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Abstract
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Student number: u13067215

Supervisor: Dr Wilna Bean

Residential waste collection is an essential but expensive public service provided by
governments throughout the world. A key contributor to the cost of waste management
is collection cost, making the potential for cost savings on waste collection an area of
focus. One way to reduce collection cost is through the use of vehicle routing to improve
collection routes. While various vehicle routing problem definitions exist for waste vehicle
routing, the most compelling is the Mixed Capacitated Arc Routing Problem with Time
Restrictions and Intermediate Facilities (MCARPTIF). A challenge facing the MCARPTIF
however is that the input parameters necessary to solve real world instances of the problem
are difficult to estimate. These include the time taken to drop off waste, the collection and
traversal time per street segment and the waste generation rate per street segment. Global
Positioning System (GPS) devices and publicly available data sets offer an opportunity to
provide insight into some of these parameters and to develop more realistic MCARPTIF
instances and subsequently collection routes. This dissertation aims to demonstrate how
these parameters can be efficiently estimated. Using GPS data and known landfill locations,
landfill visit durations are estimated at a landfill in a metropolitan area. Landfill visit
durations are estimated to average 16 minutes. In addition, landfill durations are shown to
increase with congestion within the facility. Using GPS data and publicly available street
network data from the same metropolitan area, the average vehicle velocity when collecting
waste over seven case study areas was found to be 3.857 km/h. The vehicle velocity when
traversing street segments within the case study areas was found to average 6.843 km/h. A
synthetic population based on census data and per capita waste generation estimates was
used to estimate waste generation rates per street segment for a number of case study areas.
All of the above mentioned variables were compared to known parameter assumptions used
in literature and differ considerably. Lastly the parameter estimates were used to solve
a number of real world instances of the MCARPTIF and were compared to instances
using parameters from literature. Differences between instances solved using parameters
estimated in this dissertation and those based on assumptions from literature illustrate
the importance of using accurate input data for waste collection routing applications.
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Chapter 1

Introduction

1.1 Problem background

Municipal waste collection is a key service offering provided by municipalities and local
governments to citizens all over the world. While it is an important portion of local service
delivery to residents, it does not come without considerable cost. Broadly speaking the
Municipal Solid Waste (MSW) value chain consists of household waste generation, waste
collection, waste segmentation and finally, treatment and disposal. When considering the
end to end value chain, collection presents by far the greatest cost. For middle income
countries, such as South Africa, Hoornweg (2012) has found that between fifty and eighty
percent of the typical waste management budget is spent on collection. It therefore follows
that any initiatives aimed at reducing total expenditure on waste management should
target collection activities in particular.

In this regard, vehicle routing presents a good opportunity at reducing collection costs.
By developing improved collection routes residents can be serviced with fewer collection
vehicles at reduced operational cost. To this end literature contains various examples of
vehicle routing models aimed at improving waste collection and similar operations. The
Capacitated Arc Routing Problem (CARP), first proposed by Golden and Wong (1981),
is a problem definition particularly suited to waste collection vehicle routing applications.

When applying the CARP to waste collection, each road segment represents an arc
or edge that must be serviced by a waste collection vehicle. Each road segment has a
number of parameters, such as the amount of waste produced along the segment, the
vehicle travel time along the segment and the vehicle service time for the segment. The
objective of the vehicle routing problem is then to develop routes of minimum cost for a
set of heterogeneous collection vehicles with a fixed capacity so that all street segments
where waste is generated by residents are serviced. For the latest review of the CARP
the reader is referred to the work of Corberán and Laporte (2015) and Mourão and Pinto
(2017).

The basic CARP model is expanded in literature to a number of related variants.
Bautista et al. (2008) define the first of these by developing the Mixed Capacitated
Arc Routing Problem (MCARP), where the problem is expanded by including a mixed
road network that takes into account the direction of travel along street segments (one
way or bidirectional travel). Bautista et al. (2008) solve the problem by making use
of ant colony optimisation. Another problem definition is Ghiani et al. (2001) where
constructive heuristics are used to solve the Capacitated Arc Routing Problem with
Intermediate Facilities (CARPIF) where vehicles can complete multiple sub-trips and drop
waste off at landfills or transfer stations. Ghiani et al. (2004) and Ghiani et al. (2010)
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use a tabu search and ant colony optimisation, respectively, to solve the Capacitated Arc
Routing Problem with Time intervals and Intermediate Facilities (CARPTIF) where the
route length is restricted to limit trip durations to a single working shift. However, the
most comprehensive waste collection problem definition is presented in Willemse (2016);
Willemse and Joubert (2016b,c) in the form of the Mixed Capacitated Arc Routing
Problem with Time Restrictions and Intermediate Facilities (MCARPTIF). It is the most
comprehensive problem definition for curbside waste collection since it incorporates both a
mixed road network as well as multiple waste drop-offs at landfills or intermediate facilities.
In addition, similar to Ghiani et al. (2010), a time constraint is imposed which limits the
total duration of a route from exceeding the available working hours in a shift.

A shortcoming of many of CARP variants developed in literature however, is not the
problem definition itself, but the lack of accurate real world data to solve instances of the
problem. The effect of this, as Ghiani et al. (2014) observe is that very few papers make
use of stochastic input parameters for essential variables such as waste generation rate
and travel times. For example, to produce accurate real world results the MCARPTIF
requires accurate velocities across street segments, both when servicing the segment and
when not servicing the segment (deadheading). In addition to this, the duration of visits
to landfills or intermediate facilities and waste generation rates per street segment is
also required. Although these can be estimated for small areas, efficiently collecting this
data for a whole metropolitan area is impractical. This data is also not static, since
various factors affect and change these variables on a continuous basis. This makes any
static observation of these variables invalid for an extended period of time and these
variables must therefore continuously be updated. Literature therefore presents a wide
range of vehicle routing strategies and methods for solving CARP variants related to
waste collection, but methodologies for estimating input data are limited to the work of
Ghiani et al. (2015). In terms of estimating waste generation rates various strategies do
exist, as summarised by Beigl et al. (2008). Many of these methods do however suffer
from the problem of only being able to predict waste generation rates in specific temporal
or spatial settings. This limits the effectiveness of any vehicle routing model on real-world
applications where accurate and timely data is required to make tactical and operational
decisions.

Wilson et al. (2007) reports on the use of Global Positioning System (GPS) data to
analyse vehicle activity. The authors find that GPS data is reliable, accurate and that
great potential for analysis of the data exists. For waste collection fleets that are fitted
with GPS devices, this is a data source which can provide insight into waste collection
operations.

Figure 1.1 provides a short example which will illustrate this point. The figure shows
a residential road network in a metropolitan area in South Africa. Waste collection
vehicles service the area once a week, and the MCARPTIF problem definition provides
an opportunity to find the optimal sequence of street segments in which to service the
area, such that the overall service time is minimised. However to solve an MCARPTIF
instance of this area the waste generation rate per street segment must be known, so that
the vehicle capacity is not exceeded. In addition an estimate is required as to the amount
of time required to service each segment. This is where the GPS points scattered across
the network in figure 1.1 could prove to be useful since the duration of time spent within
each segment can be calculated. In addition this data could be used to calculate vehicle
travel times to landfills as well as the amount of time spent within the landfills.

The application of Big Data techniques to GPS data and other public data sets,
therefore presents a good opportunity to estimate the parameters required to develop
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Figure 1.1: GPS points and a road network in a metropolitan area in South Africa

accurate waste collection routes. The outcome of this could be routine decision support
models that develop optimal collection routes based on accurate routing parameters that
are updated on a continuous basis. In the long term, the possibility exists for live routing
models that automate all routing decisions for waste collection vehicles and in doing so
reduce collection costs.

Given the potential benefits of waste collection vehicle routing on the cost of the
waste value chain for municipalities and local governments, particularity in developing
countries, this dissertation poses the following research question: Can GPS data and
publicly available data sets be used to better estimate MCARPTIF routing parameters to
develop realistic real world routing instances and solutions?

1.2 Research design

In this section the research question is further broken down into its sub-components. Since
the MCARPTIF requires multiple input parameters the research design poses a number
of sub-questions which must be addressed by the dissertation. These are namely:

1. Can GPS data be used to estimate landfill visit durations? Landfill visit durations are
important since time spent at landfills reduces the productive time spent collecting
waste.

2. Can GPS data and publicly available street networks be used to estimate service and
dead-heading times for individual street segments? Service and deadheading costs
are crucial as they directly impact the duration of any proposed collection route, for
this reason accurate estimates of these parameters are integral to collection route
quality.

3. Can waste generation rates be estimated using publicly available census data and
known generation rates? An important aspect of any CARP variant that aims to
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solve waste collection problems is that vehicle capacity is taken into account. Since
vehicles have a finite capacity the amount of waste generated on a street segment
limits the number of segments the vehicle can service. A good estimate of waste
generation rate is therefore important in producing quality collection routes.

4. Can realistic MCARPTIF instances be generated from the above input data and can
these instances be solved? The above data requirements must ultimately culminate
in problem instances that are solvable by MCARPTIF solution algorithms and as
such this component of the research question must be addressed.

In addressing this research question, and its components, this dissertation presents the
following artefacts:

1. Algorithms for the estimation of landfill visit duration given waste collection vehicle
GPS records and landfill locations.

2. Algorithms for estimating service and dead-heading times per street segment given
waste collection vehicle GPS records and service area street network.

3. Distribution of service and deadheading times per street segment.

4. Algorithms for estimating waste generation rates based on a synthetic population
generated from census data and known waste generation rates per population income
group.

5. MCARPTIF instances with all of the above parameters estimated for a number of
case study service area based on actual waste collection data sources.

6. Solutions generated using existing algorithms on the real MCARPTIF instances,
and compared to solutions based on widely used MCARPTIF input parameter
assumptions in literature.

1.3 Research methodology

The research methodology followed in this dissertation is primarily based on articles by
Pidd (2010) and Manson (2006). Pidd (2010) presents four main categories of model use.
These are namely Decision Automation, Routine Decision Support, System Investigation
and Improvement and finally Providing insights for debate. This represents a spectrum of
model use between almost no human interaction (Decision Automation) and a high degree
of human interaction (Providing insights for debate).

The desired outcome of the research presented in this dissertation is the development of
algorithms that can estimate input data for the MCARPTIF. With accurate and tangible
methods for estimating these parameters, efficient collection beats can be developed for
collection vehicles. Collection beats refer to the route taken by a waste collection vehicle
on a particular day. A collection beat is therefore a portion of the weekly waste collection
task for a metropolitan area, allocated to a collection vehicle and conforming with vehicle
capacity and shift constraints.

The models, making use of accurate input data, can be used to develop more efficient
collection routes on a routine basis, and in doing so will reduce the operational costs of
waste collection operations.

The use of the proposed models fall within the realm of Routine Decision Support,
however the models developed for this dissertation are realistically more for the purpose
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of System Investigation and Improvement with the aim of prompting future work that will
involve Routing Decision Support models. For this reason the modelling requirements for
Routine Decision Support models are considered below.

The variables that affect routing change routinely, as traffic conditions and waste
generation rates change, for example. Efficient routes must therefore be developed routinely,
with support from the routing models. Pidd (2010) also explains that Routine Decision
Support models are used by trained individuals with intricate knowledge of the subject
matter under consideration. Only when models are able to automate decisions does the
skill of the user reduce. The models proposed here are therefore for Routine Decision
Support, as they will have to be used by waste collection managers with strong knowledge
on local waste collection activities.

In developing a theory of model use, Pidd (2010) proposes three aspects of model use,
these are namely the importance of model validation, data requirements for the type of
model use and the value added by model use. Validation is discussed in more detail in
section 1.3.4.

In terms of data, Pidd (2010) considers the important point of input data requirements
as a function of model use. Pidd (2010) specifically stresses the importance of input data
for Routine Decision Support models, that large amounts of accurate data are required
and that these sources must be updated continuously. The author’s emphasis on the
importance of input data for Routine Decision Support models serves to further justify
the importance of work on input data for the MCARPTIF problem variants.

The third consideration presented by Pidd (2010) with regard to model use is the value
added through the use of the model. The author explains that models for Routine Decision
Support add value to problems where neither the model, nor the model user, can alone
add enough value to overcome the problem. This is true for vehicle routing problems,
where the problems are NP-hard and not solvable by humans. However the models are at
the same time just abstractions of reality and they do not incorporate the practical and
operational realities of daily waste collection activities. The optimal solution is therefore
Routine Decision Support where the model and the decision maker work in conjunction.

Pidd (2010) provides a good framework for defining model use and for understanding
the advantages, challenges and requirements associated with the use of different model
types.

To improve the solution quality the modelling framework proposed by Manson (2006)
for the field of Operations Research was used. The framework proposed byManson (2006)
is appropriate as it requires rigorous and iterative understanding of the problem, solution
development and evaluation of potential solutions. The process has five components, these
are Awareness of the problem, Suggestion, Development, Evaluation and Conclusion which
guides the researcher towards the development of a model where the model outcome is
evaluated against the stated objective. In following this research approach the following
five steps were undertaken.

1.3.1 Problem awareness and identification

Awareness of the problem came about through a thorough literature review into waste
vehicle routing and the MCARTPIF problem definition proposed by Willemse (2016);
Willemse and Joubert (2016b,c). Literature demonstrates that the current gap relates
to the generation of input data to make current solution algorithms feasible for real
world applications. Awareness of the problem also involved research into Municipal Solid
Waste Management, the costs associated with collection and the potential improvement
opportunities represented by accurate vehicle routing models.
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1.3.2 Evaluation of solution strategies

As part of the suggestion phase potential data sources were considered. GPS data was
identified as a feasible source of routing data, with a number of preliminary models and
studies supporting the use of GPS data to generate MCARPTIF parameters. While GPS
data is not universally used by waste collection fleets, it is relatively common and a test
data set could be obtained for preliminary evaluation.Preliminary research was conducted
during an undergraduate thesis by Steyn (2016) and as part of conference proceedings by
Steyn and Willemse (2018). The work authored by Ghiani et al. (2015) also served as a
proof of concept.

1.3.3 Model development

For the developmental phase, landfill visit duration was estimated. This determines how
long vehicles spend at landfills while dropping waste off, and before continuing with the
rest of the days route. The next step was to determine traversal times per street segment,
for vehicles servicing and deadheading segments. Once this was complete the next step was
to determine waste generation rates using a synthetic population developed from census
data. Finally all parameters were combined and a test case was solved using known
solution algorithms developed by Willemse (2016); Willemse and Joubert (2016b,c).

1.3.4 Model evaluation

Model evaluation is a crucial step in the developmental phase. As part of the development
phase models were continuously evaluated both quantitatively and qualitatively against
known MCARPTIF routing parameters. In particular statistical methods were used to
evaluate whether parameter estimates were statistically relevant and appropriate for use
in the solution algorithms. More detail on this will follow in the next chapters. To further
improve model evaluation the models were also tested against a number of additional
areas to estimate MCARPTIF parameters and solve instances of the routing problem and
demonstrate model scalability over multiple service areas within the metropolitan area.

1.4 Expected contributions

As a result of this dissertation the following contributions are expected. These are namely
efficient methods for the evaluation of waste vehicle drop-off durations at landfills or
transfer facilities using GPS data and geofences. A methodology for the use of a synthetic
population based on census data to estimate residential waste generation rates. Methods
for estimating vehicle velocity over street segments, as well as methods of separating vehicle
velocity samples into service and deadheading velocities for the MCARPTIF algorithms.
Finally this dissertation also presents comparisons between standard parameter estimates
for waste collection routing problems and those developed here and the impact of these
estimates on collection routes. Practically these contributions are expected to lead to
better Routine Decision Support models, based on GPS Data and publicly available data
sources where waste collection vehicle routing problems can be routinely solved using
accurate data to reduce collection costs.
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1.5 Document structure

Following this chapter is a literature review where the above topics are discussed in detail
and critically evaluated. Alternative solution strategies are assessed and the strategies
with the highest probabilities of success are selected.

Following the literature review the analysis chapters are presented. The first of these
is Chapter 3 and looks at using GPS data to estimate landfill drop off durations as well
as investigating the effects of congestion within a landfill on drop off durations. Following
this is Chapter 4, which focuses on estimating traversal and service costs for service areas
using detailed road networks and GPS data. Chapter 5 estimates waste generation rates
for service areas based on per capita waste generation rates and a synthetic population
developed from census data.

Finally in Chapter 6 a number of test instances are solved, based on the actual
data collected in the previous Chapters, and compared to input data assumptions from
literature on MCARPTIF algorithms to evaluate the effect of using actual data estimates
on feasible routes.
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Chapter 2

Literature review

In reviewing literature relevant to this dissertation, Capacitated Arc Routing Problem
(CARP) variants, with a focus on the input data required for different variants, are
discussed. Following that, stochastic routing models and their input variables are discussed.
The specific input parameters for the Mixed Capacitated Arc Routing Problem with
Time Restrictions and Intermediate Facilities (MCARPTIF) is then discussed, along with
potential methods for determining these parameters.

2.1 Capacitated arc routing problems

The CARP refers to an optimisation problem, first proposed by Golden and Wong (1981),
where edges have to be serviced by a fleet of vehicles. CARP problems differ from
traditional Vehicle Routing Problems (VRPs) where a number of nodes must be serviced
by a vehicle, or fleet of vehicles, as opposed to edges in the case of CARP. An edge refers
to a street segment which can be traversed in both directions. When an edge can only
be traversed in a single direction it is termed an arc, however this will be dealt with in
more detail at a later stage. Each edge can be traversed, while some edges have demand
for a service. The particular definition of demand and servicing changes depending on
the variant of the problem. Gendreau et al. (2015) identifies waste collection, distribution
planning, mail delivery and salt gritting as popular applications of CARP instances.

During residential waste collection, vehicles move from house to house, collecting waste
placed on the sidewalk by residents. Each street segment represents an edge which must be
serviced by the vehicle. Vehicles have a particular capacity and therefore the demand on
each route (or subset of edges serviced by a particular vehicle) cannot exceed the vehicle
capacity. Vehicles are considered homogeneous, meaning vehicles in the fleet have the
same speed and capacity characteristics. Vehicle routes start and end at the same vehicle
depot. This then describes the basic CARP model. For the latest review of the CARP
the reader is referred to Corberán and Laporte (2015) and Mourão and Pinto (2017).

The classic CARP does not completely cater for problem characteristics specific to
waste collection. Waste collection operations require mixed road networks. This refers to
the properties of particular road segments. Some streets are one-ways and can therefore
only be serviced or traversed in one direction while other streets are two-ways but might
be very busy, meaning that each side of the street must be serviced separately for example.
By taking this into consideration Belenguer et al. (2006) turn the problem into the Mixed
Capacitated Arc Routing Problem (MCARP). The MCARP therefore takes into account
both edges and arcs. Bautista et al. (2008); Belenguer et al. (2006) both solve MCARP
variants for waste collection. The addition of mixed road networks in itself presents
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an input data problem, as accurate, up to date road network data is required. This
is addressed in section 2.3.

Ghiani et al. (2001) further develop the CARP by adding intermediate facilities to
the problem . During normal operations, vehicles stop collecting once the vehicle is full
and dump waste at a landfill or transfer station. The vehicle then resumes collection
operations after that. This means that each sub-trip between landfill visits cannot exceed
the vehicle capacity. The problem is also addressed by Polacek et al. (2008). The authors
present a solution strategy for this problem variant, based on a variable neighbourhood
search, but do not provide information on how intermediate facility visit durations can be
determined. The addition of this assumption requires an estimate of intermediate facility
visit durations, as the length of time spent at the intermediate facility will have a bearing
on the feasibility of the route. Literature with regards to estimating this parameter is
addressed in section 2.4.

The next crucial assumption and addition to the problem definition is that of length or
time restrictions. Vehicle routes must be constrained by time since collection operations
can only occur within a certain amount of time, which is usually determined by the
length of the collection crew’s shift. The Capacitated Arc Routing Problem with Time
intervals and Intermediate Facilities (CARPTIF), also called the Arc Routing Problem
with Intermediate Facilities under Capacity and Length Restrictions (CLARPIF) was
first proposed by Ghiani et al. (2004). The problem is additionally solved by Ghiani et al.
(2010).

The addition of time into the problem definition is a crucial improvement but also
poses further challenges. By imposing time restrictions on vehicle activity the implication
is that activity times must now be estimated. These would include collection time and
travel time between collection points as well as the drop-off duration for any visits to
landfills or intermediate facilities.

The combination of all of the above into the MCARPTIF by Willemse (2016); Willemse
and Joubert (2016b,c) then defines the most comprehensive problem definition for curbside
waste collection.

Another problem definition is the Waste Collection Vehicle Routing Problem (WCVRP)
group of problems. The reader is referred to the most recent article on the topic by
Aliahmadi et al. (2021) where a bi-objective problem is solved to minimise both cost and
collection time. The difference between the MCARPTIF and the WCVRP is that the
MCARPTIF is servicing arcs, or street segments, while the WCVRP is servicing known
demand locations, much like the travelling salesman problem. For instance, Aliahmadi
et al. (2021) solve a case study where bin locations are known and waste generation rates
per bin are sampled from triangular distributions. The MCARPTIF is therefore more
suitable for problems with unknown bin locations, which is the case for the residential
curbside waste collection problem solved in this dissertation.

Having identified the correct type of vehicle routing problem, consideration can be
given to the input data required to solve the problem. This includes the street network
of the area to be serviced. For each segment in the network, the waste generated for
that segment (or the street demand), the service and travel times of the vehicle through
that segment, and the direction of travel and service through that segment are required.
Additional input data required includes vehicle capacity, location of intermediate facilities
and the vehicle depot and shift durations of the crews. Different approaches to obtain the
input variables into the MCARPTIF problem are considered below.
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2.2 Stochastic routing models

Routing models based on accurate input data from real-world sources are likely to be
stochastic in nature. To this end literature on stochastic routing models, both for standard
VRPs and CARPs variants are discussed. The aim of including literature on stochastic
problem variants is to evaluate how model parameters for stochastic problems are estimated
and whether actual data sets are used to estimate parameters.

Laporte et al. (2010) solve a stochastic CARP variant where route demand is stochastic.
The authors develop solution algorithms for a first-stage solution, after which the stochastic
demand is revealed. A second set of algorithms then provide recourse should the route
exceed capacity after stochasticity has been applied. The paper solves stochastic instances
of existing deterministic benchmark instances and derives the stochastic demand variables
from Poisson distributions with a mean value equal to the deterministic counterparts. The
stochastic variable is therefore not based on any real world demand observation, although
it does provide a problem formulation for problems with stochastic demand.

Christiansen et al. (2009) also propose a CARP variant by introducing demand as
a stochastic variable. In the paper, a Possion distribution is once again used to model
demand on an edge. It is unclear however what the assumption of the Poission distribution
is based on or how the distribution parameters are determined per edge. A branch and
price algorithm is used to solve the problem.

Literature also looks at service and travel times as stochastic or random variables.
Kenyon and Morton (2003) route vehicles through a network where travel times are
stochastic.

Chen et al. (2014) consider an interesting CARP variant where daily maintenance
operations are scheduled on a network with stochastic service and travel times. Input
data is reported to be from real data sources, however no information is provided on the
data sources or any pre-processing to produce the service and traversal times. Further
optimisation strategies are presented on the same problem variant by Chen et al. (2016).

In addition to arc routing problems where routing parameters are assumed to be
stochastic there is a large body of work on VRPs where stochastic variables are used.
Ehmke et al. (2015) solve the Stochastic Vehicle Routing Problem with Time Windows
(SVRPTW). Similar variants are solved by Taş et al. (2014a,b). All of the variants
discussed above have pre-determined routes. The stochastic variable is revealed upon
execution of the route, and the model has recourse to adjust the route should constraints
be violated.

While problem variants and solution strategies do exist for stochastic routing models,
in particular stochastic Arc Routing Problems (ARPs), there remains a gap in literature
with regard to data sources and processing methods for generating accurate input data
for these problems, in particular for waste collection applications. The following sections
deal with estimating these parameters.

2.3 Road network and benchmark instances

Any CARP variant requires a road network to be an accurate representation of the real
world. To develop efficient collection routes CARP problem instances must therefore be
constructed from existing road networks. The process of constructing CARP instances
from road networks is therefore an important part of the solution process.

For the purpose of testing solution strategies, most authors either produce random
networks or make use of existing benchmark instances available in the public domain.
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Belenguer et al. (2006) develop a random network for testing, while Bautista et al. (2008),
Willemse and Joubert (2016b) and Kiilerich and Wøhlk (2018) produce networks using
actual street network data. The network graphs are constructed from data containing the
coordinates of endpoints of each street segment as well as the segment length. Household
data is also known, with the exact locations and composition of each household. Households
are then allocated to street segments. This is similar to the process undertaken in Chapter
5, with the exception that the network data in this case is based on open source map data
and the household data is synthesised, due to the frequent lack of rich data in developing
nations. Most authors who solve CARP variants however either use existing benchmark
instances, or synethically create instances on which to test algorithms.

Lum et al. (2018) provide an efficient tool for developing benchmark instances directly
from OpenStreetMap. OpenStreetMap is an open source software platform, pioneered
by Haklay and Weber (2008) that allows users to contribute to the mapping of street
networks for public use. Various authors report using OpenStreetMap for the generation
of benchmark instances.

Kiilerich and Wøhlk (2018) generate large CARP instances for waste collection in
Denmark. The authors have access to detailed household data and waste generation
estimates per household. This data is allocated to a road network to generate demand
estimates per arc or edge. Traversal costs for the benchmark instances are not addressed
in detail. While this approach is detailed, it requires detailed municipal waste data, which
is not always available for all municipal areas, particularly in developing countries.

To address this later chapters detail the process of extracting road networks from
open source maps, estimating routing parameters along these networks and constructing
benchmark instances based on the road network and routing parameters.

2.4 Intermediate facility visit times

A key input parameter for the MCARPTIF problem variant is the amount of time required
for a vehicle to visit a transfer station and drop off waste. At the point where the vehicle
has reached capacity it travels to the nearest transfer station and spends time dropping
waste off before continuing collection activities. In Belenguer et al. (2006); Willemse
(2016); Willemse and Joubert (2016b,c) a 5 minute drop-off duration is used, however
how this parameter is determined is not discussed in depth. Benjamin and Beasley (2010)
solve a waste collection routing problem on public benchmark instances but also assume
a deterministic disposal time at intermediate facilities.

The problem of estimating landfill visit durations is addressed in literature by Wilson
and Vincent (2008) by using Global Positioning System (GPS) data and geofences to
estimate this variable. Geofences are spatial boundaries drawn around landfills. This
allows GPS points within the boundaries to be isolated and visit durations to be estimated.
Wilson and Vincent (2008) find landfill visits for five vehicles, at 11 landfills, over a period
of one year to average 16.4 minutes, with a standard deviation of 14.3 minutes. When
comparing this with the previous assumptions of 5 minutes for example, it illustrates
that time estimates based on actual data could differ significantly from those assumed in
literature.

Analysis using GPS data also allows the authors to compare landfill visit durations
between facilities, as this variable is a function of facility layout and traffic volume. For the
MCARPTIF, landfill visit durations can therefore be different depending on the facility,
which will likely affect solutions. A vehicle might opt to travel a slightly longer distance
to visit a landfill with a faster service time than to visit the nearest landfill with a longer
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service time.
GPS data therefore presents a good opportunity to estimate landfill visit durations

accurately. This method is also repeatable, scalable and can be regularly updated. Given
this opportunity to estimate landfill visit durations, in Chapter 3 this strategy is pursued
to estimate visit durations for a metropolitan landfill in South Africa.

2.5 Segment traversal times

Segment traversal times, when vehicles are both servicing and deadheading segments is a
crucial piece of information for the MCARPTIF, or for any CARP variant used for vehicle
routing, regardless of the application. As discussed earlier, stochastic formulations for this
problem are available but input data generation for these parameters are limited to the
work of Ghiani et al. (2015).

To estimate traversal costs, most authors make use of a velocity estimate. For instance
Belenguer et al. (2006) estimate vehicle velocity at 20 km/h, when a vehicle is traversing
or deadheading a segment. When the vehicle is servicing the segment, 10 s per 10 kg bin
is added to the cost in order to estimate a service cost per segment. A similar approach is
followed by Willemse and Joubert (2016b) where vehicle velocity is estimated at 28km/h
while deadheading and 14 km/h when servicing, with the addition of 1 s per kg of waste.
In Willemse and Joubert (2016a) the same assumptions as Belenguer et al. (2006) are
used.

Literature does however contain work on estimating travel times for non-waste applications.
Jiménez-Meza et al. (2013) propose a methodology for extracting travel time, distance and
speed per street segment for taxis using only GPS data. Given the fact that the input data
for the descriptive model will be GPS traces from waste collection vehicles the methods
used by Jiménez-Meza et al. (2013) can be used to identify both service and travel times per
segment. This implementation is for a taxi, so while it remains relevant a better option is
Ghiani et al. (2015) that describe detailed map matching with specific application to waste
collection. Ghiani et al. (2015) use the width of the street to experimentally determine
the size of the area within which GPS points are assigned to that particular street. While
this yields good results for street segments, intersections are more complex. Here Ghiani
et al. (2015) compare the performance of different geofence shapes, namely rectangular and
circular geofences. The authors also introduce a procedure for classifying points to street
segments using the points that follow and precede the particular point. Once points can
accurately be linked to a particular street segment the deadheading time can be calculated
by taking the time difference between the first and last point in that segment.

In terms of identifying service times, Ghiani et al. (2015) search for points within a
known waste collection area. This is done by first clustering points, by grouping points
that are below a certain distance from other points together. These clusters are considered
service clusters if they are in close proximity to known collection areas. The service time
for that cluster is the difference between the first and last point in that particular cluster.

This is different from the residential service time calculated in this paper as collection
in this case is curbside waste collection, as opposed to waste collection from centralised
points. This poses a unique challenge as it is not immediately clear whether a vehicle
is collecting waste or simply traversing the segment, while in the case of Ghiani et al.
(2015) this distinction is clear as collection occurs at predetermined locations. While this
does present a very good attempt at estimating service and traversal times, determining
whether a vehicle is traversing or deadheading is not addressed in literature.

For this reason Chapter 4 addresses this gap by both estimating vehicle velocity over
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street segments and separating these velocities into statistically distinct service velocity
and deadheading velocity populations.

2.6 Waste generation rates

Waste generation rates refer to the rate that waste is generated by a population and is
a crucial input to the MCARPTIF as it represents the demand for the collection service.
In reviewing municipal solid waste generation Beigl et al. (2008) find that at settlement
level (or suburb level) data sources include census data, market research based on geo-
demographic classification packages and questionnaires. Some of the more significant
studies that use these data sources are discussed below. The focus in citing these sources
is on the results they have produced. Greater detail on the methods used is given in the
next section.

In reviewing Municipal Solid Waste (MSW) generation and management Karak et al.
(2012) find that in developed countries waste is generated at between 521.95 − 759.2 kg
per person per year. In developing countries this is around 109.5 − 525.6 kg per person
per year.

Qdais et al. (1997) used source sampling at 40 different households to determine a
waste generation distribution. The study found that waste is produced at a rate of 1.76
kg per person per day in Abu Dhabi city. Another study by Minghua et al. (2009) in the
city of Shanghai, China, produce a result of 1.11 kg per person per day. A study in Kuala
Lampur, Malaysia by Saeed et al. (2009) estimate a generation rate of 1.62 kg per person
per day while Troschinetz and Mihelcic (2009) reports a generation rate of 0.77 kg per
person per day in a study on MSW.

It is clear that solid waste generation rates differ significantly from city to city, and
estimates must therefore be obtained for the area of study. For the purposes of this thesis
a waste generation rate reported by Solid Waste Management (2016) for the City of Cape
Town is used at 580kg per person per annum. This is discussed in more detail in Chapter
5.

Many factors contribute to solid waste generation rates, for example Liu and Wu
(2010) find economic growth, household income and urban development to be some of the
major factors. Kinnaman (2009) look specifically at the economics of MSW generation
and states that the relationship between Gross Domestic Product (GDP), a measure of
income, and waste generation rates is positive and linear. Any solid waste generation rate
estimate must therefore be based on regional estimates of the aforementioned variables.
Determining accurate waste generation rates for the MCARPTIF will directly affect the
nature of the routes produced, this is therefore an important input variable.

2.6.1 Source sampling techniques

A challenge with estimating MSW generation rates is that generation rates must be
estimated at street segment level for the MCARPTIF. A potential solution is source
sampling, or measuring generation rates directly. An example of this is the use of stratified
cluster sampling by Dangi et al. (2008). The study makes use of a team of student scientists
to physically visit households in Kathmandu Municipality, Nepal to weigh and sort solid
waste. By directly measuring the waste produced in an area an accurate estimate of
generation rates for the area can be determined. The study estimated waste generation in
the city of Kathmandu at 0.1612 kg per person per day. This approach has its limitations
though. The reported generation rate can only realistically be a reflection of the sample

22

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



period, no indication of seasonal generation rates or variance is therefore present. The
study makes use of a number of students equipped with scales and bio-hazard gear to
perform the sampling. It is therefore unlikely that this method is a feasible estimation
method for a metropolitan area with millions of residents. The last drawback is that
waste generation rates are not static, as the underlying variables—such as household
income for example—change so does the generation rate. Source sampling therefore does
not accommodate continuous updates of these variables.

2.6.2 Synthetic populations from census data

A potential solution to the problem of estimating waste generation rates is the use of
synthetic populations, the hypothesis being that if population characteristics predict
waste generation rates then waste generation rates can be estimated if population data
is available. Traditionally synthetic populations would be used for agent based transport
modelling whereby population characteristics are required to model transport patterns, as
used by Huynh et al. (2013) to model transportation systems in Sydney, Australia.

Typically census data contains detailed information down to a suburban level, but not
down to household level. However since census data commonly, as is the case in South
Africa, contains detailed information about a certain portion of the population, more
detailed population parameters can be synthesised down to a suburban level.

Harland et al. (2012) compare the various tried and tested methods of producing
synthetic populations at various spacial scales. These are deterministic re-weighting,
conditional probability and simulated annealing. The basic modelling approach is that a
sample of individuals, at a higher level region such as a city or country, is disaggregated to
lower level regions such as suburbs by applying weights to individual sample members such
that known constrains on the lower level region is satisfied. For instance, one might know
that a particular region contains 1000 individuals, where age, ethnicity, gender and income
for each individual is known. At the subregion level one might know the constraints, or the
characteristics of the particular sub region, for example that there are 50 males in a sub
region. The aim of generating the synthetic population is then to allocate the right sample
of males to the sub region such that the gender constraint as well the other constraints
(age, ethnicity and income) are as close to the sub region as possible.

Deterministic Reweighting achieves this by assigning each individual in the sample a
weight, for instance using the above example a male individual would be assigned a weight
of 50/1000 = 0.05. Harland et al. (2012) however note that deterministic reweighting runs
into problems where characteristics for geographic areas are very different to the overall
population. This could be a problem in South Africa where there are large disparities in
population characteristics such as income between different areas.

The Conditional Probabilities method is similar to Deterministic Reweighting except
that weights are assigned stochastically and are sampled from a probability distribution.
Harland et al. (2012) notes for both Deterministic Reweighting and Conditional Probabilities
that the order in which attributes are weighted affects the outcome of the synthetic
population and that the most important attribute should be weighted first.

Of the three methods discussed so far, Simulated Annealing performed best. With this
method, a random sample from the population is allocated to each sub region and the sub
region constraints are then evaluated. The algorithm then swaps members out between
regions and tests whether the move improves or deteriorates the sub regions proximity to
the constraint.

However, the most promising opportunity for population synthesis for the purposes
of this dissertation is presented by Müller and Axhausen (2012). This is because the

23

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



algorithm has already been successfully implemented on 2011 Census Data for a number
of South African cities by Joubert (2014). The two components that were used by Joubert
(2014) to perform multi-level fitting are Community Profile Data and the 10% Public Use
Data released by Statistics SA. More information on this process is provided in Chapter
5.

2.7 Conclusion

The MCARPTIF requires input data to produce feasible collection routes that reduce
the significant collection cost of Municipal Solid Waste. Currently literature presents an
abundance of research on solution strategies for MCARPTIF and other CARP waste
collection variants. Estimating crucial input variables remains largely unadressed in
literature though. In particular, a need exists for estimating waste generation rates per
street segment, vehicle traversal and deadheading times per street segment and transfer
station visit times. All of the aforementioned variables are likely to be stochastic and will
directly impact the quality of collection routes produced by MCARPTIF algorithms.

In Table 2.1 a summary of the CARP variants discussed in this chapter, and the input
parameters used for each variant is shown. Road networks are split up into Actual Road
Network (ARN), Random Network Generation (RNG) and Public Benchmark Instance
(PBI). In most cases where PBI are used, other parameters are not explicitly discussed,
as they are included in the PBI. Furthermore the table contains summaries of waste
generation rates, deadheading and service velocities, dumping cost, vehicle capacity and
time durations used, where applicable.

Literature shows that estimating traversal and deadheading times can possibly be
achieved by using public street networks and waste vehicle GPS data. Synthetic Populations
from publicly available census data, along with existing per capita waste generation
estimates also present an opportunity to estimate waste generation rates per street segment.
Finally, GPS data can be used to estimate landfill and transfer station visit durations. It
is therefore likely that all the MCARPTIF variables can be successfully estimated and
realistic collection routes be produced to reduce waste collection costs.
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Chapter 3

Landfill visit analysis

This chapter contains work presented by Steyn and Willemse (2018). Landfill visit durations
are an important part of the Mixed Capacitated Arc Routing Problem with Time Restrictions
and Intermediate Facilities (MCARPTIF) input parameters and represent the cost, in
time, of dropping waste off at a landfill or transfer station. The more time spent at a landfill
or transfer station, the less time there is to perform value adding collection activities. The
aim of this chapter is to show that landfill visit durations can be determined using GPS
data and publicly available geographical data and that these durations are stochastic in
nature.

3.1 Input data

The GPS data used in the analysis of vehicle transfer station behaviour is over a period
of nine months during the year 2014. The data was extracted from 571 vehicles in a
waste collection fleet in a South African Metropolitan area and consists of 48 million
GPS records. Each GPS record has the following attributes: time, longitude, latitude,
vehicle ignition status and vehicle registration. Using this raw data, a SQLite database
was constructed to expand, analyse and store this data. By extracting a single vehicle’s
data on a particular day from the database, vehicle activities can be visually identified.
Figure 3.1 shows the GPS traces of a single vehicle collecting waste from a particular area
and disposing waste at a transfer station on multiple occasions throughout a day.

When more than one vehicle is plotted simultaneously the behaviour of a typical waste
collection fleet becomes more apparent. Figure 3.2 shows three vehicles that all collect
waste and then head to the transfer station at more or less the same time to dispose waste.
The purpose of the figures is to illustrate how the GPS data can be used to characterise
vehicle activity visually.

Landfill and transfer station locations are generally public knowledge, and all of the
landfill and transfer station locations used in the analysis were publicly listed on the
Metropolitan area’s website. However, only a GPS location and address for each landfill
and transfer station is provided. To effectively analyse vehicle behaviour in and around
transfer stations a geofence is required. This is a polygon that denotes the boundaries of
the transfer station. To generate the polygons Google Earth Pro was used to survey each
transfer station. On satellite view the boundaries of the transfer stations can be identified
and drawn as polygons with ease. The vertices of these polygons, as shown in Figure 3.2
then represent each landfill or transfer station during analysis.
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Figure 3.1: GPS traces of a single collection over the course of a day

Vehicle B 
Collecting Waste

Transfer Station

Vehicle A 
Collecting Waste

Vehicle C 
Collecting Waste

Figure 3.2: GPS traces of multiple vehicles over the course of a day, with the transfer
station area shown in light-red.
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3.2 Analysis

The analysis discussed in this chapter delves into identifying transfer station or landfill
visits and subsequently determining offload durations per visit as well as looking at
congestion as a potential variable in extending transfer station visit durations.

3.2.1 Identifying landfill or transfer station visits

Given the above-mentioned input data, the next step was to accurately identify when a
vehicle visits a particular landfill or transfer station. For the purposes of the analysis,
a single transfer station in a densely populated area was selected. To identify visits to
the transfer station all Global Positioning System (GPS) points on a particular day are
analysed per vehicle. The times of the points that fall within the geofence facility are then
compared against the times of those that fall outside the geofence. The GPS points of
a vehicle are scanned in order of their time-stamps. Starting with i = 1, when a point
outside the facility is followed by a point inside the facility, the time of the inside-point is
taken as the start of facility visit, i. The rest of the points are then scanned and when a
point inside the facility is followed by a point outside the facility, the time of the outside-
point is taken as the end time, ei, of facility visit i. The index i is then incremented by
one and the process repeats for all points of the vehicle, for all vehicles on the day, and
for all days in the study period. The duration of a visit, di, is then calculated as:

di = ei − ai (3.1)

3.2.2 Number of vehicles within transfer stations

The number of vehicles within a transfer station could affect the duration of waste drop-
offs as vehicles might have to compete for resources such as weigh bridges. To measure
congestion in a facility, the number of vehicles already within the transfer station was
calculated for each vehicle arrival. Let vehicle visit i have an arrival time ai and exit time
ei at a facility and let all the visits to the facility on the same day be j ∈ VVV . All the visits
j to the facility that do not overlap with i are those where ai > ej or ei < aj . All other
visits overlap, and the number of these visits represent the number vehicles in the facility
when visit i starts.

3.3 Results

With vehicle visits to the transfer station identified, visit durations calculated and the
number of vehicles within the transfer station upon a vehicles arrival determined, results
are presented and interpreted in the next sections.

3.3.1 Drop-off durations

The most important piece of information missing from routing optimisation studies that is
addressed in this chapter is drop-off durations at landfills or transfer stations. In literature
waste collection drop-off times are generally considered constant. However, this may not
be a fair assumption. Using GPS data and geofences this can be tested.

The distribution for drop-off durations for 31 vehicles, resulting in 3053 unique visits
at a single transfer station from the GPS dataset over a nine month period is displayed in
Figure 3.3. The mean duration that vehicles spend within the facility is 16 minutes.
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Figure 3.3: Probability distribution of drop-off durations at a single transfer station

Drop-off time is right skewed with a median duration of 8 minutes and interquartile
range of 6 minutes indicating that visit duration is variable. However, observing that
drop-off duration is variable is not sufficient as future routing applications will require
a distribution of drop-off values from which to sample observations. For this reason an
attempt is made to fit drop-off durations to a distribution and to estimate its parameters.
A good starting point is the Cullen and Frey graph from the fitdistrplus package in
R by Delignette-Muller and Dutang (2015). The Cullen-Frey graph for seven common
distributions compared against drop-off duration is shown in Figure 3.4.

The interpretation of the graph is that the closer the bootstrapped values are to the
theoretical distribution, the better the distribution fits the data. Except for the beta
distribution, none produce an adequate fit.

Next, a power-law distribution was considered and the approach based on Clauset et al.
(2009) were implemented. First, the parameters for the power-law distribution α and xmin

were estimated using the Maximum Likelihood Estimation method. The parameters were
estimated as α = 5.16 and xmin = 74.35. To test the goodness of fit for the power
law distribution, the Kolmogorov Smirnov test (KS) was performed to see if generated
data from the distribution, with the above parameters, and the observed data come from
the same distribution. To do so a large number of synthetic data sets of the power law
distribution with α = 5.16 and xmin = 74.35 are generated. For each data set, the KS test
was then performed between the synthetic and observed data. A significance level of 0.10
was used in the tests, meaning that if the p value from the KS test was less than 0.10, we
would reject the null hypothesis and conclude that the two datasets do not come from the
same distribution. If the p value is greater than 0.10 we fail to reject the null hypothesis
and conclude that the data may come from the same distribution. With the significance
level of 0.10, we expect to reject the null hypothesis for about 10% of our synthetic data
sets, should the data sets come from the same distribution. If this is the case, the power
law distribution can be considered a good fit. A total of 2500 synthetic data sets were
generated, on which we failed to reject null hypothesis 1882 times, or approximately 76%
of the time.
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Figure 3.4: Cullen and Frey graph for drop-off durations

It is important to note at this point that a power law distribution, with α = 5.16 and
xmin = 74.35, excludes the bulk of the data. Figure 3.3 shows that the data set has a
median of 8 minutes. With the power law distribution only producing a good fit in drop-off
durations exceeding 74 minutes, it does not adequately describe the behaviour of the entire
data set and can therefore not be considered a good fit of drop-off durations. Attempts
at fitting various other distributions for observations below 74 minutes also failed.

Although fitting the data set to a distribution would have been a good outcome, it
would likely have involved identifying and isolating confounding variables that affect drop-
off duration that are not visible in the data. An example would be the number of staff
available at the facility on a particular day to facilitate drop-offs. In addition, distributions
are likely to differ between facilities with different layouts and equipment configurations,
the aim is therefore simply to demonstrate that a drop duration observations can be
collected using GPS data.

3.3.2 Number of vehicles within transfer station

The next piece of information that can be extracted from the GPS data is vehicle arrivals.
Are arrivals constant (meaning they are evenly spread through the day) or do they vary
with time, and if so why? Figure 3.5 shows when vehicles typically arrive at the transfer
station over the sample period by categorising arrival times into 30 minute intervals. For
example, approximately 210 visits were recorded between 09:00 and 09:30. Arrivals are
not evenly spread throughout the day and instead there is a peak arrival rate between
10:00 and 11:00 in the morning. Since vehicles leave the depot at more or less the same
time every morning it is possible that vehicles reach capacity at a similar time and return
to landfills and transfer stations on mass, leading to congestion and delays during the peak
visit times seen in Figure 3.5.
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Figure 3.5: Histogram of the number of waste vehicle arrivals per 30 minute interval over
the course of a day

Since a peak arrival time has been identified, is it possible that congestion within
transfer stations caused by many vehicles arriving in short succession could lead to lengthy
drop-off times?

To test this the next variable extracted from the data is the number of vehicles within
the transfer station. With each vehicle’s arrival, the number of vehicles already present
within the facility is measured using the method described in section 3.2.2. Figure 3.6
shows the probability distribution for the number of vehicles already at the station upon
a vehicle’s arrival. For example, there is a 0.115 probability that when a vehicle arrives at
the station that there will be no other vehicles in the station; there is a 0.185 probability
that there will be one other vehicle at the station, etc. The figure shows that the highest
probability, at 0.185, is for a vehicle to encounter one other vehicle at the station.

To test whether a relationship between transfer station congestion and drop-off duration
exists, Figure 3.7 shows the number of vehicles already in the transfer station against the
duration of the visit for each visit at the station. Upon inspection of the figure there
seems to be two different duration behaviours. To the left, durations seem to be randomly
distributed when there are less than 13 vehicles within the facility. However above 13
vehicles drop-off durations are consistently longer. It would therefore appear as if the
transfer station reaches capacity in terms of servicing vehicles when around 13 vehicles
are present. The same pattern emerges of a sharp increase in drop-off duration at around
26 minutes, although there are far fewer samples to substantiate this with confidence.
When these two populations are isolated (drop-off durations below and above 13 vehicles),
Figures 3.8 and 3.9 show that below 13 vehicles present at arrival the number of vehicles
has little or no effect on drop-off duration. However, if there are above 13 vehicles present
at arrival the duration becomes significantly longer. Of the 3053 transfer station visits
initially observed, only 135 had vehicles enter the facility with more than 13 vehicles
already present. This would indicate that it is an abnormal event and not part of daily
operations. For this reason it is unlikely that there is congestion leading to extended
drop-off durations at the facility under consideration.
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Figure 3.6: Distribution of number of vehicles in transfer station
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Figure 3.7: Vehicle waste drop-off durations vs number of vehicles in the transfer station
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Figure 3.8: Distribution of drop-off durations when there are more than 13 vehicles within
the transfer station
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Figure 3.9: Distribution of drop-off durations when there are less than 13 vehicles within
the transfer station
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3.4 Conclusion

Using GPS data to conduct analysis on waste vehicle behaviour is quick, simple and
reproducible. The only requirement is a fleet fitted with GPS devices, which is becoming
more common. In this chapter it is demonstrated that waste collection vehicle offloading
times at landfills are variable and can be estimated using vehicle GPS data. Furthermore,
the potential impact of congestion at the facility on duration was demonstrated, where is
was shown that with more than thirteen vehicles in the facility, drop-off times increased.
The benefit of the result is that drop-off durations for all facilities within a metropolitan
area can be estimated and incorporated into a new Capacitated Arc Routing Problem
(CARP) variant where drop-off durations differ depending on the selected facility. It
might, for example, be beneficial to the overall route length to travel a slightly longer
distance to a facility with a lower drop-off duration than to visit the nearest facility where
drop-off durations might be longer. By incorporating this more nuanced approach to
drop-off durations overall route quality might be improved.
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Chapter 4

Segment traversal analysis

A key data input for the Mixed Capacitated Arc Routing Problem with Time Restrictions
and Intermediate Facilities (MCARPTIF) algorithms are service and traversal costs. To
accurately determine the cost of servicing a particular area, service costs and traversal
costs, in terms of time, must be accurately established at a street segment level. The
reason this is important is that the MCARPTIF requires a time estimate for the traversal
of each segment. The time it takes to traverse a segment is a function of the vehicle velocity
over the segment and the segment length. However there is additional complexity. When
traversing a segment and collecting waste the vehicle will traverse the segment at a lower
velocity, since the vehicle is stopping periodically to collect waste bins left on the curb.
The question then is how much slower will the vehicle travel? Assuming that the vehicle
will traverse all segments at the same velocity is therefore also not a fair assumption.
What if a particular stretch of road has more speed bumps or intersections, resulting in
the vehicle travelling at a lower velocity. When taking these factors into account it is clear
that for accurate MCARPTIF routing solutions vehicle velocity estimates are required
per segment both when traversing and deadheading street segments.This chapter aims to
address that data requirement.

4.1 Input data

The two important input data sources for analysis in this chapter are the street network,
which is publicly available from a number of sources such as Google Maps or OpenStreetMap,
as well as the Global Positioning System (GPS) data, which is not publicly available. These
two input data sources, as well as any preprocessing applied to them, is described in more
detail below.

4.1.1 GPS data

GPS data consists of a record ID, unique to each point, a time stamp, longitude and
latitude fields, ignition status, service day and a vehicle ID. See Table 4.1 for an extract
of the GPS data. The time stamp is the time that the GPS point was produced, with a
corresponding longitude and latitude. The ignition status is whether the vehicle engine
was switched on that point in time, this is not used in any analysis in this dissertation.
The DateID and vehicleID’s simply identify the date that the GPS point was produced
on, and the vehicle where it originated.

The total GPS data set consists of 48 million records, made up of 521 days and 787
vehicles. The data was collected over a nine month period in 2014 from a waste collection
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Table 4.1: GPS Data extract

RecordID time long lat ignitionStatus ServiceDateID WasteVehiclesID

24555 10:00:03.0000 18.67863 -33.81490 T 44 377
24561 10:00:07.0000 18.67860 -33.81470 T 44 377
24740 10:00:35.0000 18.67860 -33.81453 T 44 377
24983 10:00:36.0000 18.67860 -33.81453 T 44 377
24984 10:00:40.0000 18.67860 -33.81437 T 44 377
25992 10:02:08.0000 18.67867 -33.81410 T 44 377
25997 10:02:10.0000 18.67867 -33.81400 T 44 377
26159 10:02:51.0000 18.67867 -33.81383 T 44 377
26207 10:02:55.0000 18.67850 -33.81373 T 44 377
29907 10:05:30.0000 18.67750 -33.81383 T 44 377

fleet in a metropolitan area in South Africa. The data set contains 144059 unique day and
vehicle combinations. The mean number of records per vehicle per day is 332 records. The
metropolitan area is made up of 960 beats, or service areas, which are serviced once a week
by a waste collection vehicle. Figure 4.1 shows the metropolitan area, with beats drawn as
grey polygons. Data on the collection beats are publicly available from the metropolitan
area’s website, and are imported as shape files.

Figure 4.1: Metropolitan service areas

The frequency with which GPS points is recorded is crucial to data accuracy. In the full
data set the time interval between consecutive GPS points has median of 59 s and mean
of 156 s. The first and third quartiles are at 2 s and 60 s. Since the mean is above the 3rd
quartile and the distribution contains extreme values the median is the most appropriate
summary statistic according to Ross (2017) and therefore it seems that GPS points are
produced every 59 s by vehicles.
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To efficiently store and access data, the GPS data as well as beat data is stored in a
SQLite database. For the full entity relationship diagram, see Figure 4.2. The database
is broadly divided into tables containing information on the collection fleet, the service
areas, and the GPS points themselves.

Waste fleet GPS records

ConvertedGpsRecord

idConvertedGpsRecord INT

time DATETIME

long FLOAT

lat FLOAT

ignitionStatus VARCHAR(45)

ServiceDates_idServiceDates INT

WasteVehicles_idWasteVehicles INT

WasteServiceBeatGroup_idWasteServiceBeatGroup INT

Indexes

Service areas

WasteServiceBeatGroup

idWasteServiceBeatGroup INT

group VARCHAR(45)

piece INT

hole VARCHAR(45)

nRecords VARCHAR(45)

WasteServiceBeat_idWasteServiceBea…

boundBox_minLong FLOAT

boundBox_minLat FLOAT

boundBox_maxLong FLOAT

boundBox_maxLat FLOAT

centerLong FLOAT

centerLat FLOAT

Indexes

WasteServiceBoundaryPoint

idWasteServiceBoundaryPoint INT

long FLOAT

lat FLOAT

order INT

WasteServiceBeatGroup_idWasteServic…

Indexes

WasteServiceBeat

idWasteServiceBeat INT

name VARCHAR(45)

collectionDay VARCHAR(45)

collectionColor VARCHAR(45)

serviceArea VARCHAR(45)

serviceProvider VARCHAR(45)

nRecords INT

boundBox_minLong FLOAT

boundBox_minLat FLOAT

boundBox_maxLong FLOAT

boundBox_maxLat FLOAT

centerLong FLOAT

centerLat FLOAT

Indexes

Waste fleet

WasteVehicle

idWasteVehicles INT

vehicleRegistration VARCHAR(45)

vehicleType VARCHAR(45)

nRecords INT

Indexes

gpsTransmissionStats

idWasteVehicles INT

WasteVehicle_idWasteVehicles INT

gpsFreqMedian FLOAT

gpsFreqyIQR FLOAT

gpsFreqMaxWhisk FLOAT

gpsFreqMinWhisk FLOAT

gpsFreqMax FLOAT

gpsFreqMin FLOAT

boundBox_minLong FLOAT

boundBox_minLat FLOAT

boundBox_maxLong FLOAT

boundBox_maxLat FLOAT

centerLon FLOAT

centerLat FLOAT

Indexes

Study period information

ServiceDate

idServiceDates INT

date VARCHAR(45)

year INT

month INT

day INT

dayOfWeek_str VARCHAR(45)

dayOfWeek_int INT

nRecords INT

Indexes

WasteServiceBeatGroup_has_WasteVehicle_has…

WasteServiceBeatGroup_has_WasteVehicle_WasteServiceBeatG…

WasteServiceBeatGroup_has_WasteVehicle_WasteVehicle_idWa…

ServiceDate_idServiceDates INT

nRecords INT

timeIn DATETIME

timeOut DATETIME

medianSpead_kmh FLOAT

totalDistance_km FLOAT

nBreaks INT

insideTime_h FLOAT

outsideTime_h FLOAT

Indexes

ServiceDate_has_WasteVehicle

ServiceDate_idServiceDates INT

WasteVehicle_idWasteVehicles INT

nRecords INT

gpsFreqMedian FLOAT

gpsFreqIQR FLOAT

gpsFreqMaxWhisk FLOAT

gpsFreqMinWhisk FLOAT

gpsFreqMax FLOAT

gpsFreqMin FLOAT

boundBox_minLong FLOAT

boundBox_minLat FLOAT

boundBox_maxLong FLOAT

boundBox_maxLat FLOAT

centerLong FLOAT

centerLat FLOAT

Indexes

WasteServiceBeatGroup_has_WasteVehi…

WasteServiceBeatGroup_idWasteServiceBeatGroup INT

WasteVehicle_idWasteVehicles INT

nRecords INT

Indexes

ServiceDate_has_WasteServiceBeatGroup

ServiceDate_idServiceDates INT

WasteServiceBeatGroup_idWasteServiceBeatGroup INT

WasteServiceBeatGroup_WasteServiceBeat_idWasteServiceBeat INT

nRecords INT

Indexes

ConvertedGpsRecord

idConvertedGpsRecord INT

time DATETIME

long FLOAT

lat FLOAT

ignitionStatus VARCHAR(45)

ServiceDates_idServiceDates INT

WasteVehicles_idWasteVehicles INT

WasteServiceBeatGroup_idWasteServiceBeatGroup INT

Indexes

WasteServiceBeatGroup

idWasteServiceBeatGroup INT

group VARCHAR(45)

piece INT

hole VARCHAR(45)

nRecords VARCHAR(45)

WasteServiceBeat_idWasteServiceBea…

boundBox_minLong FLOAT

boundBox_minLat FLOAT

boundBox_maxLong FLOAT

boundBox_maxLat FLOAT

centerLong FLOAT

centerLat FLOAT

Indexes

WasteServiceBoundaryPoint

idWasteServiceBoundaryPoint INT

long FLOAT

lat FLOAT

order INT

WasteServiceBeatGroup_idWasteServic…

Indexes

WasteServiceBeat

idWasteServiceBeat INT

name VARCHAR(45)

collectionDay VARCHAR(45)

collectionColor VARCHAR(45)

serviceArea VARCHAR(45)

serviceProvider VARCHAR(45)

nRecords INT

boundBox_minLong FLOAT

boundBox_minLat FLOAT

boundBox_maxLong FLOAT

boundBox_maxLat FLOAT

centerLong FLOAT

centerLat FLOAT

Indexes

WasteVehicle

idWasteVehicles INT

vehicleRegistration VARCHAR(45)

vehicleType VARCHAR(45)

nRecords INT

Indexes

gpsTransmissionStats

idWasteVehicles INT

WasteVehicle_idWasteVehicles INT

gpsFreqMedian FLOAT

gpsFreqyIQR FLOAT

gpsFreqMaxWhisk FLOAT

gpsFreqMinWhisk FLOAT

gpsFreqMax FLOAT

gpsFreqMin FLOAT

boundBox_minLong FLOAT

boundBox_minLat FLOAT

boundBox_maxLong FLOAT

boundBox_maxLat FLOAT

centerLon FLOAT

centerLat FLOAT

Indexes

ServiceDate

idServiceDates INT

date VARCHAR(45)

year INT

month INT

day INT

dayOfWeek_str VARCHAR(45)

dayOfWeek_int INT

nRecords INT

Indexes

WasteServiceBeatGroup_has_WasteVehicle_has…

WasteServiceBeatGroup_has_WasteVehicle_WasteServiceBeatG…

WasteServiceBeatGroup_has_WasteVehicle_WasteVehicle_idWa…

ServiceDate_idServiceDates INT

nRecords INT

timeIn DATETIME

timeOut DATETIME

medianSpead_kmh FLOAT

totalDistance_km FLOAT

nBreaks INT

insideTime_h FLOAT

outsideTime_h FLOAT

Indexes

Figure 4.2: Entity Relationship Diagram of SQLite database containing GPS and beat
data

For the purposes of demonstrating the techniques applied in this chapter, a case study
service area was selected. The techniques presented can be replicated on any service area
within the metropolitan area, and results on other service areas are discussed in the results
chapter, however for the moment we will focus on a single area. There are 20923 GPS
points that fall within this case study area, over a period of 224 days. The area consists
of 331 street segments. Figure 4.3 shows the sample of GPS records within the area.
Subsequent analysis will be based on the GPS points within this service area, before being
expanded to include other areas.
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Figure 4.3: Case study service area with vehicle GPS points

4.2 Network construction

The first step to analysing how vehicles traverse street segments is to build a road network.
To this end OpenStreetMap (OSM) provides open source street maps for public use, and
developed through public contribution. This is because Capacitated Arc Routing Problem
(CARP) models require a network on which to perform routing. A network consists of
nodes, edges and arcs. When importing an OSM network a network similar to the one
in Figure 4.4 is produced. The figure shows a series of nodes and links, however for the
purposes of vehicle routing and the subsequent analysis the network must be simplified.
What is required for vehicle routing applications is a network consisting of intersections,
with street segments that link intersections. We then calculate the routing parameters
(demand, service and deadheading cost etc.) per segment.

Careful consideration of Figure 4.4 reveals nodes on segments, as well as on intersections.
The nodes between intersections are called interstitial nodes, and show the topography
of the line segment or street segment. For the most part the interstitial nodes are
not relevant to routing, since all we need to know is which segments are connected to
which intersection (i.e. where the vehicle can travel next from the current intersection).
The actual topography of the segment is not important except for the length of the
segment, which determines the servicing and deadheading cost. For this reason we remove
interstitial nodes when constructing the routing network. We calculate the segment lengths
at a later stage. In addition, what appears to be interstitial nodes can cause computational
errors when solving CARP instances since they are not necessarily connected to the
network and might represent topography other than road segments. The result being
that there are nodes in the network which are impossible to access. To solve this the
OSMnx package developed by Boeing (2017) is used to identify only required nodes (at
intersections), and to then simplify the network into graph form for further analysis.

Figure 4.5 shows the interstitial nodes, in red, which are to be removed. Once these
nodes have been removed Figure 4.6 is produced, which shows the simplified network.
Note that the original network topography has been maintained in the network file, but
that interstitial nodes are no longer recognised as nodes for the purposes of analysis.
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Figure 4.4: OpenStreetMap network

Figure 4.5: OpenStreetMap network, non required nodes are displayed in red.
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Figure 4.6: OpenStreetMap network, simplified.

4.3 Point snapping

Once a viable network has been created from the OSM topography, the next step is to
snap GPS points to street segments in the network. GPS points contain natural jitter,
and as a result coordinates do no correspond precisely to the line segments in the OSM
network. For this reason GPS points need to be snapped to the network, so that each
point can be associated with a particular segment in the network. The purpose of this is
to associate the time stamp on a particular GPS record to a street segment, and in doing
that estimate entry and exit times and segment traversal durations.

We perform the actual point snapping using the Maptools Package in R, developed by
Bivand et al. (2019). Practically, what this entails is that both the road network as well
as GPS points are converted to the same coordinate reference system. The point snapping
algorithm then determines the nearest line segment to each point. Following this the GPS
point is shifted to the nearest point on the line segment. The result is that all points
in the vicinity of the line segment are snapped to the line segment and assigned to that
particular segment. It is therefore critical to assess the distance with which points are
shifted. Points that are not close to any line segments, and are therefore shifted a large
distance, are likely to be the result of GPS jitter and could be disregarded.

However, Figure 4.7 shows that the large majority of points are shifted relatively small
distances. The mean shift in GPS point is 5.09 metres, with a median of 4.17 metres and
a maximum of 38.07 metres. In South Africa, single carriageway lanes are between 3.5
metres and 3.7 metres in width, according to SANRAL (2009). A single carriageway with
lanes in both directions, as is the norm in residential areas, will therefore be between 7 and
7.4 metres in width. Given this context, and the fact that GPS devices do produce jitter,
the distances that GPS points are shifted to correspond with line segments is reasonable
and therefore no outliers are removed at this stage.
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Figure 4.7: Histogram of snap distance, in metres.

4.4 Outlier detection

Having snapped GPS points to the network, and validated the snap distance, the next step
is to detect outliers which might skew analysis down the line. Velocity provides a good
opportunity for outlier detection as realistic vehicle velocities are known. By calculating
velocity, anomalous points can be clearly identified. Anomalies are produced by GPS
devices either by recording incorrect time stamps or incorrect locations. Either of these
errors can be detected by considering velocity since any point in a time ordered series of
consecutive GPS points can only be within a realistic distance from the previous point (i.e
travel to the next point at a realistic velocity). If either the geographic location or time
stamp is significantly incorrect it will appear as a velocity spike.

For this reason instantaneous velocity is calculated at consecutive points by calculating
the change in euclidean distance over time. For the purposes of outlier detection euclidean
distance was used. The reason euclidean distance is used for outlier detection is because
it provides a more conservative estimate of velocity, since the velocity between two points
will be lower as the crow flies than on the actual road topography between the two points.
A more conservative velocity estimate at this point in the analysis means less points are
disregarded. At a later stage, when traversal velocities are calculated the distance along
the line segment is used for improved accuracy.

To remove velocity outliers the Inter Quartile Range (IQR) method is a potential
option. An outlier is defined as an observation above the 75th or below the 25th percentile,
by a factor 1.5 times the inter quartile range. Prior to outlier detection the mean vehicle
velocity was 52 km/h with a minimum of 0 km/h and a maximum of 1761 km/h. Since
the maximum velocity is a physical impossibility outliers are undoubtedly present in the
data. Using the IQR outlier detection the mean is reduced to 5 km/h with a median of
2 km/h and a max of 43 km/h. The outlier detection using velocity reduces the total
number of GPS points within the service area from 20923 to 17300. By using the IQR
method however the velocity distribution is significantly altered and the maximum velocity
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remains within the realistic range of a waste collection vehicle (0− 100 km/h).
A more practical option therefore is to exclude velocities that are physically improbable,

since the IQR method might exclude velocities that are statistically outliers but still
practically possible. For this reason points with velocities above 100 km/h were excluded.
The resulting data set then has a median velocity of 1.619 km/h and a mean of 7.66 km/h.
Using this approach the total sample size is reduced from 20923 points to 18350 points.
Outlier detection using the velocity cut-off is automatically applied to all service areas.

Following this we now have a series of vehicles GPS points, associated with a line
segment and with outliers removed. This is described visually in Figure 4.8, which
shows the GPS data, overlayed onto the street network and clearly shows the effect of
the snapping process on the GPS data.

Figure 4.8: GPS points before (left) and after (right) point snapping

4.5 Segment visit identification

Once points have been snapped to the road network, and each point is associated with
a particular road segment, segment visit data can be extracted for further analysis. The
key variables required for each segment are:

1. When did a vehicle arrive at a particular segment?

2. Where on the segment was the vehicle arrival detected?

3. When did a vehicle depart from a particular segment?

4. Where on the segment was the vehicle departure detected?

5. How long was the vehicle within the segment?

6. How much distance did the vehicle traverse while on the segment?

7. In which direction did the vehicle traverse the segment?
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By calculating these variables for each segment the MCARPTIF variables such as
traversal velocity can be calculated. The first step of extracting segment visit data is
arranging the GPS data according to day, vehicle and time. This means GPS points are
first grouped by day, then by vehicle, and finally they are ordered on the GPS time stamp
from earliest to latest within the day. Since GPS points are snapped to a particular line
segment, a group of consecutive points, all assigned to the same line segment, indicate a
visit to that particular line segment. This process is described in detail in Algorithm 1.

It follows that the first and the last of that group of points can be considered entry
and exit points on the line segment. By looking at these points, a lot of information
about that particular segment visit can be inferred. The first is that the vehicle likely
travelled from the entry to the exit point, thus direction of travel is established. While it
is possible that the vehicle could have made a u-turn within the segment, this would have
likely occurred infrequently since the vehicles are travelling in residential areas where the
roads are narrow and u-turns are difficult. Therefore the assumption is made that travel
direction is always from entry to exit point (or first to last point).

Input: GPS data frame
Output: Data frame of segment visits
days = unique days;
arrivalTime ← vector;
departureTime ← vector;
vehicleID ← vector;
segmentID ← vector;
for d ∈ days do

vehicles = unique vehicles on day d;
for v ∈ vehicles do

points = points on day d from vehicle v;
if length of points ≤ 30 then

BREAK
end
else

order points by time ;
calculate time difference between points;
remove points with time difference ≤ 1s;
changes = vector of the lengths of runs of equal values in segment ID
vector;

CumalativeChanges = vector of cumulative sum of changes;
Append arrivalTime, vehicleID,segmentID with point[1] timestamp,
vehicle ID, Segment ID;

for y in CumalativeChanges do
Append departureTimewith point[y] timestamp;
Append arrivalTime, vehicleID,segmentID with point[y+1]
timestamp, vehicle ID, Segment ID;

end
Append departureTimewith point[length(point)] timestamp;

end

end

end
Algorithm 1: Segment Visit Identification Algorithm
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The amount of time spent within that particular segment can also be determined, as the
difference in time between the exit and entry point. To calculate the vehicle velocity within
the segment visit, the only missing variable is distance. This is slightly more intricate,
the partial distance across the segment is required. In other words, the distance from the
first to the last point on the segment must be calculated. Since the street segment is not
necessarily a straight line it is not as simple as taking the euclidean distance between the
points. To do this a short algorithm for calculating the partial distance over the segment
was created. See Algorithm 2 for more information.

In essence the algorithm splits streets segments into its component parts and determines
whether a point intersects with each sub-segment. If it does, the algorithm calculates the
distance between the point and the node at the end of the sub-segment. If it does not, the
algorithm calculates the distance across the sub-segment. The sum of these distances is
the partial distance of the segment. The algorithm does this for both entry and exit points
and subsequently calculates the partial distance between the entry and the exit point.

Input: Entry Point, Exit Point, LineSegment
Output: Partial distance on segment
Split LineSegment into component sub-segments
for i ∈ sub-segment do

if Entry Point intersects i then
EntryPartialDistance = EntryPartialDistance + length of i start to point

end
else

EntryPartialDistance = EntryPartialDistance + length of i
end

end
for i ∈ sub-segment do

if Exit Point intersects i then
ExitPartialDistance = ExitPartialDistance + length of i start to point

end
else

ExitPartialDistance = ExitPartialDistance + length of i
end

end
PartialDistance = max(EntryPartialDistance, ExitPartialDistance) -
min(EntryPartialDistance, ExitPartialDistance)

Algorithm 2: Partial distance on segment algorithm

Having calculated the partial distance travelled over the segment, as well as the
duration of time that the vehicle spent within the segment, the velocity can be calculated
simply as the distance traversed divided by the time spent within the segment.

4.5.1 Traversal speed for short segments

A notable challenge at this point is the time interval between GPS points. In section 4.1.1
the median time interval of 59 s is discussed. Consider for a moment that if a vehicle
travels at 20 km/h, or 5.5 m/s, that it will travel a distance of 324 m between consecutive
GPS points. At this velocity any segments less than 324 m in length will not have more
than two consecutive points, with which to calculate velocity.
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The challenge this poses is that it reduces resolution in instances where vehicles only
generate a single GPS point per segment. This can be due to segment length, where the
segment is very short and the vehicle traverses the segment in less than sixty seconds,
resulting in only one GPS point on the segment. It can also be due to vehicle velocity,
where the segment is not necessarily short, but the vehicle moves at a velocity such that
it passes through the segment in less than sixty seconds. Both cases pose a challenge as a
traversal velocity cannot be calculated using only a single point.

In the case study area only 45 percent of segment visits had more than 1 consecutive
GPS point, which greatly reduces the sample space. In addition this problem is likely to
skew the results, since the sample of GPS points will be skewed towards instances where
the vehicle is moving at a lower velocity.

To overcome this a separate algorithm was developed to deal with these cases. The
algorithm aims to calculate a traversal velocity for single point segments by making use of
the GPS points directly before and after the point in question. The assumption being that
the instantaneous velocity through the segment is the same as the velocity of the vehicle
just before and after entering and exiting the segment.

The partial distance to the end of the previous section is calculated, as well as the
partial distance between the next segment and the next point on the GPS trace. An
average velocity over these points is then calculated and assumed to be the instantaneous
velocity at the single point segment.

The result of the above steps to extract segment visits from GPS data and street
network data is that a total of 5839 unique segment traversals could be extracted from
the data, for the service area.

4.5.2 Inferring segment activity

Having snapped points to the road network, identified and listed segment visits, and
calculated traversal velocity the next key research question is whether we can identify if
a segment is being serviced or traversed. The assumption with this problem is that a
waste collection vehicle, travelling within a service area is either collecting waste from a
segment, or travelling through the segment (dead-heading) without collecting waste. Since
the street segment is the lowest level of analysis the assumption is that a vehicle is either
servicing a segment, or deadheading a segment, not both. No allowance is made for partial
collection or dead-heading on a single segment. The implications of this assumption might
be that there are observations within the data where the vehicle has traversed a portion of
the segment before collection activities start (or vice versa) and that the velocity estimate
is therefore a hybrid of both collection and traversal. While this is possible, further
seperation of vehicle activity would require much less granular data to detect changes in
velocity across the segment. These cases are likely also infrequent and the effect of this
minimal on the velocity samples. For this reason the street segment as the lowest level of
analysis is therefore presumed to be sufficient.

The key research question is then whether an inference can be made as to whether a
vehicle is servicing or dead-heading a particular segment when it is passing through that
segment, given the available data. The foundational assumption behind inferring whether
a vehicle is servicing or deadheading a segment is that the expected service velocity for a
segment will always be lower than the expected deadheading velocity. This is practically
obvious since a vehicle must both traverse a segment and perform the collection activity
when servicing. Which would mean that the velocity through the segment is always lower
than just traversing the segment. The aim therefore is to identify potential variables that
could indicate whether a vehicle is servicing or deadheading a segment, and test whether
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the vehicle velocity differs depending on the variable.
A number of potential variables are proposed. These are:

1. When a vehicle visits a particular segment

2. Which vehicle visits a particular segment

3. The sequence in which segments are visited

4. Whether a segment has a residential population to be serviced

By looking at these variables it is likely that a good estimate can be made on whether or
not a vehicle is dead-heading or servicing a particular segment. The aim then is to separate
the sample of segments visits which were just extracted into servicing and deadheading
visits and then subsequently to produce service and deadheading velocity estimates. The
reason this is important is to extract both a service and traversal cost for the MCARPTIF
model.

4.5.3 Service day

Waste collection within the study area happens once a week, on the same day every week.
Since vehicles will only enter a residential area to collect waste on the collection day, on
non-service days, all traversals will be deadheading, whereas on a service day, traversals
will be a mix of deadheading and service.

The service day is determined by finding the day of the week with the most segment
visits. See Figure 4.9 for a count of segment visits per day of week. The figure shows
that Tuesday is the service day, with a total of 5016 segment visits. All other days of the
week showed less than 300 segment visits. It is therefore highly probable that segments
are more likely to be serviced on Tuesdays than any other day of the week.
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Figure 4.9: Count of segment visits per week day
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4.5.4 Service vehicle

The next potential predictor is which vehicle visits a segment. Vehicles are typically
assigned to specific beats or service areas. If that vehicle enters the service area it is more
likely that segments will be serviced. Figure 4.10 shows that a single vehicle visits the
service area a lot more frequently than other vehicles. It is therefore more likely that
segments will be serviced by this particular vehicle. This is also practically visualised in
Figure 4.11 where GPS points are colour coded by vehicle ID. Each colour is therefore a
different vehicle passing through the areas. It is clear from the figure that most of the
activity within the service area comes from a single vehicle.
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Figure 4.10: Count of segment visits per vehicle ID
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Figure 4.11: GPS points grouped by vehicle ID for the service area

4.5.5 Traversal sequence

The next potential variable for determining whether a segment is being serviced or deadheaded
is the number of times a segment is traversed on a service day. Here the assumption is that
if a segment has been traversed multiple times on a single day, that the earlier traversals
are more likely to be as a result of the vehicle servicing the segment. Furthermore if
a vehicle only traverses a segment once on a service day, the likelihood is high that the
segment was serviced during that traversal. Subsequent traversals are therefore more likely
to be the vehicle deadheading the segment to get to areas of the beat not yet serviced.
Figure 4.12 shows the count of segment visits against the number of visits per day. As
expected the bulk of segments are only traversed once on a service day.

4.5.6 Segment population

Lastly, we can consider whether the fact that certain segments have residential populations
on them affect the vehicle velocity. The premise of this hypothesis is that the presence
of households means that the segment is more likely to be serviced than not. Figure
4.13 shows that the large majority of segment visits are to segments with populations on
them (4229 visits as opposed to 281). This is to be expected since vehicles are performing
residential waste collection and will try to minimise travelling through segments where
there aren’t residential populations to be serviced. The synthesis of the population data
used here is described in more detail in Chapter 5.
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Figure 4.12: Count of number of segment visits
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Figure 4.13: Count of segment visits for segments with and without population.
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4.6 Results

4.6.1 Overall velocity

Given the above analysis, results can be presented and a number of conclusions reached.
The mean velocity for all segment visits over the sample period is 4.67 km/h, with a
median of 2.19 km/h. This velocity is consistent with what we know about residential
waste collection, that vehicles move at low velocity from residence to residence collecting
waste. Even before service and deadheading velocities are extracted in the subsequent
section, this is a significant piece of information, since this estimate is lower than velocity
assumptions in literature. Figure 4.14 shows the overall velocity distribution within the
segment, the blue line represents the median velocity and the red line shows the mean
velocity.
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Figure 4.14: Overall vehicle traversal velocity

4.6.2 Service day as predictor

The first variable discussed earlier, which is likely to predict vehicle activity, is the service
day. The theory being that when a collection vehicle enters the service area on a collection
day that the probability of the vehicle servicing segments will be higher. Figures 4.15 and
4.16 show the distribution of vehicle velocities between service and non-service days. The
figures show similar right skewed distributions, but with slightly more observations at
higher velocities for non service days. The mean velocity when vehicles enter the area on
service days is 4.186 km/h with a median of 2.157 km/h. On non service days vehicles have
a mean velocity of 7.619 km/h and median velocity of 2.827 km/h. While the distributions
do overlap, there appears to be a difference in velocity between the two samples. This is
to be expected as it is unlikely that vehicles are performing collection operations outside
of collection days, and therefore traversals outside collection days will be deadheading
traversals at higher velocities. Table 4.2 shows summary statistics for vehicle velocity for
service days and non-service days.
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Figure 4.15: Service day vehicle velocity
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Figure 4.16: Non-service day vehicle velocity

Table 4.2: Summary statistics of vehicle velocity for service and non-service days

Min. 1st Quartile Median Mean 3rd Quartile Max.

Service Day 0.00066 0.92271 2.15703 4.18673 4.40328 96.39137
Non-Service Day 0.00042 0.51207 2.82695 7.61918 10.78796 92.58369

To formally test this the Wilcoxon Rank Sum Test by Wilcoxon et al. (1970) is used
to determine whether the two samples are from two different distributions. The reason
the Wilcoxon Rank Sum Test is used is because it is non-parametric, meaning that it does
not assume a distribution. Since the distributions are not normally distributed this test
is appropriate. The test allows the comparison of two distributions that are not normal,
but do have similar shapes, as Figures 4.15 and 4.16 illustrate.

The Wilcoxon Rank Sum Test uses the ranks of samples, as opposed to the underlying
values, to test for differences in population median. The hypothesis test is set out as
below, where x̃SD is the median velocity on service days, and x̃NSD is the median velocity
on non service days:

H0 :x̃SD − x̃NSD ≥ 0
Ha :x̃SD − x̃NSD < 0

The hypothesis test is conducted at a significance level, α, of 0.05. For the purposes
of demonstrating how the Wilcoxon Rank Sum Test works it will be explained in detail
here, however in subsequent sections only results will be reported. The first step is to rank
samples from both populations together, service days and non service days, from smallest
to largest. Each observation is assigned a rank. The sum of the ranks is then calculated
for the two samples, in this case the sum of the ranks of service day velocities, WSD , is
11982388. The sum of the ranks of the non-service days, WNSD, is 2352948. Thereafter
we calculate the mean rank as:
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µW =
n1(n1 + n2 + 1)

2
(4.1)

Where n1 and n2 are the sample sizes for the two samples. The mean rank for this
sample is 12131752. The standard deviation of the rank is, 40793.04, and is calculated as:

σW =

√
n1n2(n1 + n2 + 1

12
(4.2)

We then calculate the Z value, using both the mean and standard deviation as:

Z =
WSD − µW

σW
(4.3)

Calculating the Z value using the above we find a Z value of -3.66, which corresponds
with a p-value of 0.000125. At a significance level of 0.05 we can reject the Null Hypothesis
and accept the alternative hypothesis, that x̃SD − x̃NSD < 0, or that the median velocity
on service days is less than the median velocity on non-service days. We can therefore also
conclude that the two samples come from different distributions and that the service day
produces different vehicle velocity behaviour.

4.6.3 Service vehicle as predictor

As discussed earlier it is likely that by identifying the service vehicle a velocity sample
can be extracted where the probability of a segment being serviced is higher. Figures 4.17
and 4.18 show the velocity distributions for service vehicles and non-service vehicles in the
area. While there is a difference it is not apparent that the velocity behaviour differ that
significantly. The Service vehicles had an average velocity of 4.209 km/h with a median
of 2.160 km/h while non-service vehicles averaged 6.493 km/h and had a median of 2.397
km/h. Table 4.3 shows the summary statistics between the service vehicle and non-service
vehicle samples. While the distributions clearly overlap there seems to be a difference in
vehicle velocity between the two samples.
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Figure 4.17: Service vehicle velocity
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Figure 4.18: Non-service vehicle velocity
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Table 4.3: Summary statistics of vehicle velocity for service and non-service vehicles

Min. 1st Quartile Median Mean 3rd Quartile Max.

Service Vehicle 0.00066 0.92697 2.16025 4.20934 4.40995 96.39137
Non-Service Vehicle 0.00042 0.66592 2.39735 6.49339 7.55055 92.58369

Again, we apply the Wilcoxon Rank Sum Test to test whether the velocities for service
vehicles and non-service vehicles come from different distributions. The hypothesis test is
set out as below, where x̃SV is the median velocity for service vehicles travelling through
the area, and x̃NSV is the median velocity for non service vehicles travelling through the
area:

H0 :x̃SV − x̃NSV ≥ 0
Ha :x̃SV − x̃NSV < 0

Applying the Wilcoxon Rank Sum Test in this case yields a p-value of 0.0185, at a
significance level of 0.05 we reject the null hypothesis and accept the alternative hypothesis,
meaning that there is evidence that the median velocity for service vehicles is lower than
the median velocity of non-service vehicles.

4.6.4 Traversal sequence as predictor

Visit frequency could also potentially help predict whether a vehicle is servicing or dead
heading a segment. Table 4.4 shows summary statistics of vehicle velocity when a segment
is visited for the first time on a collection day, as opposed to the second or third, etc. time.
Figures 4.19 and 4.20 show the velocity distributions for first vehicle arrival as opposed to
subsequent arrivals. Again there appears to be a difference in median velocity. To formally
test this the Wilcoxon Rank Sum Test is again used. The hypothesis test is set out as
below, where x̃1st is the median velocity through segments the first time that segment is
traversed on a day, and x̃>1st is the median velocity through segments for all subsequent
traversals on a day:

H0 :x̃1st − x̃>1st ≥ 0
Ha :x̃1st − x̃>1st < 0

At a significance level of 0.05 we reject the null hypothesis, since the calculated p-
value in this case is 0.01. We can therefore conclude that the vehicle velocity, when
it arrives at segment for the first time on a day, is from a different distribution than
subsequent arrivals at the same segment throughout the day. Arrival sequence is therefore
an acceptable predictor of whether a vehicle is servicing a segment.

Table 4.4: Summary statistics of number of visits per segment per day

Min. 1st Quartile Median Mean 3rd Quartile Max.

Single Visit per day 0.00042 0.75935 1.97303 4.27118 4.24084 96.39137
Multiple Visits per day 0.00066 1.67446 3.55771 6.49830 7.93218 63.45971
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Figure 4.19: Velocity at first arrival
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Figure 4.20: Velocity after first arrival

4.6.5 Segment population as predictor

An intuitive predictor of vehicle activity is whether there is a residential population.
Table 4.5 shows the summary statistics for vehicle velocity on segments with and without
residential populations. The mean and median velocities are much closer in this case. To
test for separate distributions the hypothesis test in this case is set out as below, with
x̃P the median velocity on segments with population and x̃NP the median velocity for
segments without population.

H0 :x̃P − x̃NP ≥ 0
Ha :x̃P − x̃NP < 0

In this case however at a significance level of 0.05 we fail to reject the Null hypothesis
since the p-value is 0.7848871. We can therefore not conclude that population is a good
predictor of whether a vehicle is servicing or deadheading a segment. While the exact
reason for this is not evident there are a number of possible reasons. The first is the small
sample size for segment visits without population, as mentioned earlier only 281 traversals
were on segments without residential population. Since the vast majority of segments have
residential population one can infer that the vehicle must frequently deadhead segments
with residential population while travelling to other segments. The fact that a segment
has a residential population on it therefore does not shed light on whether a particular
traversal is a service or deadheading traversal. For this reason segment population is not
used in further analyses to determine vehicle activity.

Table 4.5: Summary statistics of vehicle velocity for segments with and without population

Min. 1st Quartile Median Mean 3rd Quartile Max.

Population on Segment >0 0.00066 0.96993 2.26307 4.56350 4.74122 96.39137
Population on Segment = 0 0.00042 0.41078 1.39296 5.40236 4.68665 88.96328
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4.6.6 Combined predictor

The final step in extracting service and traversal costs is to combine the variables discussed
above to label segment traversals as either servicing or deadheading. Traversals are
separated into servicing when they occur on a service day, by a service vehicle, and where
the segment is only traversed once. This is based on the fact that the preceding sections
all showed a statistically significant velocity difference for each of these variables which
indicates that they are appropriate as predictors of vehicle activity. This represents the
clearest and most credible sample of velocities associated with servicing. Samples that
don’t conform to these criteria are therefore labelled as deadheading. For the case study
area a total 3299 samples are labelled as servicing and 2540 are considered deadheading.
Again we need to statistically verify that these two samples, which are separated using
the predictor variables just discussed, are from two different populations. For that reason
we again apply with Wilcoxon Rank Sum Test as before, with a significance level of 0.05.

H0 :x̃S − x̃D ≥ 0
Ha :x̃S − x̃D < 0

The p-value for the combined predictor based on the variables discussed is 1.043522E−
31. Therefore even at a lower significance level of 0.01 we reject the null hypothesis and can
conclude that service velocity is lower than deadheading velocity. Table 4.6 summarises
vehicle velocity for servicing and deadheading traversals while Figures 4.21 and 4.22 show
the velocity distributions for the two velocity samples.

Table 4.6: Service and deadheading velocities

Min. 1st Quartile Median Mean 3rd Quartile Max.

Service 0.00127 0.86056 1.86953 3.29221 3.63904 96.39137
Deadheading 0.00042 0.89292 2.78632 6.46072 7.64930 92.58369
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Figure 4.21: Service Velocity
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Figure 4.22: Deadhead Velocity
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4.7 Results for additional case study areas

It is important at this point to compare results between different service areas. While
detailed results for a single beat were presented to illustrate the analytical process, results
from multiple service areas provide insights into the effectiveness of the analysis and
highlights the stochastic nature of the underlying data.

4.7.1 Service days over multiple service areas

Figure 4.23 shows a selection of seven beats. The boxes represent the IQR, or the area
between the first and third quartile. The line in the box is the median and the lines
extending from the box is the area 1.5 times the IQR above and below the first and third
quartiles, respectively. The dots represent outliers. What the plot aims to illustrate is the
velocity distributions for different service areas, on service and non service days.

Table 4.7 summarises the same information as Figure 4.23, but in tabular form. It also
allows a comparison between mean velocities per service area for service and non service
days. Finally, the results of the Wilcoxon Rank Sum Test on different service areas are
also displayed, at a significance level of 0.05. What can be concluded from the table is
that:

1. Mean vehicle velocities per service area are in all cases lower on service days than
on non service days

2. Median vehicle velocities are not in all cases lower on service days than on non service
days

3. Velocities at the 3rd Quartile are in all cases lower on service days than on non
service days

4. The Null hypothesis that H0 :x̃SD − x̃NSD ≥ 0 is rejected in 4 of 7 cases, meaning
that the velocity distributions for service days compared to non service days are
statistically distinct in 4 of 7 cases.

The implications of comparing velocities for multiple areas between service and non
service days is that we can evaluate the effectiveness of this metric. In 4 of the 7 cases the
velocity samples from service days are statistically different from velocity samples from
non service days. This indicates that the variable is not a perfect predictor of vehicle
activity, though it does appear to work in some cases.
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Table 4.7: Summary statistics and results of hypothesis test using Wilcoxon Rank Sum
Test on multiple service areas, when comparing service days

BeatID Service Day 1st Quartile Mean Median 3rd Quartile P-Value Hypothesis Test

1
No 0.251 7.452 3.422 10.722

0.0000009 Reject H0Yes 0.805 3.836 1.807 3.565

10
No 0.436 9.874 3.840 13.583

0.8224140 Fail to reject H0Yes 1.236 8.417 3.227 9.813

212
No 0.312 6.030 1.854 7.335

0.0000001 Reject H0Yes 0.471 3.485 1.475 3.181

342
No 0.194 14.435 2.813 14.663

0.8248478 Fail to reject H0Yes 1.705 5.550 3.162 5.286

368
No 0.219 4.848 1.456 4.734

1.0000000 Fail to reject H0Yes 0.756 5.265 2.095 4.971

484
No 0.096 15.371 2.076 28.222

0.0138486 Reject H0Yes 0.649 5.178 1.883 3.682

679
No 0.420 9.014 3.447 12.766

0.0060906 Reject H0Yes 0.842 5.673 2.445 5.917
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Figure 4.23: Box and whisker plot of vehicle velocity on service and non service days for
a selection of seven beats.
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4.7.2 Service vehicles over multiple service areas

Next we evaluate the effectiveness of using service vehicles to separate traversals into
servicing and deadheading, by considering the parameter over multiple beats or service
areas.

Upon considering Figure 4.24 and Table 4.8 the following observations and conclusions
can be made:

1. Mean velocities in all cases are lower for service vehicles than non service vehicles.

2. Median velocities are not lower in all cases for service vehicles than non service
vehicles.

3. 3rd Quartile velocities are lower for all cases for service vehicles compared to non
service vehicles.

4. The Null hypothesis that H0 :x̃SV − x̃NSV ≥ 0 is rejected in 3 of 7 cases.

Service vehicle as a predictor of vehicle activity only produces statistically different
velocity results in 3 of 7 cases. This can likely be explained by the fact that allocating
different vehicles to a service area is relatively easy. A vehicle might break down or be
in for maintenance and be replaced with another vehicle. The vehicle itself is therefore
not a perfect indicator of whether a segment is being serviced, though it does give some
indication.

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●
●
●●●
●

●
●

●●●

●

●●

●●

●●

●

●●●

●●
●●

●

●●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●
●
●●
●
●●●●

●

●
●
●

●

●
●
●●
●
●●●●●●
●●
●●●●
●

●
●

●

●

●●●●
●
●
●
●
●
●
●●●
●
●

●

●

●

●●●
●●
●●●
●

●
●●

●

●●●
●
●●

●

●●
●●

●
●

●

●

●

●●●●

●

●
●●●
●
●
●
●●
●
●●

●

●
●●●
●●●●●
●
●

●

●

●

●●●●●

●

●

●
●

●
●
●●●●

●

●

●

●●

●

●
●

●
●

●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●
●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●●

●

●

●
●●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●
●●

●

●

●

●●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●
●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●
●

●

●●

●

●●

●

●
●

●●

●

●●

●

●

●

●

●

●
●

●

●●●

●

●
●

●

●●

●

●

●●●●
●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●●

●

●

●
●
●

●
●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●
●●
●
●
●●●
●●●
●
●●●
●
●●●
●●●
●●
●

●
●
●
●

●

●
●

●

●

●●●●
●●
●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●●
●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●
●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●
●

●●●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●
●
●●●●●

●

●
●
●
●
●●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●●●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●
●
●●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●●

●

●●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●●

●

●

●
●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●●

●

●

●

●

●

●

●●

●
●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●●
●
●
●●●
●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●
●

●

●●

●

●

●

●
●
●

●●

●

●

●

●

●●

●

●
●

●

●

●●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

1 10 212 342 368 484 679

0

10

20

30

V
eh

ic
le

 V
el

oc
ity

Service Vehicle

No

Yes

Figure 4.24: Box and whisker plot of vehicle velocity for service and non service vehicles
for a selection of seven beats.
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Table 4.8: Summary statistics and results of hypothesis test using Wilcoxon Rank Sum
Test on multiple service areas, when comparing service vehicles

BeatID Service Vehicle 1st Quartile Mean Median 3rd Quartile P-Value Hypothesis Test

1
No 0.564 4.871 1.632 4.732

0.9999656 Fail to reject H0Yes 0.921 4.011 2.027 3.931

10
No 0.518 10.039 3.833 13.713

0.0038390 Reject H0Yes 1.695 5.797 2.981 5.760

212
No 0.326 4.736 1.586 4.886

0.0434541 Reject H0Yes 0.599 2.882 1.488 2.671

342
No 0.271 11.273 2.659 8.972

0.9999947 Fail to reject H0Yes 1.850 5.262 3.246 5.359

368
No 0.254 5.080 1.644 5.123

1.0000000 Fail to reject H0Yes 1.376 4.300 2.051 3.702

484
No 0.137 12.628 1.868 14.350

0.2887929 Fail to reject H0Yes 0.983 3.025 1.920 3.066

679
No 0.740 8.922 3.662 12.444

0.0000000 Reject H0Yes 0.774 4.437 2.093 4.802

Table 4.9: Summary statistics and results of hypothesis test using Wilcoxon Rank Sum
Test on multiple service areas, when comparing a segments first traversal to subsequent
traversals

BeatID First Traversal 1st Quartile Mean Median 3rd Quartile P-Value Hypothesis Test

1
No 1.327 5.856 2.859 6.266

1.11e-27 Reject H0Yes 0.661 4.017 1.701 3.616

10
No 1.123 11.066 4.881 16.997

2.50e-20 Reject H0Yes 0.698 8.667 3.182 10.397

212
No 0.900 5.686 2.564 7.116

2.57e-42 Reject H0Yes 0.360 3.804 1.327 3.217

342
No 2.073 6.652 3.969 7.589

8.95e-12 Reject H0Yes 1.278 7.289 3.005 5.423

368
No 0.333 5.803 2.118 6.292

1.69e-18 Reject H0Yes 0.310 4.677 1.637 4.347

484
No 0.794 10.385 2.748 8.381

1.05e-13 Reject H0Yes 0.327 8.636 1.776 5.352

679
No 0.888 7.366 2.672 9.132

1.12e-07 Reject H0Yes 0.691 5.649 2.414 5.899

59

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



4.7.3 First traversal over multiple service areas

The first traversal proved to be a good indicator of vehicle activity when considering the
case study area earlier in the chapter. For this reason the first traversal is evaluated as
predictor of vehicle activity by again considering multiple areas. Upon considering Table
4.9 and Figure 4.25 the following observations and conclusions can be made:

1. Mean velocities in all cases are lower when a vehicle traverses a segment for the first
time, compared to subsequent traversals, except in the case of one service area.

2. Median velocities are lower in all cases for a vehicle traversing a segment for the first
time, compared to subsequent traversals.

3. 3rd Quartile velocities are lower for all cases for a vehicle traversing a segment for
the first time, compared to subsequent traversals.

4. The null hypothesis that H0 :x̃1st − x̃>1st ≥ 0 is rejected in 7 of 7 cases.

The traversal sequence variable performed best of all variables tested, and found
statistically different velocities in all seven service areas. Indicating that traversal sequence
is the best estimator of vehicle activity.
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Figure 4.25: Box and whisker plot of vehicle velocity for the first segment traversal
compared to subsequent traversals
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4.7.4 Combined activity predictor over multiple service areas

As before we can now group observations that occur on a service day, with a service vehicle,
and where the observation is the first time a segment is traversed as servicing and group
all other observations as deadheading. Figure 4.26 shows the velocity box plots of the seven
areas, following the classification of segment visits into servicing and deadheading. Table
4.10 summarises the velocity behaviour for the service and deadheading groups. Overall,
over all seven beats, the mean service velocity is estimated at 3.857 km/h, while the
deadheading velocity is estimated at 6.843 km/h. Both these estimates are significantly
lower than the estimates discussed in literature. Furthermore the results of the activity
classification show that:

1. Mean velocities in all cases are lower for vehicle servicing segments than for vehicle
deadheading segments.

2. Median velocities are lower in all but two cases for vehicles servicing segments than
for vehicles deadheading segments.

3. 3rd Quartile velocities are lower for all cases where vehicles are servicing segments
compared to when they are deadheading segments.

4. The null hypothesis that H0 :x̃1st − x̃>1st ≥ 0 is rejected in 6 of 7 cases.

This indicates that the combined classification works well and that using the three
variables in conjunction allows us to produce separate velocity estimates for when a vehicle
is servicing and when a vehicle is deadheading a segment.
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Figure 4.26: Box and whisker plot of vehicle velocity for service and deadheading traversals
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Table 4.10: Vehicle service and deadheading velocities for different beats

BeatID Service Day 1st Quartile Mean Median 3rd Quartile P-Value Hypothesis Test

1
Deadhead 0.7279942 5.068204 1.967690 5.203469

1.168486e-02 RejectService 0.8112920 3.420071 1.826846 3.319047

10
Deadhead 0.5735867 9.862515 3.745269 13.279220

7.443663e-04 RejectService 1.7379910 5.428756 2.941914 5.262168

212
Deadhead 0.3691018 4.758224 1.668291 4.963015

5.417244e-09 RejectService 0.5470558 2.421892 1.352779 2.363217

342
Deadhead 0.6321404 9.446291 3.032630 7.819317

8.392583e-01 RejectService 1.7783977 5.201919 3.191482 5.083286

368
Deadhead 0.2680600 5.139255 1.706855 5.214722

1.000000e+00 Fail to RejectService 1.3775235 3.281168 1.914394 3.103874

484
Deadhead 0.1786977 11.689058 2.029320 11.516995

5.086352e-03 RejectService 0.9509374 2.855576 1.826745 2.794795

679
Deadhead 0.6724058 7.467968 2.679237 9.387952

1.236209e-08 RejectService 0.9259160 4.133057 2.306338 4.516156

4.8 Conclusion

Service and deadheading costs are crucial parts of the MCARPTIF models. Vehicles
must service all arcs and traverse arcs to access arcs to be serviced. To fully utilise the
MCARPTIF models it is crucial that these costs are estimated accurately, using real data.
By using GPS data and open source street network data, accurate service and deadheading
velocities, and by implication, costs can be estimated using the techniques presented in
this chapter. Unique service and deadheading velocities were estimated for seven service
areas within the metropolitan region. In all seven cases both mean and median velocity
estimates were significantly lower than those used in literature and will no doubt have a
significant impact on the routing solutions presented later in this document, where routing
solutions that use common velocity estimates in literature are compared to those estimated
in this dissertation.
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Chapter 5

Waste generation estimation

One of the crucial input data challenges with the Mixed Capacitated Arc Routing Problem
with Time Restrictions and Intermediate Facilities (MCARPTIF) problem variant for
waste collection is the estimation of waste generation rates. Waste generation rates
represent the demand for the collection service, and are likely to have a significant impact
on feasible collection routes.

Municipal solid waste differs from other municipal services in that exact waste generation
rates are difficult to measure at household level. Water and electricity, for example, are
measured with relative ease, and consumers are billed directly for consumption. Waste
generation rates are however more difficult to measure directly.

Typically, municipal waste collection service providers will measure vehicles entering
landfills or transfer stations, using weigh bridges. By collecting this data service providers
have a broad understanding of generation rates, at a suburb or beat level. The basic
inference being that vehicles assigned to certain beats can be weighed upon return to
landfills and generation rates for those beats measured over time. While this data is
beneficial to strategic planning in terms of waste management infrastructure such as
landfills, it is not detailed enough for the optimisation of collection routes.

For the purposes of the MCARPTIF problem variant, detailed generation rates per
street segment are required. One potential solution to this problem is to use weigh bridge
data at an aggregate level for service areas or for an entire metropolitan area and to
disaggregate it to street segments. Since waste generation rates are primarily a function
of population density, i.e. the more people in a particular area the higher the waste
generation rate is likely to be, population data provides a good opportunity to estimate
generation rates at street segment level.

In South Africa, census data is publicly available and of a relatively high quality.
This provides the opportunity to use population data, combined with aggregate waste
generation rates to estimate waste generation rates per street segment and solve more
accurate and useful MCARPTIF instances. To achieve this a synthetic population developed
by Joubert (2014) was used to infer waste generation rates. The development of the
synthetic population was according to methods presented by Müller and Axhausen (2012)
and is described in more detail below.

5.1 Synthetic population development

As briefly described in Chapter 2, census data typically contains detailed samples of a
portion of the population. In South Africa this would be the Public Use Micro Sample
(PUMS). The sample contains detailed information on individuals, but only contains
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coarse geographic data. The Community Profile Data on the other hand contains information
on population demographics down to the sub-place level, but no information on actual
individuals within the population. The reason for this separation is to protect the privacy
of the individuals within the population. To synthesize a population individuals from the
PUMS are then allocated to a sub-place, such that sub-place demographics are preserved
as accurately as possible.

The synethetic population developed by Joubert (2014) for the metropolitan area in
question is based on a multi-level fitting algorithm by Müller and Axhausen (2012). We
refer the reader to Müller and Axhausen (2012) for an exhaustive explanation but will
briefly discuss the basics here. The synthetic reconstruction process consists of fitting
and generation. In the fitting stage the PUMS (the disaggregate sample of members) is
weighted, with the reweighted sample corresponding to the sub-place (from the Community
Profile Data, or in this case the service area. The reweighted sample is then used to
construct the set of population members for the service area, in the second phase of the
synthetic reconstruction process. Each member is part of a household, and each household
has a geographic location which can be plotted.

Figure 5.1 shows the result of the process and shows the household locations and
sizes for a case study area. Figure 5.2 shows the same households in the case study area,
separated by household size. As before the process is repeated for a number of other service
areas, these can be found in Figures 5.3 to 5.5. The figures show varying household sizes
within the service area as well as where the synthetic households can be found. Following
the earlier assumption that population size can be used to determine weekly generation
rates, the figures give an indication of population density which can be used to estimate
waste generation rates per street segment or for the service area as a whole.
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Figure 5.1: Synthetic population household locations for case study area

64

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



●●●
●●●

●

●
●●●●

●
●●

●
●
●●

●●
●

●
●●●
●●

●
●
●●●

●●

●

●●●●●
●●●●
●●●●

●●●●●●●
●●

●

●

●●
●

●

●●
●

●
●●●●
●●●

●

●●
●

●●
●

●
●●

●●●

●●

●●●

●
●●
●
●●●

●

●●
●●
●●●●●

●●●
●

●
●●●●●
●
●

●
●●●●
●

●●●●

●●●
●●

●●●●●
●

●
●●●

●●

●
●●●

●
●
●

●●●●
●●

●

●
●●

●●●●●
●

●●
●

●
●●● ●

●
●●●●

●●●
●

● ●●●●●●●●
●
●●●●

●●●
●●●

●
●

●
●●●●●

●
●
●●●

●●●●●●

●●●
● ●

●●●●●●

●●●●

●
●
●

●●
●●
●
●

●

●

●●

●●●●
●●●●

●
●● ●

●●

●●●
●●●●
●●

●
●

●

● ●

●
●

●●
●

●●●
●●

●
●
●

●● ●●●

●●●

●
●●

●●

●

●

●●●●

●●

●
●●●

●
●●
●●
●
●

●
●
●

●
●

●
●●●

●

●

●

● ●
●

●●

●●
●

●●●
●●
●●

●

●

● ●

●
●●

●●

●

●

●
●●

●●●●●●
●

●●
●●●

●●

●

●●●●
●

●

●
●●

●●●
●●●●●●●●

●●
●●

●●●

●●●●●●
●●●●

●
●●
●
●●●●●

●●●
●●●●●●●

●●●●
●●●● ●●

●●●
●●

●●●
●

●
●● ●

●●●

● ●
●●

●●

●● ●●
●
●
●●

●
●●●

●
●

●

●●
●●●

●●●
●

●
●●●

●●
●●

●
●●●●●

●●●●●
●
●

●
●●
●●●●

●●
●
●●
●●

●●●●●●

●
●● ●●●

●●●
●

●●

●●●●●

●●●●
●●●●●

●●● ●●●

●
●

●
●
●

●●
●

●●
●●●

●●● ●●●
●

●
●

●●●●●
●
●●●

●●

●

●
●●●●●●●●

●●●●
●●●●●●●

●●●
●

●
●
●

●
●

●
●●
●●●●

●●
●

●

●

●●

●
●

●

●
●

●●●●
●

●●
●
●●●

●
●

●●
●

● ●

●
●

●●

●

●

●
●

●
●●

●●

●
●●
●●●● ●

●

●

● ●

●
●●●

●

●
●●

●
●

●
●

●

●
●

●

●●
●

●
●

●

●
●●

●
●

●
●●

●●

●●

●●

●
●●

●●

● ●●●●●●
●

●●

●

●●●
●

●

●●●
●●

●●●●

●
●●
●

●
●●●

●

●●●●● ●
●●●
●●

●●●●●●

●
● ●

●●

●
●

●
●●

●
●●● ●●

●●●●
●●●

●
●

●
●●●

●●●

●
●●●●●

●●

●

●
●
●

●●●●
●
●●
●

●●
●●●
●

●
●●
●●●●●●

●●

●
● ●

●●●●
●●
●●●

●
●●●●●
●

●●●●●
●

●●

●●●

●
●

●
●

●●
●

●

●●●●●●●
●

●●●

●
●

●●●

●●●
●●●●

●●●
●●
●●●

●●
● ●●●● ●

●
●
●●

●
●

●

●
●

●

●●●●

●
●

●●

● ●

●
●

●

●
●

●

●

●
●

●

●
●

●
●

●

●●

●

●
●
●

●●●

●

●
●

●

●●●

●
●●●●●
●
●●●●●●●

●
●●

●

●●
●●●●

●●●●

●●

●●
●

●●●●●

●●●
●

●●
●
●●

●●●●●●●●

●●●

●●
●●●

●

●
●●

●●

●●
●

●●

●
●●

●●●●●
●

●●●●●●
●

●●●
●●●●

●●●
●

●
●●●

●●●●●
●
●

●●
●
●●●●●

●●
●●●
●●

●
●●●

●●
●●

●●

●

●●
●●

●●
●●
●

●

●

●●●
●●●●
●
●

●●
●

●●● ●
●●

●●●●

●
●●

●
●●

●
●●

●●●●
●●●

●
●●●●
●●

●
●●

●

●

●●●
●●

● ●●
●

●
●●●●●

●

●●

●
● ●

●

●●●
●

●

●
●

●●●

●●

● ●

●●●
●

●

●
●
●

●

●

●

●
●

●
●

9 10

5 6 7 8

1 2 3 4

Household Size

●

●

●

●

●

●

●

●

●

●

1

2

3

4

5

6

7

8

9

10

Figure 5.2: Synthetic population household locations by household size for case study area
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Figure 5.3: Synthetic Populations for beats 1 and 10.
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Figure 5.4: Synthetic Populations for beats 212 and 368.
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Figure 5.5: Synthetic Populations for beats 342 and 484.
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5.2 Matching households to street segments

Following the development of the synthetic population the next step is the assign the
population members to street segments, because the MCARPTIF algorithm requires a
demand, or weekly waste generation rate per street segment. Members of the synthetic
population therefore must be associated with a street segment, such that the total population
and subsequently the total waste generation rate per segment can be calculated.

Each household has coordinates to show the approximate location of the household,
as well as the household size. To assign the households to street segments the same
Point snapping methodology described in section 4.3 was used. The distance from each
household is compared to the distance to each of the street segments in the network and
the lowest distance segment is selected. The household location is then moved onto the
line segment and assigned to the line segment. The result is visualised in Figure 5.6.
The figure shows the households snapped to the nearest street segment. The purpose of
this is simply to visually illustrate that each household is now associated with a specific
street segment within the service area, allowing the calculation of the total population and
demand per street segment.
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Figure 5.6: Synthetic population households snapped to street network for case study area

Since members of the synthetic population are now linked with a street segment, the
population per street segment for the case study are can now be plotted. Figure 5.7 shows
a bar graph of segment population estimates for the case study area based on the synthetic
population. The figure shows the segment ID with its population estimate which ranges
from 155 people on the most populous segment, all the way down to 3 people on the least
populous segment.
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Figure 5.7: Synthetic population for street segments in case study area

5.3 Estimating segment waste demand

Following the allocation of synthetic households to street segments it follows that the
total population for each segment can then be calculated. Since the problem deals with
residential waste collection, the assumption is made that people are the primary source of
residential municipal solid waste and that waste generation rates are primarily a function
of population. This, along with the fact that living standards are a big contributor to
waste generation rates, is shown by Wertz (1976) and Medina (1997) amongst others.

5.4 Waste generation rates

In section 2.6 a number of reported waste generation rates were discussed. For the
purpose of this study an aggregate rate of 580 kg per person per annum was selected, as
reported in an Integrated Waste Plan by the metropolitan area (Solid Waste Management,
2016). Even though the number is reported as a per capita estimate, it is based on the
annual measured waste generation rate of the entire metropolitan area divided by the
total population estimate. It therefore represents a good estimate of the aggregate waste
generation rate. Another approach, if the data can be collected, would be to use waste
generation data from weighbridges at landfill sites, as opposed to the entire city. This
would help capture differences in waste generation rates within the city itself. However
since this data was not available the aggregate generation rate for the city is sufficient. Of
the 580 kg per person per annum an estimated 45 percent is residential municipal solid
waste, the balance is made up of building rubble and commercial waste. The per capita
waste generation rate per collection week is therefore calculated as (580× 0.45)/52 = 5.01
kg per person per week or 0.715 kg per person per day. This compares well with the
generation rates reported in literature, 1.76 kg per person per day by Qdais et al. (1997),
1.11 kg per person per day by Minghua et al. (2009), 0.77 kg per person per day by
Troschinetz and Mihelcic (2009) and 1.62 kg per person per day by Saeed et al. (2009).
The small discrepancies are likely due to the inclusion of building rubble and commercial
waste. If we use the entire 580 kg per person per annum estimate the average per capita
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rate would be 1.59 kg per person per week. Using this estimate the weekly generation
rate, or the MCARPTIF demand, per segment can be calculated. Figure 5.8 shows the
generation rate per street segment. Since the generation rate is a product of the population
it follows the same shape as Figure 5.7. The maximim generation rate per segment is 777
kg per week. With the minimum being 15 kg per week. The analysis is repeated for seven
other service areas, Table 5.1 shows the population and waste generation estimates for the
seven segments
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Figure 5.8: Estimated generation rate for street segments in case study area

Table 5.1: Estimated beat population and weekly waste generation rate.

Beat ID Population Estimate Estimated Weekly Generation Rate [kg]

1 3012 15117.92
10 1405 7052.01
212 4304 21602.76
342 2889 14500.55
368 3438 17256.11
484 2536 12728.76
679 4612 23148.69

5.5 Conclusion

Municipal waste management differs from other municipal utilities in that waste generation
rates are difficult to estimate at the household or street level. This is because there are no
cost effective ways of measuring waste generation at the source (household), in contrast
to how you can measure water consumption for a household using a flow meter. However,
to solve the MCARPTIF and improve collection routes, the demand per street segment is
crucial. In this chapter a synthetic population and known aggregate waste generation rates
for a metropolitan area was used to estimate waste generation rates per street segment.
This then represents the demand required to solve MCARPTIF instances. Future work on
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waste generation rates could look at using population income data to improve generation
estimates.
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Chapter 6

Comparing the effects of input
parameter estimates on waste
collection routes

The culmination of all the analysis described up to this point is a number of reproducible
case study test instances which will be used to demonstrate the effect on routing solutions
when actual data estimates are used. For the purposes of this dissertation, seven service
areas were randomly selected to demonstrate the model functionality, although any service
area from the metropolitan area can be used. Each beat’s individual characteristics
and calculated Mixed Capacitated Arc Routing Problem with Time Restrictions and
Intermediate Facilities (MCARPTIF) parameters will be briefly discussed. Following that
the process to produce test files for the MCARPTIF algorithm will be described. Finally,
the results from solving the test instances will be discussed. The goal of the chapter is to
demonstrate the magnitude of the differences in routing outcomes when taking differing
approaches to MCARPTIF input parameters.

6.1 MCARPTIF test files

To solve the test instances, a file is produced for each instance, which serves as input into
the solution algorithm. The file contains all the test parameters relevant to that specific
beat. Figure 6.1 shows an extract from a test file. The file contains the number of nodes
in the street network, the number of edges and arcs, the vehicle capacity, the shift length,
the maximum number of vehicles available, the offloading cost as well the street segment
data such as traversal and servicing cost.

For each beat two separate test files are exported, the first based on the data estimation
techniques discussed thus far (this well be referred to as the refined approach) and the
second based on assumptions made in literature for the MCARPTIF parameters (referred
to as the standard approach).

6.1.1 Network construction

The first step in producing the test instances is to extract the network nodes from the
OpenStreetMap (OSM) street network. This is done by isolating the nodes at the ends
of each street segment. Since the network is already in graph form from the analysis
presented in Chapter 4 the nodes can simply be extracted from the network. This can
be seen in Figure 6.2. Once a list of nodes is compiled a short algorithm, Algorithm 3,
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Figure 6.1: Extract from a MCARPTIF test file.

ensures that the network is complete and that all segments are attached to the network.
The algorithm ensures that each segment is connected to at least one other segment by
sharing a common node with another segment. This prevents errors from occurring when
a feasible solution is sought using the solution algorithms.

Figure 6.2: Network nodes for beat 679.

The next step involves adding arcs and edges that connect the test instance to the
landfill sites and vehicle depot discussed in Chapter 3. Connecting the service area to
landfills and to the vehicle depot involves identifying nodes where vehicles can potentially
enter or exit the service area. The travel cost between these nodes and the landfill sites and
vehicle depot is then calculated using the Google Maps Distance Application Programming
Interface (API) through the ggmap package in R by Kahle and Wickham (2013). This
gives the best route between each entry or exit node and the sites in question. For each
beat the nearest landfill site is selected as the designated landfill site and the selected site
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becomes a node within the network. The same applies for the vehicle depot. The traversal
cost between the landfill and depot sites and the beat’s entry and exit nodes are calculated
using the Google Maps API again.

At this point the network construction is complete and the test parameters can be
added. It is here where the two files, for the standard approach and refined approach diverge
in terms of how they are constructed. The first significant difference is in determining
required and non required edges. Required edges refer to segments that must be serviced
by the vehicle, while non required edges don’t need to be serviced but can be traversed as
part of the vehicle route. For the standard approach, waste generation rates are based on
an estimate of waste produced per meter of street segment. For this reason all segments
within the network, with the exception of the segments linking the landfills and depots,
are assumed to be required edges.

For the refined approach, the synthetic population allows one to determine which
segments are required and which aren’t, since only segments with population present
require servicing. Table 6.1 provides a summary of some of the variables pertaining to the
test instances.

Input: network segments
Output: list of segments not connected to network
for i ∈ segments do

1stTo1stNodeMatch = segments[segments that share first node with segment i
start node]

1stTo2ndNodeMatch = segments[segments that share second node with
segment i start node]

2ndTo1stNodeMatch = segments[segments that share first node with segment
i second node]

2ndTo2ndNodeMatch= segments[segments that share second node with
segment i second node]

if length(1stTo1stNodeMatch) == 1AND
length(1stTo2ndNodeMatch) == 0 AND
length(2ndTo1stNodeMatch) == 0 AND
length(2ndTo2ndNodeMatch) == 1 then

print(”Segment i is not connected to the rest of the network”
end

end
Algorithm 3: Network Integrity Algorithm

6.1.2 Waste demand

Since required and non required edges are determined, the segment demand can be
determined. For the standard approach the segment demand is a function of the segment
length and the estimated generation rate per metre, 0.5kg/m/week. This, and the
following estimates, are those presented in benchmark instances by Willemse and Joubert
(2016a). The reason estimates by Willemse and Joubert (2016a) were selected for comparison
is that the authors provide good detail on their assumptions, which allows the same
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Table 6.1: Beat network variables

Beat ID Edges Required Edges Non-Required Edges Nearest Landfill [m]

1 141 121 20 1341
10 164 74 90 4229
212 261 134 127 3094
342 148 109 39 6926
368 246 170 72 3412
484 106 91 15 1678
679 103 95 8 6071

assumptions to be applied to the areas discussed in this dissertation and compared to the
estimates developed here. For the refined approach the demand is the population on the
segment multiplied by the estimated weekly per capita generation rate of 5.01kg/person/week.

6.1.3 Service and traversal cost

The next step in constructing the test instances is to determine the service and traversal
times of each segment. For the standard approach the assumed traversal velocity is 20
km/h. The traversal time in seconds is then simply the product of the segment length
and the traversal velocity. For the service time the assumption is made that an additional
10 s is incurred for each kilogram of waste. The service time in seconds, Si, for segment i
can therefore be expressed as:

Si = (Li × 20) + (Di × 10) (6.1)

where Li is the length of segment i in metres and Di is the calculated demand for
segment i in kilograms.

For the refined approach the service and deadheading times are calculated using the
servicing and deadheading velocities estimated for each beat in Chapter 4, divided by the
length of the segment. Of course it would also be possible to use a unique velocity estimate
for each segment, as opposed to for each beat, but this would require a larger sample size
of Global Positioning System (GPS) points, since the number of velocity observations per
street segment are low. In addition, not all segments in the beat necessarily have observed
traversals, meaning that not all segments have velocity estimates. For this reason using
an aggregate velocity estimate per beat is the best option to both capture the velocity
behaviour unique to each beat (i.e. velocity differences per beat), as well as not having to
exclude any segments due to lack of usable observations.

The impact of this on the results is that the velocity behaviour is less granular than
initially planned (i.e velocities are not unique to each segment but rather unique to each
beat) though it remains an improvement on velocity estimates discussed in literature.
Future work, with larger sample sizes, could easily achieve the desired level of detail by
using the methods described in Chapter 4.

6.1.4 General parameters

Finally, both test instances for the standard and refined approach contain general parameters.
The first of these are the vehicle capacity, which for both is assumed to be 10000kg. The
dumping cost for the standard approach is assumed to be 300 s, as reported by Willemse
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and Joubert (2016a), while for the refined approach it is 960 s, which is the estimate
produced in Chapter 3.

6.2 Results comparison

Once the test instances have been generated the final step is to solve the instances using the
MCARPTIF algorithms. The MCARPTIF algorithms are described in detail in Willemse
and Joubert (2016b). The algorithms developed by Willemse and Joubert (2016b) are
constructive heuristics aimed at finding quick initial solutions. Practically this is very
useful for MCARPTIF problems employed for routine decision support as new solutions
are required at relatively short notice. The heuristics are based on Path-Scanning where
the algorithm iteratively constructs the route by adding the nearest unserviced street
segment to the end of the route, while ensuring that capacity and time constraints are not
violated.

The algorithms are Python based and import the constructed test instances as text
files. Once the algorithm has found a feasible solution a text file of the solution is produced.
An extract of a typical solution is shown in Table 6.2. The solution includes a route ID,
this represents a separate route for each vehicle. The subroute is each collection cycle,
or the route between each transfer station visit. Each activity is assigned an ID and has
a start and end node within the network. Activity types include depot start, collection,
traversal, arrival at transfer stations, offload and depot end.

Furthermore the solution includes a column on the traversal time to the activity, as well
as the time taken to complete each activity, the activity demand, the remaining capacity
for waste in the vehicle and the remaining time before the end of the shift. Given these
pieces of information on the feasible solutions for each beat, we can now compare the
solutions from the two input parameter approaches and determine the effect of the input
data on the solutions.

6.2.1 Generation rates

We begin by comparing generation rates between the estimates produced in Chapter 5,
and the assumptions used by Willemse and Joubert (2016a). All beats, with the exception
of beat 10, have higher actual generation rates based on the synthetic population than on
the assumptions used in literature. Figure 6.3 shows the comparison of resulting waste
generation rates per beat using actual data estimation methods compared to those used
in literature.

The reason for beat 10’s lower generation rate is because beat 10 has a low number
of required edges, when the synthetic population is used to determine which edges are
required. Table 6.1 shows that beat 10 has 74 required edges, of the 164 edges in total.
This means that only 45 percent of edges require servicing in the network. Since the
generation rate estimate method in literature does not have a mechanism for determining
which edges are to be serviced, 100 percent of the edges in beat 10 are required, resulting
in a larger generation rate estimate for the whole beat. This is illustrated in Figure 6.4
where the street network and synthetic population is imposed on a satellite view of the
beat. Visible on the bottom left of the image is the synthetic population in blue, in
what appears to be a residential area. On the top and to the right street segments are
shown where there is no synthetic population present, and where the buildings appear to
be commercial properties. The incorporation of the synthetic population in the refined
approach therefore excludes these edges, where they are included as demand points in the
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Figure 6.3: Estimated weekly generation rates for standard approach versus refined
approach

Figure 6.4: Synthetic population and street network for beat 10

Table 6.3 shows the resulting generation rates for the two approaches to input data.
The Table shows that generation rates differ considerably. This is because of the difference
in the underlying assumptions with regards to how generation rate is estimated for each
approach. The standard approach assumes that segment length is directly proportional
to population and in turn to generation rate, since an estimate of 5kg/m/week is used.
In contrast, using the more refined approach of a synthetic population, no underlying
assumption as to population density is made resulting in unique generation rates per
street segment.
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This is significant as the generation rate will directly affect how accurate the route is.
With an incorrect route based on poor generation rate estimates routes could exceed the
shift length, or be too short and result in larger vehicle fleets being used to service the
metropolitan area. Even without the optimised vehicle route, the generation rate estimate
on its own is a tangible contribution, as it can be used by waste managers to better split
suburbs into service areas and to plan waste collection activities.

Table 6.3: Generation rates for test instances using the refined approach and standard
approach

Beat Refined approach [kg/week] Standard approach[kg/week] % Change

1 15118 7515 101%
10 7052 11911 -41%
212 21603 9116 137%
342 14501 9357 55%
368 17256 14899 16%
484 12729 6544 95%
679 23149 8121 185%

6.2.2 Activity time

The next point of comparison is vehicle activity times. Since the input data parameters
differ between the test instances, comparing the resulting activity times is of interest.
Table 6.4 shows the vehicle activity times when comparing the standard approach and the
refined approach. Figure 6.5 shows vehicle activity for the seven test beats in hours. The
figure shows activity times for all routes, for this reason any beats with a total activity time
over 8 hours requires an additional vehicle. As expected the vehicles spend the majority
of their time collecting waste, followed by traversing or deadheading segments and lastly
spend the least amount of time on offloading waste at intermediate facilities. In two of
the seven cases more than one vehicle is required to service the area.

Table 6.4: Activity times per beat

Refined Approach Standard Approach

Beat Collect Offload Traversal Total Collect Offload Traversal Total

1 4.00 0.80 2.79 7.59 4.93 0.17 1.34 6.44
10 1.92 0.27 1.19 3.37 7.81 0.25 1.64 9.70
212 5.78 1.07 4.52 11.37 5.98 0.17 1.52 7.67
342 2.38 0.80 2.59 5.78 6.13 0.17 2.25 8.56
368 5.65 0.80 2.97 9.42 9.77 0.25 2.21 12.23
484 4.08 0.53 1.35 5.96 4.29 0.27 0.82 5.38
679 3.74 0.80 3.24 7.77 5.33 0.08 1.48 6.89

Mean 3.94 0.72 2.66 7.32 6.32 0.19 1.61 8.12

Figure 6.6 shows the same information but for the instances based on the standard
approach. In the case of the instances based on the standard approach, the vehicles again
spend the majority of their time on collection, with offloading and traversing a smaller
proportion of total time spent in this case. Table 6.5 further emphasises this by showing
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Figure 6.5: Activity times per beat for instances using the refined approach to input data.

activity times per beat, as a proportion of total servicing cost, for instances based on the
two approaches. What is apparent from this table is that collection time comprises only
54 percent of activity time for the refined approach, but 78 percent of the time for the
standard approach. This is again likely a function of the fact that the standard instance
does not differentiate between required and non-required edges. Vehicles therefore have
less opportunity to traverse segments as all segments must be serviced.

Offloading times for the standard instances averaged 0.72 hours (43 minutes) as opposed
to the 0.19 hours (11 minutes) for the refined instances. It is clear from both these numbers
that vehicles make multiple intermediate facility visits throughout their routes, since both
numbers are higher than the 16 minute and 5 minute input variables. As a proportion
of total time spent the intermediate facility visits take an average of 10 percent for the
test set and 2 percent for the standard set. This difference is once again significant as it
impacts the feasibility of routes. If routes were to be developed for a metropolitan area
using an assumption of a 5 minute offloading cost, the routes could practically prove to
be infeasible, as the actual time spent by vehicles offloading would be longer and would
mean that the vehicle would likely be unlikely to complete its route within the shift.

Finally, Table 6.5 also shows that the average time spent traversing segments is 2.66
hours for the standard set and 1.61 hours for the refined set. As a proportion of total
route time this represents 20 percent in the case of the standard set and 36 percent in the
case of the refined set.

6.2.3 Route collection efficiency

A good summary of the information presented above is collection efficiency, which is a
metric defined for the purposes of this dissertation and based on the principles of Lean, as
set out by Poppendieck et al. (2011). Broadly speaking, Lean thinking classifies activities
into those which add value, and those that do not add value, with the aim of reducing
waste within any particular system. By applying the same principles to waste collection
the collection efficiency can be defined as the value adding cost (or time) divided by the
total route cost (or time).

The value adding portion of the route is the collection, while traversal and offloading
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Figure 6.6: Standard set activity times per beat.

Table 6.5: Activity times per beat, as a proportion of total servicing cost, for the refined
instances and standard instances

Refined Instance Standard Instance

Beat Collect Offload Traversal Collect Offload Traversal

1 53% 11% 37% 77% 3% 21%
10 57% 8% 35% 81% 3% 17%
212 51% 9% 40% 78% 2% 20%
342 41% 14% 45% 72% 2% 26%
368 60% 8% 31% 80% 2% 18%
484 68% 9% 23% 80% 5% 15%
679 48% 10% 42% 77% 1% 21%

Mean 54% 10% 36% 78% 2% 20%
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are considered non-value adding. Figure 6.7 shows the collection efficiency for the beats
tested, while the information is also contained in Table 6.6. In all cases the collection
efficiency for the refined instances is lower than for the standard instances. This is a
direct result of the higher waste generation estimates, the lower vehicle velocities, the
higher offloading cost and the lower number of required edges. The collection efficiency
for the refined instances is estimated at 54 percent, while the standard instances average
78 percent.
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Figure 6.7: Collection efficiency per beat for standard instances versus refined instances.

Table 6.6: Refined and standard instance collection efficiency

Beat Refined Instance Collection Efficiency Standard Instance Collection Efficiency

1 53% 77%
10 57% 81%
212 51% 78%
342 41% 72%
368 60% 80%
484 68% 80%
679 48% 77%

Mean 54% 78%

It is important at this point to clarify the comparison that is presented here. By
taking the same service areas (or beats) and solving the collection problems using the
same MCARPTIF algorithms, but differentiating the input parameters the effect of only
the input parameters on the solutions can be evaluated. A lower collection efficiency for
the refined instances therefore does not represent a lower quality solution but a solution
based on a different set of underlying assumptions and input data than in the standard
case.

Consider beat 679 for example. Table 6.4 shows that for this particular beat the
solution will allow for 3.74 h of collection and 3.24 h of traversal in the refined case, while
in the standard case collection is estimated to take 5.33 hours and traversal only 1.48 h.
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In addition the total route length in the refined case is 7.77 h and 6.89 h in the standard
case. Consider now for example that both these solutions are provided to a waste manager
to aid in allocating vehicles to collection beats. Should the manager be given the solution
from the standard case, the manager is likely to allocate this vehicle to another small
area to ensure that the vehicle utilises its full 8 h shift. This decision would be based on
the assumptions that the vehicle services segments at 20 km/hour and spends 5 min at
the transfer stations etc. However in practice, GPS data shows that the vehicle travels
at average only 4.13 km/h when servicing this particular beat (see Table 4.10 in Chapter
4 for reference), and will on average spend 16 minutes at the transfer station. Given a
solution based on this information, the waste manager will likely allocate this vehicle to
only this beat, as the estimated route duration is just less than 8 hours.

What is therefore implied by the fact that collection efficiency is lower in the refined
cases than in the standard cases is that the MCARPTIF parameters used in literature are
likely too optimistic and produce solutions that differ greatly to those based on the data
presented in this dissertation. An interesting future contribution in this regard would be
to use the same GPS data set, extract the actual routes taken by the collection vehicle
drivers and compare both the refined and standard cases to the actual routes for accuracy.

6.3 Conclusion

Throughout this dissertation methods were developed and tested for estimating MCARPTIF
input parameters. These include generation rate, service cost, deadheading cost and
offloading cost, amongst others. In this chapter these estimates were used to develop
a set of seven refined instances which were compared to a set of seven standard instances.
The refined instances were developed using parameters estimated in this dissertation, while
the standard instances were developed using known parameter estimates in literature, as
presented by Willemse and Joubert (2016a). Both refined and standard instances were
then solved using the MCARPTIF algorithms and the results compared. The chapter
aims to demonstrate that input data has a significant effect on collection routes and as
such showed how generation rates and activity times differed for routes based on the same
beats, but with differing parameters. While neither the standard or the refined approach
were compared to actual collection routes and a claim can therefore not be made with
regards to accuracy it does demonstrate the estimation of input parameters should be
crucial part of the MCARPTIF solution process.
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Chapter 7

Conclusion

Accurate, reliable and updated input data is a crucial aspect in the success of designing and
improving any system, particularly complex real world systems with various confounding
variables. Waste collection is a good example of this, as solution strategies rely both on
robust mathematical models and on accurate parameter estimates to improve collection
routes. The aim of this dissertation was to address the latter, by showing that publicly
available data sets, as well as GPS data from waste collection vehicles, can be used to
estimate Mixed Capacitated Arc Routing Problem with Time Restrictions and Intermediate
Facilities (MCARPTIF) parameters, and to solve real world instances. The key input
parameters addressed include landfill visit durations, segment service and deadheading
costs and waste generation rates. In referring back to the research question posed in
section 1.2, this chapter summarises the outcome of the research questions, highlights the
contribution made by answering the research questions and explores future contributions
to literature that this dissertation uncovers.

7.1 Landfill visit durations

Throughout the course of normal operation, waste collection vehicles visit landfills or
transfer stations to dispose of the waste collected by the vehicle. The amount of time
spent travelling to the particular landfill or transfer station, as well as the time spent at
the landfill or transfer station impacts the collection potential of the vehicle in a shift.
For this reason the accurate estimation of drop-off durations at waste disposal facilities
is crucial to MCARPTIF solution success. Landfill visit durations were successfully
estimated for a landfill in a metropolitan area in South Africa, using vehicle GPS data and
geofences based on publicly available landfill locations. Landfill visit durations were found
to average higher than those used in previous Capacitated Arc Routing Problem (CARP)
variants, but was very similar to estimates reported by Wilson and Vincent (2008), which
is promising. Attempt were made to fit the drop-off duration estimates to distributions,
however these were unsuccessful and point towards confounding variables within the data.
The average landfill drop-off duration was estimated at 16 minutes. In addition the effect
of congestion was explored as a possible reason for longer drop-off durations within the
sample. Contributions in this area include the methods used to derive the above drop-off
durations as well as the estimates themselves, which can be used to solve other CARP
waste collection variants that incorporate waste disposal.

83

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



7.2 Estimating street segment service and deadheading times

Collection and traversal costs proved to be the most challenging of the MCARPTIF
parameters to estimate. To achieve this research outcome, GPS data as well as publicly
available street network data was used. GPS points were snapped to a street network,
and vehicle velocities over the network was calculated. A particularly challenging aspect
of calculating velocities per segment was the fact that time intervals in the GPS data were
often too long for vehicles traversing shorter street segments. This was however overcome
by using velocity estimates from points as the vehicle enters and exits these segments.
The next crucial aspect to the analysis of vehicle velocity through service areas was to
separate instances of vehicles servicing and traversing segments. To this end a number of
variables were tested, namely the service day of a particular beat, the service vehicle of
a particular beat, and whether or not a segment was traversed multiple times within a
single service day. All of these variables were successful, with the best performing variable
being how many times a segment was traversed in a single day. By using these variables
together, statistically distinct velocity distributions could be extracted for vehicle service
and deadheading velocity in 6 of the 7 test beats. This represents the biggest contribution
that this dissertation makes to the body of knowledge. This contribution is significant
because vehicle velocity can not be assumed to be constant through different areas or
street segments. To solve accurate routing instances therefore requires velocity estimates
with sufficient granularity to capture the velocity differences within and between areas.
The methods developed in this dissertation provide an opportunity at estimating vehicle
velocity for future MCARPTIF problem sets.

In all of the test cases considered, the velocity of vehicles, both when servicing and
when deadheading, was significantly lower than those used in CARP problems in literature.
Also apparent throughout the analysis was that the velocity differs from area to area and
that using the methods described could improve the accuracy of collection routes, and
subsequently also collection costs.

7.3 Estimating street segment waste generation rates

The final MCARPTIF variable is that of waste generation rate. For waste collection
applications, this variable is particularly important and tricky to compute. This is because,
unlike other municipal services such as water or electricity, consumption (or in the case of
waste, generation) can not be accurately measured at the household level. Since literature
contains various per capita waste generation rates, the approach taken to overcome this
problem was to use a synthetic population based on census data to approximate the
population size of each street segment and use that to determine the weekly generation
rate for the segment. The advantages of this are two-fold, the first is that the effects of
population density are considered in the vehicle routing solution. Instead of assuming
a uniform population density each segment has a unique density and subsequently a
unique generation rate. The second advantage is that better knowledge of the residential
population allows for a better understanding of which segments require waste collection.
This too is an improvement on estimates made in existing waste collection literature.
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7.4 Generating and solving MCARPTIF instances from real
world estimates

All of the real world parameters discussed above were combined and tested on seven
randomly selected benchmark instances which were solved using the constructive heuristics
presented by Willemse and Joubert (2011). These were considered the refined set and were
compared to a standard set made up of parameter estimates from Willemse and Joubert
(2016a). The aim of the comparison was to use the same service areas, and solve the routing
problems using the same solution algorithms, but to vary the input data to test the effect
of the input data on the solutions. Overall it was found that solutions varied considerably
between the refined set and standard sets and that solutions from the control set had less
realistic collection efficiencies. This is due to the higher velocity estimates, lower waste
drop-off durations and the fact that the control set did not account for street segments
without populations presents. The contribution of this chapter is that it demonstrates
the importance of input parameters on solution quality. In addition it demonstrates that
with the right data sources it is possible to extract a street network, estimate MCARPTIF
parameters and produce a feasible solution. While this process is not fully automated it
does prove that a data-driven MCARPTIF model that estimates parameters and produces
efficient routes routinely is feasible and practical.

7.5 Future research

While this dissertation did contribute to the body of knowledge, many opportunities
remain to expand this field of research towards practical models that drive cost savings for
municipal waste collection operations. In the below section some of these opportunities
are explored and their viability discussed.

7.5.1 Landfill visit durations

Future work aimed at estimating landfill visit durations could include using the methods
presented here to replicate the analysis across all landfills in a metropolitan area, in order to
study how visit durations differ between facilities, and potentially to identify the variables
that lead to longer visit durations. A good approach to separating drop-off durations
between peak times and quieter periods of the day could be k-means clustering. The idea
being that clusters of visit durations might be present in the data above and below 13
vehicles (as was visually demonstrated in Chapter 3. This might potentially yield better
results.

In terms of CARP variants for waste collection, an interesting addition to the body
of knowledge might be a problem variant with different visit durations for each landfill,
which would allow vehicles to potentially travel further to a landfill with a faster drop-off
duration. Given the findings on landfill congestion presented in Chapter 3, it would also
be conceivable to have a CARP variant where a tally of the number of vehicles within each
landfill is kept, and where a cost penalty is added for vehicles that visit already congested
landfills.

7.5.2 Estimating street segment service and deadheading times

While velocity estimates were obtained for a number of residential service areas in a
metropolitan area in South Africa, avenues to better estimates are by no means exhausted.
Additional predictor variables could be investigated when it comes to separating servicing
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and deadheading activities. An example of this would be speed limits. Speed limits are
likely to have a directly proportional relationship to vehicle travel velocity, and the vehicle
velocity as a proportion of the speed limit might be insightful as to what the vehicle is
busy doing, particularly on busier roads.

Another approach worth pursuing would be one based on clustering, instead of the
statistical approach followed in this dissertation. Vehicle velocities would then be separated
using unsupervised machine learning using the categorical variables already identified in
chapter 4.

Further research could also focus on the effect of traffic. Data on traffic is fairly
readily available through service providers such as Google Maps. Research could therefore
consider the impact of the time of day on collection routes. For example, it might be faster
to service a busy street segment during off peak hours than during rush hour traffic, or
to service areas closer to the vehicle depot towards the end of the shift when traffic might
delay the vehicle’s return to the depot.

Another potential area to explore is that of performance measurement for collection
crews. With accurate data on demonstrated route completion times, collection crews could
be given collection targets that are realistic and achievable. Collection crews could then
be encouraged to meet these targets, which will drive operational excellence. Real time
monitoring of these performance indicators could also flag inefficient collection beats where
crews are consistently over or under performing.

7.5.3 Estimating street segment waste generation rates

Future work on this aspect of the dissertation could include using weighbridge data to
calibrate the per capita waste generation estimate. If weighbridge data was available,
each vehicle route could be linked to the actual mass of the waste dropped off. The waste
can then be allocated to the synthetic population to produce a better per capita generation
rate. The synthetic population can also be used to distinguish between generation rates
in high or low income areas, since this data is contained in most census data. Another
potential area of interest could be to better estimate collection cost, based on actual
waste generation rates. A total route cost could be calculated using the travel distance
of the vehicle, fuel cost, maintenance costs and collection crew salaries. This can then
be apportioned to the synthetic population to determine which areas are more costly to
service. Information like this would be useful in making strategic waste management
decisions such as where to build intermediate facilities.

7.5.4 Fully integrated parameter estimation and routing system

While this dissertation tested seven relatively small collection areas, future work could
test these data estimation techniques on larger collection areas, or even on an entire
metropolitan area. Ultimately the goal would be to fully integrate the process of parameter
estimation and live routing algorithms. A database of GPS points, weighbridge data
and various other relevant variables would be updated on a daily or weekly basis. The
MCARPTIF parameters would then be recalculated and efficient collection routes constructed
using the updated data. This would also provide valuable insights into collection operations
which could be used to update Key Performance Indicators (KPIs) and drive continuous
improvement within waste management operations. Using the techniques discussed and
developed in this dissertation, it is likely that cost savings can be realised in future for
waste collection operations, particularly in developing nations.
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Taş, D., Gendreau, M., Dellaert, N., Van Woensel, T., and De Kok, A. (2014b). Vehicle
routing with soft time windows and stochastic travel times: A column generation
and branch-and-price solution approach. European Journal of Operational Research,
236(3):789–799.

Troschinetz, A. M. and Mihelcic, J. R. (2009). Sustainable recycling of municipal solid
waste in developing countries. Waste management, 29(2):915–923.

Wertz, K. L. (1976). Economic factors influencing households’ production of refuse.
Journal of Environmental Economics and Management, 2(4):263–272.

Wilcoxon, F., Katti, S., and Wilcox, R. A. (1970). Critical values and probability levels
for the wilcoxon rank sum test and the wilcoxon signed rank test. Selected tables in
mathematical statistics, 1:171–259.

Willemse, E. and Joubert, J. (2011). Constructive heuristics for the residential waste
collection problem. In ORSSA Annual Conference, Elephant Hills Hotel, Victoria Falls,
Zimbabwe, 18-21 September 2011, pp 19-28.

Willemse, E. J. (2016). Heuristics for large-scale Capacitated Arc Routing Problems on
mixed networks. PhD thesis, University of Pretoria, Pretoria. Available online from
http://hdl.handle.net/2263/57510 (Last viewed on 2017-01-16).

90

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 

http://hdl.handle.net/2263/57510


Willemse, E. J. and Joubert, J. W. (2016a). Benchmark dataset for undirected and mixed
capacitated arc routing problems under time restrictions with intermediate facilities.
Data in brief, 8:972–977.

Willemse, E. J. and Joubert, J. W. (2016b). Constructive heuristics for the mixed capacity
arc routing problem under time restrictions with intermediate facilities. Computers &
Operations Research, 68:30–62.

Willemse, E. J. and Joubert, J. W. (2016c). Splitting procedures for the mixed capacitated
arc routing problem under time restrictions with intermediate facilities. Operations
Research Letters, 44(5):569–574.

Wilson, B. G., Agar, B. J., Baetz, B. W., and Winning, A. (2007). Practical applications
for global positioning system data from solid waste collection vehicles. Canadian Journal
of Civil Engineering, 34(5):678–681.

Wilson, B. G. and Vincent, J. K. (2008). Estimating waste transfer station delays using
gps. Waste management, 28(10):1742–1750.

91

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 


	Abstract
	Introduction
	Problem background
	Research design
	Research methodology
	Problem awareness and identification
	Evaluation of solution strategies
	Model development
	Model evaluation

	Expected contributions
	Document structure

	Literature review
	Capacitated arc routing problems
	Stochastic routing models
	Road network and benchmark instances
	Intermediate facility visit times
	Segment traversal times
	Waste generation rates
	Source sampling techniques
	Synthetic populations from census data

	Conclusion

	Landfill visit analysis
	Input data
	Analysis
	Identifying landfill or transfer station visits
	Number of vehicles within transfer stations

	Results
	Drop-off durations
	Number of vehicles within transfer station

	Conclusion

	Segment traversal analysis
	Input data
	GPS data

	Network construction
	Point snapping
	Outlier detection
	Segment visit identification
	Traversal speed for short segments
	Inferring segment activity
	Service day
	Service vehicle
	Traversal sequence
	Segment population

	Results
	Overall velocity
	Service day as predictor
	Service vehicle as predictor
	Traversal sequence as predictor
	Segment population as predictor
	Combined predictor

	Results for additional case study areas
	Service days over multiple service areas
	Service vehicles over multiple service areas
	First traversal over multiple service areas
	Combined activity predictor over multiple service areas

	Conclusion

	Waste generation estimation
	Synthetic population development
	Matching households to street segments
	Estimating segment waste demand
	Waste generation rates
	Conclusion

	Comparing the effects of input parameter estimates on waste collection routes
	MCARPTIF test files
	Network construction
	Waste demand
	Service and traversal cost
	General parameters

	Results comparison
	Generation rates
	Activity time
	Route collection efficiency

	Conclusion

	Conclusion
	Landfill visit durations
	Estimating street segment service and deadheading times
	Estimating street segment waste generation rates
	Generating and solving MCARPTIF instances from real world estimates
	Future research
	Landfill visit durations
	Estimating street segment service and deadheading times
	Estimating street segment waste generation rates
	Fully integrated parameter estimation and routing system



