
   

Supplementary Material 

Section 1: Supplementary Figures and Tables 

1 Supplementary Figures and Tables 

Multiple drug treated P. falciparum GEPs were downloaded (Supplementary Table S1) and assessed 
for their quality and whether the datasets fulfilled the filtering criteria (Supplementary Table S2) we 
developed. The accepted datasets (Supplementary Table S3) that fulfilled these criteria formed our 
database for model building. Before model training, the database needed to be pre-processed and 
normalized, hence cyclic loess normalization (Supplementary Figure S1) was implemented as it 
allowed for proper comparison between the accepted datasets. Two databases was generated in parallel, 
one containing all 2463-genes named the inclusive database, while the other database, named the 
rational selection database consisted of the 174-genes identified (Supplementary Table S6) through our 
rational gene selection (Supplementary Figure S2). MLR, SVC, RF, GBM and ANN models were built 
from each respective database. During model training the hyperparameter ranges (Supplementary 
Table S4) were assessed to determine the optimal hyperparameters that resulted in a model architecture 
which had higher accuracy in predicting antiplasmodial MoA from transcriptomic data. The optimal 
hyperparameters for each multiclassification algorithm was determined (Supplementary Table S5) and 
used to create MoA prediction models. These resultant models were assessed through cross-validation 
and accuracy in predicting the MoA of the test set (Supplementary Figure S3). SVC models using 
sigmoid and radial kernels performed extremely poorly with regards to accuracy and were excluded 
from further analysis. A sliding gene-scale approach was conducted using the two best performing 
algorithms, MLR (built using h2o R package) and RF (built using randomForest R package). To assess 
which gene selection approach identified the best predictive genes for MoA stratification, two models 
were generated for each algorithm in the sliding gene-scale approach, one trained on ML-inferred genes 
and another on the rationally selected genes (Supplementary Figure S4). Of the two algorithms, MLR 
models had considerably more accurate and stable models less prone to overfitting compared to 
respective RF models. To further validate overfitting within the ML-inferred minimodels compared to 
rationally selected minimodels, leave-one-out cross validation (LOOCV) was also conducted and the 
root mean squared error (RMSE), average log-loss and LOOCV correlation coefficient (Q2LOO) was 
calculated for each minimodel (Supplementary Figure S5). Of the top 50 biomarker genes identified 
from the most robust MLR minimodel, 16 were also present as genes previously associated with copy 
number variations (CNVs) or single nucleotide variations (SNVs) resulting in resistance phenotypes 
after such mutant generation of P. falciparum due to drug pressure (Supplementary Table S7) (Cowell 
et al., 2018). 
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1.1 Supplementary Tables 

Table S1: P. falciparum compound treated GEP datasets used in this study   
Ref  Compound(s)  Strain  Time 

points  
Stagea  Controls  [Drug]  Rep.  GEO no   Date 

accessed  
(Tarr et 
al., 2011) 

Thiostrepton~  3D7  24 h  R  DMSO  IC50  3   GSE28701  2019/02  

(van der 
Watt et 
al., 2018) 

MMV390048 or 
MMV642943  

3D7  24 or 48 h  R  UT  10 x 
IC50  

1  GSE100692  2019/02  

(Gupta et 
al., 2016)  

Cisplatin, Etoposide,  
Methyl ethanesulphonate  
(MMS), Pyrimethamine  

3D7  6 h  R   Reference 
pool   

IC50 and  
IC 90  

3   GSE72580  2019/02  

(Shaw et 
al., 2015) 

dihydroartemisinin (DHA) K1   1-3 h  T  Not clear  IC50  5  GSE62136  2019/03  

(Abd 
Razak et 
al., 2014) 

Choline kinase inhibitor,  
hexadecyltrimethylam 
monium bromide 

K1   72 h  R  UT  IC50  3  GSE54775  2019/03  

(Guler et 
al., 2013) 

Novel dihydroorotate  
dehydrogenase (DHODH) 
inhibitor  

Dd2   Not clear  Not 
clear  

Dd2  IC50  3  GSE35732  
GSE37306  

2019/03  

(Brunner 
et al., 
2012) 

ACT-213615  3D7  1, 2, 4,  
6, and 8 h  

T  DMSO  IC50  unclear GSE39485  2019/03  

(Andrews 
et al., 
2012)  

Trichostatin A (TSA), 
suberoylanilide hydroxamic 
acid  
(SAHA) and 2aminosuberic 
acid derivative (2-ASA-9)  

3D7  2 h  T  DMSO  IC90  2  GSE25642  2019/02  

(Kritsiriw
uthinan 
et al., 
2011) 

Pyronaridine, CQ K1   4 h and 24 
h  

T  UT  IC50  3  GSE31109  
GSE30867 
GSE30869  

2019/02  

(Becker 
et al., 
2010) 

Cyclohexylamine  3D7  18, 25 and 
30 hpi  

Both  UT  IC99  2  GSE18075  2019/02  

(van 
Brummel
en et al., 
2008) 

DL-α-
difluoromethylornithine 
(DFMO)   

3D7  19, 27 and 
34 hpi  

Both  UT  5x IC50  2  GSE13578  2019/03  

(Becker 
et al., 
2011) 

Dehydrobrachylaenolide   3D7  2, 6, and 
12 h  

Both  DMSO  IC99   2  GSE29874  2019/03  

(Hu et 
al., 2009) 

ML7, W7, KN7,  
Staurosporine, KN93, 
Cyclosporine A, FK506, 
Roscovitine A, Quinine, 
Chloroquine, Febrifugine, 
artemisinin, Na3VO4, 
Colchicine, Retinol A, 
PMSF, E64,  
Leupeptine, Apicidin,  
Trichostatin A, EGTA  

3D7  1,2,4,6,8 
and 10 h 

Both  UT  IC50 and  
IC90  

1 or  2  GSE19468  2018/06  

(Cheema
dan et al., 
2014) 

Ionomycin  3D7  30 min,  
1, 2, 4 and 
6 h  

S  Reference 
pool  

10x IC50  1  GSE33869  2019/02  

ª: R= rings, T = trophozoites; S = schizonts; UT= untreated parasites, hpi = hours post invasion, h= hours, min= 
minutes , Rep. = replicates 
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Table S2: Filtering criteria imposed on GEP datasets  
Criteria  Accepted  Rejected  
Controls  Untreated parasites under same 

conditions as compound-treated 
parasites  

Different conditions compared 
to compound- 
treated  

Gene coverage  >65% coverage of 
P. falciparum genes  

<65% coverage of 
P. falciparum genes 

Mode of action   Known in P. falciparum  Unknown in P. falciparum  
Time series  If there are ≥2 time points 

available for comparison to other 
compound treatments  

Compound treatments that have 
no time points or  
replicates  

Concentrations  IC50 and higher concentrations   Concentrations below IC50   
Parasite strain  Treatments and controls need to 

be the same strain, preferably 
NF54 or 3D7  

Resistant strains or clinical 
isolates will not be  
considered as transcriptional 
responses may vary due to  
strain differences and not 
compound treatments  
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Table S3: Final database generated from 6 datasets spanning 20 compound treatments  
Compound  Mode of action (MoA) Ref for MoA Dataset  GEO  

No  
Total 
treatment 
time points 
(tp) used 

Gene 
coverage 
after pre-
processing  

W7  Calcium/calmodulin-dependent 
protein kinase inhibitor   

(Hu et al., 
2009;Brunner et al., 
2012) 

(Hu et al., 
2009) 

GSE1 
9468  

160/248 
dataset tp 
 
W7= all exp7 
tp 
  
ML-7= all 
exp8 tp 
 
Staurosporine= 
all exp14 tp 
 
Cyclosporin 
A= all exp2 tp 
 
Colchicine= 
all exp5 tp 
 
PMSF= all 
exp16 tp 
 
Leupeptin= all 
exp24 tp 
 
Artemisinin= 
all exp11 tp 
 
Chloroquine= 
all exp25 tp 
 
Febrifugine= 
all exp10 tp 
 
Quinine= all 
exp9 tp 

3705/5400 
(69%)  

ML-7  (Hu et al., 
2009;Coronado et al., 
2016) 

Staurosporine  Inhibits serine/threonine kinases, 
reduces merozoite invasion  

(Dluzewski and Garcia, 
1996;Karaman et al., 
2008) 
  

Cyclosporin A  Has a strong affinity to 
sphingomyelin in membrane 
environment like parasitized 
erythrocytes membranes, thus 
aids in inhibiting merozoite 
invasion. Also believed to be a 
calcineurin pathway inhibitor.  

(Hu et al., 
2009;Dynarowicz-
Łątka et al., 2015) 

Colchicine  Microtubule is the target, inhibits 
merozoite invasion  

(Fowler et al., 1998) 

PMSF  Serine protease inhibitor  (Tan-No et al., 2008) 
Leupeptin  A cysteine, serine, and threonine 

peptidase inhibitor which affects 
haemoglobin degradation  

(Moura et al., 2009)  

Artemisinin   Partially understood but 
hypothesized to be involved in 
producing carbon-centered free 
radicals that in turn alkylate 
heme and proteins  

(Meshnick, 2002) 

Chloroquine  Inhibits the heme polymerase 
enzyme  

(Slater, 1993) 

Febrifugine  Targets P. falciparum prolyl-
tRNA synthetase activity  

(Keller et al., 2012)  

Quinine  Partially understood but 
accumulate in the parasite’s 
digestive vacuole (DV) and may 
inhibit the detoxification of 
heme  

(Petersen et al., 2011)  

DFMO  Inhibits ornithine decarboxylase 
causing parasite arrest  

(Assaraf et al., 1987) (van 
Brummelen 
et al., 2008) 

GSE1 
3578  

3/3 time points 
with replicates  

4050/5400 
(75%)  

MMV 048 and MMV 943  Inhibits Plasmodium 
phosphatidylinositol 4kinase 
(PI4K)  

(Brunschwig et al., 
2018)  

(van der 
Watt et al., 
2018) 

GSE1 
0069 
2  

6/10 dataset tp 
MMV 048= all 
asexual tp 
MMV 943= all 
asexual tp 

4971/5400 
(92%)  

ACT-213615 
    

Artemisinin derivative that has 
an unknown MoA which is 
different from other 
antimalarials based different 
transcriptional responses to that 
of the Hu et al. dataset  

(Brunner et al., 2012) (Brunner et 
al., 2012) 

GSE3 
9485  

5/5 dataset tp 
 

4857/5400 
(90%)  

Ionomycin   Increases cytoplasmic calcium 
concentrations  

(Cheemadan et al., 
2014)  

(Cheemadan 
et al., 2014)  

GSE3 
3869  

5/10 dataset tp 
Ionomycin= 
all schizont tp 
 

4495 /5400 
(83%)  

Trichostatin A  
(TSA), Suberoylanilide 
hydroxamic acid, 
2aminosuberic acid 
derivative, Apicidin  

Histone deacetylase (HDAC) 
inhibitors that perturb the 
transcriptome  

(Darkin-Rattray et al., 
1996;Hu et al., 
2009;Andrews et al., 
2012) 
  

(Hu et al., 
2009) 

GSE1 
9468  

Trichostatin A  
= all epx21 tp 

3705/5400 
(69%)  

(Andrews et 
al., 2012) 

GSE2 
5642  

6/6 dataset tp 
1 tp per 
treatment, 2 
replicates per 
treatment 

4364/5400 
(80%)  
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Table S4: Optimal Hyperparameter tuning ranges for algorithms  
Algorithm  Hyperparameter  Tuning 

range  
Interval  Category  R tuning 

package  
Support vector 
machine  
Polynomial  
kernel (P)  
Sigmoid  
kernel (S0  
Linear kernel  
(L)  
Radial kernel (R)  

Gamma    P= (0, 0.1, 0.3, 0.5, 1, 2, 4, 
8, 10)  
  
S= (0, 0.1, 0.3, 0.5, 1, 2, 4, 
8, 10)  
  
L= (0, 0.1, 0.3, 0.5, 1, 2, 4, 
8, 10)  
  
R= (0.5,1,2)  

  e1071  

Degrees    
  

P= (1, 2, 3, 4, 5, 6)  
L= (1, 2, 3, 4, 5, 6)  

  

Cost    P=10-3:1010  
S= 10-3:1010  
L= 10-3:1010  
R= 10-1:102  

  

Multinomial 
logistic regression  

N/A  -  -  -  -  

Random Forest 
(RandomForest)  

Number of trees    1,10,100, 500,1000, 5000    e1071  
Mtries    6, 10, 20    

Random Forest 
(h2o package)  

ntrees                          100,250, 500,1000, 5000    h2o  
Mtry    1,5,10,15,20    
Max depth    2,3,4,5,6    

Gradient boosting 
machine (h2o)  

Number of trees  
  

100- 
4000  

100,200,300, 400,500, 
1000,4000  

-  h2o,  

col_sample_rate  0.3-1  0.3, 0.7, 1.0  -  
max_depth  4-20  4,6,8,12,  

16, 20  
-  

Gradient boosting  
machine (Xgboost)  

Col sample rate  0.1:1      caret  
Max depth    2, 3, 4, 5, 6  
Subsample  0.1:1    
nrounds    50, 100, 150  
Eta    0.025, 0.05, 0.1, 0.3  

Artificial neural 
network  

Activation function  -  -  Rectifier, 
RectifierWithDropout 
Maxout, 
MaxoutWithDropout  

h2o  

Hidden drop out  
ratio  

0-0.3  (0,0), (0.15,0.15), (0.3,0.3)  -  

Input drop out ratio  0-0.3  0, 0.15, 0.3  -  
L1 and L2  
regularization  

0-0.1  0,0.00001, 0.0001, 0.001, 
0.01, 0.1  

-  

Adaptive rate  0.005- 
0.02  

0.005, 0.01, 0.015, 0.02  -  

Loss function  -  -  Automatic, 
CrossEntropy, 
Quadratic, Huber, 
Absolute, Quantile  

 



   

Table S5: Optimal hyperparameters identified from hyperparameter tuning  
Algorithm  Hyperparameter  Optimal  

Hyperparameter for 
biomarkers  

Optimal  
Hyperparameter 
for database  

Logloss  
  

Classification 
error  
  

Out-of-bag 
error  

Accuracy  
  

R tuning package  

Support vector machine  
• Polynomial 
kernel  
(P)  
• Sigmoid kernel 
(S)  
• Linear kernel 
(L)  
• Radial kernel 
(R)  

Gamma  P=0.1  
S=0.1  
L=0  
R=0  

P=0.1  
S=0.1  
L=0  
R=0  

N/A  B:  
P= 0.14  
S= 0.5  
L= 0.15  
R= 0.8  
  
D:  
P= 0.25  
S= 0.7  
L= 0.17  
R= 0.8  

N/A  N/A  e1071  

Degrees  P=1  
L=1  
  

P=1  
L=1  
  

Cost  P=1  
S=1000  
L=0.1  
R=0.001  

P=0.1  
S=0.1  
L=0.01  
R=0.001  

Multinomial logistic 
regression  

N/A  N/A  N/A  N/A  N/A  N/A  N/A  N/A  

RandomForest  Number of trees  460  4000  N/A  B= 0.26  
D= 0.29  

N/A  N/A  e1071, 
RandomForest  

Mtries  6  6  N/A  N/A  B= 29.27%  
D= 23.17%  

N/A  

Random Forest (h2o)  ntrees                                    500  1000  B= 0.957  
D= 0.995  

N/A  N/A  N/A  h2o  
Mtry  6  6  
Max depth  20  20  

Xgboost  Col sample rate  0.6  0.6  N/A  N/A  N/A  B= 78.87%  
D= 77.24%  

caret  
Max depth  1  2  
Subsample  0.75  0.75  
Nrounds  50  50  
Min child weight  1  1  
Eta  0.4  0.4  

Gradient Boosting Machine  col_sample_rate  0.3  0.3  B= 2.30x 10 -8  
D= 1.15x 10 -6  

N/A  N/A  N/A  h2o  
max_depth  6  4  
Ntrees  500  100  

Artificial neural network  Activation function  MaxoutWithDropout  MaxoutWithDropout  B= 0.001  
D= 0.001  

N/A  N/A  N/A  h2o  
Hidden drop out ratio  0.15  0.3  
Input drop out ratio  0.3  0.3  
L1 regularization  1.0x 10 -5   0.01   
L2 regularization  0  0.001  
Adaptive rate  false  false  
Loss function  Automatic  Automatic  

Note: D= database model, B= biomarker model  
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Table S6: The gene ID of the 174 genes extracted using our rational gene selection 
Row Gene IDs 
1 PF3D7_1112700 

unknown 
PF3D7_1249400 
unknown 

PF3D7_0814300 
AAA family ATPase, 
putative 

PF3D7_0511800 
inositol-3-
phosphate 
synthase 

PF3D7_1308500 
unknown 

PF3D7_0718500 
prefoldin subunit 3, 
putative 

PF3D7_0730900 
EMP1-trafficking 
protein 

PF3D7_1214100 
GPI ethanolamine phosphate 
transferase 3, putative 

PF3D7_1306200 
unknown 

2 PF3D7_1307800 
FHA domain-containing 
protein, putative 

PF3D7_0813200 
CS domain protein, 
putative 

PF3D7_0527900 
ATP-dependent RNA 
helicase DDX41, 
putative 

PF3D7_1337300 
exoribonuclease, 
putative 

PF3D7_1230900 
serine/threonine 
protein kinase 
RIO1, putative 

PF3D7_1462300 
GTP-binding protein, 
putative 

PF3D7_0220300 
Plasmodium exported 
protein, unknown 
function 

PF3D7_0405700 
lysine decarboxylase, 
putative 

PF3D7_0614300 
major facilitator 
superfamily-related 
transporter, putative 

3 PF3D7_0919700 
pyridoxal phosphate 
homeostasis protein, 
putative 

PF3D7_1352000 
GTP-binding protein, 
putative 

PF3D7_0806600 
kinesin-like protein, 
putative 

PF3D7_0416200 
unknown 

PF3D7_0206100 
cysteine 
desulfuration 
protein SufE 

PF3D7_0310500 
ATP-dependent RNA 
helicase DHX57, 
putative 

PF3D7_1127900 
unknown 

PF3D7_1317100 
DNA replication licensing 
factor MCM4 

PF3D7_0503400 
actin-
depolymerizing 
factor 1 

4 PF3D7_0103600 
ATP-dependent 
DNA/RNA helicase 
PSH1 

PF3D7_1444100 
unknown 

PF3D7_0814400 
phospholipase 
DDHD1, putative 

PF3D7_1324000 
unknown 

PF3D7_0815200 
importin subunit 
beta, putative 

PF3D7_1220400 
debranching enzyme-
associated ribonuclease, 
putative 

PF3D7_0309600 
60S acidic ribosomal 
protein P2 

PF3D7_0505300 
UDP-N-acetylglucosamine 
transporter, putative 

PF3D7_0802100 
AP2 domain 
transcription factor, 
putative 

5 PF3D7_1422400 
nucleolar RNA-
associated protein, 
putative 

PF3D7_0504200 
ATP-dependent RNA 
helicase DDX27, 
putative 

PF3D7_1364300 
pre-mRNA-splicing 
factor ATP-dependent 
RNA helicase PRP16 

PF3D7_1331700 
glutamine--tRNA 
ligase, putative 

PF3D7_0626400 
CRAL/TRIO 
domain-containing 
protein, putative 

PF3D7_1217900 
PPPDE peptidase 
domain-containing 
protein, putative 

PF3D7_1031300 
SAE2 domain-
containing protein, 
putative 

PF3D7_1430700 
NADP-specific glutamate 
dehydrogenase 

PF3D7_1463800 
ribosomal protein 
S6, mitochondrial, 
putative 

6 PF3D7_1458900 
golgi apparatus 
membrane protein 
TVP23, putative 

PF3D7_0624000 
hexokinase 

PF3D7_0321800 
WD repeat-containing 
protein, putative 

PF3D7_1133800 
RNA (uracil-5- ) 
methyltransferase, 
putative 

PF3D7_1218300 
AP-2 complex 
subunit mu 

PF3D7_1124100 
BEACH domain-
containing protein, 
putative 

PF3D7_0509100 
structural maintenance 
of chromosomes 
protein 4, putative 

PF3D7_1476200 
Plasmodium exported 
protein (PHISTb), unknown 
function 

PF3D7_0612600 
cytoplasmic tRNA 
2-thiolation protein 
1, putative 

7 PF3D7_1223600 
unknown 

PF3D7_1475100 
unknown 

PF3D7_1434600 
methionine 
aminopeptidase 2 

PF3D7_1336000 
unknown 

PF3D7_1438000 
eukaryotic 
translation initiation 
factor eIF2A, 
putative 

PF3D7_0508700 
pre-mRNA-processing 
ATP-dependent RNA 
helicase PRP5, putative 

PF3D7_1142600 
60S ribosomal protein 
L35ae, putative 

PF3D7_0411000 
unknown 

PF3D7_0704500 
serine/threonine 
protein kinase, 
putative 

8 PF3D7_0929000 
transcription initiation 
factor TFIID subunit 7, 
putative 

PF3D7_0317300 
unknown 

PF3D7_1251700 
tryptophan--tRNA 
ligase 

PF3D7_0108700 
secreted ookinete 
protein, putative 

PF3D7_1024900 
unknown 

PF3D7_1019800 
tRNA 
methyltransferase, 
putative 

PF3D7_1107400 
DNA repair protein 
RAD51 

PF3D7_0301800 
Plasmodium exported 
protein, unknown function 

PF3D7_0618100 
unknown 

9 PF3D7_1039000 
serine/threonine protein 
kinase, FIKK family 

PF3D7_1115400 
cysteine proteinase 
falcipain 3 

PF3D7_0924100 
unknown 

PF3D7_1235500 
N6-adenosine-
methyltransferase, 
putative 

PF3D7_0603100 
RNA-binding 
protein, putative 

PF3D7_1304900 
DNA-directed RNA 
polymerase II subunit 
RPB11, putative 

PF3D7_1211700 
DNA replication 
licensing factor MCM5, 
putative 

PF3D7_1016800 
Plasmodium exported 
protein (PHISTc), unknown 
function 

PF3D7_1038400 
gametocyte-specific 
protein 

10 PF3D7_0514900 
unknown 

PF3D7_0516300 
tRNA pseudouridine 
synthase, putative 

PF3D7_0308900 
splicing factor 3B 
subunit 1, putative 

PF3D7_0623900 
ribonuclease H2 
subunit A, 
putative 

PF3D7_1407400 
unknown 

PF3D7_1142300 
conserved Plasmodium 
membrane protein, 
unknown function 

PF3D7_0220100 
DnaJ protein, putative 

PF3D7_1340900 
sodium-dependent 
phosphate transporter 

PF3D7_0612200 
leucine-rich repeat 
protein 

11 PF3D7_0220000 
liver stage antigen 3 

PF3D7_1245900 
ankyrin-repeat protein, 
putative 

PF3D7_1427000 
unknown 

PF3D7_0525200 
structural 
maintenance of 
chromosomes 
protein 6, putative 

PF3D7_0302000 
pre-mRNA-splicing 
factor PRP46, 
putative 

PF3D7_1474500 
splicing factor 3A 
subunit 1, putative 

PF3D7_1452400 
unknown 

PF3D7_0213000 
unknown 

PF3D7_0604100 
AP2 domain 
transcription factor 

12 PF3D7_1364000 
unknown 

PF3D7_0717800 
unknown 

PF3D7_1107700 
pescadillo homolog 

PF3D7_1030600 
tRNA N6-
adenosine 
threonylcarbamoyl 
transferase 

PF3D7_1437000 
N-acetyltransferase, 
GNAT family, 
putative 

PF3D7_1439300 
Sad1/UNC domain-
containing protein, 
putative 

PF3D7_1411400 
plastid replication-
repair enzyme 

PF3D7_1252400 
reticulocyte binding protein 
homologue 3, pseudogene 

PF3D7_1325400 
CRWN-like protein, 
putative 

13 PF3D7_1120700 
unknown 

PF3D7_1013500 
phosphoinositide-
specific phospholipase 
C 

PF3D7_1467400 
50S ribosomal protein 
L22, apicoplast, 
putative 

PF3D7_0808100 
AP-3 complex 
subunit delta, 
putative 

PF3D7_0208800 
protein P22, 
putative 

PF3D7_0711000 
AAA family ATPase, 
CDC48 subfamily 

PF3D7_1011400 
proteasome subunit 
beta type-5 

PF3D7_1008700 
tubulin beta chain 

PF3D7_0713500 
unknown 
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14 PF3D7_0823800 
DnaJ protein, putative 

PF3D7_1322200 
TOG domain-
containing protein, 
putative 

PF3D7_1324700 
SNARE protein, 
putative 

PF3D7_1342000 
40S ribosomal 
protein S6 

PF3D7_0917500 
unknown 

PF3D7_1015500 
Nucleotidyl transferase, 
putative 

PF3D7_1242700 
40S ribosomal protein 
S17, putative 

PF3D7_1340300 
nucleolar complex protein 2, 
putative 

PF3D7_1316200 
ADP-ribosylation 
factor, putative 

15 PF3D7_1440500 
allantoicase, putative 

PF3D7_0110000 
unknown 

PF3D7_1106800 
pseudo-tyrosine kinase-
like protein 

PF3D7_0206700 
adenylosuccinate 
lyase 

PF3D7_1234800 
splicing factor 3B 
subunit 3, putative 

PF3D7_0914500 
unknown 

PF3D7_1425800 
unknown 

PF3D7_1367100 
U1 small nuclear 
ribonucleoprotein 70 kDa 
homolog, putative 

 

16 PF3D7_0810500 
protein phosphatase 
PPM7, putative 

PF3D7_0619800 
conserved Plasmodium 
membrane protein, 
unknown function 

PF3D7_0526900 
transmembrane emp24 
domain-containing 
protein, putative 

PF3D7_1447900 
multidrug 
resistance protein 
2 

PF3D7_0628700 
unknown 

PF3D7_0719600 
60S ribosomal protein 
L11a, putative 

PF3D7_0609900 
unknown 

PF3D7_0715500 
ATP synthase subunit 
epsilon, mitochondrial, 
putative 

17 PF3D7_1414000 
26S proteasome 
regulatory subunit 
RPN13, putative 

PF3D7_0709900 
hydrolase, putative 

PF3D7_0811200 
ER membrane protein 
complex subunit 1, 
putative 

PF3D7_1219000 
formin 2 

PF3D7_1132000 
ubiquitin-like 
protein, putative 

PF3D7_1008800 
nucleolar protein 5, 
putative 

PF3D7_1001600 
exported lipase 2 

PF3D7_0203700 
protein MAK16, putative 

18 PF3D7_1323800 
vacuolar protein 
sorting-associated 
protein 52, putative 

PF3D7_1359000 
unknown 

PF3D7_0910300 
unknown 

PF3D7_0106700 
small ribosomal 
subunit 
assembling 
AARP2 protein 

PF3D7_1414200 
unknown 

PF3D7_1212700 
eukaryotic translation 
initiation factor 3 
subunit A, putative 

PF3D7_0409600 
replication protein A1, 
large subunit 

PF3D7_0525700 
unknown 

19 PF3D7_0305100 
unknown 

PF3D7_1457900 
unknown 

PF3D7_0322100 
mRNA-capping 
enzyme subunit beta 

PF3D7_1244100 
N-alpha-
acetyltransferase 
15, NatA auxiliary 
subunit, putative 

PF3D7_0606600 
unknown 

PF3D7_1226300 
haloacid dehalogenase-
like hydrolase, putative 

PF3D7_1351000 
phosphatidylinositol 
transfer protein, 
putative 

PFI0905w* 

20 PF3D7_1456700 
unknown 

PF3D7_0827100 
translation initiation 
factor IF-2, putative 

PF3D7_1366600 
signal recognition 
particle receptor 
subunit alpha, putative 

PF3D7_0614800 
endonuclease III-
like protein 1, 
putative 

PF3D7_1013900 
translation initiation 
factor eIF-2B 
subunit delta, 
putative 

PF3D7_1315700 
tRNA (adenine(58)-
N(1))-methyltransferase 
catalytic subunit 
TRM61, putative 

PF3D7_1124900 
60S ribosomal protein 
L35, putative 

PF3D7_1404400 
ribosomal protein L16, 
mitochondrial, putative 

*New gene ID could not be found, unknown= conserved Plasmodium protein, unknown function 

 

 

 

 



   

 

Table S7: Overlap between 50 biomarker genes and Cowell et al. druggable genome. 
Treatment where 
biomarker was identified 

Gene ID Gene Product Drugs used to produce compound 
resistant clones (Cowell and 
Winzeler, 2018;Cowell et al., 2018) 

Biomarker genes that were found to have copy number variants (CNVs) in compound-resistant clones in Cowell et al. 
study  
ML-7 & W7 PF3D7_0108700 Secreted ookinete protein ª  MMV019662, MMV028038, 

MMV665882, GNF179 
Trichostatin A PF3D7_0322100 mRNA-capping enzyme 

subunit beta  
MMV006767 

PF3D7_1039000 Serine/threonine protein 
kinase, FIKK family  

MMV026596 

PF3D7_1112700 Conserved Plasmodium 
protein, unknown function  

BRD1095 

Staurosporine A PF3D7_1220400 Debranching enzyme-
associated ribonuclease, ª  

MMV665852 

DFMO PF3D7_0509100 Structural maintenance of 
chromosomes protein 4, ª 

MMV673482 

Cyclosporine A PF3D7_0317300 Conserved Plasmodium 
protein, unknown function 

MMV006767 

Ionomycin PF3D7_1038400 Gametocyte-specific protein MMV019066, MMV026596 
MMV’048 & UCT’943 PF3D7_0301800 Plasmodium exported protein, 

unknown function  
MMV665924 

Biomarker genes that were found to have single nucleotide variants (SNVs) and insertions or deletions (indels) 
discovered in compound-resistant clones 
Staurosporine A PF3D7_1220400 Debranching enzyme-

associated ribonuclease, ª 
MMV006767 

PF3D7_1317100 DNA replication licensing 
factor MCM4 

Atovaquone 

DFMO PF3D7_0503400 Actin-depolymerizing factor 1  Atovaquone 
Cyclosporine A PF3D7_1352000 GTP-binding protein, ª  MMV006767, MMV007224 
Chloroquine & Quinine PF3D7_1322200 Conserved Plasmodium 

protein, unknown function  
Cladosporin 

PMSF PF3D7_0823800 DnaJ protein, ª Atovaquone 
PF3D7_1115400 Cysteine proteinase falcipain 3  Atovaquone 

MMV’048 & UCT’943 PF3D7_1340900 Sodium-dependent phosphate 
transporter  

Atovaquone 

ª = putative 
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1.2 Supplementary Figures 

 (A)   (B)   

    

 (C)   (D)   

   
Supplementary Figure S1. Normalization strategies applied to the 2463-gene database. (A) 
Unnormalized vs different array normalization strategies were implemented such as (B) quantile 
normalization, (C) medium scaling normalization and (D) cyclic loess normalization. Data from 6 
datasets (Supplementary Table S3) was used, with a total of 200 time points (i.e., treatment and 
control time points), ranged over 20 different compound treatments. 
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Supplementary Figure S2. Feature selection filtering process to identify biomarker genes with 
unique predictive features. From our database containing the accepted GEP datasets of compound-
treated P. falciparum, individual datasets undergo feature selection whereby biomarker genes, i.e., 
important features for predictive modelling are identified. (A) Each dataset is pre-processed to 
remove gene probes with no signal. (B) After which DEGs are identified for each treatment and all 
their corresponding time points. (C) DEGs identified for each compound are filtered to extract DEGs 
that are pervasively DE across all time points for that compound. (D) The extracted DEGs with 
pervasive DE are then filtered to exclude DEGs shared among compounds with different MoA. 
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Supplementary Figure S3. Investigated algorithms’ model performance comparison. 
Algorithms classifiers were either trained on the 2463-gene inclusive database (blue) or 175-gene 
rational selected database (gray). Classifiers were hyperparameter tuned before undergoing 10-fold 
cross-validation. Bars indicate the accuracy the classifier obtained from either the 10-fold cross-
validation (light color) on the training data or accuracy in stratifying the MoA of test data (dark 
color). SVC= support vector classification, RF=random forest, GBM=gradient boosting machine, 
ANN= artificial neural network. R packages are shown in brackets. 
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Supplementary Figure S4. Influence of limiting the number of genes used for training on MoA 
stratification of MLR and RF models. MLR and RF classifiers were trained on either ML-inferred 
features (dark and light blue respectively) or on rationally selected features (dark and light gray 
respectively). Using variable importance, genes were ranked according to their importance in making 
classification decisions for the classifier. With the ranked genes a sliding gene-scale approach was 
applied where the top genes were used to make minimodels with each sequential model containing 
decreasing number of genes/features used to train the classifier. Minimodels underwent 10-fold 
cross-validation and was also assessed in the accuracy of MoA stratification on test data. 
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Supplementary Figure S5. Influence of limiting the number of genes used for training on 
RMSE, log-loss and Q2LOO of MLR minimodels. MLR classifiers were trained on either ML-
inferred genes (dark blue) or on rationally selected genes (dark gray). Using variable importance, 
genes were ranked according to their importance in making classification decisions for the classifier. 
With the ranked genes a sliding gene-scale approach was applied where the top genes were used to 
make minimodels with each sequential model containing decreasing number of genes/features used 
to train the classifier. The respective minimodels underwent leave-one-out cross validation 
(LOOCV), whereby the root mean squared error (RMSE), average log-loss and the LOOCV 
correlation coefficient (Q2LOO) was calculated. (A) The RMSE calculated during LOOCV for both 
minimodels trained on the ML-inferred and those trained on the rationally selected genes. This trend 
becomes stops for ML-inferred minimodels once fewer than 125 genes are used. (B) The average 
log-loss calculated during LOOCV for the respective minimodels. (C) The difference between the R2 
and Q2LOO for minimodels using the ML-inferred and rationally selected genes.  
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 Section 2: Machine learning theory  

2.1 Hyperparameter testing  

 

   
Supplementary Figure S6. Principle of hyperparameter tuning. A hyperparameter range or grid 
is given to the ML algorithm, whereby the ML algorithm trains on the training fold and builds a 
model/classifier using a hyperparameter value within the range or grid to define the model’s 
architecture. For each hyperparameter value given a model is built and the performance of the model 
assessed. This can also be done to assess different combinations of different hyperparameter values. 
The hyperparameter values which gives the model the best accuracy is then identified.  

 

2.2 Principle of multiclassification support vector machines  

In machine learning, SVM is a supervised algorithm and can be separated into two categories, 
namely Support Vector Regression (SVR) and Support Vector Classification (SVC) (Gholami and 
Fakhari, 2017). For the purpose of this study which addresses a classification problem, only SVCs 
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will be considered. SVMs were originally developed to solve binary problems by identifying the 
optimal separating linear hyperplane that can separate and differentiate between members and non-
members of a given class in an abstract space as shown in Supplementary Figure S7 (Brown et al., 
1999).   

As seen in Supplementary Figure S7, there can be multiple hyperplanes that can separate the two 
classes, but not all hyperplanes will perform as well in classifying members of the circle class that are 
situated close to members of the square class. The SVM algorithm thus selects the optimal 
hyperplane which has the maximum margin i.e., distance from observations of each class (Gholami 
and Fakhari, 2017).  

  

Supplementary Figure S7.: Principle of SVM classification. The squares and dots are spread onto 
a 2D feature space (not restricted to 2D) based on their respective properties. The SVM algorithm 
then produces multiple hyperplanes (A, H, B) to help separate the two classes (dots and squares). 
SVM then assesses each hyperplane in their ability to separate the two classes with the maximum 
distance between the two classes. Source: (Hepworth et al., 2012)   

Not all observations, however, are linearly separable, e.g., Supplementary Figure S8, and thus one 
solution SVM uses is to create a nonlinear feature space by applying a “kernel trick,” whereby the 
observations of the two classes can then be separated by the hyperplane (Frunza, 2016;Yahyaoui's et 
al., 2018). This kernel is a statistical mapping function which allows nonlinear data to be transformed 
into a higher dimension that will allow separation of different classes by a hyperplane (Wittek, 2014).  

Although SVC had been developed to address binary classification problems, real-life classification 
problems are multi-class and thus the algorithm has been adapted to address these problems as well 
(Frunza, 2016).  The ‘one-against-one’ approach is an example such of a method developed by Knerr 
et al. which is used to implement a multi-class SVM, where several classifiers are combined (Knerr 
et al., 1990).  

Each classifier is binary and is built based on its’ training on two of the n classes, thereby resulting in 
n(n-1)/2 classifiers (Knerr et al., 1990;Frunza, 2016). For new data, each of these classifiers is 
applied and classification is made for each classifier resulting in a vector of individual classifications 
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being created, e.g. AAB. From these individual classifications, the final class is identified by majority 
vote, which in this case is class A.  

  
Supplementary Figure S8.: Support vector machine kernel function to separate nonlinear data. 
Support vector machines apply a kernel function to transform the data into a higher-dimensional 
space whereby the nonlinear data of two groups (red and blue) can be separated with a hyperplane 
whereas this would not have been accomplished linearly (Jakkula, 2006).  

  

2.3  Principle of multinomial logistic regression  

Machine learning extensively uses statistics and mathematic tools to help build a model from the 
training data it is given so it can predict or classify new data. Logistic regression (LR) is an example 
of such statistical tools used in ML and is similar to linear regression. With linear regression a linear 
relationship is assumed between the input variables and the output variable and a generalized linear 
model (GLM) is built that describes this linear relation (Nylen and Wallisch, 2017). However, in 
cases where the data is not linearly correlated and/or the output variable is discontinuous or 
categorical in nature, it is more beneficial to use logistic regression than linear regression (Hoffman, 
2019). Since our problem is categorical classification and we cannot assume that the GEP data are 
linearly correlated, LR is more useful.  

The principle behind the LR algorithm is that it uses a sigmoid function to calculate the probability of 
whether an object belongs to a class or not (Nylen and Wallisch, 2017;Hoffman, 2019). It does this 
by estimating the coefficients (parameter/beta weights) that link the input variables to the outcome 
variable using a maximum likelihood estimation approach (Nylen and Wallisch, 2017).  Yet few real-
world classification problems are binary but rather multi-class, such as ours.  

The multinomial logistic regression approach was developed to address such multiclass problems, in 
which log odds of outcomes (logit values as shown in Supplementary Figure S9) are modelled as a 
linear combination of the input variables (Fávero and Belfiore, 2019). A logit value is the natural 
logarithmic probability of an event, such as belonging to a class. However, these values as seen in 
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Supplementary Figure S9, do not add up to one. Hence a softmax function is used to transform these 
values into probability distributions of a list of potential classes/ outcomes (Ouyed and Allili, 2018). 
To help identify the predicted class the cross-entropy function is applied, which measures the 
distance of these probabilities for each class and the list of classes within the model and selects the 
one which has the shortest distance.  

   
Supplementary Figure S9.: Multinomial logistic regression algorithm. The multinomial logistic 
algorithm analyses each input i.e. feature and builds a linear model for each input so that each input 
has its own weight (w) which is applied to a feature during the training phase of the algorithm. Each 
model will produce a logit score that with the help of a softmax function can convert the score into 
the probability of belonging to a class. Cross entropy calculates the distance between the probabilities 
for each class and selects the class with the shortest distance as the output. Source:(Polamuri, 2017) 

  

2.4 Principle of random forest  

Random forest is an ensemble classifier that employs decision trees and bootstrap aggregating 
(Genuer et al., 2017). Ensemble classifiers is a machine learning technique that combines several 
base models to build an optimal model with better performance (Fratello and Tagliaferri, 2019). 
Random forests (RF), for example, create multiple decision trees and the output from these decision 
trees helps it make a classification as shown in Supplementary Figure S10 and is much more 
powerful and accurate than a single decision tree (Breiman, 2001). In principle of decision trees, the 
training dataset is repeatedly partitioned until the data can no longer be split. At the root of the 
decision tree, which contains the whole dataset, a feature is identified and a decision rule made that 
will employ a splitting criterion (Fratello and Tagliaferri, 2019).   

At this node the data will be partitioned into subsets, wherewith each subset a feature is again 
selected and a split criterion implemented until the data is no longer able to be split (Breiman, 2001). 
With RF, multiple trees are made, but the algorithm does not select the data points or variables in 
each of the decision trees. Rather it randomly samples the data points and variables from each of 
these trees that it creates and combines the output and makes a vote on the class (Cao et al., 2012).   
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Supplementary Figure S10. Random forest employing bootstrap aggregation and multiple 
decision trees. A) From the training data, the algorithm applies bootstrap aggregating whereby 
subsets of the training data are used to build a decision tree. B) To predict the class of new input data, 
the algorithm takes the decision of all decision trees into account and uses a majority vote to identify 
the class (green and red), which in this case is the red class. For each new input data (X), the 
algorithm starts at the root of the tree and based on intrinsic properties of the data selects a branch to 
transverse down the tree until a leaf is reached whereby the class decision is made. This is done 
simultaneously for several decision trees. Source:(Machado et al., 2015) 

  

2.5 Principle of gradient boosting machines  

Another ensemble classifier, called gradient boosting machines (GBM), has gained wide interest in 
recent years in their ability to efficiently identify patterns for multiclassification problems. GBMs 
have been successfully applied in face detection, iris recognition, speech and multiclass text 
categorization (Ferreira and Figueiredo, 2012).   

Gradient boosting machines are similar random forest trees in that it also combines several simple 
base models to obtain a model with better accuracy, but how this is done differs. GBM builds an 
initial tree-based model and the next consecutive tree-model is built in such a way as to mitigate the 
faults of the previous tree-model (Golden et al., 2019). This self-correction will continue until an 
additive model which minimizes the error is found, or the number of trees specified is reached 
(Touzani et al., 2018).  
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2.6  Principle of artificial neural networks  

Artificial neural networks (ANN) has gained a lot of popularity in recent years as it has shown a 
remarkable ability to process information of biological systems that are prone to nonlinearity, noise, 
high parallelism and their ability to generalize (Basheer and Hajmeer, 2000).  

ANN is a deep machine learning approach that is more advanced than the previously stated 
algorithms, in that it can gradually extract higher-level features from raw data using multilayered 
processing units (LeCun et al., 2015). An ANN in its’ simplest form contains an input layer, hidden 
layer, and output layer as illustrated in Supplementary Figure S11. Within these layers are nodes that 
can be fully or partially connected to nodes in other layers (Chen et al., 2018).   

The input layer contains nodes that represent the input variables of the model and these input 
variables are transformed using an activation function as they pass through to the hidden nodes. As 
these transformed variables are fed into the output nodes, output values are calculated that help in 
making a classification or prediction (Shi, 2014). The number of output nodes corresponds to the 
number of classes or prediction variables. ANNs are powerful in that each node in the hidden layer 
functions as a processing unit that can consider all the variables or only a subset and analyse the 
relationships between these variables (Chen et al., 2018). Not only this, but ANNs can also add 
weights to links connecting nodes as well as self-correct themselves during their training phase by 
using backpropagation. The ANNs do this self-correction by comparing the output values to the 
actual values and then adjust the weights on connecting links of nodes accordingly and reassesses the 
error between the output to actual values (Elbayoumi et al., 2015). This is done repeatedly until the 
ANNs predictive and/or classification performance is optimized.  

 

  

Supplementary Figure S11.: Simple artificial neural network. Neural networks have input nodes 
where data (X) are fed into a hidden layer where hidden nodes can assess information from the input 
nodes. This hidden layer can be extended to multiple layers and the hidden nodes (processing units) 
can also be increased. This hidden layer then connects to output nodes which can be increased to the 
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number of classes or events. The hidden nodes give to each output node/class a probability of being 
true based on the input information fed into the input layer.  
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