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The article describes sufficient conditions for the existence of positive solutions to both

the Cauchy problem and the Showalter–Sidorov problem for an abstract linear Sobolev type

equation. A distinctive feature of such equations is the phenomenon of non-existence and

non-uniqueness of solutions. The research is based on the theory of positive semigroups of

operators and the theory of degenerate holomorphic semigroups of operators. The merger

of these theories leads to a new theory of degenerate positive holomorphic semigroups of

operators. In spaces of sequences, which are analogues of Sobolev function spaces, the

constructed abstract theory is used to study a mathematical model. The results can be

used to study economic and engineering problems.
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Introduction

Let U, F be real Banach spaces, the operators L ∈ L(U;F) (i.e. L is linear and
continuous operator) and M ∈ Cl(U;F) (i.e. M is linear, closed, and densely defined
operator). Let us consider the nonhomogeneous linear Sobolev type equation

Lu̇ = Mu+ f. (1)

For the first time in history, the term “Sobolev type equations” appeared in the paper [1].
Currently, these equations occupy a very vast area among non-classical equations of
mathematical physics, and are studied in very different aspects (see, for example, [2, 3]).
Besides that, there are many treatises in which Sobolev type equations have other names,
for instance, “degenerate equations” [4] or “partial differential equations and systems not
solvable with respect to the highest-order derivative” [5]. In this paper, the terms [4] and [5]
are considered to be synonyms for the term [1–3]. We are interested in the conditions under
which equation (1) (kerL 6= {0} is allowed) has a unique positive solution.

The main tool to find such conditions is the theory of positive degenerative holomorphic
semigroups of operators. (Recall that the semigroup of operators V • = {V t : t ∈ R} is
called degenerate if s-lim

t→0
V t 6= I [2, Ch. 2]). Therefore, in Section 1 of this paper, we

present the basic facts of the theory of positive holomorphic semigroups of operators given
in [6, Ch. 1] and [7, Ch. 2 and Ch. 3]. Then, in Section 2, we extend the results of
Section 1 to positive degenerate holomorphic semigroups of operators. The main result
of Section 2 is the sufficient and necessary condition of the positivity of degenerate
holomorphic semigroups of operators. Note that this result is published for the first time.
Section 3 contains the main results of this paper. First, we consider the linear homogeneous
Sobolev type equation

Lu̇ = Mu. (2)
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It turns out that if the operator M is strongly (L, p)-sectorial on the right for some
p ∈ {0} ∪ N [2, Ch. 2], then the resolving semigroup of equation (2) is a degenerate
holomorphic semigroup of operators U• = {U t : t ∈ R}. If, in addition, the operator M is
strongly (L, p)-sectorial for some p ∈ {0} ∪N [2, Ch. 2] and the semigroup U• is positive,
then, for all u0 ∈ U1∩U+, there exists the unique positive solution u = u(t) to the Cauchy
problem

lim
t→0+

(u(t)− u0) = 0 (3)

of equation (2) such that u(t) = U tu0. Here U1 is the phase space of equation (2), U+ is
the proper generative cone, and U = (U, ‖ · ‖U,U+) is the Banach lattice. Then we state
sufficient conditions for the existence of the unique positive solution to the Showalter–
Sidorov problem

lim
t→0+

P (u(t)− u0) = 0 (4)

for equation (1). Here the operator P = s-lim
t→0

U t is the unit of the semigroup U•, which is

a projector by construction [2]. Note that, in this case, the positivity of the semigroup U•

is not enough, and the Banach lattices U = (U, ‖ · ‖U,U+) and F = (F, ‖ · ‖F,F+) should
be matched.

Further, we use the abstract results in order to construct a positive solution to
Showalter–Sidorov problem (4) for an interpretation of abstract equation (1), where the
operators L = diag{Lk(λ)}, M = diag{Mk(λ)}, while Lk(λ) and Mk(λ) are polynomials
with real coefficients such that

degLk(λ) < degMk(λ) ∀k ∈ N.

In this case, it is necessary to switch classical Sobolev spaces to Sobolev spaces of sequences
[8, 9]

lmq =

{

u = {uk} :
∞
∑

k=1

λ
mq

2

k |uk| < ∞

}

, m ∈ R, q ∈ [1,+∞),

which are analogues of Sobolev spaces Wm
q . Here {λk} ⊂ R+ is a monotonically increasing

sequence such that lim
k→∞

λk = +∞. The paper [10] was the first to find conditions for the

existence of a degenerate positive resolving group of operators of equation (2) in the case of
the strongly positive relatively bounded operator M , as well as conditions for the existence
of a positive solution to problems (2), (3) and (1), (4), where the operators L = L(Λ),
M = M(Λ) are polynomials with real coefficients such that degL ≥ degM .

The methods and approaches developed in the paper can be widely used to solve
economic and technical problems in which the positivity of a solution is of practical
importance (for example, studying the process of pressure of a filtered fluid). The proposed
spaces of sequences allow to study problems in quasi-Sobolev spaces of sequences that are
quasi-Banach spaces [8,9] in the case of q ∈ (0, 1). The need to consider such non-classical
spaces takes place in a number of technical problems [11]. Also, diagonal operators that
can be investigated by the proposed methods arise in closed economic systems (that is,
when the rate of production depends only on the output of the product itself) described
by balance models (Leontief type models) [12].
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1. Positive Holomorphic Semigroups of Operators

Consider the real Banach space V, the operator A : domA ⊂ V → V such that
A ∈ Cl(V) (i.e., A is linear, closed, and densely defined). Denote by ρ(A) = {µ ∈ C :
(µI−A)−1 ∈ L(V)} the resolvent set of the operator A, where L(B) is the space of linear
continuous operators defined on B, σ(A) = C \ ρ(A) is the spectrum of the operator A.
Slightly departing from standard [6, Ch. 1], we define the sectorial operator.

Definition 1. The operator A ∈ Cl(V) is called sectorial, if
(i) there exist the constants a ∈ R and Θ ∈ (π

2
, π) such that

Sa,Θ = {µ ∈ C : | arg(µ− a)| < Θ, µ 6= a} ⊂ ρ(A);

(ii) there exists the constant K ≥ 1 such that

‖(µI−A)−1‖L(V) ≤
K

|µ− a|

for any µ ∈ Sa,Θ.

Definition 2. The mapping V • ∈ C∞(R+;L(V)) is called a semigroup of operators, if

V sV tv = V s+tv ∀s, t ∈ R+ ∀v ∈ V. (5)

A semigroup is called holomorphic, if the semigroup can be continued in some sector
containing the ray R+ with preservation of property (5).

Definition 3. The operator A ∈ Cl(B) is called the infinitesimal generator of the
semigroup V • = {V t : t ∈ R+}, if Av = lim

t→0+
(V tv − v)t−1 for all v ∈ dom A. If A is

the infinitesimal generator of the semigroup V •, then we write V t = eAt.

Theorem 1. [6, Ch. 1] The following statements are equivalent.
(i) The operator A ∈ Cl(B) is sectorial.
(ii) The operator A ∈ Cl(B) is the infinitesimal generator of the holomorphic

semigroup {etA : t ∈ R+} having the form

etA =
1

2πi

∫

Γ

(µI−A)−1eµtdµ, t ∈ R+,

where the contour Γ ⊂ Sa,Θ is such that | argµ| → Θ for |µ| → ∞, µ ∈ Γ.

Remark 1. If the operator A is sectorial, then there exists a unit of the semigroup
{etA : t ∈ R+} given by the formula I = s- lim

t→0+
etA, where “s-lim” denotes strong (i.e.

pointwise) limit.

Corollary 1. [6, Ch. 1] Let A ∈ Cl(B) be a sectorial operator. Then

eAt = s- lim
k→∞

(

I−
t

k
A

)−k

, t ∈ R+.

Note that Corollary 1 is true under more weak condition on the operator A.
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Definition 4. The real Banach space B = (B, ‖ · ‖B) is called the ordered Banach space
B = (B, ‖ · ‖B,≥B) if there exists the order relation ≥B, which satisfies the axioms of
reflexivity, transitivity, antisymmetry, and is consistent with the vector structure of the
space B, i.e.

(i) (x ≥B y) ⇒ (αx ≥B αy) for any x, y ∈ B and for all α ∈ R+,
(ii) (x ≥B y) ⇒ (x+ z ≥B y + z) for any x, y ∈ B and for all z ∈ B.

If, in addition, the order relation ≥B is consistent with the metric structure of the space
B, i.e. for all x ∈ B there exist x+, x− ∈ B such that

(iii) (x+ ≥B 0) ∧ (x− ≥B 0) ∧ (x = x+ − x−),
(iv) (|x| ≥B |y|) ⇒ (‖x‖B ≥ ‖y‖B) for any y ∈ B,

then the ordered Banach space B = (B, ‖ · ‖B,≥B) is called the Banach lattice. (Here
|x| = x+ + x−).

As an example, we note the following Banach lattices:

(i) the space of continuous functions C(Ω;R) for any domain Ω ⊂ Rn, if the order ≥
is defined by the formula (f ≥ g) ⇔ (f(x) ≥ g(x) for all x ∈ Ω) with f+(x) =
max
x∈Ω

{f(x), 0}, f−(x) = max
x∈Ω

{−f(x), 0},

(ii) the Lebesgue space Lq(Ω;R), q ∈ [1,∞), Ω ⊂ R
n, if the order ≥ is defined by

the formula (f ≥ g) ⇔ (f(x) ≥ g(x) for a.e (almost everywhere) x ∈ Ω) with
f+(x) = vraimax

x∈Ω
{f(x), 0}, f−(x) = vraimax

x∈Ω
{−f(x), 0},

(iii) the sequence space lq, q ∈ [1,∞), if the order ≥ is defined by the formula (x ≥ y) ⇔
(xk ≥ yk for all k ∈ N) with |x| = (|xk|),

(iv) the space Rn endowed with any norm, if the order ≥ is defined by the formula
(a ≥ b) ⇔ (ak ≥ bk for all k = 1, n) with |a| = col(|a1|, |a2|, ..., |an|).

Note that not every ordered Banach space is a Banach lattice. Indeed, let C1([0, 1];R)
be a space of functions that are continuously differentiable on the interval [0, 1] endowed
with the norm

‖x‖ = max
t∈[0,1]

|x(t)|+ max
t∈[0,1]

|x′(t)|.

Suppose that the order ≥ is given by the formula (x ≥ y) ⇔ (x(t) ≥ y(t) for all t ∈ [0, 1]).
The order ≥ satisfies the axioms of reflexivity, transitivity and antisymmetry. In addition,
the order ≥ is consistent with the vector structure of the space C1([0, 1];R). However, the
order ≥ is not consistent with the metric structure of the space C1([0, 1];R). This fact is
easy to establish by considering the functions x(t) = e and y(t) = et for all t ∈ [0, 1].

Definition 5. Let B be a Banach space. A convex set C ⊂ B such that αC + βC ⊂
C for all α, β ∈ R+ is called a cone. A cone C is called proper, if C ∩ (−C) = {0}, and
generative, if B = C− C.

Let B be a Banach lattice, then (it is easy to see) B+ = {x ∈ B : x ≥ 0} is a
proper generative cone. On the other hand, let B be a Banach space, and C ⊂ B be a
proper generative cone. Let us introduce the order relation ≥B by the formula (x ≥B y) ⇔
(x− y ∈ C). Then (B, ‖ · ‖B,≥B) is an ordered Banach space but, taking into account the
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example of the functional space C1([0, 1];R), we see that B may not be a Banach lattice.
Further, we well distinguish the ordered Banach space (B, ‖ · ‖B,≥B) and the Banach
lattice (B, ‖ · ‖B,B+).

Definition 6. (i) Let (B = (B, ‖ · ‖B,B+) be a Banach lattice. The operator A ∈ L(B)
is called positive, if AB+ ⊆ B+.

(ii) A semigroup of operators V • = {V t : t ∈ R+} is called positive, if V tV+ ⊆
V+ for all t ∈ R+.

Theorem 2. Let B = (B, ‖ · ‖B,B+) be a Banach lattice, and A ∈ Cl(B) be a sectorial
operator. Then the following statements are equivalent.

(i) The resolvent Rµ(A) = (µI − A)−1 is a positive operator for sufficiently large
µ ∈ R+.

(ii) The holomorphic semigroup {etA : t ∈ R+} is positive.

Proof. (i)⇒(ii) is true by virtue of Corollary 1. (ii)⇒(i) is true by virtue of the

representation [6, Ch. 1] Rµ(A) =
∞
∫

0

etAe−µtdt for all µ > Re σ(A).
✷

2. Positive Degenerate Holomorphic Semigroups of Operators

Let us construct degenerate positive holomorphic semigroups of operators. Suppose
that U, F are Banach spaces, the operators L ∈ L(U;F) (i.e. L is linear and continuous),
M ∈ Cl(U;F) (i.e. M is linear, closed, and densely defined). The foundation of our research
is the theory of degenerate semigroups of operators and the phase space method described
in [2, Ch. 3]. Let us give the necessary information on the theory of degenerate semigroups
of operators in Banach spaces. Consider the L-resolvent set ρL(M) = {µ ∈ C : (µL −
M)−1 ∈ L(F;U)} and the L-spectrum σL(M) = C \ ρL(M) of the operator M , as well as
the operator functions RL

µ (M) = (µL − M)−1L and LL
µ(M) = L(µL − M)−1, which are

called the right and left L-resolvents of the operator M , respectively (see [2, Ch. 1]). Let
µq ∈ ρL(M), q = 0, 1, . . . , p. The operator functions

RL
(µ,p)(M) =

p
∏

k=0

RL
µk
(M), LL

(µ,p)(M) =

p
∏

k=0

LL
µk
(M)

are called the right and left (L, p)-resolvents of the operator M, respectively.

Definition 7. [2, Ch. 3] The operator M is called p-sectorial with respect to the operator
L with the number p ∈ {0} ∪ N (in short, (L, p)-sectorial), if

(i) there exist the constants a ∈ R and Θ ∈ (π
2
, π) such that

SL
a,Θ(M) = {µ ∈ C : | arg(µ− a)| < Θ, µ 6= a} ⊂ ρL(M);

(ii) there exists the constant K ∈ R+ such that

max
{

‖RL
(µ,p)(M)‖L(U), ‖L

L
(µ,p)(M)‖L(F)

}

≤
K

p
∏

q=0

|µq − a|

for any µq ∈ SL
a,Θ(M), q = 0, 1, . . . , p.

Вестник ЮУрГУ. Серия ≪Математическое моделирование
и программирование≫ (Вестник ЮУрГУ ММП). 2020. Т. 13, № 2. С. 17–32

21



J. Banasiak, N.A. Manakova, G.A. Sviridyuk

Lemma 1. [2, Ch. 3] Let the operator M be (L, p)-sectorial for some p ∈ {0} ∪N. Then
there exist the degenerate holomorphic semigroups of operators

U t =
1

2πi

∫

Γ

RL
µ (M)eµtdµ and F t =

1

2πi

∫

Γ

LL
µ(M)eµtdµ.

Recall [2, Ch. 3] that the semigroup V • is called degenerate, if s- lim
t→0+

V t 6= I. Here

t ∈ R+, and the contour Γ ⊂ SL
a,Θ(M) is such that | argµ| → Θ for µ → ∞, µ ∈ Γ. If

V • ∈ C∞(R+;L(V)) is a degenerate holomorphic semigroup of operators, then we can
define ker V • = {v ∈ V : V tv = 0 ∃ t ∈ R+}. Since the semigroups U• and F • are
holomorphic, we set U0 = ker U•, F0 = ker F •. Let L0 be the restriction of the operator
L to U0, and M0 be the restriction of the operator M to U0 ∩ domM .

Theorem 3. [2, Ch. 3] Let the operator M be (L, p)-sectorial for some p ∈ {0}∪N. Then
(i) L0 ∈ L(U0;F0) and M0 : U

0 ∩ domM → F0;
(ii) there exists the inverse operator M−1

0 ∈ L(F0;U0);
(iii) the operator H = M−1

0 L0 ∈ L(U0) (G = L0M
−1
0 ∈ L(F0)) is nilpotent of degree

less than or equal to p.

If V • ∈ C∞(R+;L(V)) is a degenerate holomorphic semigroup of operators, then
we can define imV • = {v ∈ V : lim

t→0+
V tv = v}. Since the semigroups U• and F • are

holomorphic, we set U1 = imU•, F1 = imF •. Let L1 be the restriction of the operator L

to U1, and M1 be the restriction of the operator M to U1∩domM . Then U0⊕U1 ⊂ U and
F0 ⊕ F1 ⊂ F.

Definition 8. [2, Ch. 3] The operator M is called strongly (L, p)-sectorial on the right
(on the left) for some p ∈ {0} ∪ N, if M is (L, p)-sectorial for some p ∈ {0} ∪ N and

‖RL
(µ,p)(M)(λL−M)−1Mu‖U ≤

const

|λ|
p
∏

q=0

|µq|

∀u ∈ domM,

where const = const(u) (there exists the lineal
◦

F, which is dense in F and such that

‖M(λL−M)−1LL
(µ,p)(M)f‖F ≤

const

|λ|
p
∏

q=0

|µq|

∀f ∈
◦

F ,

where const = const(f)); λ, µq ∈ SL
θ (M), q = 0, 1, . . . , p.

Remark 2. Without loss of generality, we can take a = 0 in Definition 7. Indeed, if we
find the resolving semigroup of equation (2) {U t : t ∈ R+} for a = 0, then the semigroup
{eatU t : t ∈ R+} is resolving when a 6= 0.

Theorem 4. [2, Ch. 3] Let the operator M be (L, p)-sectorial on the right (on the left)
for some p ∈ {0} ∪ N. Then there exists the projector P = s- lim

t→0+
U t (the projector

Q = s- lim
t→0+

F t).
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Remark 3. It is easy to see that, under the conditions of Theorem 4, there exists the
splitting of the space U and F, i.e.

U0 ⊕ U1 = U andF0 ⊕ F1 = F. (A1)

Definition 9. [2, Ch. 3] The operator M is called strongly (L, p)-sectorial for some
p ∈ {0} ∪ N, if M is strongly (L, p)-sectorial on the left for some p ∈ {0} ∪ N and

‖(λL−M)−1LL
(µ,p)(M)‖L(F;U) ≤

const

|λ|
p
∏

q=0

|µq|

for every λ, µq ∈ SL
θ (M), q = 0, 1, . . . , p.

Theorem 5. [2, Ch. 3] Let the operator M be strongly (L, p)-sectorial for some p ∈ {0}∪N.
Then there exists the inverse

operator L−1
1 ∈ L(F1;U1). (A2)

Corollary 2. [2, Ch. 3] Let the conditions of Theorem 5 be satisfied, then
(i) the operators S = L−1

1 M1 ∈ Cl(U1) and T = M1L
−1
1 ∈ Cl(F1) are sectorial,

moreover, σ(S) = σ(T ) = σL(M);

(ii) U t =







etSP = s- lim
k→∞

[

(

L− t
k(p+1)

M
)−1

L

]k(p+1)

, for t ∈ R+,

P, for t = 0,

F t =







etTQ = s- lim
k→∞

[

L
(

L− t
k(p+1)

M
)−1
]k(p+1)

, for t ∈ R+,

Q, for t = 0.

(A3)

Therefore, if the operator M is strongly (L, p)-sectorial for some p ∈ {0} ∪N then the
degenerate holomorphic semigroups U• and F • have the forms (A3). Let us describe the
conditions under which these semigroups are positive.

Theorem 6. Let the operator M be strongly (L, p)-sectorial for some p ∈ {0} ∪ N, and
the Banach space U be a Banach lattice, U = (U, ‖ · ‖U,U+). Then the following statements
are equivalent.

(i) The operator [RL
µ(M)]p+1 is positive for all sufficiently large µ ∈ R+.

(ii) The degenerate holomorphic semigroup U• is positive.

Proof. (i)⇒(ii) follows from (A3). (ii)⇒(i) can be obtained by considering the
representation

(µL−M)−1 = −

p
∑

q=0

µqHqM−1
0 (I−Q) + (µI− S)−1L−1

1 Q

for all µ ∈ SL
Θ(M). Hence

[RL
µ(M)]p+1 = (µI− S)−p−1P.
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Now we can use the arguments of Theorem 2, i.e.

(µI− S)−1P =

∞
∫

0

etSPe−µt dt for all µ > Re σ(S) = ReσL(M).

✷
Remark 4. Theorem 6 remains true if we replace the space U (and the Banach lattice
U = (U, ‖·‖U,U+)) by the space F (and the Banach lattice F = (F, ‖·‖F,F+)), the operator
RL

µ (M) by the operator LL
µ(M), and the semigroup U• by the semigroup F •. The proof of

this fact is left to the reader.

Example 1. Let the operators L and M be represented by square matrices of the order n.
The matrix M is called L-regular if there exists the number α ∈ C such that det (αL−M) 6=
0. If the matrix M is L-regular, then there exist the non-degenerate matrices A and B of
the order n such that [13, Ch. 12]

L = Bdiag {
o

Jp1 ,
o

Jp2 , ...,
o

Jpl
, In−m}A, M = Bdiag {Im, S}A,

where
o

Jpk
is a Jordan box of the order pk with zeros on the main diagonal, Ik is the identity

matrix of the order k, S is a square matrix of the order n−m,
l
∑

k=1

pk = m. For the fixed

p = max
k=1,l

pk, the L-regular matrix M is called (L, p)-regular.

Therefore, let the matrix M be (L, p)-regular for some p ∈ {0} ∪ N. Since the L-
spectrum σL(M) of the matrix M consists of the roots of the polynomial det (µL−M)−1 =
0, then the formula

U t =

∫

γ

RL
µ(M)eµt dµ = A−1diag {Om, e

tS}A,

where the contour γ ⊂ C bounds the domain containing σL(M), Om is the zero matrix of
the order m, which defines the degenerate holomorphic group U•. According to Theorem 6,
the group U• is positive exactly when the matrix

[RL
µ(M)]p+1 = A−1diag {Om, (µI− S)−p−1}A

is positive for all sufficiently large µ ∈ R+.

Example 2. Let B = (B, ‖ · ‖B,C) be a Banach lattice, V • be a positive degenerate
holomorphic semigroup of operators, imV • be an image of V •, and V 0 be the unit of V •.
It is easy to see that imV •∩C 6= {0}. Let us show that the inverse proposition is not true.

Let U = R3, the operators L and M be given by the matrices

L =





1 1 0
1 1 0
0 1 1



 and M =





0 1 0
1 0 0
0 0 1



 .

Since the L-spectrum of the matrix M is σL(M) =

{

1

2
, 1

}

, then the matrix M is (L, 0)-

regular and

RL
µ(M) = (2µ− 1)−1





1 1 0
1 1 0
µ

1−µ
1 2µ−1

µ−1



 .
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Hence

U t =
et

2





1 1 0
1 1 0
−1 1 2





and imU• = {u ∈ R3 : u1 = u2}. Consider the canonical cone C = (R̄+)
3 in R3. Obviously,

imU• ∩ C = {u ∈ C : u1 = u2} 6= {0}, however, the group U• is not positive. In addition,
the right L-resolvent RL

µ(M) of the matrix M is not positive for all sufficiently large
µ ∈ R+.

3. Positive Solutions to Abstract Equations

Let U, F be Banach spaces, the operators L ∈ L(U;F) and M ∈ Cl(U;F). Consider
linear homogeneous Sobolev type equation (2). The vector function u ∈ C1(R+;U) is called
a solution to equation (2), if the function u satisfies this equation. The solution u = u(t)
to equation (2) is called a solution to problem (2), (3) if condition (3) is satisfied for some
u0 ∈ U.

Definition 10. [2, Ch. 3] The set P is called the phase space of equation (2), if
(i) any solution u = u(t) to equation (2) belongs to P, i.e. u(t) ∈ P for any t ∈ R+,
(ii) there exists a unique solution to problem (2), (3) for any u0 ∈ P.

Theorem 7. [2, Ch. 3] Let the operator M be strongly (L, p)-sectorial for some p ∈ {0}∪N.
Then the phase space of equation (2) is the subspace U1.

Note that if u = u(t) is a solution to problem (2), (3) under the conditions of Theorem 7
and some u0 ∈ U1, then the solution has the form u(t) = U tu0, where U• = {U t :
t ∈ R} is a degenerate holomorphic semigroup of operators from Lemma 1. Further,
if U = (U, ‖ · ‖U,U+) is a Banach lattice, and U• is a positive degenerate holomorphic
semigroup of operators, then U+ ∩ U1 6= {0}. Indeed, (u ∈ U1) ⇔ (Pu = u), where the
projector P is the unit of the semigroup U•. Since the semigroup U• is positive, then we
have U tu0 ≥ 0 for any u0 ∈ U+. If u0 ∈ U+ ∩ U1, then (U tu0 ≥ 0) ⇒ (Pu0 ≥ 0). Denote
U1
+ = U+ ∩ U1.

Corollary 3. Let the conditions of Theorem 7 be satisfied and suppose that the degenerate
holomorphic semigroup of operators U• is positive. Then there exists the unique positive
solution to problem (2), (3) for any u0 ∈ U1

+.

The proof of Corollary 3 is left to the reader.

Remark 5. Let us show that, for any u0 ∈ U, there exists a solution to problem (2), (4),
which has the form u(t) = U tu0. Since U t = PU t = U tP , then PU tu0 = U tPu0 → Pu0

for t → 0+. The result follows from Theorem 7. If the degenerate holomorphic semigroup
U• is positive, and u0 ∈ U+, then the solution u(t) = U tu0 to problem (2), (4) is positive.

Now, consider linear unhomogeneous Sobolev type equation (1). The vector function
u ∈ C1((0, τ);U) is called a solution to equation (1), if the function u satisfies the equation
for some τ ∈ R+ and f : (0, τ) → F. The solution u = u(t) to equation (1) is called
a solution to problem (1), (3) (problem (1), (4)), if the solution satisfies condition (3)
(condition (4)) for some u0 ∈ U.
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Theorem 8. [2, Ch. 3] Let the operator M be strongly (L, p)-sectorial for some p ∈
{0} ∪ N. Then for any vector u0 ∈ U and any vector function f : (0, τ) → F such that
f 0 = (I−Q)f ∈ Cp+1((0, τ);F0) and f 1 = Qf ∈ C([0, τ ];F1) there exists a unique solution
u = u(t) to problem (1), (4), and the solution has the form

u(t) = −

p
∑

q=0

HqM−1
0

dqf 0

dtq
(t) + U tu0 +

t
∫

0

U t−sL−1
1 f 1(s)ds, t ∈ (0, τ). (6)

In addition, if the initial vector u0 satisfies the relation

(I−Q)u0 = − lim
t→0+

p
∑

q=0

HqM−1
0

dqf 0

dtq
(t), (7)

then there exists a unique solution u = u(t) to problem (1), (3), and the solution has the
form (6).

Definition 11. Let the operator M be strongly (L, p)-sectorial for some p ∈ {0} ∪ N.
The Banach lattices U = (U, ‖ · ‖U,U+)) and F = (F, ‖ · ‖F,F+)) are called concordant with
respect to the pair (L,M) (briefly, (L,M)-concordant) if

(i) Uk
+ = Uk ∩ U+ and Fk

+ = Fk ∩ F+ are the proper generative cones, k = 0, 1,
(ii) the operators L ∈ L(Uk

+;F
k
+) and M ∈ Cl(Uk

+;F
k
+), moreover, there exist the

operators L−1
1 ∈ L(F1

+;U
1
+) and M−1

0 ∈ L(F0
+;U

0
+).

Corollary 4. Let the operator M be strongly (L, p)-sectorial for some p ∈ {0} ∪ N, the
Banach lattices U = (U, ‖ · ‖U,U+)) and F = (F, ‖ · ‖F,F+)) be (L,M)-concordant, and
the degenerate holomorphic semigroup of operators U• be positive. Then for any vector
function f : (0, τ) → F such that −dqf0

dtq
∈ C((0, τ);F0

+), q = 1, p, and f 1 = C([0, τ ];F1
+),

and for any vector u0 ∈ U+ there exists a unique positive solution to problem (1), (4), and
the solution has the form (6). If, in addition, the initial vector u0 ∈ U+ satisfies condition
(7), then there exists a unique positive solution to problem (1), (3), and the solution has
the form (6).

In order to prove, we note that the operator H = M−1
0 L0 ∈ L(U0

+) and, therefore, the
operator H is positive.

Example 3. Let the spaces U = F = Rn and the operators L,M ∈ L(U;F) be given by
the matrices

L = diag {
o

Jp1,
o

Jp2, ...,
o

Jpl
, In−m}, M = diag {Im, S},

where
o

Jpk
is a Jordan box of the order pk with zeros on the main diagonal, Ik is the

identity matrix of the order k, S is a square matrix of the order n −m,
l
∑

k=1

pk = m. Fix

p = max{p1, p2, ..., pk}, then the matrix M is (L, p)-regular according to Example 1.
Let us construct positive solutions to problem (1), (4). According to Corollary 4, it is

necessary to show that the operator M is strongly (L, p)-sectorial for some p ∈ {0} ∪ N.
To this end, we use equivalent conditions (A1), (A2), which are easier to verify in our
case. Construct the projectors P = Q = diag {Om, In−m}. Define the subspaces U0 =
span {e1, e2, ..., em} and U1 = span {em+1, em+2, ..., en}. Here ek ∈ Rn, where the k-th
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coordinate equals 1, while all the rest coordinates are zeroes. Then the space U can be
represented as the direct sum of two subspaces U = U0 ⊕U1. Similarly, we can construct a
splitting of the space F. Therefore, condition (A1) is satisfied. The actions of the operators
L and M are splitted and their restrictions to the subspaces Uk, k = 0, 1 take the form

L0 = diag {
o

Jp1,
o

Jp2, ...,
o

Jpl
,On−m}, L1 = diag {Om, In−m},

M0 = diag {Im,On−m}, M1 = diag {Om, S}.

Then there exist the operators

L−1
1 = diag {Om, In−m}, M−1

0 = diag {Im,On−m}

and condition (A2) is satisfied. Therefore, we see that conditions (A1), (A2) are satisfied.
Hence, the operator M is strongly (L, p)-sectorial. Construct the operator

H = M−1
0 L0 = diag {

o

Jp1,
o

Jp2, ...,
o

Jpl
,On−m}.

The formula

U t =

∫

γ

RL
µ (M)eµt dµ = diag {Om, e

tS}

defines a degenerate holomorphic group of operators, where the contour γ ⊂ C bounds the
domain containing σL(M), and Om is the zero matrix of the order m. Moreover, Theorem 6
shows that the group U• is positive exactly when the matrix

[RL
µ(M)]p+1 = diag {Om, (µI− S)−p−1}

is positive for all sufficiently large µ ∈ R+. Further, we assume that the matrix S satisfies
this condition.

As a cone, we consider the proper cones U+ = F+ = {R̄+}
n. Then the Banach lattices

U = (U, ‖ · ‖U,U+)) and F = (F, ‖ · ‖F,F+)) are (L,M)-concordant. Therefore, all the
conditions of Corollary 4 are satisfied. Hence, there exists a unique positive solution to
problem (1), (4), which is given by formula (6) for any vector function f : (0, τ) → F such

that −dqf0

dtq
∈ C((0, τ);F0

+), q = 1, p, and f 1 = C([0, τ ];F1
+), and for any vector u0 ∈ U+.

Note that the conditions on the vector function f : (0, τ) → F can be satisfied [10], for
example, if we consider the vector function f(t) = eatf 0, where a ∈ R+, −f 0 ∈ F0

+.

4. One Concrete Interpretation of Abstract Equation

Consider the monotonically increasing sequence {λk} ⊂ R+ such that lim
k→∞

λk = +∞.

Construct Sobolev spaces of sequences lmq , m ∈ R, q ∈ [1,+∞), which are Banach spaces
endowed with the norm

‖u‖m,q =

(

∞
∑

k=1

λ
mq

2

k |uk|

) 1

q

.

Obviously, the embeddings lmq →֒ lnq are dense and continuous for all m ≥ n and q ∈ [1,∞).
Suppose that the operator Λu = (λ1u1, λ2u2, ...) acts in the space of sequences, then
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Λ : lm+2
q → lmq is linear, continuous and continuous invertible for all m ∈ R and q ∈ [1,∞)

[8, 9]. Let Lk(ζ) =
rk
∑

j=0

akj ζ
j and Mk(ζ) =

sk
∑

j=0

bkj ζ
j be polynomials of the degrees rk and sk,

respectively, with real coefficients such that the roots of a finite number of the polynomials
Lk(ζ) are the numbers ζ = λk. Construct the operators

L = diag{Lk(λk)}, M = diag{Mk(λk)}

acting in the Banach spaces of sequences satisfying the conditions

rk < sk for all k ∈ N. (8)

Suppose that there exists s = max
k

{sk}, denote r = max
k

{rk} and construct the operators

L ∈ L(lm+2r
q ; lmq ), M ∈ L(lm+2s

q ; lmq ). By virtue of condition (8), we obtain that s > r. Set
U = lm+2r

q , F = lmq , m ∈ R, q ∈ [1,+∞), then the operators L ∈ L(U;F), M ∈ Cl(U;F),
domM = lm+2s

q .

Proposition 1. Suppose that condition (8) is satisfied and the polynomials Lk = Lk(ζ)
and Mk = Mk(ζ) for all k ∈ N have only real roots and do not have common roots,
moreover, the roots of a finite number of the polynomials Lk(ζ) are the numbers ζ = λk

and the condition

akrk · b
k
sk

< 0 for all k ∈ N such that Lk(λk) 6= 0 (9)

is satisfied. Then the operator M is (L, 0)-sectorial.

Proof. Construct the L-spectrum of the operator M

σL(M) = {µk ∈ C : µk =
Mk(λk)

Lk(λk)
, k : Lk(λk) 6= 0},

where the numbers µk ∈ σL(M) ordered taking into account their multiplicities are real
numbers and, by condition (8), tend to −∞. Denote a = max

k
µk. Denote by {ek : ek =

(0, ..., 0, 1, 0, ...)} a family of vectors, where the unit is on the k-th position, and construct
the operator

RL
µ(M) =

∞
∑

k=1

′

(

Lk(λk) < ·, ek >

µLk(λk)−Mk(λk)

)

ek =
∞
∑

k=1

′

(

< ·, ek >

µ− µk

)

ek,

where ′ at the sum means absence of the terms with the numbers k such that Lk(λk) = 0.
Next, consider

‖RL
µ(M)u‖qq,m+2r =

∞
∑

k=1

′ |<u,ek>|q‖ek‖
q
q,m+2r

|µ−µk |q
=

∞
∑

k=1

′ |<u,ek>|q(λk)
q
m+2r

2

|µ−µk |q
=

=
∞
∑

k=1

′

(

|uk|(λk)
m+2r

2

|µ−µk |

)q

≤
∞
∑

k=1

′

(

|uk|(λk)
m+2r

2

sin θ|µ−a|

)q

=

= 1
sin θ|µ−a|q

∞
∑

k=1

′
(

|uk| (λk)
m+2r

2

)q

= 1
sin θ|µ−a|q

‖u‖qq,m+2r,

where the angle θ = π
2
+ α, α ∈ (0, π

2
). Therefore, we see that the operator M is (L, 0)-

sectorial.
✷
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Construct the splitting of the space U into the direct sum of two subspaces:

U0 = lm+2r
q,0 =

{

u = {uk} ∈ lm+2r
q :

uk 6= 0, k : Lk(λk) = 0,
uk = 0, k : Lk(λk) 6= 0

}

,

U1 = lm+2r
q,1 =

{

u = {uk} ∈ lm+2r
q :

uk = 0, k : Lk(λk) = 0,
uk 6= 0, k : Lk(λk) 6= 0

}

.

Similarly, we construct the splitting of the space F into the direct sum of two subspaces:

F0 = lmq,0 =

{

f = {fk} ∈ lmq :
fk 6= 0, k : Lk(λk) = 0,
fk = 0, k : Lk(λk) 6= 0

}

,

F1 = lmq,1 =

{

f = {fk} ∈ lmq :
fk = 0, k : Lk(λk) = 0,
fk 6= 0, k : Lk(λk) 6= 0

}

.

Then the operators L1 ∈ L(U1;F1), L−1
1 ∈ L(F1;U1), M−1

0 ∈ L(F0;U0) are defined as
follows:

L1u
1 =

∞
∑

k=1

′Lk(λk) < u1, ek > ek, L−1
1 f 1 =

∞
∑

k=1

′< f 1, ek >

Lk(λk)
ek,

M−1
0 f 0 =

∑

k:Lk(λk)=0

< f 0, ek >

Mk(λk)
ek.

Therefore, we see that, under the conditions of Proposition 1, the operator M is (L, 0)-
sectorial and conditions (A1), (A2) are satisfied.

In the space U, consider the family of vectors {ek} and the canonical cone U+ formed as
a closure of a linear combination of the vectors {ek} with non-negative coefficients. Then
the space (U,U+, ‖ · ‖q,m+2r) forms a Banach lattice. Similarly, in the space F, we consider
the family of vectors {ek} and the canonical cone F+ as a closure of a linear combination
of the vectors {ek} with non-negative coefficients. Then the space (F,F+, ‖ · ‖q,m) forms a
Banach lattice. Here the sets are as follows:

U0
+ = lm+2r

q,0 =

{

u = {uk} ∈ lm+2r
q :

uk ≥ 0, k : Lk(λk) = 0,
uk = 0, k : Lk(λk) 6= 0

}

,

U1
+ = lm+2r

q,1 =

{

u = {uk} ∈ lm+2r
q :

uk = 0, k : Lk(λk) = 0,
uk ≥ 0, k : Lk(λk) 6= 0

}

,

F0
+ = lmq,0 =

{

f = {fk} ∈ lmq :
fk ≥ 0, k : Lk(λk) = 0,
fk = 0, k : Lk(λk) 6= 0

}

,

F1
+ = lmq,1 =

{

f = {fk} ∈ lmq :
fk = 0, k : Lk(λk) = 0,
fk ≥ 0, k : Lk(λk) 6= 0

}

.

Therefore, it follows from the construction of the operators L1, L0 , L−1
1 , M−1

0 that the
Banach lattices U = (U, ‖ · ‖U,U+)) and F = (F, ‖ · ‖F,F+)) are (L,M)-concordant.

Theorem 9. Suppose that the conditions of Proposition 1 are satisfied, the values of the
polynomials Lk = Lk(ζ) and Mk = Mk(ζ) are positive for ζ = λk such that Lk(λk) =
0. Then for any vector function f : (0, τ) → F such that −f 0 ∈ C1((0, τ);F0

+), f 1 ∈
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C((0, τ);F1
+) and for any u0 ∈ U such that u1

0 ∈ U1
+, there exists the unique positive

solution u = u(t) to problem (1), (4), and the solution can be represented as

u(t) = −M−1
0 f 0(t) + U tu0 +

t
∫

0

e(t−s)SL−1
1 f 1(s)ds,

where

U tu1
0 =

∞
∑

k=1

′ exp

(

Mk(λk)

Lk(λk)

)

< u1
0, ek >ek.

Proof. Let us show that the operator M is positive and strongly (L, 0)-sectorial. Consider
the L -resolvent of the operator M

(µL−M)−1 =
∞
∑

k=1

′

(

< ·, ek >

µLk(λk)−Mk(λk)

)

ek =
∞
∑

k=1

′

(

< ·, ek >

Lk(λk)(µ− µk)

)

ek,

which is a positive operator by construction. Here ′ at the sum means absence of the
terms with the numbers k : Lk(λk) = 0. Therefore, we see that the operator M is (L, 0)-
sectorial, conditions (A1), (A2) are satisfied, and the Banach lattices U = (U, ‖ · ‖U,U+))
and F = (F, ‖ · ‖F,F+)) are (L,M)-concordant. The proof of the theorem is true by virtue
of Corollary 4.

✷

Conclusion

In this paper, we find conditions under which a resolving semigroup of operators is
positive, and obtain sufficient conditions for the existence of positive solutions to both the
Cauchy problem and the Showalter–Sidorov problem for an abstract linear Sobolev type
equation in the case of a relatively sectorial operator. Abstract results are illustrated by
finite-dimensional and infinite-dimensional problems.

Recently, the attention of many researchers is given to the search for positive solutions.
Note an interesting approach based on the Stampacchia maximum principle [14], which
is applied to stochastic partial differential equations presented in the Ito–Stratanovich–
Skorokhod form. The obtained abstract results are applied to the stochastic Boussinesq
temperature equation and the reaction-diffusion equations perturbed by non-Lipschitz
nonlinear noise. As a result, the theorems on the stability of positive solutions to these
equations are obtained. Another approach to the study of stochastic equations is based
on the Nelson–Gliklikh derivative of stochastic processes [15–18]. In the future, we hope
to extend this approach to the study of the stability of positive solutions to linear and
nonlinear Sobolev type equations.
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ПОЗИТИВНЫЕ РЕШЕНИЯ УРАВНЕНИЙ СОБОЛЕВСКОГО ТИПА
С ОТНОСИТЕЛЬНО p-СЕКТОРИАЛЬНЫМ ОПЕРАТОРОМ
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1Южно-Уральский государственный университет, г. Челябинск,
Российская Федерация
2Университет Претории, г. Претория, Южно-Африканская Республика

В статье описаны условия, достаточные для существования позитивных решений

задачи Коши и задачи Шоуолтера – Сидорова для абстрактного линейного уравнения

соболевского типа. Отличительной чертой таких уравнений является феномен несу-

ществования и неединственности решений. Фундаментом наших исследований стали

теория позитивных полугрупп операторов и теория вырожденных голоморфных полу-

групп операторов. В результате слияния этих теорий получилась новая теория вырож-

денных позитивных голоморфных полугрупп операторов. В пространствах последова-

тельностей, являющихся аналогами функциональных пространств Соболева, постро-

енная абстрактная теория применена для исследования одной математической модели.

Полученные результаты могут быть применены для исследования экономических и ин-

женерных задач.

Ключевые слова: уравнения соболевского типа; вырожденные позитивные голо-

морфные полугруппы операторов; позитивные решения; соболевы пространства по-

следовательностей.
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