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Abstract 

This paper proposes a comprehensive planning model for enhancing accommodation of renewable 

energy sources into a combined heat and power based multi-energy system by utilizing the flexibility of a 

demand response program. As distinct from existing works, demand response has been implemented 

through a price-based program not only in terms of its effects on system operation but also for the planning 

decisions, and the potential correlations among uncertainties (i.e., renewable energy sources availability, 

load demand, and demand-side responsiveness) have been explicitly considered in our study. The concerned 

problem is interpreted into a two-stage optimization problem, where the placement of advanced metering 

infrastructures, the installation of renewable generation units along with the relevant pricing strategy for 

the demand side are jointly optimized to minimize the overall economic costs of the system. The flexibility 

of customers’ energy demands in response to real-time price changes is represented by using a generalized 

elasticity model, through which the demand response in terms of both load shifting in the temporal 

dimension, and the switching of energy source on the demand side can be properly captured under a unified 

framework. An efficient scenario generation method leveraging a series of correlation-handling techniques 

is employed to address the uncertainties in the proposed problem and a comprehensive scenario reduction 

method based on a novel optimal clustering technique is further introduced to alleviate the computational 

burden of the resultant model with the correlated uncertainties. Compared with the existing literatures, the 

novelty of this paper is in three-fold: 1) This study investigates the potential value of demand response for 

promoting renewable energy exploitation from a long-term planning perspective, instead of the 

conventional operation aspect. 2) The impacts from both system uncertainties and their potential 

correlations have been explicitly considered. 3) A comprehensive scenario reduction method based on 
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optimal clustering analysis is introduced and employed to alleviate the solving complexity and improve the 

computational efficiency of the proposed model. The proposed planning framework is demonstrated on an 

illustrative test case and the simulation results verified the effectiveness of the developed model. 

Keywords: renewable energy; multi-energy system; demand response; advanced metering infrastructure; 

correlated uncertainties; planning 

Nomenclature 

Acronyms 

AMI    Advanced metering infrastructure 

CHP    Combined heat and power 

CL    Critical load 

DR     Demand response 

ECL    Energy-convertible load 

MES    Multi-energy system 

MESO   MES operator 

OUT    Out sample stability 

RES    Renewable energy source 

RTP    Real-time price 

SP    Stochastic programming 

TSL    Time-shiftable load 

WTG   Wind turbine generator 

 

Indices (Sets) 

𝑖 𝛺𝐼⁄     System buses 

𝑤 𝛺𝑤⁄    Candidate locations for installation of renewable energy generation units 

𝑑 𝛺𝑑⁄    Candidate locations for installation of AMI unites 

𝑠 𝛺𝑠⁄     Uncertainty scenarios 

𝑡/𝑇    Time periods 

type    Customer sector 
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Parameters 

𝜏    Annualization factor 

𝛼    Discount rate (%) 

𝛽    Weight coefficient used in scenario reduction 

𝜆𝑚𝑖𝑛/𝜆𝑚𝑎𝑥   Lower/upper bound 

𝜃 Number of typical days in a year 

𝜁    Service life (year) 

𝑐𝑐    Capital cost of equipment ($) 

𝑐𝑚    Maintenance cost in a year ($) 

𝑁ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑   Number of candidate load points 

𝑃𝑊𝑇𝐺−𝑟   Rated output power of a WTG (kW) 

𝑃𝐶𝐻𝑃−𝑟    Rated output power of CHP (kW) 

𝑃𝑇𝑟𝑎𝑛𝑠−𝑟   Rated output power of a transformer (kW) 

𝜎𝐺𝑅    Price of procuring power from the external grid ($/kWh) 

𝜎𝐺𝑆    Price of procuring gas from gas station ($/m3) 

𝜌𝑒,0/𝜌ℎ,0   Electricity/heat tariff price under regular case ($/kWh) 

𝑝    Probability of scenarios 

𝜂     Energy conversion efficiency 

𝛾    Heat-to-electric ratio 

𝐻𝑉    Heat value of natural gas 

𝑣𝑖𝑛/𝑣𝑟𝑎/𝑣𝑜𝑢𝑡  Cut-in/rated/cut-out wind speed (m/s) 

ℂ𝑋    Spearman correlation coefficient matrix of random variables 𝑋𝑖   (𝑖 = 1, . . . , 𝑛) 

𝜅𝑖𝑗    Correlation coefficient between random variables 𝑋𝑖 and 𝑋𝑗 in ℂ𝑋 

 

Variables 

𝑂𝐹 First-stage objective ($) 

𝑂𝑆 Second-stage objective ($) 

𝐼𝐶 Investment cost ($) 

𝑀𝐶  Maintenance cost ($) 

𝐸𝑃  Energy procurement cost ($) 
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𝑅𝐸  Revenue loss of MESO due to DR program ($) 

𝜒  AMI penetration rate (%) 

𝑛  Number of installed components 

𝑃𝐺𝑅   Amount of power procured from the external market (kW) 

𝐺𝐺𝑆   Amount of gas procured from the external market (m3) 

𝜌𝑒/𝜌ℎ Real-time electricity/heat price offered to customers ($/kWh) 

𝑣  Wind speed (m/s) 

𝑃𝐶𝐻𝑃/𝑃𝑇𝑟𝑎𝑛𝑠/𝑃𝑊𝑇𝐺  Active output power of CHP/transformer/WTG (kW) 

𝑄𝐶𝐻𝑃/𝑄𝑇𝑟𝑎𝑛𝑠/𝑄𝑊𝑇𝐺  Reactive output power of CHP/transformer/WTG (kVar) 

𝐻𝐶𝐻𝑃  Heat output of CHP (kW) 

𝐺𝐶𝐻𝑃 Amount of natural gas consumed by CHP (m3) 

𝐷  Total system demand (kW) 

𝑃𝐷/𝑄𝐷 Active/reactive power demand (kW) 

𝐻𝐷  Heat demand (kW) 

𝜀𝑇𝐿 Own elasticity of TSLs  

𝜖𝑇𝐿  Cross elasticity of TSLs 

𝜀𝐸𝐿 Own elasticity of ECLs 

𝜖𝐸𝐿 Cross elasticity of ECLs 

 

1．Introduction 

Climate change and environmental crises provide a strong impetus for energy systems to transform 

toward low-carbon and sustainable prospects (Batel et al., 2013). Accordingly, the concept of multi-energy 

system (MES) including multiple energy carriers based on combined heat and power (CHP) generation 

technology has been suggested and has attracted increasing attention in recent years (Linna et al., 2007). 

Unlike conventional generation units, CHP produces electricity with synchronous utilization of the exhaust 

heat during the process of power generation. This feature endows CHP systems with the possibility to boost 

the overall efficiency of energy usage while reducing the greenhouse gas emissions due to the primary 

energy savings requested for heat supply (Andersen and Lund, 2007). Because of this, the proportion of 
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CHP in the generation mix of many countries has been steadily increasing in recent decades (Benam et al., 

2015). 

Despite the significant benefits presented above, the extensive adoption of CHP, however, tends to incur 

additional complexities/challenges for future energy systems because of its reduced flexibility during 

operation (Shao et al., 2018). Specifically, the output power of CHP units is limited by the heat output ; 

thus, to cope with the fluctuation in customer energy demands, utilities have to rely heavily on operating 

reserve (procurement of ancillary services) to fulfil the requirement of power balance, and this limit 

dramatically depresses the profit of MES operator (MESO). Furthermore, with developing penetration level 

of renewable energy sources (RESs) in the MES, the above limitation also leads to severe RES curtailment 

in some periods when the power production of CHP is at the peak and covers most of the customer 

electricity demand.   

To properly resolve the challenge of RES integration into CHP-based MESs, a great number of  

researches have been dedicated to mitigating the coupling of electricity and heat carriers for such system,  

among which demand response (DR) is one of the most suggested solutions (Papadimitriou et al., 2019).   

Since the operation of CHP is limited by the production of heat output, encouraging customers to  

change their energy consumption patterns (particularly heat demand) in response to real-time supply  

conditions can be a viable means to improve the operational performance of CHP-based systems. In the  

context of an MES, customers have possibilities to implement DR through different energy carriers due to  

the proliferation of “advanced metering infrastructure (AMI)” on the demand side (Eissa, 2019). Such  

inherent flexibility enables customers to behave actively and interact with the MES by not only adjusting  

the timing of their consumption but also switching the sources of the energy they use to fulfill their  

requirements (Wang et al., 2017). In this respect, with such demand-side “responsiveness”, the heat- 

electricity coupling constraints of CHP could be released to some extent, and the MESO could be provided  

with additional balancing resources for coping with the volatility of system operation and accommodating  

RESs in the CHP-based MES.  

In recognition of the above fact, a growing number of studies have recently focused on the DR  

integration problem in MESs. For example, DR was considered as a control measure by (Dolatabadi and  

Mohammadi-Ivatloo, 2017) and energy flow-based analyses were conducted to examine the impacts of DR  

on MES efficiency with respect to technical and economic metrics. An automated energy management  

system based on a reinforcement learning algorithm is presented in (Sheikhi et al., 2016) to motivate  
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residential customers for participating in DR programs in a CHP-based MES. Also, considering the 

dynamic characteristics of DR management, (Zhang et al., 2020) proposed an interval optimization based 

coordination scheduling model for a gas–electricity coupled system, while in (Zeng et al., 2019), the 

conventional electricity-based DR concept in smart grids was extended for multi-energy settings, and the 

potential benefits resulting from energy substitution were quantitatively estimated. (Zhang et al., 2016b) 

presented an optimal probabilistic scheduling model for MESs with consideration of the DR effect. The 

optimal DR control strategy for maximizing the total expected social welfare and facilitating market 

participation was investigated. (Liu et al., 2018a) reported a comprehensive framework to incorporate the 

DR potential of smart buildings in MES operations. In addition, a mixed-integer nonlinear programming 

model for the operation management of an MES with RESs and price-based DR was developed by (Zeng 

et al., 2014), wherein the optimal pricing scheme for enhancing RES integration was studied while 

considering the carbon footprint. To properly estimate the DR capability of customers under an interactive 

environment, a bilevel modeling framework based on a game theoretic method was proposed by (Liu et al., 

2018b), and the effects of DR on the operating performance of an MES were quantified through a 

comparative analysis. Based on this foundation, an extended study was conducted by (Qadrdan et al., 2017), 

this paper proposed an ordinal potential game model to access benefits brought by DR for different 

participants. Finally, (Pan et al., 2019) presented an MES planning and operation co-optimization model 

with DR. In their work, customers’ energy demands were assumed to be directly managed by the MESO, 

and a novel flow-tracing approach was used to determine the optimal nodal energy pricing strategy that 

improves system operation security and reduces corresponding costs. 

In all the works presented above, it can be seen that the integration of DR would bring about significant 

benefits to an MES if utilized properly. However, for most extant literatures, the presented investigations 

have merely focused on the issues of DR at the operation level rather than from a planning perspective. 

Nevertheless, in reality, activating DR implies the need for extra investment in AMI to enable two-way 

communication between the MES and customers; thus, the implementation of DR in the MES may lead to 

a rise in the total investment/operating costs and exploring the optimal solution of AMI placement is 

essential for the MESO to make the most of the benefits from the DR program. Therefore, more research 

about such problems should be conducted from a planning perspective. 

In addition, in all the studies presented above, it has been assumed that the MESO always had complete 

knowledge of the demand responsiveness of its customers; thus, the potential uncertainties associated with 
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DR were ignored (Kim and Norford, 2017) or simply described using an independent probabilistic model  

(Pazouki and Haghifam, 2016). In practice, such DR models might be suitable for some specific  

applications (e.g., a direct load control (DLC)-based DR program (Zhang et al., 2016a) in which customers  

cannot decide whether to respond to DR when receiving calls from the system), but they might no longer  

be applicable in future market settings, as DR might be solicited via a non-direct control program, e.g., real- 

time pricing (Liu et al., 2018a), or time-of-use tariff (Rastegar et al., 2015). Specifically, under the non- 

direct-control DR program, MES customers have the freedom to set their energy consumption patterns  

(Bahrami and Sheikhi, 2016) and decide how to respond to DR-induced signals according to their own  

preferences (Sheikhi et al., 2015); thus, the introduction of DR may significantly increase the uncertainties  

in MES operation (Shao et al., 2018).   

Owing to the randomness in the RES supply (Mehrjerdi and Rakhshani, 2019), the power output of  

renewable energy generation tends to be highly stochastic during operation. Also, the load demand of the  

system could be uncertain, arising from either the inherent volatility in customer consumption or load  

forecasting inaccuracy (Mehrjerdi, 2020).  

In actual implementations, as the outputs of renewable energy generation, load demand, and customer  

responsiveness are time dependent, there might exist a high degree of correlation among these uncertainties.  

The existence of such correlations has a considerable impact on the operational performance of the system  

(Mehrjerdi and Hemmati, 2020). Therefore, implementing DR without proper consideration of its stochastic  

features and potential correlations with the other random factors may lead to suboptimal or even infeasible  

planning decisions for the MESO. Although the uncertainty modeling of DR has been widely discussed in  

extant literatures, e.g., (Neyestani et al., 2015), barely any of them have noticed the issue of correlations  

among uncertainties in the context of MES planning, hitherto.   

Table 1 Comparison of Proposed Work with Existing Literatures  

Reference DR program 

 Uncertainty 
Correlation 

consideration  RES 
Load 

demand 

Demand-side 

responsiveness 

(L. Gan et al., 2016)       

(Jangamshetti and Rau, 2001)       

(Qin et al., 2013a)       

(Zhang et al., 2018)       

(Mehrjerdi, 2020)       

(Mehrjerdi and Rakhshani, 2019)       

(Qadrdan et al., 2017)  (DLC)      
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(Mehrjerdi and Hemmati, 2020)  (DLC)      

(Zhang et al., 2016a)  (DLC)      

(Pazouki and Haghifam, 2016)  (DLC)      

(Zhang et al., 2016b)  (DSB)      

(Zhang et al., 2020) 
 (DLC, 

TOU) 
     

(Eissa, 2019) (RTP)      

(Pan et al., 2019) (RTP)      

(Bahrami and Sheikhi, 2016) (RTP)      

(Sheikhi et al., 2015) (RTP)      

(Rastegar et al., 2015) (TOU)      

(Liu et al., 2018b) (DSB)      

(Shao et al., 2018) (DSB)      

(Liu et al., 2018a) (RTP)      

(Sheikhi et al., 2016) (RTP)      

(Kim and Norford, 2017) (RTP)      

(Dolatabadi and Mohammadi-

Ivatloo, 2017) 
(RTP)      

(Neyestani et al., 2015) (CB)      

(Zeng et al., 2019) (RTP)      

(Zeng et al., 2014) (RTP)      

Proposed model (RTP)      

*Direct load control (DLC), demand side bidding (DSB), real-time pricing (RTP), time-of-use tariff (TOU), carrier-based pricing (CB)  

To address the above knowledge gaps, a new methodological framework is proposed for enabling CHP- 

based MESs to accommodate the growing penetration of RESs by utilizing the DR solution. In sharp  

contrast to most extant works, the present study considers customers’ flexible demands as an additional  

balancing resource for mitigating the difficulty of RES integration with CHP-based MESs and aims to  

provide the most efficient strategy for exploiting such potential from a planning perspective. To fit future  

market settings, the DR in our research is modeled as price-dependent demands characterized by the price  

elasticities instead of the conventional direct load control program. In this regard, introducing the price- 

based DR into MES entails the investment in AMI which results in the problem to be a two-stage  

optimization program — the placement of AMI and the relevant pricing strategy for the demand side are  

jointly optimized along with the allocation of renewable generation units to minimize the overall economic  

costs of the system. The proposed model is developed through a scenario-based stochastic programming  

formulation to explicitly capture the correlations among uncertainties (i.e., customers’ varying  

responsiveness, energy demand, and RES generation) in long-term planning studies. To solve the proposed  

model, a comprehensive scenario generation and reduction method based on optimal clustering analysis is  
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employed to address the correlated uncertainties involved in the problem. The main difference between the 

proposed work and the existing studies in the related field is summarized in Table 1. 

The main contributions/innovations of this paper are highlighted as follows: 

1) An original DR resource planning framework to accommodate the growing penetration of 

RESs in CHP-based MESs is proposed. The impact of DR for RES exploitation is investigated in an MES 

planning setting (rather than an operation context), where AMI is innovatively considered as a strategic 

flexibility resource and taken into account the long-term investment decision of MESs. With the proposed 

framework, the decision-maker can determine the “real value” by performing price-based DR in an RES-

integrated MES expediently, in terms of not only its effects for system operation but also investment 

decisions. In this light, depending on the context of practical applications, the proposed framework may 

provide a scientific tool by informing the current debates about the role of DR in future MES planning and 

market development. Undoubtedly, this would be helpful for MESOs to make optimal investment decisions 

and properly utilize the potential benefits of the DR program in the planning stage. 

2) Potential correlations among uncertainties for multi-energy system operation (i.e., renewable 

energy sources availability, load demand, and demand-side responsiveness) have been explicitly 

considered. In contrast to the most previous works, both the uncertainties of customer performance 

(responsiveness) in the price-based DR program and their potential correlations with respect to other 

random factors (RES output and load demand) have been explicitly captured in this study. These 

considerations distinguish the present work and make our model capable of yielding a more realistic and 

comprehensive representation of the characteristics as they occur in reality, and would lead to more 

convincing planning results than existing studies. 

3) A comprehensive scenario reduction method based on optimal clustering analysis is introduced 

and employed to alleviate the solution complexity and improve the computational efficiency of the 

proposed model. The suggested framework introduces a correlation loss concept to address the problem 

of correlation deviation in high-dimensional scenario reductions. As such, it is fundamentally different from 

the conventional distance-based scenario reduction methods and could exhibit better performance in 

preserving the sample stability (statistical consistency) of stochastic programming (SP) under correlated 

uncertainties and shows greater validity in practical applications. 
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2． Problem Statement 

The structure of the MES under discussion in this study is shown in Fig. 1. The concerned MES is a 

typical distribution-level MES that consists of multiple CHP units, whose input ports are connected to the 

external power/gas networks while its outputs link the electricity and heat demands of end customers. 

Electric power distribution network

Electricity Electricity Electricity ElectricityElectricity Electricity  

 

District heating network

Heat Heat Heat Heat 

Grid-connection point
CHP 1 CHP N-1 CHP N

 

Gas

Gas station

  

Fig. 1. General Structure of Distribution-level MES  

In this study, it is assumed that the discussed MES is owned and managed by the same entity, that is,  

MESO. As a private self-interested entity, the objective of the MESO is to supply the energy demands of  

MES customers with the lowest total cost by efficient integration of RESs. To achieve this, DR is utilized  

and implemented by the MESO through a real-time price (RTP)-based program. In the RTP, the MESO  

depends on time-variant pricing signals to solicit the DR of customers by using two-way communication  

equipment AMI.   

However, as equipping the MES with AMI requires extra investment and the performance of DR can  

be largely dictated by the “nature” of customers (load characteristics, consumption pattern, price sensitivity,  

etc.), for the MESO, there is a great need to analyze different AMI configuration plans (i.e., DR resource  

exploitation strategies) at the demand side and evaluate their costs and benefits (economic efficiency)  

through investigating the MES operation over the planning horizon. Optimal AMI planning aims to enhance  

RES exploitation and minimize the overall cost of the energy supply subject to the various operating  

constraints of the system.   
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Stage 1

Planning

level

Stage 2

Operation

level

Capacities of AMI Dynamic energy prices

Optimal operation strategy 

of MES components

Optimal DR Resource 

Planning for Efficient 

Accommodation of 

RESs in MES

Types, locations, capacities 

of AMI/RESs

Dynamic energy prices

Optimal operation strategy 

of MES components

Couple

Types, locations, 

capacities of RESs

Decision 

Variables

Optimization Results

C. Uncertainties

   1.RES conditions

   2.Energy demands

   3.Price responsiveness of customers

B. System data

   1.Characteristic of system components

   2.Energy tariffs

A. Techno-economic data of AMI/RESs

C. Uncertainties

   1.RES conditions

   2.Energy demands

   3.Price responsiveness of customers

A. Techno-economic data of AMI/RESs

Decision 

Variables

B. System data

   1.Characteristic of system components

   2.Energy tariffs

  

Fig. 2. Schematic Representation of the Proposed Planning Framework  

The problem presented above is interpreted as a two-stage optimization model, as shown in Fig. 2. The  

proposed planning framework is decoupled into two stages: decision-making of MESO in the planning and  

operation phase. The first stage involves the determination of an optimal strategy for RESs and DR resource  

exploitation. The first-stage problem is to determine the types, locations and capacities of the RESs and  

AMI to be installed in the system, which make up the parameter set of the second-stage problem. In the  

second-stage optimization, the MESO combines RES conditions, forecasted energy demand, and price  

responsiveness of customers (own elasticities and cross elasticities) to optimize the strategy of RTP. The  

prices are designed to encourage system customers to adjust their demands so that the operation  

performance of MES can be optimized (i.e., the MESO’s interests are maximized), subject to the constraints  

of the system components.   

Note that the proposed model used to address the targeted problem corresponds to a centralized  

approach. Such a centralized approach tends to have good practical applicability in the current MES context,  

for the following reasons: 1) The proposed approach is mainly applicable for a centralized planning setting  

(which means all the decisions considered in the planning stages, such as the RES sizing and AMI  

placement, should be made by the same entity). In reality, such a setting is consistent with most of the  

distribution-level MES cases in China and other countries of the world. For example, in China, many  

distribution-level MES projects take the form of industrial parks. A private industrial park owner is in  

charge of both investment and operation issues of the MES. In this case, the proposed centralized approach  
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can be used as an efficient solution to the problem. 2) In contrast to the decentralized approach, the proposed 

approach is less complex and is the most straightforward way to achieve the optimal planning of MESs and 

ensure the global optimality of system performance. Therefore, it has good practical applicability in 

engineering. 3) In practice, the issue of computational complexity is regarded as one of the most significant 

factors hindering the adoption of the centralized approach. However, since the present study mainly focuses 

on a distribution-level MES (where the number of system buses (control objects) involved can be limited), 

this would help overcome the above bottleneck and gives the proposed approach favorable validity in real-

world applications. 

Solving the presented problem in Fig. 2 requires an accurate prediction of the system energy demands, 

customer price responsiveness, and expected production of RESs. However, in practice, accomplishing this 

tends to be extremely difficult for the MESO since these parameters can be stochastic in nature and may  

strongly correlate with each other in an unexpected way. To address this issue, a scenario-based stochastic  

programming modeling approach is employed in this study to address the uncertainties involved in our  

problem. By utilizing a series of correlation-handling techniques, a large number of discrete scenarios that  

represent the long-term statistical characteristics of the uncertain data can be generated. Considering that  

including all the scenarios (with correlated uncertainties) in an SP model could greatly increase the  

computational burden of the problem, a comprehensive scenario reduction method based on optimal  

clustering is further employed to eliminate the information redundancy in the resultant model and improve  

the computational efficiency of the problem.  

3．Uncertainty Characterization  

As mentioned above, in this study, the uncertainties associated with the MES come from the varying  

load demand, RES supply, and random price responsiveness of system customers. As such, this section  

details the mathematical models — probability density functions used to represent each of these uncertain  

variables in the proposed SP formulation.  

A. Renewable energy sources  

For the investigated MES, the generation of RESs is the first uncertain factor to be considered (Zeng et  

al., 2020a). In practice, although renewable power generation may take various forms (depending on the  

type of primary energy utilized), this work, for simplicity, explicitly discusses and focuses only on wind  

power as an illustrative example.   
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The power output of a wind turbine generator (WTG) mainly depends on the wind speed at the site. For  

long-term planning studies, the stochastic variability in wind speed 𝑣𝑡 can usually be modelled by a two- 

parameter Weibull distribution (Karaki et al., 1999):  
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where 𝑘 and 𝑐 are the shape parameter and scale parameter, respectively.   

Given the wind speed for a specific period 𝑣𝑡 , the power output of a WTG can be approximated  

according to the characteristics of the wind turbine generation by the following function:  
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where 𝑃𝑊𝑇𝐺−𝑟 denotes the rated active power of the installed WTG, and 𝑣𝑖𝑛/𝑣𝑟𝑎/𝑣𝑜𝑢𝑡  are the cut-in,  

rated, and cut-out wind speeds, respectively.  

To avoid excessive complexity, all WTG units in the discussed MES are assumed to be exposed to an  

identical wind regime and operate in the constant power factor mode during operation, which is consistent  

with (Zhang et al., 2018).  

B. Energy demand  

In an MES, the uncertainty of energy demand may arise from either the inherent volatility in customer  

consumption (Zhang et al., 2013) or load forecasting inaccuracy (Chen et al., 2019). According to the  

existing literature, the variation in different types of consumers’ load demand over each time period can be  

roughly modeled by using a truncated Gaussian distribution, expressed as  
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 (3)  

where 𝐷𝑡𝑦𝑝𝑒,𝑡
0  denotes the random power/heat demand of different types of customers type in time-period  

t; 𝜇𝑡𝑦𝑝𝑒,𝑡
𝐷  and 𝜎𝑡𝑦𝑝𝑒,𝑡

𝐷  are the statistical mean and standard deviation of the load demand for customer  

sector type in time period 𝑡, respectively; and 𝐷𝑡𝑦𝑝𝑒, min and 𝐷𝑡𝑦𝑝𝑒, max are the lower and upper bound 

values of the variation in 𝐷𝑡𝑦𝑝𝑒,𝑡
0 , respectively. 
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C. Demand-side responsiveness  

In the RTP-based DR program, the demand responsivity of customers is defined by both the intrinsic  

operational characteristics of end-use loads (Zeng et al., 2021) and their sensitivity to price variations.  

According to (Zeng et al., 2019), the energy loads in an MES can generally be classified into three  

categories: critical loads (CLs), time-shiftable loads (TSLs), and energy-convertible loads (ECLs), in terms  

of the flexibility of their usage, and different mathematical models should be used to describe the DR  

capability associated with each type of the loads.  

CLs are defined as the loads whose operation cannot be shifted or interrupted under any circumstances.  

Typical examples of CLs include refrigerators and cooking and lighting facilities. In practice, since most  

CL demands are related to the livelihood of individuals, these loads typically have no responsiveness to  

price signals and hence cannot be used for DR programs. As such, for a given time-period 𝑡, the energy  

demands of customers’ CLs can be expressed as  

 
(e,h) (e,h),0CL CL

t t
D D  (4)  

where 𝐷𝑡
𝐶𝐿(𝑒,ℎ),0

 represents the initial power/heat demand of CLs under the regular case (without DR).   

TSLs are defined that energy demand can be flexibly settled within specified time periods as long as  

their total consumption remains constant. The most common TSLs are plug-in electric vehicles and water  

heaters. Unlike CLs, due to the temporally adjustable feature of their operation, TSLs can be exploited as  

an alternative resource for the DR program. In practice, if a change in energy price occurs in period 𝑡, the  

response of TSLs to this price variation as the modified demand can be described by (5), which is considered  

as the sum of consumers’ reactions regarding the corresponding price change in the current period  

( 𝐷𝑡
𝑇𝐿(𝑒,ℎ),0

[1 +
𝜀𝑡

𝑇𝐿(𝑒,ℎ)
(𝜌𝑡

(𝑒,ℎ)
−𝜌𝑡

(𝑒,ℎ),0
)

𝜌𝑡
(𝑒,ℎ),0 ] ) plus that of other periods ( ∑ 𝐷𝑡′

𝑇𝐿(𝑒,ℎ),0
·

𝑡′∈𝑇,𝑡′≠𝑡

 

𝜖𝑡𝑡′
𝑇𝐿(𝑒,ℎ)

(𝜌𝑡′
(e,h)

−𝜌𝑡′
(𝑒,ℎ),0

)

𝜌𝑡′
(𝑒,ℎ),0 ).  
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  (5)  

where 𝜌𝑡
(𝑒,ℎ)

 and 𝜌𝑡
(𝑒,ℎ),0

 denote the prices of energy sold to MES customers under the DR and regular  

case, respectively; 𝐷𝑡
𝑇𝐿(𝑒,ℎ)

 and 𝐷𝑡
𝑇𝐿(𝑒,ℎ),0

 are the corresponding energy demands of TSLs with respect to  

𝜌𝑡
(𝑒,ℎ)

 and 𝜌𝑡
(𝑒,ℎ),0

, respectively; and 𝜀𝑡
𝑇𝐿(𝑒,ℎ)

 and 𝜖𝑡𝑡′
𝑇𝐿(𝑒,ℎ)

 are the own- and cross-price elasticity,  

respectively, reflecting the sensitivity of TSL consumption to the variation in relevant energy prices over  
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time. As such, the outcome of Eq. (5) is determined only by the operational characteristics of the concerned  

TSLs (i.e., the flexibility of the energy demand). In this study, for simplicity, the differences in TSL  

characteristics with respect to different group sectors are not distinguished, so all the parameters in Eq. (5)  

are general for all the consumers.  

ECLs are defined as loads whose usage demand can be covered by different types of energy carriers.  

In practice, typical examples of ECLs may include industrial boilers, air conditioning equipment, and  

residential cooking appliances. Under a price-based DR program, the customers could be induced to switch  

the sources of the energy they use to satisfy the ECL demands, depending on the posted price of each energy  

carrier. For the two energy sources that constitute substitutes for each other (e.g., electricity and heat energy  

in this study), the expected demand of ECLs for a particular energy carrier under the RTP scheme can be  

described similarly as that of TSLs by using the elasticity-based model shown in (6)-(7). Specifically,  

Equation (6) is used to specify how the electricity-dependent demand of ECLs varies in response to the  

variation in electricity prices. Equation (7) represents the equality constraint of ECL consumption, which  

ensures that the total amount of energy consumed by the ECLs (i.e., the sum of energy inputs from different  

carriers) remains constant (Zeng et al., 2019).  
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 (6)  

  ,0 ,0ELh ELh EL ELe ELe

t t t t
D D D D     (7)  

where 𝐷𝑡
𝐸𝐿𝑒/𝐷𝑡

𝐸𝐿𝑒,0
 and 𝐷𝑡

𝐸𝐿ℎ/𝐷𝑡
𝐸𝐿ℎ,0

 denote the electricity and heat energy inputs of ECLs at period 𝑡  

under the DR/without DR, respectively; 𝜌𝑡
𝑒/𝜌𝑡

ℎ and 𝜌𝑡
𝑒,0

/𝜌𝑡
ℎ,0

 are the prices of electricity and heat under  

the DR and regular cases, respectively; 𝜂𝐸𝐿 is the efficiency of ECL energy utilization; and 𝜀𝑡
𝐸𝐿 and 𝜖𝑡

𝐸𝐿  

are the own- and cross-elasticity coefficients, respectively, which indicate the sensitivity of ECL (electricity)  

demand to the corresponding real-time power and heat prices in period 𝑡.  

For price-based DR programs, the demand-side responsiveness to price changes can be highly different  

depending on the idiosyncrasies of individuals (Zeng et al., 2014). As such, regarding the proposed DR  

model (4)-(7), the characteristic parameters (i.e., 𝜀𝑡
𝑇𝐿(𝑒,ℎ)

, 𝜖𝑡𝑡′
𝑇𝐿(𝑒,ℎ)

, 𝜀𝑡
𝐸𝐿 and 𝜖𝑡

𝐸𝐿) in it tend to be uncertain  

for the MESO. In practice, the long-term statistical regularity in customers’ demand behaviors can be  

learned by (Dagher, 2012). In this study, we assume that the uncertain price elasticity of MES users follows  

a uniform distribution that has upper and lower bounds equal to ±10% of the respective forecast values.  
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The corresponding probability density function can be expressed as: 
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 (8) 

where 𝑧𝑡 is the symbol used to represent all the random elasticity parameters (i.e., 𝜀𝑡
𝑇𝐿(𝑒,ℎ)

, 𝜖𝑡𝑡′
𝑇𝐿(𝑒,ℎ)

, 𝜀𝑡
𝐸𝐿 

and 𝜖𝑡
𝐸𝐿) in this study; 𝑧𝑡̅ denotes the corresponding forecast value of 𝑧𝑡. 

4． Scenario Generation and Reduction 

For the SP approach, given the probability density function of the uncertainties, the realization of these 

uncertainties in the optimization is represented by using a set of deterministic scenarios that may be 

generated based on various statistical simulation methods (Henrion and Römisch, 2018). A detailed 

description of the scenario generation and reduction procedure is presented below. 

A. Modeling of correlations among uncertainties  

In practice, two most widely used methods for describing the correlations among uncertainties are the  

Spearman correlation coefficient matrix and Pearson correlation coefficient matrix. Fundamentally distinct  

from the Pearson matrix (Press et al., 1992), the Spearman correlation coefficient matrix is capable of  

handling correlations among non-normally distributed random variables (Zhang et al., 2013). In our study,  

since it is assumed that the wind speed follows a Weibull distribution and the price elasticity of customers  

follows a uniform distribution, the Spearman matrix is a proper tool to be used for handling such  

correlations in this context.  

According to (Zhang et al., 2013), the Spearman correlation coefficient matrix ℂ𝑋 of random variables  

𝑋𝑖   (𝑖 = 1, . . . , 𝑛) can be expressed as  
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 (9)  

where 𝜅𝑖𝑗 denotes the Spearman correlation coefficient between random variables 𝑋𝑖 and 𝑋𝑗, as derived  

by (10):  

 
 

   

,
i j

ij

i j

Cov X X

Var X Var X
   (10)  

B. Scenario generation with correlated uncertainties 

In this study, since both the wind speed and customers’ demand elasticity follow non-normal probability 
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distributions, to generate the sample of these correlated uncertainties, the original distribution space first 

must be mapped to an independent standard normal distribution space. Then after this, the generation of 

the scenario for the correlated uncertain variables can be achieved by using Cholesky decomposition and 

the inverse transformation method (Qin et al., 2013a). 

Let 𝑋𝑖   (𝑖 = 1, . . . , 𝑛) denote the corresponding uncertain variables regarding wind speed, load demand 

and customers’ price-elasticity and ℂ𝑋 represents the correlation matrix of these uncertainties, the main 

procedure for scenario generation can be summarized as follows: 

(1) Based on the numerical search algorithm (Qin et al., 2013b), transform ℂ𝑋 into the corresponding 

standardized correlation matrix ℂ𝑌 , which has the variables 𝑌𝑖   (𝑖 = 1, . . . , 𝑛)  consistent with a 

standard normal distribution. 

(2) Generate a number of n-dimensional samples, where its elements follow a standard normal distribution 

and are independent of each other for every vector 𝑉.  

(3) Apply the Cholesky decomposition technique to factorize matrix ℂ𝑌 as ℂ𝑌 = 𝑀𝑌𝑀𝑌
𝑇 and produce the 

correlated normal distribution samples by following 𝑌 = 𝑀𝑌𝑉  ( 𝑉  is an n-dimensional vector 

comprising standard normally-distributed variables obtained from Step (2)), where the elements in 𝑌 

are consistent with the correlation relationship represented by ℂ𝑌. 

(4) By using the inverse transformation 𝑋𝑖 = 𝐹𝑋𝑖

−1[𝛷(𝑌𝑖)](𝑖 = 1, … , 𝑛)  (where 𝛷(𝑌𝑖)  is the standard 

normal cumulative distribution function of 𝑌𝑖 and  𝐹𝑋𝑖

−1 is the inverse function of the non-normal 

cumulative distribution function), the scenarios of correlated uncertainties 𝑋𝑖   (𝑖 = 1, . . . , 𝑛) can be 

obtained from the resultant 𝑌 in Step (3).  

C. Scenario reduction with correlated uncertainties 

Since the computational burden of solving SP models heavily depends on the number of scenarios under 

concern, so a scenario reduction method should be applied to eliminate possible redundancies in the 

produced scenarios, so as to improve the solution efficiency of the problem, especially in large-scale 

systems.  

In practice, the most commonly used scenario reduction methods basically aim to minimize the 

probability distance between the reserved scenario set and the original set (Heitsch and Römisch, 2003), 

and adopt this as the criterion of the scenario reduction (Henrion et al., 2009). However, in our study, since 

there are correlations among uncertainties, the resulting scenario set from the above probability-distance-

based reduction methods may significantly deviate from the original dataset in terms of their statistical 
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properties, due to neglecting the potential impact of the correlation effect. As such, for the proposed SP  

model, to properly reduce the number of scenarios while maintaining the statistical correlations between  

uncertainties, a comprehensive scenario reduction method based on an optimal clustering framework is  

introduced in this study.  

In contrast to the conventional probability-distance-based scenario reduction techniques, we develop  

an optimization model to determine the most representative scenarios from the original scenario set. The  

problem aims to maximize the sum of the probability similarity between the two sets in the statistical space  

while minimizing the sum of the degree of correlation loss after the scenario reduction, as mathematically  

described by (11):  
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 (11)  

where 𝛺1 is the original scenario set of size 𝑁1 (represented by the original scenarios 𝑠𝜏, corresponding  

probabilities 𝑝𝜏, node 𝜏 ∈ 𝛺1, and correlation coefficient matrix ℂ𝑋), and 𝛺̃1 is the reserved scenario set  

of size 𝑁1 (represented by the preserved scenarios 𝑠̃𝜏̃, corresponding probabilities 𝑝𝜏̃, node 𝜏̃ ∈ 𝛺̃1, and  

correlation coefficient matrix ℂ̃𝑋). 𝐼𝜏̃ denotes the clustering subset divided by 𝜏, and node 𝜏̃ is then used  

to substitute the original nodes in subset 𝐼𝜏̃.   

In (11), 𝑆𝑖𝑚 is the function of probability similarity based on the traditional probability distance (Chen  

and Yan, 2018) and similarity function (Xie et al., 2010), which is used to indicate the statistical similarity  

degree between high-dimensional scenarios, as defined by (12). The larger 𝑆𝑖𝑚  is, the greater the  

probability similarity is in the overall probability space.  
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 (12)  

where 𝑘(𝑘 = 1,2, . . . , 𝑛)  corresponds to the 𝑘 -th random variable in the scenario vectors 𝑠𝑖  (with  

probability 𝑝𝑖) and 𝑠𝑗 (with probability 𝑝𝑗) in the n-dimensional scenario set of size 𝑁1. 𝜀 is a small  

constant that prevents the numerator of the fraction from being divided by zero.  

For (12), each random variable has the same effect in calculating 𝑆𝑖𝑚; as such, it prevents the issue  

that some random variables with larger dimensions play a major role to ensure the effectiveness of the  
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scenario reduction.   

In addition, 𝑐𝑜𝑟𝑟𝑙𝑜𝑠𝑠 in (11) refers to the correlation loss of uncertainties, which is based on the  

calculation of the Pearson correlation coefficient and is calculated as the sum of squares of the upper  

triangular elements in the correlation deviation matrix 𝛥ℂ𝑋, as shown in (13)-(14).  
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The outcome of 𝑐𝑜𝑟𝑟𝑙𝑜𝑠𝑠 reflects the degree of retention in the uncertainty correlation between the  

reduced scenarios 𝑠̃(𝑠̃ ∈ 𝛺̃1) and the original scenarios s(𝑠 ∈ 𝛺1). The smaller 𝑐𝑜𝑟𝑟𝑙𝑜𝑠𝑠(𝑠, 𝑠̃) is, the  

greater degree of retention meant to be achieved in the scenario reduction, which implies the better  

performance of the applied algorithm.  

𝛽 in (11) is a weight coefficient. A smaller 𝛽 is dedicated to selecting the reserved scenarios with  

higher statistical similarity but relatively greater loss of correlation effect after the reduction while a larger  

𝛽 guarantees a high degree of correlation preservation but lower similarity. Thus, by adjusting the value of  

𝛽, a proper trade-off can be achieved in the scenario reduction between the two goals (Hu and Li, 2019).  

The above-mentioned scenario reduction is implemented based on an iterative framework, and the  

description of the main steps is presented as follows:  

(1) Compute the similarity matrix 𝑆𝐼𝑀𝑁1×𝑁1
 with respect to each pair of original scenarios by  

𝑆𝐼𝑀(𝑖, 𝑗) = 𝑆𝑖𝑚(𝑠𝑖 , 𝑠𝑗), according to (12).   

(2) Calculate the correlation loss after deleting the selected 𝑠𝑖  and 𝑠𝑗  according to (14), and form  

𝐶𝑜𝑟𝑟𝑙𝑜𝑠𝑠𝑁1×𝑁1
 by following 𝐶𝑜𝑟𝑟𝑙𝑜𝑠𝑠(𝑖, 𝑗) = 𝑐𝑜𝑟𝑟𝑙𝑜𝑠𝑠 (𝑠(𝑠𝑖,𝑠𝑗), 𝑠̃)  (i.e., the refined scenarios  

without 𝑠𝑖 and 𝑠𝑗 in reference to the original ones 𝑠̃).  

(3) Normalize the elements in matrices 𝑆𝐼𝑀𝑁1×𝑁1
 and 𝐶𝑜𝑟𝑟𝑙𝑜𝑠𝑠𝑁1×𝑁1

 based on (15) and (16)  

respectively and derive 𝑆𝐼𝑀𝑁1×𝑁1
′  and 𝐶𝑜𝑟𝑟𝑙𝑜𝑠𝑠𝑁1×𝑁1

′ , as follows:  
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(4) Form the total objective matrix 𝑆𝐼𝑀𝐶𝑜𝑟𝑟𝑁1×𝑁1
 by 𝑆𝐼𝑀𝐶𝑜𝑟𝑟(𝑖, 𝑗) = 𝑆𝐼𝑀′(𝑖, 𝑗) − 𝛽𝐶𝑜𝑟𝑟𝑙𝑜𝑠𝑠′(𝑖, 𝑗).  

(5) Determine the optimal scenario pair (𝑠𝑖 , 𝑠𝑗) corresponding to the maximum value in 𝑆𝐼𝑀𝐶𝑜𝑟𝑟𝑁1×𝑁1
  

by solving (11).  

(6) Combine the two selected scenarios (𝑠𝑖 , 𝑠𝑗) into a single one 𝑠𝑛𝑒𝑤  with the corresponding probability  

𝑝𝑛𝑒𝑤 according to the “optimal redistribution rule” (Dupačová et al., 2003), as shown in (17) and (18):  
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(7) Substitute (𝑠𝑖 , 𝑠𝑗)  with 𝑠𝑛𝑒𝑤  to form the refined scenario set 𝛺̃1 . Accordingly, the number of  

remaining scenarios N1 decreases by one.  

(8) Check whether the size of 𝛺̃1 is equal to the predetermined value 𝑁1. If yes, export the derived 𝛺̃1,  

and terminate the procedure; otherwise, go back to Step (1) and continue.  

Through the above procedures, a refined scenario set 𝛺̃1  can be obtained wherein the redundant  

scenarios with similar statistical properties in the initial scenario set are excluded while considering the  

correlations among uncertainties. As such, the proposed SP problem can be solved more efficiently while  

fully maintaining the character of the original system.  
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Fig. 3. Flowchart of Scenario Reduction  

5. Mathematical Formulation  

The formulation of the proposed MES planning problem can be presented as Eqs. (19)-(32e).   

  min OF OS  (19)  

where  

 OF IC MC   (20)  

 
G G

w d

WT WT AMI AMI household

w d d
w d

IC cc n cc N  
 

    (21a)  

 
G

w d

WT AMI household Trans Trans r CHP CHP r

w d d
w d

MC cm n cm N cm P cm P  

 

      (21b)  
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subject to 

 
max0

w w w
n n w     (22a) 

 0 1
d d

d     (22b) 

with 

 OS EP RE   (23) 
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s
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s t s t t s t
s t T
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 

     
    (24a) 
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HD HD

 



    
 

   
   

   


 
 (24b) 

subject to 

 , , ,
        , ,

I

GR Trans

s t s i t s I
i

P P s i t T


        (25a) 

 , , ,
        , ,

I

GS CHP

s t s i t s I
i

G G s i t T


        (25b)  

 
max

,
0 ,GR GR

s t s
P P s t T       (26a)  

 
max

,
0 ,GS GS

s t s
G G s t T       (26b)  

 
,0 ,0

, , min , , , , max
, ,e e e

s d t s d t s d t s d
s d t T             (27a)  

 
,0 ,0
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s d t s d t s d t s d
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, ,CHP CHP

s i t s i t s I
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, , , ,
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s i t s i t s I
G H HV s i t T         (28b)  
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s i t i s I
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, ,

0 , ,Trans Trans r

s i t i s I
P P s i t T         (29b)  

 
, ,

0 , ,WTG WTG r

s i t i i s I
P n P s i t T         (29c)  

 

, , , , , , , ,
,

C ,0 ,0 ,0

, , , , , , , , , , , ,
1- )( )+ ( )

, , ,

I

CHP Trans WTG

s i t s i t s i t s ij t
i j
j i

L TL EL CL TL EL

i s i t s i t s i t i s i t s i t s i t

s I

P P P P

PD PD PD PD PD PD

s i j t T

 




   

    

     

（  (30a)  



23 

 

 

, , , , , , , ,
,

C ,0 ,0 ,0

, , , , , , , , , , , ,
1- )( )+ ( )

, , ,

I

CHP Trans WTG

s i t s i t s i t s ij t
i j
j i

L TL EL CL TL EL

i s i t s i t s i t i s i t s i t s i t

s I

Q Q Q Q

QD QD QD QD QD QD

s i j t T

 




   

    

     

（  (30b)  

 

, , , ,
,

C ,0 ,0 ,0

, , , , , , , , , , , ,
1- )( )+ ( )

, , ,

I

CHP

s i t s ij t
i j
j i

L TL EL CL TL EL

i s i t s i t s i t i s i t s i t s i t

s I

H H

HD HD PD HD HD HD

s i j t T

 




 

   

     

（  (30c)  

 

, 1, , , , 1,

, 1, , , , 1,

, , , ,

, 1, , ,

0

2

, , ,

s i t s i t s i t

s i t s i t s i t

i s i t i s i t

s i t s i t

s I

P P PD

Q Q QD

r P x Q
V V

V

s i j t T

 

 






 


 



  


     

 (31a)  

 

' ' '

, , , , , ,

'

, ,
2

, , ,

s ij t s ji t s ij t

sw e

s ij t ij

s I

H H H

TE TE
H l

R

s i j t T



   

 
 



     

 (31b)  
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min max
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0 , , ,

ij s ij t ij s ij t s I
Q Q Q if Q s i j t T          (32d)  

 
'min ' 'max '

, , , ,
0 , , ,

ij s ij t ij s ij t s I
H H H if H s i j t T          (32e)  

As shown in (19), the objective of the proposed model is to minimize the total annualized cost of the  

system, which is the sum of the corresponding costs occurred in the planning stage (𝑂𝐹) and the operation  

stage (𝑂𝑆). Specifically, the total payment associated with the planning stage (𝑂𝐹) comprises by the system  

investment cost (𝐼𝐶) and maintenance cost (𝑀𝐶). The investment cost (𝐼𝐶) involves the capital cost of MES  

components (i.e., renewable energy generation and AMI units and is determined by the installed capacity  

of each type of equipment. An annualization factor 𝜏 is used to convert equipment values into comparable 

quantities on an annual basis, as shown in (21a). The maintenance cost (𝑀𝐶) is incurred by the routine 

inspection of the system, which is calculated as the product of the related annual cost and the size with 

respect to each type of deployed component, as presented in (21b). On the other hand, the total payment 

pertaining to the operation phase (𝑂𝑆) comprises the system energy procurement cost (𝐸𝑃) and DR cost 
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(𝑅𝐸), as shown in (23). The energy procurement cost (𝐸𝑃) is incurred by the MES purchasing electricity  

and natural gas from external energy market and is computed as the product of market price and the  

corresponding quantity of energy that the MES purchases, as shown in (24a). For DR cost (𝑅𝐸), it is  

incurred by the implementation of the DR program. It is computed as the difference between the MES  

owner’s revenue in the DR scenario and that for the regular case, as represented in (24b). The obtained  

system energy procurement cost (𝐸𝑃) and DR cost (𝑅𝐸) are summed and aggregated over the considered  

scenario set (allowing for the probability of occurrence of each scenario) to derive the overall expected  

operation cost of the system under the realization of uncertainties.  

For the first-stage optimization, constraint (22a) imposes the limits for the maximum and minimum  

capacity of RES generation units that could be installed in the MES. Besides, as a household can be  

equipped with no more than one AMI unit, the penetration rate of AMI is limited to 100%, as confirmed by  

(22b). For the second-stage constraints, balances of supply and demand are confirmed by Eq. (25a)-Eq.  

(25b), and Eq. (26a) and (26b) are used to confirm that the power/gas procured from the external market  

must not exceed the available capacity, and reverse power flow is forbidden. Eqs. (27a) and (27b) stipulate  

that the offered tariff by MESO can be higher than the market acquisition price but cannot exceed a  

predefined “cap” value. Furthermore, the operation constraints of CHP units are represented by Eq. (28a)- 

(28b), considering their power-thermal coupling characteristics. Constraints (29a)-(29c) present the  

potential power output of CHP units, transformers and wind turbines. The conventional equality constraints  

for the gas flow, power flow and heat flow in the system are represented by Eq. (30a)-(30c). Eq. (31a) and  

(31b) represent the linearized power flow and linear thermal energy flow equations, which have been  

extensively used in the MES analysis (Gu et al., 2017). The operation bounds of power network and the  

heat network are represented by Eq. (32a)-(32e).   

The decision variables for the first-stage problem encompass the optimal types, locations and capacities  

of the RESs and AMI to be installed, i.e., {𝑤, 𝑛𝑤 , 𝑑, 𝜒𝑑}, and these make up the parameter set of the second- 

stage optimization. The decision variables for the second-stage model include the optimal design of the  

price tariff {𝜌𝑠,𝑑,𝑡
𝑒 , 𝜌𝑠,𝑑,𝑡

ℎ } ; the operational status of CHP units, transformers and wind turbines 

{𝑃𝑠,𝑖,𝑡
𝐶𝐻𝑃 , 𝑃𝑠,𝑖,𝑡

𝑇𝑟𝑎𝑛𝑠, 𝑃𝑠,𝑖,𝑡
𝑊𝑇𝐺}; and the amount of electricity/gas procured from a local grid/gas station {𝑃𝑠,𝑡

𝐺𝑅 , 𝐺𝑠,𝑡
𝐺𝑆} 

in each scenario and the time block of the planning horizon. 

Mathematically, the proposed model in (19)-(32e) is a typical mixed-integer quadratic programming 

problem that is readily solvable by using various commercial solvers. 
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6．Case Study  

A. Test system and data  

To illustrate the effectiveness of the model proposed in this paper, a series of numerical studies are  

conducted based on a combined electricity-thermal system extracted from (Liu et al., 2016). The concerned  

test system comprises a 32-node low-temperature district heating network and a nine-node distribution  

power network, which are coupled by three CHP units. The topological diagram of the system is shown in  

Fig. 4.   
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Fig. 4. Topological Diagram of Test System  

As seen, the concerned MES is divided into six segments. Each segment is considered one aggregator  

that may respond to the RTP offered by the MESO on behalf of all the corresponding customers in the area.  

To ensure the applicable of the proposed planning scheme in practical situations, we use a four-day  

equivalent model to represent the seasonal variation in customer load demand over a full year, as shown in  

Fig. 5. Each day in the presented four-day model has a distinctive average load profile, which represents  

the median (typical value) of the three consecutive months that compose a season (spring, summer, fall, 

and winter). The information about the load demand for each segment is provided in Table 2. In this study, 

a truncated Gaussian distribution is used to describe the uncertainty of customer energy demands in (3), 

which has a mean equal to their forecasted value and a variance of unity.  

Table 2 Average Values of System Load Demands (kW) 

System segment I II III IV V VI 
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Customer type Residential NAN Industrial Industrial Residential Commercial 

Electrical demand 200 0 700 700 200 400 

Heat demand 333 0 780 1177 360 667 
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Fig. 5. Electrical and Heat Demand Profiles in Different Seasons  

The load composition of customers in each season is shown in Table 3, which is based on metered  

consumption records from a demonstration MES project in Beijing and show the diversity of the load  

composition for different types of customers. In addition, the price elasticity values applied to customers’  

TSLs/ECLs are shown in Table 4. The own-price elasticities are determined based on real socio-economic  

surveys by (Labandeira et al., 2017), and the cross-price elasticity data is extracted from (Woo et al., 2018).  

In this study, since each customer sector is assumed to have a distinct load composition and consumption  

pattern, their elasticity values differ accordingly.  

Table 3 Seasonal Variation of System Load Demand (p.u.)  

Season Customer sector 𝐷𝑡
𝐶𝐿𝑒,0 

 𝐷𝑡
𝑇𝑆𝐿𝑒,0 

 𝐷𝑡
𝐸𝑆𝐿𝑒,0 

 𝐷𝑡
𝐶𝐿ℎ,0 

 𝐷𝑡
𝐸𝑆𝐿ℎ,0 

 

Spring Residential 0.15 0.4 0.45 0.55 0.45 

& Commercial 0.5 0.2 0.3 0.7 0.3 

Fall Industrial 0.7 0.1 0.2 0.8 0.2 

Summer 

Residential 0.3 0.4 0.3 0.7 0.3 

Commercial 0.7 0.2 0.1 0.9 0.1 

Industrial 0.8 0.1 0.1 0.9 0.1 

Winter 

Residential 0.2 0.4 0.4 0.7 0.3 

Commercial 0.6 0.2 0.2 0.8 0.2 

Industrial 0.8 0.1 0.1 0.9 0.1 

  

Table 4 Price Elasticity of TSLs/ECLs  

Time period 𝜀𝑡
𝑇𝐿𝑒 𝜖𝑡𝑡′

𝑇𝐿𝑒 𝜀𝑡
𝐸𝐿 𝜖𝑡

𝐸𝐿 

22:00-7:00 -0.33 0.02 -0.33 0.92 

7:00-8:00; 11:00-18:00 -0.45 0.02 -0.45 0.99 

8:00-11:00; 18:00-22:00 -0.62 0.03 -0.62 1.21 
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In the concerned test case, it is assumed that the candidate sites for WTG/AMI installation are Bus-i at 

Segment-I, Bus-iv at Segment-IV and Bus-vi at Segment-VI. The maximum allowed WTG capacity is set 

to 500 kW for each bus. Table 5 reports the parameter settings in our simulation; the parameters of WTG 

are determined according to (Zhang et al., 2018), and the parameters of AMI are from (Luan, 2009). We 

assume that all parameters are constant during the planning horizon. Additionally, the discount rate is set 

to 6%.  

Table 5 Parameter Settings 

 
Parameter value 

Technical Cost 

WTG 

𝑃𝑊𝑇𝐺−𝑟=100 kW 

𝑣𝑖𝑛
𝑐 =3 m/s 

𝑣𝑜𝑢𝑡
𝑐 =17 m/s 

𝜁𝑊𝑇=20 years 

𝑐𝑐𝑊𝑇=1114 $/kW 

𝑐𝑚𝑊𝑇=21 $/kW 

AMI 𝜁𝑒𝑠=20 years 
𝑐𝑐𝐴𝑀𝐼=90 $/unit 

𝑐𝑚𝐴𝑀𝐼=1.65 $/unit 

The uncertainty of wind speed is described by using a Weibull distribution in (1). The shape parameter 

and scale parameter of the Weibull distribution are obtained by fitting the real wind speed statistics from 

2013-2015 collected in Beijing and reported in Table 6. 

Table 6 Parameter Value of Wind Speed Distribution 

Season Parameter 22:00-7:00 7:00-8:00; 11:00-18:00 8:00-11:00; 18:00-22:00 

Spring 
𝑐 9.47 9.01 8.67 

𝑘 4.06 4.21 4.52 

Summer 
𝑐 5.41 4.91 4.88 

𝑘 2.38 2.41 2.45 

Fall 
𝑐 7.98 7.33 6.82 

𝑘 4.11 4.23 4.56 

Winter 
𝑐 9.47 9.03 8.65 

𝑘 3.97 4.23 4.25 

In addition, the correlation coefficients among different uncertainties (i.e., RES generation, load 

demand and demand price elasticity) in this study are shown in Table 7 and are determined according to 

statistical survey data of Beijing. 

Table 7 Correlation Matrices of Uncertainties 

Time period ℂ𝑋 

22:00-7:00 [
1.00 0.24 0.08
0.24 1.00 0.74
0.08 0.74 1.00

] 
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7:00-8:00; 11:00-18:00 [
1.00 0.42 0.11
0.42 1.00 0.78
0.11 0.78 1.00

] 

8:00-11:00; 18:00-22:00 [
1.00 0.44 0.11
0.44 1.00 0.78
0.11 0.78 1.00

] 

The hourly power acquisition price of the MESO is shown in Fig. 6, which is based on the real tariff  

from Hunan Province, China. The gas procurement price is set to a constant value of 0.143 $/m3. In the  

regular case (without DR), the prices for customers to procure electricity and heat from the MES are set to  

0.114 $/kWh and 0.043 $/kWh, respectively (Gu et al., 2017). The upper limit of the imposed RTP (𝛿𝑑,𝑡
𝑐ℎ ) is  

set to 150% of the corresponding energy acquisition price in each time period 𝑡, i.e., 𝜌max
𝑒 = 1.5 × 𝜎𝑡

𝐺𝑅.  
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Fig. 6. Hourly Electricity Price from the External Market for Different Seasons  

The proposed mixed-integer quadratic programming problem is programmed in the Matlab  

environment and is solved using the Yalmip with default settings. The model is implemented on a desktop  

computer with an Intel Core Duo 2.2 GHz processor and 4 GB of RAM.  

B. Results  

In this study, DR is considered as a strategic flexibility resource and is utilized to improve the efficiency  

of RES exploitation in an MES planning context. To illustrate the effectiveness of the proposed planning  

approach and its added value to the state-of-the-art solutions, a comparative analysis is conducted in this  

section, considering methods found in the literature.  

For this aim, three cases are defined and considered for the purpose of comparison, which are named  

Benchmark, C1 and C2, respectively. Specifically, the Benchmark scenario represents the MES case 

without WTGs or DR. This case is used as the reference for indicating how the performance of MES 

changes with different planning schemes adopted. For C1, we assume that the load demands of the system 

customers are inelastic and nonresponsive to the variation in energy prices. In other words, in this case, the 
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MES planning is performed without considering the DR option. It represents the conventional approach for 

renewable energy generation planning that extensively discussed in the existing literature, such as 

(Mehrjerdi, 2020). Finally, for C2, we consider that the electricity and heat demands are elastic and price-

dependent. In other words, the proposed integrated planning model for WTG and DR is considered in this 

case.  

Table 8 gives the optimization results of the study, and an evaluation of the obtained planning schemes 

is tabulated in Table 9. 

Table 8 Optimal Planning Schemes for Different Cases  

System segment I IV VI 

Benchmark N/A N/A N/A 

C1 
WTG-100 kW 

(Bus-i) 

WTG-200 kW 

(Bus-iv) 

WTG-100 kW 

(Bus-vi) 

C2 

WTG-100 kW 

(Bus-i) 

WTG-200 kW 

(Bus-iv) 

WTG-100 kW 

(Bus-vi) 

AMI-100% 

(Segment-I) 

AMI-100% 

(Segment-IV) 

AMI-100% 

(Segment-VI) 

 

Table 9 Evaluation of Obtained Planning Schemes (k$) 

System 
segment 

 I II III IV V VI Total 

Benchmark 

𝐼𝐶 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

𝑀𝐶 0.00 8.14 0.00 27.00 0.00 11.57 46.71 

𝐸𝑃 188.69 0.00 611.39 660.41 191.97 377.38 2029.83 

𝑅𝐸 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Total cost       2076.54 

C1 

𝐼𝐶 9.71 0.00 0.00 19.43 0.00 9.71 38.86 

𝑀𝐶 2.14 8.14 0.00 31.29 0.00 13.71 55.29 

𝐸𝑃 170.74 0.00 611.39 597.58 191.97 341.47 1913.14 

𝑅𝐸 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Total cost       2007.29 

C2 

𝐼𝐶 10.11 0.00 0.00 19.82 0.00 10.11 40.04 

𝑀𝐶 2.23 0.81 0.00 31.37 0.00 13.80 48.21 

𝐸𝑃 148.41 0.00 611.39 585.49 191.97 321.53 1858.79 

𝑅𝐸 12.47 0.00 0.00 -87.50 0.00 -19.39 -94.42 

Total cost       1852.62 

*The annualized investment cost of the system (𝐼𝐶), annual maintenance cost (𝑀𝐶), energy procurement cost (𝐸𝑃), and potential loss 

of revenue (𝑅𝐸) 

(1) Economic Benefits 

The optimization results of the three cases are compared in Table 8. Compared with the Benchmark 
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case, regardless of whether DR is included or not, the total cost of the system is greatly reduced by the  

allocation of renewable generation units. Moreover, the economic costs associated with C2 are far less than  

those associated with C1, which implies that the implementation of DR indeed brings about significant  

benefits to the system.  

More specifically, with the implementation of only WTG allocation, the cost of energy procurement  

and the total system cost decrease by 6.0% and 3.3%, respectively, compared with the Benchmark case. It  

is clear that since wind power generation replaces part of the electricity imported from the market, this  

helps to reduce the operating cost of the system, and such a decrease also offsets the investment cost of  

WTGs.  

Considering both WTGs and DR, the WTG allocation scheme in C2 is the same as that in C1, and the  

penetration ratio of AMI of all candidate buses in C2 is 100%. These results show that the flexibility of  

customer demands is used as an additional balancing resource for mitigating the intermittency of wind  

power generation and promoting the exploitation of renewable energy resources in C2. The cost of energy  

procurement in C2 decreases by 2.84% and 8.43% compared with C1 and the Benchmark case, respectively.  

Moreover, after calculation, the revenue increases by 94.42 (k$) per year in C2. These increased economic  

benefits are conducive to encouraging the implementation of the DR program.  

(2) Renewable Energy Utilization  

To reveal the contribution that DR makes to the utilization of RES, Figures 7 to 10 further illustrate the  

power balance of the system and the demand changes under C1 and C2 for a typical day at Segment-I.  

Specifically, Fig. 7 shows the energy scheduling of each MES component with and without consideration  

of DR; Figs. 8 and 9 show the imposed tariff and the corresponding system load demand changes after  

introducing DR. Finally, the wind power generation in the two cases is compared and displayed in Fig. 10.  
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Fig. 7. Electric Power Balance of System Segment-I in C1 and C2  
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Fig. 8. Energy Tariff Offered to Customers 
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a) Power Load Demand 
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b) Heat Load Demand 

Fig. 9. Comparison of System Load Demand in C1 and C2 
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Fig. 10. Comparison of Wind Power Generation in C1 and C2  

After DR is implemented, Fig. 8 shows that the electricity price and heat price change significantly in  

each time period. The peak electricity price period mainly occurs from 10:00 to 18:00, while low electricity  

prices are mainly concentrated from 22:00 to 6:00. For the heat prices, the trend is the opposite. Due to the  

RTP mechanism, the load demand can be flexibly adjusted according to the operational state of the system,  

and there is consistency between the user's overall daily electricity load curve and the RES output, as shown  

in Fig. 9.  

It can be observed from Fig. 10 that wind power curtailment occurs only during off-peak hours of  

electricity loads. To meet the user's heat demand, CHP units must be dispatched to generate a certain amount  

of electricity, which reduces the output of wind power generation. However, after DR is introduced, wind  

power curtailment can be significantly alleviated due to the flexibility of the load demand. During off-peak  

hours, relatively low electricity prices cause consumers to shift their heating demand to electric heating,  

resulting in reductions in power generation from CHP and electricity imported from the external market;  

thus, the utilization of wind power increases accordingly. The curtailment rate of wind power decreases by  

9.4%. In other words, the wind power utilization rate increases to 71.1%, which is much higher than that  

without DR.  

C. Further discussions  

(1) Comparison with Existing Works  

To justify the novelty of the proposed planning method and its advantages over existing studies, a  

further comparative analysis is conducted in this section. Considering the large amount of existing  

literatures in this research field, to facilitate this comparison, we divide all the literatures presented in Table  

1 into three categories (which are named as “Group-1”, “Group-2”, and “Group-3”), according to the salient  

feature they have in common. As shown in Table 10, specifically, in Group-1, all the literatures involved  
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feature in that they all failed to take account of DR potential in the system planning. In Group-2, all the  

literatures involved feature in that they all resorted to a deterministic modeling approach to describe the  

effect of DR (i.e., neglecting the potential random nature of DR in the system operation), instead of using  

a stochastic modeling approach. As for Group-3, all the literatures involved feature in that they all account  

for the impact of uncertainties in the system planning, but all of them failed to consider the potential  

correlations among different uncertain factors.   

In contrast to any existing studies in Group-1, Group-2 or Group-3, this paper proposes a new MES  

planning framework which comprehensively considers the issues including the stochastic nature of DR, the  

synergy between DR and RES, and the potential correlations among uncertainties, in the decision-making.  

We compare the optimal planning results derived by using the proposed method and the corresponding  

methods in Group-1, Group-2, and Group-3. The calculation results are presented in Table 11.  

Table 10 Classification of Existing Literatures in Table 1  

Method 

Feature 

References in Table 1 

DR Uncertainty modeling Correlation 

Group-1 × × × 
(L. Gan et al., 2016), 

(Jangamshetti and Rau, 2001) 

Group-2 √ × × 

(Qadrdan et al., 2017), 

(Zhang et al., 2020), 

(Eissa, 2019), 

(Pan et al., 2019), 

(Bahrami and Sheikhi, 2016), 

(Sheikhi et al., 2015), 

(Rastegar et al., 2015), 

(Liu et al., 2018b), 

(Shao et al., 2018), 

(Liu et al., 2018a), 

(Sheikhi et al., 2016) 

Group-3 √ √ × 

(Mehrjerdi and Hemmati, 2020), 

(Zhang et al., 2016a), 

(Pazouki and Haghifam, 2016), 

(Zhang et al., 2016b), 

(Kim and Norford, 2017), 

(Dolatabadi and Mohammadi-Ivatloo, 

2017), 

(Neyestani et al., 2015) 

Proposed √ √ √ - 
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Table 11 Optimization Results Based on Different Uncertainty Modeling Approaches (k$)  

Method IC MC EP RE Objective Regret value 

Group-1 38.86 55.29 1913.14 - 2007.29 14.18 

Group-2 30.31  46.00  1840.75  -95.13  1821.93  13.29 

Group-3 40.04  48.21  1878.89  -99.91  1867.23  3.96 

Proposed 40.04  48.21  1858.79  -94.42  1852.62  1.54 

  

To give an insight into the above calculations, we first focus on the result comparison between Group- 

1 and the proposed case. As can be seen, when the DR program is excluded (as represented by the case in  

Group-1), the optimal planning solution corresponds to a total cost of 2007.29 k$, which is much higher  

than the outcome with inclusion of DR (1852.62 k$). This demonstrates that the proper utilization of DR  

program can indeed bring about significant benefits to the system. This is mainly because, in practice, the  

inherent temporal mismatch between renewable generation and customers’ load demand could lead to the  

inefficient exploitation of renewable energy and high operation cost of the system. However, after DR is  

introduced, relatively low electricity prices are imposed during off-peak hours, which incentivizes  

consumers to shift their heating demand to electric heating, resulting in reductions in power generation  

from CHP and electricity imported from the external market. As such, in this case, the utilization of wind  

power could increase, which makes the total operation cost of the system decreases accordingly.  

Next, we move on the results between Group-2 and our method. As can be seen, the total cost with  

respect to the suggested solution in Group-2 is much lower than that of the proposed one. This implies that  

considering the existence of demand-side uncertainties could partially offset the benefits created by  

deterministic DR and make the contribution of DR program less pronounced in actual implementations.   

In other words, the optimal planning solution derived based on the deterministic DR modeling approach  

might be not necessarily effective in the actual implementation. To reveal this, we then make a further  

comparison by conducting a hypothesis analysis proposed in (Zeng et al., 2021) to examine the applicability  

of these two kinds of methods. Specifically, it is assumed that the actual DR capacity achievable by system  

customers is an uncertain value duration operation and follows a Gaussian distribution with a mean equal  

to their forecasted value and a standard deviation set to 20% of the mean. Then, we make a comparison for  

the actual performance of the two planning schemes (i.e., the deterministic solution and the proposed  

solution) by assessing their regret value (RV) in such uncertain environment. The description about RV and  

its calculation method can be found in detail in (Zeng et al., 2021).  

The calculated values of RV are presented in the last column of Table 11. As observed, although the  
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deterministic solution (provided by using the methodologies in Group-2) is expected to have a more 

satisfactory performance during the planning stage, but its RV value is much larger than that of the proposed 

plan. This indicates that the actual performance of the planning scheme derived from the deterministic 

method should be less favorable than the proposed solution in the uncertain environment. These results 

may well prove the superiority of the proposed planning method in actual implementations. In practice, if 

the decision-maker fails to account for the uncertain nature of DR resources in its decision-making, its 

resultant planning solution could be not truly optimal, which results in less benefits to the decision-maker 

than the expected. In contrast, the proposed planning model, due to developed on a stochastic modeling 

framework, can reproduce actual market functioning and hence it can provide more efficient solutions than 

the conventional deterministic approach. 

Finally, we compare the results between Group-3 and the proposed case. The optimal planning solution 

has an objective function value of 1867.23 k$ when the correlation among uncertainties are neglected 

(Group-3), which is larger than that of the proposed case. This phenomenon is mainly due to the fact that 

the loads cover all locations (buses) and have the much larger capacity value compared to the penetration 

level of RESs and DR. As such, when considering the effect of these factors together, the inherent 

correlations existed in their variations would partially change the effect of DR, depending on their 

respective characteristics. Therefore, in practice, if the potential correlations among these uncertainties 

existed were neglected from the MES planning formulation, it would lead to an incorrect estimate on the 

profitability of the investment and hence suboptimal planning decisions. These results indicate that 

incorporating the correlations among renewable generation, DR, and load demand is important for 

guaranteeing the effectiveness of MES planning. 

Through the above tests, the novelty of the proposed planning framework and its advantages over the 

existing methods can be clearly presented and justified. 

 (2) Computational Performance Analysis 

In this study, a novel scenario generation and reduction method that can properly address the impact of 

correlations among uncertainties is employed. To verify the effectiveness of this approach, we conduct a 

further quantitative study in this section to examine the computational performance of this method with 

respect to conventional scenario reduction methods used in SP. Two classic scenario reduction techniques, 

which are referred to as “𝐷𝑟-distance” (Chen and Yan, 2018) and that based on the traditional similarity 

function “𝐻𝑠𝑖𝑚” (Xie et al., 2010) are considered in this analysis for the purpose of comparison.  
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The performance of the concerned methods is examined and evaluated from two aspects, namely, 

sample stability and computational time. The former criterion is dedicated to indicating the quality of the 

refined scenario set in terms of statistical consistency with respect to the original solution space, whereas 

the latter reflects the benefits brought by the applied algorithm, depending on the improvement in solution 

efficiency.  

In this study, the stability of scenario reduction is indicated by using a metric called “out sample stability 

(𝑂𝑈𝑇)” (Kaut and Wallace, 2003), defined as: 
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where 𝐹∗(𝑥, 𝜉) is the objective function value obtained by the original scenario set and 𝐹∗(𝑥̃, 𝜉) is the 

objective function value obtained by the reduced scenarios. 

The value of 𝑂𝑈𝑇 reflects the degree of deviation in the objective function value of the solution before 

and after implementing the scenario reduction. In practice, given a fixed 𝑂𝑈𝑇, the algorithm in which 

fewer scenarios are needed for the approximation of the original dataset is regarded to have better 

performance. 

The relevant results based on different scenario reduction methods are compared and shown in Table 

12. 

Table 12 Comparison of Different Scenario Reduction Methods 

𝑂𝑈𝑇 

Dr-distance 

(Chen and Yan, 2018) 

 Hsim 

(Xie et al., 2010) 
 Sim&corrloss 

𝑁̃1 t(s)  𝑁̃1 t(s)   𝑁̃1 t(s) 

0 500 2710.26  500 2710.26  500 2710.26 

2 394 1969.59  349 1776.43  79 328.86 

5 169 606.25  138 416.14  18 213.64 

10 32 233.38  22 210.44  8 175.95 

 

As can be seen, when the value of 𝑂𝑈𝑇 is fixed at 2%, 5%, and 10%, the proposed scenario reduction 

method only requires a smaller number of scenarios to represent the impact of uncertainties, as compared 

with Dr-distance and Hsim approach. Moreover, its computational time is also less than the conventional 

distance-based methods.  

Through the above results, it can be seen that the applied scenario reduction method in this paper 

outweighs the other two reference approaches as discussed. Specifically, it can achieve better performance 
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in reducing the computational complexity of large-scale SP problems and improving the optimization  

efficiency, without affecting the quality of the derived solutions. As such, the novelty of the proposed  

approach and its advantages can be properly justified through this test.  

(3) Implement-ability of the Proposed Planning Method  

To analyze the implement-ability of the proposed method, a discussion on its adaptability in the context  

of current market environment is conducted in this section. In this study, the proposed MES planning  

method corresponds to a centralized approach, which means that it is only suitable and applicable in a  

centralized market setting. In the centralized environment, all the decisions related in the planning stage,  

such as the RES sizing and AMI placement, are supposed to be made by the same entity. In reality, the  

above setting is consistent with most of the distribution-level MES cases in China and many other countries.  

For example, in China, many distribution-level MES projects take the form of industrial park (Zeng et al.,  

2020b). A private industrial park owner is responsible for both investment and operation of the MES. In  

this case, the proposed method can be used as an efficient tool for addressing the MES planning problem.  

However, it should be noted that, with the deregulation of power and energy sector in the future, a MES  

might be invested and operated by different market players (e.g., the energy network is owned by the local  

utility company but renewable energy generation units are owned by a private entity). In this case, the  

proposed planning approach could be no longer applicable. A game-theoretic optimization framework  

which takes into account the decision-making of different stakeholders might be a viable option for  

addressing the MES planning problem in such decentralized context. Thus, this can be counted as a  

limitation in the applicability of the proposed method for the future market setting.  

7．Conclusion  

In this paper, a new planning framework utilizing the DR option is presented for enabling CHP-based  

MESs to accommodate the growing penetration of RESs. As the main novelty of this work, this study  

examines the potential role of demand response for improving renewable energy exploitation from a long- 

term planning perspective, instead of the conventional operation aspect. Furthermore, the uncertainties  

associated with customers’ DR performances and their potential correlations with the externalities have also  

been explicitly considered in this study. The incorporation of DR-related uncertainties into MES planning  

results in the concerned problem to be a two-stage SP problem, in which the optimal allocation and 

management of RES generation and demand-side resources (AMI) are determined simultaneously to 
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minimize the overall economic costs of the system. According to the mathematical feature of the proposed 

model, an efficient correlation-handled solution approach is used to obtain the final solution to the problem.  

The proposed planning framework is demonstrated on an illustrative electricity-thermal interconnected 

MES test case and the primary conclusions obtained from the case studies are as follows: 

1) The operation performance of CHP-based MESs is highly dependent on the load pattern of its 

customers. As the introduction of DR enables the load consumption to more closely follow the intrinsic 

supply of RESs, the integrated resource planning model demonstrates a super additive effect, not only in 

term of lower economic costs but also higher renewable energy utilization. 

2) Under the non-direct control-based paradigm, the uncertainties associated with the demand-side 

responsiveness and its potential correlations with the externalities could have a significant impact on the 

operational efficiency of DR programs. Therefore, in practice, to ensure the effectiveness/optimality of final 

planning decisions, such potential correlations among uncertainties should be captured in the planning 

decision-making of MESs. 

3) Compared with conventional distance-based scenario reduction methods, the proposed algorithm, due 

to proper incorporation of correlations in the probability distribution of uncertainties, can achieve better 

performance in the SP solution procedures, which makes the derived planning strategy more convincing 

and reliable in real-world applications. 
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