing independence) was incorrect.
This was one of the issues raised by the Royal Statistical Society in its
press release [13] after the first appeal [3] failed.
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The second aspect raised by the Royal Statistical Society [13] was the
emphasis on a small probability of a specific outcome. The probability
of SIDS is indeed small, but so is the probability (or relative prevalence)
of parents murdering multiple children: One cannot focus on the small
probability of some sequence of events S and therefore conclude that
another unlikely sequence of events B as the logical inference to be made.

As a second example, consider the case of Australian, Kathleen Fol-
bigg. Four of her children died at a young age in 1989 (age: 19 days),
1991 (age: 8 months), 1993 (age: 10 months) and 1999 (age: 19 months).
While experts used the same calculation during pretrial hearings, when
Folbigg’s trial started in March 2003, the British Court of Appeals had
already discredited Meadow’s law and calculations.

Meadow’s Law was therefore excluded, but his ideas still featured dur-
ing the trial. A Professor Berry, for example, testified that “[t]he sudden
and unexpected death of three children in the same family without evi-
dence of a natural cause is extraordinary. I am unable to rule out that
Caleb, Patrick, Sarah and possibly Laura Folbigg were suffocated by the
person who found them lifeless, and I believe that it is probable that
this was the case.” A Professor Herdson, on the other hand, deemed
the events too different to be a pattern in which SIDS death would oc-
cur, and used the absence of a specific pattern (amongst others) to be
indicative of unnatural causes of death.

In both cases mentioned here other evidence was influential in the
eventual findings of the various courts (that eventually were more im-
portant than the presence or absence of a pattern). In the case of Sally
Clark microbiological test results of Harry were not available to the
defence and was only discovered by them after the first appeal. The
appeal court found that availability of these results, along with expert
testimony, could have impacted the jury’s decision and concluded that
the guilty verdict was unsafe. On its own, the guilty verdict regarding
Christopher’s death was unsafe. The Crown did not apply for a re-trial
and the convictions were set aside.

In the Kathleen Folbigg case diaries that she kept played a significant
role in proceedings and the outcome of the trial. Public interest even-
tually led to a judicial inquiry by the former Chief Judge of the New
South Wales District Court, Reginald Blanch, to review the case (and
hear new evidence). In July 2019 the report he concluded that “the In-
quiry does not cause me [Reginald Blanch] to have any reasonable doubt
as to the guilt of Kathleen Megan Folbigg for the offences of which she
was convicted. Indeed, as indicated, the evidence which has emerged at
the Inquiry, particularly her own explanations and behaviour in respect
of her diaries, makes her guilt of these offences even more certain.” In
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addition, “there is no reasonable doubt as to any matter that may have
affected the nature or severity of Ms Folbigg’s sentence” [7, p.496].

4. On correlation in big data

Many papers have been written that express concern over, or reject
the notion that data can speak for itself without the need for any theory.
One only has to look through the many papers that cite Anderson’s claim
[2] to find such critiques.

One paper that criticises this claim in a manner that should be taken
seriously in digital forensics is the paper by Calude and Longo [10] who
“prove that very large databases have to contain arbitrary correlations.
These correlations appear only due to the size, not the nature, of data.
They can be found in ‘random’ generated, large enough databases, which
[. . . ] implies that most correlations are spurious” [emphasis in original].

Calude and Longo use a number of theorems from Ergodic and Ram-
sey theory that are relevant in the current chapter. However, we will
only focus on the final claim by Calude and Longo (based on Ramsey
theory), and provide a different exposition.

5. Ramsey theory

Ramsey theory studies the number of objects that should be present
in a collection for order to emerge. Perhaps the best-known example
is based on a scenario where people attend a party. Any two people
at the party will either have met previously or be mutual strangers. If
one uses colours to represent the relationship between any two people,
the case where they have previously met may be represented by the
colour green, while the case where they are mutual strangers may be
represented by the colour red. The fundamental question in Ramsey
theory is what is the minimum number of people who need to be at the
party to have at least c cases of the same colour (or, stated differently,
to have c monochromatic cases). If, for example, c is chosen to be 1, it
is easy to show that n = 2: If we use letters to represent the attendees,
a and b will know one another (green) or be mutual strangers (red). If
c = 2 then n = 3: With three guests, a, b and c, the situation may be
depicted graphically as a triangle with a, b and c as the vertices and
(a, b), (a, c) and (b, c) as the edges, representing the relationships. With
two colours (red and green), colouring the three edges requires two edges
to be coloured using the same colour.

The notation R(s, t) is used to depict so-called Ramsey numbers.
R(s, t) is the minimum number of objects in a set such that some rela-
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tionship holds amongst at least s members of the set, or does not hold
amongst at least t members of the set.

As illustrated by the party problem mentioned above, it is natural to
think in terms of graph theory about Ramsey theory. In the language
of graph theory, complete graph is one where every vertex is connected
to every other vertex. For n vertices the corresponding complete graph
is denoted by Kn. A clique is a subgraph that is ‘complete’ — in other
words, the vertices in the subgraph are all connected. In this context,
colour a complete graph using two colours. One colour (say green) is
used to colour the edge if the relationship holds between the vertices
connected by the edge; the other (say red) is used to colour the edge if
the relationship does not hold between the two connected edges. Then
the Ramsey number R(s, t) is the smallest n such that Kn has to either
contain a clique consisting of green edges of size s (or larger), or a clique
of size t (or larger) consisting of red edges.4

In general the binary relationship used above (that some relationship
holds, or does not hold) is too restrictive. It is useful (and possible) to
talk about any set of relationships that form a partition of the possible
relationships that may hold between the vertices. If the vertices rep-
resent, for example, events that occurred in a computer system being
investigated, one may distinguish the time between the events may for
some reason be deemed a possibly relevant relationship. As an arbitrary
example, events that occurred hours apart, minutes apart and (seconds
or less) apart forms such a partition — assuming some definition of time
for events that occurred multiple times. (Obviously a more precise no-
tion of the informal concepts of hours, minutes and seconds would also
be required.)

A cautionary note is required at this stage: The Ramsey theory in-
troduced here (following the exposition by Calude and Longo [10]) is
based on undirected graphs, where the relationship between objects or
events is symmetric; the time between events is an appropriate example;
however, the question whether an event preceded another event, coin-
cided with it or followed it is asymmetric and hence not covered by the
current discussion. The exclusion of such asymmetric relationships is
not material in this chapter.)

5.1 The Finite Ramsey theorem

In 1930 Ramsey proved the theorem that forms the foundation of the
theory carrying his name [26]:

“Given any r, n, and µ, we can find an m0 such that, if m ≥ m0 and the
r-combinations of any Γm are divided in any manner into µ mutually
exclusive classes Ci (i = l, 2, . . . , µ), then Γm must contain a sub-class
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∆n such that all the r-combinations of members of Deltan belong to the
same Ci.”

An r-combination is, as the name suggests, a set of r elements that
occur is the dataset. If the dataset consists of the values {a, b, c, d} then
the 3-combinations that are present are {a, b, c}, {a, b, d}, {a, c, d} and
{b, c, d}. Every 3-combination is assigned to one of µ classes (or colours,
as used previously).

An analogy with the training phase of supervised machine learning
may help readers who are better versed in computer science than math-
ematics to get a picture of what the theorem says. In supervised learning
a number of inputs are provided to the classifier, as well as the class as-
sociated with those inputs. Say r inputs are used for each instance to
be classified and every instance is assigned to one of µ classes. One may
then pick any number n. Using only µ and n, a number m0 can be
determined such that any selection of m0 instances in the training data
will have at least n instances that belong to the same class. Note that
this analogy says nothing about the resulting learning that may occur;
it simply says that having at least n instances of the same class in the
training data is unavoidable.

More formally, what the Finite Ramsey theorem does predict (and
guarantee) is that there is some (finite) number m0 such that after clas-
sifying m0 of the r-combinations, n of the r-combinations will have been
assigned to one of the classes. The theorem says nothing about the first
class that will reach this n threshold. It just says that the threshold will
have been reached. The point (m0) at which a class is guaranteed to
reach the n threshold can sometimes be calculated precisely. For those
cases where it cannot (yet) be calculated precisely, upper bounds can be
determined.

The fact that a certain relationship between members of some set held
relatively often in a dataset may be of interest in unravelling some inci-
dent. Ramsey’s theorem warns us proceed with care. However it seems
much more likely that an activity of interest in a digital investigation
will consist of several actions that together constitute an anomalous (or
otherwise useful) indication of what transpired (or is otherwise useful).

As a simplistic example, in a case involving network communications
a message may be deemed as significant in terms of the hosts involved
in sending the message and the ports used. Hence tuples consisting of
these four values may be deemed useful and classified in some manner.
Whether these values would be sufficient (or even relevant) cannot be
answered without more context, and this example is not explored in
more detail.
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As a more concrete example, consider approaches commonly used in
authorship attribution. Often so-called n-grams are used. Such n-grams
are contiguous sequences of linguistic elements. These elements may
be letters, words, word pairs, phonemes or a host of other entities that
experimentally turn out to be useful. In a well-known authorship attri-
bution competition such n-grams are often the basis of approaches that
perform well. In the 2018 competition “n-grams were the most popular
type of features to represent texts in” one of the primary tasks of the
competition [16]. “More specifically, character and word n-grams [were]
used by the majority of the participants.”

The detail of the Finite Ramsey theorem does not play a significant
role in the remainder of the current chapter; however, it sets the scene
for the Van der Waerden theorem, which forms part of Ramsey theory.
The Van der Waerden theorem dates from 1927. Note that we are again
following the logic of the paper by Calude and Longo in this regard.

5.2 Van der Waerden’s theorem

The Finite Ramsey theorem provides a threshold beyond which a cer-
tain number of relationships amongst members of some set is guaranteed.
Van der Waerden’s theorem, in contrast, considers regular occurrences of
some value in a sequence of values. It provides a threshold for the length
of the sequence. Once the sequence is as long as the calculated threshold
(or longer), it is mathematically guaranteed that some value will occur
‘regularly’ at least k times in the sequence for any given k. Formally,
Van der Waerden’s theorem says that the repeated value will appear in
an arithmetic progression. More informally, these k (or more) identical
values will have the same number of values separating them. Below we
will refer to the pattern as a periodic pattern, in the sense that, once the

pattern starts, every pth value in the sequence will be the same for (at
least k occurrences). The threshold (or minimum sequence length) from
which point these repetitions are guaranteed is known as the Van der
Waerden number. The Van der Waerden number depends only on two
values: (1) The number of distinct values that occur in the sequence, and
(2) the number of repetitions, k that are desired. The sequence may, for
example, be the sequence of states a process executes over time, where
is may be in the ready queue (R), executing (E), blocked (B), suspended
(S) or terminating (T). Its execution history may then, for example, be
a sequence such as the following (using the letters behind the names of
the states above:

R E B R E S E T
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1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

G R G R R G R G G R G R R G R G R G R G R R G R G G

R R R G G G

(a) (b) (c)

Figure 1. Van der Waerden example

In this example, the ‘alphabet’ consists of five values. To have a guaran-
teed periodic repetition that repeats, say k = 100 times, one only needs
to determine the Van der Waerden value for an ‘alphabet’ of size 5 and
a pattern of length 100. Very few Van der Waerden numbers are known,
but upper bounds are simple to calculate.

Again using concepts from graph theory, the ‘alphabet’ is often deemed
to be a set of colours — and hence, rather than talking about the size
of the alphabet, one will simply refer to the number of colours in the
sequence. Of course the colours may represent relationships between
elements of some set (as it did in the introduction to Ramsey theory
above). The sequence to which Van der Waerden’s theorem is used may,
in the case of digital forensics, be the sequence of changes in relationships
between entities deemed to be of interest for an examination.

To illustrate the concept, the Van der Waerden number for k = 3
repetitions based on two colours is 9. Suppose the two colours are red
(R) and green (G). Then it is possible to construct a sequence of eight
colours that have no periodic repetition of length k = 3. Consider, as
an example, the string in Figure 1(a) (with the positions of the colours
indicated above each colour). This sequence has no periodic repetitions.
To extend it, the next item in the sequence has to be R or G. Since the
Van der Waerden number is 9, a repeating pattern is guaranteed. If R is
added, R occurs at positions 5, 7, and 9, as illustrated in Figure 1(b). In
the language used above, from position 5 onwards, every second colour
is red, and this is true for k = 3. In contrast, if G is added as the ninth
colour, G occurs in positions 3, 6 and 9. Every third character (starting
at position 3) is green and it repeats k = 3 times; this is depicted in
Figure 1(c).

An important aspect of Van der Waerden’s theorem is illustrated by
the example above: The theorem does not predict which value will recur,
and does not predict the distance between the recurring values. How-
ever, it guarantees that a periodic pattern of the required length will be
present in the sequence.
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To present to work using more formal notations, assume that each
member of a sequence of integers {1, 2, 3, . . . , N} is mapped to one of
a finite number c of colours. Given a number k, a value w exists such
that the numbers {1, 2, 3, . . . , w} contains at least k integers of the same
colour that are equidistant from one another.

Let Σ be an alphabet consisting of c symbols. Let s1s2s3 . . . sn be a
string over Σ. Then, for any value k, a value w exists such that the same
symbol would be repeated at least k times at equidistant positions in
the string. Stated differently, for any string of length w, there would be
values j and p such that

sj = sj+p = sj+2p = . . . = sj+(k−1)p

The smallest number for which every string produced has at least k
periodic repetitions given an alphabet of size c is the Van der Waerden
number, denoted as W (c, k). Rather than using an alphabet consisting
of symbols, it is useful in the current chapter to think of an alphabet
consisting of colours. The value ofW (2, 3) is usually used to demonstrate
the concept. It is easy to show that W (2, 3) > 8 since it is simple to
produce a string using two symbols such that the same symbol does not
occur at equidistant positions. As an example, consider the alphabet
Σ = {R;G} and the following string using the alphabet. (For ease of
reference the position of symbols are indicated above the symbols.)

As noted (similar to the Finite Ramsey theorem), this theorem does
not indicate which symbol (or colour) will be repeated. Few Van der
Waerden values are known, but upper bounds have been established.

The paper by Calude and Longo expresses the (real) concern that the
spurious regular pattern may be discovered and treated as a ‘natural’
law from which events in the future may be inferred. Recall that the
(minimum) length k of the regular pattern can be determined arbitrar-
ily and that any machine learning application that needs k inputs for
learning (and testing), will learn the pattern and make highly accurate
predictions within the repeated pattern.

Forensics may indeed use such a ‘law’, but often data analysis in
digital forensics is retrospective.

Consider, as a simple example, a case where some incident occurs at
some time t. A possible approach for someone investigating the incident
is to collect as much data as possible leading up to the incident. Assume
data is available from some time t0. From the Van der Waerden theorem
it is known that some regular pattern of at least length k exists in that
data, with k only limited by the size of the available data.

One viable approach is to search the data for anomalies by work-
ing from time t backwards until some anomaly has been found (or no
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anomaly is found, and the start of the data is reached). Assume that
the search for an anomaly stops at time t′ < t (without excluding the
possibility that t′ = t0). Say the repeating pattern occurs from time
ta to time tb. (Note that this does not suggest that all available data
should be sorted according to time; however in many cases data about
events will have an associated time or, at least, be ordered relatively.
It may be useful to consider different strategies to ‘visualise’ the data
being considered.5

Given the ever increasing size of available data it is possible to assume
that in the general case that warrants a thorough investigation, sufficient
data will be available to guarantee a pattern of length k, where k exceeds
maximum sequences typically used for machine learning; in any case, if
a longer k is required, more data is simply required and availability of
data is generally not a problem. In days gone by, logs were destroyed
because disc space was limited, but the cost of disc space has steadily
decreased (reducing the need to delete data) and the growth of big data
has disincentived data deletion merely because the data is ‘old’.

5.3 The logic of inference

Suppose a spurious pattern is discovered — that is a pattern for which
no causal reason exists.

As a temporal example, suppose that evidence is available from a time
t0 up to a time t1. Say the incident occurred at a time t with t0 ≤ t ≤ t1.
In order to simplify discussion, let us use two brackets to indicate the
recurring pattern. A square bracket indicates that the pattern started
at exactly the time written before or after it, while a round bracket
indicates that some time elapsed. Hence t0[)t would indicate that the
recurring pattern was present at the time of available evidence, but
stopped some time before the incident. Similarly, t[)t1 would indicate
that the pattern started exactly when the incident occurred, but did
not continue until the end of the period for which evidence exists. The
notation remains readable without expressly mentioning t0 and t1, so
the simplified expression of when the incident occurred will be used. (Of
course, if the incident occurred repeatedly, the exposition becomes more
complex, but a single occurrence will suffice for the current discussion.)

Any pattern that coincides with the incident will probably be deemed
as significant. Hence (]t, t[) and t[] are likely to be seen as traces of
cause or effect, with (] possibly seen as causal traces and t[) and t[] seen
as traces of effect. Note that such cause or effect interpretations would
most probably be wrong, but would seem rather convincing. Similarly,
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a pattern that covers the incident — (t) — may (incorrectly) be seen as
traces of some enabling condition.

More generally, the investigator may observe the pattern, and spend
time to try and determine why the pattern disappeared (or began in the
first place) in the hope that it might shed light on the case. If machine
learning is deployed on the dataset, it may learn from the pattern what
is deemed to be normal, and then flag subsequent values as anomalous.

The discussion above assumed that a spurious pattern was discovered
and used for analysis. However, the starting point of the discussion was
that the pattern was spurious. Therefore, it is, by definition, useless in
the analysis of the case.

One possible defence for the use of patterns is that they may be useful
as a starting point to search for causality. As noted in this chapter, this
is indeed true — many laws of nature were first observed as patterns
and later understood in causal terms. However, the underlying question
in the current scenario is whether the search for patterns is, at least,
useful as a mechanism to reduce the search space for causality.

The short answer is that there are too many patterns in a big data
set; finding them all and testing them in some way for significance would
simply be too time consuming.

For a somewhat more formal discussion of the notions being consid-
ered at this stage of the discussion let us assume that the relationship
between data points are being classified the relationship expressed as a
colour. Neither the arity of the relationship, nor the number of possi-
ble categories (or colours) into which such relationships can be classified
are important for the current discussion. They merely have an effect
on whether there is enough data such that the Van der Waerden the-
orem can be applied. While a more precise calculation is possible for
a specific case, this chapter will assume that its setting in the big data
context implies that sufficient data is available.

To be more concrete, assume that a bag of coloured relationships
emerge and are arranged in a sequence S. The sequence is the result
of pre-processing mentioned earlier; it may, in principle, be a temporal
sequence of events, with information deemed to be of little significance
removed, but any other mechanism to arrange the relationships would
also be acceptable.

Suppose further that a pattern of, say, length n is deemed significant;
n may depend on the machine learning techniques to be used, or any
other prerequisite for significance. Let s be the number of elements in the
sequence s. Let wn be the Van der Waerden number that guarantees
a pattern of length n. As implied earlier, the chapter assumes that
s/geqWn from the context of big data in which the chapter is set.
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Before continuing, it is important to reflect for a moment on the clas-
sification of a specific collection of data points into a particular class
(or, in the language of graph theory, a particular colour that it shares
with other collections of data points). Some classifications are straight-
forward: Using data communications as an example again, in a typical
TCP/IP context, the expected port ranges for requests or responses, the
direction of the request or response, and many other attributes can be
classified as ‘normal’ or ‘anomalous’ without much debate. However,
the question whether this particular classification scheme would be use-
ful (or lead to the best possible evidence) is far from clear in a non-trivial
case. In the bigger scheme of things, it is known that the corpora from
which machine learning occurs often encode irrational categories. (See,
for example, recent papers that illustrate how racism may be — and has
been — learned through artificial intelligence [14, 8, 22]; confusion be-
tween patterns in criminal behaviour and patterns of criminal behaviour
is just one example that may impact on corpora used to characterise
crime).6 The point is that classification in training sets often do include
irrational assumptions that are propagated when machines learn these
biases as factually correct, or does not disclose such bias (such as biased
accuracy) in its classifications. For the purposes of the current chapter
it is sufficient to take note that a somewhat different classification of
relationships between data points will yield a different sequence S′ of re-
lationships, that may well contain one or more patterns that differ from
what was observed in S.

From a pessimistic perspective, it is possible that up to s of the classi-
fications made in the sequence S may be incorrect. If r colours are used
then it is (obviously) possible to arrive at rs colourings of a sequence
of length s, of which the specific coloured sequence S is just one. Since
s ≥ wn, each of these rs will have a periodic pattern of at least length n,
which would, in principle, make the pattern significant. While it should
(hopefully) be possible to discard the bulk of these rs colourings as non-
sensical, demonstrating that they are all nonsensical will be a mammoth
task. It is entirely possible that a single incorrect classification rule leads
to a pattern that would not have existed. In addition, the pattern de-
pends on the order of the relationships and other pre-processing tasks
that are often based on the intuition of the person mining the big data
set. If the pattern discovered in S forms incriminating evidence, how
does the examiner show that a somewhat different — and possibly more
accurate — classification of some relationships would not have lead to
the discovery of an equally convincing pattern that would have served
as the basis of exculpatory evidence. And the converse outcome, where
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incriminating evidence is overlooked and an exculpatory pattern found
— based on a tiny misclassification — is equally serious.

In the context of evidence the potential existence of a meaningful
patterns in sr datasets, where s is already a large number, is sufficient
to cast doubt on any pattern found. Unlike the small datasets considered
earlier, the sheer number of possible patterns precludes exploring each as
an alternative and excluding each. Any finding based on such a pattern
should be approached with caution — it is far too easy for the opposing
counsel to cast doubt on one’s conclusions. The obvious exception is
where there is a theoretical basis from forensic science that can speak
to the significance of specific patterns. However, such patterns may
be searched for in cases where they would be of help, rather than be
discovered vis a process such as mining.

6. Conclusion

The increasing volume of data that may pertain to a criminal or civil
matter of law is a well known challenge facing investigators of such cases.
However, techniques associated with the big data movement thrive on
large volumes of data; learning from such data is touted as a viable
solution for many problems — even without fully understanding the
problem.

This chapter used the same logic as Calude and Longo to explore the
impact of the mere size of data on what may be discovered in big data.
Using Ramsey theory and, more specifically, Van der Waerden’s theo-
rem, it was shown that spurious patterns are mathematically guaranteed
to exist in large enough data sets. This implies that a discovered pattern
may be spurious — in other words, it may be a function of the size of
the data rather than the content of what the data purportedly repre-
sents. The discovery of a pattern does not exclude the discovery of other
patterns that may contradict whatever was inferred from a discovered
pattern. And it is computationally infeasible to find all patterns in big
data.

If forensic conclusions are based on a pattern that has been found,
the opposing side has a simple rebuttal for any such conclusion: How
does the examiner know that a meaningful pattern has been examined?
Without being able to justify the conclusion, there is no way of distin-
guishing between a meaningless result derived from a spurious pattern,
and a correct, but unreliable result derived from a meaningful pattern.

Practitioners (and researchers) are therefore advised to avoid calls
to jump on the bandwagon to use technologies of big data until such
a time that resulting findings can be shown to yield evidence that is
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compatible with the requirements of presenting the truth, the whole
truth, and nothing but the truth, which, by definition, has to be free
from bias.

Notes
1. Typical examples of a call to use various ‘intelligent’ techniques look as follows: “AI

in digital forensics . . . does have a lot to offer the digital forensics community. In the short
term it is likely that it can be immediately effective by the use of more complex pattern
recognition and data mining techniques” [20]; “machine learning could play an important
role in advancing these [code attribution and automated reverse engineering] research areas
[11, p.S161]; “Artificial Intelligence (AI) is an area of computer science that has concentrated
on pattern recognition and . . . we highlighted some of the main themes in AI and their
appropriateness for use in a security and digital forensics context” [21] and “AI is the perfect
tool to aggregate information from the specifications for cyber security . . . This use of AI
will lift the burden of classification of these data for the cyber analyst and provide a faster
and more effective result for determining who is to blame and how to respond” [28].

2. One should also remember the inherent privacy challenges posed by big data [24, 23].

3. Others claim that he obtained this incidence from a paper published in 1995 in The
Lancet [6].

4. To use terminology correctly, one would not talk about a subgraph consisting of, say,
blue edges, but rather about the subgraph induced by the blue edges. We use the shorter
description here for the sake of simplicity.

5. As examples in which data may be visualised, consider any of the following options:
the data may indeed be sorted as one long (linear) sequence of events; or the data from
various logs may be placed in parallel ‘line’ so that the times of the various recorded events
line up; or the data may be sorted according to event type (whether in one long line or in
parallel lines); or the data may be subdivided into more lines with one line per user on whose
authority the event occurs; or Where multiprocessors are used (including cloud computing)
the data may be stratified per node and/or per instance; or the data may be ordered in any
other way. Patterns may occur on a given time line, across time lines at some specific time,
or involve various time lines in some systematic manner. None of this matters as far as the
conclusion is concerned. However, thinking about such cases may make it simpler for the
forensic examiner to intuitively accept that some pattern may indeed be discovered. The Van
der Waerden Theorem guarantees that the pattern will be present.

6. Results have lead to a resolution in which Amazon “shareholders request that the Board
of Directors prohibit sales of facial recognition technology to government agencies unless the
Board concludes, after an evaluation using independent evidence, that the technology does
not cause or contribute to actual or potential violations of civil and human rights” [1]. In
addition various researchers published an open letter to “call on Amazon to stop selling
Rekognition to law enforcement” until the measures are in place that prevent inherent racial
bias in the tool to be abused [12]. Subsequently the State of California has enacted the
The Body Camera Accountability Act (AB 1215) [9] that prohibits (until 2023) the use of
facial recognition technology on cameras worn by law enforcement officers, with one of the
primary grounds that “Facial recognition and other biometric surveillance technology has
been repeatedly demonstrated to misidentify women, young people, and people of color and
to create an elevated risk of harmful ‘false positive’ identifications.”
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