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MODELING THE EFFECT OF TEMPERATURE VARIABILITY ON

MALARIA CONTROL STRATEGIES

Salisu M. Garba* and Usman A. Danbaba

Abstract. In this study, a non-autonomous (temperature dependent) and autonomous (tempera-
ture independent) models for the transmission dynamics of malaria in a population are designed and
rigorously analysed. The models are used to assess the impact of temperature changes on various con-
trol strategies. The autonomous model is shown to exhibit the phenomenon of backward bifurcation,
where an asymptotically-stable disease-free equilibrium (DFE) co-exists with an asymptotically-stable
endemic equilibrium when the associated reproduction number is less than unity. This phenomenon is
shown to arise due to the presence of imperfect vaccines and disease-induced mortality rate. Thresh-
old quantities (such as the basic offspring number, vaccination and host type reproduction numbers)
and their interpretations for the models are presented. Conditions for local asymptotic stability of the
disease-free solutions are computed. Sensitivity analysis using temperature data obtained from Kwazulu
Natal Province of South Africa [K. Okuneye and A.B. Gumel. Mathematical Biosciences 287 (2017)
72–92] is used to assess the parameters that have the most influence on malaria transmission. The
effect of various control strategies (bed nets, adulticides and vaccination) were assessed via numerical
simulations.
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1. Introduction

Malaria is an important mosquito borne disease with a global distribution and significant public health
burden. It is a life-threatening infection that is caused by Plasmodium parasite, spread and sustained through
bites by female Anopheles mosquitoes on susceptible and infected humans [42]. There are more than hundred
species of Plasmodium that can infect different animal species such as reptiles, birds and various mammals [38],
among which five species (P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi) specifically cause
human infections [17, 42]. Out of the aforementioned species, P. vivax (which is the dominant malaria parasite
outside of sub-Saharan Africa) and P. falciparum (the most prevalent malaria parasite on the African continent
and responsible for most malaria-related deaths globally) were responsible for 891,000 deaths globally within
the period 2015–2016 [42].

The most important environmental variables that affect mosquito population are suitable temperature and
appropriate aquatic breeding sites. Temperature affects both survival and development rate of mosquitoes while
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surface wetness limits the population size of aquatic mosquitoes [37]. In addition, temperature is a key deter-
minant of environmental suitability for transmission of malaria in human. The spatial limits of the distribution
and seasonal activities of malaria are sensitive to climate factors, as well as the local capacity to control the
disease [8]. The dynamics and distribution of malaria strongly depend on the interplay between the parasite,
the mosquitoes and the environment [28, 34], it has recently been shown that mosquito and parasite biology are
influenced not only by average temperature, but also by the extent of the daily temperature variation [5]. At
the extremes, temperature regimes constrain the geographical extent of the disease and, within this envelope,
contribute to determining its intensity [22]. These constraints are temporally dynamic, with fluctuations in
transmission suitability and intensity driven by seasonal and inter-annual temperature cycles. The importance
of temperature as an environmental determinant of malaria endemicity arises from a series of effects on the life
cycles of the plasmodium parasite and anopheles mosquitoes [22].

Although, there have been tremendous success in the reduction of malaria cases especially in Africa, never-
theless, mortality due to the disease incidences still remains high in comparison to other infections. Over the
years, there have been several initiatives aimed at ending malaria cases, some of which include WHO’s Roll
Back Malaria program, the Multilateral Initiative in Malaria, the Medicines for Malaria Venture, the Malaria
Vaccine Initiative, and the Global Fund to Fight AIDS, TB and Malaria, which supports the implementation
of prevention and treatment programs [38]. In fact, there is no single way of preventing malaria, however, there
are a number of ways to decrease the transmission of the disease which include the use of treated nets, as well
as the use of larvicides and adulticides to clear mosquito breeding sites and kill adult mosquitoes, respectively.
Although there is no specific effective vaccine for malaria at the moment, a number of candidate vaccines target-
ing different stages of the malaria parasite life-cycle have been developed or are currently under development,
in particular, RTS,S/AS01 is a strong candidate for the prevention of Plasmodium falciparum infection, in fact
phase 3 trials of the vaccine has been completed [41]. Predicting the public health impact of a candidate malaria
vaccine requires using clinical trial data to estimate the vaccine’s efficacy profile, initial efficacy after vaccination
and the pattern through which the vaccine efficacy wanes over time. With an estimated vaccine efficacy profile,
the effects of vaccination on malaria transmission can be simulated with the aid of mathematical models [41].

A number of mathematical models have been developed in the literature to gain insights into the effects
of temperature, climate change (or seasonality) in the transmission dynamics of mosquito borne diseases in
a community, see for instance [1–3, 7, 16, 17, 19, 21, 22, 25–28, 31, 32, 34, 36, 43]. Eikenberry and Gumel
[17] extensively review the idea of mathematical modeling of climate change in the transmission dynamics of
malaria. Greenhalgh and Moreim [21] study SIRS epidemic model with general seasonal variation in the contact
rate. Moreim and Greenhalgh [26] applies generalised periodic vaccination strategy to model for control of the
spread and transmission of an infectious disease with seasonal varying contact rate. Dushoff [16] incorporate
seasonality of birth rate into the standard deterministic SIR and SEIR epidemic models and identify parameter
regions in which birth seasonality can be expected to have observable epidemiological effects. Bury et al. [7]
develop a simple socio-climate model by coupling an Earth system model to a social dynamics model, they
concluded that socio-climate models should be included in the ensemble of models used to project climate
change. In particular, malaria has received lots of attention. Mordecai et al. [27] considered a non-linear response
of mosquito and malaria parasite to temperature which are closely consistent with field data, the work which
changed predictions on how temperature change affects malaria predicts optimal malaria transmission at 25 ◦C.
A malaria transmission model with periodic birth rate and age structure for the vector population was rigorously
analysed by Loy and Zhao [25]. The examination of the process via which parasite development within the
mosquito (extrinsic incubation period) is expected to vary over time and space, depending on the diurnal
temperature range and baseline mean temperature in Kenya and across Africa was presented by Blanford et al.
[5]. Agusto et al. [2] consider a temperature-dependent deterministic model that gave some qualitative insights
into the effects of temperature variability on malaria transmission dynamics, the model incorporates gradual
increase in infection-acquired immunity via repeated exposure to malaria infection. The impact of variability
in temperature and rainfall on the transmission dynamics of malaria in age-structured population, with the
dynamics of immature and mature mosquitoes was also considered by Okuneye and Gumel [31]. A malaria
model that qualitatively studied the effect of seasonal variations (wet and dry seasons) on the spread of malaria
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was introduced and analysed by Dembele et al. [13], the authors present an explicit formulation for the basic
reproduction ratio and stability analysis of the disease free equilibrium. Olaniyi et al. [33] present malaria model
that takes into account time-dependent control functions such as personal protection, treatments and mosquito
reduction intervention strategies.

In this study, we consider both autonomous and non-autonomous deterministic models for the transmission
dynamics of malaria with control in the presence of temperature variability. Notable feature of the model is that
the host population is basically divided according to their vaccination status and the use of multiple control and
prevention strategies. The model further assumed that recovered individuals do not become wholly susceptible.
The paper is organized as follows. A non-autonomous malaria model is developed and some of its dynamical
properties are discussed in Section 2. The autonomous model is analysed for its dynamical properties in Section 3.
Endemic equilibrium and the backward bifurcation analysis of the autonomous model is presented in Section 4.
Section 5 presents the analysis of the non-autonomous system. The effect of various control strategies is provided
in Section 6. Sensitivity analysis and numerical simulations are presented in Section 7.

2. Model formulation

The total human population at time t, denoted by NH(t), is divided into populations of vaccinated and
non-vaccinated individuals. The sub-population of non-vaccinated individuals are further sub-divided into 5
mutually exclusive sub-population of wholly susceptible (without ever been infected) (SU (t)), susceptible after
recovery (WU (t)), exposed (EU (t)), infected (IU (t)) and recovered (RU (t)) humans. Similarly, the sub-population
of vaccinated individuals are sub-divided into wholly susceptible (SV (t)), susceptible after recovery (WV (t)),
exposed (EV (t)), infected (IV (t)) and recovered (RV (t)) humans, so that the total human population at time t
is given by

NH(t) = SU (t) + SV (t) +WU (t) +WV (t) + EU (t) + EV (t) + IU (t) + IV (t) +RU (t) +RV (t).

In order to assess the potential effect of temperature dependent oviposition of mosquitoes, the population of
mosquitoes are divided into aquatic and non-aquatic stages. The aquatic stage (which involves egg, larva and
pupa) is represented by a single equation (AM (t)). The non-aquatic (adult) stage is further divided into suscep-
tible (MU (t)), exposed (ME(t)) and infected (MI(t)) mosquitoes. so that the total adult mosquito population
(in the non-aquatic stage) is given by

NV (t) = MU (t) +ME(t) +MI(t).

Note that, in this study only female mosquitoes are considered as male mosquitoes are non-infectious. The model
incorporates the use of larvicides (to clear aquatic mosquitoes) and adulticides (to kill matured mosquitoes). In
either case, the death rates due to the use of larvicides and adulticides are proportional to successful rates of
applications of larvicides and adulticides.

2.1. Dynamics of humans

The population of wholly susceptible humans is generated by birth (or immigration) at a constant rate ΠH .
This population increases through the loss of vaccination-acquired immunity by wholly vaccinated individuals
(at a waning rate ωV ). It is decreased by vaccination (at a rate ξV which move to the class of wholly vaccinated
humans). Proportion of this individuals (in SU class) acquire malaria infection following effective contact with
infectious mosquitoes in MI class at a temperature dependent rate λH(T ), given by

λH(T ) =
βV HMI(t)

NV (t)
(1− εBαB)aM (T ),
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where the parameter βV H is a transmission probability from infectious mosquitoes to susceptible humans. The
parameter aM (T ) is the temperature dependent biting rate of mosquitoes, 0 < εB < 1 represents efficacy rate of
bed nets and αB measure compliance rate in the use of bed nets (low values of αB imply limited use of bed nets
by the members of the public, whereas values of αB close to one imply widespread use of bed nets). Therefore
εBαB represents the use of insect repellents to minimize contacts with mosquitoes. Natural mortality occurs in
all human classes at a rate µH , so that

dSU (t)

dt
= ΠH + ωV SV (t)− ξV SU (t)− λH(T )SU (t)− µHSU (t).

The population of a wholly vaccinated individuals SV is generated by vaccination of susceptible individuals
at the rate ξV . This population decreases due to waning of vaccine (at the rate ωV ), infection at the rate
λH(T )(1− εV ) (where 0 < εV < 1 is a vaccine efficacy) and by natural death (at the rate µH). This gives

dSV (t)

dt
= ξV SU (t)− λH(T )(1− εV )SV (t)− ωV SV (t)− µHSV (t).

The populations of non-vaccinated (WU ) and vaccinated (WV ) susceptible individuals (who are partially
immune due to prior infection) are generated following loss of partial immunity by recovered individuals that
are non-vaccinated and vaccinated at the rates τU and τV , respectively. These populations decrease by secondary
infection at a reduced rate λH(T )(1− εW ) (where εW is a protection rate due to prior malaria infection) and
by natural death. So that

dWU (t)

dt
= τURU (t)− λH(T )(1− εW )WU (t)− µHWU (t),

dWV (t)

dt
= τVRV (t)− λH(T )(1− εW )WV (t)− µHWV (t).

The populations of non-vaccinated exposed (EU ) and vaccinated exposed (EV ) individuals are generated by
the infection of non-vaccinated (SU , WU ) and vaccinated (SV , WV ) individuals at the rates λH , λH(T )(1− εW )
and λH(1− εV ), λH(T )(1− εW ), respectively. These populations are reduced by progressing to non-vaccinated
and vaccinated infectious classes at the rates σU and σV , respectively, and by natural death. Thus

dEU (t)

dt
= λH(T )SU (t) + λH(T )(1− εW )WU (t)− σUEU (t)− µHEU (t),

dEV (t)

dt
= λH(T )(1− εV )SV (t) + λH(T )(1− εW )WV (t)− σV EV (t)− µHEV (t).

The populations of non-vaccinated infectious (IU ) and vaccinated infectious (IV ) individuals are generated
by progression of non-vaccinated and vaccinated exposed individuals to the infectious classes at the rates σU
and σV , respectively. These populations decreases by recovery at the rates γU and γV , respectively, natural
death and disease-induced death at the rates δU and δV , respectively. This gives

dIU (t)

dt
= σUEU (t)− γUIU (t)− δUIU (t)− µHIU (t),

dIV (t)

dt
= σV EV (t)− γV IV (t)− δV IV (t)− µHIV (t).

The populations of non-vaccinated recovered (RU ) and vaccinated recovered (RV ) individuals are generated
by the recovery of non-vaccinated and vaccinated infectious individuals at the rates γU and γV , respectively.
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The populations are reduces by loss of partial immunity at the rates τU and τV , respectively, and natural death.
So that

dRU (t)

dt
= γUIU (t)− τURU (t)− µHRU (t),

dRV (t)

dt
= γV IV (t)− τVRV (t)− µHRV (t).

2.2. Dynamics of mosquitoes

In the presence of intervention (using larvicides), the population of aquatic mosquitoes (eggs, larvae and
pupae) increases through oviposition by reproductive mosquitoes at a temperature dependent rate φA(T )(

1 − αLεL
)
, where αL is a rate of applying larvicides and εL is an efficacy of larvicides (so that αLεL = cL

accounts for effectiveness of larvicides). The growth of aquatic mosquitoes is moderated by a constant envi-
ronmental carrying capacity K. This population decreases by maturation at a temperature dependent rate

σA(T ), die naturally and due to the use of larvicides at a rate µA(T )
(

1 +αLεL

)
, where µA(T ) is a temperature

dependent death rate. Thus

dAM (t)

dt
= φA(T )

(
1− αLεL

)(
1− AM (t)

K

)
NV (t)− σA(T )AM (t)− µA(T )

(
1 + αLεL

)
AM (t).

The population of susceptible adult female mosquitoes (MU (t)) is generated by maturation of aquatic
mosquitoes at the temperature dependent rate σA(T ). It decreases by acquiring infection following a substantial
contact with an infectious human at a temperature dependent infection rate λV (T ), given by

λV (T ) =
βHV
NH(t)

(1− εBαB)aM (T )
[
IU (t) + ηIIV (t) + ηURU + ηVRV

]
,

where, βHV is the probability of infection from infectious humans to susceptible mosquitoes. The parameters ηI ,
ηU and ηV are modification parameters which account for the reduction in the infectivity of individuals in IV , RU
and RV classes in comparison to those in IU class, respectively. Similarly, the population is further decreases at

a rate µV (T )
(

1 + αAεA

)
, where µV (T ) is a temperature dependent death in the absence of intervention, αA is

a rate of applying adulticides and εA is an efficacy of adulticides (so that αAεA = cA accounts for effectiveness
of indoor residual spraying). Thus

dMU (t)

dt
= σA(T )AM (t)− λV (T )MU (t)− µV (T )

(
1 + αAεA

)
MU (t).

The population of exposed mosquitoes in the ME(t) class is generated by the infection of adult mosquitoes in
the MU (t) class at the rate λV (T ). This population decreases by progression to infectious class at a temperature

dependent rate σM (T ) and die naturally and due to the use of adulticides at the rate µV (T )
(

1 +αAεA

)
. Hence

dME(t)

dt
= λV (T )MU (t)− σM (T )ME(t)− µV (T )

(
1 + αAεA

)
ME(t).

Finally, the population of infectious mosquitoes in the MI(t) class is generated by progression of mosquitoes
in the ME(t) class to MI(t) class at the temperature dependent rate σM (T ). It decreases due to natural death
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and the use of adulticides at the rate µV (T )
(

1 + αAεA

)
. This gives

dMI(t)

dt
= σM (T )ME(t)− µV (T )

(
1 + αAεA

)
MI(t).

Thus, the above formulations for human and mosquito dynamics are represented by the following non-
autonomous deterministic system of non-linear differential equations (a flow diagram of the model is depicted
in Fig. 1 and the state variables and parameters of the model are described in Tabs. 1 and 2):

dSU (t)

dt
= ΠH + ωV SV (t)− ξV SU (t)− λH(T )SU (t)− µHSU (t),

dSV (t)

dt
= ξV SU (t)− λH(T )(1− εV )SV (t)− ωV SV (t)− µHSV (t),

dWU (t)

dt
= τURU (t)− λH(T )(1− εW )WU (t)− µHWU (t),

dWV (t)

dt
= τVRV (t)− λH(T )(1− εW )WV (t)− µHWV (t),

dEU (t)

dt
= λH(T )SU (t) + λH(T )(1− εW )WU (t)− σUEU (t)− µHEU (t),

dEV (t)

dt
= λH(T )(1− εV )SV (t) + λH(T )(1− εW )WV (t)− σV EV (t)− µHEV (t),

dIU (t)

dt
= σUEU (t)− γUIU (t)− δUIU (t)− µHIU (t),

dIV (t)

dt
= σV EV (t)− γV IV (t)− δV IV (t)− µHIV (t),

dRU (t)

dt
= γUIU (t)− τURU (t)− µHRU (t),

dRV (t)

dt
= γV IV (t)− τVRV (t)− µHRV (t),

dAM (t)

dt
= φA(T )

(
1− αLεL

)(
1− AM (t)

K

)
NV (t)− σA(T )AM (t)− µA(T )

(
1 + αLεL

)
AM (t),

dMU (t)

dt
= σA(T )AM (t)− λV (T )MU (t)− µV (T )

(
1 + αAεA

)
MU (t),

dME(t)

dt
= λV (T )MU (t)− σM (T )ME(t)− µV (T )

(
1 + αAεA

)
ME(t),

dMI(t)

dt
= σM (T )ME(t)− µV (T )

(
1 + αAεA

)
MI(t).

(2.1)

For simulation purpose, a generalized temperature function given by

T (t) = T0

[
1 + T1 cos

(
2π

365
(ωt+ φ)

)]
(2.2)

will be used, where T0 is the mean annual temperature, T1 represents the variation about the mean, ω measures
the periodicity of the function and φ is the phase shift of the function. Therefore the time dependent temper-
ature T = T (t), the temperature dependent parameters φA(T ), σA(T ), µA(T ), µV (T ), aM (T ) and σM (T ) are
continuous, bounded, positive and ω−periodic functions. That is they belong to L∞+ (0, ω,R+).

Using similar argument to those in [10–12, 18, 25, 29] (and some of the references therein) and the basic fact
that for mosquito-borne diseases (such as malaria), the total number of bites made by mosquitoes must equal
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Figure 1. Schematic diagram of the basic model (2.1).

the total number of bites received by humans. Thus, for the number of bites to be conserved, the following
equation must hold

βHVNV = βV H(NH , NV )NH ,

so that

NV =
βV H(NH , NV )

βHV
NH .

Thus, the force of infection in human populations is now given by

λH(T ) =
βHVMI(t)

NH(t)
(1− εBαB)aM (T ). (2.3)

The model extends (in certain ways) some malaria transmissions models in the literature, such as those in
[1–3, 17, 22, 25, 28, 31, 34, 43], by inter alia:

(I) Assuming that recovered individuals do not revert to wholly-susceptible class because they enjoy reduced
susceptibility to new malaria infection [2, 3];



8 S. GARBA AND U.A. GARBA

(II) Incorporating vaccination and the use of treated bed nets in humans (this was not considered in [2, 3, 31]);
(III) Including both the use of larvicides and adulticides in mosquito populations (this was not considered in

[1–3, 17, 22, 25, 28]);
(IV) Dividing human population into compartments based on malaria infection in line with their vaccination

status (this was not considered in [2, 3, 31]);
(V) Considering a reduced disease induced death rate, faster recovery rate and slower waning of immunity for

vaccinated humans, i.e δV ≤ δU , γV ≥ γU and τV ≤ τU , this was also not considered in [1–3, 17, 22, 25,
28, 34];

(VI) Incorporating the effect of endemicity of malaria by differentiating wholly susceptible from susceptible
with prior infection, this was not considered in [2, 3, 22, 25, 28, 33, 34, 43].

2.3. Temperature dependent parameters

Temperature is known to directly affects vector borne diseases in host; insects are poikilothermic and hence
their internal temperature is greatly influenced by environmental temperature, which affect their physiology,
as well as exposing the pathogen they carry to environmental temperature [34]. Using the formulations in
[6, 27, 31, 36], the temperature dependent parameters of malaria model (2.1) are defined either as Briere or
Quadratic functions as follows. The temperature dependent:

1. Oviposition rate (φA(T )) of mosquitoes is given by

φA(T ) = −0.153T 2 + 8.61T − 0.487.

2. Maturation rate (σA(T )) of aquatic mosquitoes is given by

σA(T ) = 0.000111(T − 14.7)
√

34− T , (0 ≤ T ≤ 34).

3. Death rate of aquatic mosquitoes is obtained from the formulation in [36] as

µA = 0.0025T 2 − 0.094T + 0.9.

4. Daily survival probability of adult mosquitoes (a function of the adult mosquito mortality rate) also follows
from [27] as

ρM (T ) = e−µV (T ) = −0.000828T 2 + 0.0367T + 0.522,

so that the temperature dependent mortality rate of adult mosquitoes (µV (T )) is given by

µV (T ) = − ln(ρM (T )) = − ln(−0.000828T 2 + 0.0367T + 0.522).

5. Biting rate (aM ) and parasite development rate (σM (T )) of adult mosquitoes are respectively given by

aM (T ) = −0.000203T (T − 11.7)
√

42.3− T , (0 ≤ T ≤ 42.3)

and

σM (T ) = 0.000111(T − 14.7)
√

34.4− T , (0 ≤ T ≤ 34.4).

6. Finally the temperature dependent vector competence defined as the product of the proportion of the
bites by infective mosquitoes that infect susceptible humans and the bites by susceptible mosquitoes on
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Figure 2. Profile of temperature (T ) dependent oviposition rate of adult mosquitoes given by
φA(T ) = −0.153T 2 + 8.61T−97.7 and maturation rate of aquatic mosquitoes given by σA(T ) =
0.000111T (T − 14.7)

√
34− T .

Figure 3. Profile of temperature (T ) dependent death rate of aquatic mosquitoes given by
µA(T ) = 0.0025T 2−0.09T + 0.9 and daily survival probability of adult mosquitoes given by
σM (T ) = −0.000828T 2 + 0.0367T + 0.522.

infectious humans that infect susceptible mosquitoes [27] is given by

V (T ) = −0.54T 2 + 25.2T − 206.

The graphical representations of the temperature dependent parameters are presented in Figures 2, 3, 4 and 5.

2.4. Basic properties of the model (2.1)

The basic dynamical properties of the non-autonomous system given by (2.1) is explored. Adding the first
ten equations of the model (2.1) gives

dNH
dt

= ΠH − µHNH − δUIU − δV IV . (2.4)
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Figure 4. Profile of temperature (T ) dependent death rate of adult mosquitoes given by
µV (T ) = − ln(−0.000828T 2 + 0.0367T + 0.522) and biting rate of adult mosquitoes given by
aM (T ) = 0.000203T (T − 11.7)

√
42.3− T .

Figure 5. Profile of temperature (T ) dependent parasite development rate in mosquitoes
given by σM (T ) = 0.000111T (T − 14.7)

√
34.4− T and vectorial capacity of mosquitoes given

by V (T ) = −0.54T 2 + 25.2T−206.

Since

dNH
dt
≤ ΠH − µHNH , (2.5)

it follows that dNH/dt < 0 if NH(t) > ΠH/µH . Thus, a standard comparison theorem can be used to show that

NH(t) ≤ NH(0)e−µH + ΠH

µH

(
1− e−µH

)
, which is bounded. Furthermore, letting µM (T ) = min{µA(T ), µV (T )},

and cM = min{αLεL, αAεA}, the total mosquito population (in both aquatic and non-aquatic stages) satisfies

dNV
dt
≤ φA(T )

(
1− cM

)(
1− AM (t)

K

)
NV (t)− µM (T )(1 + cM )NV .
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Using similar approach to that of [25] and Gronwall’s lemma, the mosquito population has a globally-
asymptotically periodic solution satisfying

N∗V (t) = e−
∫ t
0
µM (s)(1+cM )ds ×

[∫ t

0

{
φA(s)(1− cM )(1− AM (s)

K
)NV (s)e

∫ s
0
µM (k)(1+cM )dk

}
d(s)

+

∫ ω
0

{
φA(s)(1− cM )(1− AM (s)

K )NV (s)e
∫ u
0
µM (n)(1+cM )dn

}
d(s)

e
∫ ω
0
µM (n)(1+cM )dn − 1

]
.

(2.6)

Also from [25], it is assumed that the mosquito population stabilizes at a periodic state, thus for the continuous,
bounded, positive and ω-periodic functions φA(T ), σA(T ), µA(T ), µV (T ), aM (T ) and σM (T ), there exist a
positive number h0, such that

φA(T )(1− cM )
(

1− AM (t)

K

)
L(t)− µM (T )(1 + cM )L < 0, for all L ≥ h0. (2.7)

Lemma 2.1. Consider the non-autonomous model (2.1) with non-negative initial condition for all t ≥ 0. Then
for any x ∈ C([0],R14

+ ), the model has a unique non-negative solution through x that is ultimately bounded and
uniformly bounded.

Let X ∈ C([0],R14
+ ) and G(t, x) := B(X)X + Z be the right hand side of (2.1), where X =

(SU , SV ,WU ,WV , EU , EV , IU , IV , RU , RV , AM ,MU ,ME ,MI)
T , B(X) is the 14 × 14 matrix of coefficients of

the non-constant part of (2.1), while Z = (ΠH/µH , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T .

It is clear that for all x ∈ C([0],R14
+ ), G(t, x) is continuous, and Lipschitzian in x, in addition,

∂Gj(t,x)
∂xi

> 0
for all i = 1, 2, . . . 14 whenever xi ≥ 0 and xj = 0, thus existence, uniqueness and positivity of solution through
(0, X) is guaranteed [25]. Following the approach of [14, 15, 31] and the fact that B(X) is Metzler and Z > 0,
the system is positively invariant in C([0],R14

+ ).

Moreover it follows from (2.5) and (2.7), that lim sup
t−→∞

NH(t) ≤ ΠH

µH
and lim sup

t−→∞
(AM + MU + ME + MI −

N∗V (t)) ≤ 0, where N∗V (t) is the unique ω-periodic solution defined by (2.6). Furthermore, dNH(t)
dt < 0 whenever

NH(t) > ΠH

µH
and dNV (t)

dt < 0 if NV (t) > h0. Hence all solutions for the system given by (2.1) are ultimately and

uniformly bounded [25].

3. Analysis of the autonomous model

In this section, we analyse the dynamics of the autonomous form of the model (2.1). That is the case when
the model parameters are temperature independent. Thus

aM (T ) = aM , φA(T ) = φA, σA(T ) = σA, µA(T ) = µA, σM (T ) = σM , µV (T ) = µV .

We first of all analysed mosquito-only model in the absence of interaction with humans for its basic dynamical
features.

3.1. Mosquito-only population model

In this section, we carry out analysis of mosquito-only population model in the absence of interaction with
humans and no intervention (adulticide or larvicide) is apply. In the absence of humans, the model (2.1), reduces
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to the following mosquito-only system:

dAM (t)

dt
= φA

(
1− AM (t)

K

)
NV (t)− (σA + µA)AM (t),

dMU (t)

dt
= σAAM (t)− µVMU (t).

(3.1)

The system (3.1) has a threshold quantity called the basic offspring number denoted by N0, given by

N0 =
φAσA

(σA + µA)µV
. (3.2)

The threshold quantity (N0) can be interpreted as follows: The average time spent by mosquito in the aquatic
stage is given by 1/(σA + µA), where σA is the rate at which aquatic mosquitoes develop into an adult mosquito,
so that the probability that an aquatic mosquito develop into an adult female mosquito is given by

σA
σA + µA

. (3.3)

In the absence of disease, the average life expectancy of an adult female mosquito is given by 1
µV

, so that the
average eggs laid by an adult female mosquito throughout her life span is given by

φA
µV

. (3.4)

Thus, the product of (3.3) and (3.4) gives the basic offspring number of the mosquito-only population model.
The mosquito-only model (3.1) has two equilibria depending on N0. If N0 ≤ 1, then, the system (3.1) has

only the trivial equilibrium called an extinction equilibrium (E0) given by

E0 = (0, 0).

If N0 > 1, then, the system (3.1) has a non-trivial equilibrium given by

E1 =

[
K

(
1− 1

N0

)
,
KσA
µV

(
1− 1

N0

)]
.

It is worth mentioning that the trivial equilibrium (E0) is biologically less attractive since mosquitoes goes
extinct in the population. Rewriting the mosquito-only model (3.1) in the form ẋ = f(x), where Ω∗ ⊆ R2

+ and
f : Ω∗ → R2

+ is continuous. Then we have the following results (The proof is given in Appendix A).

Theorem 3.1. The extinction equilibrium (E0) is globally-asymptotically stable (GAS) when N0 ≤ 1 and
unstable otherwise. The non-trivial equilibrium (E1) exists and is locally-asymptotically stable (LAS) when
N0 > 1.

The epidemiological implication of Theorem (3.1) is that if the basic offspring number can be brought to a
value less than unity, then mosquito population will goes to extinction and the diseases dies out in time (since
no horizontal transmission).

3.2. Disease-free equilibrium

The disease-free equilibrium (DFE) is the steady-state solution of the autonomous system (form of model
(2.1)) obtained in the absence of disease. The autonomous form of (2.1) has two disease-free equilibria depending
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on the magnitude of N0. Suppose N0 ≤ 1 and the diseased compartments are zero, then the model has a mosquito
extinction DFE, E2, given by

E2 =

(
S∗U , S

∗
V ,W

∗
U ,W

∗
V , E

∗
U , E

∗
V , I

∗
U , I

∗
V , R

∗
U , R

∗
V , A

∗
M ,M

∗
U ,M

∗
E ,M

∗
I

)

=

(
ΠH(ωV + µH)

µH(ωV + µH + ξV )
,

ΠHξV
µH(ωV + µH + ξV )

, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
.

(3.5)

If N0 > 1, then the model has a non-mosquito extinction DFE, E3 given by

E3 =(
ΠH(ωV + µH)

µH(ωV + µH + ξV )
,

ΠHξV
µH(ωV + µH + ξV )

, 0, 0, 0, 0, 0, 0, 0, 0,K

(
1− 1

N0

)
,

KσA
(1 + αAεA)µV

(
1− 1

N0

)
, 0, 0

)
.

(3.6)
Notice that E2 is biologically less attractive (due to absence of mosquitoes), thus we concentrate on E3. The
local stability of E3 can be established using the next generation method [39]. Let

K1 = ξV + µH , K2 = ωV + µH , K3 = σU + µH , K4 = σV + µH , K5 = γU + δU + µH ,

K6 = γV + δV + µH , K7 = τU + µH , K8 = τV + µH , K9 = σA + µA + µAαLεL,

K10 = µV + µV αAεA, and K11 = σM + µV + µV αAεA.

(3.7)

It follows then that the vaccinated reproduction number, denoted by, R0V , is given by

R0V =
√
Q1 +Q2. (3.8)

where

Q1 =
β2
HV a

2
M (1− εBαB)2σMσUM

∗
US
∗
U

(N∗H)2K3K5K10K11

(
1 +

γUηU
K7

)

and

Q2 =
β2
HV a

2
M (1− εBαB)2(1− εV )σMσV S

∗
VM

∗
U

(N∗H)2K4K6K10K11

(
ηI +

γV ηV
K8

)
. (3.9)

Following Theorem 2 of [39], the following result is established.

Lemma 3.2. The DFE of the model (2.1) is locally-asymptotically stable if R0V < 1, and unstable if R0V > 1.

The threshold quantity R0V , is the vaccinated reproduction number of the disease. It represents the average
number of secondary malaria cases that one infected case can generate if introduced into a population where
fraction are vaccinated and the aforementioned control strategies (bed nets, adulticides and larvicides) are used.
It can be interpreted as follows.

Infection in humans occurs either in the class of non-vaccinated susceptible or vaccinated susceptible. Sus-
ceptible humans acquire infections following effective contact with infectious mosquito in MI class. The number
of new human infections in SU class generated by an infectious mosquito in the MI class is the product of the

infection rate of infectious mosquito (βHV aM (1−εBαB)
N∗

H
), probability that a mosquito survives the exposed class
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(ME) and move to infected class ( σM

K11
) and the average duration in the infectious stage ( 1

K10
). Thus the average

number of new human infection generated in SU class by an infectious mosquito (near DFE) is given by (noting
that S∗U = ΠH(ωV + µH)/(µH(ωV + µH + ξV ))).

βHV aM (1− εBαB)σMS
∗
U

N∗HK10K11
=
βHV aM (1− εBαB)σMΠH(ωV + µH)

N∗HK10K11µH(ωV + µH + ξV )
. (3.10)

Similarly, the number of infections generated by an infected mosquito in the SV class is the product of the

infection rate of infected mosquito (βHV aM (1−εBαB)
N∗

H
), the probability that a mosquito survives the exposed class

and move to infected class ( σM

K11
) and the average duration in the infectious stage ( 1

K10
). So that the average

number of new human infection generated in SV class by an infectious mosquito (near DFE) is given by

βHV aM (1− εBαB)σM (1− εV )S∗V
N∗HK10K11

=
βHV aM (1− εBαB)σM (1− εV )ΠHξV

N∗HK10K11µH(ωV + µH + ξV )
. (3.11)

Susceptible mosquitoes (MU ) acquire infection following effective contact with infectious humans (in search
for blood meal) in either of IU , IV , RU or RV classes. The number of new mosquitoes infections generated
by non-vaccinated infectious individual in IU class is the product of the infection rate of infectious humans

(βHV aM (1−εBαB)
N∗

H
), the probability that an individual survives the exposed class EU and move to infectious

IU class (σU

K3
) and the average time spent in IU class ( 1

K5
). Furthermore, the number of new mosquito cases

generated by non-vaccinated recovered humans in RU class (near the DFE) is the product of the infection rate

of recovered humans (βHV aM (1−εBαB)
N∗

H
), the probability that an individual survives EU and move to IU class

(σU

K3
), the probability that an individual survives IU and move to RU class ( γUK5

) and the average duration in

RU compartment ( 1
K7

). Thus, the average number of new mosquitoes infection generated by non-vaccinated
infectious humans (infected or recovered) is given by (noting that M∗U = KσA/[µV (1 + αAεA)](1− 1/N0)).

[
βHV aM (1− εBαB)σU

N∗HK3K5
+
βHV aM (1− εBαB)σUγUηU

N∗HK3K5K7

]
M∗U

=
βHV aM (1− εBαB)σUM

∗
U

N∗HK3K5

(
1 +

γUηU
K7

)
.

(3.12)

Using similar argument as above, with ηI and ηV accounting for reduction in infectivity of vaccinated infectious
and vaccinated recovered humans in comparison to non-vaccinated infectious humans, the average number of
new mosquitoes infections caused by infectious humans in IV or RV compartments is given by

βHV aM (1− εBαB)σVM
∗
U

N∗HK4K6

(
η1 +

γV ηV
K8

)
. (3.13)

Thus, the total number of infections generated by infectious mosquito in the non-vaccinated humans is given
by the product of (3.10) and (3.12) denoted by

Q1 =
β2
HV a

2
M (1− εBαB)2σMσUM

∗
US
∗
U

(N∗H)2K3K5K10K11

(
1 +

γUηU
K7

)
. (3.14)
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Similarly, the total number of infections generated by infectious mosquito in the vaccinated humans is given by
the product of (3.11) and (3.13) represented by

Q2 =
β2
HV a

2
M (1− εBαB)2(1− εV )σMσV S

∗
VM

∗
U

(N∗H)2K4K6K10K11

(
ηI +

γV ηV
K8

)
. (3.15)

Thus, the square root of the sum of (3.14) and (3.15) represented by (3.8) gives the vaccinated reproduction
number.

3.3. Type reproduction number

For a homogeneous system, the vaccinated reproduction number can be seen as the control threshold required
to eliminate the disease from a community. The case is different in the case of multiple host types. The type-
reproduction number (T) is defined as

Ti = eTK(I − (I − P )K)−1e, (3.16)

where I is an identity matrix, P is a projection matrix, e is a unit vector with all elements equal to zero except
the ith term and K = FV −1 is the next generation matrix with large domain. The type reproduction number
correctly determines the critical control effort for heterogeneous populations [23].

We should note from the next generation matrix (K = FV −1) that new infections occur only in compart-
ments EU , EV and ME , and therefore it can not be used to compute the type reproduction number for other
infected/infectious compartments without new infection. Let the type reproduction numbers of compartments
EU , EV and ME be respectively denoted by T1, T2 and T3. From (3.16), it can be shown that

T1 =
Q1

1−Q2
> 0, so that T1 < 1, implies Q1 +Q2 < 1, (since Q1 > 0 and Q2 > 0). (3.17)

Similarly,

T2 =
Q2

1−Q1
> 0, so that T2 < 1, implies Q1 +Q2 < 1, (3.18)

and,

T3 = Q1 +Q2 = R2
0V . (3.19)

Hence it follows from (3.17), (3.18) and (3.19) that Ti < 1 (for i = 1, 2, 3) implies R0V < 1 (and vice versa). The
quantity, Ti, is the expected number of cases in compartment i caused by one infected individual of type i in a
population where fractions are vaccinated, the infection might be directly or through chains of infections passing
through individuals of other types, it singles out the required control effort when targeting the population of
type i [23].
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4. Endemic equilibrium and backward bifurcation

4.1. Endemic equilibrium

Let the endemic equilibrium (the case when λH 6= 0 and λV 6= 0) of the model (2.1) be denoted by E∗∗ =(
S∗∗U , S

∗∗
V ,W

∗∗
U ,W ∗∗V , E∗∗U , E

∗∗
V , I

∗∗
U , I∗∗V , R∗∗U , R

∗∗
V

)
, where

S∗∗U =
M0ΠH

M0M2 − ωV ξV
, S∗∗V =

ΠHξV
M0M2 − ωV ξV

, W ∗∗U =
M0ΠHλ

∗∗
H σUγUτU(

M0M2 − ωV ξV
)(
K3K5K7M1 − λ∗∗HM3

) ,
W ∗∗V =

M0ΠHλ
∗∗
H σV γV τV(

M0M2 − ωV ξV
)(
K4K6K8M1 − λ∗∗HM4

) , E∗∗U =
λ∗∗H
(
S∗∗U + (1− εW )W ∗∗U

)
K3

,

E∗∗V =
λ∗∗H

[
S∗∗V + (1− εW )W ∗∗V

]
K4

, I∗∗U =
λ∗∗H σU

[
S∗∗U + (1− εW )W ∗∗U

]
K3K5

,

I∗∗V =
λ∗∗H σV

[
S∗∗V + (1− εW )W ∗∗V

]
K4K6

, R∗∗U =
λ∗∗H σUγU

[
S∗∗U + (1− εW )W ∗∗U

]
K3K5K7

,

R∗∗V =
λ∗∗H σV γV

[
S∗∗V + (1− εW )W ∗∗V

]
K4K6K8

, A∗∗M = K

[
1−

K9K10

[
λ∗∗V + µV (1 + αAεA)

]
φV σA

[
K10 + λ∗∗V

] ]
,

M∗∗U =
A∗∗MσA

K10 + λ∗∗V
, M∗∗E =

A∗∗Mλ
∗∗
V σA

K11

(
K10 + λ∗∗V

) , M∗∗I =
A∗∗Mλ

∗∗
V σMσA

K10K11

(
K10 + λ∗∗V

) ,

(4.1)

so that,

N∗∗H = S∗∗U + S∗∗V +W ∗∗U +W ∗∗V + E∗∗U + E∗∗V + I∗∗U + I∗∗V +R∗∗U +R∗∗V , M0 = λ∗∗H (1− εV ) + ωV + µH ,

M1 = λ∗∗H (1− εV ) + µH , M2 = λ∗∗H + ξV + µH , M3 = σUγUτU (1− εW ), M4 = σV γV τV (1− εW ),

with,

λ∗∗H (T ) =
βHVM

∗∗
I (t)

N∗∗H (t)
(1− εBαB)aM (T ),

and,

λ∗∗V (T ) =
βHV
N∗∗H (t)

(1− εBαB)aM (T )
[
I∗∗U (t) + ηII

∗∗
V (t) + ηUR

∗∗
U + ηVR

∗∗
V

]
.

4.2. Backward bifurcation

Here we apply the method described in [9, 39] which is based on the use of Centre Manifold Theory to prove
the existence of backward bifurcation for the autonomous version of model (2.1). We claim the following result
(The proof is given in Appendix B):

Theorem 4.1. The autonomous malaria model (2.1) undergoes backward bifurcation at R0V = 1 whenever the
bifurcation coefficient given by a in equation (B.6) is positive.

The epidemiological implication of the phenomenon of backward bifurcation is that the classical requirement
of R0V < 1 is, although necessary, no longer sufficient for disease elimination.
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4.3. Non-existence of backward bifurcation

It is well known that disease induced death rate and imperfect vaccination are some of the major causes
of backward bifurcation in vector borne disease models. Let consider the case where disease induced mortality
is negligible (δU = δV = 0) and the vaccine is perfect (ωV = 0), then the bifurcation coefficient given by a in
equation (B.6) reduces to

a =

n∑
k,i,j=1

vkwIwj
∂2fk
∂xI∂xj

(0, 0) = −2(β∗HV )2(1− εBαB)2w2
14v14

(N∗H)2

{
N∗HP1 + P4P9S

∗
V (1− εV ) + P2P8S

∗
U

+ P8P10

(
N∗HεW − S∗V

)
+ P9P11

(
N∗HεW − S∗U

)
+ P9P11S

∗
V εV + P8P6S

∗
V + P9P7S

∗
U (1− εV )

} (4.2)

which is less than zero provided εW ≥ max
{
S∗
V

N∗
H
,
S∗
U

N∗
H

}
.

Lemma 4.2. The model (2.1) does not undergoes backward bifurcation at R0V = 1 provided δU = δV = ωV = 0

and εW ≥ max
{
S∗
V

N∗
H
,
S∗
U

N∗
H

}
.

5. Analysis of the non-autonomous model

Consider the non-autonomous model given by (2.1) with T (t) = T0

[
1 + T1 cos

(
2π
365 (ωt+ φ)

)]
as defined in

(2.2) and the time dependent basic offspring number given by

N0(t) =
φA(T )σA(T )(1− εLαL)

(σA(T ) + εLαL + µA(T ))(1 + εAαA)µV (T )
(5.1)

is strictly greater than 1. To find the disease-free state of the system given by (2.1), we let EU (t) = EV (t) =
IU (t) = IV (t) = RU (t) = RV (t) = ME(t) = MI(t) = 0 and obtained a non-trivial disease-free state given by

E4 =

(
S∗∗U , S

∗∗
V ,W

∗∗
U ,W ∗∗V , E∗∗U , E

∗∗
V , I

∗∗
U , I∗∗V , R∗∗U , R

∗∗
V , A

∗∗
M ,M

∗∗
U ,M∗∗E ,M∗∗I

)

=

(
ΠH(ωV + µH)

µH(ωV + µH + ξV )
,

ΠHξV
µH(ωV + µH + ξV )

, 0, 0, 0, 0, 0, 0, 0, 0, A∗∗M ,M
∗∗
U , 0, 0

)

where the pair (A∗∗M ,M
∗∗
U ) is the unique positive ω-periodic solution of

dA∗∗M (t)

dt
= φA(T )

(
1− A∗∗M (t)

K

)
N∗∗V (t)− σA(T )A∗∗M (t)− (1 + αLεL)µA(T )A∗∗M (t)

dM∗∗U (t)

dt
= σA(T )A∗∗M (t)− (1 + αAεA)µV (T )M∗∗U (t),

which is obtained when N0(t) > 1. On the other hand, a unique positive trivial non-periodic solution is obtained
when N0(t) ≤ 1.

5.1. Basic reproduction ratio

The local-asymptotic stability of the positive periodic disease-free state (E4) can be established using a
threshold parameter called the basic reproduction ratio [40]. We computed the basic reproduction ratio for the
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model (2.1) using the theory developed in [40] and used for many periodic models such as [1, 2, 25, 28, 31, 43]
and some of the references therein.

Consider the disease compartments of the model (2.1) given by (where T (t) is as defined in (2.2))

dEU (t)

dt
= λH(T )SU (t) + λH(T )(1− εW )WU (t)− σUEU (t)− µHEU (t),

dEV (t)

dt
= λH(T )(1− εV )SV (t) + λH(T )(1− εW )WV (t)− σV EV (t)− µHEV (t),

dIU (t)

dt
= σUEU (t)− γUIU (t)− δUIU (t)− µHIU (t),

dIV (t)

dt
= σV EV (t)− γV IV (t)− δV IV (t)− µHIV (t),

dRU (t)

dt
= γUIU − τURU − µHRU ,

dRV (t)

dt
= γV IV − τVRV − µHRV ,

dME(t)

dt
= λV (T )MU (t)− σM (T )ME(t)− (1 + αAεA)µV (T )ME(t),

dMI(t)

dt
= σM (T )ME(t)− (1 + αAεA)µV (T )MI(t),

(5.2)

where λH(T ) and λV (T ) are as defined earlier. The matrix of new infection terms F (t) and that of transfer in
and out of infectious compartments V (t) are respectively given by

F (t) =



0 0 0 0 0 0 0
S∗
HG0aM (T )

N∗
H

0 0 0 0 0 0 0
S∗
V G0aM (T )(1−εV )

N∗
H

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0
M∗

UG0aM (T )
N∗

H

G0aM (T )ηIM
∗
U

N∗
H

G0aM (T )ηUM
∗
U

N∗
H

G0aM (T )ηVM
∗
U

N∗
H

0 0

0 0 0 0 0 0 0 0


,

and

V (t) =



K3 0 0 0 0 0 0 0
0 K4 0 0 0 0 0 0
−σU 0 K5 0 0 0 0 0

0 −σV 0 K6 0 0 0 0
0 0 −γU 0 K7 0 0 0
0 0 0 −γV 0 K8 0 0
0 0 0 0 0 0 σM (T ) + µV (T )(1 + αAεA) 0
0 0 0 0 0 0 −σM µV (T )(1 + αAεA)


,

where,

G0 = βHV (1− εBαB). (5.3)
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Noticed that F (t) is non-negative and −V (t) is cooperative. Let K(t) =
(
EU (t), EV (t), IU (t), IV (t),

RU (t), RV (t),ME(t),MI(t)
)T

, then the linearization of (5.2) can be re-written in the form

dK

dt
=
(
F (t)− V (t)

)
K(t).

Following the approach of [25, 40], let Y (t, s) and ΦT = Y (t, 0) respectively be the evolution operator and
monodromy matrix of the linear ω-periodic system dy

dt = −V y(t), t ≥ s, that is for each s ∈ R, the 8× 8 matrix
Y (t, s) satisfies

dY

dt
= −V Y (t, s), Y (s, s) = I, t ≥ s,

where I is the identity matrix of order 8. Let ZT be the Banach space of all ω-periodic functions equipped with
the maximum norm and an ω-periodic function of s denoted by α(s) be the initial distribution of infectious
individuals in the community, then the rate at which new infections are produced by an infected individual
in the community who were introduced at time s is given by F (s)α(s) [2, 25, 40]. Likewise the distribution of
new infected individuals from infections at time s and remain in the infected compartments at a later time t is
Y (t, s)F (s)α(s). Therefore

θ(t) =

∫ t

−∞
Y (t, s)F (s)α(s)ds =

∫ ∞
0

Y (t, t− a)F (t− a)α(t− a)da (5.4)

gives the cumulative distribution of new infections at time t that are produced by all infected individuals (α(s))
introduced at sometimes before t.

Define the linear operator L : ZT −→ ZT by

(Lα)(s) =

∫ ∞
0

Y (t, t− a)F (t− a)α(t− a)da ∀t ∈ R, α ∈ ZT . (5.5)

Suppose ρ(L) is the spectral radius of L, then the basic reproduction ratio (R0T ) is given by ρ(L) [40]. It
is easy to show that, in addition to Assumptions A1 to A5 of [40] satisfied by the autonomous system, the
non-autonomous model (2.1) can be shown to satisfy the additional Assumptions A6 and A7 of [40]. Thus the
following stability result is obtained.

Theorem 5.1. The disease free state (E4), of the non-autonomous model (2.1) is LAS if R0T < 1 and unstable
if R0T > 1 provided N0(t) > 1.

6. Effect of control strategies

In this study we consider five main control strategies, namely:

(I) Bed nets-only strategy;
(II) Vaccination-only strategy;

(III) Mosquito control-only (larvicides and adulticides) strategy;
(IV) Bed nets and vaccination strategy;
(V) Bed nets, vaccination and mosquito control strategy (Hybrid strategy).

Using the functional definitions of aM , φA, σA, µA, σM and µV together with the following parameter values:
ΠH = 450, K = 150000, βHV = 0.64, µH = 0.0000342, εW = 0.5, τU = 0.1 τV = 0.02, γU = 0.015, γV = 0.017,
σU = 0.08, σV = 0.07, ηI = 0.7, ηU = 0.3, ηV = 0.1 as given in Table 2 (unless otherwise stated), the model will
be simulated to assess the effectiveness of these strategies (implemented singly or in combination). Since we are



20 S. GARBA AND U.A. GARBA

Figure 6. Simulation of the model (2.1) showing the total number of infected humans (IU +IV )
with different initial conditions approaching the disease free equilibrium when R0V < 1.

interested in exploring the feasibility of disease elimination, these simulations are carried out for the special case
of the model where backward bifurcation does not occur. In order to analyse the effect of the aforementioned
control strategies in the presence of temperature changes, three different sets of numerical simulations are carried
out, that is the cases where temperature (T ) is 20 ◦C, 25 ◦C and 30 ◦C.

6.1. Bed nets-only strategy

Here, the effect of using bed nets-only is assessed, by setting all other parameters related to vaccination and
mosquito control to zero, that is the case when ξV = εV = αA = εA = αL = εL = 0. The model is simulated
using the following levels of bed nets effectiveness (with bed nets efficacy of 0.5):

(i) Low bed nets effectiveness: αB = 0.1 (i.e., only 10% of individuals uses bed nets effectively);
(ii) Moderate bed nets effectiveness: αB = 0.3 (i.e., only 30% of individuals uses bed nets effectively);

(iii) High bed nets effectiveness: αB = 0.5 (i.e., only 50% of individuals uses bed nets effectively).

As expected, an increase in the rate of bed net use leads to a decrease in the number of malaria cases. For
instance, the resulting number of infected individuals corresponding to the low, moderate and high bed nets
use (for the case when the temperature is taken to be 20 ◦C) is 18,000, 12,200 and 6,100, respectively (Tab 3).
Figure 8 shows the simulations of the model using different temperature levels and bed nets use, from which it
is evident that the use of bed nets is more effective when temperature is 20 ◦C (as in Fig. 8A), where the total
number of infected humans is lower and approach the DFE faster. The DFE is reached by the total infected
humans when T = 30 ◦C (as shown in Fig. 9C) at almost half the time taken to reach the DFE when T = 25 ◦C
(where the total infected humans are at their peak when T = 25 ◦C; Fig. 8B). Figure 9D depicts the cumulative
number of new cases in humans with low, medium and high rates of applying bed nets when T = 20 ◦C.

A contour plot of the reproduction number R0V (with δU = δV = ωV = 0, so that backward bifurcation
does not exist) as a function of rate of bed nets applications (αB) and the vaccine efficacy (εB) is depicted in
Figure 23. As expected, the plot show decrease in R0V values with increasing values of αB and εB . Furthermore,
based on the parameter values used in the simulation as given in Table 2, a high use of bed nets and highly
effective bed nets are required to reduce the associated reproduction number to a value below unity (at least
60% each).
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Table 1. Description of variables and parameters of the model (2.1).

Variable Interpretation

SU (t) Population of non-vaccinated wholly susceptible humans
SV (t) Population of vaccinated wholly susceptible humans
WU (t) Population of non-vaccinated partially immune susceptible humans
WV (t) Population of vaccinated partially immune susceptible humans
EU (t) Population of non-vaccinated exposed humans
EV (t) Population of vaccinated exposed humans
IU (t) Population of non-vaccinated infected humans
IV (t) Population of vaccinated infected humans
RU (t) Population of non-vaccinated recovered humans
RV (t) Population of vaccinated recovered humans
NH(t) Total human population
AM (t) Population of aquatic mosquitoes
MU (t) Population of susceptible adult female mosquitoes
ME(t) Population of exposed adult female mosquitoes
MI(t) Population of infected adult female mosquitoes
NV (t) Total population of adult mosquitoes
NM (t) Total population of adult and aquatic mosquitoes
Parameter Interpretation
ΠH Recruitment rate of humans
µH Natural death rate of humans
ξV Rate of vaccination
εV Efficacy of vaccination
ωV Waning rate of vaccine
αB Rate of using treated bed nets
εB Efficacy of bed nets
εW Modification parameter for reduction in infectivity due to prior infection
σU , σV Progression rates
γV Recovery rate of vaccinated infectious individuals
γU Recovery rate of non-vaccinated infectious individuals
δV Disease induced death rate of vaccinated infectious individuals
δU Disease induced death rate of non-vaccinated infectious individuals
τV Rate of loosing partial immunity by recovered vaccinated individuals
τU Rate of loosing partial immunity by recovered non-vaccinated individuals
ηI Modification parameter for reduction in infectiousness of individuals in IV class
ηV Modification parameter for reduction in infectiousness of individuals in RV class
ηU Modification parameter for reduction in infectiousness of individuals in RU class
K Carrying capacity of aquatic mosquitoes
αL, αA Rate of applying larvicides and adulticides
εL, εA Efficacy of larvicides and adulticides
βV H Transmission probability from infectious mosquito to susceptible human
βHV Transmission probability from infectious human to susceptible mosquito
aM (T ) Temperature dependent biting rate of mosquitoes
φA(T ) Temperature dependent oviposition rate of mosquitoes
σA(T ) Temperature dependent maturation rate of aquatic mosquitoes
σM (T ) Temperature dependent progression rate of mosquitoes from ME to MI

µA(T ) Temperature dependent death rate of aquatic mosquitoes
µV (T ) Temperature dependent death rate of non-aquatic mosquitoes
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Table 2. Values and ranges for the temperature-independent parameters of the autonomous
model (2.1) and two choices of parameter values for which R0V < 1 and R0V > 1.

Parameter Ranges R0V < 1 R0V < 1 References

ΠH 10–800 100 30 [2, 18]
ωV 0–1 0.1 0.1 Estimated
ξV 0–1 0.3 0.6 [35]
εV 0–1 0.3 0.3 [35, 41]
µH 0.00003–0.00006 0.0000342 0.0000548 [10, 18, 30]
αB 0–1 0.2 0.8 [35]
εB 0–1 0.5 0.5 Assumed
εW 0–1 0.5 0.5 Assumed
τU 0.000055–0.011 0.1 0.1 [2, 10, 30]
τV 0.000055–0.011 0.02 0.02 [2, 10, 30]
ηI 0–1 0.6 0.7 [18, 31]
ηU 0–1 0.3 0.3 [18, 31]
ηV 0–1 0.1 0.1 [18, 31]
σU 0.067–0.2 0.08 0.08 [10, 25, 30]
σV 0.077–0.2 0.07 0.07 [10, 25, 30]
γU 0.0014–0.017 0.015 0.015 [2, 10, 30]
γV 0.0014–0.017 0.016 0.017 [2, 10, 30]
δU 0.0001–0.0004 0.0015 0.004 [2, 10, 30]
δV 0.0001–0.0003 0.001 0.003 [2, 10, 30]
K 50–3300000 10000 50000 [2, 24, 36]
φA 1–500 20 40 [24, 25, 36]
σA 0.02–0.27 0.2 0.2 [24, 30, 36]
αL 0–1 0.6 0.2 Estimated
αA 0–1 0.625 0.375 Estimated
εL 0–1 0.5 0.5 Estimated
εA 0–1 0.8 0.8 Estimated
σM 0.029–0.33 0.5 0.7 [10, 25, 30]
µA 0.001–0.2 0.1 0.019 [10, 25, 30]
µV 0.04762–0.07143 0.0529 0.04762 [10, 18, 30]
aM 0.1–1 0.4 0.6 [2, 10, 30]
βV H 0.0027–0.64 0.44 0.64 [2, 10, 18]
βHV 0.072–0.64 0.44 0.64 [2, 10, 30]

Table 3. Number of infected individuals using bed nets-only strategy.

Level of Temp at Temp at Temp at
bed net use 20 ◦C 25 ◦C 30 ◦C

Low (αB = 0.1) 18000 98000 80000
Moderate (αB = 0.3) 12200 82000 67000
High (αB = 0.5) 6100 68000 56000

6.2. Vaccination-only strategy

The effect of the use of vaccination only for temperatures of T = 20 ◦C, T = 25 ◦C and T = 30 ◦C with vaccine
efficacy of 0.75 is investigated. For the vaccination-only strategy, we have αA = εA = αB = εB = αL = εL = 0.
Simulation of the model (2.1) are carried out to assess the impact of vaccination in reducing the malaria burden
under the following levels of vaccination effectiveness.
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Figure 7. Simulation of the model (2.1) showing the total number of infected humans (IU +IV )
with different initial conditions approaching an endemic equilibrium when R0V > 1.

Figure 8. Simulations of the model (2.1) showing the total number of infected humans (IU +
IV ) with: (A) When T = 20 having; R0V = 0.1233 when αB = 0.1, R0V = 0.1103 when αB =
0.3, and R0V = 0.0973 when αB = 0.5 with N0 = 116.9812. (B) When T = 25 having; R0V =
0.3492 when αB = 0.1, R0V = 0.3125 when αB = 0.3, and R0V = 0.2757 when αB = 0.5 also
with N0 = 116.7733.

(i) Low vaccination effectiveness: ξV = 0.1 (i.e., only 10% of individuals are vaccinated effectively);
(ii) Moderate vaccination effectiveness: ξV = 0.3 (i.e., only 30% of individuals are vaccinated effectively);

(iii) High vaccination effectiveness: ξV = 0.5 (i.e., only 50% of individuals are vaccinated effectively).

Similar to the use of bed nets, vaccination is more effective in reducing the total number of infected humans
and time taken to reach the DFE when the temperature is 20 ◦C (Fig. 10A), where as similar effect for both
temperatures of 25 ◦C (Fig. 10B) and 30 ◦C (Fig. 11C) are obtained. A cumulative number of new cases in
humans with low, medium and high rates of vaccine application at T = 20 ◦C is depicted in Figure 11D.
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Figure 9. Simulations of the model (2.1) showing: (C) The total number of infected
humans (IU + IV ) with T = 30, showing R0V = 0.3052, N0 = 41.4528 when αB = 0.1, R0V =
0.2731, N0 = 41.4528 when αB = 0.3, and R0V = 0.2410, N0 = 41.4528 when αB = 0.5. (D)
Cumulative new cases in humans at T = 20 ◦C with different levels of applications.

Figure 10. Simulations of the model (2.1) showing the total number of infected humans
(IU + IV ) with: (A) T = 20 such that R0V = 0.2838 for ξV = 0.1, R0V = 0.3353 for ξV = 0.3,
R0V = 0.3508 for ξV = 0.5 andN0 = 116.9812. (B) T = 25 such that R0V = 0.8036 for ξV = 0.1,
R0V = 0.9493 for ξV = 0.3, R0V = 0.9931 for ξV = 0.5 and N0 = 116.7733.

As expected the vaccination reproduction number decreases with increase in the rate of application of vaccines.
At T = 20 ◦C, total infected humans reach the DFE in less than 1,200 days, while it reaches the DFE in about
8,000 days for the case when T = 25 ◦C and less than 5,000 days when T = 30 ◦C as in Figures 10A, 10B and
11C.

A contour plot of the vaccination reproduction number R0V (with δU = δV = ωV = 0) as a function of fraction
of vaccinated individuals at steady-state V ∗H = S∗V /N

∗
H and the vaccine efficacy (εV ) is depicted in Figure 24.

The plot show decrease in R0V values with increasing values of V ∗H and εV , and even if 90% of individuals are
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Figure 11. Simulations of the model (2.1) showing: (C) The total number of infected humans
(IU + IV ) with T = 30 which implies R0V = 0.7000 for ξV = 0.1, R0V = 0.8267 for ξV = 0.3,
R0V = 0.8648 for ξV = 0.5 and N0 = 41.4528. (D) Cumulative number of new human cases for
T = 20 with different levels of applications.

Figure 12. Simulations of the model (2.1) showing the total number of infected humans
(IU + IV ) with: (A) Obtained for T = 20, where R0V = 0.0957, N0 = 93.1507 for αA = 0.1,
R0V = 0.0600, N0 = 66.1852 for αA = 0.3, and R0V = 0.0420, N0 = 51.3270 for αA = 0.5. (B)
Obtained for T = 25, with R0V = 0.2786, N0 = 93.6979 for αA = 0.1, R0V = 0.1810, N0 =
67.1564 for αA = 0.3, and R0V = 0.1299, N0 = 52.3324 for αA = 0.5.

vaccinated, the disease will still persist in the population, unless the vaccine efficacy is at least 50% (to reduce
the vaccination reproduction number to a value below unity).
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Figure 13. Simulations of the model (2.1) showing: (C) The total number of infected humans
(IU + IV ) with T = 30, where R0V = 0.2670, N0 = 35.9381 for αA = 0.1, R0V = 0.1954, N0 =
28.3856 for αA = 0.3, and R0V = 0.1510, N0 = 23.4562 for αA = 0.5. (D) Cumulative number
of new cases in humans with different level of interventions and T = 20 ◦C.

Figure 14. Simulations of the model (2.1) showing the total number of infected humans (IU +
IV ) with: (A) Obtained for T = 20, so that R0V = 0.2696 for αV = αB = 0.1, R0V = 0.2850
for αV = αB = 0.3, and R0V = 0.2631 for αV = αB = 0.5 with N0 = 116.9812. (B) Obtained
for T = 25, so that R0V = 0.7634 for αV = αB = 0.1, R0V = 0.8069 for αV = αB = 0.3, and
R0V = 0.7448 for αV = αB = 0.5 with N0 = 116.7733.

6.3. Mosquito control-only strategy (adulticides strategy)

Here, the effect of the use of adulticides only with efficacy of 0.5 is simulated, that is when αB = εB = αL =
εL = ξV = εV = 0. Notice that the use of larvicides has less or no effect in the dynamics of infected mosquitoes
(it mainly affects the basic offspring number).

Further simulations were carried out to assess the impact of mosquito control-only strategy using adulticides.
The following levels of adulticides effectiveness are considered:
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Figure 15. Simulations of the model (2.1) showing; (C) The total number of infected humans
(IU + IV ) with T = 30, such that R0V = 0.6650 for αV = αB = 0.1, R0V = 0.7027 for αV =
αB = 0.3, R0V = 0.6486 for αV = αB = 0.5 and N0 = 41.4528. (D) Cumulative number of
cases in humans with different levels of applications and T = 20 ◦C.

Figure 16. Simulations of the model (2.1) showing the total number of infected humans
(IU + IV ) with: (A) Obtained when T = 20, such that R0V = 0.0692, N0 = 70.9784 for
low, R0V = 0.0309, N0 = 34.1664 for medium, and R0V = 0.0171, N0 = 20.0347 for high con-
trols. (B) Obtained when T = 25, such that  lR0V = 0.2017, N0 = 85.1115 for low, R0V =
0.0937, N0 = 51.5536 for medium, and R0V = 0.0533, N0 = 34.7858 for high controls.

(i) Low adulticides effectiveness: αA = 0.1 (i.e., only 10% applies adulticides effective);
(ii) Moderate adulticides effectiveness: αA = 0.3 (i.e., only 30% applies adulticides effective);

(iii) High adulticides effectiveness: αA = 0.5 (i.e., only 50% applies adulticides effective).

This control strategy shows the biggest positive effect in both reducing the total number of infected individuals
and the effect of using different levels of controls for different temperatures compared to other forms of single
controls. For T = 20 ◦C (as shown in Fig. 12A), mosquito control measure at the rate αA = 0.5 pushes the total
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Figure 17. Simulations of the model (2.1) showing: (C) The total number of infected humans
(IU + IV ) when T = 30, such that R0V = 0.1932, N0 = 34.3476 for low, R0V = 0.1010, N0 =
24.9232 for medium, and R0V = 0.0619, N0 = 19.0463 for high controls. (D) Cumulative new
cases in humans when T = 20 with different levels of interventions.

Figure 18. Partial rank correlation coefficient (PRCC) of the model parameters with R0V as
the output function for temperature between 15 ◦C-20 ◦C and between 20 ◦C-25 ◦C respectively.

number of infected humans to reach the DFE at the shortest period in comparison to when T = 25 ◦C (as in
Fig. 12B), and when T = 30 ◦C (Fig. 13C). The cumulative number of new cases in humans with low, medium
and high rates of applying adulticides at T = 20 ◦C is depicted in Figure 13D.

A contour plot of the reproduction number R0V (with δU = δV = ωV = 0) as a function of rate of adulticides
applications (αA) and the efficacy of adulticides (εA) is depicted in Figure 25. The figure show that, based on
the parameter values used, a high rate of application of adulticides with high efficacy rate (at least 85% each) is
required to reduce the associated reproduction number to a value below unity, so that malaria could be control
from the community.
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Figure 19. Partial rank correlation coefficient (PRCC) of the model parameters with R0V as
the output function for temperature between 25 ◦C-30 ◦C and 30 ◦C-35 ◦C respectively.

Figure 20. Partial rank correlation coefficient (PRCC) of the model parameters with R0V as
the output function and constant temperature.

6.4. Bed nets and vaccination strategy

The combined effect of the use of bed nets and imperfect vaccination are explored here. Vaccine efficacy of
0.75 and bed net efficacy of 0.5 are used. For this simulation, parameters related to other control strategies are
set to zero (i.e., εA = αA = εL = αL = 0).

The model is simulated using the following levels of bed nets and vaccination effectiveness at various
temperature levels (20 ◦C, 25 ◦C and 30 ◦C):

(i) Low bed nets and vaccination effectiveness: αB = ξV = 0.1 (i.e., only 10% of individuals uses bed nets
and vaccinated effectively);

(ii) Moderate bed nets and vaccination effectiveness: αB = ξV = 0.3 (i.e., only 30% of individuals uses bed
nets and vaccinated effectively);

(iii) High bed nets and vaccination effectiveness: αB = ξV = 0.5 (i.e., only 50% of individuals uses bed nets
and vaccinated effectively).
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Figure 21. Simulation of the model (2.1) showing the total number of infected humans (IU +
IV ) with different initial conditions approaching (A) DFE for the case when R0T < 1 and (B)
an endemic equilibrium for the case when R0T > 1. Parameter values used are as given in
Table 2 with generalized temperature function T (t) = T0

[
1 + T1 cos

(
2π
365 (ωt+ φ)

)]
.

Figure 22. Simulation of the model (2.1) showing the effect of vaccination on disease inci-
dence with seasonal variation. Parameter values used are as given in Table 2 with generalized
temperature function T (t) = T0

[
1 + T1 cos

(
2π
365 (ωt+ φ)

)]
.

As expected, the combined use of bed nets and vaccination is more effective than the singular use of bed nets
or vaccine. Figures 14 and 15 depict the simulations of the model (2.1) with the use of bed nets and vaccination,
from which it is evident that the total infected humans reach the DFE (for low, medium and high application
of controls) faster than the separate use of the controls for both T = 20 ◦ (Fig. 14A), T = 25 ◦C (Fig. 14B),
and T = 30 ◦C (Fig. 15C). The cumulative number of new cases in humans with low, medium and high rates of
applying bed nets and vaccines at T = 20 ◦C is depicted in Figure 15D.

6.5. Hybrid strategy

The potential impact of using all controls are examined, using the following effectiveness levels:
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Figure 23. Simulation of the model (2.1) showing contour plot of R0V as a function of bednets
application (αB) and the efficacy of bednets (εB). Parameter values used are as given in Table 2
with δU = δV = ωV = 0.

Figure 24. Simulation of the model (2.1) showing contour plot of R0V as a function of fraction
of vaccinated humans at steady state (V ∗H = S∗V /N

∗
H) and the vaccine efficacy (εV ). Parameter

values used are as given in Table 2 with δU = δV = ωV = 0.

(i) Low effectiveness: εA = εL = αB = ξV = 0.1 (i.e., combined measures at only 10% effectiveness);
(ii) Moderate effectiveness: εA = εL = αB = ξV = 0.3 (i.e., combined measures at only 30% effectiveness);

(iii) High effectiveness: εA = εL = αB = ξV = 0.5 (i.e., combined measures at only 50% effectiveness).

For high levels of intervention, the total number of infected humans is lower and reach the DFE at a very
short time for the different temperature levels used. For instance, the total infected humans reach the DFE in
less than 1,000 days when T = 20 ◦C as depicted in (Fig. 16A) and it reaches the DFE in about 3,000 days
when T = 25 ◦C (Fig. 16B) and T = 30 ◦C (Fig. 17C). The cumulative number of new cases in humans with
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Figure 25. Simulation of the model (2.1) showing contour plot of R0V as a function of adulti-
cides application (αA) and the efficacy of bednets (εA). Parameter values used are as given in
Table 2 with δU = δV = ωV = 0.

low, medium and high rates of applying bed nets, vaccines and adulticides at T = 20 ◦C is depicted in Figure
17D.

7. Sensitivity analysis and numerical simulation

In this section, the partial rank correlation coefficient (PRCC) of the parameters of the vaccinated repro-
duction number for different temperature ranges are given. In addition, numerical simulations of the model are
also presented.

7.1. Sensitivity analysis

The partial rank correlation coefficient is a sampling based sensitivity index that measures the strength of
the linear associations between a dependent variable (in this case the vaccinated reproduction number), and
independent variables (its parameters) after removing the linear effect of other parameter values. We consider
the cases for constant and various temperatures. Using the vaccinated reproduction number as the output
for temperature values for ranges 15 ◦C−20 ◦C, 20 ◦C−25 ◦C, 25 ◦C−30 ◦C, 30 ◦C−35 ◦C and that of constant
parameter values with a confidence interval of 95% and 1000 number of boots, the PRCC are obtained.

Tables 4 – 8 show the PRCC values, bias, standard error, minimum and maximum confidence interval for
each of the 27 parameters of the basic reproduction ratio with the aforementioned temperature intervals and
constant temperature, respectively. Similarly, Figures 18, 19 and 20 show the bar plot of the PRCC of the
parameters of the basic reproduction ratio as temperature varies and constant temperature. For the different
temperature ranges, the rate of vaccination ξV , efficacy of vaccination εV and rate of successful use of bed nets
CB show little variation as temperature varies. The rate of vaccination is positively correlated to R0V due to
the imperfect vaccine (not 100% effective), thus vaccinated individuals can still acquire infections.

The use of larvicides is positively correlated to R0V for temperature ranging from 15 ◦C to 20 ◦C with PRCC
value of +0.4099, but when the temperature range is from 20 ◦C to 25 ◦C, the PRCC becomes negatively corre-
lated to R0V with value of −0.0179, it remains negative with PRCC value of −0.1008 when the temperature is
between 25 ◦C-30 ◦C and returns to positive for temperature of 30 ◦C-35 ◦C having PRCC of +0.1099, where as
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Table 4. PRCC for parameters of the basic reproduction ratio with temperature of
15 ◦C −20 ◦C.

Parameters PRCC Bias Std. error Min. c.i. Max. c.i.

σU +0.0116573 −0.0007059 0.0327846 −0.0507698 +0.0733284
σV −0.0232599 −0.0011866 0.0319199 −0.0859427 +0.0387305
σA +0.0176615 +0.0002679 0.0319108 −0.0446594 +0.0827357
σM +0.1055920 +0.0002096 0.0336147 +0.0399197 +0.1682346
µH +0.1216671 −0.0004487 0.0335058 +0.0583749 +0.1891785
µV −0.0390433 −0.0011569 0.0330434 −0.1020185 +0.0305234
µA +0.0176899 +0.0013925 0.0323228 −0.0455994 +0.0791484
δV +0.0038029 −0.0010111 0.0340335 −0.0611271 +0.0690736
δU +0.0532007 −0.0004144 0.0324357 −0.0115217 +0.1187615
γU −0.2641840 +0.0003395 0.0308615 −0.3282315 −0.2061550
γV −0.2422403 −0.0005914 0.0328178 −0.3056412 −0.1780375
τU −0.0734964 −0.0015532 0.0319108 −0.1341357 −0.0135771
τV +0.0115517 −0.0025839 0.0312943 −0.0466292 +0.0706519
ΠH −0.3772186 −0.0032223 0.0320140 −0.4432971 −0.3160064
φA −0.4343937 −0.0007132 0.0294558 −0.4954435 −0.3774096
cA −0.8183722 −0.0026977 0.0121513 −0.8432971 −0.7961376
cL +0.4098845 +0.0020502 0.0294757 +0.3485913 +0.4682076
cB −0.6670218 +0.0000797 0.0181261 −0.7034560 −0.6336552
κ +0.4298697 −0.0008229 0.0302802 +0.3714995 +0.4885408
βHV +0.4945893 +0.0010630 0.0263685 +0.4471908 +0.5457829
aM +0.2805036 +0.0014569 0.0311481 +0.2195653 +0.3425459
εV −0.3686739 −0.0058365 0.0293159 −0.4263527 −0.3100787
ωV +0.2823186 −0.0010166 0.0321963 +0.2227506 +0.3458825
ηU +0.0454152 +0.0035739 0.0338749 −0.0191098 +0.1110642
ηV +0.0339887 +0.0004213 0.0347059 −0.0376288 +0.0972901
ηI +0.3039816 −0.0003942 0.0318035 +0.2397632 +0.3678769
ξV +0.5238138 +0.0097502 0.0259621 +0.4761949 +0.5741889

the PRCC is negative with value of −0.0381 in a constant temperature settings. For the use of adulticides, neg-
ative correlation with R0V are obtained with PRCC values of −0.8184, −0.7572, −0.6391, −0.7671 and −0.6159
for temperature ranges of 15 ◦C−20 ◦C, 20 ◦C−25 ◦C, 25 ◦C−30 ◦C, 30 ◦C−35 ◦C and constant temperature,
respectively.

Disease induced death rates, which have been shown to be main causes of backward bifurcations in mosquito
borne diseases such as [10, 12, 18, 20, 31] show wide variations as temperature changes for both non-vaccinated
infected and vaccinated infected humans, PRCC values of δV = +0.0038, δV = −0.0103, δV = +0.0065, δV =
−0.0227, and δV = +0.0318 were obtained for temperature ranges of 15 ◦C−20 ◦C, 20 ◦C−25 ◦C, 25 ◦C−30 ◦C,
30 ◦C−35 ◦C and constant respectively. Similarly for the same temperature ranges and constant, the PRCC val-
ues of δU = +0.0532, δU = −0.0379, δU = +0.0326, δU = +0.0422, and δU = +0.0325 were respectively obtained.
Variations occur in other temperature dependent and temperature independent parameters as presented in the
Tables and Figures for the global sensitivity analysis.

7.2. Numerical simulations

We fix temperature values for the non-autonomous model (2.1), so that each of the temperature dependent
parameter becomes constant. For simulation purposes, two different sets of parameter values that give R0V =
0.297 < 1, N0 = 14.2 and R0V = 6.457 > 1, N0 = 104.4 were chosen within the ranges given in Table 2.
Initial populations were chosen by SU (0) = 2000; SV (0) = 1000; WU (0) = 1000; WV (0) = 500; EU (0) = 500;
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Table 5. PRCC for parameters of the basic reproduction ratio with temperature of
20 ◦C−25 ◦C.

Parameter Original Bias Std. error Min. c.i. Max. c.i.

σU +0.0272416 −0.0007902 0.0327054 −0.0360532 +0.0937781
σV −0.0073296 −0.0006006 0.0328427 −0.0699371 +0.0585221
σA +0.0924912 +0.0014401 0.0316656 +0.0281105 +0.1533272
σM +0.0944706 −0.0000784 0.0325518 +0.0332401 +0.1623727
µH +0.1127021 +0.0000767 0.0316062 +0.0482402 +0.1711439
µV −0.0200803 −0.0008417 0.0328245 −0.0830335 +0.0488403
µA −0.0566776 −0.0001684 0.0329911 −0.1215934 +0.0070602
δV −0.0102746 −0.0017691 0.0340915 −0.0700897 +0.0622394
δU −0.0379350 +0.0007999 0.0340594 −0.0300189 +0.1049511
γU −0.2487736 +0.0008432 0.0326861 −0.3148316 −0.1842316
γV −0.2480796 −0.0003195 0.0310429 −0.3157813 −0.1869417
τU −0.0495361 −0.0009234 0.0334424 −0.1146326 +0.0179481
τV +0.0197085 −0.0015089 0.0331141 −0.0439765 +0.0853165
ΠH −0.3473466 +0.0000988 0.0300609 −0.4084650 −0.2871868
φA −0.0364459 +0.0007974 0.0319624 −0.1012336 +0.0273710
cA −0.7571855 +0.0003732 0.0133595 −0.7854990 −0.7318509
cL −0.0179992 +0.0005700 0.0318969 −0.0796521 +0.0423534
cB −0.6201653 +0.0006721 0.0187960 −0.6598916 −0.5838745
κ +0.3893278 −0.0013335 0.0307154 +0.3278164 +0.4527466
βHV +0.4631499 −0.0003937 0.0267489 +0.4131450 +0.5186893
aM +0.1232240 +0.0008872 0.0325427 +0.0600620 +0.1882611
εV −0.3162192 +0.0003416 0.0295568 −0.3722439 −0.2576412
ωV +0.2622113 −0.0003436 0.0309711 +0.2010132 +0.3242911
ηU +0.0545866 +0.0010445 0.0324711 −0.0074782 +0.1179109
ηV +0.0385358 +0.0002086 0.0330906 −0.0253969 +0.1084278
ηI +0.2768270 +0.0003028 0.0297059 +0.2187766 +0.3324457
ξV +0.4844347 +0.0001834 0.0251479 +0.4376538 +0.5357899

EV (0) = 300; IU (0) = 200; IV (0) = 50; RU (0) = 150; RV (0) = 40; AM (0) = 2500; MU (0) = 1500; ME(0) =
1000; MI(0) = 800. In order to simulate the effect of seasonal variation, we use the generalized temperature
function given by (2.2). Figures 6 and 7 show the solution profile of the model (2.1) for the total number
of infectious humans (IU + IV ) when R0V < 1 and when R0V > 1, respectively. The solution profile of total
infectious humans approach the DFE when R0V < 1 (Fig. 6) and approach an endemic equilibrium when
R0V > 1 (Fig. 7). Similar results hold for the non-autonomous system for the case when R0T < 1 and R0T > 1
as presented in Figures 21A and 21B, respectively. Figure 22 shows effect of vaccination on disease incidence in
humans with seasonal variation. The figure show that the oscillation pattern differs between the vaccinated and
the non-vaccinated infectious (Fig. 22A) and exposed (Fig. 22B) humans, both in their subharmonic periods
and the relative phase of cycles.

8. Conclusion

A new mathematical model to assess the effect of temperature on control strategies of malaria, is constructed
and analysed. Some of the main findings of this study are summarized below:

(I) The autonomous mosquito-only model has a threshold quantity called the basic offspring number with
the property that, if the threshold quantity (N0) is less than or equal to unity, the mosquito population
goes to extinction, and it establishes if (N0) > 1.
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Table 6. PRCC for parameters of the basic reproduction ratio with temperature of
25 ◦C−30 ◦C.

Parameter Original Bias Std. error Min. c.i. Max. c.i.

σU +0.0483804 −0.0004057 0.0333765 −0.0186168 +0.1125817
σV +0.0114802 −0.0011647 0.0309363 −0.0532153 +0.0730034
σA +0.0597791 +0.0012013 0.0332133 −0.0042205 +0.1216877
σM +0.0445856 −0.0004296 0.0327879 −0.0216979 +0.1082284
µH +0.1068126 −0.0004946 0.0321849 +0.0445602 +0.1664874
µV −0.0645414 −0.0009126 0.0331577 −0.1262763 +0.0088067
µA −0.0559747 +0.0003682 0.0329798 −0.1186303 +0.0069229
δV +0.0064994 −0.0015801 0.0336362 −0.0546403 +0.0768521
δU +0.0326299 +0.0003169 0.0335178 −0.0318403 +0.1004987
γU −0.2750038 +0.0006289 0.0326875 −0.3405111 −0.2100418
γV −0.2766534 −0.0002737 0.0313243 −0.3389869 −0.2153664
τU −0.0510142 −0.0006659 0.0335426 −0.1156434 +0.0156466
τV +0.0060012 −0.0001283 0.0326736 −0.0553695 +0.0731931
ΠH −0.3874218 −0.0007302 0.0297809 −0.4455378 −0.3277662
φA +0.0033342 +0.0010076 0.0331209 −0.0621007 +0.0649226
cA −0.6390782 +0.0002818 0.0202658 −0.6832559 −0.6026203
cL −0.1007759 +0.0001927 0.0337962 −0.1660626 −0.0351183
cB −0.6519635 +0.0003658 0.0185159 −0.6902679 −0.6162609
κ +0.4161619 −0.0017819 0.0299235 +0.3567321 +0.4768279
βHV +0.5029739 +0.0005889 0.0264660 +0.4526908 +0.5545998
aM +0.0784946 −0.0001587 0.0333855 +0.0185815 +0.1444017
εV −0.3477630 −0.0004523 0.0290541 −0.4048732 −0.2903114
ωV +0.3007633 −0.0007619 0.0301747 +0.2451951 +0.3628431
ηU +0.0854023 +0.0002371 0.0335750 +0.0193157 +0.1534979
ηV +0.0207561 +0.0000308 0.0335975 −0.0416263 +0.0882889
ηI +0.3051394 −0.0001698 0.0303403 +0.2476859 +0.3683635
ξV +0.4968967 +0.0000247 0.0254239 +0.4482705 +0.5473321

(II) The autonomous model version of system (2.1) has two disease-free equilibria, the mosquito-extinction
equilibrium (E2) which is globally-asymptotically stable (GAS) when the basic offspring number (N0) is
less than unity and the non-mosquito-extinction equilibrium (E3) which is locally asymptotically stable
when R0V ≤ 1.

(III) The autonomous model undergoes the phenomenon of backward bifurcation, which could be removed for
a special case when malaria induced death rates (δU = 0 and δV = 0) and the vaccine waning rate are
negligible (ωV = 0).

(IV) Relationship between the vaccinated reproduction number and the type reproduction numbers is estab-
lished, where it is shown that Ti < 1 (i = 1, 2, 3), provided R0V < 1 (and Ti ⇔ R0V ). This result suggest
that, malaria can be control by targeting certain groups in the population.

(V) The non-autonomous model (2.1) has a disease-free equilibrium (E4), which is shown to be locally-
asymptotically stable whenever the associated reproduction ratio is less than unity and unstable
otherwise.

(VI) The partial rank correlation coefficient for the use of larvicides is positively correlated with the vaccinated
reproduction number when the temperature ranges between 15 ◦C−20 ◦C and 30 ◦C−35 ◦C, thus within
those temperature intervals, use of larvicides may impede effort aimed at reducing malaria infection.

(VII) The successful use of adulticides (cA), bed nets (cB) and vaccine efficacy (εV ) are negatively correlated
with the vaccinated reproduction number within all the temperature ranges.
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Table 7. PRCC for parameters of the basic reproduction ratio with temperature of
30 ◦C−35 ◦C.

Parameter Original Bias Std. error Min. c.i. Max. c.i.

σU +0.0451980 −0.0005944 0.03296141 −0.0155342 +0.1097078
σV +0.0080809 −0.0014946 0.03216838 −0.0561889 +0.0695945
σA −0.0232658 +0.0007003 0.03218964 −0.0884070 +0.0367905
σM +0.1068015 −0.0000438 0.03214870 +0.0438982 +0.1708055
µH +0.1069910 −0.0004608 0.03147377 +0.0463622 +0.1691896
µV −0.1075564 −0.0004600 0.03417210 −0.1743457 −0.0394728
µA +0.0040081 +0.0001087 0.03221020 −0.0606068 +0.0692966
δV −0.0226984 −0.0014608 0.03351764 −0.0894162 +0.0425969
δU +0.0422372 +0.0004247 0.03338551 −0.0233578 +0.1107938
γU −0.2767289 +0.0009461 0.03165590 −0.3407932 −0.2150720
γV −0.2379078 −0.0005803 0.03091655 −0.3003231 −0.1780435
τU −0.0707100 −0.0003518 0.03182795 −0.1300137 −0.0067869
τV +0.0068589 −0.0008134 0.03346120 −0.0575232 +0.0741217
ΠH −0.4010288 −0.0003367 0.02914214 −0.4605973 −0.3408796
φA −0.0889220 +0.0013691 0.03294498 −0.1566463 −0.0267232
cA −0.7671031 +0.0004052 0.01390989 −0.7967973 −0.7413719
cL +0.1099999 +0.0016757 0.03264374 +0.0441499 +0.1753972
cB −0.6612125 +0.0007278 0.01704738 −0.6980249 −0.6295967
κ +0.4223961 −0.0016396 0.02881096 +0.3652521 +0.4794296
βHV +0.5113951 +0.0002744 0.02441461 +0.4649900 +0.5586622
aM +0.0072425 −0.0000582 0.03334982 −0.0593828 +0.0734986
εV −0.3639675 +0.0002173 0.02810343 −0.4221400 −0.3112162
ωV +0.2973694 −0.0006766 0.03052003 +0.2401928 +0.3577935
ηU +0.0610768 +0.0009632 0.03264673 −0.0017988 +0.1241164
ηV +0.0234672 +0.0000817 0.03262804 −0.0404243 +0.0881068
ηI +0.3308712 +0.0002972 0.02985926 +0.2721758 +0.3928036
ξV +0.5098077 +0.0006601 0.02482458 +0.4606819 +0.5583210

(VIII) For non-control parameters, the most positively correlated parameters within all ranges are the mosquito
carrying capacity (K), probability of disease transmission (βHV ), reduction parameter in the transmission
of infected vaccinated humans and rate of vaccination (ξV ). On the other hand, recovery rates γU , γV and
human recruitment rate (ΠH) are the most negatively correlated in all the temperature ranges.

(IX) Numerical simulation of the model, using appropriate demographic and epidemiological data for Kwazulu
Natal province of South Africa, show that (for the case where backward bifurcation does not occur),
the hybrid strategy which combines all the strategies (that is combined use bed nets, vaccination and
adulticides) is more effective than singular use of the aforementioned control strategies, that can lead to
malaria elimination in the province.

(X) Seasonal variation may cause fluctuation in the number of people becoming infected with malaria in both
the vaccinated and non-vaccinated populations.

(XI) Simulations of the model show that high vaccine efficacy is required to reduce the vaccinated reproduction
number to a value below unity. Further, a singular effective use of bednets can result in effective control
of malaria in a community provided the bed net coverage and the bed net efficacy are high enough (at
least 60 % each).
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Table 8. PRCC for parameters of the basic reproduction ratio with constant.

Parameter Original Bias Std. error Min. c.i. Max. c.i.

σU +0.0537072 −0.0000335 0.03142014 −0.0065539 +0.1154683
σV −0.0270326 −0.0013361 0.03069721 −0.0909801 +0.0308928
σA +0.4461772 +0.0000156 0.02649914 +0.3933939 +0.4959988
σM +0.3510576 +0.0009426 0.03105527 +0.2909725 +0.4157925
µH +0.1090479 −0.0010750 0.03327486 +0.0467657 +0.1769173
µV −0.1843498 +0.0007244 0.03158123 −0.2477469 −0.1209180
µA +0.0215627 −0.0000023 0.03148113 −0.0402444 +0.0853352
δV +0.0317568 −0.0012651 0.03219245 −0.0305051 +0.1000426
δU +0.0324881 −0.0003282 0.03379430 −0.0318886 +0.0979736
γU −0.2687226 +0.0001583 0.03116736 −0.3283692 −0.2040955
γV −0.2629236 −0.0001416 0.03073967 −0.3235758 −0.2050292
τU −0.0525523 +0.0005959 0.03168751 −0.1132575 +0.0147820
τV +0.0380073 +0.0001263 0.03334126 −0.0272727 +0.1051935
ΠH −0.3428469 −0.0007563 0.03105764 −0.4012005 −0.2843012
φA +0.0174543 −0.0002773 0.03422852 −0.0476062 +0.0827469
cA −0.6159261 +0.0004929 0.02160704 −0.6576728 −0.5746723
cL −0.0381227 +0.0020628 0.03327691 −0.1092252 +0.0236732
cB −0.6559501 +0.0002602 0.01775010 −0.6918969 −0.6237530
κ +0.4245334 −0.0012985 0.02804146 +0.3755547 +0.4856456
βHV +0.5049071 +0.0003461 0.02369151 +0.4600162 +0.5533423
aM +0.5617064 +0.0004058 0.02354306 +0.5165672 +0.6088471
εV −0.3690131 −0.0001147 0.02917487 −0.4256369 −0.3135196
ωV +0.2531897 −0.0001845 0.03223262 +0.1924038 +0.3192285
ηU +0.0561337 +0.0008215 0.03287014 −0.0142383 +0.1240309
ηV +0.0144269 −0.0013924 0.03449365 −0.0490704 +0.0864574
ηI +0.3183981 +0.0001165 0.02926591 +0.2595554 +0.3769897
ξV +0.4727052 +0.0002722 0.02628378 +0.4225355 +0.5231252

Appendix A. Proof of theorem 3.1

We shall give the proof of the first part of Theorem 3.1 using similar approach to that in [4]. In particular,
Theorem 6 of [4] reproduced below for convenience, will be used.

Theorem A.1. [4] Let a, b ∈ Ω∗ be such that a < b, [a, b] ⊆ Ω∗ and f(b) ≤ 0 ≤ f(a). Then the system defines
a (positive) dynamical system on [a, b]. Moreover, if [a, b] contains a unique equilibrium q then q is globally
asymptotically stable on [a, b].

Proof. To apply Theorem A.1 to system (3.1), let q > 0 and let AMq be so large that the following inequalities
hold:

AMq ≥ q,

MUq =
(σA + µAεLαL + µA)AMq

φA(1−cM )
≥ q.

(A.1)

Let [a, b] = [0, b] ⊆ R2
+, where b = (AMq, MUq)

′. It is easy to see that f(0) = 0 and

f(b) =

(
−
[
σA + εLαL + µA

]A2
Mq

K
σAAMq[1− 1

N0
]

)
(A.2)
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so that f(b) < 0, provided N0 ≤ 1.

Therefore f(b) ≤ 0 ≤ f(0), whenever N0 < 1. Thus the mosquito component of model (2.1) defines a positive
dynamical system on [0, b] and E0 is GAS on [0, b]. But since q is arbitrary, b can be extended and the result
holds on R2

+. The second part of the proof follows straightforward by linearization.

Appendix B. Proof of theorem 4.1

Proof. The proof is based on using centre manifold theory [9, 39]. To apply the theorem, we carry out the
following changes of variables. Let

SU = x1, SV = x2,WU = x3,WV = x4, EU = x5, EV = x6, IU = x7, IV = x8, RU = x9, RV = x10,

AM = x11,MU = x12,ME = x13,MI = x14,

so that,

NH = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 and NV = x12 + x13 + x14.

The transformed malaria model (2.1) is represented by

dx1

dt
= ΠH + ωV x2 − ξV x1 − λHx1 − µHx1,

dx2

dt
= ξV x1 − λH(1− εV )x2 − ωV x2 − µHx2,

dx3

dt
= τUx9 − λH(1− εW )x3 − µHx3,

dx4

dt
= τV x10 − λH(1− εW )x4 − µHx4,

dx5

dt
= λHx1 + λH(1− εW )x3 − σUx5 − µHx5,

dx6

dt
= λH(1− εV )x2 + λH(1− εW )x4 − σV x6 − µHx6,

dx7

dt
= σUx5 − γUx7 − δUx7 − µHx7,

dx8

dt
= σV x6 − γV x8 − δV x8 − µHx8,

dx9

dt
= γUx7 − τUx9 − µHx9,

dx10

dt
= γV x8 − τV x10 − µHx10,

dx11

dt
= φA(1− αLεL)

(
1− x11

K

)
NV − σAx11 − µA(1 + αLεL)x11,

dx12

dt
= σAx11 − λV x12 − µV (1 + αAεA)x12,

dx13

dt
= λV x12 − σMx13 − µV (1 + αAεA)x13,

dx14

dt
= σMx13 − µV (1 + αAεA)x14,

(B.1)
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with the associated forces of infection given by

λH =
βHV x14(t)

NH
(1− εBαB)aM

and

λV =
βHV
NH(t)

(1− εBαB)aM

(
x7 + ηIx8 + ηUx9 + ηV x10

)
.

(B.2)

By letting R0V = 1 we have,

β2
HVM

∗
UσMa

2
M (1− εBαB)2

(N∗H)2K10K11

(
S∗UσU
K3K5

[
1 +

γUηU
K7

]
+
S∗V σV (1− εV )

K4K6

[
ηI +

γV ηV
K8

])
= 1, (B.3)

suppose, further that βHV = β∗HV is chosen to be the bifurcation parameter. The Jacobian matrix (J∗) at the
DFE with βHV = β∗HV is given by

J∗ =

[
P1 P2

P3 P4

]
,

where

P1 =



−K1 ωV 0 0 0 0 0
ξV −K2 0 0 0 0 0
0 0 −µH 0 0 0 0
0 0 0 −µH 0 0 0
0 0 0 0 −K3 0 0
0 0 0 0 0 −K4 0
0 0 0 0 σU 0 −K5


,

P2 =



0 0 0 0 0 0 −β
∗
HV S

∗
U (1−εBαB)
N∗

H

0 0 0 0 0 0 −β
∗
HV S

∗
V (1−εBαB)(1−εV )

N∗
H

0 τU 0 0 0 0 0
0 0 τV 0 0 0 0

0 0 0 0 0 0
β∗
HV S

∗
U (1−εBαB)
N∗

H

0 0 0 0 0 0
β∗
HV S

∗
V (1−εBαB)(1−εV )

N∗
H

0 0 0 0 0 0 0


,
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P3 =



0 0 0 0 0 σV 0
0 0 0 0 0 0 γU
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 −β
∗
HVM

∗
U (1−εBαB)
N∗

H

0 0 0 0 0 0
β∗
HVM

∗
U (1−εBαB)
N∗

H

0 0 0 0 0 0 0


,

and

P4 =



−K6 0 0 0 0 0 0
0 −K7 0 0 0 0 0
γV 0 −K8 0 0 0 0

0 0 0 −K9N0
φV

N0

φV

N0

φV

N0

−QAηI −QAηU −QAηV σA −K10 0 0
QAηI QAηU QAηV 0 0 −K11 0

0 0 0 0 0 σM −K10



where QA =
β∗
HVM

∗
U (1−εBαB)
N∗

H
.

The Jacobian matrix (J∗) of the linearized system has a simple zero eigenvalue (with all other eigenvalues
having negative real parts). Hence the theory based on Center Manifold Theory [9, 39] can be used to analysed
the dynamics of the system (B.1). We obtained the left eigenvector (v) corresponding to the zero eigenvalue

denoted by v =
[
v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14

]T
, where

v1 = 0, v2 = 0, v3 = 0, v4 = 0, v5 =
β∗HVM

∗
UσMσU (1− εBαB)

K3K5K11N∗H

(
1 +

γUηU
K7

)
v14,

v6 =
β∗HVM

∗
UσMσV (1− εBαB)

K4K6K11N∗H

(
ηI +

γV ηV
K8

)
v14, v7 =

β∗HVM
∗
UσM (1− εBαB)

K5K11N∗H

(
1 +

γUηU
K7

)
v14,

v8 =
β∗HVM

∗
UσM (1− εBαB)

K6K11N∗H

(
ηI +

γV ηV
K8

)
v14, v9 =

β∗HVM
∗
UσMηU (1− εBαB)

N∗HK7K11
v14,

v10 =
β∗HVM

∗
UσMηV (1− εBαB)

N∗HK8K11
v14, v11 = 0, v12 = 0, v13 =

σM
K11

v14 v14 = (β∗HV )2(1− αBεB)2

×M∗UσM
(
S∗UσUQ11 + S∗V σV (1− εV )Q12

)
+ (N∗H)2K11

[
K10 +K11

](
K3K4K5K6K7K8

)2

(B.4)

with Q11 =
[
K7(K3 + K5)(K7 + γUηU ) + K3K5γUηU

](
K4K6K8

)2

, Q12 =
[
K8(K4 + K6)(K8ηI + γV ηV ) +

K4K6γV ηV

](
K3K5K7

)2

.
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The right eigenvector (w) is denoted by w =
[
w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14

]T
, where

w1 =
−β∗HV (1− εBαB)

(
S∗UK2 + S∗V ωV (1− εV )

)
N∗H

(
K1K2 − ωV ξV

) w14,

w2 =
−β∗HV (1− εBαB)

(
S∗UξV + S∗VK1(1− εV )

)
N∗H

(
K1K2 − ωV ξV

) w14,

w3 =
β∗HV S

∗
UσUγUτU (1− εBαB)

N∗HK3K5K7µH
w14, w4 =

β∗HV S
∗
V σUγV τV (1− εBαB)(1− εV )

N∗HK4K6K8µH
w14,

w5 =
β∗HV S

∗
U (1− εBαB)

N∗HK3
w14, w6 =

β∗HV S
∗
V (1− εBαB)(1− εV )

N∗HK4
w14,

w7 =
β∗HV S

∗
UσU (1− εBαB)

N∗HK3K5
w14, w8 =

β∗HV S
∗
V σV (1− εBαB)(1− εV )

N∗HK4K6
w14,

w9 =
β∗HV S

∗
UσUγU (1− εBαB)

N∗HK3K7K5
w14, w10 =

β∗HV S
∗
V σV γV (1− εBαB)(1− εV )w14

N∗HK4K6K8
, w11 = 0,

w12 =
K11

σM
w14, w13 =

K10

σM
w14, w14 = (N∗H)2K11

(
K3K4K5K6K7K8

)2

,

(B.5)

The eigenvalues v14 and w14 are chosen so that the classical requirement that the dot product of v and w
satisfies v.w = 1. Clearly vi ≥ 0 while w1, w2 are negative (for variables that are non-zero at DFE), such choice
is justified by Remark 1 of [9] which states;

Remark B.1. The requirement that w is non-negative in the theorem is not necessary. When some components
in w are negative, we still can apply this theorem, but one has to compare w with the actual equilibrium because
the general parametrization of the Centre Manifold before the coordinate change is,

W c =

{
x0 + c(t)w + h(c, φV ) : v.h(c, φV ) = 0, |c| ≤ c0, c(0) = 0

}
,

provided that x0 is a non-negative equilibrium of interest (usually x0 is the disease-free equilibrium). Hence,
x0 − 2bφV

a > 0 requires that wj > 0 whenever x0(j) = 0. If x0(j) > 0, then w(j) need not be positive [9].

It can be verified that v.w = 1, thus all the necessarily conditions for the application of Lemma 3 and Theorem
4 of [39] as well as Theorem 4.1 of [9] are satisfied. After series of computations and simplifications we obtained

a =

n∑
k,i,j=1

vkwIwj
∂2fk
∂xI∂xj

(0, 0) = −2(β∗HV )2(1− εBαB)2w2
14v14

(N∗H)2

{
M∗UP1(1− εBαB)σM

K11

(
P3 + P5 − P6 − P7

)
+N∗HP1 + P9S

∗
V (1− εBαB)(1− εV )

(
P3 + P4 − P6

)
+ P8S

∗
U (1− εBαB)

(
P2 + P5 − P7

)
+ P8P10(1− εBαB)

(
N∗HεW − S∗V

)
+ P9P11(1− εBαB)

(
N∗HεW − S∗U

)
+ P9P11S

∗
V (1− εBαB)εV

+ P8P6S
∗
V (1− εBαB) + P9P7S

∗
U (1− εBαB)(1− εV )

}
(B.6)
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where,

P1 =
S∗Uβ

∗
HV σU

N∗HK3K5

(
1 +

γUηU
K7

)
+
S∗V β

∗
HV σV (1− εV )

N∗HK4K6

(
ηI +

γV ηV
K8

)
, P2 =

S∗Uβ
∗
HV

N∗HK3

(
1 +

σU
K5

+
σUγU
K5K7

)
,

P3 =
S∗Uβ

∗
HV

N∗HK3

(
1 +

σU
K5

+
σUγU
K5K7

+
τUσUγU
K5K7µH

)
, P4 =

S∗V β
∗
HV (1− εV )

N∗HK4

(
1 +

σV
K6

+
σV γV
K6K8

)
,

P5 =
S∗V β

∗
HV (1− εV )

N∗HK4

(
1 +

σV
K6

+
σV γV
K6K8

+
τV σV γV
K6K8µH

)
, P6 =

β∗HV
(
S∗UK2 + S∗V ωV (1− εV )

)
N∗H
(
K1K2 − ωV ξV

) ,

P7 =
β∗HV

(
S∗UξV + S∗VK1(1− εV )

)
N∗H
(
K1K2 − ωV ξV

) , P8 =
β∗HVM

∗
UσMσU

K3K5K11N∗H

(
1 +

γUηU
K7

)
,

P9 =
β∗HVM

∗
UσMσV

K4K6K11N∗H

(
ηI +

γV ηV
K8

)
, P10 =

β∗HV S
∗
UσUγUτU

N∗HK3K5K7µH
, P11 =

β∗HV S
∗
V σUγV τV (1− εV )

N∗HK4K6K8µH
,

and

b =

n∑
k,i=1

vkwI
∂2fk

∂xI∂φV
(0, 0) =

β∗HVM
∗
UσMv14w14

(N∗H)2

[
S∗UσU

K3K5K11

(
1 +

γUηU
K7

)
+

S∗V σV
K4K6K11

(
ηI +

γV ηV
K8

)]

+

[
β∗HV S

∗
UσMγUσU

N∗HK3K5K7

(
1 +

γUηU
K5

)
+
β∗HV S

∗
V σMσV (1− εV )

N∗HK4K6

(
ηI +

γV ηV
K8

)]M∗UσMv14w14

N∗HK11
> 0

(B.7)

Since b > 0, the direction of bifurcation depends on the sign of a, which can be positive or negative, and a > 0
means the model (2.1) undergoes backward bifurcation at R0V = 1 [9, 39].
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