THE INDUCIBLE DEFENSES OF LARGE MAMMALS TO HUMAN LETHALITY

Robert A. Montgomery*?", montg164@msu.edu
David W. Macdonald?, david.macdonald@zoo0.0x.ac.uk
Matthew W. Hayward?®, matthew.hayward@newcastle.edu.au

Research on the Ecology of Carnivores and their Prey (RECaP) Laboratory, Department of
Fisheries and Wildlife, Michigan State University, East Lansing, MI. 48824 USA

2\Vildlife Conservation Research Unit, Department of Zoology, University of Oxford, The
Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, Oxon OX13 5QL, UK.

3School of Environmental and Life Sciences, University of Newcastle, University Drive,
Callaghan, NSW Australia 2308; Centre for African Conservation Ecology, Nelson Mandela
University, Port Elizabeth, South Africa; Centre for Wildlife Management, University of Pretoria,
Private Bag X0001; South Africa.

*Corresponding Author: Research on the Ecology of Carnivores and their Prey (RECaP)
Laboratory, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI.
48824 USA, montgl64@msu.edu

Submission Exclusively to Ecology for consideration as an Article

Manuscript Metrics:

Number of words in abstract: 330

Number of words in main manuscript: 5,959
Number of references: 227

Number of tables and figures: 3 tables and 4 figures


mailto:montg164:@msu.edu
mailto:david.macdonald:@zoo.ox.ac.uk
mailto:matthew.hayward:@newcastle.edu.au
mailto:montg164:@msu.edu

ABSTRACT

1. Inthe process of avoiding predation, prey are faced with potentially fitness-
compromising trade-offs that have implications for their survival and reproduction. The
nature and strength of these non-consumptive effects at the population level can be
equivalent, or even greater, than consumptive effects.

2. Many prey species have evolved defence mechanisms that are induced by predation
risk. These inducible defences can be morphological or behavioural in nature. Extensive
research has detected these defences in predator—prey communities across freshwater,
marine and terrestrial ecosystems. Among this vast research however, an influential
portion of these systems has not been widely considered.

3. Humans inhabit a level in trophic systems above apex predators. In that position,
humans have been referred to as a hyperkeystone or super predator species as they
have shown a capacity to consume animals at rates many times higher than any other
non-human species. However, the extent to which humans induce adaptive defences in
animals is not as clear. Systems involving large mammals may be particularly well-suited
for the study of human-induced defences given that these species have been
disproportionately exploited (for food and competition) over evolutionary time by
humans.

4. To begin this process we first had to examine the context in which large mammals could
adaptively evolve inducible defences in relation to human lethality. With the plausibility
of these conditions satisfied, we then conducted an extensive review to document the
inducible defences that have been detected in large mammals. All of the 187 studies
reviewed documented the behavioural plasticity of large mammals to human lethality.
No morphological adaptive defences were detected.

5. However, the extent to which the observed behavioural plasticity of large mammals is
representative of adaptive inducible defences remains unclear because the fitness
trade-offs (i.e. costs), an integral condition for inducible defences to evolve, were
implied rather than quantified among close to 92% of this research. We make
recommendations for renewed ingenuity in the development of field experiments that
can quantify these costs and discuss the implications of human lethality on the ecology,
conservation and management of large mammals.

Keywords: Anti-Predator Behavior, Carnivore, Evolution, Inducible Defenses, Human Lethality,

Trophic Ecology, Ungulate



1 INTRODUCTION

The decisions that predators make in pursuit of prey and those that prey make to avoid
predation have important implications for interspecific interactions, food web dynamics,
community structure and evolutionary ecology (Abrams, 1986; Cott, 1940; Dawkins &
Krebs, 1979; Edmunds, 1974; Gould, 1977; Paine, 1995). Prey responding to predators can
experience both the direct (i.e. lethal or consumptive effects; Paine, 1966; Sih et al., 1985;
Taylor, 1984) and indirect effects of predation (Abrams, 1995; Kerfoot & Sih, 1987; Peacor &
Werner, 1997). Predator consumption of prey is a direct effect that results in death and the loss
of genes from the prey population (Abrams, 2000; Creel et al., 2017; Murdoch et al., 2003;
Preisser et al., 2005). To evade predators, prey can make phenotypic changes that typically
present costs in the form of fitness trade-offs (Barry, 1994; Relyea, 2002; Ruxton & Lima, 1997,
Werner & Peacor, 2003; Zanette et al., 2011). In certain systems, these trait-mediated (Peacor
& Werner, 1997; Schmitz et al., 2004; Trussell et al., 2003; Werner & Peacor, 2003), non-
consumptive (Brown & Kotler, 2004; Pangle et al., 2007; Peckarsky et al., 2008) or risk effects
(Creel, 2011; Creel & Christianson, 2008; Heithaus et al., 2008) have been found to have
considerable negative consequences for prey fitness (Cresswell, 2008; Peacor et al., 2013;
Peacor & Werner, 2001; Schmitz et al., 1997). of predation (Schmitz et al. 1997; Peacor and
Werner 2001; Cresswell 2008; Peacor et al. 2013).

Many phenotypic changes made by prey are defence mechanisms that are induced by
predation (Brénmark et al., 1999; Harvell & Tollrian, 1999; Karban et al., 1999). These inducible
defences are elicited in response to a previous encounter with a predator (Harvell, 1986, 1990).

The origins of inducible defences research involved studies of the spines of rotifers



(Asplanchna; Beauchamp, 1952; Gilbert, 1966) and the chemical responses of plants to
herbivory (Dicke, 1999; Green & Ryan, 1972; Haukioja, 1980). Importantly, the inducible
defences of predation can be morphological or behavioural with subsequent ecological effects
(Anholt & Werner, 1999; De Meester et al., 1999; Dodson, 1989; Harvell & Tollrian, 1999). Some
classic examples of morphological changes include the evolution of helmets among Daphnia
(Laforsch & Tollrian, 2004; Tollrian, 1990), thickening and lengthening of the thorns on certain
shrubs and trees (Abrahamson, 1975; Young & Okello, 1998), formation of spines on the
membranes of the marine bryozoan species Membranipora membranacea (Harvell, 1984, 1986;
Yoshioka, 1982) and larger body mass in crucian carp Carassius carassius subject to piscivory
(Brénmark & Miner, 1992). Behaviourally, predation induces a number of defences in prey that
often compromise foraging effort (Lima, 1998, 2002; Mangel & Clark, 1988; Sih et al., 1998).
These include changes in activity, habitat selection, vigilance and group size (Anholt &
Werner, 1999; Dill et al., 2003; Lima & Dill, 1990; Turner et al., 2000; Vos et al., 2002; Ydenberg
& Dill, 1986

Immense ecological inquiry has evaluated the role of inducible defences (see Agrawal
etal., 1999; Havel, 1987; Karban & Baldwin, 2007; Karban et al., 2014; Tollrian & Dodson, 1999)
among plants (Berenbaum & Zangerl, 1999; Van Donk et al., 1999) and animals (Harvell, 1990;
Tollrian & Dodson, 1999) via studies in the laboratory, field and theoretical simulations. This
research has proven integral to organismal, evolutionary and interdisciplinary assessments of
ecology (Harvell & Tollrian, 1999). However, recent research has turned to yet another
biological agent that can potentially induce defences in animals: humans. For example, humans

are envisioned to be a hyperkeystone or super predator species inhabiting a position in trophic



systems above apex predators (see Darimont et al., 2015; Oriol-Cotterill et al., 2015a, 2015b;
Worm & Paine, 2016). In this role, humans have demonstrated a capacity to consume and
exploit animals at rates many times higher than any other non-human species (Barnosky

etal, 2011; Darimont et al., 2015; Dirzo et al., 2014; McCauley et al., 2015). Thus, humans have
exerted considerable selective pressure on animal populations and altered the evolutionary
trajectories of numerous species (Darimont et al., 2009; Liberg et al., 2012; Palumbi, 2001,
Reznick et al., 1990).

The inducible defences associated with human lethality might be expected to be
probable among large mammalian species (i.e. those with a body weight exceeding 5 kg; see
Bourliére, 1975), including large herbivores and large carnivores, which have been
disproportionately exploited by humans over evolutionary time (Allendorf & Hard, 2009;
Cardillo et al., 2006; Ceballos & Ehrlich, 2002; Darimont et al., 2015; Kuijper et al., 2016; Ripple
etal., 2014, 2015, 2016). Humans are a primary contributor to the mortality of large mammals
via competition, consumption, killing for sport, killing for products, conflict (retaliatory or
preventative killing) and bycatch from poaching for other target species (Chapron et al., 2014;
Darimont et al., 2015; Doughty et al., 2015; Macdonald, 2016; Ripple et al., 2014). Here, we
discuss the conditions that are necessary for large mammals to adaptively evolve phenotypic
changes in response to human lethality (sensu Harvell & Tollrian, 1999). Within this context, we
clarify the roles of humans as predators, killers and sources of disturbance. We then conducted
an extensive review to determine the behavioural and morphological inducible defences of
large mammals to human lethality that have been reported in the peer-reviewed literature.

Specifically, we discuss the spatial distribution of these studies around the world, the types of



research techniques deployed to assess inducible defences, whether the human cues
considered were proxies for lethality and if the costs of the defence mechanisms employed by
the large mammals were quantified among this research. We ground the inferences of our
study in a discussion of the evolutionary, ecological and conservation implications of

mammalian inducible defences to human lethality.

2 THE IMPACT OF HUMANS ON LARGE MAMMALS

It is clear that humans have a capacity to alter the functioning of the natural world like
no other species (Benitez-Lopez et al., 2010; Ellis, 2011; Hoy, 1998; Magle et al., 2016;
McKinney, 2006; Palumbi, 2001). Humans have transformed ecosystems from natural to built
environments, spread diseases and species, changed water, soil and air chemistry, and
correspondingly, fundamentally changed the climate of Earth (Davidson & Janssens, 2006;
Jones etal., 2018; Lendrum et al., 2018; Parmesan & Yohe, 2003; Smith et al., 2006; Steffen
etal, 2011; Venter et al., 2016; Vitousek et al., 1997). Thus, humans have exerted dramatic
indirect effects that have led some to contend that the world has advanced from the Holocene
to the Anthropocene (Crutzen, 2002; Dirzo et al., 2014; Waters et al., 2016). It is also important
to distinguish among the direct effects that humans can have on animals. Although widely
conflated, these direct effects can be defined either as acts of predation or killing. Here, the
distinction principally relates to the consumption of animal biomass.

Predation does not merely imply death. Rather, and using the classic definition provided
by Abrams (2000, p. 79), predation describes ‘an interaction in which individuals of one species
kill and are capable of consuming a significant fraction of the biomass of individuals of another

species’. Thus, for an animal to be a predator, it cannot just kill another animal but also must



consume a ‘significant fraction’ of that animal's biomass. Importantly, the vast majority of
instances in which humans lethally affect animals, there is little to no consumption of animal
biomass. Vehicle strikes are perhaps the most obvious example. More animals are killed by
vehicles each year than by any direct lethal effect of humans (see reviews by Fahrig &
Rytwinski, 2009; Trombulak & Frissell, 2000). However, biomass consumption is not a primary
component of vehicle strikes and thus, this action should be envisioned to be emblematic of
human killing rather than human predation. Other examples of killing include poisoning
‘problem’ animals, trapping animals for products (i.e. fur), retaliation associated with human—
wildlife conflict, culling initiatives for wildlife control or management, and both legal and illegal
trophy hunting (Woodroffe & Redpath, 2015; Figure 1). These examples lie in stark contrast to
instances in which humans kill animals for the purpose of consuming their biomass (i.e.
consumption). Examples of human predation of large mammals include trapping, snaring and
hunting with an arrow, spear or firearm (Figure 1). We provide this distinction in human
lethality to demonstrate that the portrayal of humans as predators, or indeed super predators,
should be confined to instances in which consumption of animal biomass is the primary
motivation for that lethality.

Predation does not merely imply death. Rather, and using the classic definition provided by
Abrams (2000, p. 79), predation describes ‘an interaction in which individuals of one species kill
and are capable of consuming a significant fraction of the biomass of individuals of another
species’. Thus, for an animal to be a predator, it cannot just kill another animal but also must
consume a ‘significant fraction’ of that animal's biomass. Importantly, the vast majority of

instances in which humans lethally affect animals, there is little to no consumption of animal



biomass. Vehicle strikes are perhaps the most obvious example. More animals are killed by
vehicles each year than by any direct lethal effect of humans (see reviews by Fahrig &
Rytwinski, 2009; Trombulak & Frissell, 2000). However, biomass consumption is not a primary
component of vehicle strikes and thus, this action should be envisioned to be emblematic of
human killing rather than human predation. Other examples of killing include poisoning
‘problem’ animals, trapping animals for products (i.e. fur), retaliation associated with human—
wildlife conflict, culling initiatives for wildlife control or management, and both legal and illegal
trophy hunting (Woodroffe & Redpath, 2015; Figure 1). These examples lie in stark contrast to
instances in which humans kill animals for the purpose of consuming their biomass (i.e.
consumption). Examples of human predation of large mammals include trapping, snaring and
hunting with an arrow, spear or firearm (Figure 1). We provide this distinction in human
lethality to demonstrate that the portrayal of humans as predators, or indeed super predators,
should be confined to instances in which consumption of animal biomass is the primary

motivation for that lethality.
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FIGURE 1. Conceptual framework depicting the selective nature, along a spectrum of indiscriminate to
discriminate, for human predation in comparison to human killing. Herein, the distinction between predation and
killing involves the consumption of animal biomass by the biotic agent (i.e. humans)

We are not suggesting however, that we should necessarily expect variation in the evolution of
inducible defences in response to human killing versus human predation. It is certainly possible
that there would be variation, but that distinction requires further investigation. Such an
assessment is beyond the scope of this paper, but could be the subject of future evolutionary
ecological research. Importantly, both forms of human lethality occur along a relative selectivity

continuum involving techniques that could be considered indiscriminate to those that could be

envisioned as highly selective (Figure 1). And that selectivity has important implications for the
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passing of traits to the next generation (Allendorf et al., 2008; Darimont et al., 2009). Here, we
examine the potential for inducible defences to evolve in response to human lethality.
3 THE EVOLUTION OF INDUCIBLE DEFENSES

As Harvell and Tollrian (1999) articulate, there are four conditions that are necessary for
inducible defences to evolve. The synthesis of these conditions is based on the formative
research of many different scholars (see Adler & Harvell, 1990; Harvell, 1990; Sih, 1987 among

others). These four conditions require that:

1. The cues describing the presence of the biotic agent are spatio-temporally variable,
2. These cues provide reliable indications of risk,
3. The defenses employed to respond to those risks are effective, and

4. The application of those defenses is costly.

Here, we explore the structure of these conditions assuming that the biotic agent
involved is humans and the interaction involves large mammals.
3.1 Cues of human presence

The first condition articulates that the cues of the biotic agent vary in strength across space and
time (see Clark & Harvell, 1992; Padilla & Adolph, 1996). It is widely understood that humans leave
auditory, visual, chemical and tactile cues of their presence that are perceptible among a wide variety of
animals (Burger et al., 1991; Clinchy et al., 2016; Donalty & Henke, 2001; Gétmark & Ahlund, 1984;
Hampton, 1994; Hettena et al., 2014; McComb et al., 2014). These cues are spatiotemporally variable
given the relatively predictable nature of human activity (i.e. typically diurnal and predominantly
associated with human activity centres; Barnosky et al., 2012; Clinchy et al., 2016; Foley et al., 2005).

Furthermore, large mammals are prone to compensating their behaviours to avoid humans spatially and
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temporally (Gaynor et al., 2018; Tucker et al., 2018). Thus, there is good evidence that the first condition

associated with the evolution of inducible defences from human actions is satisfied.

3.2 Cues as a reliable indicator of risk

The evolution of inducible defences also depends upon cues providing a reliable indication of
risks posed by the biotic agents (Bixenmann et al., 2016; Karban et al., 1999). This notion has been
empirically supported via studies documenting the response of large mammals to cues of human activity
(Papouchis et al., 2001; Smith et al., 2015; Suraci et al., 2017; Wilmers et al., 2013). Examples include
large mammals changing their movement and home range patterns (Salek et al., 2015; Wang
etal., 2017), altering their activity schedules (Carter et al., 2012; Gaynor et al., 2018; Wang et al., 2015),
abandoning kills or feeding less (Smith et al., 2017) and choosing different habitat types when perceiving
human presence (Gehr et al., 2017; Valeix et al., 2012; Wilmers et al., 2013). Thus, the ways in which
large mammals adjust their behaviour in response to human activity suggests that these cues may
provide reliable indications of risk.
3.3 Defenses responding to risk are effective

The defences employed by large mammals must also effectively reduce the risk of human
interaction. As we have just highlighted in the cues as a reliable indicator of risk section, there is an
abundance of evidence that the phenotypic plasticity exhibited by large mammals can effectively lower
the risk of lethal interaction with humans. However, as Harvell and Tollrian (1999, p. 6) point out ‘the
real importance of the inducibility of the character may well have more to do with the importance of
responding without error to a changing predator field, than to cost savings’. Further, the effectiveness of
the inducible defences is often determined by an array of predators (sensu Tallamy, 1985, 1991; Taylor
& Gabriel, 1992), rather than one biotic agent (e.g. humans) in isolation. Large herbivores, for instance,
are not only subject to predation from humans, but also to predation risk from sympatric large carnivore

populations. Thus, the inducible defences of large mammals to human predation may be difficult to
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differentiate, particularly given that studies of risk effects in large mammal systems tend to study a
fraction of the complexity in the potential trophic interactions (see Montgomery et al., 2019).
3.4 Defenses responding to risk are costly

The defences of large mammals to humans are expected to carry costs in the form of reductions
in survival and reproduction (Frid & Dill, 2002) deriving from decreased foraging effort (i.e. the predator-
sensitive food hypothesis), increased stress responses (i.e. the predator-induced stress hypothesis;
Creel, 2018) or investment in morphological adaptations. However, the extent to which studies
examining the inducible defences of large mammals to human predation assess the costs of anti-
predator behaviour is unclear. That being said, risks from humans are predicted to be of higher intensity
for large mammals when compared to more natural pressures (e.g. prey availability or competitive
exclusion; Gehr et al., 2017; Oriol-Cotterill et al., 2015a, 2015b; Smith et al., 2017). Thus, there is good
reason to believe that the application of these anti-predator behaviours would carry costs for large
mammals.
3.5 Evolutionary time

Of course, for inducible defences to evolve these conditions must be satisfied and the adaptive
traits passed down across generations. For instance, animal responses to human predation should be
expected to be some combination of genetic pre-dispositions and learned behavioural plasticity (Hendry
etal., 2008; Postma, 2014; Whittaker & Knight, 1998). As Harvell and Tollrian (1999, p. 6) highlight,
‘Irrespective of the selective factors favoring the evolution of inducible defenses, evolution will not
occur in the absence of heritable variation in inducibility’. Given the comparatively long-lived and low
reproductive rates (e.g. long generation times) of large mammals, it is necessary to examine whether
there has been enough evolutionary time to develop inducible defences to human predation. Humans
have been functional components of trophic systems comprised of large mammalian herbivores and

competing carnivores for tens of thousands of years (Bird & Nimmo, 2018; Milner-Gulland &
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Bennett, 2003). That being said, humans have become more efficient and voracious hunters since the
advent of firearms (Allendorf et al., 2008; Milner et al., 2007). Rates of evolutionary change occurring
from human predation can be orders of magnitude greater than those associated with natural evolution
(Reznick et al., 1990) and researchers have detected population-level trait changes for species that share
their landscapes with humans (Hoy, 1998; Van de Walle et al., 2018). Observations of this type might
suggest that the evolution of inducible defences in large mammals to human predation would be

possible, if heritable, and with that in mind we proceeded to our literature review.

4 MATERIALS AND METHODS

4.1 Literature Review

We conducted a review of peer-reviewed literature (completed in January, 2019) evaluating the
suite of defences in large mammals documented in response to human lethality. We focused our
assessment on terrestrial large herbivores (i.e. species in the Infra-Order Ungulata and the Order
Proboscidea) and carnivores (i.e. species in the Order Carnivora) with a body weigh exceeding 5 kg
(Bourliére, 1975). We conducted this review using the Web of Science search engine, with no
restrictions on the date range, via the application of the following terms; (human AND ungulate OR
elephant OR carnivore) AND (inducible defenses OR hunting OR poaching OR super predation). We
analysed all literature deriving from this search and retained those studies with research objectives that
were consistent with the scope of our analysis. We then assessed each of the retained studies and
recorded the following: (a) the study area, (b) the large mammal species researched, (c) the human cues
that were assessed, (d) whether the human cues were indicative of human predation, killing or
disturbance, (e) the defence mechanisms employed by these large mammals and vii) whether the costs

of the anti-predator behaviours were quantified.
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5 RESULTS

In total, there were 392 studies returned from our search of the inducible defences of large
mammals to human lethality. Following our initial examination of these studies, we removed just over
half (n = 205) from consideration given that they: (a) were review or meta-analyses; (b) were theoretical
modelling papers; or (c) did not assess inducible defences of large mammals. All of the remaining 187
studies, published between 1958 and 2019, assessed the behavioural plasticity of large mammals to
humans (see Appendix S1, Supporting Information for a full list of studies). None evaluated the
morphological inducible defences of large mammals.

The retained studies assessed the behaviour of >60 individual species of large mammals
inhabiting trophic systems around the world (see Appendix S1, Supporting Information). North America
and Europe were the continents where the majority of this research occurred, followed by Africa, Asia
and, finally, South America and Australia (Figure 2). Close to half (44%, n = 83 of 187) of all studies were
based in the United States or Canada (Figure 2). Considering that studies might examine large mammals
across several taxonomies, ungulates were the most-common research subjects occurring in 58%

(n =108 or 187) of the studies. Carnivorans and proboscideans were considered among 41% (n = 76 of
187) and 9% (n = 16 of 187) of the studies respectively. Approximately 25% (n = 46 of 187) of the studies
examined human predation, 17% (n = 32 of 187) assessed human killing and 58% (n = 109 of 187)

guantified humans as sources of disturbance.
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FIGURE 2. The spatial distribution of studies examining the inducible defences of large mammals to human
lethality across the world. These data were summarized from a review of the literature published in peer-reviewed
journals between 1958 and 2019. Herein, the count of these studies is presented both at the continent and
country level

The research subjects also exhibited variation by human action with ungulates being most
common among studies of human predation, carnivores being most common in studies of human killing
and both carnivores and ungulates being assessed at almost equivalent levels among studies of human
disturbance (Figure 3). The five most-commonly studied species were elk/red deer Cervus elaphus (13%,
n = 25 of 187), brown bears Ursus arctos (10%, n = 19 of 187), white-tailed deer Odocoileus virginianus
(7%, n = 13 of 187), African elephants Loxodonta africana (7%, n = 13 of 187) and mountain lions Puma

concolor (5%, n =9 of 187). These five species were research subjects in 42% of all papers evaluated.
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FIGURE 3. Bar chart representing a count of the number of studies published in peer-reviewed journals between
1958 and 2019, featuring species from the Infra-Order Ungulata, the Order Carnivora and the Order Proboscidea,
across assessments of human predation, killing and disturbance

There were nine main behaviours that were measured in response to human predation, killing
or disturbance (Table 1). While more than one behaviour could have been assessed per study, over 80%
of all studies evaluated large mammal space use, movement, flight behaviour or activity changes in
relation to human action (Table 1). A number of direct measures and proxies for human predation and
killing were used among this literature (Table 2). Examples of direct measures of human predation
included detections of hunters, researchers simulating hunting and archer density (Table 2). Direct
measures of human killing included vehicle traffic volume on roads, researchers in vehicles and an

organized population culling initiative (Table 2). Where disturbance was quantified, large mammal
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behaviour commonly related to human land use (53%, n = 57 of 108 disturbance studies) or researchers
approaching animal subjects either on foot (14%) or in vehicles (7%) to gauge their reaction. Over 70%
(n =137 of 187) of the studies that we evaluated identified that hunting of the target species occurred in
that ecosystem. Furthermore, 25% (n = 46 of 187) of these studies documented that either
independently or in tandem with legal hunting, the target species were subject to poaching pressure.
There were only 23 studies (12%) that assessed human disturbance in which neither legal nor illegal

hunting of the target species was known to occur.

TABLE 1. The categories of behavioural plasticity employed by large mammals in relation to sources of human
predation, killing and disturbance detected from a review of 187 peer-reviewed studies published between 1958
and 2019. The ‘Other’ category includes duration drinking, site visitation rates and site visit duration. We note that
a single study could have assessed multiple measures of behavioural plasticity. Hence, the count column exceeds

the number of studies and the proportion column exceeds 1.00

Behavioural plasticity Count Proportion
Space use 67 0.36
Mowvement 32 017

Flight 27 0.14

Activity 17 0.09
Occupancy 14 0.07
Vigilance 11 0.06

Stress response 7 0.04
Foraging 7 0.04

Group size <] 0.03

Other 4 0.02
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TABLE 2. The direct measures of human lethality (either predation or killing) are presented alongside proxies for
those mechanisms. The count of the number of times that each factor was used among peer-reviewed studies

(published between 1958 and 2019) documenting both human predation and killing is also presented

Super predator Count | Proportion | Super Killing Count | Proportion

Direct Direct
Hunter detections ] 0.13 Traffic volume 1 0.03
Researchers simulating 1 0.02 Researchers simulating 1 0.03
hunting hunting in vehicles
Comparison of hunted 1 0.02 Culling initiative (poisoned 1 0.03
animals versus unhunted bait)
animals
Archer density 1 0.02

Proxy Proxy
Comparison of hunting 17 0.36 Road effects 16 0.5

versus non-hunti ng season

Comparison of hunted 11 0.23 Land associated with 5] 0.19
versus unhunted sites conflict
Resource selection function 5 0.12 Compariscn of trophy- 5 0.16
of hunter kill sites hunted versus unhunted

sites
Proximity to hunter access 3 0.06 Land associated with 2 0.06
points illegal trophy hunting
Relative hunting pressure 1 0.02
Proximity to roads during 1 Q.02

hunting season

The techniques used to assess the behavioural plasticity of the study species in response to human

predation, killing and disturbance were predominantly predicated upon the application of telemetry
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technology (Figure 4). The next most-common technigue was animal observation followed by camera
traps (Figure 4). These three techniques were deployed in 89% (n = 168 of 187) of all studies. However,
the costs associated with large mammal behavioural plasticity were rarely assessed among this
literature. Just 16 of these studies (9%) quantified the costs associated with these behavioural
modifications (Table 3). There was a high degree of variability in the cost that was evaluated, the human
activity that was observed or experimentally assessed to trigger the behavioural response and the

directionality of the behavioural responses (Table 3).

Variation .
In research technique

COUNT
(X

2-8

9-40

41-100

FIGURE 4. Bubble plots showing the variation in research technique used to evaluate the inducible defences of
large mammals to human lethality as inferred from studies published between 1958 and 2019
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TABLE 3. The cost of the behavioural plasticity of large mammals in response to sources of human predation, killing

and disturbance detected from a review of 187 peer-reviewed studies published between 1958 and 2019

Mammal Country | Technigue | Human Type Cost Reference

species activity evaluated

Ursus arctos Sweden Telemetry Hunting Human Foraging rate’ Hertel et al.
season predation (2018)

1Bearforaging behavior was compared during before, during, and after the hunting season. Bears foraged less

efficienctly and on lower quality food sources during hunting season.

Odocoileus Canada Animal Hunted versus Human Giving up Le Saout et

hemionus observation control deer predation densities® al. (2014)

zComparigon of hunted and unhunted sites of a predator-free black-tailed deer population. Hunted deer were

found to aveoid bait stations and shift browsing pressure.

Alces alces Canada Telemetry Hunted versus Human Sex ratio’ Laurian et al.

unhunted sites predation (20007

*The proportion of subadult male moose was found to be higher in hunted sites, in comparison to unhunted sites,

interpreted as compensation for lower adult male ratios

4

Cervus United Mecropsy Archer density Human Vital rates Davidson et

elaphus States predation al. (2012)

AComparison of archer density at levels of high, low, and none revealed that pregnancy rates were lower for

lactating elk in years of high archer density

]

Canis lupus United DMA Harvesting Human Recruitment Ausband et
States analyses killing al. (2015)

*Walf recruitment declined in a period of human harvest when compared to

the pericd directly before harvest

Cervus United Animal Researchers Human Cow:calf ratio® Phillips and

elaphus States chservation on foot disturbance Alldredge

(2000)
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5Elk cow:calf ratio declined among treatment elk (those that were repeatedly approached and distrurbed by the

researchers) when compared to the control elk

Bison bison United Animal Snowmaobiles Human Demogra ;:nh;o,.rTIr Borkowski
and Cervus States observation disturbance et al. (2008)
elaphus

7Bison and elk responded to snowrmnobile disturbance in the moement but no evidence of a demographic impact on

these populations over a 35-year period was detected

Cervus United Telemetry Researchers Human Energy Cassirer et al.

elaphus States on skis disturbance expenditure® (1992)

BElk movernent in response to researcher disturbance trials conducted on skis showed an average reduction of

5.5% of daily energy intake equivalent to 295 g of forage

Puma United Telemetry Land use Human Energy Wang

concolor States disturbance expenditur39 etal. (2017)

JPumas using habitat near to human development increased nightime activity at a cost of 11.6% for males and

10.1% for females equivalent to 4.0 and 3.4 deer preyfyear
Puma United Telemetry Land use Human Feeding Smith et al.

concolor States disturbance time'l [(2015)

mConsumptiDn time of prey was lower for pumas inhabiting habitat near human development resulting in higher

kill rate of prey when compared to less developed areas

Puma United Camera Playback of Human Feeding Smith
concolor States traps humans disturbance time'! etal. (2017)
talking

11F’Iayback experiments of human noises led to pumas abandoning kill sites, returning later, and feeding less when

compared to playbacks of frog noises

Odocoileus United Telemetry Land use Human Fetal survival Peterson et

hemionus States disturbance rate’? al. (2017)

2n a dro ught year, mule deer using habitat with high natural gas activity had higher fetal mortality rates when

compared to mule deer using habitat with low gas activity

Ursus arcros United Telemetry Hurman activity Human Foraging Rode

States disturbance ratel3 et al. (2007)
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"*Brown bears responded with behavioral plasticity to experimental treaments of bear viewing however, bear body

weight and composition was unaffected

Pecari tajocu United Giving up Hiking trails Human Foraging Bleicher and

4

States density disturbance rates’ Rosenzweig

[2017)

Meollared peccary avoided food stations near human hiking trails and had lower foraging rates in habitats near

human houses

15

Ursus arcros Sweden Telemetry Land use Human Heart rate Steen

disturbance et al. (2015)

"*Brown bears showed signs of increased stress responses (as measured by lower heart rate variability) when using

habitat nearar to human houses during the berry season

Canius lupus Canada Telemetry Land use Human Predation Meilsen and

disturbance rate'® Boutin (2017)

Te\Walf predation rate of moose increased near sources of human disturbance which was attributed to previous

land use regimes associated with the mining industry

6 DISCUSSION

By our review of the mammalian defences induced by human lethality, we detected no studies
examining morphological defences, but detected a wide variety that assessed behavioural modifications
in relation to human predation, killing and disturbance. The extent to which these examples of
behavioural plasticity are defences induced by human lethality, however, remains unresolved because
the costs associated with these large mammal behaviours tended to be implied, rather than
guantitatively assessed among this research. Costs deriving from large mammal behavioural plasticity
typically involve trade-offs that compromise foraging effort with potential consequences for survival and
reproduction and subsequent implications for population growth and species interactions within the
trophic system (Pangle et al., 2007; Ruxton & Lima, 1997; Winnie & Creel, 2017; Zanette et al., 2011).
Large carnivores, for instance, may sacrifice hunting efficiency when seeking to avoid potentially risky

interactions with humans (see Cristescu et al., 2013; Gehr et al., 2018; Montgomery et al., 2014).
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Interestingly, just 16 of the 187 peer-reviewed studies that we evaluated attempted to quantify such
costs. These studies examined the impacts of large mammal behavioural adjustments on energy
expenditure, foraging rate, reproduction and recruitment, among others (Table 3). Importantly
however, only four studies assessed costs of large mammal behavioural responses to human predation.
Consequently, one of the four conditions necessary for inducible defences to evolve (i.e. the costliness
of the anti-predator responses; Harvell & Tollrian, 1999) has not been widely quantified among this
research. At risk here is that the behavioural plasticity that we detected may not actually be costly.
Behavioural responses to human action might not result in fitness costs when animals are readily able to
recover from the behavioural adjustment or when the distribution of local resources is high enough
where the displacement is non-consequential (see Gill et al., 2001). Such observation re-emphasize (see
Gill & Sutherland, 2000; Sutherland, 1998) the importance of determining whether the behavioural
decisions made by individual animals in regard to human action can scale up to have population-level
consequences.

Furthermore, no study within our review evaluated the morphological defences that might by
induced by human lethality. We highlight that such morphological adaptations represent an important
area of future inquiry on large mammal inducible defences. We suspect that behavioural responses
were the only factors assessed among this literature because of the difficulty in attributing the
morphological defences in large mammals to human lethality. Morphological adaptations may be
challenging to detect because of the vastly diverse ways in which humans hunt large mammals as well as
the fact that these species are often subject to lethal pressure from co-occurring non-human predators
(Figure 1). Importantly, we are not stating here that no studies captured in our search engine evaluated
morphological consequences of human lethality. In fact, we detected 10 studies that examined the
impacts of selective hunting on the morphology (i.e. body, horn, antler or tusk size) of large mammals.

Harvest-induced selection reduced the size of bighorn sheep Ovis canadensis horns (Coltmann
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etal., 2003; Pigeon et al., 2016), changed the shape of mouflon Ovis gmelini musimon horns (Garel
etal., 2007), and promoted higher probabilities of tusklessness in African elephant Loxodonta africana
populations (Jachmann et al., 1995). Harvest-induced selection for specific traits in animals (e.qg. large
body size, fierceness or morphological features such large tusks or manes) has resulted in populations
evolving phenotypes that are less desirable (see Allendorf & Hard, 2009; Ciuti et al., 2012; Festa-
Bianchet & Lee, 2009; Harris et al., 2002; Martinez et al., 2005). This unnatural selection can shape the
demography of large mammal populations, trigger harvest-induced trait changes and potentially reduce
fitness (Harris et al., 2002; Milner et al., 2007; Mysterud, 2010, 2011; Sforzi & Lovari, 2000). However,
these studies were excluded from our examination of inducible defences given that these traits were
artificially selected by humans, rather than evolved as a defence against humans.

Although humans do hunt and kill animals, humans are most often agents of disturbance. In
their seminal publication, Frid and Dill (2002) contended that animal response to human disturbance
stimuli would reflect perceived levels of predation risk (i.e. the risk-disturbance hypothesis). Within this
context, inducible defences should be expected to be strongest when humans actually behave as
functional predators (i.e. Clinchy etal., 2016; Ordiz et al., 2012; Palumbi, 2001). Thus, it may only be that
in systems in which humans have hunted animals over evolutionary time, that disturbance and
predation stimuli are synonymous in the mind of an animal (Frid & Dill, 2002). In their review, Hendry
et al. (2008) demonstrate that the rates of phenotypic change among wild animals are far greater in
response to sources of human disturbance when compared to conditions that would be representative
of more natural variation in the environment. There are also important state-dependent processes
associated with the response of animals in relation to sources of human disturbance (Beale &
Monaghan, 2004; Trimmer et al., 2017). Specifically, animals that are in better body condition have the
ability to expend more effort in avoiding, or responding to, sources of human disturbance. Thus,

accurate assessments of costs need to consider both the temporal and spatial variability in the biotic
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and abiotic conditions in the environment as well as intrinsic conditions of the individual animals
(Ydenberg & Dill, 1986.

Quantification of the costs of behavioural plasticity in animals are typically dependent upon
experimentation. Experiments that calculate the nature and strength of the indirect effects of predation,
for instance, are often associated with comparatively small and controlled research plots featuring the
interactions of small (e.g. <1 kg) predator and prey species (Schmitz et al., 2017). Many have highlighted
that these types of manipulations may not develop principles that are scalable to larger organisms
residing in broader and more complex landscapes (D'Amen et al., 2017; Montgomery et al., 2019;
Pearson & Dawson, 2003; Ricklefs, 2008). Thus, undoubtedly, one of the reasons why we did not detect
experiments to be common among research exploring the behavioural plasticity of large mammals to
human lethality is because conducting experiments in wild systems with highly mobile prey species and
fierce carnivore predators is non-trivial (Creel et al., 2017; Winnie & Creel, 2017). Instead, a common
approach among large mammalian ecologists to examine interspecies interactions involves the use of
telemetry technology (Benson, 2010; Hebblewhite & Haydon, 2010; Whittington et al., 2011). Telemetry
was used in over half of all studies (53%, n = 100 of 187) featured in this review (Figure 4). Application of
this technology is typically associated with the studies of large mammal space use, resource selection
and movement (Gray et al., 2017; Moll et al., 2016; Petrunenko et al., 2016). Once again however, these
techniques often provide correlative, rather than mechanistic, understandings of the interspecies
interactions among large mammals (Gimenez et al., 2014; Paine, 2010; Scheiner, 2013). Thus, an
opportunity for future research is to use telemetry technology to detect evidence of behavioural
plasticity among large mammals in relation to experimental designs that test various human cues (sensu
Smith etal., 2017).

We also found that proxies of human lethality were more commonly used in this literature than

direct measures (Table 2). Direct measures often involved researchers moving in such a way to elicit a
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behavioural response in the animal subjects. There has been a long history of researchers acting as
sources of human disturbance in animal ecology research (see Caro, 2005; Curio, 1993). Within this
context however, the application of ‘humans as surrogate predators in anti-predator studies is risky but
expedient’ (Caro, 2005, p. 31). It can be expedient in that the experiments are relatively straightforward
to derive and test. However, human subjects are risky in that it can be challenging to quantify whether
the response of the animals is attributable to humans perceived to be predators, killers or disturbers.
We recommend renewed ingenuity in devising novel field experiments that can effectively quantify the
fitness costs of large mammal behavioural plasticity in relation to human actions (sensu Boyle &
Samson, 1985; Frid & Dill, 2002). Of particular utility will be the use of technology (see Table 3) to track
mammal behavioural plasticity in response to experimental, or quasi-experimental, structures
simulating various forms of human lethality. Herein, we emphasize the importance of quantifiable and
longitudinal estimation of the fitness-related costs of the application of the behavioural responses. We
also articulate that the need for these innovations is not restricted to studies of large mammals. Animal
community dynamics, more broadly, have not yet effectively accounted for, and quantified,
anthropogenic effects (Dorresteijn et al., 2015).

Almost 60% of the studies that we evaluated in this review assessed the behavioural
modifications of large mammals to sources of human disturbance. This result is consistent with a variety
of research quantifying human action such as human population density or infrastructure (Cristescu
etal., 2013; Smith et al., 2015; Steyaert et al., 2016; Stgen et al., 2015), tourism (Rode et al., 2007) or
human recreational activities (e.g. hiking, biking, snowmobiling; Borkowski et al., 2006; Fortin
etal., 2016; Gander & Ingold, 1997; Larson et al., 2016; Rogala et al., 2011; Smith et al., 2017). The
literature that we reviewed herein did not enable us to evaluate the validity of the underlying
assumption of human activity being indicative of ‘predation’ cues (see Frid & Dill, 2002). Habituation to

non-lethal human presence undoubtedly threatens the premise of this assumption. Wildlife can become
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habituated to various sources of human activity (Knight, 2009; Knight & Cole, 1991; Stankowich &
Reimers, 2015). However, the rate at which this occurs seems to vary according to prevailing human
hunting pressure. In a meta-analysis, Stankowich (2008) identified that flight distance was greater for
ungulates inhabiting systems that were hunted, when compared to ungulates in systems without
hunting. As Caro (2005, p. 31) remarks ‘Humans can affect predator-prey interactions if either prey or
predator is differentially fearful of people’. In certain systems, where ecotourism and legal or illegal
hunting occur concurrently, tourists may habituate animals to human presence (Bateman &

Fleming, 2017; Geffroy et al., 2015) where hunting tends to have the opposite effect (Ciuti et al., 2012).
Most of the ecosystems evaluated among this research experienced the simultaneous effects of hunting
and ecotourism. Thus, a challenge of future research on this topic relates to the differentiation of
interacting effects of benign and lethal human behaviour.

There is hardly a landscape in the world where animals do not regularly encounter humans
(Sanderson et al., 2002; Sih et al., 2011; Woodroffe et al., 2005). Although there are benefits of
proximity to humans for many species (i.e. nutrient-rich crops, human-mediated refugia from
predation/competition or increased abundance of prey; see Berger, 2007; Marshall & Moonen, 2002;
Moll et al., 2018) there are important direct and indirect implications that underlie human lethality of
large mammals. Large mammal populations across the world have been rapidly declining for decades,
with a primary accelerant being negative interactions with humans (Ripple et al., 2014, 2015). For
example, consumptive hunting has become an important threat to the population persistence of target
animals (Milner-Gulland & Bennett, 2003). Meat dependency has expanded dramatically with an
estimated 150 million households in the Global South that regularly harvest wild animals (Nielsen
etal., 2018). Consequently, given rapid growth of human populations at the edges of protected areas
(Wittemyer et al., 2008), large mammals are now subject to negative anthropogenic effects even within

the boundaries of protected areas (see Berger, 2007; Brashares et al., 2001; Loveridge et al., 2017;
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Périguet et al., 2015; Watts & Holekamp, 2009; Woodroffe & Ginsberg, 1998). Thus, there are important
conservation implications of the lethal interactions of humans and large mammals.

Furthermore, the consequences of highly selective human killing of large mammals can give way
to deleterious population-level trait changes (Coltman et al., 2003; Harris et al., 2002). The unnatural
selection of bigger, fiercer and bolder large carnivores as trophies, for instance, has been suggested to
lead to trait changes in surviving populations (Harris et al., 2002; Milner et al., 2007) with consequences
that might destabilize the apex predator position in these trophic systems (Ordiz et al., 2013). Therefore,
several scientific recommendations articulate that conservation and management actions should
explicitly consider and monitor harvest-driven trait changes in large mammal populations to avoid
adverse consequences (Frank et al., 2017; Palkovacs et al., 2018). Such evolutionary traps and source—
sink dynamics might indicate maladaptation to human activity (Schlaepfer et al., 2002). These processes
have been observed to be prevalent among a vast number of animals (see review Robertson et al., 2013)
and are particularly influential among large mammals (Heurich et al., 2018; Pitman et al., 2015;
Woodroffe & Ginsberg, 1998). These observations emphasize the importance of considering such
selectivity when devising harvest management practices for large mammals.

Finally, we acknowledge the possibility that human-induced environmental change may be too
rapid (Trimmer etal., 2017) for inducible defences to evolve among large mammals. Determining
whether phenotypic changes can keep pace with the human-dominated 21st century is a fundamental
guestion for all species (see Hendry et al., 2008), but particularly so for long-lived large mammals with
comparatively low reproductive rates. Thus, the traits necessary to actualize a rapid evolutionary
response to human changes in the environment might not be present in large mammals (see Hendry
etal., 2011; Sih etal., 2011). However, our review has highlighted that the prevailing research has not
been conducted in such a way so as to capably differentiate among what is simply behavioural plasticity

versus adaptive phenotypic changes leading to evolutionary inducible defences among large mammals
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in relation to human lethality. Thus, the inducible defences of large mammals to human lethality
remains a central need among ecological research with important implications for conservation and
management of large mammal populations throughout the world.
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