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Highlights

•An excellent agreement between analytical and numerical solutions is seen.
•The more Deborah is, the lower skin friction coefficient is observed.
•Both drag force and hydraulic boundary layer decline when porosity increases.
•Decrease in Deborah and increase in porosity both lead to enhancing heat transfer.

Abstract

The problem of flowing a Maxwell upper-convected fluid on a horizontal surface is considered
here in two conditions. One is the condition in which the plate is made of a porous material, and
another one when it is not. For each case, the analytical solution is found using a technique
called homotopy perturbation method (HPM). The codes developed in Maple software program
are employed for this purpose, and the profiles for velocity and temperature are obtained. The
provided analytical solution for each condition is validated using the numerical simulation of the
boundary value problem (BVP), and then, a comprehensive sensitivity analysis is carried out.
According to the results, for each case, an excellent agreement between the numerical simulation
and analytical solution is seen. Moreover, it is found that the skin friction coefficient has a
downward trend for both conditions when Deborah goes up. Furthermore, increasing the
porosity coefficient is accompanied by decrease in both drag force and hydraulic boundary layer.
In addition, for the investigated conditions, having a higher porosity factor leads to an
enhancement in the heat transfer, whereas a decrease in Deborah has the same effect.

Keywords: Computer simulation; Horizontal plate; Mathematical solution; Maxwell upper-
convected fluid; Porous media; Sensitivity analysis
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Nomenclature

1. Introduction

Porous media are being extensively utilized in a wide range of applications from enhancing the
performance of power generation units to controlling the temperature of electronic circuits,
healthcare products, and so on [1], [2], [3], [4]. Such a great popularity has been the trigger for
many investigations in the field [5], [6], [7], and among different topics, modeling the
performance has been taken into account as one of the hottest subjects in the area [8], [9], [10].
A model is able to predict the performance of the system for any condition of the effective input
parameters [11], [12], [13]. Numerical simulation and analytical solution are two main widely-
used ways for modeling [14].

Numerical solution is done when the problem is complex, and the governing equations could
not be solved directly. Because of the complexity of the governing equations, modeling the
interaction between fluid flow and a porous medium is usually done using the numerical
approaches, and several investigations have been employed numerical simulation for modeling
the fluid flow inside or outside porous media. Among different aspects, modeling heat transfer is
of great importance since it shares valuable information about the exchange of energy, mass, and
momentum due to conduction, convection, and radiation, and helps to know the system more
comprehensively [15].

As indicated, there have been a huge number of studies that have utilized numerical approach
for prediction of the interaction between fluid flow and porous media. Those studies could be
categorized into different groups according to various aspects, including the employed method
for numerical simulation, the considered fluid, the geometry of porous medium, and the
considered effects. Table 1 tries to give a quick summary about the aforementioned criteria of a
number of the most related recent studies.

One the other hand, analytical solution could make a bridge to find the value of an output based
on the effective input parameters as a function, and could be used as a robust tool for sensitivity
analysis and code validation. In addition, compared to the numerical simulation, using an
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Table 1. A quick summary of the employed methods, the considered fluids, and the geometries of porous medium in the recent relevant investigations which
provided a numerical simulation for interaction of a fluid and a porous medium.

Study Year The employed method for numerical
simulation The fluid The geometry of porous medium The considered effects

Sheikholeslami [16] 2017 Gauss–Seidel method Fe3O4 nanofluid-water A curved cavity which has a hot wall on the
left Heat transfer

Toosi and Siavashi
[17] 2017 A CFD code based on the reference [18], which

utilized finite-volume methodology Cu particles in water A square cavity partially in which there was
porous medium Heat transfer

Abdelfatah et al. [19] 2017 Finite difference method A nano fluid A core plug The characteristic of porous media,
including permeability

Jourabian et al. [20] 2018 Lattice Boltzmann method Melting ice as a phase
change material

A flat rectangular cavity which has two
vertical arranged cylinders Heat transfer

Khayyer et al. [21] 2018 Lagrangian method Water A wave channel with porous media whose
porosity was variable Hydrodynamical characteristics

Ellahi et al. [22] 2019 BVPh 2.0 toolbox in Mathematica Al2O3 nanofluid-water Two wavy parallel walls Velocity profile as well as electromagnetic
parameters

Su et al. [23] 2019 Discrete element method Two-phase fluid-
particle A cylinder Pressure difference in addition to the

position of particles in the stream
Talebizadeh Sardari et
al. [24] 2020 Combination of enthalpy-porosity and thermal

non-equilibrium approaches
A phase change
material

A rectangular medium with PCM embedded
in a foam that is composed of copper Heat transfer

Nazari et al. [25] 2020 SIMPLER approach Al2O3 nanofluid-water A square cavity with two horizontal
adiabatic walls Heat transfer

Omirbekov et al. [26] 2020 Volume-averaging method Alpha-olefin sulfonate Foam in porous media Hydraulic performance

Chen et al. [27] 2020 Least-squares method Aqueous solution of
BaSO4

A reservoir and injection slot Permeability criteria

Hu et al. [28] 2020 Finite volume CFD method A Newtonian fluid Heat exchanger in turbine engine Heat transfer

Aminian et al. [29] 2020 Finite volume CFD method using ANSYS-
FLUENT software program

Al2O3 and CuO
nanofluid- water A cylinder Magnetic characteristics as well as heat

transfer
Hosseini et al. [30] 2020 Finite element method (X-FEM) A single-phase fluid A fracture Transport phenomena
Massarotti et al. [31] 2020 Characteristic-Based-Split method Free fluid A cavity inside a rectangular shape Heat transfer

Feng et al. [32] 2020 Cascaded lattice Boltzmann method A mixed convection
flow Cavity in a porous channel Heat transfer

3



analytical solution needs a much lower computation time and cost [33]. Therefore, some studies
tried to deal with the complexity of problems in the field and provide analytical solutions for
them using some “techniques” [34], [35], [36], [37], [38], [39], [40].

Having the similar fashion as the studies which have used numerical simulation, Table 2 is
provided to share information about the investigations which have given analytical solutions for
interaction of a fluid and a porous medium in different problems. For example, as some of the
quite similar items to this study, the research works done by Shao et al. [41], Fahs et al. [42], and
Shao et al. [43] could be given as the examples. Shao et al. [41] took the advantage of a method
called Fourier–Galerkin approach to find an analytical solution for heat transfer in
heterogeneous porous medium, which could be used as a benchmark reference. Moreover, by
applying the same technique, i.e., Fourier–Galerkin approach, Fahs et al. [42] proposed an
accurate analytical solution for natural convection in a porous enclosure, and employed the
solution to investigate the impact of thermal dispersion on that. Additionally, Fourier–Galerkin
approach was employed in the study of Shao et al. [43] to present an analytical solution for
Darcy-Brinkman double-diffusive convection heat transfer in a geometry, which was a confined
saturated porous medium.

Table 2 shows that homotopy perturbation method, also known as HPM, has been utilized in
few works to provide analytical solutions. HPM was originally introduced by He [51] and has
been used to find the analytical solution for a number of problems in different fields of science
[52], [53], [54], [55], [56]. However, it has not been employed for the problem of flowing a
Maxwell upper-convected fluid on a flat porous plate. Moreover, a comparative study to find the
impact of changing the effective parameters on the heat transfer of this fluid has not been
carried out yet. The explained issues could be considered as the gap of the research. In another
word, to the best of authors' knowledge and based on the conducted literature review, all
previous studies have neglected to provide an analytical solution for flowing the Maxwell upper-
convicted fluid on a porous medium fluid perform the sensitivity analysis to find the impact of
effective parameters. In fact, they have focused on the fluids with simpler physics, like the
Newtonian ones.

Despite progress in numerical model development, analytical solutions are still important as they
provide direct relation between model output and input parameters (so they are helpful in
performing sensitivity analysis) and they are of first importance for code validation. The results
presented in this paper (especially, the comparison between analytical and numerical solutions)
can serve as data for code verification and benchmarking. Therefore, providing the analytical
solution for flowing the Maxwell upper-convected fluid using HPM method, and comparing the
obtained solution with the condition in which the plate is not porous could be taken into
account as the novelties of the paper.

2. Methodology

2.1. Problem definition

As previously mentioned, the goal of this investigation is to solve the governing equations for
flowing Maxwell upper-convected fluid on a horizontal surface in two conditions. One is the
condition in which the plate is made of a porous medium, and another is the horizontal surface
whose material is not porous. The goal is achieved by employing HPM, as described in the rest
of this part, and by obtaining the distribution for temperature (
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Table 2. A quick summary of the recent relevant investigations carried out for providing an analytical solution for interaction of a fluid and a porous medium.

Study Year
The employed method to

prepare the analytical
solution

The fluid The geometry of porous
medium The considered effects

Shao et al. [41] 2015 Fourier–Galerkin approach
A fluid which had Darcy-
Brinkman heat, flow, and mass
transfer

A square cavity Heat transfer

Shao et al. [43] 2016 Fourier–Galerkin approach A fluid with double-diffusive
convection A square cavity Heat transfer

Obembe et al.
[44] 2017 Modification of the memory-

based approach Slightly compressible fluid Fractal Hydraulic performance

Shirkhani et al.
[45] 2018 Homotopy perturbation

method Newtonian fluid Two parallel discs

Nakshatrala et al.
[46] 2018 Green’s function method A single-phase fluid which was

incompressible
A rigid medium which
featured double porosity

Mass transfer and velocity
profile

Joodat et al. [47] 2018 mechanics-based solution
verification An incompressible fluid Hollow sphere Mass transfer and velocity

profile

Fahs et al. [42] 2019 Fourier–Galerkin approach A fluid with internal natural
convection

A square type of cavity which
has the slip velocity boundary Heat transfer

Hoseinzadeh et al.
[48] 2019 Homotopy perturbation

method A single-phase fluid A fin whose cross section was
rectangular Heat transfer

Nabizadeh et al.
[49] 2020 Using separation variable Spherical fluid A reservoir

Hydraulic characteristics,
including the dimensionless
pressure

Ghanbari Ashrafi
et al. [50] 2020 Homotopy perturbation

method Newtonian fluid A flat plate Heat transfer, as well as velocity
and stress profiles
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) and velocity (u). These two parameters are determined while they are dependent on x and y, as
the independent parameters. Fig. 1 shows the schematic design of the problem.

Fig. 1. The Schematic statement of the problem.

Maxwell material refers to a substance which is viscous and elastic at the same time, and in fluid
mechanics, upper-convected model represents the behavior of a Maxwell material when large
deformations take place. In such case, upper-convected time derivative is employed for
modeling, and the name “upper-convected” comes from that [57].

Additionally, for developing the analytical solution, the continuity is assumed for the medium
while the fluid is considered incompressible. Not changing the properties and working in steady
state steady flow (SSSF) condition are two other assumptions for the investigation. Moreover, no
phase change process takes place in the system and all the solid particles are thought to have the
same specifications, including the shape.

2.2. Governing equations

Continuity, momentum, and energy equations are taken into account as the three main types of
governing equations for the investigated system. Considering the point that, based on the
assumptions, no changes in properties happens, the momentum equation could be solved
separate from the energy equation.

When the flow is laminar and there is SSSF condition, the governing continuity and momentum
equations are:

  (1)

  (2)

  (3)
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              (4)

Through making Eqs. (2), (3) simple, Eqs. (5), (6) are achieved:

              (5)

              (6)

             (7)

             (8)

In Eqs. (7), (8), five unknown variables could be identified, which are: P, , and u.

A system of equations could be solved when number of equations are equal to number of
unknown variables. Therefore, three more (auxiliary) equations are needed. The first auxiliary
equation could be written based on the properties of the Maxwell fluid, which indicates that the
tensors for tension and changes rate are related together based on Eq. (9):

              (9)

            (10)

Putting all the terms from the introduced equations into Eq. (7) results in achieving Eq. (11) as
the momentum equation for the Maxwell fluid:

  (11)

Based on the considered assumptions and due to the constant rate of free flow:
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(12)

Consequently, as the final equation, Eq. (13) is obtained:

      (13)

Since there is no slip, the boundary conditions indicated in Eq. (14) are imposed to the problem:

(14)

For energy equation, since the problem is solved for SSSF conditions in which the changes in
properties, including the temperature are zero and no heat generation takes place, Eqs. (15), (16)
could be written:

(15)

(16)

In Eqs. (15), (16) the conductivity of solid parts and fluid are indicated by ks and kf,, respectively.

Moreover,  is defined as that is called the thermal distribution. Additionally, the
corresponding boundary condition is:

(17)

2.3. Transforming equations to ordinary format

Stream function is defined based on Eq. (18):

By defining the flow function, we can reduce the number of unknowns in the Eq. (13) to one.

(18)

If Eq. (21) is considered, Eq. (15) could be stated in the form of Eq. (22):

(19)

The similarity variable is defined as . Then:
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(20)

After taking advantage of simplifications, Eq. (21) is achieved:

 (21)

When both sides of Eq. (21) are divided by k’, Eq. (22) is obtained:4

(22)

Darcy number for the direction × could be defined as ( ). If both sides
are multiplied in ( 1), and then, they are divided by and since based on the definition of the
problem in two-dimensional system (Fig. 1), the penetration is in the × axis:

(23)

Therefore:

  (24)

The term is defined as Deborah number (De) while . Consequently, Eq. (27)
changes to Eq. (28) and the corresponding boundary condition is written based on Eq. (29):

  (25)

(26)

In addition, by defining the dimensionless temperature in the form of ( ), Eq. (27) is
achieved:

(27)
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If two sides of Eq. (27) is divided by , Eq. (28) is obtained:

(28)

Eq. (28) could be divided by  , which leads to writing Eq. (29):

(29)

Consequently:

(30)

Boundary conditions are also stated as Eq. (31) shows:

(31)

In this study, in addition to evaluation of the accuracy of solution for the two aforementioned
conditions, the effect of changes in the viscoelastic parameter (De) and the penetration
coefficient (k*) on the velocity profile and fluid temperature will be also investigated for them.
Checking the accuracy is done by comparing the results of HPM with the boundary value
problem (BVP) method.

It is also worth mentioning that Maple software has some libraries, containing written codes, to
solve boundary value problem (BVP), and in this study, numerical solution was found by
employing that. More details about the commands and the working principle of the libraries are
available in [58].

2.4. More detailed equations for the two cases

2.4.1. Case I: The Maxwell upper-convected fluid on the horizontal surface

For this case, k* = 0. As a result:

      (32)

(33)

In order to obtain , an auxiliary linear operator shown in Eq. (34) is chosen:

(34)

It results in obtaining the differential equations indicated in Eqs. (35), (36):
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(35)

(36)

The value of is determined based on the considered constant parameters for the problem and
adjusting the values with the numerical solution in a way that the highest accuracy is achieved.
For example, when De = 0.01, the condition with  has the highest accuracy with
numerical solution as shown in Fig. 2.

Fig. 2. The process of finding the best value of for  in case I a) the diagram of f, i.e.,
the stream function, b) the diagram of f’, i.e., velocity distribution.
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The differential equation could be solved in combination with the linear auxiliary operator,
which leads to obtaining Eq. (37):

(37)

Based on HPM working principle, Eqs. (38), (39) could be written:

(38)

(39)

Where p is called the embedding parameter; it is in the range of p  [0 and 1]. As a result:

(40)

According to the definition and considered values, when p increases from zero to one,
changes from  In case  and De = 0.01:

 (41)

.

    (42)

(43)

(44)

(45)
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(46)

(47)

(48)

(49)

(50)

 (51)

 (52)

2.4.2. Case II: The Maxwell upper-convected fluid flow in the porous medium on the
horizontal surface

Based on the defined problem, the equation and corresponding boundary conditions for this
case are:

   (53)

(54)

By following the similar way as the previous case, an auxiliary parameter is defined:

(55)

Which results in obtaining differential equation introduced in Eq. (56):

(56)

With the boundary conditions reported in Eq. (57):

(57)

Similar to the previous case, here, finding the best value for is done from the graphic way. For
example, for the investigated case, when k* = 0.2 and De = 0.1,  has the highest accuracy
with the numerical solution, as shown in Fig. 3.
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Fig. 3. The process of finding the best value of in case II a) the diagram of f,
i.e., the stream function, b) the diagram of f’, i.e., velocity distribution.

The guess function for the investigated differential equations is:
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(58)

By applying HPM, the analytical solution for the function f could be obtained. The equation for
the condition in which  and De = 0.1 is:

 (59)

If  and this equation is arranged with respect to p, the terms are:

(60)

 (61)

 (62)

 is obtained when three equations are added together:

 (63)
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.

(64)

 (65)

(66)

3. Results and discussion

As the name also indicates, the results of this work will be presented in this part.

3.1. Validation of the proposed analytical solution by HPM

This part shares the information about validation of the developed analytical solution. Validation
is done by taking advantage of the numerical solution found based on BVP in Maple software.

3.1.1. Case I: The Maxwell upper-convected fluid on the horizontal surface

As mentioned before, checking the accuracy of the proposed analytical solution by HPM is done
using the numerical solution. For this purpose, the estimation of four important performance
parameters, namely stream function, as well the distribution of velocity, stress, and dimensionless
temperature are compared together. The results are given in Fig. 4, where an excellent agreement
between the prediction of HPM and numerical simulation is observed. Therefore, the analytical
solution which is provided by HPM has been validated, and it could be utilized for further
analyses, including sensitivity analysis.
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Fig. 4. Checking the prediction ability of the proposed analytical solution with numerical simulation
when k* and De are  for different parameters in case I, which are a) stream function; (b)
distribution of velocity; (c) distribution of stress; (d) dimensionless temperature.

3.1.2. Case II: The Maxwell upper-convected fluid flow in the porous medium on the
horizontal surface

Like the ordinary plate, i.e., the one which is not composed of a porous medium, here for the
porous medium, the validation is carried out using a similar way. The results are depicted in
Fig. 5a–d for the stream function, velocity distribution, stress distribution, and dimensionless
temperature, respectively. As observed, the made comparison reveals the high accuracy of the
provided HPM solution in prediction.
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Fig. 5. Checking the prediction ability of the proposed analytical solution with numerical simulation when
k* and De are  for different parameters in case II, which are a) stream function; (b)
distribution of velocity; (c) distribution of stress; (d) dimensionless temperature.

3.2. Sensitivity analysis

By employing the validated HPM solution, the sensitivity analysis is carried out to find the
impact of Deborah (De) on stream function, velocity and stress distribution. It is done for
flowing the Maxwell upper-convected fluid for both the investigated material for the horizontal
surface, i.e., ordinary and porous conditions.

3.2.1. Case I: The Maxwell upper-convected fluid on the horizontal surface

Fig. 6, Fig. 7, Fig. 8 present the results for this case. As shown in Fig. 6, when De goes up,
initially, stream function has an upward trend. However, it then goes down, which is followed by
an increase in the velocity in the direction of y.
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Fig. 6. The impacts of De on the stream function in case I.

Fig. 7. The impacts of De on the velocity distribution in case I.

Fig. 8. The impacts of De on the stress distribution in case I.
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As shown in Fig. 7, Fig. 8, the velocity within the boundary layer increases by increasing , but
the shear stress goes down. The reason is that by increasing  and not changing x, the distance
from the wall becomes more, which is accompanied by getting lower effect from the wall. As a
result, the shear stress has a downward trend and the velocity becomes closer to the free flow
rate.

Deborah number is a dimensionless value which describes the ratio of the relaxation time (tc) to
the time scale characteristic for a test probing the reaction of the substance (tp) [59]:

(67)

As shown in Fig. 7, as De for the Maxwell upper-convected fluid increases, the velocity profile
decreases first and then, increases rapidly, but the thickness of the hydrodynamic boundary layer
goes down. In addition, according to Fig. 8, when De increases, the stress distribution first
increases and next, tends to zero at the further points, but is decreasing on the plate. It is because
of the fact that when De increases, the elasticity of the fluid increases, but its viscosity decreases.
As a result, the stress on the plate have a downward trend. Moreover, based on Fig. 8, for
De = 0.5 the stress on the plate has a negative value, which indicates that, the separation
operation has occurred and the considered hypotheses for boundary layer are no longer true.
Table 3 shows the skin friction coefficient for different values of De. According to Table 3, it is
concluded that by increasing De, the skin friction coefficient goes down.

Table 3. Values of the skin friction coefficient for different conditions of De (when k* is 0).

In addition, Fig. 9 shows the heat distribution in the boundary layer. This figure implies that as 
increases, the temperature profile, i.e., ) increases. Moreover, when De increases, the
temperature distribution goes up, but the thickness of the thermal boundary layer decreases.

Fig. 9. Temperature profile for different values of De in case I.
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Fig. 10 also illustrates the temperature gradient for different values of De. Based on Fig. 10, it is
implied that as De increases, the heat gradient on the plate decreases, which means the heat
transfer rate between the plate and the fluid goes down.

Fig. 10. Temperature gradient for different values of De in case I.

3.2.2. Case II: The Maxwell upper-convected fluid flow in the porous medium on the
horizontal surface

Fig. 11 reports the results for the dimensionless stream function, while Fig. 12, Fig. 13 presents
the variation trend for velocity distribution and stress distribution, respectively. Increasing De
leads to a linear growth for f. Moreover, Fig. 12, Fig. 13 show that as

increases, the velocity within the boundary layer goes up, whereas the shear stress decrease. The
reason is by increasing , the influence of wall region at the same value for x goes down.
Consequently, as we the shear stress declines and the velocity gets closer to the velocity of free
stream.

Fig. 11. The impacts of De on the stream function in case II.
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Fig. 12. The impacts of De on the velocity distribution in case II.

Fig. 13. The impacts of De on the stress distribution in case II.

Based on the reported results in Fig. 12, in case the porosity remains constant, De increases.
Moreover, the velocity profile decreases first and then, increases rapidly. Nonetheless, the
thickness of the hydrodynamic boundary layer goes down.

According to Fig. 13, by increasing De, the stress distribution increases first and tends to zero at
farther points, afterwards. However, has an upward trend on the plate, so that at De = 0.8, it
finds a negative value, which means in that region, the hypotheses of the boundary layer is no
longer applicable. Therefore, the solution corresponds to De = 0.7. It could be interpreted by
the point that the decrease in stress on the plate leads to increase De, which is accompanied by
growing the elasticity of the fluid and decreasing the viscosity decreases. As a result, the stress on
the plate decreases. The skin friction coefficient for different values of De is given in Table 4.
According to Table 4, it is found the more De is, the lower skin friction coefficient will be.
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Table 4. The values of the skin friction coefficient for different conditions of De (when K* is 0.2).

Fig. 14 also demonstrates that when  increases, the temperature profile ) goes up. Moreover,
when De increases, the temperature ) has an upward trend, but the thickness of the thermal
boundary layer declines.

Fig. 14. Temperature profile for different values of De in case II.

Moreover, the temperature gradient for different values of De is shown in Fig. 15. According to
this figure increasing De is accompanied by decreasing the heat gradient on the plate, which
implies that, the heat transfer between the plate and the fluid diminishes.

Fig. 15. Temperature gradient for different values of De in case II.
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4. Conclusions

In the current work, homotopy perturbation method (HPM) was employed to find the analytical
solution for flowing the Maxwell upper-convected fluid on a horizontal surface. Two possibilities
for the plate material were investigated. In one of them, the plate was assumed to be not porous,
whereas in another one, it was considered to be composed of a porous material. For each
condition, the obtained solution was validated using the numerical simulation of the boundary
value problem (BVP), and then, a sensitivity analysis was performed to find the impact of
effective parameters on the solution. According to the results, the following results were
obtained:

When the penetration coefficient for the porous medium increased, the velocity profile
increased, and the thickness of the hydrodynamic boundary layer declined.
Increasing the penetration coefficient was accompanied by increasing the skin friction
coefficient.
The lower De was, the greater skin friction coefficient was observed.
As the penetration rate of the porous medium increased, the heat transfer increased, but
the increase in Deborah reduced the heat transfer.

Moreover, as the ideas for future work, the items like solving the problem for the plate with slip
condition, presence of the magnetic field and thermal radiation could be suggested. In addition,
the problem could be solved for movable stretch and inclined plates.
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