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BINARY RECURRENCES FOR WHICH POWERS OF 2 ARE

DISCRIMINATING MODULI

A. DE CLERCQ, F. LUCA, L. MARTIROSYAN, M. MATTHIS, P. MOREE, M.A. STOUMEN
AND M. WEISS

Abstract. Given a sequence of distinct positive integers w0, w1, w2, . . . and any pos-
itive integer n, we define the discriminator function Dw(n) to be the smallest positive
integer m such that w0, . . . , wn−1 are pairwise incongruent modulo m. In this paper,
we classify all binary recurrent sequences {wn}n≥0 consisting of different integer terms
such that Dw(2e) = 2e for every e ≥ 1. For all of these sequences it is expected that
one can actually give a fairly simple description of Dw(n) for every n ≥ 1. For two
infinite families of such sequences this has been done already in 2019 by Faye, Luca
and Moree, respectively Ciolan and Moree.

1. Introduction

The discriminator sequence of a sequence w = {wn}n≥0 of distinct integers is the
sequence {Dw(n)}n≥0 given by

Dw(n) = min{m ≥ 1 : w0, . . . , wn−1 are pairwise distinct modulo m}.
In other words, Dw(n) is the smallest integer m that allows one to discriminate (tell
apart) the integers w0, . . . , wn−1 on reducing them modulo m. If not all integers are
distinct, but say w0, . . . , wk, then we can define Dw(j) for j = 1, . . . , k + 1. Obviously
Dw(n) is non-decreasing as a function of n. Note that since w0, . . . , wn−1 are in n distinct
residue classes modulo Dw(n), we must have Dw(n) ≥ n. On the other hand clearly

Dw(n) ≤ max{w0, . . . , wn−1} −min{w0, . . . , wn−1}+ 1.

The main problem is to give an easy description or characterization of Dw(n) (in many
cases such a characterization does not seem to exist).

In case wj is a polynomial in j, the behavior of the discriminator is fairly well under-
stood, see Moree [7] and Zieve [11] and references therein.

An intensively studied class of sequences is that of binary recurrent sequences, cf.
the book by Everest et al. [4]. For a generic binary recurrent sequence there is currently
no meaningful characterization of its discriminator. An example is provided by the
discriminator for the Fibonacci sequence (see Table 1). However, if we have

(1) Dw(2
e) = 2e for every e ≥ 1,

the discriminator behavior tends to be much simpler. It is easy to see that then Dw(n) <
2n. This allows one to exclude many potential discriminator values. Indeed, in general
discriminator characterizations for a fixed n proceed by excluding all integers different
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from Dw(n) as values. If (1) holds, then typically many powers of two occur as values
(cf. Table 2). All known binary recurrent discriminators, described in Examples 1 and
2 below, satisfy (1). Thus, it is natural to ask for a classification of all binary recurrent
sequences {wn}n≥0 such that (1) is satisfied. Note that for any such sequence the terms
wn must be distinct.

Our main result completely answers this question.

Theorem 1. For integers w0, w1, p and q, let {wn}n≥0 be the sequence defined by

(2) wn+2 = pwn+1 + qwn for all n ≥ 0.

If (p, q) ≡ (2, 3) (mod 4) and w0 + w1 is odd, then Dw(2
k) = 2k for every k ≥ 1.

If (p, q) 6≡ (2, 3) (mod 4) and k ≥ 3, then #{wn (mod 2k) : 0 ≤ n ≤ 2k − 1} < 2k.

Representing the residue classes modulo m by j, with 0 ≤ j ≤ m − 1, we can
reformulate property (1) as saying that the map from Z/mZ to Z/mZ given by j 7→ uj

is a permutation for every m that is a power of two.
We next describe the binary recurrent sequences for which the discriminator has been

characterized. They fall into two families. Theorem 1 shows at a glance that for all of
them (1) is satisfied.
Family 1. In Faye et al. [5] and its continuation by Ciolan et al. [2] the discriminator
DU(k)(n) is studied, where the Shallit sequence U(k) is given by U(k) = {Un(k)}n≥0

with U0(k) = 0, U1(k) = 1 and

Un+2(k) = (4k + 2)Un+1(k)− Un(k)

for all n ≥ 0. By Theorem 1, we have DU(k)(2
e) = 2e for every e ≥ 1.

Family 2. Let q ≥ 5 be a prime and put q∗ = (−1)(q−1)/2 · q. The sequence
uq(1), uq(2), . . . , with

uq(j) =
3j − q∗(−1)j

4
,

we call the Browkin-Sălăjan sequence for q. The sequence uq satisfies the recursive
relation uq(j) = 2uq(j − 1) + 3uq(j − 2) for j ≥ 3, with initial values

uq(1) = (3 + q∗)/4 and uq(2) = (9− q∗)/4.

We denote its discriminator by Dq. In the context of the discriminator, the sequence
u5 (2, 1, 8, 19, 62, 181, 548, 1639, 4922, . . .) was first considered by Sabin Sălăjan during
an internship carried out in 2012 under the guidance of Moree. The latter and Zu-
malacárregui in [11] determined D5(n) (cf. Table 2).

Theorem 2. Let n ≥ 1 be an arbitrary integer. Let e be the smallest integer such that

2e ≥ n and f be the smallest integer such that 5f ≥ 5n/4. Then D5(n) = min{2e, 5f}.

More recently Ciolan and Moree [3] completely characterized Dq for arbitrary primes
q > 5. Noting that uq(1) + uq(2) = 3, one sees that Theorem 1 applies and hence
Dq(2

e) = 2e for every e ≥ 1.
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In order to prove Theorem 1, we will deal with the special case where w is a Lucas
sequence first in Section 3. In the general case, we express w as a linear combination
of a Lucas and a shifted Lucas sequence (Section 4). Our arguments require some
consideration of the two divisibility of binomial coefficients (Section 2).

Beyond the polynomial and the recurrence sequence case there is very little known.
Haque and Shallit [6] considered the discriminator for k-regular sequences. For these
also property (1) is satisfied. Sun [10] made some conjectures regarding the discrimi-
nator for various sequences.

2. Preliminaries

2.1. The exponent of 2 in binomial coefficients. We recall a celebrated result of
Kummer, cf. Ribenboim [9, pp. 30-33].

Theorem 3 (Kummer, 1852). Let p be a prime number. The exponent of p in
(

n
m

)

is

the number of base p carries when summing m with n−m in base p.

Here and in what follows we write ν2(a) for the exponent of 2 in the factorization of
the integer a.

Lemma 4. We have

ν2

((

ℓ

k

)

23k
)

> ν2(2ℓ)

for all k ≥ 1. Further,

ν2

((

2k

ℓ

)

2ℓ
)

≥ k + 3

for ℓ = 3 and ℓ ≥ 5.

Proof. We use Theorem 3 with p = 2. For the first inequality, we note that it is clear
for k = 1, so we may assume that k ≥ 2. Write ℓ = 2ℓ0ℓ1 with integers ℓ0 ≥ 0 and
ℓ1 odd. The inequality is clear for ℓ0 ≤ 1. It is also clear if k > (ℓ0 + 1)/3. So, we
may assume that k ≤ (ℓ0 + 1)/3. Write k = 2k0k1, where k0 ≥ 0 and k1 is odd. Then
k0 < k ≤ (ℓ0 + 1)/3 < ℓ0. It follows that by summing up k with ℓ− k, we have at least
ℓ0 − k0 carries in base 2. Thus,

ν2

((

ℓ

k

)

23k
)

≥ (ℓ0 − k0) + 3k > ℓ0 + 2k ≥ ℓ0 + 2,

which is what we wanted to prove.

We will now prove the second inequality. Assume first that ℓ ∈ [3, 2k − 1]. Then the
number of carries from summing up ℓ with 2k − ℓ is, by the previous argument, k − ℓ0,
where again ℓ = 2ℓ0ℓ1 with ℓ1 odd. Hence,

ν2

((

2k

ℓ

)

2ℓ
)

= k − ℓ0 + ℓ.

This is at least k+3 if ℓ ≥ 3 is odd (since then ℓ0 = 0). It is also at least k−ℓ0+2ℓ0 > k+3
if ℓ0 ≥ 3. If ℓ0 = 1, then ℓ > 4 so k− ℓ0 + ℓ ≥ k+3. Finally, if ℓ0 = 2, then since ℓ 6= 4,
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we have ℓ ≥ 8 (since 4 | ℓ), so the above expression is at least k − 2 + 8 > k + 3. This
was for ℓ < 2k. Finally, when ℓ = 2k, we have

ν2

((

2k

ℓ

)

2ℓ
)

= 2k > k + 3

because k ≥ 3. ⊓⊔

3. The Lucas sequence

A basic role in the theory of binary recurrent sequences is played by Lucas sequences.

Theorem 5. Let {un}n≥0 be a Lucas sequence with u0 = 0, u1 = 1 and

un+2 = pun+1 + qun, for all n ≥ 0.

Then Du(2
k) = 2k for all k ≥ 1 if and only if (p, q) ≡ (2, 3) (mod 4).

Proof. We look at {u0, u1, u2, u3} = {0, 1, p, p2 + q}. Since these are all the residues
modulo 4, it follows that either (p, q) ≡ (2, 3) (mod 4) or (p, q) ≡ (3, 1) (mod 4) . The
second possibility entails (p, q) ∈ {(3, 1), (7, 1), (3, 5), (7, 5) (mod 8)} and one checks
computationally that none of these 4 possibilities gives that {uk (mod 8) : 0 ≤ k ≤ 7}
covers all residue classes modulo 8. Thus, we must have (p, q) ≡ (2, 3) (mod 4).

We consider the quadratic polynomial x2 − px− q having discriminant ∆ = p2 + 4q.
The equation x2 − px− q = 0 is the characteristic equation for the Lucas sequence.

The degenerate case. In this case ∆ = 0 and un = npn−1
0 with p0 = p/2. We have

{u0, u1, u2, u3} = {0, 1, 2p0, 3p20} and since p0 is odd, these are distinct modulo 4. We
claim that ν2(um − un) = ν2(m− n) for m > n. Notice that this claim implies (1).

We have um − un ≡ m− n (mod 2). So ν2(um − un) = 0 if and only if ν2(m− n) = 0.
Next assume that m ≡ n (mod 2). Write m = n+ 2ℓ. Then

(3) um − un = (n + 2ℓ)pn+2ℓ−1
0 − npn−1

0 = (n+ 2ℓ)pn−1
0 (p2ℓ0 − 1) + 2ℓpn−1

0 .

We can write p20 = 1 + 8p1 with p1 an integer. Thus,

p2ℓ0 = (1 + 8p1)
ℓ = 1 + 8ℓp1 +

(

ℓ

2

)

(8p1)
2 + · · · .

From this and (3) we infer that

um − un = pn−1
0

(

2ℓ+
∑

k≥1

(n+ 2ℓ)

(

ℓ

k

)

(8p1)
k

)

.

Since by Lemma 4 for every k ≥ 1 we have

ν2

((

ℓ

k

)

(8p1)
k

)

> ν2(2ℓ),

we conclude that
ν2(um − un) = ν2(2ℓ) = ν2(m− n),

thus establishing the claim.
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The non-degenerate case. Here ∆ 6= 0. Since p = 2p0 and q ≡ 3 (mod 4), it follows
that ∆ = 4(p20 + q) = 16∆0, where ∆0 is an integer. Let

α = p0 + 2
√

∆0 and β = p0 − 2
√

∆0

be the roots of x2 − px− q. The Binet formula for un is

(4) un =
αn − βn

α− β
.

While not necessary for this proof, we make a parenthesis and prove a property con-
cerning the index of appearance of powers of 2. In the course of proving it, we will show
that 2‖vn, with {vn}n≥0 the companion sequence of our Lucas sequence. This fact we
actually do need in our proof.

For a positive integer m let z(m) be the order of appearance of m in the sequence
{un}n≥0. It is the minimal positive integer k such that m | uk. It is known that this
exists for all m which are coprime q. Further, m | un if and only if z(m) | n. For us,
z(2) = 2 since p ≡ 2 (mod 4) and z(4) = 4. It follows easily by induction on k that

z(2k) = 2k.

One way to see this is to introduce the companion sequence {vn}n≥0 given by v0 =
2, v1 = p and vn+2 = pvn+1 + qvn for all n ≥ 0. By induction, we get that 2‖vn for all
n ≥ 0. The Binet formula for vn is

(5) vn = αn + βn for all n ≥ 0.

We have u2n = unvn by the Binet formulas (4) and (5). We are now ready to show
that z(2k) = 2k. Assume that k ≥ 3 and that 2k | un. This implies that n = 2ℓn1 for
some integers ℓ and n, with ℓ ≥ 2 and n1 odd. Now we use repeatedly the formula
u2m = umvm for m = n/2, n/4, . . . , resulting in

un = u2ℓn1
= v2ℓ−1n1

v2ℓ−2n1
· · · vn1

un1
.

Since v2in1
≡ 2 (mod 4) for i = 0, 1, . . . , ℓ− 1 and un1

is odd, we infer that

ν2(u2ℓn1
) = ℓ,

which shows that k ≥ ℓ. In particular, z(2k) = 2k.

Next we show that

(6) un+2k ≡ un + 2k (mod 2k+1)

for all k ≥ 1. One checks it easily by hand for k = 1 and n = 0, 1 as well as for k = 2
and n = 0, 1, 2, 3. Assume next k ≥ 3. In what follows, for three algebraic integers
a, b, c, we write a ≡ b (mod c) if (a− b)/c is an algebraic integer. We have

α2k = (p0 + 2
√

∆0)
2k =p2

k

0 + 2kp2
k−1

0 (2
√

∆0) +

(

2k

2

)

p2
k−2

0 (2
√

∆0)
2

+

(

2k

4

)

p2
k−4

0 (2
√

∆0)
4 +

∑

ℓ≥3
ℓ 6=4

(

2k

ℓ

)

p2
k−ℓ

0 (2
√

∆0)
ℓ.
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Then, by Lemma 4,

α2k ≡ p2
k

0 +2kp2
k−1

0 (2
√

∆0)+

(

2k

2

)

p2
k−2

0 (2
√

∆0)
2+

(

2k

4

)

p2
k−1

0 (2
√

∆0)
4 (mod 2k+3

√

∆0).

Changing α to β, the same calculation yields

β2k ≡ p2
k

0 −2kp2
k−1

0 (2
√

∆0)+

(

2k

2

)

p2
k−2

0 (2
√

∆0)
2+

(

2k

4

)

p2
k−4

0 (2
√

∆0)
4 (mod 2k+3

√

∆0).

Thus,

αn+2k − βn+2k ≡ αn

(

p2
k

0 + 2kp2
k−1

0 (2
√

∆0) +

(

2k

2

)

p2
k−2

0 (2
√

∆0)
2 +

(

2k

4

)

p2
k−4

0 (2
√

∆0)
4

)

− βn

(

p2
k

0 − 2kp2
k−1

0 (2
√

∆0) +

(

2k

2

)

p2
k−2

0 (2
√

∆0)
2 +

(

2k

4

)

p2
k−4

0 (2
√

∆0)
4

)

≡ p2k0 (αn − βn) + 2kp2
k−1

0 (2
√

∆0)(α
n + βn)

+

(

2k

2

)

p2
k−2

0 (2
√

∆0)
2(αn − βn)

+

(

2k

4

)

p2
k−4

0 (2
√

∆0)
4(αn − βn) (mod 2k+3

√

∆0).

Dividing across by α− β (which is equal to 4
√
∆0), we obtain

(7)

un+2k ≡ p2
k

0 un + 2kp2
k−1

0 (vn/2) +

(

2k

2

)

p2
k−2

0 (4∆0)un

+

(

2k

4

)

p2
k−4

0 (16∆2
0)un (mod 2k+1).

We have p2
k

0 ≡ 1 (mod 2k+1) and vn/2 ≡ 1 (mod 2). Finally,
(

2k

2

)

p2
k−2

0 (4∆0) = 2k+1(2k − 1)p2
k−2

0 ∆0 ≡ 0 (mod 2k+1),

and also
(

2k

4

)

p2
k−4

0 (16∆2
0) =

2k−2(2k − 1)(2k−1 − 1)(2k − 3)

3
24∆2

0 ≡ 0 (mod 2k+1).

We thus get from (7) that (6) holds for all k ≥ 1. This implies by induction on k that
Du(2

k) = 2k. ⊓⊔

4. The general case: the proof of Theorem 1

In the previous section we dealt with the Lucas sequence (Theorem 5). We will make
crucial use of that result in order to deal with a more general recurrence {wn}n≥0 as in
(2).
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Proof of Theorem 1. If #{wn (mod 2k) : 0 ≤ n ≤ 2k − 1} = 2k for all k, it is so for
k = 1 in particular. Thus, w0, w1 have different parities which is equivalent to w0+w1

being odd. Conversely, write
wn = aun + bun+1.

Note that aun + bun+1 satisfies the same recurrence relation as wn. On setting n = 0,
respectively n = 1, we find b = w0 and a = w1 − pw0. Thus, a+ b = (w1 +w0)− pw0 is
odd. By (6), we obtain

wn+2k = aun+2k + bun+1+2k ≡ a(un + 2k) + b(un+1 + 2k)

≡ (aun + bun+1) + (a+ b)2k ≡ wn + 2k (mod 2k+1)

for k ≥ 1. This shows that Dw(2
k) = 2k for every k ≥ 1.

It remains to prove the second assertion. Note that it is enough to prove it for k = 3.
This can be done by doing a computer calculation modulo 8. We consider all integers
a, b, p, q with 0 ≤ a, b, p, q ≤ 7 and compute #{wn (mod 8) : 0 ≤ n ≤ 7}. It turns out
that if (p, q) 6≡ (2, 3) (mod 4), then this number is < 8. ⊓⊔

5. Tables

We tabulate the discriminator for a sequence that does not (Fibonacci sequence) and
a sequence that does (Sălăjan sequence) satisfy the conditions of Theorem 1. We give
the prime factorization of the values. Note the big difference in behavior.

n DF (n) n DF (n) n DF (n)

1 1 21− 24 59 69− 80 431

2 2 25− 26 79 81− 113 3 · 197
3 3 27− 32 83 114− 115 3 · 283
4 5 33− 35 23 · 3 · 5 116− 152 1039

5 23 36− 39 157 153− 158 5 · 13 · 17
6 32 40− 44 173 159− 162 1171

7− 8 2 · 7 45− 55 193 163− 166 1451

9− 11 3 · 5 56− 59 311 167− 184 3 · 487
12− 16 2 · 3 · 5 60− 64 337 185− 208 1609

17− 20 5 · 7 65− 68 409 209− 281 3 · 761
Table 1. Discriminator for the Fibonacci sequence 1, 2, 3, 5, 8, 13, . . .

Table 2 demonstrates Theorem 2.
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n DS(n) n DS(n)

1 1 129− 256 28

2 2 257− 512 29

3− 4 22 513− 1024 210

5− 8 23 1025− 2048 211

9− 16 24 2049− 2500 55

17− 20 52 2501− 4096 212

21− 32 25 4097− 8192 213

33− 64 26 8193− 12500 56

65− 100 53 12501− 16384 214

101− 128 27 16385− 32768 215

Table 2. Discriminator for the Sălăjan sequence 2, 1, 8, 19, 62, 181, . . .
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